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Chapter 1

Introduction

It was February 2002 in Salt Lake City, the site of the Winter Olympics. Sara Hughes,

Olympic figure skater, trailed Michelle Kwan, Irina Slutskaya, and Sasha Cohen

after the short program in the women’s figure skating competition. Intense moments

arose for both the Olympic skaters and the spectators when the final round, the long

program, commenced. Kwan, known world-wide as a legendary skater, fell short in

her long program routine by “two-footing a triple toe loop in combination and falling

on a triple flip”. Slutskaya’s dry routine following a sloppy landing on a triple flip

was rewarded with modest marks by the judges. Cohen’s routine left the judges

rendering bad marks as she lacked great footwork, and also fell on a triple toe loop.

Hughes’ presentation, on the other hand, was full of fire and the flawless techniques

that the judges were expecting. A captivating long program score suddenly sent

her from fourth place to a surprising first place finish. Hughes, followed by her

coach, immediately fell to the ground in tears after reading the final scores from the

scoreboard above. Rated by Sports Illustrated as ‘The Most Unexpected Skater to

Win the Olympics’, Sarah Hughes left the ice that evening as a gold medalist.

In figure skating, switching adjacent positions from initial ranking to final rank-

ings (such as third to second, fourth to fifth, or even second to first) is not uncommon.

However, because of its scoring procedures, moving from third to first in figure

skating is a somewhat rare occurrence, and moving from fourth to first is very rare.

But exactly how rare was Ms. Hughes’ accomplishment? Is it something that would

1
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occur once in one hundred competitions? Once in one thousand? Once in one mil-

lion? A goal of this thesis is to formulate a model for figure skating scoring so that

questions such as the above can be analyzed accurately.

Referring back to the 2002 Winter Olympics with Sarah Hughes, how likely

was it for her to improve from fourth to first? One purpose of this project is to

create a statistical model for predicting the conditional probability that a skater

ranked ith after the first round (short program) will end up in jth place overall at

the conclusion of the tournament. This will enable fans or analysts to make mid-

tournament assessments of the expected placements of various competitors. It would

also lend some objectivity to statements concerning how rare an event such as Sarah

Hughes’ comeback win was.



Chapter 2

Literature Review

2.1 History of Figure Skating

Ice skating, in particular figure skating, combines sport and art together in a way that

sports such as football and baseball can’t. The craft of interpreting a song through

skating has now become, in our culture, a competition. The origins of ice skating are

still debated. Some historians trace the start of ice skating back to Scotland in the

mid 1600s, when the Scots used ice skates to cross over frozen fens and marshes in

an attempt to invade enemy territory (Jonland and Fitzgerald). During this same

period, it was said that Norway and Finland introduced ice skating as a means of

transportation (Jonland and Fitzgerald). Northern Norwegians used ice skates and

skis to move over frozen ice and slick roads where regular transportation couldn’t.

At that time, ice skates were made of bone rather than steel, and were attached to

the bottom of skaters’ boots. Eventually, ice skating was introduced to the United

States, but not until two hundred years later. Here, it was not used as a means of

transportation or war, but for art, recreation, and (beginning in 1932) competition.

The first skating club, called the Edinburgh Skating Club, dates back to 1742 in

Edinburgh (Copley-Graves). By 1778, this organization had documented member-

ship requirements by means of a skating test which required demonstration of artistic

circles and high jumps (Copley-Graves). Most organizations didn’t become estab-

lished until the late nineteenth and early twentieth centuries. In the late nineteenth

century (1898), the Cambridge Skating Club was founded by an American named

3
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George Browne, and was internationally recognized as the first American skating

club (Copley-Graves). It was then that Browne made popular what is now called the

“ten-step”, a technique for beginning figure skaters, which was introduced two years

before the formation of the Figure Skating Club of London and the Princes’ Skating

Club in 1900. The market for figure skating competitions grew in the United States

as small competitions blossomed in the northern part of the country. Because of this,

clubs and organizations in figure skating became popular outdoor activities to join.

Figure skating was inaugurated in the Winter Olympics in 1908, after Olympic offi-

cials noted the strong popularity of international competitions. Such competitions

included the International Skating Tournament in Vienna in 1882 and the World

Championship Figure Skating Competition beginning in 1896. Towards the end of

the nineteenth century, the world began to recognize popular figure skaters. One

expert was Ulrich Salchow, a Swedish ten-time world championship gold medalist

who invented the Salchow jump still used in competitions today. Later stars included

Gillis Grafstrom, a Swedish skater who won three Olympic titles (1920, 1924, and

1928), and Karl Schafer of Austria who won seven world championships and two gold

medals. Today, his name remains known as it marks the name of a popular inter-

national skating competition in Austria. With so many figure skating organizations

and competitions, the Dutch felt that there was a need to establish international

standards to govern competitions. This would insure that international standards

were followed when different countries competed against one another. In July 1892,

the Dutch took the lead in calling a meeting of representatives from all countries

interested in international ice skating competitions.

Thus, in that same year, the International Skating Union (ISU) was formed. Its

purpose was to merge nationally recognized competitions and organizations together,

and to host tournaments with rules compatible with every nation’s skating guidelines.

Currently, the ISU still operates with these same purposes. Now one hundred and
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eleven years old, the ISU is recognized as the oldest governing international winter

sports federation. Although the ISU was formed in 1892, the United States felt that

there should be a union of American clubs and organizations. Thus, almost thirty

years later (in 1921), the United States Figure Skating Association (USFSA) was

formed. The USFSA felt that state and local competitions in the US should be

governed by principles complying with ISU’s universal skating rules, but should be

held under the jurisdiction of the USFSA. To achieve this, the same sanctioning

rights provided by the ISU were granted by the USFSA, since it, too, was a member

of ISU. Today, the purpose of the USFSA is to provide sanctioning and financial

support to figure skating organization and competitions in the US. Although figure

skating became popular at the start of the twentieth century, early competitions did

not contain the musical choreography and dancing that we witness today. Originally,

figure skating was more intense, as skaters were forced to perform a required set

of skating techniques. In those days, dancing in Olympic competitions would have

resulted in disqualification. But matters changed slowly. The judges at the World

Championship allowed dance routines into figure skating in 1952, but dancing wasn’t

allowed in the Winter Olympics until 1976, more than two decades later. Today, a

presentation without dancing is not pleasing to the judges, and would have no hope

of winning.

2.2 Figure Skating Scoring Systems

Most figure skating competitions, in particular the professional level competitions,

are composed of two rounds: a short program (SP) and a long program (LP). A

competition begins with the SP, where n skaters are given two to three minutes to

perform for the judges a required set of routines such as loops, lutzes, spirals, and

axels. For each skater, the judges then render two types of marks, technical and



6

presentation marks, each of which ranges from 0 to 6. The technical marks measure

the difficulty of the program and the clean execution of the elements required. The

presentation marks, on the other hand, reflect the skater’s choreographic prowess

and his/her ability to interpret the chosen music. The two marks from each judge

are summed and used to assign each skater a placement, using the tournament’s

system of ranking the skaters. This will be explained later in this thesis, but the

key concept is that each judge’s relative rank of each skater, rather than his/her

absolute rating of a skater, is the information from which the overall placements

are obtained. These placements range from 1 to n (where the lowest placement, 1,

represents the best skater from that round) with ties almost always precluded by the

scoring system. The same scoring procedure is used in the long program (also known

as the freeskate program), where skaters are not only required to perform the same

type of techniques, but are rigorously rated on their choreography, interpretation

of music through skating, speed, assurance, and balance of program, as well as on

their ability to use the entire skating rink. After the LP round, skaters again receive

technical and presentation marks which are converted to placements in the same

manner. Because the LP round lasts twice as long and is considered to be more

intense than the SP, its awarded placement is weighted twice as highly as the SP

placement. The placements awarded for each skater are used to calculate a total

score (TS) using the following formula:

TS = SP + 2(LP ), (2.1)

where SP is the placement given to a skater from the short program round and LP

is the placement awarded by the judges from the long program. The skater with

the lowest total score is declared the winner of the competition and other places are

awarded by ascending point value. Although the ranking procedure used in obtaining

the SP and LP placements generally precludes tied ranks for either component, it
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Table 2.1: Hypothetical Figure Skating Results Example (n = 6)

Skaters SP LP TS = [SP + (2 ∗ LP )]
A 1 3 7
B 2 6 14
C 3 2 7
D 4 5 14
E 5 1 7
F 6 4 14

could easily happen that two or more competitors could earn the same total score.

For example, suppose the placements among six competitors were as shown in Table

2.1. While the scenario of Table 2.1, as we shall see later, is not at all likely to occur

in practice, there must be a rule to break ties which do occur. Should two or more

skaters have the same total score, the skater whose LP rank is lowest is declared

the victor. Thus, in the example above, the final placing from best to worst would

be {E, C, A, F, D, B}. On the other hand, if skaters C and E had reversed their

placements in the long program, the final order would have been {C, A, E, F, D,

B}.

It is frequently the case that a figure skater placing first in the short program

also places first in the long program (of course making that skater the winner). In

other words, the rankings given from the SP round are frequently similar to those

awarded in the LP round. However, the relationship isn’t perfect. It is certainly

possible for a skater to drop drastically from SP ranking to final ranking because of

a poor LP performance. In statistical terms, one would say that SP and LP rankings

are positively correlated, but the extent of this correlation must be quantified.
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As figure skating became popular over this period, the scoring systems used

became more consistent. The two most popular scoring systems currently used to

obtain ”placements” in figure skating competitions are the Ordinal system and the

One-By-One system. This research considers only the total scores, so the ranking

system used to convert the technical and presentation marks into placements in

these tournaments is of secondary importance. Nonetheless, understanding how the

placements are derived will help motivate the statistical models of this thesis.

As previously discussed, each judge renders a technical and presentation mark

for every skater. Notationally, let TMS(i, j) and PMS(i, j) be the technical and

presentation marks given to the ith skater by the jth judge in the short program,

and, similarly, let TML(i, j) and PML(i, j) be the technical and presentation marks

given in the long program. Note that these marks yield no intrinsic description of

a skater’s ability (Loosemore). Rather, the sums of these two marks are used only

to assign each of the n skaters a relative rank for that judge, ranging from 1 (the

best skater) to n (being the worst skater). That is RS(i, j) is the relative rank [on

a 1 to n scale] assigned to the ith skater by the jth judge. Following the judges’

ranking, the tournament’s chosen scoring system is used to assign placements, a

process which is explained in more detail below. Finally, the placements awarded

are used to calculate the total score, which is used to determine the winner. Table

2.2 outlines this process.

The process by which judges’ marks are converted to judges ranks (step 1 → step

2 above) and by which total score is obtained from placements (step 3 → step 4)

are easy to understand. However, the process of converting judges’ individual ranks

(step 2) to placements (step 3) was and is one of the thorniest issues in figure skating

evaluation. In this thesis, we will examine two of the more commonly used methods

for doing this, the Ordinal system and the One-by-One system.
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Table 2.2: Steps Leading to the Total Score

SP LP
Step Judges’ XS(i, j) = TMS(i, j) + PMS(i, j) XL(i, j) = TML(i, j) + PML(i, j)

1 Marks ↓ ↓
Step 2 Judges’ RS(i, j) RL(i, j)
2 Ranks ↓ ↓
Step Placements SP (i) LP (i)
3 ↓ ↓
Step Total ↘ ↙
4 Score TS(i) = SP (i) + 2LP (i)

Still used in most skating competitions, the Ordinal system allows judges to offer

placements based on the ”majority vote”. It is one method used to convert judges’

ranks to placements. In order to explain how the Ordinal scoring system works, let’s

look at an example. Table 2.3 displays the results of the mens’ short program (SP)

from the 2001 Goodwill Games in Brisbane, Australia, starting from the judges’

ranks (which we will call an R-Table). There were eleven skaters each evaluated by

seven judges in this competition. The first judge’s column (J1) shows that the first

judge ranked Evengi Plushenko as his top ranked skater, followed by Johnny Weir in

second, Ilia Klimkin in third, Anthony Liu in fourth, etc. If one were to consider the

list to be the order in which the skaters presented, then ninth skater Takeshi Honda,

with rank of 7 from judge number six could be written as R(9, 6) = 7. With respect

to the rows, Evengi Plushenko was ranked the top skater by all seven judges while

Michael Weiss was ranked third by five judges, second by one judge, and seventh by

one judge. In general, in order for a skater to have the majority vote, he/she must

capture at least half of the judges’ votes at that rank or lower. In this example, a



10

Table 2.3: R-Table of 2001 Goodwill Games

Skaters Judges Ordinal MJ SMJ Place.
J1 J2 J3 J4 J5 J6 J7

E. Plushenko 1 1 1 1 1 1 1 1 7 7 1
M. Weiss 7 3 3 2 3 3 3 3 6 17 2
A. Yagudin 5 8 2 4 5 2 2 4 4 10 3
A. Liu 4 2 5 3 2 8 8 4 4 11 4
E. Stojko 10 7 4 5 6 4 5 5 4 18 5
C. Li 8 6 6 11 4 5 6 6 5 27 6
I. Klimkin 3 9 10 7 7 6 4 7 5 27 7
E. Sandhu 6 5 11 8 8 10 10 8 4 27 8
T. Honda 9 4 9 9 10 7 7 9 6 45 9
J. Weir 2 10 7 10 11 9 9 9 4 27 10
Y. Li 11 11 8 6 9 11 1 11 7 67 11

skater needs to capture four judges to receive the majority vote. To assign the first

ordinal, the algorithm searches for a skater with four or more ranks of one. In this

case, Evengi Plushenko satisfies this condition, therefore receiving the ordinal value

of one. The algorithm then searches for the skater to receive the second ordinal using

the same methodology. Here, no one has the majority vote, so no one is assigned

the second ordinal and the algorithm searches for a skater to whom to award the

third ordinal. In this case, Michael Weiss now satisfies this condition because he has

at least four judges rendering him a rank of three or lower. For the fourth ordinal,

there were two skaters with the majority vote: Alexei Yagudin and Anthony Liu.

The process of distributing the ordinals is continued until all n skaters receive an

ordinal. These ordinals are then converted to placements needed to calculate the TS,

as explained next.
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It could easily happen, as it did in the example above, that no skaters are assigned

to a certain ordinal (’2’ in the example above) or that more than one skater is assigned

the same ordinal (’4’ and ’9’ in the above example). In case of ties, the algorithm

first examines the number of judges that determined the skater’s majority vote (MJ

column). The skater with the larger majority wins. In the case of Takeshi Honda

and Johnny Weir, both with an ordinal of 9, Honda wins because he has 6 judges at

9 or below, whereas Weir has only 4. If two skaters remained tied after considering

both ordinal and number of majority judges (as is the case with Yagudin and Liu

at ordinal equaling 4), a further tie-breaker is needed. In this instance, Yagudin has

four judges’ ranks: a 2, 4, 2, and 2 (which came from judges three, four, six, and

seven respectively). Anthony Liu also has four judges’ ranks: 4, 2, 3, and 2 (from

judges one, two, four and five). To break this tie, the sum of the judges’ ranks that

determined the majority vote (SMJ column) are calculated, and the skater holding

the smallest total wins. So, Yagudin beats Liu 10-11. If a tie had still existed in

ordinal, MJ, and SMJ values, the algorithm would refer back to the judges’ original

ranks, searching for the skater with the lowest sum over all n judges. This very

common scoring method, known as the “rank-sum”, is used only as a last resort tie-

breaker. The reason that it is generally avoided is that it is much more susceptible

to manipulation by biased judges than are the other methods. This entire system,

in which the marks are converted to ranks, which are converted to ordinals, and

ultimately to placements is repeated for the LP round. The SP and LP placements

are finally used in (2.1) to calculate the total score for each skater, thus determining

the overall results of the competition.

After the Ordinal scoring system had been in use for many years, ISU’s president,

Ottavio Cinquanta, during a meeting after the 1997 European Championship, asked

the rules committee to adopt a new scoring system so that relative placing of two or

more competitors who have already skated would not change when another skater’s
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ranks were awarded (termed by Cinquanta as a ”flip-flop”). Thus, in 1997, a new

scoring system called the One-By-One system (OBO) was created. The objective

was to compare the skaters pairwise rather than simultaneously as in the Ordinal

system (Loosemore). However, in comparing two skaters, this system also considers

a type of “majority vote” found in the Ordinal scoring system. An n × n OBO

table is constructed where the cells of this table contain a two-variable response:

a dichotomous decision variable, and an integer-valued “Judges-in-Favor” variable

(JIF). The diagonals of this table would be blank since the skaters being compared

must be distinct. Beginning with the ranks given from each judge (the R-table), each

pair of skaters are compared by examining their judges’ ranks to see which skater is

most preferred in a head-to-head comparison. The most preferred skater would be

declared the winner, and this entry of the table would have the value ’1’, followed by

the number of judges who favored that skater over the other compared skater. At the

same time, the losing skater’s first value would be a ’0’ followed by his/her count of

favored judges. This process is continued to complete all (n − 1)2 cells. Afterwards,

two columns showing the total number of wins and the number of judges-in-favor is

made from the OBO table. The distribution of the placements is dependent upon

the skater’s number of wins. In case of ties, the ”Judges-in Favor” column is used.

Note that, as far as the judges are concerned, there is no difference between this

method and the Ordinal method. The algorithm uses the same judges’ rankings, but

combines them, in a perhaps slightly different way, to obtain the placement scores

from which the total score is derived.

Let’s reconsider the data in Table 2.3 pertaining to the eleven skaters competing

in the Goodwill Games. The cells contain individual ranks given by the judges. Table

2.4 is the (11 × 11) OBO table which would be created from Table 2.3, with the

skaters’ initials in the margins. From Table 2.4, if the One-by-One method were

used rather than Ordinal scoring system, Evengi Plushenko would receive the first
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placement due to having the most number of wins. As can be noted, Michael Weiss

and Alexis Yagudin both have same number of total wins. However, Michael Weiss

has more ”Judges-In-Favor” votes than Yagudin, therefore making him the recipient

of the second placement. Therefore, the short program placement order from 1 to 11

would be Plushenko, Weiss, Yagudin, Liu, Stojko, Cheng Jiang Li, Klimkin, Honda,

Weir, Sandhu, and Yunfei Li. Note that this order is the same as that of the Ordinal

method for the first 7 skaters, but that ranks 8-10 are rearranged. Although a tie was

found between Cheng Jian Li and Ilia Klimkin with their “Judges-In-Favor” votes,

that is irrelevant if their number of wins differ. Although rarely happening, as with

Ordinal scoring, should two skaters tie in both total wins and “Judges-In-Favor”

votes, the tie is broken by calculating the sum of all judges’ ranks. This same system

is used again to award the placements for the LP round. After both the SP and LP

placements are awarded, the total score is calculated to determine the winner of the

competition. For eleven skaters, calculating the results manually is moderately easy,

but in championship competitions, computer software is used in order to save time

and prevent errors in calculations.

After many complaints concerning the flaws in the Ordinal system, the president

and board members of ISU believed that a rapid conversion from the Ordinal to

the OBO scoring system was necessary. When the OBO scoring system premiered

in 1997, television and skating audiences did not understand it, nor did most under-

stand the Ordinal system to begin with. The officials of the Nebelhorn Trophy were

instructed to use the OBO system in scoring their competition to determine whether

a significant difference in the results of the two systems would be found. The OBO

system indeed was found to prevent “flip-flops” between rounds, but there were some-

times considerable differences in the skaters’ placements between the two methods,

which was something the ISU had not expected.
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Table 2.4: One-By-One Judges’ Ranks Table for 2001 Goodwill Games

EP MW AY AL ESt CL IK ESa TH JW YL Total JIF

Wins

EP X 17 17 17 17 17 17 17 17 17 17 10 70

MW 00 X 03 14 17 17 16 16 17 16 17 8 53

AY 00 14 X 03 16 15 16 16 16 16 17 8 49

AL 00 03 04 X 14 15 14 17 15 16 17 7 45

ESt 00 00 01 03 X 14 15 15 15 16 17 6 36

CL 00 00 02 02 03 X 14 14 15 15 16 5 31

IK 00 01 01 03 02 03 X 16 15 15 15 4 31

ESa 00 01 01 00 02 03 02 X 03 03 15 1 20

TH 00 00 01 02 02 02 02 14 X 15 14 3 23

JW 00 01 01 01 01 02 02 14 02 X 15 2 19

YL 00 00 00 00 00 01 02 02 03 02 X 0 10

In concluding this discussion, it should be noted that President Cinquanta, in

2002, proposed that another scoring system should be adopted. Under this new

method, as yet unnamed, a sample of judges’ ranks is randomly chosen to produce a

skater’s rank and placing. The rationale for the proposed new scoring system is that

it will be harder for unscrupulous judges to manipulate. However, most statisticians

who have examined this issue don’t feel that the new method will be an improvement,

since the variability introduced by using a different set of judges for each competitor

would be greater than typical victory margins.

As noted above, the actual scoring method (Ordinal or One-By-One) used to

determine SP and LP placements is of only slight relevance to us. In our models,

we are assuming that placements (without ties) for the SP and LP will be produced

(and from these, via equation (2.1)), a total score will be produced. We will model

the relationship between SP and LP scores, assuming that the process to produce
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these is stable. The dataset used primarily spans the five year period from January

1998 to December 2002 (a few tournaments outside this range), and includes data

from both the Ordinal and One-By-One eras.



Chapter 3

Methodology

3.1 Data Collection

Data collection took place from Summer 2002 to Spring 2003. Most of the data were

taken directly from websites dealing with figure skating. These websites included

Icecalc.com (an online database containing figure skating results), the United

States Figure Skating Association, the US World Championships, and International

Olympics sites. The goal was to find results that contained placements (in both SP

and LP) of all the skaters who competed in each tournament examined. The dataset

was limited to national and international professional skating tournaments, with

men’s, women’s, and pair divisions containing at least six skaters. The tournaments

used in this research ranged from the years 1992 to 2003 (see Table A.1 of the

Appendix). Those with fewer than seven skaters (or six teams for ’pairs’ competi-

tions) were discarded from the dataset. In all, this yielded 107 competitions, each

having a distinctive tournament name, year, and division. There were 38 men’s, 40

women’s, and 29 pairs competitions, (see Table A.2 of the Appendix).

3.2 Data Cleaning and Summarization

The information collected at this stage consisted of about 1289 lines corresponding to

107 competitions, each with an average of 12 competitors. For each competitor in a

competition, the SP and LP ’placements’, along with final rank, were displayed. The

data were checked for consistency by means of a SAS program, and inconsistencies

16
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Table 3.1: Contingency Table (SP Placement vs. LP Placement)

LP
SP 1st 2nd 3rd 4th 5th 6th 7th + Total
1st 67 29 4 2 2 1 2 107
2nd 19 37 29 11 3 4 4 107
3rd 12 20 35 22 7 3 8 107
4th 7 12 21 29 15 7 16 107
5th 1 5 10 14 36 18 23 107
6th 0 3 5 13 15 34 37 107
7th + 1 1 3 16 29 40 552 642
Total 107 107 107 107 107 107 642 1284

were matched against original records for resolution until the dataset appeared to

be ’clean’. From this cleaned dataset, I was able to create a 7×7 contingency table

showing the joint (SP, LP) distribution for all places (1-7), where ‘7+’ represents

“rank 7 or higher”. As a final verification that the dataset was free of errors, I checked

that the marginal frequencies summed to the total number of tournaments in the

dataset, 107. The results of these computations are shown in Table 3.1.

If a tournament had less than 12 entrants, fictitious entries for skaters who fin-

ished in jth place in both LP and SP were added to the table (i.e. the ’552’ shown

in the (7+, 7+) cell of Table 3.1 is composed of about 410 actual observations and

142 fictitious observations corresponding to skaters who would have expected to fare

poorly on both SP and LP if they had entered). This addition has minimal effect on

the parameters fit by the model, but simplifies computations so that all tournaments

may be considered to be of the same size (n = 12 skaters) in the final analyses.

Another SAS program was written to find the concordant/discordant matrix.

The A(i, j) entry of this 6×6 matrix (shown as Table 3.2) displays the number of
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Table 3.2: Concordance-Discordance Matrix

j
i 1st 2nd 3rd 4th 5th 6th

1st 0 82 91 93 101 104
2nd 25 0 68 81 92 95
3rd 16 39 0 69 87 94
4th 14 26 38 0 74 80
5th 6 15 20 33 0 72
6th 3 12 13 27 35 0

times that the skater in ith place on the short program finished ahead (on the long

program) of the skater who was in jth place in the short program. In comparing

a pair of skaters from a tournament, it is typical to observe that the skater with

the lower SP placement will also have the lower LP placement. This is called a

concordant result. However, it is possible for the opposite to occur: a pair of skaters

are said to be discordant if their relative orderings on SP and LP are reversed.

The matrix in Table 3.2 is constrained-symmetric in that A(i, j) + A(j, i) = N ,

where N is the total number of tournaments (which equals 107). For example, from

Table 3.2, A(2, 3) = 68 and A(3, 2) = 39, so the 2nd and 3rd ranked skaters on the

short program finished in a concordant order (original #2 ahead of original #3) 68

times and in a discordant manner 39 times among the 107 competitions analyzed.

From examining this matrix, as one might expect, concordant orderings are much

more common than discordant (i.e. there is a positive association between SP and

LP placements), and the discordant chances are higher for two skaters with adjacent

ranks than for two who are widely separated in SP rank. For example, as can be seen
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from Table 3.2, a (3,2) discordance is much more likely to happen [39 occurrences]

than a (6,2) discordance [12 occurrences].

3.3 Research Objectives

The summarized data shown in Tables 3.1 and 3.2 are the results against which

one must check any proposed models. The relevant statistical question would be:

“If 107 tournaments of n=12 skaters were generated from a proposed model, how

likely is it for the results generated to be more extreme [from what is expected] than

those observed in Tables 3.1 and 3.2?” Of course, for this question to make sense,

we must define what is meant by both “expected” and “extreme”, but assuming

we can do so, we can search through a hierarchy of models for the simplest model

which adequately explains the observed data. The information contained in Tables

3.1 and 3.2 is non-hierarchical (i.e. neither table can be derived from the other),

so fits to both should be used to assess a model’s adequacy. However, although

the tables are non-hierarchical, a little thought will reveal that Table 3.1 contains

much more information about Table 3.2 than vice-verse, since Table 3.2 merely

records concordance/discordance, whereas Table 3.1 yields a type of joint (SP,LP)

distribution. Indeed, as we shall see in the next sections, it is relatively easy to

postulate a class of models which yield results consistent with Table 3.2, but to find

the subset of this class of models which is also simultaneously consistent with the

data in Table 3.1 is much more difficult.

3.4 Creating The Statistical Model

In formulating a model for the ranking of the skaters, one should remember the

following:

(a) We don’t know the skaters’ true relative orderings.
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(b) We don’t observe actual performance scores, but, rather, relative rankings.

(c) The long program lasts approximately twice as long as the short program and,

hence, should be a more precise measure of a skater’s ability.

Considering this, one would like to obtain some parameters {λ1, λ2, . . . , λn} and

a distribution f , such that f(λi), the probability distribution of the performance

scores of the ith best skater, is stochastically less than f(λj) for i < j, and yields

results that are consistent with the data collected. (We are assuming here that a low

score is better, congruent with the ranking system.) The major problem here is to

pick an appropriate function, f , and to obtain the parameters {λ1, λ2, . . . , λn}. The

most standard simple model might be:

fSP (λi) ∼ N(λi, 1) (3.1)

and

fLP (λi) ∼ N(λi, 1/2), (3.2)

where λ1 = 0, λ1 < λ2 < . . . < λn, and where N(a, b) indicates a normally dis-

tributed random variable with mean, a, and variance b. This models states that the

true abilities of the ith best skater are normally distributed with increasing mean

(but variance assumed to equal one) as rank increases, and that the long program

score is half as variable as the short program scores. The trick would be in finding

{λ1, λ2, . . . , λn} such that the data are well fitted. This problem is complicated by

the fact that the actual performance scores are not released, and that the true abil-

ities aren’t known (the third place skater may not really be the third best, etc.).

Setting λ1 = 0 and setting the variance of the SP normal distribution equal to 1

have no effect on the problem; this is done for scaling convenience.

Deciding on the correct type of distribution, f , is a challenge. One must con-

sider the shape of the distribution, the number of parameters to estimate, and, more
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importantly, the distribution’s tail. Originally, an exponential distribution for f(λi)

was hypothesized. During the simulation process, it became apparent that the expo-

nential model’s fit was very poor due to the lack of control of the distribution’s tail.

Since the exponential is a one-parameter family, once the mean is set, there is no

further control on the tail’s behavior. Much attention and control was needed to the

tail of the distribution in order to account for the small, but not too rare, chance

that a skater would lose or gain many places between SP and LP due to a possible

fall in either of the presentations.

A normal distribution’s model, after simulations, was concluded to yield a more

sufficient fit than the exponential distribution. This isn’t too surprising, since the

normal is a two-parameter family and would thus yield more flexibility in modeling

both mean and variation. With the decision to use the normal distribution came the

extra challenge of deciding on the variability to associate with the short and long

programs. Since the long program is twice as long as the short program, it seems

reasonable to set the variance of the LP ’s raw scores to be one-half as large as that of

the short program, as noted in equation 3.2. The variance for the short program can

arbitrarily be set to one (as the expected performance score of the ’best’ contestant

can arbitrarily be set equal to zero), since location-scale families are invariant to

shifts in location and scale. Unfortunately, as simulations showed, no matter how

the λ’s were chosen, the fit as given by the normal models of equations (3.1) and

(3.2) was not adequate. This occurred primarily because there is a small but non-

negligible probability that a skater could fall during either the SP or LP and thus

perform much worse than s/he typically performs. This led to the consideration of

the normal mixture model:

fSP (i) =







N(λi, 1) with prob. (1 − p/2)

N(λi + δ, 1) with prob. p/2
, (3.3)
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and

fLP (i) =







N(λi, 1/2) with prob. (1 − p)

N(λi + δ, 1/2) with prob. p
, (3.4)

where {λ1, λ2, . . . , λ12}, are ability parameters, δ > 0 is a ’screw-up’ parameter,

and p is the probability of a major screw-up. This model is similar to the model

given in (3.1) and (3.2), but acknowledges that there is a small probability, p, that

skater i could do much worse than usual (λi + δ) on either round because of a major

screw-up, such as fall or poor skating technique required in the performance. If this

happens, the skater typically obtains a much worse (i.e. ’higher’ in the scale used)

ranking than would be expected without a fall or mistake in technique. There is no

symmetric “un-screw-up” event - a skater may have a very good day, but that would

be expressed by the variability inherent in the original normal distribution, which

doesn’t require the skew necessitated by a fall. The ‘screw-up’ probability, p, is one-

half as large for the short program as for the long program, since the SP is one-half

as long as the LP and, thus, should offer approximately one-half the opportunity for

a major screw-up. Of course, the paramaterization above could be made even more

general by allowing either p or δ to depend on i, but this would increase the numbers

of parameters tremendously. As shown later, such generality doesn’t appear to be

necessary to obtain an adequate fit; constant values for p and δ appear to work well.

FORTRAN programming was used to estimate the parameters of the statistical

model. In addition to requiring values from the concordant-discordant matrix (Table

3.2) and the SP-LP contingency table (Table 3.1), the program also requires initial

estimates of the 13 free parameters (λ2, λ3, . . . , λ12, p, δ). Values λ1 = 0 and σ = 1

don’t count as free parameters, since they are arbitrary location and scale parame-

ters.

Recall from the previous section that there are two tables of data (Table 3.1

and Table 3.2) which we may use to assess the fit of the model given by Equations
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(3.3) and (3.4). Table 3.2 is a 6×6 matrix with diagonal values equal to zero and

constrained symmetry (A(i, j)+A(j, i) = 107), so it has 15 independent cells. Table

3.1 is a 7×7 matrix with row sums constrained to 107, so it has 42 independent cells.

If one use a χ2 test to assess the fit of a table with T independent cells by a model

with K independent parameters, the degrees of freedom (df) for the resulting test

statistic is

df = T − K, (3.5)

which would be df = 15 − 13 = 2 for Table 3.2 and df = 42 − 13 = 29 for Table

3.1, assuming all K = 13 model parameters are estimated, as noted in the previous

paragraph. For the concordant-discordant table (Table 3.2), it is relatively easy to

find sets of parameters that will fit the data quite well, even with only 2 df available.

For Table 3.1, on the other hand, even with 29 df, it is difficult to find a set of param-

eters which will yield a chi-squared statistic which is near what would be considered

feasible (χ2

29,.05 = 42.56, for example). The remainder of this section describes the

process by which the sample space of 13 parameters (λ2, λ3, . . . , λ12, p, δ) is searched

to find the approximate MLE of the parameters.

This problem is considerably more difficult than most MLE/goodness-of-fit cal-

culations for two reasons, one common and one not. The ‘common’ reason, very

relevant here, is that it is difficult to find the true MLE (λ̂2, λ̂3, λ̂4, . . . , λ̂12, p̂, δ̂)

in a high dimensional space. There are many nearly equivalent parameterizations,

and local maxima can obscure the truth. The more unusual aspect, not nearly as

common in contingency table goodness-of-fit tests, is that this likelihood can’t be

immediately evaluated, even for a known set of parameters. In this case, we evaluated

a model by running 1000 times as many simulations as in the original experiment

(1000 × 107 = 107, 000), and using the average test statistic over these simulations

as an estimate of the true chi-squared value for that configuration of parameters.
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Based on the fit, the parameters were tweaked in an MCMC (Monte Carlo Markov

Chain) way such that a better expected fit could be found.

The object of the FORTRAN program is to conduct 100 Monte Carlo (MC)

trials each containing 107,000 simulations. Before running the first MC trial, the

FORTRAN program read in the total number of simulations, a set of random seeds,

the screw-up probability, the concordant-discordant and SP-LP matrices (Tables 3.2

and 3.1), and initial estimates of the thirteen parameters of the model. Beginning

with the first trial, the program used the random seeds and the scale parameter, σ =

1, to randomly position the means of the performance parameters. The twelve given

parameters served as a beginning location or ‘center’, for where the best estimates

could be located. Thus, a tolerance bound was made around these estimates, and

the algorithm randomly generated {λ, p, δ} centered at the input values. Once the

program has chosen a set of {λ, p, δ} parameters, it generates a random short and

long program score for each of the twelve skaters, according to the models given

in equations (3.3) and (3.4). On average, it would be expected by this algorithm

that the SP scores for skaters one through twelve would end up being in increasing

order (best to worst). In generating each skater’s SP score, it is quite possible for

the first skater to have a higher SP score than the second, third, or even higher

positioned skater due simply to random variation. Therefore, once each skater has

his/her SP and LP score, they’re placed in increasing order by the SP score. A

combinatorial comparison, starting with the first skater, is then made with the other

eleven skaters to determine if a concordance or discordance happened amongst the

SP and LP acores. A concordance, discussed in Chapter 3, means that a skater

placed ith in the SP round again finished ahead of a skater placed jth in the SP

round (with the restriction that (i < j)). Therefore, for any one simulation, we

could represent the concordance and discordances through a 12 × 12 matrix, similar

to Table 3.3, where each element, rij, would be either 0 or 1. Elements below the
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Table 3.3: Concordance/Discordance Matrix of One Simulation

i\j 1 2 3 4 5 6 7 8 9 10 11 12
1 0 r1,2 r1,3 . . . . . . . . . . . . . . . . . . . . . r1,11 r1,12

2 r2,1 0 r2,3 . . . . . . . . . . . . . . . . . . . . . . . . r2,12

3 r3,1 r3,2 0 . . . . . . . . . . . . . . . . . . . . . . . .
...

4
... . . . . . . 0 . . . . . . . . . . . . . . . . . . . . .

...

5
... . . . . . . . . . 0 . . . . . . . . . . . . . . . . . .

...

6
... . . . . . . . . . . . . 0 . . . . . . . . . . . . . . .

...

7
... . . . . . . . . . . . . . . . 0 . . . . . . . . . . . .

...

8
... . . . . . . . . . . . . . . . . . . 0 . . . . . . . . .

...

9
... . . . . . . . . . . . . . . . . . . . . . 0 . . . . . .

...

10
... . . . . . . . . . . . . . . . . . . . . . . . . 0 r10,11 r10,12

11 r11,1 . . . . . . . . . . . . . . . . . . . . . . . . r11,10 0 r11,12

12 r12,1 r12,2 . . . . . . . . . . . . . . . . . . . . . r12,10 r12,11 0

diagonal would represent discordances while those above would be concordances.

Because any particular comparison in one simulation will be one or the other, rij +

rji = 1.

At the end of an MC trial, a 12×12 matrix has been created containing the results

of 107,000 simulations that should ‘averagely’ represent the results of 107,000 figure

skating tournaments (call this matrix E). The FORTRAN program then operates

on this E matrix in two ways. It first converts the values of the E matrix in terms of

107 tournaments by dividing each cell in the matrix by 1000. It then truncates this

12 × 12 matrix to a 6 × 6 matrix, keeping only the first six rows and columns. This

is necessary in order to compute a Chi-Squared test statistic representing the degree

of difference between the expected matrix, E, and the observed matrix (Table 3.2).
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This Chi-Squared test statistic, denoted as χ2(C/D), is defined as

χ2(C/D) =
6

∑

i=1

6
∑

j=1

(Oij − Eij)
2

Eij

, (3.6)

with Oij representing the observed concordant/discordant matrix from Table 3.2, and

Eij representing our best estimate (based on 107,000 simulations) of the expected

values for cell (ij) under the {λ, p, δ} parameterization used in this MCMC trial.

Before ending each MC trial, the FORTRAN program performs another calcu-

lation, using the results from the twelve skaters to create an SP/LP “expected”

matrix. Similar to the calculations used to make the C/D “expected” matrix, E,

each simulation created a 12 × 12 matrix filled with binary elements (values of 0 or

1) similar to Table 3.3. An element from such a table would be in the form, pijk,

which equals 1 if from the kth simulation a skater placed ith in the SP and jth in

the LP (otherwise, pijk = 0).

After 107,000 simulations for each MC trial, an “expected” matrix, P, counting

the number of skaters placed ith in the SP and jth in the LP would be evaluated as

pij. =

10,700
∑

k=1

pijk . (3.7)

Similar to what was done to matrix E for the concordant/discordant matrix, the

elements of this P matrix would be divided by 1000 and truncated to a 7× 7 matrix

so that it could be used to compute a Chi-Squared value measuring the degree of

difference between Table 3.1 and this new SP/LP expected matrix, P ∗, defined as
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P ∗ =
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...
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...

...
. . .

...
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. . .

...
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where P ∗
ij =



































Pij., (i < 7) and (j < 7)
∑

12

m=7
pim., (i < 7) and (j = 7)

∑

12

m=7
pmj., (i = 7) and (j < 7)

∑

12

m=7

∑

12

n=7
pmn., (i = j = 7)



































. (3.8)

The Chi-Squared test statistic measuring the degree of difference between Table 3.1

and this new SP/LP expected matrix, P ∗, is defined as

χ2(SP/LP ) =
7

∑

i=1

7
∑

j=1

(Oij − Pij)
2

Pij

, (3.9)

where matrix Oij is the matrix from Table 3.1, and the Pij has an interpretation

similar to that of Eij on the previous page.

Upon the conclusion of an MCMC trial (for both the C/D and SP/LP matrices)

and before entering the next MCMC trial, the FORTRAN program generates a new

set of {λ, δ, p} to use as the parameters for the next set of 107,000 simulations. If

the χ2 (SP/LP) statistic found in the previous simulation is not the best thus far

found, the new values are generated using the original centers and tolerances. If the

χ2 (SP/LP) statistic for the previous trial is the best (lowest) thus far found, the

process is recalibrated with centers at the {λ, δ, p} used in the previous trial, but

with tighter tolerances. In general, the tolerances decreased inversely proportional to
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the square root of the number of new ‘best fits’ found. Of course, as in any MCMC

or Metroplis-Hasting type algorithm, one needs to adjust these tolerances (‘tuning

parameters’) a bit before finding values that work well.

For each MCMC trial, the FORTRAN program yielded the twelve λ parameters,

the screw-up probability (p), the screw-up parameter (δ), and the Chi-Squared test

values from both the C/D matrix (Table 3.2) and the SP/LP matrix (Table 3.1).

After 100 MC trials, the program reports the lowest Chi-Squared test value found

from the 100 SP/LP trials, along with its MCMC trial number. We’re more interested

in the Chi-Squared test statistic from the SP/LP matrix because it doesn’t fit as

well as χ2 (C/D), which is easy to fit. As can be noted from the FORTRAN output

(Appendix C), the χ2 (C/D) fits extremely well. One will also observe, however, that

the bigger concern is the possibility of the Chi-Squared test statistic for the SP/LP

table not fitting well, since large values were reported.

This entire process was repeated a number of times. In the beginning, it was very

easy to find new ‘best parameterizations’, and the χ2-value decreased often as the

search progressed. However, as the χ2-value approached the region of acceptability

(that of a χ2

df=29
random variable), new minima became harder to find. In addition,

many apparent new minima weren’t due to a better parameterization, but due to

randomness in the Pij estimates, since they are based on 107,000 (rather than an

infinite number) of simulations. Ultimately, the parameterization shown in Table 3.4

was chosen to be the ‘best’ parameterization. This is surely not the true MLE, but

it is in a close neighborhood of the MLE. More importantly, it is acceptable by both

χ2 criterion (at α = .05), since the critical values are χ2(df = 2, α = .05) = 5.99 and

χ2(df = 29, α = .05) = 42.56, and the values which were obtained were χ2(C/D) =

2.733 and χ2(SP/LP ) = 41.393, respectively.

With these ‘best’ parameter estimates, the final phase of this project was to run

a large number of simulations to analyze the concordances/discordances in the short
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Table 3.4: Best Parameter Estimates

Parameters: λ1 λ2 λ3 λ4 λ5 λ6 λ7

Estimates: 0.000 1.050 1.690 2.370 3.580 3.900 4.348
Parameters: λ8 λ9 λ10 λ11 λ12 p δ
Estimates: 5.750 5.850 6.700 6.850 8.360 0.070 3.080
Average χ2 for SP/LP Table = 41.393
Average χ2 for Concord./Discord. Table = 2.733

versus long program scores. These simulations will be useful in answering examples

of the research questions mentioned in the Introduction. For example, what is the

chance of a skater finishing in first place given that he/she ended the short program

round in fourth place?

3.5 Model Validation

The last phase of the project was to determine whether the estimates obtained as the

true parameters of {λ, p, δ} produce a response similar to that found in the observed

data. The idea was to simulate the {λ, p, δ} process a large enough number of times

to answer questions about the joint SP/LP and SP/FINAL distributions. As a check,

of course, these simulated results should yield tables statistically close to what was

observed (over 107 tournaments) in Tables 3.1 and 3.2. In order to keep conversions

simple, the decision was made to simulate 1,070,000 times; 10,000 times larger than

the observed sample. Using the {λ, p, δ} parameter estimates from Table 3.4, SAS

programming was used to simulate the results of 1,070,000 skating tournaments

(twelve skaters per tournament). The SAS program is shown in Appendix D, with

interim results being shown in Appendix E. These results were used to construct
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Table 3.5: Conditional Probability of LP Rank Given SP Rank

LP
SP 1st 2nd 3rd 4th 5th 6th 7th +
1st 0.5751 0.2222 0.1074 0.0545 0.0196 0.0117 0.0096
2nd 0.2401 0.3176 0.2296 0.1233 0.0370 0.0246 0.0278
3rd 0.1093 0.2408 0.2724 0.1985 0.0730 0.0482 0.0577
4th 0.0459 0.1328 0.2100 0.2405 0.1428 0.1076 0.1204
5th 0.0162 0.0477 0.0925 0.1610 0.2288 0.2053 0.2485
6th 0.0076 0.0208 0.0459 0.1094 0.2193 0.2279 0.3691

7th + 0.0010 0.0030 0.0070 0.0193 0.0466 0.0624 0.8607

two truncated 7×7 contingency tables: an SP/LP contingency table similar to Table

3.1, and an SP/FINAL contingency table, which analyzes a skater’s SP rank and

standing at the conclusion of the tournament. Both tables were also rescaled by

a factor of 1/10,000 in order to interpret each cell in terms of 107 figure skating

tournaments. To answer the questions brought out in the introduction of the thesis,

we examine the conditional probabilities given by these tables.

The first table, Table 3.5, lists the conditional probabilities, P (LP = j|SP = i),

between the SP and LP ranks. For example, cell (3,4) contains “.1985”, which means

that we estimate the probability that a third place (after SP) skater will earn 4th

rank in the LP is about 19.85%. Similarly, from the table, a skater has only a 13.93%

chance of finishing in the top six in the long program if he/she was seventh place or

lower after the SP round. Of course, not all of the 13.93% who score in the top six on

the LP after scoring in [7+] during the SP will actually score in the top six overall.

That type of conditional probability information is what is displayed in Table 3.6.

Table 3.6 gives the conditional probabilities, P [Final = j|SP = i]. This table

is useful in answering conditional probability questions of the type proposed ear-
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lier. For example, cell (6, 3) = .0372 says that there is a 3.72% chance of finishing

a tournament in third, given that one completed the SP round in sixth place.

The question of interest throughout this thesis has been the conditional proba-

bility, P [Final = 1|SP = 4]. From Table 3.6, this probability is estimated to be

.0241. Hence, from Table 3.5, the probability of a fourth-ranked (on SP) skater per-

forming best on the LP is about 4.6%, but only slightly more than one-half the time

(.0241/.0459 = .5251) will this jump in LP performance be sufficient enough for the

overall score to become first. In terms of the initial discussion of this thesis, what

Sarah Hughes did was rare, but not extremely rare, since a fourth- place-to-first

place jump would be expected to occur in about 2.4% of all tournaments.

The final row appears to be a bit unorthodox because the highest probability is

not along the table’s diagonal. According to Table 3.6, it appears that a skater with

a ’7+’ SP rank has a better chance of finishing in sixth place overall rather than in

seventh (or higher). It should be remembered, however, that row ’7+’ contains the

results for all skaters ranked 7-12 on SP. So, what these results mean is that the

probability that some (unspecified) skater in the ’7+’ group finishes in 6th place

overall is higher than this chance is for the individual skater in 6th place after SP.

However, if these skaters’ probabilities were displayed individually, one would, of

course, see that the 6th place (SP) skater has better final chances than the 7th place

(SP) skater, who, in turn, would be better than 8th, etc. A final discussion of these

tables is in the conclusion, Chapter 4.
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Table 3.6: Conditional Probability of Final Rank Given SP Rank

FINAL
SP 1st 2nd 3rd 4th 5th 6th 7th +
1st 0.6120 0.2259 0.1042 0.0410 0.0117 0.0042 0.0011
2nd 0.2484 0.3432 0.2338 0.1174 0.0329 0.0169 0.0074
3rd 0.1112 0.2498 0.2886 0.2049 0.0760 0.0428 0.0267
4th 0.0241 0.1341 0.2226 0.2713 0.1614 0.1056 0.0809
5th 0.0040 0.0350 0.0949 0.1811 0.2613 0.2131 0.2107
6th 0.0004 0.0095 0.0372 0.1109 0.2357 0.2481 0.3584

7th+ 0.0001 0.0025 0.0188 0.0734 0.2210 0.3693 0.3149



Chapter 4

Conclusion

In a large figure skating competition, it occasionally happens that a competitor

decides to forfeit after the SP round. In some cases, this forfeiture is a result of

withdrawal due to a major injury. Often, however, a competitor forfeits due to a

belief that s/he has low chances of winning or placing in high standings. Conditional

contingency tables, such as Table 3.6, make it easier, now, to see why.

If a skater finishes first, second, or third in the SP and wins in the LP, s/he will

automatically be the overall winner as can be seen from the scoring rules of section

2.2. Skaters ranked lower than third on SP are not guaranteed a first-place finish

even if they win the LP round. As discussed in the previous chapter, Sarah Hughes’

accomplishment (moving from fourth to first) was a rare one, but not extremely

rare. Could she have managed a victory if she had been in fifth, sixth, or seventh

(or worse) place after the SP round? Table 4.1 is a contingency table analyzing the

chances of winning a tournament given that a skater finished the SP round in the ith

position, but ranked 1st in the LP round. As can be noted, these conditional chances

drop steeply as SP rank increases beyond third. Also, it should be reiterated that

these are the chances conditional on the fact that the ith rated SP skater can win the

LP. In fact, the probabilities of that happening decrease at the rate of a Geometric

(p = .41) random variable, as can be seen from the first column of Table 3.5 in the

previous section. Hence, the conditional probability of winning given SP rank is as

shown in the first column of Table 3.6.
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Table 4.1: Conditional Probability of Wining (given LP = 1)

LP
SP 1st
1st 1.0000
2nd 1.0000
3rd 1.0000
4th 0.5251
5th 0.2469
6th 0.0526
7+ 0.0100

Most figure skaters compete to win, and would forfeit only if the chances of

winning were impossible, so even the [7+] skaters have a theoretical chance. If one

wanted to forfeit if one’s chances were below 1% of winning, then all skaters ranked

5th or lower on the SP would be advised to quit. If one cared about earning a

medal (1st, 2nd, or 3rd place), fifth place or higher on the SP have greater than

10% chance of medalling, and 6th place has about a 5% chance. The ‘7+’ ranks are

pooled together in Tables 3.5 and 3.6, but even the best of these (#7 on SP) has

less than a 1% chance of attaining a medal. Thus, the decision used in the Olympics

(and many other large competitions) to include exactly the top 6 SP skaters in the

final LP competition is very sound.

Of the many tables given in this thesis, the most useful would probably be Table

3.6, giving conditional probabilities of final rank as a function of SP rank. The model

used to derive these appears to fit the results of the 107 observed tournaments quite

well, but affords much smoother estimates of the conditional probabilities in Table

3.6 than the raw tournament data could. One still might feel that using 13 parameters

to fit this model is excessive, and a more parsimonious model for the 12 performance
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parameters (λ) could probably be found. The only restriction used in the model of

Chapter 3 was monotonicity (λ1 = 0 < λ2 < λ3 < . . . < λ12) , but some sort of three-

parameter curve would probably work almost as well, with many fewer degrees of

freedom utilized. Finding such a model parameterization is left as a topic for future

researchers.
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Miscellaneous Contingency Tables
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Table A.1: Tournaments Collected for Dataset (by year & division)

Tournament Abbr: Years Available:

Name Mens Womens Pairs

Winter Olympics WO 98,02 92,98,02 92,02
Vienna Cup VC 00 00

Goodwill Games GG 98,01 98,01 98,01
World Figure Skating WSC 01,02 01,02 01,02

Championship

Cup of Russia COR 99,00,01,02 99,00,01,02 99,00,01,02
Nebelhorn Trophy NBT 98,99,00,01,02 98,99,00,01,02 98,99,00,01,02

Karl Schaffer Memorial KSM 98,99,00,01,02 98,99,00,01,02 02
Skate America SAM 98,99,01,02 98,99,00,01,02 98,99,00,01,02

North American Skate NAC 98,01,02 98,01,02 02
Challenge Finlandia Trophy FIN 98,01,02 98,01,02 02

Skate Canada SKC 98,01,02 98,01,02 98,01,02
Four Continents Figure FCF 01,02 01,02 01,02
Skating Championships

O. Nepela Memorial NPM 01 01
NHK Trophy NHK 02 02 02

Table A.2: Distribution of Tournaments (by year and gender)

Gender Men’s Women’s Pairs Total
Year

Before 1998 0 1 1 2
1998 8 8 4 20
1999 4 4 3 11
2000 4 5 3 12
2001 11 11 7 29
2002 11 11 11 33
Total 38 40 29 107



Appendix B

FORTRAN MLE Program

C PROGRAM skatemcmc2.f IS A FORTRAN PROGRAM TO USE MCMC METHODS TO FIND THE

C OPTIMAL PARAMETER CONFIGURATIONS FOR THE DISTRIBUTION OF

C of skaters for the Marlow Lemons thesis problem.

C 12 skaters

C NMC = # of MCMC runs to examine

C NSIM # of simulations. (N=107,000)

C SDE=SD OF N(ZU,SDE) DISTRIBUTION FOR SHORT PROGRAM

C SDF=SDE/SQRT(2)

C ZU(I)= MEAN OF TRUE Ith GROUP, I=1,2,...,12

C P = PROB OF SERIOUS SCREW-UP ON LONG PROGRAM (P/2 for SP)

C TOLZ, TOLP, TOLC = ORIGINAL TOLERANCES FOR PARAMETER AND CHI VARIATION.

C

C PROGRAM CREATED 1/26/03 FROM SKATESIM.f . REVISED 3/09/03.

DIMENSION IC(12,12),NSW(12,12),X(12,2),NR(12)

DIMENSION ZU(12),ZC(12),CHI(1000),CHJ(1000)

DIMENSION GCH(12,12),IR(12,12),IS(12,12),GSH(12,12)

DATA IR/144*0/

DATA IS/144*0/

DATA GCH/144*0.0/

DATA GSH/144*0.0/

C

READ(5,30) NMC,TOLZ,TOLP,TOLC,CHIMIN

30 FORMAT(1X,I4,3(1X,F5.3),1X,F7.4)

READ(5,1) NSIM,IXX,IYY,IZZ,P

1 FORMAT(I6,3(1X,I5),1X,F5.3)

READ(5,2) SDE,(ZU(I),I=1,12)

2 FORMAT(13(1X,F5.3))

DO 46 I=1,7

READ(5,3) (IR(I,J),J=1,7)

3 FORMAT(7(I3))

46 CONTINUE

DO 48 I=1,6
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READ(5,4) (IS(I,J),J=1,6)

4 FORMAT(6(I3))

48 CONTINUE

IW=0

NNM=0

NDIV=(NSIM/107)

C

DO 1000 MC=1,NMC

TOLZC=TOLZ/SQRT(NNM+1.0)

TOLPC=TOLP/SQRT(NNM+1.0)

C

DO 686 I=1,12

CALL UNIF(IXX,IYY,IZZ,WA,WB,WC)

ZC(I)=ZU(I)+((WA-0.5)*2*TOLZC)

DO 685 J=1,12

IC(I,J)=0

NSW(I,J)=0

685 CONTINUE

686 CONTINUE

C

SDC=SDE+((WB-0.5)*2*TOLPC)

SDF=SDC/SQRT(2.0)

PC=P+((WC-0.5)*2*TOLPC)

WRITE(6,99) MC,IXX,IYY,IZZ,TOLZC,TOLPC

99 FORMAT(1X,/,1X,’MC= ’,I5,3(1X,I7),2(1X,F5.3))

C

DO 100 M=1,NSIM

C

DO 80 I=1,12

NR(I)=I

CALL UNIF(IXX,IYY,IZZ,WA,WB,WC)

CALL NORM(WA,W)

CALL NORM(WB,V)

IZE=0

IZF=0

IF(WC.LT.(PC/2)) IZE=1

IF(WC.GT.(1-PC)) IZF=1

X(I,1)=ZC(I)+(W*SDC)+(IZE*3.080*SDC)

X(I,2)=ZC(I)+(V*SDF)+(IZF*3.080*SDC)

80 CONTINUE

C

DO 90 I=1,11

DO 91 J=I+1,12
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H1=X(I,1)

H2=X(I,2)

IF(X(J,1).GT.X(I,1)) GO TO 91

X(I,2)=X(J,2)

X(I,1)=X(J,1)

X(J,2)=H2

X(J,1)=H1

91 CONTINUE

90 CONTINUE

C

DO 93 I=1,11

DO 94 J=I+1,12

IF (X(J,2).GT.X(I,2)) IC(I,J)=IC(I,J)+1

94 CONTINUE

93 CONTINUE

C

DO 95 I=1,11

DO 96 J=I+1,12

NH=NR(I)

H1=X(I,1)

H2=X(I,2)

IF(X(J,2).GT.X(I,2)) GO TO 96

NR(I)=NR(J)

X(I,2)=X(J,2)

X(I,1)=X(J,1)

NR(J)=NH

X(J,2)=H2

X(J,1)=H1

96 CONTINUE

95 CONTINUE

C

C

DO 98 I=1,12

NSW(NR(I),I)=NSW(NR(I),I)+1

98 CONTINUE

100 CONTINUE

C

CHJ(MC)=0.0

DO 201 I=1,12

C WRITE(6,203) I,(IC(I,J),J=1,12)

203 FORMAT(13(1X,I4))

IF(I.GE.6) GO TO 201

DO 207 J=I+1,6



43

E=IC(I,J)/(NDIV*1.0)

IF(E.LT.0.01) E=0.005

GSH(I,J)=(IS(I,J)-E)/SQRT(E)

YY=GSH(I,J)**2

CHJ(MC)=CHJ(MC)+YY

207 CONTINUE

201 CONTINUE

C

DO 704 I=1,7

DO 706 J=8,12

NSW(I,7)=NSW(I,7)+NSW(I,J)

706 CONTINUE

704 CONTINUE

C

DO 904 J=1,7

DO 906 I=8,12

NSW(7,J)=NSW(7,J)+NSW(I,J)

906 CONTINUE

904 CONTINUE

C

DO 804 I=8,12

DO 806 J=8,12

NSW(7,7)=NSW(7,7)+NSW(I,J)

806 CONTINUE

804 CONTINUE

C

CHI(MC)=0.0

DO 204 I=1,7

DO 206 J=1,7

E=NSW(I,J)/(NDIV*1.0)

IF(E.LT.0.01) E=0.005

GCH(I,J)=(IR(I,J)-E)/SQRT(E)

YY=GCH(I,J)**2

CHI(MC)=CHI(MC)+YY

206 CONTINUE

C WRITE(6,205) I,(NSW(I,J),J=1,7)

205 FORMAT(8(1X,I4))

204 CONTINUE

C

DO 304 I=1,7

C WRITE(6,305) I,(GCH(I,J),J=1,7)

305 FORMAT(1X,I1,7(1X,F5.2))

304 CONTINUE
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C

DO 604 I=1,6

C WRITE(6,605) I,(GSH(I,J),J=1,6)

605 FORMAT(1X,I1,6(1X,F5.2))

604 CONTINUE

C

WRITE(6,72) CHI(MC),CHJ(MC),SDC,PC,(ZC(I),I=1,12)

72 FORMAT(1X,’CHI= ’,F13.4,2X,’CHJ= ’,F13.4,2X,’SDC= ’,F5.3,

* 1X,’PC= ’,F5.3,1X,/,12(1X,F5.3))

C

IF(CHI(MC).GE.CHIMIN) GO TO 1000

NNM=NNM+1

IW=MC

CHIMIN=CHI(MC)

P=PC

SDE=SDC

DO 998 I=1,12

ZU(I)=ZC(I)

998 CONTINUE

1000 CONTINUE

C

WRITE(6,999) NNM,IW,CHIMIN

999 FORMAT(1X,/,1X,’NNM= ’,I2,’IW= ’,I3,2X,’CHIMIN= ’,F9.4)

C

STOP

END

C

SUBROUTINE UNIF(IXX,IYY,IZZ,U,U3,U4)

C THIS SUBROUTINE GENERATES U(0,1) R.V.’s.

U=RAND(IXX)

U3=RAND(IYY)

U4=RAND(IZZ)

IXX=10000*((-3.46*ALOG(U))+(-72.59*ALOG(U4))+(-33.147*ALOG(U3)))

IYY=10000*((-5.27*ALOG(U))+(-26.81*ALOG(U4))+(-13.580*ALOG(U3)))

IZZ=10000*((-9.26*ALOG(U))+(-12.49*ALOG(U4))+(-53.247*ALOG(U3)))

RETURN

END

C

SUBROUTINE NORM(U,Z)

C THIS SUBROUTINE GENERATES APPROXIMATE NORMAL(0,1) RANDOM DEVIATES, Z, FROM A

C UNIFORM(0,1) RANDOM VARIABLE, U.

U2=U

IF(U.LT.0.5) U2=1.0-U
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T=SQRT(-2.*ALOG(1.-U2))

AT=2.30753 + (0.27061*T)

BT=1.0+(0.99229*T)+(0.04481*(T**2))

Z=T-(AT/BT)

IF(U.LE.0.5) Z=-Z

RETURN

END



Appendix C

FORTRAN MLE Output

MC= 1 483460 187210 348173 0.000 0.000

CHI= 40.8089 CHJ= 2.8128 SDC= 1.000 PC= 0.070

0.000 1.050 1.690 2.370 3.580 3.900 4.340 5.750 5.850 6.700 6.850 8.360

MC= 2 1094726 504650 880006 0.000 0.000

CHI= 41.9706 CHJ= 2.6427 SDC= 1.000 PC= 0.070

0.000 1.050 1.690 2.370 3.580 3.900 4.340 5.750 5.850 6.700 6.850 8.360

MC= 3 1620769 701351 826673 0.000 0.000

CHI= 41.9127 CHJ= 2.7463 SDC= 1.000 PC= 0.070

0.000 1.050 1.690 2.370 3.580 3.900 4.340 5.750 5.850 6.700 6.850 8.360

MC= 4 739071 310665 710605 0.000 0.000

CHI= 43.1643 CHJ= 3.1906 SDC= 1.000 PC= 0.070

0.000 1.050 1.690 2.370 3.580 3.900 4.340 5.750 5.850 6.700 6.850 8.360

MC= 5 723131 299237 292702 0.000 0.000

CHI= 41.1888 CHJ= 2.5547 SDC= 1.000 PC= 0.070

0.000 1.050 1.690 2.370 3.580 3.900 4.340 5.750 5.850 6.700 6.850 8.360

MC= 6 623350 258046 186820 0.000 0.000

CHI= 39.0172 CHJ= 2.5306 SDC= 1.000 PC= 0.070

0.000 1.050 1.690 2.370 3.580 3.900 4.340 5.750 5.850 6.700 6.850 8.360

MC= 7 1213862 506184 1375555 0.000 0.000

CHI= 39.6573 CHJ= 2.5215 SDC= 1.000 PC= 0.070

0.000 1.050 1.690 2.370 3.580 3.900 4.340 5.750 5.850 6.700 6.850 8.360

MC= 8 2355251 954856 2594883 0.000 0.000

CHI= 41.5025 CHJ= 3.1831 SDC= 1.000 PC= 0.070

0.000 1.050 1.690 2.370 3.580 3.900 4.340 5.750 5.850 6.700 6.850 8.360
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MC= 9 3234593 1238046 1590361 0.000 0.000

CHI= 40.3797 CHJ= 2.4347 SDC= 1.000 PC= 0.070

0.000 1.050 1.690 2.370 3.580 3.900 4.340 5.750 5.850 6.700 6.850 8.360

MC= 10 1116394 421074 212261 0.000 0.000

CHI= 39.9466 CHJ= 2.6052 SDC= 1.000 PC= 0.070

0.000 1.050 1.690 2.370 3.580 3.900 4.340 5.750 5.850 6.700 6.850 8.360

MC= 11 1853004 831823 1721086 0.000 0.000

CHI= 43.2338 CHJ= 2.8822 SDC= 1.000 PC= 0.070

0.000 1.050 1.690 2.370 3.580 3.900 4.340 5.750 5.850 6.700 6.850 8.360

MC= 12 378055 202095 440207 0.000 0.000

CHI= 42.6395 CHJ= 2.8679 SDC= 1.000 PC= 0.070

0.000 1.050 1.690 2.370 3.580 3.900 4.340 5.750 5.850 6.700 6.850 8.360

MC= 13 1815358 721506 963920 0.000 0.000

CHI= 40.2082 CHJ= 2.7914 SDC= 1.000 PC= 0.070

0.000 1.050 1.690 2.370 3.580 3.900 4.340 5.750 5.850 6.700 6.850 8.360

MC= 14 577665 232436 751523 0.000 0.000

CHI= 41.4466 CHJ= 2.6820 SDC= 1.000 PC= 0.070

0.000 1.050 1.690 2.370 3.580 3.900 4.340 5.750 5.850 6.700 6.850 8.360

MC= 15 127288 63015 107853 0.000 0.000

CHI= 40.1436 CHJ= 2.4624 SDC= 1.000 PC= 0.070

0.000 1.050 1.690 2.370 3.580 3.900 4.340 5.750 5.850 6.700 6.850 8.360

MC= 16 457249 195075 365893 0.000 0.000

CHI= 42.3792 CHJ= 2.6552 SDC= 1.000 PC= 0.070

0.000 1.050 1.690 2.370 3.580 3.900 4.340 5.750 5.850 6.700 6.850 8.360

MC= 17 975399 432890 1403431 0.000 0.000

CHI= 44.5058 CHJ= 3.0479 SDC= 1.000 PC= 0.070

0.000 1.050 1.690 2.370 3.580 3.900 4.340 5.750 5.850 6.700 6.850 8.360

MC= 18 1329825 517769 945259 0.000 0.000

CHI= 39.5925 CHJ= 2.5168 SDC= 1.000 PC= 0.070

0.000 1.050 1.690 2.370 3.580 3.900 4.340 5.750 5.850 6.700 6.850 8.360

MC= 19 846920 328993 371044 0.000 0.000

CHI= 37.4769 CHJ= 2.3159 SDC= 1.000 PC= 0.070

0.000 1.050 1.690 2.370 3.580 3.900 4.340 5.750 5.850 6.700 6.850 8.360
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MC= 20 1070074 483229 898345 0.000 0.000

CHI= 41.5693 CHJ= 2.7935 SDC= 1.000 PC= 0.070

0.000 1.050 1.690 2.370 3.580 3.900 4.340 5.750 5.850 6.700 6.850 8.360

[MC 21-98 Were Deleted For Thesis Insertion]

MC= 99 1282932 555279 819550 0.000 0.000

CHI= 41.7570 CHJ= 2.6972 SDC= 1.000 PC= 0.070

0.000 1.050 1.690 2.370 3.580 3.900 4.340 5.750 5.850 6.700 6.850 8.360

MC= 100 2126014 819678 813384 0.000 0.000

CHI= 43.5127 CHJ= 2.6594 SDC= 1.000 PC= 0.070

0.000 1.050 1.690 2.370 3.580 3.900 4.340 5.750 5.850 6.700 6.850 8.360

NNM= 3IW= 19 CHIMIN= 37.4769



Appendix D

SAS Simulation Code

* To write a program that simulates 1,070,000 tournaments of size n=12 to

compare with the actual values from the table.*

proc iml;

sp_f=j(7,7,0);

sp_lp=j(7,7,0);

sp_lp7t=j(12,12,0);

sp_lp7=j(7,7,0);

numtrials=10700;

do trials = 1 to numtrials;

mu={0.000,1.050,1.690,2.370,3.580,3.900,4.340,5.750,5.850,6.700,6.850,8.360};

spscr=j(12,12,0);

lpscr=j(12,12,0);

sc_sp=j(12,12,0);

sc_lp=j(12,12,0);

skater=j(12,1,0);

spscore=j(12,1,0);

lpscore=j(12,1,0);

sds=j(12,1,1);

tfp=j(12,1,0);

final=j(12,1,1);

ft=j(12,1,0);

lpt=j(12,1,0);

sdl=j(12,1,.5);

sp=j(12,1,1);

spt=j(12,1,0);

lp=j(12,1,1);

z=j(12,1,0);

do i = 1 to 12;

skater[i,1]=i;

z[i,1]=rannor(0);
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spscr[i,1]=uniform(0);

lpscr[i,1]=uniform(0);

if spscr[i,1]<=.07 then sc_sp[i,1]=3;

else sc_sp[i,1]=0;

if lpscr[i,1]<=.07 then sc_lp[i,1]=3;

else sc_lp[i,1]=0;

spscore[i,1]=(z[i,1]*sds[i,1])+mu[i,1]+sc_sp[i,1];

lpscore[i,1]=(z[i,1]*sdl[i,1])+mu[i,1]+sc_lp[i,1];

end;

do j = 1 to 12;

do k = 1 to 12;

if spscore[j,1] > spscore[k,1] then sp[j,1]=sp[j,1]+1;

else if spscore[j,1] <= spscore[k,1] then sp[j,1]=sp[j,1];

if lpscore[j,1] > lpscore[k,1] then lp[j,1]=lp[j,1]+1;

else if lpscore[j,1] <= lpscore[k,1] then lp[j,1]=lp[j,1];

end;

end;

do i = 1 to 12;

tfp[i]=(sp[i,1]*.5)+(lp[i,1]*1);

tfpcheck=(sp[i,1]*.5)+((lp[i,1]*1)+(lp[i,1]*.01));

end;

do j = 1 to 12;

do k= 1 to 12;

if tfp[j,1] > tfp[k,1] then final[j,1]=final[j,1]+1;

else if tfp[j,1] < tfp[k,1] then final[j,1]=final[j,1];

end;

end;

do i = 1 to 12;

if sp[i] > 7 then spt[i]=7;

else spt[i]=sp[i];

if lp[i] > 7 then lpt[i]=7;

else lpt[i]=lp[i];

if final[i] > 7 then ft[i]=7;

else ft[i]=final[i];

end;

do i = 1 to 12;

sp_f[(spt[i,1]),(ft[i,1])]=sp_f[(spt[i,1]),(ft[i,1])]+1;

sp_lp[(spt[i,1]),(lpt[i,1])]=sp_lp[(spt[i,1]),(lpt[i,1])]+1;

end;

end;

div=numtrials/107;

sp_lp_trun = (1/div)*sp_lp;

sp_f_trun = (1/div)*sp_f;
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print sp_f sp_lp sp_f_trun sp_lp_trun;

/*

obs_splp={ 67 29 4 2 2 1 2,

19 37 29 11 3 4 4,

12 20 35 22 7 3 8,

7 12 21 29 15 7 16,

1 5 10 14 36 18 23,

0 3 5 13 15 34 27,

1 1 3 16 29 40 552};

diff= (obs_splp - sp_lp)**2/sp_lp;

chi={0};

do i = 1 to 7;

do j = 1 to 7;

chi=diff[i,j]+chi;

end;

end;

print diff chi;

*/

quit;



Appendix E

SAS Post-Simulation Results

SP_F_TRUN

65.4790 24.1701 11.1490 4.3841 1.2525 0.4453 0.1200

26.5768 36.7179 25.0159 12.5660 3.5170 1.8132 0.7932

11.8996 26.7328 30.8789 21.9218 8.1291 4.5787 2.8591

2.5752 14.3480 23.8151 29.0333 17.2733 11.2974 8.6577

0.4258 3.7500 10.1491 19.3750 27.9571 22.8016 22.5414

0.0384 1.0116 3.9782 11.8637 25.2192 26.5452 38.3437

0.0052 0.2696 2.0138 7.8561 23.6518 39.5186 568.6849

SP_LP_TRUN

61.5325 23.7769 11.4956 5.8265 2.0931 1.2478 1.0276

25.6892 33.9800 24.5696 13.1941 3.9569 2.6329 2.9773

11.6955 25.7682 29.1493 21.2405 7.8076 5.1607 6.1782

4.9108 14.2060 22.4734 25.4357 15.2831 11.5107 13.1803

1.7298 5.1046 9.8980 17.2272 24.4790 21.9720 26.5894

0.8122 2.2216 4.9130 11.7065 23.4602 24.3896 39.4969

0.6300 1.9427 4.5011 12.3695 29.9201 40.0863 552.5503

DIFF CHI

0.4858 1.1473 4.8874 2.5130 0.0041 0.0492 0.9201 40.7387

1.7417 0.2684 0.7988 0.3648 0.2314 0.7098 0.3512

0.0079 1.2912 1.1743 0.0271 0.0835 0.9046 0.5372

0.8888 0.3425 0.0965 0.4994 0.0052 1.7676 0.6032

0.3079 0.0021 0.0010 0.6045 5.4223 0.7180 0.4845

0.8122 0.2727 0.0015 0.1429 3.0509 3.7868 0.1578

0.2173 0.4574 0.5006 1.0655 0.0282 0.0001 0.0005
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