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Previous research has established that large-scale climatological phenomena influence 

local weather conditions in various parts of the world. These weather conditions have a direct 

effect on crop yield. Consequently, much research has been done exploring the connections 

between large-scale climatological phenomena and crop yield. Artificial neural networks have 

been demonstrated to be powerful tools for modeling and prediction, and can be combined with 

genetic algorithms to increase their effectiveness. The goal of the research presented in this 

thesis was to develop artificial neural network models using genetic algorithm-selected inputs in 

order to predict southeastern US maize yield at various points throughout the year. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

By influencing regional weather patterns, large-scale meteorological phenomena can 

have a significant impact on agricultural production. Large-scale weather patterns such as the El 

Niño Southern Oscillation (ENSO) and the Pacific-North American pattern have been linked by 

research to local weather patterns in various locations around the world (Philander, 1990; 

Trenberth, 1997; Leathers et al., 1991). In turn, specific climatic conditions such as fluctuations 

in precipitation have been shown to have strong influences on crop failures in the United States 

(Ibarra and Hewitt, 1999), demonstrating that weather patterns may be valuable for modeling and 

predicting crop yield. Such predictions could be used by crop managers to minimize losses when 

unfavorable conditions may occur. Additionally, these predictions could be used to maximize 

crop prediction when potential exists for favorable growing conditions. 

The links between meteorological phenomena and crop yield have been studied by 

researchers before, generally using methods of statistical analysis such as correlation analysis 

(Baigorria et al., 2008) or linear correlation (Travasso et al., 2008). Many of these studies have 

focused on specific regional impacts of the ENSO phenomenon. More recently, Martinez et al. 

(2009) studied the impacts of ENSO and several other meteorological phenomena on yield of 

maize in the southeastern US. Using a combination of linear correlation analysis and principal 

component regression, Martinez et al. (2009) created models of crop yield based on multiple 
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different indices of meteorological phenomena. Their research found the Pacific-North American 

pattern to be most strongly correlated with southeastern US maize yield. 

Artificial neural networks (ANNs) are computational modeling tools which can be used 

to classify and predict data. ANNs have been applied to agricultural and meteorological research 

in the past with great success (Jain et al., 2003, 2006; Smith et al., 2007, 2009).  Genetic 

algorithms (GAs) are a tool for computational optimization which can be combined with ANNs 

in various ways. Specifically, in cases where a large number of potential inputs are available, 

they can be used to select optimal subsets of inputs for model development (Guo and Uhrig, 

1992).  

The goal of the research presented in this thesis was the development of ANN models 

using GA-selected inputs for the prediction of maize yield in the southeastern US based on 

indices of large-scale meteorological phenomena. In order to achieve this goal, ANN models 

were developed using inputs from four indices of meteorological phenomena. In order to 

determine the subset of these inputs which would produce ANN models with the lowest error, a 

GA was used to search the input space. Searches were run for various prediction dates 

throughout the year to determine the effect of decreasing the amount of information available to 

the model on its accuracy. The results of these searches were then compared to the results of 

prior research on the use of indices of meteorological phenomena to predict crop yield. 

Chapter 1 introduces the idea that indices of large-scale meteorological phenomena can 

be used to model and predict crop yield, providing an overview of previous research based 

around this idea. This chapter also discusses the specific computational modeling and 

optimization tools used in the research presented in this thesis. Chapter 2 describes the initial 

development of the ANN models used for predicting crop yield. The potential inputs to these 
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ANN models are then searched using a GA. Chapter 3 describes the effects of moving the 

prediction date of the ANN models earlier in the year, reducing the amount of information 

available for use in making predictions. The results of these searches are analyzed and compared 

to those of other researchers. Chapter 4 summarizes the results of the research conducted for this 

study and suggests possible avenues for future research.  
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CHAPTER 2 

A GENETIC ALGORITHM & NEURAL NETWORK HYBRID FOR PREDICTING CROP 

YIELD BASED ON SEA SURFACE TEMPERATURE
1
 

 

                                                 
1
 Martin, C. M., R. W. McClendon, J. Paz, and G. Hoogenboom. To be submitted to Expert Systems With 

Applications. 
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ABSTRACT 

 Large-scale meteorological and climatological phenomena have been shown to impact 

crop growth, development, and yield, but these effects are highly complex. Research to explore 

the correlations between various climate indices and crop yield has been performed largely using 

statistical methods. The goal of this study was to determine the correlation between sea surface 

temperature and maize yield in the southeastern US. Specific objectives included determining 

preferred model parameters, finding the subset of available inputs which minimized model error, 

and determining the predictive accuracy of a final model by applying it to an independent 

evaluation data set. Artificial neural network (ANN) models were developed to predict maize 

yield using inputs from four sea surface temperature indices. A genetic algorithm (GA) search 

was performed to select the preferred input variables for the ANN model in order to minimize 

the error. This GA used multiple instantiations of the ANN models as its fitness function. The 

search utilized a novel tiered evaluation system where different data sets were used to evaluate 

individual solutions for selection and detecting convergence. The results of this search were then 

used to select the best set of ANN inputs to develop a final model for the prediction of 

southeastern US maize yield based on sea surface temperature. Initial ANN models using all 

available inputs were able to achieve a mean absolute error of 1558 kilograms per hectare 

(kg/ha) on the selection set. The final model had a mean absolute error of 1045 kg/ha on the 

selection set, and an error of 1840 kg/ha for the independent evaluation set. The final model error 

on the evaluation set was comparable with the overall data set average standard deviation of 

1923 kg/ha. Using the GA-selected inputs produced an improvement in model error for both the 

development and selection sets, indicating that the tiered fitness scheme developed for this 

research is worthy of further investigation. This indicated that the approach outlined in this study 
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could be of great benefit to crop managers. Further research into applying the techniques 

presented here to other types of data would determine whether they are of general use for other 

applications. 

INTRODUCTION 

 Research has shown that large-scale meteorological and climatological phenomena such 

as the El Niño-Southern Oscillation (ENSO) can influence local weather conditions in various 

locations around the world (Philander, 1990; Trenberth, 1997). Some of this research has 

explored the impact of the ENSO pattern on crop yield in the southeastern US (e.g. Handler, 

1990; Hansen et al., 1998, 1999; Izaurralde et al., 1999). Other research has suggested that 

indices such as tropical North Atlantic sea surface temperature (Enfield, 1996) and the Pacific-

North American pattern (Leathers et al., 1991) are correlated with local weather conditions. 

Recently, Martinez et al. (2009) studied the correlations between the values of four indices of sea 

surface temperature and southern US maize yield using principal component analysis, a 

statistical analysis technique. Martinez et al. (2009) used the values of the indices for tropical 

North Atlantic sea surface temperature, the Pacific-North American pattern, and the Bermuda 

high index in addition to the Japanese Meteorological Association index, which measures the 

behavior of the ENSO phenomenon. This approach, which was more inclusive than prior 

research related to ENSO, allowed for the possibility that meteorological phenomena other than 

ENSO could also have a strong impact on crop yield. Additionally, their approach could be 

applied to areas where ENSO does not have a strong impact. However, Martinez et al. (2009) 

focused only on exploring correlations and made no attempt to create a predictive model. 

Additionally, their entire data set was used in model development, with no data held back for 

independent evaluation. Their research indicated that the Pacific-North American pattern had the 
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greatest correlation with crop yield residuals. Other studies have explored the impact of diverse 

meteorological phenomena on different crops throughout the world, using various statistical 

methods. Everingham et al. (2003) used Monte Carlo procedures to examine correlations 

between the southern oscillation index and sugarcane yield in Australia. D’Arrigo and Wilson 

(2008) developed regression models based on the relation between equatorial Pacific sea surface 

temperature and the growth of rice in Indonesia. Travasso et al. (2009) used cumulative 

probability distribution functions to analyze potential correlations between sea surface 

temperature anomalies and yield for maize, sunflower, and soybeans in Argentina. 

 Artificial neural networks (ANNs) have been applied to model complex relations, and 

they have demonstrated the capability to handle a large number of inputs and generalize 

correlations (Bose and Liang, 1996; Haykin, 1999). Jain et al. (2003; 2006) used artificial neural 

networks for the prediction of air temperatures, specifically in order to predict the possibility of 

frost. In order to increase model accuracy, Jain et al. (2003; 2006) tested various combinations of 

inputs to the ANN models. Smith et al. (2007; 2009) improved upon this air temperature 

prediction system by developing multiple instantiations of the same ANN models, and compared 

these in order to select the most accurate model. Shank et al. (2008a, 2008b) applied ANNs to 

predict dewpoint temperatures. In their approach, they developed an ensemble model, with a 

number of separate ANNs that predicted for different time periods ranging from one to twelve 

hours in advance. 

 Genetic algorithms (GAs) have been used as a tool to enhance the performance of ANN 

models. Dasgupta and McGregor (1992) applied GAs to design different ANN architectures for 

specific applications. Their GA operated on two different levels, selecting both the connection 

structure of the ANN and its weight values. Yang and Honavar (1998) used GAs to select subsets 
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of features for pattern classification to develop a special type of ANN models based on 

constructive learning algorithms. Henderson et al. (1998) applied a GA to choose parameter 

values such as ANN learning rate, momentum, and number of hidden nodes. GAs have been 

used in tandem with ANNs in a number of other ways, such as training ANNs directly in place of 

the traditional backpropagation algorithm and constructing novel neural network architectures 

(Whitley, 1995). Guo and Uhrig (1992) showed that in cases where a large amount of 

information is available as potential input into the model, this large number of inputs can have a 

negative effect on the ANN models, overwhelming them with excessive and unnecessary 

information. For their study, Guo and Uhrig (1992) used a GA search to select the optimal set of 

inputs over 20 potential inputs. The fitness scheme used by Guo and Uhrig (1992) penalized 

solutions with a larger number of inputs in an attempt to develop smaller, more efficient 

networks to reduce training time. However, penalizing solutions based on the number of inputs 

could also cause the GA to select a sub-optimal set of inputs to the ANN model. 

 The goal of the research presented herein was to develop a hybrid ANN model with GA-

selected inputs for predicting maize yield within the southeastern U.S. based on large-scale 

climate indices. The specific objectives included 1) to determine the preferred ANN architecture 

and parameters, 2) to determine the subset of inputs which minimized the error in predicting crop 

yield, and 3) to determine the predictive accuracy of the final ANN model when applied to an 

independent evaluation data set. 

METHODOLOGY 

A. Data 

 ANN models were developed to predict maize yield based on prior values of sea surface 

temperature indices and the latitudinal and longitudinal coordinates of the districts for which the 
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predictions were being made. Data from 94 counties in seven crop reporting districts in Georgia, 

Florida, and Alabama were used. Simulated yield data were used in order to remove possible 

influences on crop growth such as technological advances and changing chemical inputs and 

production practices. The yield data were generated using the Cropping System Model (CSM; 

Jones et al., 2003) of the Decision Support System for Agrotechnology Transfer (DSSAT; 

Hoogenboom et al., 2004), as described by Persson et al. (2009a, 2009b). The simulated yield 

data were generated for the same locations as used by Martinez et al. (2009), containing maize 

yield data from 129 counties in the southeastern US that have significant maize production. 

Although the data for this study were taken from the same area as the study by Martinez et al. 

(2009), their study was based on detrended observed yield, rather than simulated yield. The 

simulated crop yield data were divided geographically by established crop reporting districts. 

Those districts containing a smaller number of counties were not included, reducing the total 

number of counties in the data set from 129 to 94. Data from the remaining seven largest crop 

reporting districts (two in Georgia and Florida, three in Alabama) were used. These data were 

taken from the years 1951 to 2006, since 1950 was the earliest year for which sea surface 

temperature index values were available. 

 Some limitations were placed on the CSM when generating data for this study. Simulated 

yield data from three planting dates were available from the data generated by Persson et al. 

(2009a, 2009b). However, only data from the middle planting date (the 76
th

 day of the year, i.e., 

March 17 (March 16 during leap years)) were used. Also, only yield using the highest level of 

fertilizer were included in the dataset to avoid any nutrient stresses. Additionally, the simulations 

for only one cultivar of maize were included: Pioneer 31G98. This is one of the most commonly 

grown hybrids in the region. As described in Persson et al. (2009a, 2009b), independent 
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simulations were performed for each county, and within each county simulations were performed 

using the three most common soil types. Only the results for the most common soil type 

representative of maize production within each county were included in this study. Simulated 

yield values from each county in the area covered by the study were averaged across all counties 

contained within each of the seven crop reporting districts. These averaged annual yield values 

were used as the target values for the ANN models. The units specified for the simulated yield 

were kilograms of dry matter per hectare. 

 Values from four sea surface temperature indices were used as inputs. These indices 

included the Japan Meteorological Agency (JMA) index (Center for Ocean-Atmospheric 

Prediction Studies, 2009), the North Atlantic Oscillation (NAO) index (National Oceanic and 

Atmospheric Administration, 2009), the Pacific-North American (PNA) teleconnection pattern 

(National Oceanic and Atmospheric Administration, 2009), and the Oceanic Niño Index (ONI) 

(National Oceanic and Atmospheric Administration, 2009). These indices measure various large-

scale climatological phenomena, such as the dominant ENSO. Each index consists of one value 

per month, though values of the ONI are averages taken from a three-month window. As an 

example, the March ONI value would be an average of the values for the months of February, 

March, and April. The final harvest of maize in the southeastern US generally occurs during the 

summer months (Martinez et al., 2009). Therefore, data from June were the latest data used for 

predictions. Consequently, input data for a specific year were taken as beginning with July of the 

previous year and ending with June of the current year. For example, when developing a 

prediction for the year 1970, the model would have data for all four sea surface temperature 

indices from July 1969 to June 1970 available as inputs. The remaining two inputs for the ANN 

model consisted of the geographical coordinates of the center of the crop reporting district. 
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 Each pattern that was presented to the ANN represented information relating to one of the 

seven crop reporting districts for one of the 55 available years.  Thus a total of 385 patterns were 

available for the study. Each pattern had one target output value, which was the simulated yield 

for a crop reporting district calculated by averaging yield across all counties within that crop 

reporting district. The input values included were the prior values of four indices and the 

latitudinal and longitudinal coordinates of the crop reporting district. The values of the four sea 

surface temperature indices for each of the preceding 12 months provided a total of 48 inputs. 

The inclusion of the two inputs for the geographical location of the region provided 50 inputs per 

pattern. All values that were used either as inputs or as the target output were scaled to the range 

0.1 to 0.9. 

  The 385 patterns were partitioned into three data sets consisting of the development set, 

the selection set, and the evaluation set. The development set was used to train the ANN models 

and determine the fitness of individuals for the GA, while the selection set was used to determine 

when training should be terminated to avoid overtraining and to select ANN parameters. The 

evaluation set was not used during model development and was held back for evaluation of the 

final model. Of the 56 available years within the entire dataset, 33 were partitioned into the 

development set (approximately 60 %), 14 were partitioned into the evaluation set 

(approximately 25 %), and 9 were partitioned into the selection set (approximately 15 %). With 

regards to ENSO, each year was designated with one of three statuses: El Niño, La Niña, and 

Neutral. Consequently, patterns were partitioned into separate data sets by year, so that each 

partitioned data set would retain the same proportions of El Niño, La Niña, and Neutral years as 

the entire dataset. The year-by-year partitioning is shown in Table 2.1. 
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B. Model Development 

 Model development consisted of three phases: the selection of ANN architecture and 

associated parameters, the GA search to determine the preferred inputs to the ANN model, and 

the development of a single final ANN model based on the inputs selected by the GA search. 

Prior to the use of the GA, multiple ANN models were developed and compared to determine the 

architecture and parameters which would minimize model error on the selection set. Once this 

model had been obtained, the GA search was initiated to determine the subset of available inputs 

which would minimize the mean absolute error (MAE) of the ANN model. This GA was a basic 

generational GA, using operators such as point crossover and bit flip mutation. The fitness 

measure used by the GA involved developing ANN models using the parameters chosen in the 

first phase of model development. These models were developed using a specific set of inputs, 

and their error values were used for the GA fitness scheme. Finally, these GA selected inputs 

were used to develop a number of ANN models. The model with the lowest error on the selection 

set was chosen as the final model. 

Phase I: ANN Architecture Determination 

 The Java ANN model development software that was used in this study was based on the 

code developed by Smith et al. (2007). In addition to the Ward network architecture (Ward 

Systems Group, 1993) used in that study, the library was modified to include standard three-layer 

networks which used the logistic function for nodes in the hidden and output layers. The ANNs 

were trained using the error backpropagation (EBP) algorithm described in Haykin (1999). 

Under the EBP algorithm, models are instantiated by randomizing the network weights and 

training set order. A given model within this system describes an architecture based on a set of 

inputs and outputs. Accordingly, the various models that were developed in the process of 
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determining a final model differed according to which of the 50 available inputs were used in 

addition to their architecture and parameters. Therefore, the individual instantiations of any such 

model differed only in terms of random initial weights and the order in which patterns were 

presented to the network during the training process. 

 The ANN parameters and settings differentiating the potential models in this research 

were the number of hidden nodes and the ANN learning rate. Two network architectures were 

compared to determine which would be best suited for the final model. The 3-layer standard EBP 

neural network (Haykin, 1999) was tested against the Ward network architecture (Ward Systems 

Group, 1993). Ward networks involve a single hidden layer consisting of three slabs of nodes. 

The nodes within a slab use a particular activation function. Trials were conducted to compare 

these ANN architectures and selected ANN parameters. All 50 available inputs were included in 

this phase of the research. 

Phase II: Input Selection 

 Once the preferred ANN architecture and parameters had been selected, they were used 

as part of a GA search to select the inputs for the model. This search was conducted to determine 

which subset of the available inputs would produce the minimum MAE. The fitness function for 

this GA involved developing three instantiations of an ANN model using a subset of the 

available inputs. The ANN parameters and settings determined during the previous phase of 

model development were used for the models developed in the fitness function. For the GA 

search, a general GA library was written in Python. This was interfaced with the Java ANN code 

using Jython, a library which allows the manipulation of Java objects and libraries from within 

Python. Each individual within the population was represented as a bit string, with each bit 

representing a potential climate input. This bit string represented the genome of a given 
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individual. Since four indices were used, each with 12 monthly values, this bit string was of 

length 48. A bit set to 1 in a particular position indicated that the corresponding input was used, 

and a 0 indicated that a particular input was not used in the model developed based on the 

genome of that individual. Hence, the number of 1's contained within the bit string would 

indicate the total number of active sea surface temperature inputs for a model based on a 

particular individual. The two geographical inputs were always used in model development. 

 The fitness function for the GA involved evaluating multiple instantiations of the ANN 

model specified by the individual's bit string genome. The tiered fitness scheme developed for 

this study involved performing two fitness evaluations: one for the selection process, and another 

for the termination condition. If an individual was being evaluated for the selection process, its 

error values on the development set would be used for its fitness value. If an individual was 

being evaluated for the GA convergence condition, its error values on the selection set would be 

considered. Similar to the way in which the selection set was used to determine when to stop the 

network training process to prevent the backpropagation algorithm from overfitting to the ANN 

development set, this novel tiered fitness scheme was implemented to prevent the GA search 

from overfitting to any particular data set. For a fitness evaluation of each individual within the 

GA population, three instantiations of the model were developed using the EBP algorithm. Three 

independent instantiations were developed in order to balance out the stochastic nature of the 

EBP algorithm. After training, each instantiation was applied to the ANN development set to 

determine its error. The lowest of these three error values was then assigned to the individual as 

its fitness value. 

 The selection scheme used for the GA search was binary tournament selection, which 

involves selecting two random individuals from the population and evaluating their fitness 
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values. The individual with the better fitness value (lower error) was then selected as a parent for 

mating and the process was repeated to select a second parent. The crossover operator used was 

two-point crossover. This process involves choosing two random points along the length of the 

bit string genome, and splitting the two parent individuals along these points to recombine their 

genetic material into a new individual. The mutation operator used was the traditional bit flip 

mutation, where any allele to be mutated has its value reversed, i.e. 0 becomes 1, 1 becomes 0. 

During the mating process, selected individuals had an 80% chance of undergoing crossover, and 

each bit in a newly created individual's bit string genome had a 10% chance of undergoing 

mutation. 

  Since each fitness evaluation involved developing multiple instantiations of the specified 

ANN model and each model had to be trained for a relatively long amount of time, fitness 

calculations were the most computationally expensive aspect of the GA search. As a result, the 

population size of the GA was limited to 100, similar to the process used by Guo and Uhrig 

(1992). In order to avoid the possibility of low diversity arising from such a small population 

size, population seeding was used. Population seeding is a process wherein specific individuals 

known to have relatively good fitness are inserted into a GA population in order to ensure that 

their genetic material is present for the algorithm to utilize (Julstrom 1994). In order to ensure 

that each of the potential inputs was active in some member of the initial population, five 

individuals with genomes consisting only of 1's (all inputs active) were inserted into the initial 

population. A generational GA (Holland, 1975) was used. In each generation, the individual with 

the best fitness according to the selection fitness function was evaluated on the selection set to 

test the termination condition. This termination condition caused the GA to halt if there had been 
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no new minimum in the selection set error during the past 10 generations, indicating that the GA 

had converged. 

 Once 20 GA runs had been completed, their selected inputs were compared. This 

involved compiling the bit string genome of the best individual from the final generation of each 

run, and averaging the values for each bit. This yielded a set of proportions, one for each of the 

48 bits in the bit string, indicating how frequently that input was selected by the GA in its final 

solution. A threshold value was selected to transform these proportions back into a binary string 

indicating which sea surface temperature inputs the final model should use. Any input with a 

proportion below this threshold would not be used in the final model, while any input with a 

proportion greater than or equal to this threshold would be used. 

Phase III: Final Model Evaluation 

A number of different threshold values were tested to determine which produced the 

model with the lowest error on the development and selection sets. This selected threshold value 

was used to determine the inputs for developing the final ANN model. Models using these inputs 

were tested using several different learning rates to choose final model parameters. Fifty 

instantiations of this model were developed, and the instantiation with the lowest error on the 

selection set was chosen as the final model. This ANN model was then applied to the evaluation 

set to determine its accuracy.  

 Trials from Phase I of model development testing the different learning rates and number 

of hidden nodes were run on a dual-core Intel Core 2 Duo computer. Trials were run on Ward 

networks with one, three, and five hidden nodes per slab, as well as standard EBP networks with 

one, three, and five total hidden nodes. Learning rates of 0.1, 0.3, and 0.6 were tested. Networks 

were allowed to train for up to 1000 epochs, and required to train for a minimum of 500 epochs. 
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The development set and selection set error values were compared between the results from all 

parameter settings to determine the ANN model settings for the GA search fitness function and 

the final model. 

 For Phase II, to search for inputs on the ANN models specified by Phase I, 20 trials of the 

GA were run on an 8-core Xeon 2.0 GHz server. These trials were specified to terminate when 

the lowest selection set error in the population had not decreased for 10 generations. The final 

solutions with the lowest selection set error from each run were saved. The bit string genomes of 

all final solutions were compiled and averaged, yielding the proportion of inclusion for each 

input within these final solutions. These proportion values were then used to determine binary 

sets of outputs via a number of threshold values. Threshold values of 0.1 to 0.9 with a step size 

of 0.1 were used to develop model specifications. The different models based on these threshold 

values were then compared. Ten instantiations of each model were developed, and their error 

values on both the development and selection sets were compared. 

In Phase III, these error values were used to select a threshold value to determine inputs 

for the final model. A flowchart illustrating this process is shown in Figure 2.1. These inputs 

were tested using learning rates of 0.1, 0.3, 0.6, and 0.9, with each parameter value evaluated 

using 10 instantiations. The setting which produced the lowest selection set error was chosen for 

the final model. Fifty instantiations of this model were then developed, and the instantiation with 

the lowest selection set error was chosen as the final model and tested on the independent 

evaluation set. 
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RESULTS AND DISCUSSION 

Phase I 

 The ANN MAE for the development and selection data sets for each of the models 

included in the ANN architecture and parameter tests are shown in Table 2.2. Each entry in this 

table represents an average of ten ANN instantiations developed using the specified parameters. 

Due to the importance of the ability to generalize, parameters and architecture were selected 

based on selection set error values. Selection set MAE values for Ward network models ranged 

between 1558 and 1780, while selection set MAE values for EBP models ranged between 1572 

and 1627. The ANN model with the lowest average MAE on the selection set was the Ward 

network with one hidden node per slab and a 0.6 learning rate, for an MAE of 1558 kg/ha. These 

same settings resulted in an MAE of 1302 kg/ha for the development set. This was not one of the 

lowest development set error values, but each of the settings which produced a lower 

development set error had a higher selection set error. Consequently, the Ward network 

architecture was used for all subsequent model development. These results are consistent with 

those of past studies (Smith et al. 2007; Shank et al. 2008a, 2008b) where Ward networks were 

found to be preferable to standard  EBP networks.  

Phase II 

 Twenty GA searches were run using the architecture and parameters chosen in the first 

phase for their fitness function. The GA searches ran for an average of 25 generations before 

terminating, though the longest two searches ran for over 50 generations.. The average fitness 

from each generation for all 20 runs is charted in Figure 2.2. The average population fitness for 

most runs was minimized to approximately the same level – between 1000 and 1100 kg/ha (with 

some runs dropping below 1000 kg/ha). Even the runs which continued for a larger number of 
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generations converged to this fitness range. This suggested that longer GA runs would not have 

produced a decrease in final solution fitness. 

 The proportion of inclusion for each of the 48 possible climate indices is shown in Table 

2.3. These proportions are the result of averaging the final solutions of all 20 GA runs. Some 

index values were selected for the final solutions more frequently than others, with the NAO 

values for March and April and the PNA values for October and March being selected in 95% of 

runs. Thirteen of the 48 available inputs were selected by the GA in 70% or more of the searches 

run. Additionally, some index values were rarely active in the final solutions, with one value (the 

PNA value for November) not present in any of the final solutions. Ten out of 48 inputs were 

selected by the GA in 30% or less of the runs completed. The fact that the GA selection scheme 

displayed clear preferences for about half of the available index values shows that the choice of 

inputs is important to network performance for this application. Also of significance is the fact 

that the JMA and ONI were both selected most frequently during roughly the same period, from 

December to February. This is consistent with the fact that both of these indices measure the 

ENSO phenomenon. The fact that ONI values are taken from three month moving average 

windows suggests that January may have been the most influential of these three months, with its 

strength affecting the proportions for both December and February. However, this is not 

consistent with the results of similar research by Martinez et al. (2009), who found that ENSO 

values from July to September of the year prior to maize harvest were most correlated with yield 

values. None of the May or June inputs were selected in more than 60 % of GA runs, indicating 

that it may not be necessary to include inputs from the last two months in the search. 

 Threshold values considered for determining inputs to the ANN model ranged from 0.1 

through 0.9 with a step size of 0.1. The development and selection set error values for models 
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developed using these inputs are shown in Table 2.4. A threshold value of 0.6 produced the 

lowest error on the selection set, with an MAE of 1346 kg/ha. Consequently, the inputs specified 

by this threshold value were used for the final model. These results demonstrated that the GA 

was successful in reducing the overall error for both the development and selection sets, as the 

MAE values for both data sets were lower than when trained using all inputs. Using all inputs, 

the best Phase I model achieved an MAE of 1558 kg/ha for the selection set, in comparison with 

the model using the GA-selected inputs, which had a selection set MAE of only 1345 kg/ha. The 

reduction in development set error when using GA-selected inputs was even greater: while the 

Phase I model had a development set MAE of 1302 kg/ha, the 0.6 threshold model average 

development set MAE was 927 kg/ha. 

The inputs specified by the chosen threshold value of 0.6 are shown in Table 2.5. 

Interestingly, many of the inputs which Martinez et al. (2009) found to have the highest degree 

of correlation with maize yield were not included in these inputs. For instance, Martinez et al. 

(2009) identified July to September of the previous year as the time period for which the JMA 

index showed the strongest correlation, yet these inputs were not active in the final solution. 

Similarly, their study found that the PNA was most strongly correlated during the period of 

December to February, none of which were active in the inputs shown in Table 2.5. This may 

indicate that the GA search was identifying and exploiting different connections and correlations 

than those which Martinez et al.’s (2009) principal component analysis identified. These 

differences in results could also be due to the differences between the data used for this study 

and the data used by Martinez et al. (2009), such as the fact that this study is based on simulated 

yield values, whereas the research done by Martinez et al. was based on detrended, observed 

yield values.  
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Phase III 

 Models using the inputs specified by the 0.6 threshold value were tested using learning 

rates of 0.1, 0.3, 0.6, and 0.9. Ten trials were run for each learning rate. The mean MAE for each 

dataset from these trials are shown in Table 2.6, where it can be seen that the different learning 

rates appear to have had little effect on MAE. The setting which produced the lowest selection 

set error was a learning rate of 0.3, giving an average selection set error of 1365 kg/ha. The 

learning rate with the highest error for the selection set (0.6) had an MAE of 1389 kg/ha, only 24 

kg/ha higher than the error produced by models using a 0.3 learning rate. Modifying the learning 

rate also did not result in a dramatic impact on model accuracy for the development set, with 

only 137 kg/ha separating the model with the best selection set MAE (0.3 learning rate, 941 

kg/ha) from the model with the worst selection set MAE (0.9 learning rate, 1078 kg/ha). None of 

the error values for selection set from the learning rate trials differed by more than 50 kg/ha from 

the error of the initial 0.6 threshold model for the selection set (1346 kg/ha), indicating that 

changing the learning rate had little impact on model performance once model inputs had been 

specified by a threshold value. 

Fifty instantiations of the 0.6 threshold model were then developed using a learning rate 

of 0.3. The best instantiation of the model based on this threshold value was chosen based on 

selection set error, and was tested on the final evaluation set. The evaluation set was presented to 

this instantiation of the final model only once, in feed forward mode only. Figure 2.3 shows a 

scatter plot for the development set that compares the final model prediction to the target 

simulated yield values. Since each target value is the average of the simulated yield for each 



 

 22 

county in a particular district in a specific year, there is considerable variance in the data. This is 

depicted within the figure by the error bars, which show a range of +/- one standard deviation 

values resulting from averaging all of the simulated yield within each district. Across all three 

data sets, the average standard deviation value was 1959 kg/ha, reflecting a generally high level 

of variability within the data, caused by averaging the yield values from each of the counties 

within each crop reporting district. As can be seen from Figure 2.3, the final model was able to 

predict most values of the development set correctly within one standard deviation. Figure 2.4 is 

a plot of the final model performance on the selection set. Though the predictions for this data set 

were not as accurate as those for the development set, most predictions still came within one 

standard deviation of the simulated target value. This held true even for many predictions of the 

high and low extremes of simulated yield values. Figure 2.5 is a plot showing the final model 

performance on the evaluation set. As this figure shows, predictions were less accurate for the 

evaluation set in general than for the development or selection sets. However, many of the 

predictions still fell within one standard deviation of the simulated yield values. It is possible that 

this reduction in model accuracy on the evaluation set was due to overfitting during one or more 

of the stages of model development, despite the efforts to avoid overfitting through the GA’s 

tiered fitness scheme. 

The error values for the final model are shown in Table 2.7. The error of the final model 

for the development set was 792 kg/ha, while the error for the selection set was 1045 kg/ha. Both 

of these values were lower than those for the initial model using all 48 available climate inputs, 

which had a development set error of 1302 kg/ha and a selection set error of 558 kg/ha (Table 

2.2). This demonstrates that the use of GA-selected inputs did indeed benefit the model, allowing 

it to predict simulated yield values with greater accuracy for both the development and selection 
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data sets. The MAE of the final model for the evaluation data set was higher than the MAE for 

the development and selection data sets at 1840 kg/ha. However, this value was still lower than 

the evaluation set average standard deviation of 1923 kg/ha, as well as the overall standard 

deviation value of 1959 kg/ha. As such, the MAE for the evaluation data set is comparable to the 

level of variability within the data.  

SUMMARY AND CONCLUSIONS 

 ANNs were applied to sea surface temperature-based climate indices to predict maize 

yield in the southeastern U.S. A GA search was used to determine which inputs were necessary 

to develop a model with minimal error. This GA search used a tiered fitness scheme where 

different data sets were used for fitness evaluations, depending on whether these evaluations 

were for the purpose of selection or convergence detection. Through applying a threshold value 

to the inputs selected by multiple GA searches, a final set of inputs was determined in order to 

create a final ANN model. This model achieved an MAE of 792 kg/ha for the development set 

and an MAE of 1045 kg/ha for the selection set, both lower than the values resulting from 

models developed using all available inputs. For the evaluation data set, the final model achieved 

an MAE of 1840 kg/ha, compared with the data set average standard deviation of 1923 kg/ha. 

 The success of the tiered selection scheme in improving the ANN model performance on 

the network development and selection sets indicates that it may be a valuable tool for further 

research, and could be applied to GAs in other research areas. Additionally, the preferences 

expressed by the GA for certain inputs over others (as shown by the proportions of inclusion in 

the final solutions) shows that the GA is an effective tool for determining which inputs are most 

valuable to an ANN model. However, the MAE of the final model applied to evaluation set was 

not as low as for the development or selection sets, which could be due to the limited size of the 
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data set (with the development set consisting of only 231 patterns, and the selection set only 72), 

or possibly due to the selection set not being representative of the overall data. It is also possible 

that overfitting occurred during the model development process, a possibility which further 

research into this area could explore. Still, this error value was comparable with the overall 

variability within the data. Further research applying these techniques to different data could 

determine the generalizability of the approach outlined in this study. Also, the fact that none of 

the inputs from the last two months of data were selected in more than 60 % of GA runs suggests 

possible research into earlier prediction dates. 



 

 25 

REFERENCES 

Bose, N. K. and P. Liang, 1996. Neural network fundamentals with graphs, algorithms, and 

applications. In McGraw-Hill Series in Electrical and Computer Engineering, ed. S. W. 

Director. New York, NY: McGraw-Hill. 

Center for Ocean-Atmospheric Prediction Studies.  2009.  Monthly JMA Index.  Florida State 

University. ftp://www.coaps.fsu.edu/pub/JMA_SST_Index/. Accessed on June 10, 2009. 

D’Arrigo, R., and R. Wilson, 2008. El Niño and Indian Ocean influences on Indonesian drought: 

implications for forecasting rainfall and crop productivity. International Journal of 

Climatology 28(5): 611-616. 

Dasgupta, D., and D. R. McGregor, 1992. Designing application-specific neural networks using 

the structured genetic algorithm. COGANN-92: International Workshop on 

Combinations of Genetic Algorithms and Neural Networks, Baltimore, MD: 87-96. 

Enfield, D. B., 1996. Relationships of inter-American rainfall to tropical Atlantic and Pacific 

SST variability. Geophysical Research Letters 23(23): 3305-3308. 

Everingham, Y. L., R. C. Muchow, R. C. Stone, and D. H. Coomans, 2003. Using southern 

oscillation index phases to forecast sugarcane yields: a case study for Northeastern 

Australia. International Journal of Climatology 23(10): 1211-1218. 

Guo, Z., and R. E. Uhrig, 1992. Using genetic algorithms to select inputs for neural networks. 

COGANN-92: International Workshop on Combinations of Genetic Algorithms and 

Neural Networks, Baltimore, MD: 223-234. 

Handler, P, 1990. USA corn yields, the El Niño and agricultural drought: 1867-1988. 

International Journal of Climatology 10(8): 819-828. 

Hansen, J. W., A. W. Hodges, and J. W. Jones, 1998. ENSO Influences on agriculture in the 

southeastern United States. Journal of Climate 11(3): 404-411. 

Hansen, J. W., J. W. Jones, C. F. Kiker, A. W. Hodges, 1999. El Niño-Southern Oscillation 

impacts on winter vegetable production in Florida. Journal of Climate 12(1): 92-102. 

Haykin, S, 1999. Neural Networks: A Comprehensive Foundation (Second Edition). Upper 

Saddle River, NJ: Prentice Hall. 

Henderson, C. E., W. D. Potter, R. W. McClendon, and G. Hoogenboom, 1998. Using a genetic 

algorithm to select parameters for a neural network that predicts aflatoxin contamination 

in peanuts. In Methodology and Tools in Knowledge-Based Systems, by Tim Hendtlass, 

et al., 460-469. Berlin: Springer. 

Holland, J. H, 1975. Adaptation in Neural and Artificial Systems. Ann Arbor, MI: University of 

Michigan Press. 

ftp://www.coaps.fsu.edu/pub/JMA_SST_Index/#_blank


 

 26 

Hoogenboom, G., J.W. Jones, P.W. Wilkens, C.H. Porter, W.D. Batchelor, L.A. Hunt, K.J. 

Boote, U. Singh, O. Uryasev, W.T. Bowen, A.J. Gijsman, A. du Toit, J.W. White, and 

G.Y. Tsuji, 2004. Decision Support System for Agrotechnology Transfer Version 4.0 

[CD-ROM]. Honolulu, HI: University of Hawaii. 

Izaurralde, R. C., N. J. Rosenberg, R. A. Brown, D. M. Legler, M. T. Lopez, R. Srinivasan, 1999. 

Modeled effects of moderate and strong ‘Los Niños’ on crop productivity in North 

America. Agricultural and Forest Meteorology 94(3): 259-268. 

Jain, A., R. W. McClendon, G. Hoogenboom, and R. Ramyaa, 2003. Prediction of frost for fruit 

protection using artificial neural networks. American Society of Agricultural Engineers, 

St. Joseph, MI, ASAE Paper 03-3075. 

Jain, A., R. W. McClendon, and G. Hoogenboom, 2006. Freeze prediction for specific locations 

using artificial neural networks. Transactions of the ASABE 49(6): 1955-1962. 

Jones, J. W., G. Hoogenboom, C. H. Porter, K. J. Boote, W. D. Batchelor, L. A Hunt, P. W. 

Wilkens, U. Singh, A. J. Gijsman, and J. T. Ritchie, 2003. The DSSAT cropping system 

model. European Journal of Agronomy 18(3): 235-265. 

Julstrom, B. A, 1994. Seeding the population: improved performance in a genetic algorithm for 

the rectilinear Steiner problem. Proceedings of the 1994 ACM Symposium on Applied 

Computing. Phoenix, AZ: 222-226. 

Leathers, D. J., B. Yarnal, M. A. Palecki, 1991. The Pacific/North American pattern and United 

States climate. Journal of Climate 4(5): 517-528. 

Martinez, C. J., G. A. Baigorria, and J. W. Jones, 2009. Use of climate indices to predict corn 

yields in southeast USA. International Journal of Climatology 20(11): 1680-1691. 

National Oceanic and Atmospheric Adminstration, 2009a.  Monthly mean North Atlantic 

Oscillation index.  NOAA Climate Prediction Center.  

http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml. Accessed on June 

10, 2009; Verified on November 16, 2009. 

National Oceanic and Atmospheric Adminstration, 2009b.  Monthly mean Pacific-North 

American Pattern index.  NOAA Climate Prediction Center.  

http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/pna.shtml. Accessed on June 

10, 2009; Verified on November 16, 2009. 

National Oceanic and Atmospheric Adminstration, 2009c.  Monthly Oceanic Niño Index.  

NOAA Climate Prediction Center.  

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml. 

Accessed on June 10, 2009; Verified on November 16, 2009. 

Persson, T., A. Garcia y Garcia, J. O. Paz, J. W. Jones, and G. Hoogenboom, 2009a. Net energy 

value of maize ethanol as a response to different climate and soil conditions in the 

southeastern USA. Biomass & Bioenergy 33(8): 1-10. 

http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml#_blank
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/pna.shtml#_blank
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml#_blank


 

 27 

Persson, T., A. Garcia y Garcia, J. Paz, J. Jones, and G. Hoogenboom, 2009b. Maize ethanol 

feedstock production and net energy value as affected by climate variability and crop 

management practices. Agricultural Systems 100(1): 11-21. 

Philander, S. G, 1990. El Niño, La Niña, and The Southern Oscillation. San Diego, CA: 

Academic Press. 

Shank, D. B., G. Hoogenboom, and R. W. McClendon, 2008a. Dewpoint temperature prediction 

using artificial neural networks. Journal of Applied Meteorology & Climatology 47(6): 

1757-1769. 

Shank, D. B., R. W. McClendon, J. Paz, and G. Hoogenboom, 2008b. Ensemble artificial neural 

networks for prediction of dew point temperature. Applied Artificial Intelligence 22(6): 

523-542. 

Smith, B. A., R. W. McClendon, and G. Hoogenboom, 2007. Improving air temperature 

prediction with artificial neural networks. International Journal of Computational 

Intelligence 3(3): 179-186. 

Smith. B. A., G. Hoogenboom, and R. W. McClendon, 2009. Artificial neural networks for 

automated year-round temperature prediction. Computers and Electronics in Agriculture 

68(1): 52-61. 

Travasso, M. I., G. O. Magrin, M. O. Grondona, and G. R. Rodriguez, 2009. The use of SST and 

SOI anomalies as indicators of crop yield variability. International Journal of 

Climatology 29: 23-29. 

Trenberth, K. E, 1997. The definition of El Niño. Bulletin of the American Meteorological 

Society 78(12}: 2771-2777. 

Ward Systems Group, 1993. Manual of Neuroshell 2. Frederick, MD. 

Whitley, D, 1995. Genetic algorithms and neural networks. In Genetic Algorithms in 

Engineering and Computer Science, edited by J. Periaux and G. Winter, 191-201. John 

Wiley & Sons Ltd. 

Yang, J., and V. Honavar, 1998. Feature subset selection using a genetic algorithm. IEEE 

Intelligent Systems 13(2): 44-49. 



 

 28 

 

Table 2.1: Partitioning and El Niño Southern Oscillation (ENSO) status for each year. 

Data Set Neutral El Niño La Niña 

Model Development 1951, 1961, 1963, 

1969, 1980, 1982, 

1985, 1986, 1991, 

1993, 1994, 1995, 

1996, 1997, 2002, 

2005, 2006 

1958, 1964, 1970, 

1973, 1983, 1987, 

1992, 2003 

1956, 1957, 1965, 

1971, 1972, 1975, 

1976, 1989 

Selection 1954, 1962, 1979, 

1984, 2004 

1966, 1998 1974, 1999 

Evaluation 1953, 1959, 1960, 

1967, 1978, 1981, 

1990, 2001 

1952, 1977, 1988 1955, 1968, 2000 
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Table 2.2: Mean Absolute Error for various artificial neural network models and data sets. Each 

entry is an average for 10 instantiations developed with these settings using all 50 inputs. 

 

 Development set MAE (kg/ha) 

 

  Number of hidden nodes (EBP) Number of hidden nodes per 

slab (Ward Net) 

Learning rate  1 3 5 1 3 5 

0.1 

 

0.3 

 

0.6 

 

 

1292 1349 1307 1273 1318 1288 

1195 1205 1296 1188 1358 1210 

1202 1204 1305 1302 1143 997 

  Selection set MAE (kg/ha) 

 Number of hidden nodes (EBP) Number of hidden nodes per 

slab (Ward Net) 

Learning rate  1 3 5 1 3 5 

0.1 

 

0.3 

 

0.6 

 

 

1623 1597 1626 1606 1719 1780 

1575 1575 1627 1596 1650 1725 

1572 1603 1578 1558 1657 1673 
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Table 2.3 – Proportions of inclusion for each month of each sea surface temperature index (Japan 

Meteorological Agency (JMA) index, Oceanic Niño Index (ONI), North Atlantic Oscillation 

(NAO) index, and the Pacific-North American (PNA) teleconnection index), averaged from 20 

GA runs. Sea surface temperature data ranged from July of the year prior to harvest to June 

immediately preceding harvest. 

 

 Proportion of inclusion 

 

Index 
 Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. 

JMA  0.35 0.55 0.25 0.50 0.65 0.65 0.75 0.85 0.60 0.25 0.60 0.30 

ONI 0.40 0.60 0.55 0.35 0.25 0.75 0.75 0.85 0.60 0.40 0.45 0.60 

NAO 0.25 0.65 0.55 0.35 0.25 0.60 0.80 0.10 0.95 0.95 0.20 0.45 

PNA 0.70 0.60 0.90 0.95 0.00 0.30 0.45 0.45 0.95 0.85 0.55 0.40 
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Table 2.4 – Mean absolute error for models developed using inputs specified by threshold values 

based on GA results. 

 

  

Threshold value 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Development set 

MAE (kg/ha) 

1154 1034 889 1020 1034 927 1089 1082 1257 

Selection set 

MAE (kg/ha) 

1561 1452 1400 1391 1416 1346 1417 1488 1510 
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Table 2.5 – The inputs chosen for the final model for each index (Japan Meteorological Agency 

(JMA) index, Oceanic Niño Index (ONI), North Atlantic Oscillation (NAO) index, and the 

Pacific-North American (PNA) teleconnection index), threshold value of 0.6. 

 

  

 

Index 
 Jul. Aug Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. 

JMA  0 0 0 0 1 1 1 1 1 0 1 0 

ONI 0 1 0 0 0 1 1 1 1 0 0 1 

NAO 0 1 0 0 0 1 1 0 1 1 0 0 

PNA 1 1 1 1 0 0 0 0 1 1 0 0 
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Table 2.6 – Mean Absolute Error of models for different learning rates, inputs specified by the 

0.6 threshold. 

 

  

Learning Rate 0.1 0.3 0.6 0.9 

Development Set 

MAE (kg/ha) 

1017 941 1001 1078 

Selection Set 

MAE (kg/ha) 

1369 1365 1389 1375 
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Table 2.7 - Mean Absolute Error for final model, selected based on selection set error from 50 

separately trained instantiations. 

 

MAE (kg/ha) 

Development Selection Evaluation 

792 1045 1840 
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Figure 2.1 - Flowchart depicting the GA search process. 
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Figure 2.2 – Development set Mean Absolute Error for each generation from each of the 20 GA 

runs. 
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Figure 2.3 – Final ANN model yield predictions vs. target simulated yield for the development 

data set. Error bars show +/- one standard deviation for all counties in a district for a given year, 

average standard deviation of 2032 kg/ha. 
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Figure 2.4 – Final ANN model yield predictions vs. target simulated yield for the selection data 

set. Error bars show +/- one standard deviation for all counties in a district for a given year, 

average standard deviation of 1920 kg/ha. 
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Figure 2.5 – Final ANN model yield predictions vs. target simulated yield for the evaluation data 

set. Error bars show +/- one standard deviation for all counties in a district for a given year, 

average standard deviation of 1923 kg/ha. 
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CHAPTER 3 

THE EFFECTS OF VARYING PREDICTION DATE ON A MODEL FOR PREDICTING 

CROP YIELD BASED ON SEA SURFACE TEMPERATURE
2
 

  

                                                 
2
 Martin, C. M., G. Hoogenboom, R. W. McClendon, J. Paz, and T. Persson. To be submitted to Computers and 

Electronics in Agriculture. 
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ABSTRACT 

 Variations in climate can affect crop production, thus data describing such climate 

variations may be of value for predicting potential impact on crop yield. The goal of this research 

was to develop Artificial Neural Network (ANN) models to predict maize yield for the 

southeastern US using four monthly climate indices as inputs. Specific objectives included 

determining the preferred inputs to these ANN models using a Genetic Algorithm (GA) search, 

and determining how the accuracy of its model and the selection of its inputs were affected by 

moving the prediction date earlier in the year. The indices used for this research were based on 

three meteorological phenomena: the El Niño-Southern Oscillation, North Atlantic Oscillation, 

and Pacific-North American pattern. Weather data and crop conditions from seven crop reporting 

districts in Georgia, Alabama, and Florida were included in the study. Maize yield data were 

simulated using the Cropping System Model for the years 1950 to 2006. These yield values were 

then averaged across crop reporting districts, resulting in a data set with a high level of 

variability, as shown by the overall standard deviation of 1923 kg/ha. In order to determine 

which inputs could be used to most accurately predict crop yield, the space of potential model 

inputs was searched using a GA. In order to determine the effect of earlier prediction dates on 

model accuracy, genetic algorithm searches were conducted using prediction dates ranging from 

January to July for the year of the current growing season. The inputs selected by the genetic 

algorithm search for each prediction date were then compared. Moving the prediction date earlier 

in the year reduced the degree to which the GA search was able to minimize model error, as well 

as affecting the GA’s selection of inputs, causing some inputs to be selected more or less 

frequently. The final model for the January prediction date had the lowest error for the 

independent evaluation set, with a mean absolute error of 1498 kg/ha, lower than the overall data 
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set’s standard deviation value. The three earliest prediction dates achieved the lowest MAE 

values on the model development and evaluation data sets, indicating that accurate predictions 

could be made earlier in the growing season, a beneficial fact for farm managers. Further 

research is necessary to determine whether other types of computational models could 

successfully be applied to the same problem. 

INTRODUCTION 

 Climate variability can have a major impact on agricultural production. For example, 

fluctuations in the amount of annual precipitation have been associated with the majority of crop 

failures within the United States (Ibarra and Hewitt, 1999). Climate variability, therefore, can 

pose a risk to the overall operation and economic return of the agricultural industry. However, 

the potential risks caused by meteorological variations can partially be minimized if farm were 

provided with climate forecasts (Baigorria et al., 2008). By utilizing crop yield predictions based 

on climate data, managers can modify their strategies to reduce the possible harmful effects of 

climate conditions, and take advantage of potentially advantageous circumstances (Martinez et 

al., 2009).  

 Large-scale meteorological phenomena, such as the El Niño-Southern Oscillation 

(ENSO), are measured in specific areas of the world, but are often linked to climate variation in 

other areas of the world through signals known as teleconnections (Izaurralde et al., 1999). 

Research has shown that regional climate conditions can be influenced by ENSO conditions 

(Philander, 1990; Trenberth, 1997). Past studies have focused on the impact of ENSO on crop 

yield within the southeastern US (Handler, 1990; Hansen et al., 1998, 1999; Baigorria et al., 

2008). However, recent research has indicated that climate indices beyond ENSO may also have 

a strong impact on local climate variation (Travasso et al., 2008). Additional studies have 
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explored the influence of other climate phenomena such as the Pacific-North American pattern 

(Leathers et al., 1991) and indices such as tropical North Atlantic sea surface temperature 

(Enfield, 1996) on local meteorological conditions. In a recent study, Martinez et al. (2009) used 

data relating to multiple meteorological phenomena to model maize yield for the southeastern 

US. Their analysis used values of the tropical North Atlantic sea surface temperature, an index of 

the Pacific-North American pattern, the Bermuda high index, and the Japan Meteorological 

Agency’s ENSO index. Following principal component analysis to summarize their data, 

Martinez et al. (2009) performed a linear correlation analysis. They then used the results of this 

analysis to create principal component regression models. These models were based both on 

lagged (prior to planting) and concurrent values of climate indices. One model used both lagged 

and concurrent values, and another model used only lagged indices. However, the predictive 

accuracy of these models was not evaluated for an independent evaluation data set. Other studies 

exploring the relation between meteorological phenomena and crop yield have used other 

statistical methods such as canonical correlation analysis (Baigorria et al., 2008), Monte Carlo 

procedures (Everingham et al., 2003), regression models (D’Arrigo and Wilson, 2008), and 

linear correlation (Travasso et al., 2008). 

 Artificial neural networks (ANNs) are computational tools that can be used to model 

complex relations in order to classify patterns and make predictions (Bose and Liang, 1996; 

Haykin, 1999). ANNs consist of a number of interconnected nodes whose connections have 

specific numerical weights. These weights define a mapping of the input nodes to output values. 

ANNs have been used for a number of meteorological and agricultural applications, including 

frost prediction (Jain et al. 2003; 2006), air temperature prediction (Smith et al. 2007; 2009), 

dewpoint temperature prediction (Shank et al. 2008a, 2008b), and prediction of aflotoxin 
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contamination in peanuts (Henderson et al. 1998). In some applications, ANNs are deployed in 

tandem with other computational tools such as the genetic algorithm (GA), which emulates the 

process of natural selection for search and optimization purposes (Holland, 1975). The GA can 

be used to select ANN architectures (Dasgupta and McGregor 1992), choose parameters for the 

ANN learning process (Henderson et al. 1998), train the networks directly (Whitley, 1995), or 

select appropriate and relevant inputs for the ANN from a larger set of possible inputs (Guo and 

Uhrig, 1992). 

 In Chapter 2, ANN models were developed to predict simulated maize yield using the 

values of sea surface temperature-based climatological indices. These ANN models were 

developed using values of monthly indices of the El Niño-Southern Oscillation, North Atlantic 

Oscillation, and Pacific-North American pattern as inputs. Data were used ranging through June 

of the year of the growing season, for a prediction date of July. A series of tests was conducted to 

determine the preferred ANN architecture and associated parameters. Subsequently, a GA was 

used to search all available inputs and determine the subset of inputs which would minimize the 

ANN model error when predicting crop yield. The final ANN model based on this GA-selected 

set of inputs was then applied to an independent evaluation set, resulting in a mean absolute error 

of 1840 kg/ha. 

 The goal of the research presented herein was to determine how the accuracy of an ANN 

model for predicting maize yield using indices of meteorological phenomena would be affected 

by moving its prediction date progressively earlier within the year. Objectives included: 1) to 

determine the preferred meteorological indices through the use of a GA search, 2) to determine 

the variation in index selection and model accuracy as a function of changing the prediction date 
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over time, and 3) to compare these results with previous research for predicting crop yield using 

teleconnections. 

METHODOLOGY 

A. Data 

 The data used for this study consisted of maize yield values used for model targets and 

climate index values used for model development. Simulated crop yield data were used for the 

target values rather than observed yield. This was done to avoid the influence of technological 

advancements and changes in crop management practices, such as the introduction of irrigation 

management, which occurred during the time period of the study. Data used in this study was 

taken from the years 1951-2006, as 1950 was the first year in which data for some indices were 

available. Maize yield was simulated with the Cropping System Model (CSM; Jones et al., 2003) 

of the Decision Support System for Agrotechnology Transfer (DSSAT; Hoogenboom et al., 

2004), as described by Persson et al. (2009a, 2009b). These simulations were based on the maize 

cultivar Pioneer 31G98, which is a widely used maize hybrid throughout the southeastern US 

(Persson et al., 2009a, 2009b). For all input variables that were used for crop yield simulations, 

representative crop management practices and environmental conditions were used. Persson et 

al. (2009a, 2009b) simulated yield for three planting dates and various nitrogen fertilizer levels. 

However, in our study, only the middle planting date (the 76
th

 day of the year, i.e., March 17 

(March 16 during leap years)) was used. Additionally, only the simulated yield data based on the 

highest available level of fertilizer were used. All simulations in our study were also based on 

rainfed crop growth conditions, since the effect of irrigation could reduce the sensitivity of crops 

to climate variability, especially rainfall variability (Martinez et al. 2009). The simulations were 

conducted for each county in Georgia, Florida, and Alabama where corn is a major agronomic 
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crop. The simulations were run for each county using multiple soil types (Persson et al., 2009a, 

2009b). However, only the simulations based upon the most common soil type in each county 

were considered for the study described herein. 

 Simulated yield values for 129 counties with significant maize production in Georgia, 

Alabama, and Florida were selected from the data generated by Persson et al. (2009a, 2009b). 

These counties were chosen to match the data used by Martinez et al. (2009), although their 

research was based on observed yield, not simulated values. The simulated yield data was then 

partitioned by crop reporting district. Those districts containing a small number of counties were 

dropped from the data set. The resulting data set contained simulated yield values for 94 counties 

within seven crop reporting districts, including two each in Georgia and Florida and three in 

Alabama. The simulated yield data were then averaged across all counties within each of the 

seven districts, resulting in one averaged annual yield value for each crop reporting district. 

These averages were used as the target values for the models in this study. This averaging 

introduced variance into the data, with an average standard deviation of 1959 kg/ha for all of the 

averaged yield values. 

  Values of four indices of climatic variability were used for model inputs: the Japan 

Meteorological Agency (JMA) index (Center for Ocean-Atmospheric Prediction Studies, 2009), 

the North Atlantic Oscillation (NAO) index (National Oceanic and Atmospheric Administration, 

2009), the Pacific-North American (PNA) teleconnection pattern (National Oceanic and 

Atmospheric Administration, 2009), and the Oceanic Niño Index (ONI) (National Oceanic and 

Atmospheric Administration, 2009). Both the JMA and ONI are indicators of the ENSO 

phenomenon. Martinez et al. (2009) found the JMA to be the ENSO index that was most strongly 

correlated with maize yield. The PNA (Leathers et al. 1991) and NAO (Hurrell and Deser 2009) 
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are large-scale meteorological phenomena similar to ENSO. Each index consists of one value per 

month. Each ONI value represents a three-month moving average, e.g. the value for March 

would be a composite of data from February, March, and April. Maize is normally harvested 

during the summer in the southeastern US (Martinez et al. 2009). Thus, the latest data for each 

year came from June, with data for that year beginning in the previous July. The coordinates of 

the centroid of each crop reporting district were also included as model inputs. 

 The inputs and corresponding yield output were grouped into individual patterns. The 

target output value for each pattern was the average simulated yield value for that district. Each 

pattern had 50 potential inputs consisting of 12 monthly values of four indices, plus the latitude 

and longitude of the district centroid. These patterns were partitioned into three data sets: 60 % 

for model development, for use in ANN training, 15 % for model selection to prevent overfitting 

and to determine  model settings, and 25 % for final evaluation of the model. The data were 

partitioned into these sets by year in order to retain the proportions of the overall data set with 

regards to ENSO status (El Niño, La Niña, or neutral). The results of the partitioning are shown 

in Table 3.1. The model development data set contained 33 years of data, the selection data set 

contained 9 years of data, and the evaluation data set contained 14 years of data. 

B. Model Development 

 The ANN models of this study were developed as described by Martin et al. (2010). The 

models utilized the Ward network architecture (Ward Systems Group, 1993), as implemented by 

Smith et al. (2007). Like most ANNs, Ward networks are trained using the error backpropagation 

(EBP) algorithm (Haykin 1999). Networks trained using EBP are initialized with random 

weights, which are then modified based on the network error when predicting target values. 

Ward networks differ from more common EBP networks in that different nodes within the 
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network’s hidden layer use different activation functions to transform their input, as opposed to 

all nodes in the hidden layer using the same activation function. Models developed for this 

research had 50 inputs available to them, and models differed from one another according to 

which of these inputs were included. Separate instantiations of a specific model could differ from 

one another due to the fact that EBP networks begin the training process with random initial 

weights. 

A GA was utilized to search the space of possible inputs and to determine the subset of 

index values which would minimize the ANN model error. A GA is a population search method 

which selects individuals to be propagated to future generations based on a measure of fitness. 

For the purposes of this research, an individual within the GA’s population consisted of a list of 

inputs specifying a particular model. An individual’s fitness was determined by developing three 

instantiations of this ANN model, and averaging these instantiations’ mean absolute error (MAE) 

on the development data set after training. Once two individuals were selected based on this 

fitness measure, their genetic information (the list of inputs included in model development) was 

combined, and the resulting individuals were placed in the population of the next generation. 

Once each generation was complete, the individual with the best fitness in the population, i.e., 

the lowest error for the development data set, was tested on the selection set to ensure that the 

GA was not overfitting to the development set. The MAE values for the selection set were saved 

for each generation, and when there had been no improvement in selection set error for 10 

generations, the GA search was terminated. The individual with the best fitness value in the final 

population was saved for each run. The final solutions of multiple separate GA searches were 

compared in order to determine which inputs were important to model accuracy. Each input’s 
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importance was determined by the frequency with which it was selected by the GA to be 

included in the final set of inputs. 

 After using the GA to search all available climate indices as described in Martin et al. 

(2010), the set of available inputs was reduced by moving the prediction date progressively 

earlier in the year. This was done to determine how the accuracy of the ANN model would be 

affected by making predictions at an earlier point in the year with less data and a longer 

prediction period. There were 48 climate index values available to the models, consisting of four 

monthly indices, from July of the prior year to June of the year of harvest. Initial GAs searched 

all 48 index values with a prediction point of July, i.e., as soon as the June climate data became 

available. Subsequent searches were run to limit this data and push back the date of prediction. 

Each time the prediction date was moved one month earlier, the number of inputs available to the 

ANN was reduced by four, i.e., one month of data for each climate index. Searches were run for 

prediction dates as early as January of the year of harvest. Consequently, seven prediction dates 

were tested. For each of these seven prediction dates, 20 GA searches were completed. Their 

final solutions were compared to determine the frequency with which each available input was 

selected by the GA. These proportions of inclusion were then compared across prediction dates 

to determine the effect on the GA’s selection of inputs. 

 For each set of 20 GA searches relating to each prediction date, the proportions of 

inclusion specified by averaging all 20 solutions were used to determine a set of inputs for a final 

model. Threshold values were implemented to determine final model inputs. Only the inputs 

whose proportion of inclusion was higher than the threshold would be included in the final 

model. Threshold values of 0.2, 0.4, 0.6, and 0.8 were tested to determine which threshold value 

produced the model with the lowest error for the selection set. The specific subset of inputs used 
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by this model was then selected as the template for all subsequent models developed for that 

particular prediction date. Ten instantiations of this model were developed for each of the seven 

prediction dates. For each prediction date, the instantiation with the lowest error for the selection 

set was selected as the final model, which was then applied to an independent evaluation set to 

determine its predictive accuracy. 

RESULTS AND DISCUSSION 

 For each prediction date, 20 GA runs were conducted. The average development set error 

of the population averaged across all 20 runs for each of the seven prediction dates can be seen in 

Figure 3.1. For the latest three prediction dates, i.e., July, June, and May, the GA minimized the 

average development set error for each run at comparable rates. For each of these three 

prediction dates, the average development set error in the final population after 20 generations 

was near 1050 kg/ha. These average development set error values from 20 generations into the 

GA searches can be seen in Table 3.2. Moving the prediction date back to April increased the 

development set MAE at 20 generations to 1119 kg/ha, and a prediction date of March resulted 

in a similar population error of 1117 kg/ha. Moving the prediction date further back to February 

and January increased the average development set MAE of the population further to 1165 kg/ha 

for February and 1193 kg/ha for January. Overall, moving the prediction date earlier so that the 

GA had less data available to it for model development caused the average error of the models in 

the population to increase. However, there was still a substantial reduction in average population 

development set error for GA runs using a January prediction date. Figure 3.2 shows the average 

population development set error for each of the 20 GA runs using a July prediction date. This 

figure shows that the duration of the individual GA runs varied considerably, with some runs 

continuing past 50 generations. The final average development set error of these runs varied 
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considerably as well, with some runs having a final error value below 1000 kg/ha, and other runs 

terminating closer to a final error of 1100 kg/ha. By contrast, Figure 3.3 shows the individual GA 

runs for a prediction date of January. There was considerably less variation within these runs, 

especially in terms of their final error. Almost all of the 20 runs shown in the figure had a final 

average development set error of approximately 1200 kg/ha. 

 For each of the prediction dates, the final solutions from the 20 GA runs were averaged to 

determine the frequency with which each of the climate inputs was selected by the GA. Table 3.3 

shows these frequency values for the 12 months of the JMA index. Completely random selection 

of an input would result in a frequency value of 0.50. Thus, a frequency value higher than 0.50 

indicates that the GA found the inclusion of that input to be beneficial to the model development 

process. Index values which were selected with a frequency greater than or equal to 0.70 are 

shown in bold in the tables displaying these results. For the JMA index, the prediction date 

seems to have had little impact on the GA’s preference for individual months, with most months 

being selected with similar frequency across prediction dates. In their attempt to predict maize 

yield using climate indices, Martinez et al. (2009) indicated that values of the JMA index from 

July to September of the year before harvest showed maximum correlation to crop yield. 

However, the results presented in Table 3.3 show that the GA runs conducted for this study did 

not show a preference for these values. The only months of the JMA index selected by the GA 

consistently when they were available were January and February of the year of harvest, as well 

as November of the year prior to harvest. 

The proportion of inclusion for values of the NAO index is shown in Table 3.4. Moving 

the prediction date earlier in the year affected the frequency with which the GA selected 

particular months. For instance, the value for the February NAO input was only selected 10 % of 
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the time in GA runs using the July prediction date, but was active 65 % of the time in GA runs 

for a March prediction date. For this earlier prediction date, the value for February was the latest 

one available. It is possible that this information was not useful in reducing model error when 

more information was available to the GA, but was selected more frequently when this 

information was removed. Conversely, the value for November NAO was selected 25 % of the 

time for the prediction dates of July, June, and May, but only 5 % of the time for earlier 

prediction dates of March, February, and January. This could indicate that the presence of 

extraneous or irrelevant information produced greater error in models with less available inputs, 

and consequently was selected less frequently. Martinez et al. (2009) found that the north 

Atlantic sea surface temperature from March to May was most highly correlated with crop yield 

of the current growing season. It can be seen in Table 3.4 that the GA runs did commonly select 

data from March and April for its models when such data was available. The GA showed a 

strong preference for April values in particular, never selecting them in less than 95 % of final 

solutions.  

The frequency with which the GA runs selected inputs from the PNA index is shown in 

Table 3.5. The effects of moving the prediction date earlier are most pronounced for the 

December data, which increased from being selected in 30 % of GA runs with a July prediction 

date to being selected in 80 % of GA runs with a January prediction date. Martinez et al. (2009) 

identified December to February as the period during which PNA values showed the greatest 

correlation with crop yield. However, the months for which the GA most commonly chose PNA 

inputs to be active in this study were September and October of the year prior to the maize 

growing season, along with March and April from the year of the growing season. 
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The proportion of GA runs for which inputs of the ONI index were selected is shown in 

Table 3.6. The ONI, like the JMA, is a measure of the ENSO phenomenon, which Martinez et al. 

(2009) found to be most highly correlated with crop yield from July to September of the year 

prior to the maize growing season. Although the GA selected the July ONI input to be active in 

more than 50% of runs for all prediction dates other than July, it did not select the August or 

September inputs in more than 50 % of cases. In general, the GA did not show a strong 

preference either positive or negative for any of the inputs from August to November of the year 

prior to harvest. Instead, the months most frequently selected by the GA were January and 

February of the year of the growing season. ONI values for most months had proportions of 

inclusion close to 0.50, with 50 of the 63 available inputs being selected in between 35 and 65 % 

of runs. This high amount of proportions close to 0.50 indicates that the inclusion or exclusion of 

these inputs was more random than for the other indices tested. 

Threshold values of 0.2, 0.4, 0.6, and 0.8 were applied to these proportions of inclusion to 

determine model inputs, with ten model instantiations developed for each threshold value. The 

results of applying these models to the development set for each of the prediction dates is shown 

in Table 3.7. There was no clear trend in error according to threshold value, with all but one of 

the averaged errors having a value between 900 and 1100 kg/ha. The threshold values to 

determine the inputs for the final models were selected based on the average selection set error 

(Table 3.8). Accordingly, the final models for the prediction dates of July, June, and April used a 

threshold value of 0.6, the prediction dates of March and January used a threshold value of 0.4, 

and the prediction dates of May and February used a threshold value of 0.2. 

Out of the ten instantiations developed based on these threshold values, a single final 

model was selected for each prediction date based on the MAE of the selection set. The MAE 
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values for each of these final models when applied to the development set, selection set, and final 

evaluation set are shown in Table 3.9. The prediction date whose final model produced the 

lowest error for the development set was February, with an MAE of 755 kg/ha. The final model 

for the March prediction date resulted in the lowest MAE value for the selection set (1019 

kg/ha). The lowest error for the evaluation set was achieved by the final model for the January 

prediction date (1498 kg/ha). In each case the final error for the evaluation set was lower than the 

overall standard deviation value of the average yield (1959 kg/ha), as in the case of the final 

model developed in Chapter 2 of this thesis. Interestingly, the models which performed best for 

all three data sets were those for January, February, and March, despite the fact that these were 

the three earliest prediction dates. Also important is the fact that the second lowest evaluation set 

error was achieved by the final model for the February prediction date. This indicates that 

models based on the earliest prediction dates had the lowest MAE on the evaluation set, even 

though these models had the least data available to them for model development. 

Figure 3.4 contains scatterplots showing the performance of the final model for each of 

the seven prediction dates as they were applied to all three data sets. Each plot also contains error 

bars showing the standard deviation resulting from the averaging of the simulated yield values 

within each crop reporting district for each year of data. As can be seen from these plots, the 

final models predicted most simulated yield values for the development and selection data sets 

within one standard deviation. While the evaluation set predictions were generally less accurate, 

they were still often within one standard deviation of the simulated yield values. The plots show 

no major differences between the later prediction dates of July (Figure 3.4 a, b, c), June (Figure 

3.4 d, e, f), May (Figure 3.4 g, h, i), April (Figure 3.4 j, k, l) or March (Figure 3.4 m, n, o), but 

the plots for the earliest prediction dates of February (Figure 3.4 p, q, r) and January (Figure 3.4 



 

 55 

s, t, u) show these models’ improved accuracy, particularly on the evaluation set. These plots 

confirm that these two models had the most accurate prediction dates for the evaluation set, as 

indicated by their error values. In comparison with the performance of other final models on the 

evaluation set, the February and January models had less of a tendency to overpredict.  

SUMMARY AND CONCLUSIONS 

 GA searches were conducted to explore the space of available inputs for an ANN model 

for predicting maize yield based on climate indices. Trials were run for seven different prediction 

dates to determine how model accuracy would be impacted by predicting crop yield earlier in the 

year. The results of these GA searches were compared to determine how modifying the 

prediction date affected model accuracy and which inputs were selected by the GA most 

frequently. Although modifying the prediction date had no consistent effect on which climate 

data was selected by the GA across the four climate indices tested, it did affect the GA’s overall 

ability to minimize the error of the models it developed. For each prediction date, a final model 

was developed and tested with an independent evaluation set. In each case, the MAE of the 

evaluation set was comparable to the level of variation within the data. Additionally, the models 

with the lowest error for the independent evaluation set were those using the earliest prediction 

dates, i.e., January and February. This increases the potential usefulness of such models for farm 

managers, since these models are able to predict yield earlier in the year when more action can 

be taken to modify and adapt crop management based on model predictions. Further research 

into this area using other computational techniques could shed more light on the effects of earlier 

prediction dates on both input selection and model error. The potential of combining non-ANN 

modeling techniques with the GA search also has yet to be explored. Research into either area 

could reveal more about the relationships between large-scale climate indices and crop yield. 
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Table 3.1: Partitioning and corresponding ENSO status. 

Data Set Neutral El Nino La Nina 

Model Development 1951, 1961, 1963, 

1969, 1980, 1982, 

1985, 1986, 1991, 

1993, 1994, 1995, 

1996, 1997, 2002, 

2005, 2006 

1958, 1964, 1970, 

1973, 1983, 1987, 

1992, 2003 

1956, 1957, 1965, 

1971, 1972, 1975, 

1976, 1989 

Selection 1954, 1962, 1979, 

1984, 2004 

1966, 1998 1974, 1999 

Evaluation 1953, 1959, 1960, 

1967, 1978, 1981, 

1990, 2001 

1952, 1977, 1988 1955, 1968, 2000 
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Table 3.2: Development set Mean Absolute Error after 20 generations averaged across 20 GA 

runs for seven prediction dates. 

 

Prediction Date Development Set MAE (kg/ha) 

July 1054 

June 1029 

May 1039 

April 1119 

March 1117 

February 1165 

January 1193 
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Table 3.3: Proportions of inclusion for each month of the Japan Meteorological Agency (JMA) 

index, seven prediction dates. Inputs with a proportion greater than or equal to 0.70 in bold. 

 

 Month 

Prediction 

Date 

Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. 

July 0.35 0.55 0.25 0.50 0.65 0.65 0.75 0.85 0.60 0.25 0.60 0.30 

June 0.60 0.50 0.40 0.55 0.70 0.35 0.50 0.95 0.55 0.10 0.40 0 

May 0.45 0.50 0.50 0.40 0.80 0.40 0.45 0.90 0.75 0.30 0 0 

April 0.35 0.35 0.40 0.25 0.60 0.60 0.85 0.90 0.55 0 0 0 

March 0.25 0.30 0.35 0.40 0.20 0.55 0.85 1.00 0 0 0 0 

February 0.80 0.20 0.40 0.50 0.85 0.55 0.45 0 0 0 0 0 

January 0.50 0.60 0.45 0.40 0.90 0.65 0 0 0 0 0 0 
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Table 3.4: Proportions of inclusion for each month of the North Atlantic Oscillation (NAO) 

index, seven prediction dates. Inputs with a proportion greater than or equal to 0.70 in bold. 

 

 Month 

Prediction 

Date 

Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. 

July 0.25 0.65 0.55 0.35 0.25 0.60 0.80 0.10 0.95 0.95 0.20 0.45 

June 0.65 0.65 0.55 0.25 0.25 0.85 0.75 0.05 0.75 0.95 0.45 0 

May 0.55 0.70 0.50 0.30 0.25 0.60 0.60 0.40 0.60 1.00 0 0 

April 0.30 0.35 0.55 0.20 0.15 0.75 0.65 0.10 0.65 0 0 0 

March 0.35 0.45 0.35 0.15 0.05 0.45 0.45 0.65 0 0 0 0 

February 0.45 0.55 0.95 0.20 0.05 0.60 1.00 0 0 0 0 0 

January 0.50 0.60 0.75 0.25 0.05 0.55 0 0 0 0 0 0 
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Table 3.5: Proportions of inclusion for each month of the Pacific-North American (PNA) index, 

seven prediction dates. Inputs with a proportion greater than or equal to 0.70 in bold. 

 

 Month 

Prediction 

Date 

Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. 

July 0.70 0.60 0.90 0.95 0.00 0.30 0.45 0.45 0.95 0.85 0.55 0.40 

June 0.65 0.50 0.85 1.00 0.15 0.50 0.30 0.50 1.00 1.00 0.55 0 

May 0.75 0.60 0.95 0.90 0.00 0.60 0.50 0.45 1.00 1.00 0 0 

April 0.80 0.45 0.80 0.95 0.05 0.60 0.45 0.50 0.80 0 0 0 

March 0.50 0.60 0.70 0.60 0.10 0.40 0.60 0.50 0 0 0 0 

February 0.85 0.50 0.55 1.00 0.35 0.85 0.30 0 0 0 0 0 

January 0.55 0.70 0.60 0.90 0.10 0.80 0 0 0 0 0 0 
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Table 3.6: Proportions of inclusion for each month of the Oceanic Niño Index (ONI), seven 

prediction dates. Inputs with a proportion greater than or equal to 0.70 in bold. 

 

 Month 

Prediction 

Date 

Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. 

July 0.40 0.60 0.55 0.35 0.25 0.75 0.75 0.85 0.60 0.40 0.45 0.60 

June 0.60 0.35 0.25 0.50 0.45 0.25 0.60 0.40 0.45 0.35 0.55 0 

May 0.60 0.40 0.35 0.40 0.50 0.60 0.65 0.65 0.40 0.55 0 0 

April 0.60 0.45 0.60 0.40 0.40 0.70 0.65 0.55 0.45 0 0 0 

March 0.75 0.55 0.45 0.50 0.35 0.60 0.70 0.70 0 0 0 0 

February 0.60 0.55 0.50 0.50 0.35 0.50 0.75 0 0 0 0 0 

January 0.65 0.55 0.45 0.55 0.35 0.95 0 0 0 0 0 0 
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Table 3.7: Development set mean absolute error for models developed using 4 threshold values 

based on the GA results for all seven prediction dates. Each value is an average from 10 

instantiations of the specified model. 

 

Mean Absolute Error (kg/ha) 

 Threshold Value 

Prediction date 0.2 0.4 0.6 0.8 

July 1034 1020 927 1082 

June 961 1000 994 999 

May 995 942 981 1020 

April 867 969 948 1020 

March 961 941 908 950 

February 937 1025 981 1085 

January 1043 946 1016 987 
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Table 3.8: Selection set mean absolute error for models developed using 4 threshold values based 

on the GA results for all seven prediction dates. Each value is an average from 10 instantiations 

of the specified model. 

 

Mean Absolute Error (kg/ha) 

 Threshold Value 

Prediction date 0.2 0.4 0.6 0.8 

July 1452 1391 1346 1488 

June 1363 1405 1362 1364 

May 1343 1345 1366 1373 

April 1285 1378 1259 1444 

March 1366 1287 1332 1337 

February 1320 1388 1382 1395 

January 1346 1300 1377 1344 
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Table 3.9: Mean absolute error for each data set from the final model for each prediction date. 

 

 Mean Absolute Error (kg/ha) 

Prediction date Development Selection Evaluation 

July 792 1045 1840 

June 1048 1129 1751 

May 869 1052 1804 

April 776 1076 1598 

March 844 1019 1879 

February 755 1030 1554 

January 800 1103 1498 
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Figure 3.1: Average development set mean absolute error for seven prediction dates. Each line is 

averaged from 20 runs of the genetic algorithm. 
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Figure 3.2: Average fitness expressed as mean absolute error on the development set for each 

generation of the 20 genetic algorithm runs for the July prediction date. 
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Figure 3.3: Average Mean Absolute Error on the development set for each generation of the 20 

genetic algorithm runs for the January prediction date. 
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Figure 3.4: Yield predictions vs. target simulated yield for July development (a), selection (b), and evaluation (c) sets, and for the June 

development (d), selection (e), and evaluation (f) sets.
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Figure 3.4 (cont.): Yield predictions vs. target simulated yield for May development (g), selection (h), and evaluation (i) sets, and for 

the April development (j), selection (k), and evaluation (l) sets.
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Figure 3.4 (cont.): Yield predictions vs. target simulated yield for March development (m), selection (n), and evaluation (o) sets, and 

for the February development (p), selection (q), and evaluation (r) sets.
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Figure 3.4 (cont.): Yield predictions vs. target simulated yield for January development (s), selection (t), and evaluation (u) sets. 
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CHAPTER 4 

SUMMARY AND CONCLUSIONS

 

The goal of the research presented in this thesis was to predict southeastern US maize 

yields with ANN models using GA-selected inputs. Models were developed for seven prediction 

dates throughout the year, ranging from January to July of the year of harvest. In Chapter 2, 

parameters for ANN model development were selected based upon trials using all available 

inputs. All ANN models developed in Chapter 2 used data ranging through June of the year of 

harvest, with a prediction date of July. A GA search was then conducted to select a subset of 

inputs to produce a model with minimal error. Each input was assigned a proportion of inclusion 

based upon the percentage of GA searches in which it was included as an element of the final 

solution. Threshold values were applied to these proportions in order to select a final set of 

inputs. A final model was developed using these inputs and tested on an independent evaluation 

set. This final model achieved lower error values on both the model development and selection 

sets than the initial model using all available inputs, and had a mean absolute error of 1840 kg/ha 

on the evaluation set. 

In Chapter 3, six more final models were developed for prediction dates earlier in the 

year, ranging from January to June. These were compared to one another, as well as the final 

model from Chapter 2. Moving the prediction date earlier in the year reduced the GA’s overall 

ability to minimize error through input selection. Changing the prediction date also affected the 

frequency with which certain inputs were selected by the GA. When the performance of the final 
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model for each prediction date was compared, the models for the earliest prediction dates 

(January and February) were found to have the lowest error on the evaluation set. 

This research demonstrates that indices of large-scale meteorological phenomena can be 

successfully used for modeling regional crop yields. Additionally, the improvement in model 

accuracy when using GA-selected subsets of inputs indicates that GA/ANN hybrids are useful 

tools for meteorological and agricultural applications. Further work could explore other 

enhancements to boost the accuracy of the predictions made by the ANN models presented in 

this thesis, such as searching a larger set of inputs or using other search and optimization 

methods apart from GAs. Future research could also explore the weights assigned to separate 

inputs by the GA searches, and how these align with existing research into the underlying 

meteorological phenomena. Additionally, the methods used in this study could be applied to 

other geographical regions or other types of crops, thus increasing the general applicability of the 

techniques presented in this thesis.  
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