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Chapter 1 - Introduction

The technique of singular value decomposition (SVD) has proven

itself valuable in several different problem domains: data compres-

sion [28], image recognition and classification [34], chemical re-

action analysis [68], document comparison [24, 12], cryptanalysis

[66, 74], and genetic algorithms [62, 61]. Although these domains

are quite different in some aspects, each can be reduced to the

problem of ascertaining or ranking relevance in data. Intuitively,

the concept of relevance depends critically on the nature of the

problem at hand. SVD provides a method for mathematically dis-

covering correlations within data. The focus of this work is to in-

vestigate several possible methods of using SVD to improve infor-

mation retrieval performance in document comparison, to better

solve the Minimum Graph Bisection problem, and to improve the

performance of a genetic algorithm. In each case, experimental evi-

dence is presented that supports the applicability of the underlying

theorems.

A well known information retrieval theorem of Papadimitriou et

al. is analyzed. In addition, counterexamples to this theorem are

constructed, showing that the theorem may not always be true in
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practice. Nevertheless, the theorem does give several basic intu-

itions that are useful in designing experiments and proofs in later

chapters of the dissertation.

SVD is also shown to be useful when bisecting certain types of

graphs. To obtain a bisection of a graph, SVD is performed directly

on the 0,1 adjacency matrix of the graph to be bisected. Next, an

eigenvector is chosen and its components are partitioned based on

the median of all of the components. Given that each component

of an eigenvector represents a vertex of the graph, a partitioning of

the graph is achieved. The process of using eigenvectors to parti-

tion graphs is called spectral bisection. The technique’s roots stem

from the works of Fiedler [33], who studied the properties of the

second smallest eigenvector of the Laplacian of a graph, and Do-

nath and Hoffman [26], who proved a lower bound on the size of the

minimum bisection of the graph. Several theorems are proved and

experiments conducted with spectral bisection with a view to stim-

ulating further research into the interactions between the eigen-

vectors of certain graphs.

In addition to applying SVD directly to graphs, it is also used

in several ways to guide the search process of a Genetic Algorithm

(GA). The first method of using SVD in a GA is to have it expose the

most striking similarities between a given individual and a strategi-

cally chosen population of individuals. These similarities are used
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to influence the direction of the GA’s search process by qualifying

candidate individuals for reinsertion into the next generation based

on their proximity to other individuals whose fitnesses had already

been computed. Initial results from the application of this process

indicated significant improvements in the GA’s performance. The

second method of using SVD to help guide the search process of

a GA is to use it to expose the most striking similarities between

genes in the most highly fit individuals of the optimization his-

tory. The GA’s optimization operators are then restricted to the

locus of the genes corresponding to these striking similarities. In

addition, individuals are engineered out of the discovered similar-

ities between genes across highly fit individuals. The genes are

also reordered on a chromosome in order to group similar genes

closer together on a chromosome. The heuristics developed exhib-

ited remarkable performance improvements. In addition, the per-

formance achieved is magnified when the heuristics are combined

with each other.

Chapter 2 contains some theoretical background necessary for

understanding the proofs in later chapters. Chapter 3 contains

a counterexample and a reformulation of an information retrieval

theorem by Papadimitriou et al.. Chapter 4 contains background

information on the graph partitioning problem. Chapter 5 attempts

to discover, prove, and use useful facts about new spectral bisec-

3



tion techniques. Its results will propagate to Chapter 6 by using

the new spectral bisection techniques to initially seed the popula-

tion and guide the evolution of the genetic algorithm. Chapter 6 is

the first known attempt at providing strategies for using singular

value decomposition in a genetic algorithm for the Minimum Graph

Bisection problem. The intent of Chapter 6 is to exploit the spectral

properties of SVD to discern approximate information from sets of

candidate solutions to the bisection problem. This material is quite

different from the material in Chapter 5, which is intended to give

a set of good initial solutions for the genetic algorithm in Chapter 6

to work with. Finally, Chapter 7 contains a review of contributions

and several open questions for future research.

1.1 Prerequisites

One of the goals of this work is to provide almost all of the prereq-

uisite knowledge for understanding the proofs and ideas contained

herein. This is a difficult task, considering the material in this

work covers many subjects. The most pervasive subject used is

linear algebra, with particular focus on the SVD. The SVD is a sub-

ject M.I.T. Professor Gilbert Strang calls ”absolutely a high point of

linear algebra.” In addition, graph theory, probability theory, com-

puter science, and genetic algorithms are also worked with exten-

sively. In each case, attempts are made to provide the reader with

4



all of the required knowledge directly through proof. Failing this,

considerable references are made to proofs in other’s works.

The reader should be familiar with the basic asymptotic nota-

tion used in complexity theory (big–O, big–Θ, and big–Ω). Basic

linear algebra skills are also recommended, but not required be-

cause considerable linear algebra background is provided herein.

In addition, some knowledge of combinatorics will be helpful.

5



Chapter 2 - Theoretical Background

I consider that I understand an equation when I can

predict the properties of its solutions, without actually

solving it.

–Paul Adrien Maurice Dirac. Quoted in F Wilczek, B

Devine, Longing for the Harmonies

2.1 Probability Theory

Definition 1 A probability space is a finite set of points

Ω = {w1, · · · , wm}

with corresponding probabilities p1, · · · , pm for each point in Ω. In

effect,

pi = Pr(wi)
m∑

i=1

pi = 1

1 ≥ pi ≥ 0

6



Definition 2 A random variable X is a function from the probabil-

ity space to the real numbers, X : Ω→ <.

Definition 3 The expected value of a random variable X is the real

number

E(X) =
m∑
i

X(wi) · pi

The following theorem, Markov’s Inequality, gives a formula for ob-

taining the probability that a random variable is greater than or

equal to some threshold.

Theorem 4 (Markov’s Inequality) If a random variable X ≥ 0 and

a > 0 ∈ < then

Pr(X ≥ a) ≤ E(X)

a
(2.1)

Proof:

Pr(X ≥ a) =
∑

w∈Ω,X(w)≥a

Pr(w)

≤
∑

w∈Ω,X(w)≥a

X(w)

a
Pr(w)

=
1

a

∑
w∈Ω,X(w)≥a

X(w)Pr(w)

≤ 1

a

∑
w∈Ω

X(w)Pr(w)

=
E(X)

a

7



Let X1, X2, · · · , Xn be independent random variables with finite

expectations and variances. Also let

S = X1 + · · ·+ Xn

X =
S

n

µ = E[X = E[
S

n
]] (2.2)

Assuming that for all i, 0 ≤ Xi ≤ 1, we have the following upper

bound known as the Bienaymé–Chebychev inequality [20].

Pr[|X − µ| ≥ t] ≤ e−2nt2

In [49], Hoeffding extended the previous bound to the case where

for each i, ai ≤ Xi ≤ bi,

Pr[|X − µ| ≥ t] ≤ e−2nt2/
Pn

i=1(bi−ai)
2

What follows is a proof of a similar inequality in the case that

Xi = {−1, 1}.

Theorem 5 Let {X1, · · · , Xn} be n independent copies of a random

variable X where

X =


1, with probability = 1

2

−1, with probability = 1
2

8



Then the probability space for these variables is Ω = {−1, +1}n, and

the probability of each point in Ω is 1
2n . Let Y be a function Ω −→ <

defined by

Y =
n∑

i=1

Xi

Then for a > 0,

Pr(Y ≥ a) ≤ e−a2/2n (2.3)

Proof: Because a > 0,

Pr(Y ≥ a) = Pr(eλY ≥ eλa)

with λ > 0. By Equation 2.1 we have that

Pr(eλY ≥ eλa) ≤ E(eλY )

eλa

From the definition of the function E(X) and the fact that eλY =

eλ(X1+···+Xn) = eλX1eλX2 · · · eλXn , we have that

E(eλY ) =
∑

±1,··· ,±1

1

2n
(eλX1eλX2 · · · eλXn)

=

[
1

2
(eλ + e−λ)

]n

≤
[
eλ2/2

]n
= eλ2n/2

9



Therefore

Pr(Y ≥ a) ≤ E(eλY )

eλa
≤ eλ2n/2

eλa
= eλ2n/2−λa

We want to pick a λ such that λ2n/2− λa is as small as possible

in order to get a tight upper bound. Taking the derivative with

respect to λ we see that

d

dλ
(λ2n/2− λa) = λn− a

The function achieves its minimum when we set it’s derivative to 0.

λn− a = 0

λn = a

λ = a/n

Substituting the λ = a/n into λ2n/2− λa we achieve

λ2n/2− λa =
(a

n

)2

· n
2
−
(a

n

)
· a

=
a2

2n
− a2

n

= − a2

2n

Therefore

Pr(Y ≥ a) ≤ e−a2/2n (2.4)

10



2.2 Linear Algebra

Definitions

Definition 6 The inner product, or dot product, between two vec-

tors x, y ∈ < is denoted by x · y or (x, y) and is defined as follows.

x · y = (x, y) = x1y1 + x2y2 + · · ·+ xnyn

Definition 7 A vector norm, denoted by ‖ · ‖, satisfies the follow-

ing three properties

1. ‖ x ‖> 0 for any vector x 6= 0

2. For any scalar c, ‖ cx ‖= |c| ‖ x ‖

3. For any two vectors x and y, ‖ x + y ‖≤‖ x ‖ + ‖ y ‖

Definition 8 The length or Euclidean norm of a vector v, denoted

by ‖ v ‖, is a nonnegative scalar defined by

‖ v ‖=
√

v · v =
√

v2
1 + · · ·+ v2

n

11



Therefore, the following property also follows by squaring both sides

‖ v ‖2= v · v

Definition 9 The matrix norms measure the maximum amount by

which changes in a vector x are magnified in the calculation of Ax.

Matrix norms satisfy the same three properties as a vector norm:

1. ‖ A ‖> 0 for any nonzero matrix A

2. For any scalar c, ‖ cA ‖= |c| ‖ A ‖

3. For any two matrices A and B, ‖ A + B ‖≤‖ A ‖ + ‖ B ‖

Definition 10 The definitions of the matrix two norm ‖ A ‖2 and

Frobenius norm ‖ A ‖F are

‖ A ‖2= max‖x‖=1 ‖ Ax ‖

‖ A ‖F =

√√√√ m∑
i=1

n∑
j=1

|aij|2

Definition 11 A real matrix A is orthogonal if

A−1 = AT (AAT = AT A = I)

Definition 12 A complex matrix A is unitary if

A−1 = AH (AAH = AHA = I)

12



Here, H denotes the hermitian transpose (conjugate and then trans-

pose). Note that anything said about complex unitary matrices is

also true for orthogonal matrices.

Definition 13 A complex matrix A is normal if it commutes with its

transpose, In effect, if

AAH = AHA

Important Theorems

Theorem 14 If A is a unitary (orthogonal) matrix, then

1. (Ax, Ay) = (x, y) for all x and y, so the angle between Ax and Ay

equals that between x and y

Proof:

(Ax, Ay) = (Ax)H(Ay) = xHAHAy = xHy = (x, y)

2. ‖ Ax ‖ = ‖ x ‖ for all x, so the length of Ax equals the length of x

Proof:

‖ Ax ‖= (Ax, Ax) = (Ax)H(Ax) = xHAHAx = xHx = (x, y) =‖ x ‖

3. ‖ A ‖2= 1

Proof:

‖ Ax ‖2= maxx 6=0
‖ Ax ‖
‖ x ‖

Theorem 15 AB is unitary when both A and B are unitary.

13



Proof:

(AB)H(AB) = BHAHAB = BHB = I

(AB)(AB)H = ABBHAH = AAH = I

Theorem 16 For every square p × p matrix A there exists an upper

triangular matrix T and unitary matrix P such that

T = PHAP (2.5)

and

A = PTPH (2.6)

with eigenvalues of A on the main diagonal of T . Equation 2.5 is

called the Schur form of A. Equation 2.6 is called the Schur de-

composition of A.

Proof: The proof will proceed by induction.

• Base Case

Let A be 1 × 1 so that p = 1. Now let P = [1], PH = [1]. This

arrangement fulfills the requirements of the theorem because

the eigenvalue of any 1× 1 matrix is the element itself and the

14



matrix [1] is unitary.

A = [a11] = [1][a11][1] (2.7)

T = [a11] = [1][a11][1]

• Induction Step

Assume the theorem is true for p = k and prove that it is true

for p = k + 1. This will prove the theorem is true for all k > 1

because the base case has already been proved.

Suppose A is (k + 1)× (k + 1). Find the first eigenvector x1 and

eigenvalue λ1 of A so that

Ax1 = λ1x1

with ‖ x1 ‖= 1. Use Gram–Schmidt to extend {x1} to an or-

thonormal basis for Ck+1. This gives a set of vectors {w1, . . . , wk}

such that W = {x, w1, . . . , wk} is orthonormal. Let

U = [x1W ]

15



and compute

A
′
= UHAU = [x1W ]HA[x1W ] = [x1W ]H [Ax1AW ]

=

 xH
1 Ax1 xH

1 AW

WHAx1 WHAW

 =

 λ1 b

0 C

 = A
′

for some vector b = xH
1 AW and k × k matrix C. The fact that

A
′
= UHAU here implies that A

′ is unitarily similar to A, which

means that the eigenvalues and of A and A
′ are identical (in-

cluding the multiplicities).

Now use the induction hypothesis on the matrix C to find a

unitary V so that

V HCV = T
′

with T
′ upper triangular and with the eigenvalues of C on its

main diagonal. Let

P
′
=



1 0 . . . 0

0
... V

0


P

′ is unitary because V is also unitary by the induction hy-

pothesis. Now,
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P
′HUHAUP

′
= P

′H

 λ1 b

0 C

P
′
=

 λ1 b

0 V HC




1 0 · · · 0

0
... V

0



=



λ1 0 · · · 0

0
... V HCV

0


=



λ1 0 · · · 0

0
... T

′

0


= T

(2.8)

Equation 2.8 shows that T is an upper triangular matrix be-

cause T
′ is by the induction hypothesis. By Theorem 15, a

product of unitary matrices is also unitary. Therefore

P = UP
′

means that P is unitary and

PHAP = T

17



Theorem 17 A p × p matrix A is normal if and only if A is unitarily

similar to a diagonal matrix D = PHAP .

Proof:

• Diagonal Form Exists =⇒ normal

AHA = (PDPH)H(PDPH) = PDHPHPDPH

= PDHDP = PDDHPH (2.9)

= PDPHPDHPH

= (PDPH)(PHDP )H

= AAH

Equation 2.9 is true because diagonal matrices always com-

mute (DDH = DHD).

• Normal =⇒ Diagonal Form Exists

Suppose A is normal. This implies that A is square p×p by the

definition of normal matrices (see Definition 13 on page 13).

Theorem 16 says that any square matrix has a Schur form

T = UHAU

18



with U unitary and T upper triangular. Notice that T is also

normal

THT = (UHAHU)(UHAU)

= UHAHAU = UHAAHU (2.10)

= (UHAU)(UHAHU)

= TTH (2.11)

T is diagonal because T is upper triangular and TTH = THT which

says that the dot products of the rows equal the dot product of the

columns. Therefore,

T =



t11 t12 · · · · · · t1p

0 t22 · · · · · · t2p

0 0 t33 · · · t3p

...
... . . . . . . ...

0 0 · · · 0 tpp



19



TTH = THT implies that

|t11|2 = |t11|2 + |t12|2 + · · ·+ |t1p|2

|t12|2 + |t22|2 = |t22|2 + |t23|2 + · · ·+ |t2p|2

|t13|2 + |t23|2 + |t33|2 = |t33|2 + |t34|2 + · · ·+ |t3p|2

... =
...

|t1p|2 + |t2p|2 + · · ·+ |tpp|2 = |tpp|2

Simplifying gives

0 = |t12|2 + · · ·+ |t1p|2 (2.12)

0 = |t23|2 + · · ·+ |t2p|2

0 = |t34|2 + · · ·+ |t3p|2

... =
...

0 = |t1p|2 + |t2p|2 + · · ·+ |tpp−1|2

Equation 2.12 implies that t12 = · · · = t1p = 0 because the only time

a sum of a group of nonnegative numbers can equal zero is when

they are all equal to zero. Similarly, the rest of the times when

i 6= j, tij = 0.
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Definition 18 The singular values of an m × n matrix A are the

square roots of the eigenvalues of AT A (if m ≥ n) or of AAT (if m < n),

denoted by σ1, . . . , σn

Theorem 19 The singular values of A are the square roots of the

eigenvalues of AAT and AT A.

Proof: Given the existence of SVD by Theorem 23,

AHA = (UΣV H)H(UΣV H) = V ΣHUHUΣV H = V (ΣHΣ)V H (2.13)

AAH = (UΣV H)(UΣV H)H = UΣV HV ΣHUH = U(ΣΣH)UH (2.14)

Theorem 16 can be used to see that the eigenvectors of AHA make

up V , with the associated (real nonnegative) eigenvalues on the

diagonal of ΣHΣ. Likewise, Theorem 16 can also be used to see

that the eigenvectors of AAH make up U , with the associated (real

nonnegative) eigenvalues on the diagonal of ΣΣH.

Theorem 20 Let A be an m× n matrix. Then AT A is symmetric and

can be orthogonally diagonalized. Let {v1, . . . , vn} be an orthonormal

basis for <n of eigenvectors of AT A, and let λ1, . . . , λn be the associ-

ated eigenvalues of AT A. The singular values of A are the lengths of

the vectors Av1, . . . , Avn

21



Proof: For 1 ≤ i ≤ n,

‖ Avi ‖2 = (Avi)
T Avi = vT

i AT Avi

= vT
i (λivi)

= λi = σ2
i

Note that this also implies that the eigenvalues of AT A are all

nonnegative. The fact that every eigenvalue of a symmetric matrix

is real will be proved next.

Theorem 21 If A is a real symmetric or complex hermitian matrix

(A = AT or A = AH ), then every eigenvalue of A is real.

Proof: Assume first that A is has only real entries. Let x be an

eigenvector of A corresponding to the eigenvalue λ so that

Ax = λx (2.15)

If we take the complex conjugate of both sides, then the resulting

equation is still true.

Ax = λx =⇒ Ax = λx
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Now take the transpose of both sides to get

xT AT = xT λ (2.16)

Because A = AT we have

xT A = xT λ (2.17)

Now multiply Equation 2.15 by the vector xT on the left and Equa-

tion 2.17 by the vector x on the right to get

xT Ax = xT λx

xT Ax = xT λx

And so,

xT λx = xT λx (2.18)

The product xT x is positive and will not change the sign of the above

equation. Therefore the λ’s are all real because the above equation

can only hold when there is no imaginary part to flip when λ is

conjugated. The complex case follows by letting A = A.

Theorem 22 If an m × n matrix A has r nonzero singular values,

σ1 ≥ σ2 ≥ · · · ≥ σr > 0 with σr+1 = σr+1 = · · · = 0, then rank(A) = r.
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Proof: Let {v1, . . . , vn} be an orthonormal basis of <n of eigenvec-

tors of AT A, ordered so that the corresponding eigenvalues of AT A

satisfy λ1 ≥ · · · ≥ λn. Define the singular values of A to be as in

Definition 18 on page 20. Then for i 6= j

(Avi)
T (Avj) = vT

i AT Avj = vT
i λvj = 0 (2.19)

because vi is orthogonal to vj for all i 6= j by construction. Thus

{Av1, . . . , Avn} is an orthogonal set. Let r be the number of nonzero

singular values of A. By the definition of singular values, r is also

the number of nonzero eigenvalues of AT A. Because ‖ Avi ‖2= σ2
i ,

we have that Avi 6= 0 if and only if 1 ≤ i ≤ r. Therefore, {Av1, · · · , Avr}

is linear independent and is in the Col A. For any y in Col A, say

y = Ax, we can write

x = c1v1 + · · ·+ cnvn

y = Ax = c1Av1 + · · ·+ crAvr + cr+1Avr+1 + · · ·+ cnAvn

y = Ax = c1Av1 + · · ·+ crAvr + 0 + · · ·+ 0

Thus y ∈ Span{Av1, . . . , Avr}, which shows that {Av1, . . . , Avr} is

an orthogonal basis for Col A. Hence rank(A) = r.

24



Existence of SVD

The existence and theory of singular value decomposition was es-

tablished by several mathematicians [80]: Beltrami [10], Jordan

[55], Sylvester [82], Schmidt [75], and Weyl [86]. Horn and John-

son provide a succinct proof of its existence [52]. Stewart provided

an excellent survey of the history of discoveries that lead to the

theory of the singular value decomposition [80].

Theorem 23 Let A be an m×n matrix with rank r. Then there exists

an m× n diagonal matrix

Σ =

 D 0

0 0

 (2.20)

where the diagonal entries of D are the first r singular values of A,

σ1 ≥ σ2 ≥ · · · ≥ σr > 0, and there exist an m×m orthogonal matrix U

and an n× n orthogonal matrix V such that

A = UΣV T (2.21)

Proof: Let {v1, . . . , vn} be an orthonormal basis of <n of eigenvec-

tors of AT A, ordered so that the corresponding eigenvalues of AT A
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satisfy λ1 ≥ · · · ≥ λn. Then for 1 ≤ i ≤ r

σi =
√

λi =‖ Avi ‖> 0

and {Av1, . . . , Avr} is an orthogonal basis for the column space of A.

For 1 ≤ i ≤ r, define

ui =
1

‖ Avi ‖
Avi =

1

σi

Avi

so that

Avi = σiui 1 ≤ i ≤ r (2.22)

Then {u1, . . . , ur} is an orthonormal basis of the column space of

A. Extend this set to an orthonormal basis {u1, . . . , um} of <m, and

let U and V be the orthogonal matrices

U = [u1 · · ·um] V = [v1 · · · vn]

Also,

AV = [Av1 · · ·Avr 0 · · · 0] = [σ1u1 · · ·σrur 0 · · · 0]
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Let D be the diagonal matrix with diagonal entries σ1, . . . , σr

And let

Σ =

 D 0

0 0

 (2.23)

Then

UΣ = [u1 · · · um]

 D 0

0 0

 = [σ1u1 · · · σrur 0 · · · 0] = AV

Now, because V is an orthogonal matrix

UΣV T = AV V T = AI = A

Summary As Theorem 23 states, singular value decomposition

expresses an m × n matrix A as the product of three matrices, U ,

Σ, and V T . The matrix U is an m x m matrix whose first r columns,

ui (1 ≤ i ≤ r), are the orthonormal eigenvectors that span the space

corresponding to the row auto–correlation matrix AAT . The last

m−r columns of U form an orthonormal basis for the left nullspace

of A. Likewise, V is an n x n matrix whose first r columns, vi

(1 ≤ i ≤ r), are the orthonormal eigenvectors that span the space
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corresponding to the column auto–correlation matrix AT A. The last

n− r columns of V form an orthonormal basis for the nullspace of

A. The middle matrix, Σ, is an m x n diagonal matrix with Σij = 0

for i 6= j and Σii = σi ≥ 0 for ∀i . The σi’s are called the singular

values and are arranged in descending order with σ1 ≥ σ2 ≥ · · · ≥

σn ≥ 0. The singular values are defined as the square roots of the

eigenvalues of AAT and AT A. The singular value decomposition can

equivalently be expressed as a sum of rank one matrices

A = σ1u1v
T
1 + · · ·+ σrurv

T
r =

r=rank(A)∑
i=1

σiuiv
T
i (2.24)

The ui’s and vi’s are the columns of U and V respectively. Using the

Golub–Reinsch algorithm [43, 40], U , Σ, and V can be calculated

for an m by n matrix in time O(m2n + mn2 + n3).

It should be noted that the singular values {σj} are uniquely

determined, and, if A is square and the σj are distinct, then the left

and right singular vectors are determined uniquely up to complex

scalar factors of absolute value 1.

Reduced Rank Approximations

The magnitudes of the singular values indicate the weight, or im-

portance, of a dimension. To obtain an approximation of A, all but

the k < r largest singular values in the decomposition are set to
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zero. This results in the formation of a new lower rank matrix Ak,

of rank k, corresponding to the k most influential dimensions.

Ak = UkΣkV
T
k (2.25)

Here, Uk and Vk are the matrices formed by keeping only the eigen-

vectors in U and V corresponding to the k largest singular values.

Equivalently,

Ak = σ1u1v
T
1 + · · ·+ σkukv

T
k =

k∑
i=1

σiuiv
T
i (2.26)

Intuitively, the reduced rank matrix Ak amplifies the most impor-

tant similarities and suppresses the insignificant correlations be-

tween the vectors represented in the matrix A. Exactly how much

of the original space is preserved is directly related to the amount of

reduction performed. A theorem by Eckart and Young states, infor-

mally, that the new low–dimensional matrix obtained is the closest

matrix, among all matrices of its rank or less, to the original matrix

[29, 40]. Formally, it states that among all m x n matrices C with

rank at most k, Ak is the one that minimizes

‖A− C‖2F =
∑
i,j

(Aij − Cij)
2 (2.27)
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Eckart and Young’s paper was actually a rediscovery of this prop-

erty, which was first proved by Schmidt [75]. Although the theo-

rem may explain how the reduction does not deteriorate too much

in performance over conventional vector–space methods, it fails to

justify the observed improvement in precision and recall in infor-

mation retrieval applications [70]. However, several papers have

made positive steps towards a rigorous proof that, given an appro-

priate structure for the matrix A, the benefit is achieved with high

probability [70, 25].

Singular vectors and Eigenvectors of Symmetric Matrices

Let A be a symmetric matrix, then the following theorem describes

the structure of the singular value decomposition of A.

Theorem 24 Let A be a symmetric matrix. Then the eigenvectors

and eigenvalues of AAT , A2, and AT A are all equal. Moreover, all of

these eigenvectors are equal to the eigenvectors of A and the singular

values are simply the absolute values of the eigenvalues of A.

Proof: Since A is symmetric, A = AT . Therefore,

AAT = AT A = A2 (2.28)

and so their eigenvectors and eigenvalues are all equal. Since by

definition, the eigenvectors of AT A and AAT are the left and right
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singular vectors of A, the singular vectors of A are also equal. Fur-

thermore, the eigenvectors do not move after squaring a matrix.

A straight forward calculation shows that only the eigenvalues are

squared when multiplying A by A. Concretely, if λ is an eigenvalue

of A and x is an eigenvector of A corresponding to this eigenvalue

(so that Ax = λx), then

AAx = Aλx = λAx = λλx = λ2x (2.29)

Therefore, the eigenvectors of AAT = AT A = A2 are exactly equal

to the eigenvectors of A, but their corresponding eigenvalues are

squared. Moreover, Theorem 19 implies that the singular values of

A are equal to the absolute values of the eigenvalues of A.

Theorem 24 allows a singular value decomposition to be com-

puted for A and still retain the eigenvectors. The SVD already has

its singular vectors arranged according to the magnitude of the

corresponding singular values. In the symmetric case, the singular

vectors are the eigenvectors with their corresponding eigenvalues

made positive. One important thing to note about about the dif-

ference between eigenvalue decompositions and singular value de-

compositions in the symmetric case is that when the singular val-

ues are arranged in descending order, they will be arranged accord-

ing to the absolute value of the eigenvalue. Therefore, the ordering
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of the singular vectors may be slightly different than the ordering

of the eigenvectors because two eigenvalues with an opposite sign

will square to the same eigenvalue of AAT or AT A.

Theorem 25 If P is an orthogonal m × m matrix, then PA has the

same singular values as A.

Proof:

PA = P (UΣV T )

Now, the product PU is orthonormal because it is square and

(PU)T (PU) = UT P T PU = UT U = I

Thus, PA = (PU)ΣV T has the form required for a singular value

decomposition. Furthermore, the square roots of the eigenvalues

of AT A and (PA)T PA are the same because

(PA)T PA = AT P T PA = AT A (2.30)

Theorem 26 If P is an orthogonal n × n matrix, then AP has the

same singular values as A.
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Proof:

AP = (UΣV T )P

Now, the product V T P is orthonormal because it is square and

(PV T )T (PV T ) = V P T PV T = V V T = I

Thus, AP = UΣ(V T P ) has the form required for a singular value

decomposition. Furthermore, the square roots of the eigenvalues

of AAT and AP (AP )T are the same because

AP (AP )T = APP T AT = AAT (2.31)

Theorem 27 The left and right singular vectors, u1 and v1, corre-

sponding to the largest eigenvalues of the matrix AT A and AAT re-

spectively have (all) non–negative components when A is a non–

negative, irreducible matrix.

Proof: The Perron–Frobenius theorem implies that if A is a non–

negative, irreducible matrix, then the eigenvector corresponding to

the maximal eigenvalue has positive components [85], [37]. Per-
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form the singular value decomposition on A to get

UT AV = Σ (2.32)

where Σ is the zero matrix with r = rank(A) singular values along

the diagonal, and U and V are as described previously. The ui and

vi are the eigenvectors of AAT and AT A, respectively. So,

AAT u1 = λ1u1 and AT Av1 = κ1v1 (2.33)

with λ1 and κ1 being the eigenvalues of AAT and AT A respectively.

Because the matrix A is non–negative and irreducible, AAT and

AT A are also non–negative and irreducible. Since σ1 is the largest

singular value (σ1 ≥ · · · ≥ σn ≥ 0) and σi =
√

λi =
√

κi, λ1 and κ1 are

maximal eigenvalues. Therefore, by the Perron–Frobenius theorem,

u1 and v1 have positive components.

Since σ1 ≥ 0, both u1 and v1 have non–negative components.

Theorem 28 If A is an m× n real or complex matrix then

‖ A ‖2= σ1

Proof: By definition,

‖ A ‖2= maxx 6=0
‖ Ax ‖
‖ x ‖
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Given any vector x 6= 0, let f(A, x) denote the following ratio

f(A, x) =
‖ Ax ‖2

‖ x ‖2
=

xT AT Ax

xT x

Because f(A, cx) = f(A, x) for any nonzero scalar c, only the di-

rection of x affects the value of the function f . Any vector x that

maximizes f(A, x) must also give a maximum value for ‖Ax‖
‖x‖ . Let

{v1, · · · , vn} denote the n columns of V , the orthonormal basis given

by the SVD for <n. Any vector x ∈ <n can be written as a linear

combination of these columns because they form a basis for <n. In

effect

x = α1v1 + α2v2 + · · ·+ αnvn = V α (2.34)

where α = [α1, · · · , αn]T . Using the properties of the SVD we will

develop a compact expression for f(A, x) in terms of the vector α.

Ax = UΣV T (V α) = UΣα =
m∑

i=1

(σiαi)ui

Substituting the above equation for Ax into the following equation

yields a formula for xT AT Ax in terms of the vector α and the singu-

lar values of A.

xT AT Ax = αT ΣT UT UΣα = αT Σ2α =
n∑

i=1

α2
i σ

2
i (2.35)
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xT x = αT V T V α = αT α =
n∑

i=1

α2
i (2.36)

Using the previous two equations, we can give a more expressive

formula for f(A, x),

f(A, x) =
xT AT Ax

xT x
=

∑n
i=1 α2

i σ
2
i∑n

i=1 α2
i

To finish the proof, notice that the above ratio is maximized

when α1 6= 0 and α2 = · · · = αn = 0. This is because we have defined

the first singular value to be the largest singular value. Therefore,

when the ratio is maximized, x is a non–zero multiple of the first

right singular vector, v1. For any non–zero vector x and scalar c 6= 0

with x = cv1, we have from Equations 2.35 and 2.36 that

xT AT Ax = c2σ2
1

xT x = c2

f(A, x) =
xT AT Ax

xT x
=

c2σ2
1

c2
= σ2

1

Therefore,

maxx 6=0

√
f(A, x) = maxx 6=0

‖ Ax ‖
‖ x ‖

= σ1 =‖ A ‖2 (2.37)
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Which completes the proof.

2.3 Graph Theory

Eigenvalues of Graphs

The spectrum of a graph is the set of eigenvalues of its adjacency

matrix. In certain adjacency matrix representations, as a graph’s

subgraphs become more and more connected, and certain other re-

strictions are made, the reduced rank SVD has a very good chance

of corresponding exactly one singular vector to each subblock of

the adjacency matrix. This is due to the assumption that the con-

ductance of each of the subgraphs is high. When the conductance

of a graph increases, the separation of the largest two eigenvalues

also increases. For examples and background on spectral analysis

of data see the survey paper by Noga Alon [3]. General information

about the eigenvalues of the adjacency matrix of a graph can be

found in a book by Cvetković, Doob, and Sachs [23].
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Conductance and Expansion

Definition 29 A cut C, is a partition of a graph, or subgraph, into

two disjoint sets of vertices. The partition is defined by picking some

S ⊂ V . The other side of the partition is simply V − S.

Definition 30 The capacity of a cut is the number of edges be-

tween vertices in the two different sets created by the cut.

capacity(C) =
∑

i∈S,j 6∈S

weight(i, j) (2.38)

Definition 31 The conductance φ(G) of a graph G is the minimum

ratio, over all cuts of the graph, of the capacity of the cut to the

number of vertices in the smaller part created by the cut.

φ(G) = min(S⊂V )

∑
i∈S,j 6∈S weight(i, j)

min
{
|S|, |S|

} (2.39)

Noga Alon and V. D. Milman showed in [2] that if the second

largest eigenvalue of a graph is far from the largest eigenvalue,

then the graph is a good expander. Alon later showed in another

paper that the converse is also true [1]. In effect, if a graph is a

good expander, then the largest two eigenvalues will be far apart.

The bounds proved between the conductance and the eigenvalue

gap are
φ2

2
≤ 1− λ2

λ1

≤ 2φ (2.40)
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Figure 2.1 shows that as the conductance increases over the

interval [0..1], the separation of the first and second eigenvalues

also increases.

2
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(conductance^2)/2       
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conductance             

Figure 2.1: The separation of the first two eigenvalues increases
with the conductance.

2.4 Genetic Algorithms

Background and Terminology

Genetic Algorithms (GAs) are search and optimization methods that

mimic natural selection and biological evolution to solve optimiza-

tion and decision problems. The books by David Goldberg [42] and

Zbigniew Michalewicz [64] provide thorough introductions to the
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field of Genetic Algorithms. A brief overview of genetic algorithms

and some definitions of terminology follow.

A chromosome is a sequence of gene values. In this disserta-

tion, each gene will usually have a value of either a zero or one. A

potential solution to a problem is represented by a chromosome.

For graph problems, the number of vertices is the size of the chro-

mosome. A schema is a pattern of genes consisting of a subset of

genes at certain gene positions. If n is the size of a chromosome, a

schema is an n–tuple {s1, s2, · · · , sn} where ∀i, si ∈ {0, 1, ?}. Positions

in the schema that have a ? symbol correspond to don’t–care posi-

tions. The non-? symbols are called specific symbols, and represent

the defining values of a schema. The number of specific symbols

in a schema is called the order, and the length between the first

and last specific symbols in a schema is called the defining length

of the schema. Theorem 32 indicates that the smaller the order of

a schema, the more copies it will have in the next generation.

Although genetic algorithms do not specifically work with schemata

themselves, schemata are a fundamental concept when analyzing

the exploratory process of a genetic algorithm. According to the

building block hypothesis [42, 51], GAs implicitly favor low–order,

high–quality, schemas. Furthermore, as evolution progresses, the

GA creates higher order, high–quality schemas out of low–order
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schemas. This is partially due to the nature of the crossover oper-

ator.

The Schema Theorem [51]

Theorem 32 For a genetic algorithm using binary encoding, propor-

tional selection, one–point crossover, and strong mutation, the follow-

ing holds for each schema S represented in the population at time t:

n(S, t + 1) ≥ n(S, t)
f(S, t)

F (t)

(
1− pc,s

δ(S)

r − 1
− pmO(S)

)
(2.41)

where n(S, t) is the number of representatives of the schema S at

generation t, f(S, t) is the average fitness of the chromosomes con-

taining the schema S in the population at generation t, F (t) is the

average fitness of all of the chromosomes in the population at gener-

ation t, pc is the probability of crossover, δ(S) is the defining length of

the schema S, O(S) is the order of the schema S, and r is the length

of the chromosome.

Hybrid Genetic Algorithms

Hybrid GAs are those that incorporate a local search operator dur-

ing each generation on the new offspring. They are essentially a

hybridization of a genetic algorithm with a suboptimal heuristic

that is tailored specifically for solving a certain problem. Several
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hybrid GAs are studied that use a trimmed down variant of the

Kernighan–Lin [58] algorithm. Additionally, the data structures

and implementation of the algorithm are done in constant time and

implemented as described in a paper by Fiduccia and Mattheyses

[32]. These optimization algorithms perform a limited, low cost,

local search when solving various graph bisection problems.

2.5 Computer Science

NP–Complete Problems

Definition 33 3SAT - Satisfiability With Exactly 3 Literals Per Clause

Input:

• A boolean formula φ that is conjunction of disjunctive clauses

C1, C2, . . . , Cn, each containing exactly 3 literals, where a literal

is either a variable, or its negation.

Property: There is a truth assignment to the variables that satisfies

φ.

Definition 34 MAXSAT2 - Maximum Satisfiability With At Most 2

Literals Per Clause

Input:

• A boolean formula φ that is a conjunction of disjunctive clauses

C1, C2, . . . , Cn, each containing at most two literals.
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• Positive integer k.

Property: There is a truth assignment to the variables satisfying k

or more clauses of φ.

If k = n then the problem can be solved in polynomial time [21].

Definition 35 MAX CUT - Max Cut

Input:

• A Graph G = (V, E).

• Positive integer k.

• A weighting function w(u, v) that gives the weight of the edge

between u and v.

Property: There is a set S ⊆ V such that

∑
u,v∈E,u∈S,v∈V−S

w(u, v) ≥ k (2.42)

Definition 36 SIMPLE MAX CUT - Simple Max Cut

Input:

• A Graph G = (V, E).

• Positive integer k.

• An edge function w(u, v) that is one if and only if there is an

edge between u and v.
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Property: There is a set S ⊆ V such that

∑
u,v∈E,u∈S,v∈V−S

w(u, v) ≥ k (2.43)

Definition 37 MINIMUM GRAPH BISECTION - Minimum Graph Bi-

section

Input:

• A Graph G = (V, E) with an even number of vertices.

• Positive integer k.

• An edge function w(u, v) that is one if and only if there is an

edge between u and v.

Property: There is a partition V = V1∪V2 with |V1| = |V2| and V1∩V2 =

∅ such that

| {(u, v) ∈ E : u ∈ V1, v ∈ V2} | ≤ k (2.44)

If no restriction is made that the sizes of the subsets must be equal,

then the minimum graph bisection problem can be solved in poly-

nomial time [57].
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Chapter 3 - Information Retrieval

Mathematics is the tool specially suited for dealing

with abstract concepts of any kind and there is no limit

to its power in this field.

–Paul Adrien Maurice Dirac. In P. J. Davis and R. Hersh

The Mathematical Experience, Boston: Birkhuser, 1981.

American, May 1963.

The next few sections are an attempt at understanding the de-

tails of a proof in a well known paper on information retrieval writ-

ten by Papadimitriou, Tamaki, Raghavan, and Vempala [70]. The

paper’s terminology and investigative efforts are centered around

a textual information retrieval framework called Latent Semantic

Indexing (LSI). To keep notation and terms synchronous, their ter-

minology has been left mostly unchanged in this dissertation. How-

ever, the ideas presented are independent of terminology and are

often interchangeable with similar conceptual structures of parts.

For example, corpora of documents are made of terms. Similarly,

populations of individuals are made of genes. Indeed, the results

and ideas that follow can infer performance results about querying
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into any type of relations that can be represented by many highly

conducting, connected subgraphs. Several papers have investi-

gated the complexity of these models and algorithms and methods

for discovering interactions within them [77], [50].

In the first subsection of this chapter, the details of a proba-

bilistic corpus model by Papadimitriou et al. are presented [70].

Next, several counterexamples are described for which their theo-

rem is incorrect. Specifically, when the length of each document

is kept constant at 1, their theorem that says that the k largest

eigenvalues correspond to the k topics, is shown to be incorrect.

Further analysis may reveal that as the length of each document is

allowed to increase, there will always be cases for which the theo-

rem is incorrect. On the bright side, intuitions obtained from lim-

iting certain variables in their models lead to conditions for which

their theorems do hold. Last, proofs show that query performance

does not degrade too much when a small perturbation is added

to the matrix A and the dimension of the subspace is reduced to

rank–k when working with k topics. Although this type of proof has

been presented in many papers [8], [25], the proof presented herein

is somewhat unique because it directly corresponds to the termi-

nology and probabilistic model described in the seminal paper of

Papadimitriou et al. [70].
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3.1 Probabilistic Corpus Model

U = The universe of all terms {t1, t2, . . . }

T = A topic; which is a probability distribution on U

T = The universe of all topics, each a probability distribution on U

D = A probability distribution on T× Z+

C = A corpus model (U,T, D)

Documents are formed by picking some convex combination of

topics and a document length l. For each i = 1 . . . l, a term from

a topic is chosen based on their corresponding probabilities. In

effect, a document is a random sampling of terms from a random

sampling of topics. A corpus is simply a collection of documents

generated from this process.

Definition: Corpus C is pure if each document d ∈ C is on a

single topic.

Definition: Corpus C is ε–separable, where 0 ≤ ε < 1, if a

”primary” set of terms UT is associated with each topic T ∈ T such

that

1. UT are mutually disjoint.
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2. For each topic T , the total probability T assigns the terms in

UT is at least 1− ε .

Note that ε–separability implies that terms from other topics may

be shared across documents when ε 6= 0. However, the terms

shared must not be on any other topic when ε = 0

Definition: The rank–k SVD is δ–skewed on a corpus C if, for

each pair of documents d1, d2 on different topics

vd1 · vd2 ≤ δ ‖ vd1 ‖‖ vd2 ‖

and for each pair of documents d1, d2 on the same topic

vd1 · vd2 ≥ (1− δ) ‖ vd1 ‖‖ vd2 ‖

For small δ, this means that documents on the same topic will be

nearly parallel and documents on different topics will be nearly

orthogonal. The theorem will show that the rank–k SVD is O(ε)–

skewed on a corpus generated from an ε–separable, pure corpus

model with k topics.

Let Ωi = {t1, . . . , tmi
}i be the sample space of topic Ti with

pij = Pr[tj ∈ Ti]
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Notice that the sum of the probabilities in each topic Ti satisfy

by definition

mi∑
j=1

pij ≥


1− ε, if C is ε–separable

1, if C is 0–separable

3.2 A Counterexample To The LSI Theorem of Papadimitriou

One of the goals of the paper was to show that the rank–k SVD is

O(ε)–skewed on a corpus generated from an ε–separable corpus

model with k topics. For the sake of a simplistic case, the authors

first attempted to discover which topics the reduced rank SVD rep-

resents when performed on block matrices generated from a pure

corpus model that is 0–separable. Next, they apply a perturbation

to the matrix and show that queries into the reduced SVD space of

the perturbation do not move very much.

A main part of Papadimitriou et al..’s work was that it tried to

show that for a block diagonal matrix with k blocks, generated from

a corpus model to be described in the next section, the k largest of

all of the eigenvalues of the nearly block diagonal matrix AT A are

the maximum eigenvalues of each block BT
i Bi, for i = 1, · · · , k, with

high probability [70]. Therefore, when projecting onto the k largest

eigenvectors of V , a document query vector created mainly from a
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block Bi ∈ A will likely be projected only in the direction of the

maximum eigenvector of the i’th block of the document–document

Gram (or autocorrelation) matrix BT
i Bi. Likewise, a term query vec-

tor from a block Bi ∈ A will only be projected in the direction of

the maximum eigenvector of the i’th block of the term–term Gram

matrix BiB
T
i . Their idea was that matrices generated from their

probabilistic model corresponded to random symmetric matrices.

They then made a correspondence between these random sym-

metric matrices and all graphs. Citing several papers that prove

bounds between the conductance and the spectrum of a graph, the

authors then contend that the k largest of the eigenvalues of a par-

ticular Gram matrix will match up with high probability to their

corresponding k topics [8], [1], [2].

Unfortunately, their results do not ensure that the k largest

eigenvalues are all greater than the second largest eigenvalue of

each block, for all corpuses generated by their model. Their theo-

rem and a short summary are stated below.

Theorem 38 ( Papadimitriou et al. [70] ) Let C be a pure, 0–separable

corpus model with k topics such that the probability each topic as-

signs to each term is at most τ , where τ is a sufficiently small con-

stant. Let C be a corpus of m documents generated from C. Then the

rank–k SVD is 0–skewed on C with probability 1−O
(

1
m

)
.
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Term–document matrices for pure, 0–separable corpora contain

blocks. Each block represents documents solely drawn from one

particular topic. Let A be the m × n term–document matrix repre-

senting the pure corpus C. Then A is block diagonal because C is

pure and 0–separable. That is, each document contains only terms

from the ”primary” set of terms, and so will only have positive en-

tries in the block of terms Bi corresponding to the document’s one

topic, Ti. Any document on a particular topic will have an entry

of 0 for terms outside of the topic because we have assumed the

corpus model is pure and 0–separable. AT A is block diagonal with

blocks, BT
i Bi. The (i, j) entry of AT A, denoted AT Aij, represents the

dot product between the i’th and j’th documents.

AT Aij = di · dj (3.1)

Notice that AT Aij is 0 when

di · dj = 0 (3.2)

Which happens when di and dj are from different topics. Therefore,

AT A is block diagonal because the corpus model is pure. However,

di · dj = 0 does not necessarily imply that di and dj are in separate

blocks because two samplings from the same topic may produce

two documents containing completely different terms from within
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that topic. Also note that AT A is always symmetric because

(AT A)T = AT A (3.3)

Each block BT
i Bi contains the dot products between all pairs of

documents in the i’th topic, Ti. Because BT
i Bi is symmetric, the

authors say that it can be taken to be the adjacency matrix of a

random bipartite multigraph. However, the graphs produced are

clearly not bipartite because they are highly connected.

The vertices are the documents. An edge connects two docu-

ments if and only if their dot product is greater than zero. The

weight of an edge is simply the dot product of the two documents

it connects. In effect,

weight(i, j) = di · dj (3.4)

The subgraphs induced by BT
i Bi are all disjoint because each docu-

ment is on a single topic Ti (because C is pure) and all of the topics

are disjoint (because C is 0–separable). Within a particular sub-

graph, if two documents share no common terms, there will not be

an edge connecting them. However, if we add a requirement that

the maximum term probability is sufficiently small, the probability

that two documents on the same topic will not share terms will go

to zero. Thus, each subgraph will be highly connected with a high
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probability. However, it should be noted that the number of terms

in each topic and the number and length of documents drawn from

it may force several of its eigenvalues to outweigh another topic’s

largest eigenvalues.

The approach used by the authors was to show that the k largest

of all of the eigenvalues of the matrix AT A are exactly the maxi-

mum eigenvalues of each block BT
i Bi for i = 1, · · · , k, where k is the

number of topics or blocks in A [70]. If this can be shown, then a

query document created solely from a topic Ti will be projected only

in the direction of the maximum eigenvector of the i’th block BT
i Bi.

Two documents from different topics will be perpendicular because

their corresponding topic eigenvectors are perpendicular. There-

fore the rank–k LSI will be 0–skewed as claimed. However, this is

not to say that each singular vector will always correspond to one

topic because if any two eigenvalues are the same, the rank–k SVD

may produce a set of singular vectors to which all topics do not

have a single corresponding eigenvector. Fortunately, the probabil-

ity that two eigenvalues will be equal goes to zero as the number of

documents increases.

The authors used a theorem from spectral graph theory that in-

dicates that as the first and second eigenvalues of a graph separate,

the conductance of the graph increases [2], [1]. They reason that

since the conductance of the graphs are high, their corresponding
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first two eigenvalues will also separate and therefore, the k largest

eigenvalues will belong to the k eigenvectors spanning each of the

k topics. However, as Theorem 39 shows, this statement is clearly

incorrect with high probability for certain choices of the lengths of

the documents. In other words, for certain parameters, the top

k eigenvectors will not represent every topic with high probability.

Therefore, although each topic’s corresponding graph is highly con-

ducting, topics must have similar conductance values in order to

help guarantee that the largest k eigenvalues of the entire matrix

are the largest k eigenvalues of each block.

Theorem 39 A simple counterexample to Theorem 38 is formed by

creating a corpus model with the following properties.

• The length of every document is 1.

• There are two topics T1 and T2 each containing t disjoint terms

respectively, with each term being equally likely to be chosen.

• The probability that topic T1 is chosen is 2
5

and the probability

that topic T2 is chosen is 3
5
.

The following analysis shows how these conditions provide a coun-

terexample in that the k largest eigenvalues do not correspond to

the k topics with high probability, thereby violating the statement in

Theorem 38.
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Proof: First focus on a particular topic Ti. Within Ti there are t

terms whose probabilities are all equally likely. However the doc-

ument length is restricted to a length of one. Therefore, within a

particular topic, there will only be t types of vectors that are possi-

ble to be generated. Concretely, these vectors will be the standard

basis vectors ei, each corresponding to the instance where the i’th

term is chosen.

Let ε1, ε2, . . . , εm be a sequence of choices of these standard basis

vectors, where εi represents the i’th choice and is an element of the

set {e1, . . . , et}. Create a t × m matrix A by setting the i’th column

of A equal to the standard vector represented by εi. Next, form

the m × m Gram matrix AT A whose entries are the following by

definition of matrix multiplication and the conditions imposed on

εi.

(AT A)ij = εi · εj =


1, if εi = εj

0, otherwise

Let Ni be the number of vectors of type ei chosen. Then clearly,

N1 + N2 + · · ·+ Nt = m

Due to a theorem by McDiarmid concerning the method of bounded

differences [63], each of the Ni are equal to m
t

with high probability.
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Now focus on the Gram matrix AT A. It will have Ni rows that

are the same ∀i = 1 . . . t. Therefore, its rank will be at most t. This

implies that the dimension of its nullspace is m − t. Then, by the

definition of the nullspace, 0 will be an eigenvalue exactly m − t

times. The other t eigenvalues of the matrix will be Ni with high

probability. This is true for the following reasons. The eigenval-

ues and eigenvectors do not change after permuting the rows and

columns of a matrix. Permute the columns of A so that all of the

standard basis vectors corresponding to a single term appear to-

gether in the sequence ε1.ε2, . . . , εm. Then the Gram matrix AT A

will contain t square blocks containing only ones, each with size

N1 × N1, . . . , Nt × Nt. Clearly the all ones vector is an eigenvector

for each block with corresponding eigenvalue equal to Ni. Further-

more, when zeroes are padded in for entries outside of the block,

the vector becomes an eigenvector of the entire matrix. Since the

eigenvalues of AT A are equal to the union of the eigenvalues of each

block of ones in AT A, the eigenvalues of AT A are equal to N1, . . . , Nt,

with each Ni = m
t

with high probability.

Given that topic T1 is chosen with probability equal to 2
5
, the

expected number of times it will be chosen out of m total choices

will be 2
5
m. Likewise, the expected number of times topic T2 will

be chosen will be 3
5
m. By the above analysis, the eigenvalues cor-

responding to topics T1 and T2 will be centered around
2
5
m

t
and

3
5
m

t
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respectively with high probability, due to another application of

McDiarmid’s method of bounded differences [63]. Therefore, the

second largest eigenvalue of T2 will be larger than the largest eigen-

value of T1 with high probability, and so the eigenvectors corre-

sponding to the largest k eigenvalues of AT A will not account for

every topic.

One conjecture is that no matter how l is generated or τ is se-

lected, there will always be a way to construct probabilities on the

topics such that the k eigenvectors corresponding to the k largest

eigenvectors of AT A do not account for each topic. It remains to be

discovered for which choices of the variables l and t and term and

topic probabilities that the theorem remains true.

3.3 Matrices drawn from ε–separable corpora

Now consider what happens to the LSI query accuracy when an

O(ε)–sized perturbation is added to a pure 0–separable corpus model.

The added perturbation allows us to consider corpora generated

from a pure corpus model that is O(ε)–separable. What are the

properties of the perturbed corpus? One property is that the docu-

ments drawn from it may span multiple topics. The goal is to show

that the rank–k LSI on the perturbed corpus is only O(ε)–skewed

with high probability. This would mean that the rank–k LSI on

a perturbed corpus is still able to classify the documents approx-
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imately, even though the documents may have non–zero entries

for terms contained in several different topics due to the perturba-

tion. Note that most of the weight in a document vector will still

be on one topic when ε is small. Essentially, the perturbation is

adding edges with a small weight between documents on different

topics, making the Gram matrix become less block diagonal. The

weight (dot–product) will be small for these added edges because

one of the corresponding vector components of two documents on

different topics will usually be zero. Presumably, the eigenvalue

contributions due to the perturbation will also be small and there-

fore will be unable to overwhelm the set of maximum eigenvalues

of each block.

The next theorem shows that this is indeed the case. Although

this type of proof has been presented in many papers [8], [25], the

proof is recreated to directly correspond to the terminology and

probabilistic model described in the seminal paper of Papadim-

itriou et al. [70]. Before proving it, the following lemma, stated

without proof, is used to show that if the k largest singular val-

ues of a matrix B are well–separated from the remaining singular

values, then the subspace spanned by the corresponding singular

vectors is preserved well when a small perturbation is added to B.

The lemma stems from a theorem by Stewart about perturbing a

symmetric matrix [81], [43].
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Lemma 40 ( Stewart ) Let B be an m × n matrix of rank r with sin-

gular value decomposition

B = UΣV T

Suppose that, for some k, 1 ≤ k < r, σk

σk+1
> cσ1

σk
for a sufficiently large

constant c. Let F be an arbitrary m× n matrix with ‖ F ‖2≤ ε, where

ε is a sufficiently small positive constant. Let A = B + F and let

U
′
Σ

′
V

′T be its singular value decomposition. Let Uk and U
′

k be m × k

matrices consisting of the first k columns of U and U
′ respectively.

Then, U
′

k = UkR + G for some k × k orthonormal matrix R and some

m× k matrix G with ‖ G ‖2≤ O(ε).

The next lemma will also be necessary for proving the theorem.

In the following two theorems, the Euclidean vector norm will be

denoted by | · |. Let U
′

k and Uk denote the basis matrices of the k–

dimensional space that the rank–k SVD applied to A and B respec-

tively identifies. Let Ai denote the transpose of the ith document of

A, i.e., the transpose of ith column of the perturbed term–document

matrix A. Let Bi denote the transpose of the vector corresponding

to the ith document in B, i.e., the transpose of ith column of the

pure unperturbed term–document matrix B. Then for any i,

Ai
k = AiU

′

k and Bi
k = BiUk (3.5)
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Lemma 41 Given the definitions of the matrices in Lemma 40, and

the following assumptions

• |F iUk| = O(ε|Ai|)

• |F i| ≤ |Bi|

• |Bi
k| = Θ(|Bi|)

the following is true

|Ai
k −Bi

kR| = O(ε|Bi
k|) (3.6)
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Proof:

|Ai
k −Bi

kR| = |AiU
′

k −BiUkR|

= |Ai(U
′

k − UkR) + (Ai −Bi)UkR| (3.7)

= |AiG + (F i)UkR| (3.8)

≤ |AiG|+ |(F i)UkR| (3.9)

≤ |Ai| ‖ G ‖2 +|F iUk| ‖ R ‖2 (3.10)

= |Ai|O(ε) + |F iUk| (3.11)

= |Ai|O(ε) + O(ε|Ai|) (3.12)

= O(ε|Ai|) (3.13)

= O(ε|Bi + F i|) (3.14)

≤ O(ε(|Bi|+ |F i|)) (3.15)

= O(ε|Bi|) (3.16)

= O(ε|Bi
k|) (3.17)

Inequality 3.9 follows from the triangle inequality. Inequality 3.10

follows from the definition of the matrix two norm. Equation 3.11

is true because ‖ U
′

k − UkR ‖2=‖ G ‖2= O(ε) as per Lemma 40 and

because the two norm of any unitary matrix is 1. Equation 3.12

follows because of the assumption that |F iUk| = O(ε|Ai|). Inequality

3.15 follows from the triangle inequality. Equation 3.16 follows
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from the assumption that |F i| ≤ |Bi|, and Equation 3.17 because of

the assumption that |Bi
k| = Θ(|Bi|).

Theorem 42 Let C be a pure, ε–separable corpus model with k top-

ics such that the probability each topic assigns to each term is at

most τ , where τ > 0 is a sufficiently small constant. Let B be the

term–document matrix of a corpus of m documents generated from

C and let C be a corpus whose term document matrix is A = B + F

where ‖ F ‖2≤ ε. Given the following assumptions,

• |F iUk| = O(ε|Ai|)

• |F i| ≤ |Bi|

• |F i| ≤ |Bi
k|

• |Bi
k| = Θ(|Bi|)

the rank–k LSI is O(ε)–skewed on C with probability 1−O( 1
m

).

Proof: For any pair of documents i, j the difference between the dot

products of two documents in A and two corresponding document’s

dot products in B will be bounded from above. In effect,

|Ai
k · A

j
k −Bi

k ·B
j
k| = O(ε|Bi

k||B
j
k|)

(3.18)
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If this can be proved, then the theorem will follow by using simple

substitutions.

Bi, Bj in different topics ⇒ Bi ·Bj = 0

⇒ |Ai
k · A

j
k −Bi

k ·B
j
k| = |A

i
k · A

j
k|

⇒ |Ai
k · A

j
k| = O(ε|Bi

k||B
j
k|)

and

Bi, Bj in the same topic ⇒ Bi ·Bj = |Bi||Bj|

⇒ |Ai
k · A

j
k −Bi

k ·B
j
k| = |A

i
k · A

j
k − |B

i||Bj||

⇒ |Ai
k · A

j
k| = |B

i||Bj| ±O(ε|Bi
k||B

j
k|)

Therefore, the perturbed matrix A is O(ε)–skewed as required by

the theorem.

So, the proof of the theorem reduces to proving the proposition

that

|Ai
k · A

j
k −Bi

k ·B
j
k| = O(ε|Bi

k||B
j
k|)
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The following analysis shows that this is indeed the case.

|Ai
k · A

j
k −Bi

k ·B
j
k| = |A

i
k · A

j
k −Bi

kR ·B
j
kR| (3.19)

= |(Ai
k −Bi

kR)Aj
k + Bi

kR · (A
j
k −Bj

kR)| (3.20)

= |vi · Aj
k + Bi

kR · vj| (3.21)

≤ |vi · Aj
k|+ |B

i
kR · vj| (3.22)

≤ |vi||Aj
k|+ |B

i
kR||vj| (3.23)

= |vi||Aj
k|+ |B

i
k||vj| (3.24)

= O(ε|Bi
k|)|B

j
k + F j|+ O(ε|Bj

k|)|B
i
k| (3.25)

≤ O(ε|Bi
k|)(|B

j
k|+ |F

j|) + O(ε|Bj
k|)|B

i
k| (3.26)

= O(ε|Bi
k|)O(ε|Bj

k|) + O(ε|Bj
k|)|B

i
k| (3.27)

= O(ε|Bj
k|)(O(ε|Bi

k|) + |Bi
k|) (3.28)

= O(ε|Bj
k|)O(ε|Bi

k|) (3.29)

= O(ε|Bj
k||B

i
k|) (3.30)

= O(ε|Bi
k||B

j
k|) (3.31)

The first equation, 3.19 follows because the angle between two

vectors is not affected when both vectors are multiplied by a unitary

matrix. This fact is proved in Theorem 14 of Chapter 2. Equality

3.21 follows from lemma 41. Here, vi is a vector with |vi| = O(ε|Bi
k|).

Likewise, vj is a vector with |vj| = O(ε|Bj
k|). Inequalities 3.22 and

3.23 follow from the triangle and Cauchy–Schwartz inequalities,
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respectively. Equality 3.24 follows from the fact that Aj = Bj
k + F j

and because R is orthonormal with ‖ R ‖2= 1. Inequality 3.26

follows due to the triangle inequality. Equality 3.27 is true because

of the assumption that |F i| ≤ |Bi
k|. The rest of the equations follow

from the relations represented by the asymptotic notation.

The paper under consideration [70] provided a good probabilis-

tic model and positive indications that a theorem about LSI’s per-

formance may exist. However, the exact conditions and require-

ments for which the theorem remains true have yet to be described.

Since its printing in 1998, several papers have clarified furthered

the results obtained (see [56] , [8], [50], and [25]).
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Chapter 4 - Graph Partitioning

The formulation of a problem is often more essential

than its solution, which may be merely a matter of math-

ematical or experimental skill.

–Albert Einstein

4.1 Problem Statement

A bisection of a graph G = (V, E) with an even number of vertices

is a pair of disjoint subsets V1, V2 ⊂ V of equal size with V1 ∪ V2 = V .

The cost of a bisection is the number of edges (a, b) ∈ E such that

a ∈ V1 and b ∈ V2. The Minimum Graph Bisection problem takes

as input a graph G with an even number of vertices, and returns

a bisection of minimum cost. The Minimum Graph Bisection prob-

lem has been shown to be NP–Complete by the following reductions

[38, 39]

3SAT ≤p MAXSAT2

≤p SIMPLE MAX CUT

≤p MINIMUM GRAPH BISECTION
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The definitions of these problems are given starting on page 42. If

no restriction is made that the sizes of the subsets must be equal,

then the problem can be solved in polynomial time [57].

Let G be a graph on n vertices and α > 0 be given. An α–edge

separator is a partition of the vertices of G into two disjoint sets A

and B such that

• max {|A|, |B|} ≤ αn

The α–edge separator problem is to find an optimal α–edge separa-

tor with respect to the number of edges between the two partitions.

The α–vertex separator problem is to partition of the vertices of

G into three disjoint sets A, B, and C such that

• No edge of G has one endpoint in A and the other endpoint in

B

• max {|A|, |B|} ≤ αn

• |C| is minimized

Additional evidence for the Minimum Graph Bisection problem’s

difficulty is that it has been shown that, for graphs on n vertices,

it is NP–hard to find α–vertex separators of size no more than

OPT + n
1
2
−ε, where OPT is the size of the optimal solution and

ε > 0. Specifically, Bui and Jones show that there is no algorithm

that guarantees to find a vertex separator of size within OPT +n
1
2
−ε
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for a maximum degree 3 graph with n vertices unless P = NP [17].

It is well known that good edge and vertex separators can be con-

verted back and forth between each other [71], [41]. This implies

that a restriction on the degree of the graph will not help solve the

Minimum Graph Bisection problem. Unless P = NP , the problem

is intractable even for graphs of bounded degree.

4.2 Problem Motivation

This Minimum Graph Bisection problem arises in many impor-

tant scientific problems. Several examples include the splitting of

data structures between processors for parallel computation, the

placement of circuit elements in engineering design, and the order-

ing of sparse matrix computations [18]. In addition, the problem is

NP–Hard, making it a prime candidate for research and study.

The motivation for using spectral partitioning is that the eigen-

values have been shown to have many relationships to properties of

graphs. Moreover, every eigenvalue and eigenvector of a matrix can

be computed efficiently in polynomial time. Therefore, eigenvalues

and eigenvectors are prime candidates for constructing efficient al-

gorithms for solving various graph problems.
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4.3 Literature Survey

Many heuristics have been developed for this problem. Frieze

and McDiarmid provide an analysis of the performance of algo-

rithms on random graphs [36]. Perhaps the best known heuristic is

the Kernighan–Lin heuristic [58], [16]. The Kernighan–Lin heuris-

tic has a time complexity of O(n3) and is P–Complete [73], [48].

Fiduccia and Mattheyses gave a simplification of the Kernighan–

Lin heuristic that has time complexity Θ(E) [32]. The efficiency is

gained by sorting data efficiently using a method called the bucket

sort. A simulated annealing approach was used by Johnson et al.

[53]. Singular value decomposition has also proved to be a use-

ful tool when clustering graphs [27], [56]. Spectral techniques for

graph bisection were motivated by the work of Fiedler [33]. Indeed,

spectral techniques are often used to enhance graph algorithms

[3], [71], [4], [9]. Donath and Hoffman were among the first to sug-

gest using spectral techniques for graph partitioning [26]. Alpert

and Yao showed that more eigenvectors may help improve results

[5]. Their main result showed that when all eigenvectors are used,

the min–cut graph partitioning and max-sum vector partitioning

problems objectives are identical. Graph partitioning with genetic

algorithms has been studied extensively [60], [19], [44]. Most GA
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methods incorporate some other algorithms and heuristics, such

as spectral partitioning or Kernighan–Lin.

Approximation of minimum bisection size was recently studied

by Feige et al. [31]. They discovered an algorithm that finds a bi-

section within O(
√

nlogn) of the optimal. The algorithm makes ex-

tensive use of minimum–ratio cuts and of dynamic programming.

More recently, Andreev and Räcke presented a polynomial time ap-

proximation algorithm for the (k, v)–balanced partitioning problem

that gives an O(log2n)–approximation ratio with respect to the num-

ber of edges between the different partitions [6]. The (k, v) partition-

ing problem is to divide the vertices of a graph into k almost equal

sized components, each with size less than |V | · v
k

so that the num-

ber of edges between the different components is minimized. Note

that the Minimum Graph Bisection problem is equivalent to the

(2, 1)–balanced partitioning problem.

4.4 Adjacency Matrix Representations

There are many different ways of representing a graph as an ad-

jacency matrix. One of the goals of this dissertation is to identify

and investigate many different representations in order to discover

a unifying theorem for spectral bisection that is representation in-

dependent. Given a graph G, it is possible to construct an adja-

cency matrix for the graph with the property that the graph can
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be completely constructed solely from the information contained

in the adjacency matrix. Unfortunately, because two isomorphic

graphs may have a different labeling of their vertices, there may be

many adjacency matrices that correspond to the same (unlabeled)

graph. However, the eigenvectors of such graphs do not depend on

the labeling of the vertices. It is important to note that there exist

isomorphic graphs that are cospectral, but do not share the same

eigenvectors [83].

Let D be the diagonal matrix obtained by letting the degree of

vertex i be located at position Dii. It is interesting to note that

almost all of the representations below can be represented by some

setting of λ and µ in the following equation [23].

FG(λ, µ) = |λI + µD − A| (4.1)

However, the Seidel spectrum is not as easily represented using

solely this function. Spectral analysis may be able to proceed in

general by examining the characteristic polynomial over two vari-

ables of the matrix represented by FG(λ, µ), or other similar func-

tions.

The adjacency matrix of a graph G will be denoted as the rep-

resentation type symbol with the graph name as a subscript. For

example, LG represents the Laplacian of the graph G. The repre-
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sentations used are defined with their symbols as follows.

Type Symbol

0,1 Adjacency A

Aik =


0, if k = i or vk is not adjacent to vi

1, if vk is adjacent to vi, k 6= i

(4.2)

Adjacency of the complement A

This representation simply switches the connectivity describing roles

of the zeroes and ones in the 0,1 Adjacency matrix.

Aik =


0, if k = i or vk is adjacent to vi

1, if vk is not adjacent to vi, k 6= i

(4.3)

Laplacian L

The Laplacian has been studied extensively. The Laplacian is de-

fined as

L = D − A (4.4)

Many properties of the Laplacian are listed in a paper on the per-

formance of spectral graph partitioning methods by Guattery and

Miller [45].
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The Signless Laplacian |L|

The signless Laplacian is defined as

|L| = D + A (4.5)

The Negative Degree Laplacian |L|

This representation is equivalent to the signless Laplacian with

negative degrees along the diagonal.

|L| = A−D (4.6)

The Siedel 0,1,-1 Adjacency S

Van Lint and Seidel first proposed this representation in their work

on equilateral point sets in elliptic geometry [84]. Seidel later vis-

ited the representation in a survey on two–graphs [76]. Sometimes

these matrices are called Seidel Matrices.

Sik =


−1, if vk is adjacent to vi, k 6= i

0, if k = i

+1, if vk is not adjacent to vi, k 6= i

(4.7)

Note that this representation is related to the all ones matrix, J,

the identity matrix, I, and the regular adjacency matrix A by the
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following equation

S = J − 2A− I (4.8)

The Modified Seidel Adjacency S

This adjacency matrix representation simply reverses the roles of

−1 and 1 in the Seidel representation.

Sik =


+1, if vk is adjacent to vi, k 6= i

0, if k = i

−1, if vk is not adjacent to vi, k 6= i

(4.9)

Note that this representation is related to the all ones matrix, J,

the identity matrix, I, and the regular adjacency matrix A by the

following equation

S = 2A− J + I = −S (4.10)

This may be an original contribution, but the eigenvectors of S are

essentially the same as the eigenvectors of S.

The Modified Seidel cD,1,-1 Adjacency S(c)

This representation may also be an original contribution. Its per-

formance is discussed in Chapter 5’s subsection on eigenvector
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search and partitioning on page 87.

S(c)ik =


1, if vk is adjacent to vi, k 6= i

c ∗ deg(vk), if k = i

−1, if vk is not adjacent to vi, k 6= i

(4.11)

Note that this representation is related to the all ones matrix, J,

the identity matrix, I, the degree matrix D, and the regular adja-

cency matrix A by the following equation

Sc = (2A− J + I) + cD (4.12)

4.5 Graph Types

Geometric, random degree, highly clustered, caterpillar, grid,

path, and real world graphs are all studied and used as the basis of

experiments. A description of the notation and construction details

of each type of graph follows.

1. Random Graphs - Gn.d : A graph on n vertices created by

placing an edge between two vertices with probability p. The

probability p is chosen so that the expected vertex degree of

the graph p(n − 1) is equal to the input parameter d. Ran-

dom graphs were introduced in a seminal paper by Erdős and

Rényi [30], and have been studied extensively ever since. Ran-
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dom graphs were also tested in the simulated annealing graph

bisection study of Johnson et al. [53].

2. Random Geometric Graphs - Un.d : A graph on n vertices cre-

ated by associating n vertices with different locations on the

unit square. The unit square is located in the first quadrant of

the Cartesian Plane. Therefore, each vertex’s location is rep-

resented by a pair (x, y) ∈ < for some 0 ≤ x, y ≤ 1. An edge is

created between two vertices if and only if the Euclidean dis-

tance (Definition 8 on page 11) between the two is d or less.

The expected average degree for these graphs is approximately

nπd2 [53]. These graphs were defined and tested in the simu-

lated annealing study by Johnson et al. [53].

3. Caterpillar Graphs - CATn : A caterpillar graph on n vertices.

Two of the vertices are the head and tail of the caterpillar.

Next, b (n−2)
7
c vertices are chosen to represent the discs in the

spine of the caterpillar. To each of these vertices is then at-

tached 6 legs from the remaining (n− 2)− b (n−2)
7
c vertices. The

caterpillar graphs considered here have an even number of

discs in their spine. This implies that the only possible cater-

pillars have an even number of vertices with

n ∈ {(i ∗ 6 + i) + 2 : ∀i ≥ 2, i mod 2 = 0} = {16, 32, 44, · · · , 352, · · · }
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Figure 4.2: A caterpillar of size 32.

Here, i represents the total number of discs on the spine.

Caterpillar graphs have been shown to be very difficult for

standard graph bisection algorithms such as Kernighan–Lin

[54, 19]. In addition, the minimum bandwidth problem for

caterpillars with hair length 3 was shown to be NP–Complete

by Monien [67].

4. Grid Graphs - GRIDr.c.b : A grid graph on n = r ∗ c vertices.

There are r rows and c columns. The optimum bisection the

graph is known to be b. For example, a GRID20.25.21 is the

graph obtained by constructing a grid of vertices with 20 rows

and 25 columns. The best bisection, with size=21, starts be-

tween columns 12 and 13 and makes 10 vertical cuts to the

center of the graph. Next, 10 vertical cuts are made from the
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bottom of the graph to the center, and then one cut to the left.

This is a bisection of the graph with a capacity of 21 edges.

These graphs were studied in Bui and Moon’s work with ge-

netic algorithm’s for graph partitioning [19].

5. Highly Clustered Random Graphs - HCGn.c.in.out : A highly

clustered random graph with n vertices containing c clusters

with high connectivity. First, the vertices are randomly di-

vided into c clusters, or sets. Next, edges are placed between

vertices in the same set with probability equal to in. Edges are

placed between two vertices in different sets with probability

out. These graphs were studied in conjunction with eigenvec-

tor solutions by Bopanna [14]. Bopanna limited his analysis

to these types of graphs to ensure that at least one bisection

was sufficiently smaller than the average bisection of a graph.

Without this limitation, good heuristics were shown to be al-

most indistinguishable from terrible heuristics in an average

case analysis [14].

6. Path Graphs - Pn : A graph containing n − 1 edges between

vertices forming a single path from one start vertex to another

end vertex, both with degree 1. All other vertices have degree

two. This type of graph can be arranged into a one dimen-

sional line.
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Chapter 5 - Spectral Graph Bisection

”It is more important to have beauty in one’s equa-

tions than to have them fit experiment... If one is working

from the point of view of getting beauty in one’s equa-

tions, and if one has really a sound insight, one is on

a sure line of progress. If there is not complete agree-

ment between the results of one’s work and experiment,

one should not allow oneself to be too discouraged, be-

cause the discrepancy may well be due to minor features

that are not properly taken into account and that will get

cleared up with further development of the theory.”

–Paul Adrien Maurice Dirac. Taken from Scientific Amer-

ican, May 1963.

The relationships between the spectrum of a graph (which are the

eigenvalues of its adjacency matrix) and the properties of the graph

itself have been popular topics for research and discovery in the

last fifty years [23]. The spectrum has been used to help solve

the problem of graph isomorphism [83]. However, many impor-

tant questions regarding graph’s spectra still remain open. For
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example, the complete set of graphs that are determined by their

spectrum is not fully known [83]. Furthermore, it is still interesting

to examine the actual eigenvectors associated with eigenvalues in

different representations. It turns out that certain eigenvectors of

an adjacency matrix sometimes tend to partition its corresponding

graph into two halves such that the conductance of the parts is

high. Eigenvectors have been used to find good minimum cut par-

titions and to find good colorings for graphs [14], [9], [7]. However,

most studies usually only focus on one eigenvector of one represen-

tation type for the adjacency matrix. This eigenvector is called the

Fiedler vector, and corresponds to the second smallest eigenvalue

of the Laplacian [33].

As a result of the primary focus on algorithms based on the

Fielder vector, data and theorems for eigenvectors of other repre-

sentation types seem to be lacking in the graph partitioning field.

This is unfortunate because experimental evidence has shown that

many representations provide similar performance, and work bet-

ter in different situations. The field of spectral partitioning requires

an analysis of all the eigenvectors of all of the different represen-

tation types in order to determine which eigenvectors and repre-

sentation types provide the best solution qualities for which prob-

lems. For example, a paper by Guattery and Miller describes a

family of bounded degree–3 planar graphs called ”roach graphs”
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and proves that the ”simple spectral algorithm” will produce bad

cuts for these types of graphs [46]. However, the analysis is done

solely for the Fielder vector of the Laplacian. Surprisingly, empiri-

cal results show that the singular vector corresponding to the third

smallest singular value of the Laplacian, is actually the one that

experimentally gives the exact minimum bisection for this type of

graph. Furthermore, in the Modified Seidel representation, a near

correct answer seems to usually come from the eigenvector that

corresponds to the largest eigenvalue. Together, these results give

adequate evidence for the examination of all eigenvectors.

Moreover, the discovery of interactions between the eigenvec-

tors themselves should lead to better algorithms for solving or ap-

proximating NP–Complete graph problems. In addition, it is hoped

that this work will help lead to a unifying theorem for spectral rep-

resentations in graph theory by identifying patterns between the

solutions represented by the eigenvectors of particular representa-

tions. It is hypothesized that the information in these patterns will

also lead to new ways of combining eigenvectors into better solu-

tions. A description of an exploratory empirical research project

and several theorems that guarantee minimal bisections are de-

scribed in the next two Sections.
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5.1 Empirical Results

A description of the traditional spectral graph bisection algo-

rithm and extensive results are provided in this section. The algo-

rithm’s focus is to find a minimum bisection of a graph. It works by

taking a particular adjacency matrix representation and comput-

ing a single partition based on each eigenvector. Each eigenvec-

tor creates a bisection of the graph by separating the eigenvector’s

components based on the magnitude of their values. The vertices

corresponding to components that are above the median are placed

into one partition. The rest of the vertices are placed in the other

partition. If the eigenvector’s components are not separated such

that each partition contains the same number of vertices, a repair

operation is performed that fixes the solution. For each represen-

tation, the number of eigenvectors and cuts processed is equal to

the number of nodes in the graph.

The algorithms and experiments are not meant to be competi-

tive with new lower time complexity graph bisection approximation

algorithms. Instead, they are meant to provide insight into the en-

tire eigenstructure of particular graph problems in order to obtain

an overall better solution from spectral methods. The experiments

indicate that the eigenvector solution structures seem to have the

following properties.

82



1. They are determined by their representation type.

2. They are consistent with problem type.

3. Their solution search structures are independent of size.

4. Many representations exhibit an oscillation in solution quality

when they are arranged by the magnitude of their correspond-

ing eigenvalue.

Full Rank Algorithms

The following algorithm can work with any of the adjacency matri-

ces listed in the previous chapter. However, this may be the first

description of an algorithm that bisects a graph using the Modi-

fied Seidel matrices S and S(c). In addition, other adjacency matrix

representations have only been mentioned rarely for the bisection

problem. The 0, 1 and Laplacian matrix representations are the

most commonly studied adjacency matrix for this problem.

The traditional methods only use one eigenvector of the Lapla-

cian matrix, whereas the following algorithm uses every vector, al-

beit in a simple way. There are already examples of new algorithms

that use all of the eigenvectors and beat the old spectral bisection

algorithms [5]. The authors in the study used multiple eigenvectors

of the Laplacian and turned the graph partitioning problem into a

vector partitioning problem.
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INPUT (Adjacency Matrix)

OUTPUT Partition

1. Compute all of the eigenvectors of the input matrix.

2. For each eigenvector, compute the median of its components

and place vertex i in partition A if the i’th component of the

eigenvector is less than or equal to the median. Otherwise,

place vertex i in partition B.

3. If necessary, repair the partition to make the number of vertices

equal by moving vertices from the bigger partition to the smaller

partition until the number of nodes in each partition is equal.

Start with nodes that are closer to the other partition in terms

of their corresponding eigenvector’s component.

Note that the choice of which vertices go in which partition when

the corresponding characteristic valuation is equal to the median is

essentially arbitrary. A study by Alex Pothen, Horst D. Simon, Kan-

Pu Liou describes several techniques for choosing which partition

a vertex is placed in when its characteristic valuation is equal to

the median [71].

Adjacency Matrix Choice

Every representation was tested to examine its solution properties.

In the next section, on theoretical results, theorems are proved
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that show that the algorithm will give an optimal minimal bisec-

tion given that the graph has a certain structure. More theoreti-

cal work is needed to determine which types of graphs are easily

split with each representation. It was anticipated that different

representations will work better for different graphs. The Seidel

representation seems to handle symmetry extremely well. For ex-

ample, the Modified Seidel representation S is extremely good for

cutting caterpillars, which are difficult for standard graph bisection

algorithms [16]. In fact, it empirically finds the optimum bisection

for caterpillars, connected graphs with two big clusters, and con-

nected graphs on four vertices. Its partition pictures are also very

symmetrical. Furthermore, results indicate that the eigenvectors of

the Modified Seidel representation S inhibit the oscillations of so-

lution quality. These results indicate that this representation may

have particularly useful properties that lead to better algorithms

for using eigenvectors to minimally bisect graphs.

One explanation for Modified Seidel representation’s efficiency

in symmetric relations may simply be that, in a 0,1 adjacency ma-

trix representation, zero’s role is doubled. For example, in the reg-

ular adjacency matrix A, it is the convention that Aii = 0. On the

other hand, zero is already assigned to mean ”not connected,” and

therefore it is burdened by a dual role in the representation. The

Modified Seidel representation S assigns a zero to the information
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about connectivity relations that do not matter anyway because

there are no self loops in the input graphs. Note that self loops do

not affect bisection sizes.

Another reason that the –1,0,+1 idea seems natural is, roughly,

that the dot product between two rows is the number of matches

minus the number of mismatches. Namely, if rowi tells about vi’s

neighbors, and similarly rowj for vj:

Sik =


1, if vk is adjacent to vi, k 6= i

0, if k = i

−1, if vk is not adjacent to vi, k 6= i

(5.1)

Then the dot product of rowi with rowj equals

# {k : k 6= i, k 6= j, vk has the same status w.r.t. vi, vj}−

# {k : k 6= i, k 6= j, vk has different status w.r.t. vi, vj}

If two rows or columns share a value, then the corresponding

term in the dot product’s sum is also positive. Likewise, if two

rows or columns have an opposite value, the the corresponding

term in the dot product’s sum will be negative. Therefore, for the

dot product to be non–negative, the two rows or columns must

share at least n
2

values.
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Also of note is that all of the results with the Seidel or Modified

Seidel matrices apply to similar adjacency matrix representations

selected from the following set as the eigenvectors do not change

direction as the variable x varies.

{(0, x,−x)|x 6= 0, x if connected, –x otherwise}

Eigenvector Search and Updating

It was also discovered that an exploration around the eigenvec-

tor solution space can be performed by simply multiplying the di-

agonal elements of the Modified Seidel adjacency matrix S(c) by a

constant amount c. Note that this is not a linear operation. The

change to the adjacency matrix’s trace moves the spectrum be-

cause trace(A) = λ1 + λ2 + · · · + λn. By varying this constant, better

solutions are often obtained. Figure 5.3 shows that this is indeed

the case for the random and geometric graphs that were tested.

Theory should be developed that connects the geometric action of

these transitions with their resulting spectral bisections.

Figure 5.4 shows some more performance results that were

achieved by first performing spectral bisection and then using the

Kernighan–Lin heuristic on the resulting solution. If an eigenvalue

decomposition for a square matrix A has already been computed,

and the entries along the diagonal of A are then multiplied by a
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Figure 5.3: Results for Bui’s Graphs when multiplying the diagonal
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Figure 5.4: Results for Bui’s Graphs when running KL afterwards
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constant factor, how can the new eigenvectors be computed based

solely on the old information? Put another way: If the diagonal en-

tries of a square matrix are all shifted by a constant amount, what

happens to the eigenvectors? An explanation for answers to these

questions with a formula for the updated vector’s computation is

described in the section of this chapter containing the theoretical

results.

Cut Value Oscillation

Eigenvector solutions are compared by rank and solution quality

for several graphs. However, path graphs have a particularly simple

adjacency matrix structure in most representations. Furthermore,

compositions of two paths by Cartesian product lead to theorems

about the eigenvectors and eigenvalues of the resultant grid graph.

Papadimitriou and Sideri showed that the bisection width problem

for grid graphs is NP–Complete [69], and that it could solved in time

O(n5+2h), where h is the number of finite connected components of

its complement with respect to the infinite grid. The operators de-

scribed herein already have less time complexity than this result,

and so both path and grid graphs were deemed to be a good can-

didates for this exploratory study. It is known that the eigenvalues

of the path graph when represented by the 0, 1 representation are
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equal to the following equation [22], [13].

λi = 2 cos
iπ

n + 1
(i = 1, . . . , n)

In addition, it is also known that the coordinates of the normalized

eigenvector belonging to λi are

√
2

n + 1
sin

ijπ

n + 1
(j = 1, . . . , n)

The first surprising empirical result is that there appears to be

an oscillation in solution quality that is correlated with the magni-

tude of the solution eigenvector’s corresponding eigenvalue when

using certain representations. In fact, the solutions obtained from

eigenvectors in the Modified Seidel representation of a path graph

form a list of partitions whose solution quality increases approxi-

mately linearly in one case. In the other case, the solution quality

decreases linearly almost exactly. The results show that a regu-

lar pattern emerges where the cut size decreases by two for every

other eigenvector when the eigenvalues are ordered in increasing

order. Figures 5.5 and 5.6 show the value of the cut generated on

the y–axis by the eigenvector that corresponds to the x’th largest

eigenvalue for two different representations.

Furthermore, the oscillation’s shape and structure is empiri-

cally shown to be independent of the size and representation of
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the problem for random graphs in Figures 5.7 and 5.8. In these

figures, lines are drawn between both the next largest and next

smallest eigenvectors of a particular cut solution value. Figures

5.9 and 5.10 indicate that the cut size oscillation is not influenced

by the internal parameters for Bui’s B–regular graphs. In addition,

these figures indicate that the oscillation does not occur when the

graph is not connected, which is the case for the graph labeled

”Breg500.0”. Figure 5.11 is a plot of the cut sizes for B–regular

graphs in the Laplacian representation.

Eigenvector Partition Search Pictures

The next surprising empirical result is that the partitions given

by the eigenvectors form a fairly symmetrical partition search pic-

ture when the eigenvector solutions are ordered in terms of the

magnitude of their corresponding eigenvalue. The partition search

pictures are made in the following way. First, the partitions are

sorted in terms of the magnitude of the eigenvectors that define

them. Next, the algorithm paints values on the i’th row and j’th

column of the image based on the magnitude of the j’th compo-

nent of the i’th sorted eigenvector. Pixels are then assigned a gray

scale color based on the magnitude of their corresponding eigen-

vector component. If the eigenvector’s component value is closer

to −∞, it is assigned a darker color. Otherwise, the pixel is as-
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signed a color that is closer to white. A solution line to the nat-

ural consecutive vertex ordering of a path graph problem on 100

vertices would have pixels corresponding to vertices 1 through 50

painted in a darker shade color, and pixels corresponding to ver-

tices 51 through 100 painted in a lighter shade. It is interesting

to note that one of the eigenvectors in many of the representations

provides a very close approximation to the minimum bisection for

the graph bisection problem on path graphs. Therefore, something

close to a solution line will appear in the corresponding eigenvec-

tor’s partition picture. The pictures themselves simply correspond

to the partitions that the entire eigenvalue decomposition gives for

a particular adjacency matrix representation.

Each path graph’s vertices are labeled in such a way that the

vertices that define the path are connected increasingly.

1←→ 2←→ 3←→ · · · ←→ n (5.2)

It is important to note that the ordered labeling of the vertices was

crucial to the discovery of pictures that exhibited a large amount of

symmetry. It is quite easy to see that scrambling the vertex labeling

corresponds to scrambling the columns of the picture into an order

that is most likely not as symmetrical.
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The figures that follow show similar structures in some cases. In

particular, they all seem to share the same star in the middle. This

may give some hope for the possibility of providing a formula that

converts between the eigenvectors of different representations. In

addition, the symmetry may provide evidence that algorithms may

be found that compute good bisections based on the entire set of

eigenvectors. One apparent feature from the results depicted in

Figures 5.20 and 5.26 is that the singular vectors have a much

different shape than one might predict considering that the singu-

lar vectors of symmetric matrices are supposed to be similar to the

eigenvectors of the same matrix. The last example of these patterns

is shown in Figure 5.27. This figure was produced from maple and

depicts in 3D the values of each eigenvector’s components, shaded

according to their magnitudes. It is readily apparent that the eigen-

vectors of the path graph interact in a beautiful pattern. The sub-

ject of future research should be how these interactions can be

used to help solve optimization problems for grids.
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Figure 5.12: Shaded Partition Map for the Path Graph on 500 ver-
tices (P500) in the Modified Seidel Adjacency Representation
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Figure 5.13: Shaded Partition Map for the Path Graph on 500 ver-
tices (P500) in the 0,1 Adjacency Representation
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Figure 5.14: Shaded Partition Map for the Path Graph on 500 ver-
tices (P500) in the Negative Degree Laplacian Representation
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Figure 5.15: Shaded Partition Map for the Path Graph on 500 ver-
tices (P500) in the Laplacian Representation
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Figure 5.16: Shaded Partition Map for the Path Graph on 500 ver-
tices (P500) in the Signless Laplacian Representation
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Figure 5.17: Blue shaded Partition Map for the Path Graph on 256
vertices (P256) from eigenvectors of the Seidel –1,0,+1 Representa-
tion – Ordered by solution quality

Figure 5.18: Green shaded Partition Map for the Path Graph on
256 vertices (P256) from eigenvectors of the Seidel –1,0,+1 Repre-
sentation – Ordered by solution quality
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Figure 5.19: Red/Green shaded Partition Map for the Path Graph
on 256 vertices (P256) from eigenvectors of the Seidel –1,0,+1 Rep-
resentation – Ordered by solution quality

Figure 5.20: Hue shaded Partition Map for the Path Graph on 256
vertices (P256) from eigenvectors of the Seidel –1,0,+1 Representa-
tion – Ordered by solution quality
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Figure 5.21: Blue shaded Partition Map for the Path Graph on 256
vertices (P256) from singular vectors of the Seidel –1,0,+1 Represen-
tation

Figure 5.22: Blue shaded Partition Map for the Path Graph on 256
vertices (P256) from singular vectors of the Seidel –1,0,+1 Represen-
tation – Ordered by solution quality
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Figure 5.23: Green shaded Partition Map for the Path Graph on
256 vertices (P256) from singular vectors of the Seidel –1,0,+1 Rep-
resentation

Figure 5.24: Green shaded Partition Map for the Path Graph on
256 vertices (P256) from singular vectors of the Seidel –1,0,+1 Rep-
resentation – Ordered by solution quality
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Figure 5.25: Hue shaded Partition Map for the Path Graph on 256
vertices (P256) from singular vectors of the Seidel –1,0,+1 Represen-
tation

Figure 5.26: Hue shaded Partition Map for the Path Graph on 256
vertices (P256) from singular vectors of the Seidel –1,0,+1 Represen-
tation – Ordered by solution quality
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Figure 5.27: 3D Maple matrix plot of the eigenvectors of the Modi-
fied Seidel representation S of path graph on 500 vertices.
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5.2 Theoretical Results

An Optimality Proof Strategy

The motivation for this section comes from a proof by Moler and

Morrison that shows that the second singular vectors correctly

partition a rank–2 digram frequency matrix into vowels and con-

sonants [66, 74]. The ideas in Moler and Morrison’s paper have

already influenced an algorithm for graph coloring by Aspvall and

Gilbert [7]. This section will adapt Moler and Morrison’s method to

create rules for obtaining a partition of a graph with the singular

vectors that provably solve the Minimum Graph Bisection problem

when the graph contains two main clusters.

Let A be the adjacency matrix of a graph G = (V, E) on n vertices.

A candidate solution to the Minimum Graph Bisection problem is

given by two vectors l and r each containing n
2

ones. Let l denote

the left partition, let r denote the right partition, and let

li =


1, if the i’th vertex is in the left partition

0, otherwise
(5.3)
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ri =


1, if the i’th vertex is in the right partition

0, otherwise
(5.4)

Each vertex is in either one partition or the other, but not both.

Therefore, (l + r) is a vector of all ones.

Definition 43 An intrapartition edge is one with endpoints in the

same partition.

Definition 44 An interpartition edge is one with endpoints in dif-

ferent partitions.

It is easily seen that the total number of edges in the graph is

1

2
(rT Al + lT Ar + rT Ar + lT Al) (5.5)

and the number of interpartition edges is

1

2
(rT Al + lT Ar) (5.6)

Multiplication by 1
2

ensures that edges between partitions, and

edges within a partition, are only counted once.

In terms of A, l, r the minimum bisection problem may be ex-

pressed this way:
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Find 0, 1 vectors l and r, each containing n
2

1’s, that minimize Equa-

tion 5.6

As Theorems 45 and 46 show, the following inequality defines

the solution space of the Minimum Graph Bisection problem when

working on graphs with two main clusters

interpartition edges < intrapartition edges (5.7)

Equation 5.7 can also be stated by quadratic forms with the

vectors l and r. Since lT Ar = rT Al, the following simplification is a

valid synopsis of the requirements of Equation 5.7..

lT Ar < lT Al (5.8)

lT Ar < rT Ar (5.9)

Collectively, the preceding equations (5.8 – 5.9) state that the num-

ber of edges between partitions should be less than the number of

edges in each partition. Although this may or may not be relevant

to the general Minimum Graph Bisection problem, it is relevant

when working on graphs with two main clusters because parti-

tions l and r that satisfy these equations also define the minimum

bisection.
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A slightly relaxed version of Equation 5.7 (in that 5.7 ⇒ 5.10) is

the following:

inter edges
endpoints in left partition

<
right intra edges

endpoints in right partition
(5.10)

Equivalently,
lT Ar

lT A(l + r)
<

rT Ar

rT A(l + r)
(5.11)

Inequality 5.11 says that the ratio of interpartition edges to the

number of edges with an endpoint in the left partition is less than

the ratio of the number of edges within the right partition to the

number of edges with an endpoint in the right partition.

After cross multiplying and expanding, Inequality 5.11 becomes

(lT Ar)(rT Al) + (lT Ar)(rT Ar)− (rT Ar)(lT Al)− (rT Ar)(lT Ar) < 0 (5.12)

The numbers in the parenthesis in inequality 5.12 commute be-

cause they are integers. The second and fourth terms cancel giving

(lT Ar)(rT Al)− (rT Ar)(lT Al) < 0 (5.13)

Inequality 5.13 says that the square of the number of interpar-

tition edges is less than the square of the number of edges within
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the two partitions.

inter2 < 4intra (5.14)

When vectors l and r have been chosen to make this true, l and

r represent the minimum bisection of certain graphs. A subclass

of these graphs are discovered next.

Theorem 45 Consider a disconnected graph on 2m vertices consist-

ing of two complete subgraphs of size m, Km1 and Km2. Let l be the

number of vertices from each complete subgraph that are in the op-

posite partition from the rest of the m − l edges in that subgraph.

Also, let m ≥ 2.

Then, when l = 0 or l = m,

inter2 − 4intra < 0 (5.15)

otherwise, for 1 ≤ l ≤ m− 1,

inter2 − 4intra > 0 (5.16)

In effect, the solutions to the Minimum Graph Bisection problem

for these graphs are those that make the above equation negative.

This occurs exactly when the vertices in a complete graph are all con-

tained within one partition. Moreover, non-solutions to the Minimum

Graph Bisection problem make the above equation positive.
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Proof: Notice that

inter = 2l(m− l)

intra = 2

[(
m− l

2

)
+

(
l

2

)]
= (m− l − l)(m− l) + l(l − 1)

= (m− l)2 + l2 −m

And so,

inter2 − 4intra = 4
[
l2(m− l)2 − ((m− l)2 + l2 −m))

]
(5.17)

Assume l = 0 or l = m. Then

4
[
l2(m− l)2 − ((m− l)2 + l2 −m))

]
= −4(m2 −m)

The preceding equation is negative because m2−m > 0 for all m ≥ 2.

Therefore, when l = 0 or l = m, the equation is negative as required

by the theorem.
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Now let 1 ≤ l ≤ m− 1.

inter2 − 4intra > 0⇐⇒ 4
[
l2(m− l)2 − ((m− l)2 + l2 −m))

]
> 0

⇐⇒ l2(m− l)2 > (m− l)2 + l2 −m

⇐⇒ l2(m− l)2 − (m− l)2 − l2 > −m

⇐⇒ (l2 − 1)((m− l)2 − 1)− 1 > −m

This equation is always true when 1 ≤ l ≤ m − 1 because these

values for l make both terms on the left hand side bigger than

zero. Therefore, their product is positive, and bigger than −m since

m ≥ 2.

Theorem 46 If k interpartition edges are added between the two

cliques in Theorem 45, then the relations in the theorem still hold for

all k such that

k <
√

m2 −m

Proof: Let inter and intra correspond to only the edges originating

from Km1 and Km2. The goal is to determine for what values of k is

(inter + k)2 − 4intra < 0 when l = 0 or l = m

and

(inter + k)2 − 4intra > 0 when 1 ≤ l ≤ m− 1
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The first equation is true because when l = 0 or l = m,

(inter + k)2 < 4intra⇐⇒ (2l(m− l) + k)2 < (m− l)2 + l2 −m

⇐⇒ k2 < m2 −m

For the rest of the cases, when 1 ≤ l ≤ m − 1, the equation (inter +

k)2 − 4intra is made positive because as k gets larger, the equa-

tion gets larger. Therefore, the only split that makes the equa-

tion negative for graphs containing two complete subgraphs with

0 ≤ k <
√

m2 −m additional edges added between them is the one

that places each complete subgraph in its own partition.

Additional results to the previous theorem can be achieved by

subtracting some number of edges from each complete graph. The

union of these types of graphs will represent the graphs that Theo-

rem 47 will provably solve.

Let uij and vij be the i’th component of the j’th left and right

singular vectors of the symmetric matrix A. Theorem 24 shows

that the left and right singular vectors can be taken to be equal

for symmetric matrices. As the proof of Theorem 47 shows, the

following vertex assignment rules tend to categorize the vertices
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into partitions so that Equation 5.13 is satisfied.

li =


1, if ui2 ≥ 0 and vi2 ≥ 0

0, otherwise
(5.18)

ri =


1, if ui2 < 0 and vi2 < 0

0, otherwise
(5.19)

Although l + r may not be a vector of all ones for all graphs as a

valid partitioning would require, for certain graphs it will produce

equal sized partitions when using certain singular vectors. One

justification for this behavior is that if a graph contains two main

clusters, then AG is a matrix with two main blocks and is there-

fore approximately rank–2. Therefore, the rank–2 singular vector’s

matrix, in the partial sum (see Equation 2.24), must subtract off

the strictly positive entries (because of the Perron–Frobenius the-

ory stated in Theorem 27) of the rank–1 matrix in order to make

the matrix become closer to the real adjacency matrix (which by

assumption had rank ≈ 2).
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Theorem 47 Let A=A2 be a non–negative rank–2 matrix with the

SVD expansion

A2 = σ1u1v
T
1 + σ2u2v

T
2 (5.20)

Let l and r be defined as in Equation 5.18 and Equation 5.19 respec-

tively. Then inequality 5.13 is satisfied.

Proof: Let

Li = σil
T uiv

T
i l L

′

i = σil
T uiv

T
i r (5.21)

Ri = σir
T uiv

T
i r R

′

i = σir
T uiv

T
i l (5.22)

Substituting A2 into Equation 5.13 and expanding produces

(L
′

1 + L
′

2)(R
′

1 + R
′

2)− (R1 + R2)(L1 + L2) < 0 (5.23)

Expansion gives

L
′

1R
′

1 + L
′

1R
′

2 + L
′

2R
′

1 + L
′

2R
′

2 −R1L1 −R1L2 −R2L1 −R2L2 < 0 (5.24)

All of the terms of the form LiRi − L
′
iR

′
i cancel because

LiRi = (σil
T uiv

T
i l)(σir

T uiv
T
i r)

= (σil
T uiv

T
i r)(σir

T uiv
T
i l)

= L
′

iR
′

i
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After eliminating terms of the form LiRi − L
′
iR

′
i in Equation 5.23,

the following is obtained:

L
′

1R
′

2 + L
′

2R
′

1 −R1L2 −R2L1 < 0 (5.25)

Equivalently,

(σ1l
T u1v

T
1 r)(σ2r

T u2v
T
2 l) + (σ2l

T u2v
T
2 r)(σ1r

T u1v
T
1 l)−

(σ1r
T u1v

T
1 r)(σ2l

T u2v
T
2 l)− (σ2r

T u2v
T
2 r)(σ1l

T u1v
T
1 l) < 0 (5.26)

How can the equation above be made negative by a suitable par-

titioning of vertices? Since A is a non–negative matrix, it follows

from the Perron–Frobenius theorem [85, 37] and Theorem 27 that

u1 and v1 have non–negative components. Furthermore, the singu-

lar values are always non–negative. Therefore, of all the different

inner products appearing in Equation 5.26, only the ones with sub-

scripts corresponding to the second singular vectors can be neg-

ative. The goal is to find a partitioning that keeps the equation

negative. Given the the partitioning choices of vertices according

to Equations 5.18 and 5.19, the only terms that are negative are

rT u2 and vT
2 r. Substituting these values into Equation 5.26 forces

the first four terms in parentheses to be negative. Furthermore,
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the last four terms in parentheses are made positive. Therefore,

Equation 5.13 is negative as required.

Corollary 48 As in Theorem 47, let A=A2 be a non–negative rank 2

matrix with the SVD expansion

A2 = σ1u1v
T
1 + σ2u2v

T
2 (5.27)

Then the following partition also makes Equation 5.13 negative.

li =


1, if ui2 < 0 and vi2 < 0

0, otherwise
(5.28)

ri =


1, if ui2 ≥ 0 and vi2 ≥ 0

0, otherwise
(5.29)

Proof: As in the proof of Theorem 47, substituting A2 into Equation

5.13 and simplifying gives

(σ1l
T u1v

T
1 r)(σ2r

T u2v
T
2 l) + (σ2l

T u2v
T
2 r)(σ1r

T u1v
T
1 l)−

(σ1r
T u1v

T
1 r)(σ2l

T u2v
T
2 l)− (σ2r

T u2v
T
2 r)(σ1l

T u1v
T
1 l) < 0
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Given the the partitioning choices of vertices according to Equa-

tions 5.28 and 5.29, the only terms that are negative are lT u2 and

vT
2 l. Substituting these values into Equation 5.26 forces the first

four terms in parentheses to be negative. Furthermore, the last

four terms in parentheses are made positive. Therefore, inequality

5.13 is negative as required.

Of course, the adjacency matrix of a graph does not always have

a rank of 2. However, the signs of the second singular vectors

still tend to approximate the best bisection of graphs whose 0,1

adjacency matrices have a higher rank. This can be justified by

the fact that the structure of matrices that have two main clusters

are nearly block diagonal. Therefore, the spectral guarantees of

Chapter 3 are applicable in that if a graph has two main clusters

(topics), then both clusters will be well represented by a rank–2

approximation.

Updating Eigenvectors

This section describes an algorithm for updating eigenvectors. The

algorithm’s complexity is O(n2), but it only provides an approxima-

tion. The algorithm is very naive because it does not employ any

of the typically used optimizations when computing eigenvectors of
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symmetric matrices. In addition, partial sums are computed more

than is required.

Let x be any one of the eigenvectors of the square matrix A with

corresponding eigenvalue λ.

Ax = λx (5.30)

Let A
′ be the n × n matrix formed by multiplying all of A’s di-

agonal entries by a constant value c. Note that this is not a linear

operation. Let aij be the (i, j)’th entry of A
′.

A
′
=



ca11 a12 · · · · · · a1n

a21 ca22 · · · · · · a2n

a31 a32 ca33 · · · a3n

...
... . . . . . . ...

an1 an2 · · · ann−1 cann


The goal is to find the eigenvectors of A

′ using the eigenvectors

of A. Let xi be the i’th component of the eigenvector x of A. By the

definition of eigenvalues and eigenvectors, (and assuming a full set
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of eigenvectors exists):

a11x1 + a12x2 + · · ·+ a1nxn = λx1

a21x1 + a22x2 + · · ·+ a2nxn = λx2

...

an1x1 + an2x2 + · · ·+ annxn = λxn

The algorithms will be shown for the first component only, but

it will be clear that the algorithm will work for any component.

a11x1 + a12x2 + · · ·+ a1nxn = λx1 (5.31)

The new component of the eigenvector after multiplying by c is

what is required. In effect, what is x
′
1 in the following equation?

ca11x1 + a12x2 + · · ·+ a1nxn = λ
′
x
′

1 (5.32)

To figure this out, multiply Equation 5.31 by c on both sides to

get

ca11x1 + ca12x2 + · · ·+ ca1nxn = cλx1

Now
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ca11x1 = cλx1 − ca12x2 − · · · − ca1nxn

To make everything look more like Equation 5.32, add what is

needed to both sides:

ca11x1+a12x2+ · · ·+a1nxn = cλx1−ca12x2−· · ·−ca1nxn+a12x2+ · · ·+a1nxn

Simply factoring out λ from the right hand side to get x
′
1

ca11x1+a12x2+· · ·+a1nxn = λ(cx1−
1

λ
(ca12x2+· · ·+ca1nxn−a12x2−· · ·−a1nxn))

(5.33)

would not give us the new component of the eigenvector.

x
′

1 = cx1 −
1

λ
(ca12x2 + · · ·+ ca1nxn − a12x2 − · · · − a1nxn) (5.34)

This would be true if the new eigenvalue of A
′ was the same as

the old eigenvalue of A.

If new eigenvalue of A
′ (call it λnew) corresponding to the first

new eigenvector was known, then we could discover the new first

component of the new eigenvector by factoring λnew out of the right

hand side of the equation:
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x
′

1 =
cλx1 − ca12x2 − · · · − ca1nxn + a12x2 + · · ·+ a1nxn

λnew

(5.35)

Experimentally the algorithm seems to be close. However, if the

exact eigenvectors of the initial matrix (instead of some approxima-

tion as most, or all, algorithms give) are known, then the algorithm

would work. So, this method loses accuracy as the actual eigen-

vectors computed initially lose accuracy. Work is needed to experi-

mentally examine the convergence quality of the initial eigenvectors

chosen versus the accuracy of this algorithm in comparison to the

eigenvector given by computing a new decomposition.
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Chapter 6 - Genetic Algorithms

Several ways of using singular value decomposition (SVD), a lin-

ear algebra technique typically used for information retrieval, to

decompose problems into subproblems are investigated in the ge-

netic algorithm setting. Empirical evidence, concerning document

comparison, indicates that using SVD results both in a savings in

storage space and an improvement in information retrieval. Com-

bining theoretical results and algorithms discovered by others, sev-

eral problems are identified that the SVD can be used with to de-

termine a substructure. Subproblems are discovered by projecting

vectors representing the genes of highly fit individuals into a new

low–dimensional space, obtained by truncating the SVD of a strate-

gically chosen gene × individual matrix. Techniques are proposed

and evaluated that use the subproblems identified by SVD to in-

fluence the evolution of the genetic algorithm. By restricting the

locus of optimization to the genes of highly fit individuals, the per-

formance of the genetic algorithm is improved. Performance is also

improved by using SVD to genetically engineer individuals out of

the subproblems. A new SVD schema reordering technique is also
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proposed to take advantage of the ideas represented in the schema

theorem.

Patterns identified in the theoretical results from earlier chap-

ters are used as a basis for creating an artificial problem that serves

as a benchmark for the types of problems that will benefit from this

research. The genetic algorithm’s subproblem determination per-

formance on several formulations of the NP–Complete Minimum

Graph Bisection problem are also presented, giving insight into the

structural discovery abilities of SVD. Results from the application

of this process to several problems indicated a significant improve-

ment in the GA’s performance. In addition, the subproblems are

usually determined early in the optimization process. Accordingly,

using the discovered subproblems to genetically engineer individu-

als yielded additional performance improvements. It is hoped that

this research will be important to help further unify and generalize

the types of problems to which SVD can be successfully applied in

a GA.

6.1 Block Diagonal Forms

Analyses in this dissertation are typically concerned with ma-

trices whose rows and columns can be permuted to form a block

diagonal or near block diagonal matrix. By the definition of block

diagonal, two column or row vectors with ones in different blocks
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will never have the same component equal to one. Thus, the dot

product of any two rows from separate blocks will be zero. Fur-

thermore, the dot product between two columns from different

blocks will be zero and the vectors will be perpendicular. If the

two columns or rows are in the same block, the dot product will

always be one because they are essentially the same vector and are

thus obviously parallel. Due to the spectral clustering guarantees

to be presented in Chapter 3, these column and row interactions

will also hold true with high probability for reductions of block di-

agonal, or near block diagonal, matrices A down to Ak, with k equal

to the number of blocks.

Other matrix representations also share intuitive dot products.

Consider the set of block diagonal matrices that are modified to

have entries of −1 in the off diagonal instead of zeroes. Dot prod-

ucts between column or row vectors in the same block of this rep-

resentation will be closer to +∞. Dot products between column or

row vectors in different blocks will be closer to −∞.

If some sequence of row and column interchanges can make

a matrix be close to block diagonal, with k blocks, then each of

the top k singular vectors given by the SVD will correspond to ex-

actly one of the blocks of similarly used rows and columns. Se-

quences of row and column interchanges do not effect the bases

produced when computing the SVD because a matrix’s row and
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column space remain the same after any sequence of interchanges.

Therefore, if the matrix is not in a block diagonal order but some

sequence of row and column interchanges can make it block diago-

nal, then SVD will still recover the blocks. Notice that swapping the

columns into block diagonal order does not effect the rows that are

used similarly across the columns.



1 0 1 0

1 0 1 0

0 1 0 1

0 1 0 1


(swap columns 2 and 3)−−−−−−−−−−−−−−→



1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1


This idea is important in the context of information retrieval and

genetic algorithms because documents or individuals are typically

not ordered in a block form. In the context of graph algorithms,

the importance is that the naming of the vertices will not have an

affect on the bases produced.

It should be noted that more general forms of matrices have

been shown to benefit from clustering with reduced rank SVD [25].

Therefore, it is extremely likely that the SVD operators to be de-

scribed in this Chapter will prove beneficial for many different

problems and representations.
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6.2 Implementation Details

Tests are performed using a custom GA, implemented entirely

in JavaTM . The source code and documentation for the GA may be

obtained by e–mailing the author. The SVD was computed using

LAPACK routines and the Matrix Toolkits for JavaTM (MTJ).

6.3 Spectral Injection

The techniques of Chapter 4 are used to provide initial popula-

tion seedings for the genetic algorithms. Initially, the SVD of the

adjacency matrix of the graph to be bisected is computed. Next,

partitions are created using the algorithm described on page 83.

These spectrally found partitions are initially and periodically in-

jected into a population in order to influence the GA towards the

good partitions. Experiments with this method show that the spec-

tral injection gives the GA a tremendous head start in comparison

to not using it at all.

6.4 Local Improvements

Hybrid GAs are those that incorporate a local search procedure

during each generation on the new offspring. Local searches are

almost always problem specific and take a candidate solution to a
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problem and improve it by exploring locally around the solution’s

values. Hybrid GAs are a hybridization of a genetic algorithm with a

heuristic that is tailored specifically for solving a certain problem.

Generally, the performance of the local improvement heuristic is

compromised to allow for a lower time complexity when creating a

hybrid GA. This ensures that the local improvement heuristic does

not overwhelm the overall running time of the GA so that the GA

will be able to process more generations in less time.

Kernighan–Lin

Several hybrid GAs are studied that use a trimmed down variant of

the Kernighan–Lin [58] algorithm. The algorithm’s time complexity

is trimmed down in the exact way that is described in Bui and

Moon’s paper on graph partitioning with a GA [19].

Fiduccia–Mattheyses

Additionally, the data structures and implementation of the algo-

rithm are done in constant time based on the methods of Fiduccia

and Mattheyses [32]. Fiduccia and Mattheyses gave a simplifica-

tion of the Kernighan–Lin heuristic that has time complexity Θ(E)

[32]. These optimization algorithms perform a limited, low cost,

local search when solving various graph bisection problems. Fig-
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ure 6.35 depicts the results from an experiment that used both

spectral injection and local improvements.

6.5 Eigenvectors of AT A

SVD is used to expose the most striking similarities between a

given individual and a strategically chosen population of individ-

uals. These similarities are used to influence the direction of the

GA’s search process by qualifying candidate individuals for rein-

sertion into the next generation based on their proximity to other

individuals, whose fitnesses have already been computed. Initial

results from the application of this process indicate significant im-

provements in the GA’s performance. The intent is to evaluate sev-

eral different tested approaches of using SVD qualifiers to enhance

the performance of GAs.

It has been shown experimentally and probabilistically that the

SVD should be able to expose the most striking similarities between

a given vector and another set of vectors [70]. These similarities are

used to influence the direction of the GA’s search process by quali-

fying candidate individuals for reinsertion into the next generation

based on their proximity to other individuals. One benefit of this

approach is that the fitness function need not be computed in order

to determine that an individual closely resembles another individ-

ual whose fitness is already known. For problems that require a
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computationally expensive fitness function, such as those found in

engineering design optimization, this benefit could be significant.

Qualification

The qualification approach involves comparing the candidate to the

worst individuals in the current population. The qualification pro-

cess is initialized for each generation by first creating a matrix con-

taining the individuals to qualify candidates against. This matrix is

composed of individuals in the current population whose fitnesses

are less than half of the current population’s average fitness. Con-

ceptually, the subspace spanned by this matrix outlines the qual-

ification guidelines for the current generation. The qualification

subspace is then reduced to k dimensions by computing the SVD

and eliminating all but the k largest singular values. A readily ap-

parent criticism of the qualification process is that computing the

entire SVD at each generation, for large dimensionalities, may be-

come computationally expensive. However, methods exist for both

folding in new vectors and removing old vectors from an existing

SVD computation[11].

Qualification for a candidate individual is based on its proximity

to the individuals in the qualification space. In order to compute its

proximity, a candidate is first converted into a vector, whose com-

ponents represent the genes of the individual. The vector is then
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converted into a unit vector and projected into the qualification

space using the diagonal matrix D, which contains the k largest

singular values along its diagonal. Assuming a good representa-

tion, similar individuals will be represented by nearly parallel vec-

tors and dissimilar individuals by nearly orthogonal vectors. Thus,

the concept of similarity is reduced to computing the cosines of

the angles between the projected candidate vector and every other

vector in the rank–k qualification space. The cosine of an angle is

an appropriate function to use because its value approaches one

as two vectors become more parallel. Likewise, as two vectors be-

come more perpendicular, the cosine of the angle between them

approaches zero. The cosines are then compared to the d–close

parameter, which represents the required amount of proximity for

qualification (0 ≤ d ≤ 1). If the candidate is at least d–close to any

of the worst individuals in the current population, it is discarded.

Otherwise, it is allowed a chance to survive to the next generation.

Transformation

The preceding discussion works under the assumption that simi-

lar individuals will be represented by nearly parallel vectors, and

dissimilar ones by nearly perpendicular ones. This assumption il-

lustrates the need for a good vector based model for each particular

optimization problem. A good model would place good individuals
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near other good individuals in the individual representation space

and likewise for bad individuals. Sometimes, the actual parame-

ters that represent the genes may not lend themselves to accurate

categorization of an individual during comparison. For this reason,

transformations are applied to each gene of each individual in an

attempt to more effectively categorize their values. In continuous

function optimization problems, each gene component of an indi-

vidual is categorized into a section, based on the allowed range of

each gene. For example, an individual with ten genes, with gene

values varying between zero and ten, could be transformed into

an individual with twenty genes. The transformed genes no longer

represent the exact gene values. Rather, they represent the loca-

tion in a partition of the allowed range of values for the gene. Under

this example, the first two genes of the new representation indicate

whether or not the individual’s original gene before transformation

is a high ( greater than 5 ) or low ( less than or equal to 5 ) value.

The transformations have the effect of categorizing solutions to-

gether based on the high and low combinations of the genes. Here,

the SVD is used to expose the successful, or unsuccessful, com-

binations of high and low values of parameters for a particular

function. In comparison to the naive approach (with no transfor-

mation), the observed improvement in the qualification process is

significant for some problems. However, for other problems, the

139



process was not as beneficial. Presumably, this is because the

transformation did not accurately represent what it meant to be a

good or bad individual for that particular problem.

Reduction

The amount of reduction performed on the gene–individual matrix,

A, directly influences the accuracy achieved. Although the optimal

amount of reduction performed is not known a priori for a given

problem or situation, there is a technique that may provide a good

guess. First of all, as shown in Chapter 3, if the ”k largest sin-

gular values of a matrix A are well–separated from the remaining

singular values, then the subspace spanned by the correspond-

ing singular vectors is preserved well when a small perturbation

is added to A”[70]. The amount of relative change produced by a

given reduction to rank k is based on the k largest singular values.

It is easily calculated by the following formula (where the subscript

F denotes the Frobenius Norm).

percenterror =
‖A− Ak‖F
‖A‖F

∗ 100 (6.1)

It is clear that the amount of perturbation strongly influences

the percent error. The results presented in the next section are

achieved with the policy of reducing to the lowest rank that causes
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no more than 10 percent error. Importantly, this isn’t a hard–fast

rule, and may change depending on problem domain, representa-

tion, and stage of evolution. The results produced by varying the

error margin (and therefore the rank chosen) at different stages

using strategically chosen conditions should be a topic of study for

future works.

Results

An approach similar to the (µ + λ) evolution strategy was used

with populations of size 100 generating 100 candidate individuals.

Rank–based selection was used to select individuals for breeding.

The breeding process used one point crossover and a ten percent

chance of mutation. Mutation was performed by first randomly

choosing a gene and then increasing or decreasing it by a random

amount between 0 and 1. Reinsertion was achieved by picking the

best 100 individuals out of the 200 parents and qualified offspring.

To handle situations where not enough children are qualified, the

qualifier is disabled after 500 unsuccessful attempts at generating

the 100 children. The breeding process then finishes by generat-

ing the required number of offspring without qualification. A more

ideal solution would be to adjust the amount of reduction and d–

close parameters based on some function of the qualification pres-

sure.
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All of the results are based on the average of the best individual,

for each generation, over 30 different random initial populations.

The fitness of an individual x is defined in this section as

fitness(x) =
1

1 + |f(x)− target|
(6.2)

where f(x) is the function being optimized and target is the value

that is desired for the function. For an in depth explanation of

how to compute the rank–k cosines between a query vector and the

vectors contained in a reduced rank–k model efficiently (see [11]).

The GA was tested on a variety of problems, with varying degrees

of difficulty and dimensionality, using three different approaches.

In the first approach, no rank reduction was performed on the

gene–individual matrix at all. The second approach attempted to

determine the best amount of rank reduction automatically by an-

alyzing the separation of the singular values in order to select a

rank that would cause no more than 10 percent error. In order

to compare the performance of the SVD GA to traditional GAs, the

final approach did not incorporate the SVD qualification process at

all. These tests indicate that the rank reduction cases, on average,

outperformed the plain GA, and the no reduction case. The effects

of the SVD qualification process are evaluated by testing three dif-

ferent optimization problems. Each problem’s goal is to minimize a
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function. Recall that a higher fitness value corresponds to a lower

function value for each particular problem.

N–Queens. The first problem tested was the n–queens prob-

lem. The goal is to find a way to place n queens on an n x n chess

board such that no two queens attack each other. This means that

no two queens may be placed on the same row, column, or diago-

nal. For this reason, the representation chosen is a permutation of

the set {1, . . . , n}. This representation restricts the search to cases

in which queens are on separate rows and columns. The function

f of an individual x is computed by counting the number of diag-

onal conflicts in its representation. The fitness of the individual

is then computed with equation 6.2, where f(x) is the number of

pairs of queens that are attacking each other in the solution x, and

the target is zero. The results achieved when n = 30 are shown in

6.28. The results indicate that domains with permutation repre-

sentations are amenable to the SVD qualification process without

transformation. An added bonus is also incurred because the act

of reducing the qualification matrix, thereby bringing out its latent

characteristics, outperforms the no–reduction cases. The transfor-

mation step was skipped for this problem because the discrete na-

ture of the domain make it doubtful that significant improvements

could be achieved.
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Figure 6.28: Results for the 30 Queens function

Sphere Model Minimization. The second problem was to min-

imize the sphere model function, given below.

f(x) =
30∑
i−1

(xi − 1)2, xi ∈ [−5, 5] (6.3)

The representation chosen for individuals in this problem was a

vector of doubles. Transformations were applied by categorizing

each of the thirty genes into one of four equal sized partitions of

the interval [−5, 5]. From 6.29, it can be seen that the SVD GA out-

performed the plain GA once again. However, the act of reduction

and transformation did not provide significantly better results over

the plain GA in this problem. Presumably this is because the trans-
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formation chosen for comparison via the SVD did not adequately

capture what it meant to be a good solution in this problem do-

main.

Langermann Function Minimization. The third minimization

problem tested was a modified Langermann function.

f(x) = −
N∑

i=1

c(i)(e
−1
π
‖x−A(i)‖2f cos(π ‖x− A(i)‖2f ) (6.4)

xi ∈ [0, 10] (6.5)

The GA was tested on the 10 dimensional formulation of this

function (N = 10). The global minimum for this function is ap-
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proximately -1.4999. The representation chosen for individuals in

this problem was also a vector of doubles. Transformations were

applied by categorizing each gene into one of four equal sized parti-

tions of the interval [0, 10]. From 6.30, it is apparent that GAs using

the rank–k SVD qualifier outperformed the no reduction cases. In

addition, the transformation processes outperformed their coun-

terparts by a significant margin. The SVD process without trans-

formation did not perform as well as the Plain GA. Therefore the

type of representation is an extremely important factor for success.
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Future Directions

Skewness Using an idea described in [70], we may be able to dis-

cover many pieces of important information about a given qualifi-

cation space. Let Q represent the qualification space. For each in-

dividual qi ∈ Q, let vq be the vector assigned to the individual by the

rank–k SVD on Q. The rank–k SVD is δ–skewed on the qualification

space Q if, for each pair of individuals q and q′, vq · vq′ ≤ δ ‖vq‖ ‖vq′‖

if q and q′ belong to different categories and vq · vq′ ≥ (1− δ) ‖vq‖ ‖vq′‖

if they belong to the same category. From Papadimitriou et al.s

findings in [70], the SVD should be able to provide several, prob-

abilistically verified, search techniques for problems with appro-

priate representation. Several pieces of key information about the

GA’s current state and qualification pressure can be discovered by

averaging the values for δ for every pair of vectors between the two

qualification spaces Qg and Qb. The spaces Qg and Qb are composed

of good and bad individuals, respectively. First of all, the average

of these values describes how well the chosen representation cate-

gorizes individuals. Secondly, if the amount of δ–skewness is high

then the good aren’t far from the bad, and therefore there is more

qualification pressure on candidate individuals. This information

could be used to indicate when the population has become stale.

Furthermore, an algorithm could deduce how skewed the current
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views of good and bad are, and adjust the amount of the d–close

parameter appropriately.

Gene Clustering The preceding discussion only makes use of the

individual qualification space. Using the eigenvectors that span

the gene–gene autocorrelation matrix AAT , the results could be im-

proved by clustering the different types of good or bad individuals

into groups. The information provided from this matrix would be

able to show which genes are used similarly across a collection

of individuals. From this information, it should be determinable

which parts of the problem are decomposable into sub–problems.

The GA could then focus its work on optimizing these subprob-

lems, instead of the entire problem. The eigenvectors of AAT are

the basis of the algorithms in the next section.

Parameter Choices Unfortunately, it is hard to predict, a priori,

the optimal transformation and parameter choices. What is needed

is a concrete function with the ability to compute good parameters

for a given situation. What makes parameters or representations

”good,” and under what assumptions for a given problem and situ-

ation? The amount of error used should depend strongly on which

stage of evolution the GA is in. In the early stages, the GA should

be allowed to explore the search space as widely as possible, in or-
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der to find as many basins of attraction as possible. In effect, the

GA should avoid having too many similar individuals in the first

stages, be they poor or good individuals.

Conclusion

In this section, methods for improving a genetic algorithm’s per-

formance by using singular value decomposition to qualify candi-

date individuals are presented. Results from several application

domains showed that using the SVD qualifier is significantly ben-

eficial. Furthermore, it was observed that the d–close parameter,

the amount of rank reduction, and choice of transformation greatly

influence the amount of performance improvement achieved. It

is clear that further testing and development on several different

types of problems and parameter strategies will be required in or-

der to go beyond these primitive attempts of exploiting the SVD in

such a way as to exhibit positive benefits in genetic algorithms.

6.6 Eigenvectors of AAT

SVD Incorporation

The goal is to discover the genes that are used similarly across the

best individuals. The ideas to be presented next can be generalized
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to other methods of determining similarly used genes. However,

SVD yields accurate identification of subproblems in optimization

problems whose solutions have a block representation. The SVD of

a matrix containing the best few individuals in the entire optimiza-

tion history was computed. Instead of aiming for the sole fittest

individual, the GA used SVD to decompose the few fittest individu-

als and therefore directed the search towards a combination of the

best individuals. Tests using large sets of individuals were not as

beneficial. Perhaps this was because the SVD could not discover a

single pattern for which to aim during operator restriction.

The computational complexity of computing the SVD may out-

weigh the complexity of the problem being solved. However, prob-

lems with a computationally expensive fitness function may benefit

from the methods to be described. In particular, if complex prob-

lems can be decomposed into smaller and simpler subproblems,

then the benefit will outweigh the cost of computing the SVD. Sev-

eral time optimizations can also be made to decrease the amount

of time used computing the SVD. For example, existing SVDs can

be updated using special algorithms for adding or removing rows

and columns [11]. Also, random projections are a fast alternative

to singular value decomposition [70].
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Restricted Mutation and Crossover

At every other generation, the mutation operator is restricted to a

specific subset of the genes. This isolates the search process to the

blocks in highly fit solutions, facilitating the determination of the

local optimum. Similarly, the crossover operator is restricted to a

specific group of genes. After crossover is applied to the reduced

gene set, the unrestricted genes are replaced in their correspond-

ing positions in the generated children. In both techniques, the

restriction only happened every other generation. This enables the

mutation and crossover operators to fully explore the entire space

of possible chromosomes.

Genetic Engineering

A simple genetic engineering approach is tested at every genera-

tion. First, the rank–2 SVD of the top 50 best individuals is com-

puted. Then, using a process to be described in the next subsec-

tion, a set of subproblems is generated. Next, a random subprob-

lem with the correct size (the parameters of the problem are known)

is selected and a new individual constructed by placing ones in the

corresponding positions of the genes in the subproblem, and zeros

everywhere else. For example, given the subproblem {1, 3} the indi-

vidual constructed would only have the first and third genes equal
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to one ([1010 · · · 0]). If no subproblem had the correct size, then no

individual is engineered during that generation. Future research

could also develop problem dependent heuristics to engineer good

individuals out of subproblems with an arbitrary size.

Schema Reordering

Due to the nature of the problems addressed, good schema are

apt to be destroyed during crossover if the locations forming the

schema are scattered apart on the chromosome. To combat the dis-

ruptive nature of crossover, chromosomes are reordered to group

the similar genes closer together on a chromosome. This helps to

create higher–quality schemas with shorter defining lengths. SVD

is used to define the reordering at every generation during opti-

mization. The reordering groups similar genes together, allowing

the GA to benefit from the building block hypothesis. This is in con-

trast to a strategy that only performs an initial schema preprocess-

ing once before the GA for the Minimum Graph Bisection problem

starts [19]. As the building block hypothesis suggests, the com-

putational power of genetic algorithms largely comes from manip-

ulating the solutions of subproblems, i.e., building blocks. Hence,

identifying subproblems has been a center of many subfields within

genetic and evolutionary computation. Three examples of related

fields that should be studied to better connect the use of SVD to
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current GA research are Linkage Learning [47], Probabilistic Model

Building Genetic Algorithms [72], and Learnable Evolution Models

[65].

Further Work

Future work should concentrate on several issues. First, there

have been several papers that generalize the categorization powers

of reduced rank SVD to situations that are not specifically trans-

formable to block diagonal form [8]. Problem types with structures

other than a block diagonal matrix need to be considered to de-

termine additional representations that the SVD can be used with

to benefit a genetic algorithm. Second, heuristics for rank choice

should be identified to improve the overall subproblem determina-

tion performance. Finally, it would be interesting to create heuris-

tics for choosing different subsets of individuals that determine the

subproblems at each generation. For example, the worst, the best,

or even the most diverse solutions in the optimization history could

each be valid choices for the subsets of individuals that direct the

optimization process.

Subproblem Determination

After the formation of a matrix of good individuals, the following

steps are taken to group genes into subproblems. For every gene,
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the cosines of the angles between it and every other eigenvector of

AAT are put in a matrix. In order for gene i and gene j to belong

to the same subproblem, the cosines of the angle between the ith

and jth eigenvectors of the gene–gene autocorrelation matrix have

to be greater than 0.92. That is, the vectors have to be close to

parallel. The cosine of an angle is an appropriate function to use

because its value approaches one as two vectors become more par-

allel. Likewise, as two vectors become more perpendicular, the co-

sine of the angle between them approaches zero. The bound of 0.92

was chosen a priori by testing values between zero and one. How-

ever, strategies could be produced to vary this amount in a heuris-

tic manner. For example, if the problem’s solutions are required to

have subproblems of genes with a particular size, then the param-

eter could be adjusted to favor retrieving subsets of genes with the

correct size.

If ωij is the angle between the ith and jth gene vector then,

cos ωij =
(eT

i UΣV T )(V ΣUT ej)

‖ eT
i UΣV T ‖2‖ V ΣUT ej ‖2

(6.6)

For gene i and gene j to be clustered into the same subproblem,

the following relation had to hold

cos ωij > 0.92 (6.7)
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Here, ei denotes the ith standard vector, which contains all zeroes

except for a one in the ith position. ‖ · ‖2 denotes the Euclidean

vector norm. The U , Σ, and V are the matrices found by the SVD.

In the document comparison domain, reduction of rank actually

improves the quality of the information retrieved [11, 70]. Using

reduced rank versions on problems with a block diagonal repre-

sentation gives an approximation of what it means for two genes to

be used similarly across a group of individuals. Therefore, various

rank reductions are also tested. To calculate the cosines between

genes in a reduced rank model, Ak is substituted for A in all of the

above calculations.

cos ωij =
(eT

i UkΣkV
T
k )(VkΣkU

T
k ej)

‖ eT
i UkΣkV T

k ‖2‖ V ΣkUT
k ej ‖2

(6.8)

Berry, Drmač and Jessup provide an in depth explanation of how

to efficiently compute the rank–k cosines between a query vector

and the vectors contained in a reduced rank–k model [11].

Subproblem Selection Strategies

Two methods are tested for determining the subproblems the GA

should work on. In the first method, Maximum Subproblem, the

largest sized subproblem is selected. In the second method, Sub-

problem Rotation, a subproblem is chosen at random.
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Low Rank Approximations

Two forms of the SVD are tested. The first is the full rank ver-

sion of the SVD. The second is based on the reduced rank version,

where all but the first k largest singular values are set to zero,

giving Ak. As expected, the reduced rank strategies generally dis-

cover the subproblems more efficiently than the full rank versions.

This is due in part to the theoretical results mentioned in the sec-

tion that contains a probabilistic analysis of reduced rank spectral

clustering in Chapter 3 on page 57. The performance may also

have improved because, in the application domains tested, the GA

is only seeking one block in the solution space. Reduction to a

lower rank correctly directs the search towards the correct block

because a lower value of k in Ak increases the cosines of the angles

between vectors of similar types [15]. Another reason may be that

in comparison with higher rank reductions, lower rank reductions

are less restrictive and will identify larger subsets of related genes

as the rank is reduced. Therefore, lower rank reductions allow the

restrictive mutation and crossover operators to have more freedom

during exploration. However, lowering the rank too much may not

always increase the performance because all genes will be seen as

similar to all other genes.
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Experiments

As mentioned previously, SVD should perform well when analyz-

ing problems that have a solution space that can be made block

diagonal. The first problem tested was the Block Sum Partitioning

problem. This problem was created and tested to provide a bench-

mark for the types of problems that will benefit from this research.

The solution vectors of this problem can be arranged to form a

block diagonal matrix. When two genes are used similarly across

the solution individuals, they often contain the same value across

their rows. When the SVD subproblem clustering process is ap-

plied to a matrix of correct solutions for this problem, the clusters

returned are exactly the subproblems that define where a solution

should have the value one.

A problem’s individual type will be referred to as symmetric if

whenever the vector obtained by applying the Boolean NOT to every

gene in an individual represents the same solution to the problem.

For example, the Minimum Graph Bisection problem’s individual

type is symmetric because {1, 0} represents the same bisection as

{0, 1}. SVD is not confused by solutions that are symmetric. In

other words, SVD is not affected by the possible namings of a

partition. This is because in problems with a symmetric individ-

ual type, similar genes are still used similarly across individuals
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drawn from the same block. Furthermore, subproblems will be

correctly discovered regardless of the order the rows or columns of

the matrix are in. The Minimum Graph Bisection problem’s solu-

tion vectors are symmetric and can be arranged to form a block

diagonal matrix. When two genes are used similarly across the so-

lution individuals in this problem, it means that the vertices that

the genes represent are frequently placed in the same partition.

SVD helps obtain an approximate consensus from the best invidu-

als as to which vertices should be placed in the same partition.

Implementation Details

An approach similar to the (µ + λ) evolution strategy was used,

with populations of size 100 generating 100 candidate individuals.

Reinsertion was achieved by picking the best 100 individuals out

of the 200 total parents and children. The results are based on the

average of the best individual at each generation, over 100 different

random initial populations. Let f(x) be the value of the function

that is being optimized when applied to an individual x. The log

fitness of an individual is defined as

logfitness(x) = ln
1

1 + |f(x)− target|
≤ 0 (6.9)
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In this fitness function, the function value f(x) approaches its tar-

get (for example the minimum) as the fitness function approaches

zero. Individuals with higher fitness represent better solutions

than those with lower fitness. An individual with a fitness equal

to zero is an exact solution because only then will f(x) = target.

The Kernighan–Lin local improvements are carefully tailored to

take linear time in the number of edges of the graph. In the case

of singular value decomposition, only the traditional computations

with time complexity O(m2n+mn2 +n3) for an m×n matrix are used.

To improve this polynomial bound, algorithms can be employed

that find low rank approximations quickly. A technique of random

projection was described by Papadimitriou et al. in a seminal paper

[70]. Some algorithms for computing approximate SVDs have time

complexity independent of m and n [35]. These approximate SVD

algorithms could be used to provide lower complexity local search

methods in hybrid genetic algorithms.

Intuitively, the number of generations it takes to find a solution

is the greatest factor in proving a genetic algorithm’s performance.

In order to assess the amount of benefit achieved using the SVD

heuristics, all comparisons are made to a plain genetic algorithm

that did not use the SVD heuristics. The Plain GA serves as a

strawman for the SVD methods. Sometimes the Plain GA is aug-

mented with local search and, in some cases, the spectral injection
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heuristics discussed in Chapter 5. The GA is compared with vari-

ous combinations of several of the current state of the art genetic

operators, local search functions, and techniques used for solving

the Minimum Graph Bisection problem.

6.7 Block Sum Partitioning

Problem Statement

Let (x)ik denote the ith block of size k in a binary string. Further-

more, let (x)m
ik denote the numeric value of the mth position in the

ith block. The (n, k)–block partition problem is defined on binary

strings of length n as follows:

max
i=1,2,..., n

k

( ∑
m=1,2,...,k

(x)m
ik −

∑
l 6=i,m=1,2,...,k

(x)m
lk

)
(6.10)

In words, the (n, k)–block partition problem is the maximum, over

all the 1, 2, · · · , n
k

blocks of k genes, of the sum of the elements in the

block minus the sum of the elements not in the block. This prob-

lem will be called the Block Sum Partitioning problem (BSP). An

individual is considered a solution when its function value is equal

to k, the length of every block. By the problem’s construction, this

can only happen when an individual contains all ones in one block

and all zeroes in every other block. Therefore, the set of individuals
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that are solutions form a block diagonal matrix. From the analy-

sis presented in Section 2.2, the SVD should perform well on this

type of problem because it will be able to accurately categorize the

similar genes of highly fit individuals. The highly correlated genes

of good individuals will correspond to the genes that should belong

to the same block.

Implementation Details

Tests were performed on the binary valued version of the (100, 10)–

Block Sum Partitioning problem. That is, the problem of structur-

ing 100 genes into a form with one of the 10 blocks containing 10

ones, and the rest of the 9 blocks containing all zeroes. The genetic

operators do not know the value of k. Hence, the full representa-

tion space was used and not restricted to individuals with k ones

during optimization. The mutation rate was set at 12%. Restricted

mutation was performed by flipping a gene in a subproblem to its

opposite value of either one or zero. Restricted one point crossover

was used in both of the genetic subproblem strategies. The plain

GA used both one point crossover and mutation without restric-

tions. Genetic engineering was not tested with this problem.
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Results

Figure 6.32 is a plot of the average best individual at every genera-

tion for this problem using various ranks. The maximum subprob-

lem’s performance is very similar to the corresponding variations

of the subproblem rotation’s performance. Both of the subprob-

lem methods outperformed the plain GA. The subproblem rotation

strategy using a rank equal to 2 performed best. Furthermore,

rank reduction increased the performance of the genetic algorithm

in all cases.

Call a set of genes involved in a solution if setting each gene in

the set to one and each gene out of the set to zero yields a cor-

rect solution to the problem. The following tables compare the first

generation the GA discovered a solution and the first generation

that each subproblem determination method correctly identified at

least 2
3

of a set of genes that is involved in a correct solution. In

addition, the subproblems are only counted as being found when

their size is at least 2
3

of the size of a correct subproblem. They

are not counted when their size is greater than the correct sub-

problem’s size. The results in the following tables were obtained

by collecting the average over 100 runs, using full rank, restricted

crossover, and restricted mutation. Notice that the subproblems

are discovered much earlier than the first solution.
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BSP (full rank) Solution Subproblem found

Maximum 103.87 63.64

Rotation 86.92 75.76

Although the overall first solution performance is better with the

rank 1 reduction for this problem, the subproblems are not typi-

cally discovered until after the first solution is found. A possible

explanation for this is that the size of the subproblem found when

the rank is reduced is much larger than the size of the subproblem

when using full rank. This is because under a reduced rank model,

genes are more likely to be similar to other genes. While the correct

subproblem is likely still represented in the set, the size of the set

is usually much larger than the size of a correct subproblem. In

these cases the subproblem is not counted as being found because

it is too big.

BSP (rank 1) Solution Subproblem found

Maximum 87.27 263.74

Rotation 75.59 231.5

As the following table indicates, the rank 2 reductions resulted in

the best overall performance.

BSP (rank 2) Solution Subproblem found

Maximum 77.79 45.02

Rotation 73.4 78.06
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Figure 6.31: The average best individual per generation for the BSP
problem using the Maximum Subproblem strategy.
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Figure 6.32: The average best individual per generation for the BSP
problem using the Subproblem Rotation Strategy.
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6.8 Minimum Graph Bisection

Problem Statement

A bisection of a graph G = (V, E) with an even number of vertices

is a pair of disjoint subsets V1, V2 ⊂ V of equal size. The cost of

a bisection is the number of edges (a, b) ∈ E such that a ∈ V1 and

b ∈ V2. The Minimum Graph Bisection problem takes as input a

graph G with an even number of vertices, and returns a bisec-

tion of minimum cost. The Minimum Graph Bisection problem

has been shown to be NP–Complete [39]. Many heuristics have

been developed for this problem. Perhaps the best known is the

Kernighan–Lin heuristic [58, 16]. Graph partitioning with genetic

algorithms has been studied extensively [60], [19], [59], [78], [79].

Singular value decomposition has also proved to be a useful tool

when clustering graphs [27], [56]. However, this dissertation con-

tains the first attempt to combine these results, providing strate-

gies for using singular value decomposition in a genetic algorithm

for the Minimum Graph Bisection problem.
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Implementation Details

Individuals were represented in binary. If the ith component of an

individual was one, then the ith vertex was placed in the set V1.

Otherwise, if the ith component of an individual was zero, then

the ith vertex was put in the set V2. Notice that individuals are

symmetric in this representation. The mutation rate was set at

12%. A modified mutation method of switching two random genes

was implemented to keep the number of ones and zeroes in an

individual equal. In the case of subproblem evolution, a gene from

the subproblem area was flipped and an opposite gene from the

non–subproblem area is also flipped. In plain GAs, the mutation

operator simply exchanged the values of two opposite genes. The

crossover operator was adapted from an earlier paper on graph

bisection with GAs [19]. It is a modified five point crossover that

attempts to account for the symmetric nature of graph bisection

solutions. No restriction on the locus of crossover was used in

this problem. The highly correlated genes correspond to vertices

that the current population believes should be clustered into the

same partition. Before the GA started, the ordering of the vertices

was permuted in order to prevent the results from containing any

possible bias on the input.
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Figure 6.33: The average best individual per generation for the
Minimum Graph Bisection problem on random graphs with 100
vertices and 5% edge probability.

Random Graphs

Figure 6.33 contains the average fitness of the best individual at

each generation over 100 different random graphs. An edge be-

tween two vertices was created with a 5% chance. In this problem,

the subproblem methods outperformed the plain GA, but only by

a slight margin. Graphs with higher chances of an edge occurring

between vertices produced very similar results. The decrease in

performance in the engineering results after the first 100 genera-

tions indicates that the populations may have become genetically

stale.
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Figure 6.34: The average best individual per generation for the
Minimum Graph Bisection Cluster problem on random graphs with
100 vertices and two main clusters with no local improvement.

Highly Clustered Random Graphs

The random graphs for this problem were created by first randomly

dividing all of the vertices into two disjoint and equal sized sets.

Next, edges within a set are created with a 98% probability. Then,

edges between vertices in different sets are created with probabil-

ity equal to 5%. This problem will be called the Minimum Graph

Bisection Cluster problem. Presumably, SVD will perform remark-

ably better in the cases where the random graph contains two main

clusters. Accordingly, tests performed on random graphs that are

explicitly constructed to contain most of their weight in two clus-

168



ters, indicate an increase in the performance of the SVD subprob-

lem and engineering methods. Figure 6.34 is a plot of the results

from these highly clustered random graphs. Once again, all SVD

methods outperform the plain GA. Furthermore, the combination

of restricted operators with genetic engineering yields better results

than using either restricted operators or genetic engineering alone.

Engineering consistently gave a significant performance boost dur-

ing the first fifty generations of optimization. Additionally, engi-

neering is improved by reducing the rank to 2.

The following table lists the average first generation the GA sub-

problem determination methods identified at least 2
3

of the genes

involved in a solution. The results in the following table were ob-

tained by collecting the average over 100 runs. The subproblems

were discovered much earlier than the first solution is obtained.

GBC (full rank) Solution Subproblem found

Plain 206.58 NA

Maximum 176.22 99.92

Rotation 154.64 97.38

For this problem, rank one reduction did not improve the GA’s

overall solution performance for either subproblem strategy. This

indicates that the reduction to rank one may have deteriorated the

solution space too much. On the other hand, the subproblems

were typically found earlier than the full rank version found them.
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GBC (rank 1) Solution Subproblem found

Maximum 181.29 74.46

Rotation 204.45 86.7

Figure 6.35 depicts the results from an experiment that com-

pares most of the heuristics that have been described. In addition,

local searches were performed on the entire population at each

generation. Appropriately, many of the heuristics and hypotheses

of this dissertation are given support by the applicability of theo-

rems presented in earlier chapters. Reduction of rank, spectral in-

jection, subproblem rotation, engineering, and schema reordering

are all verified to positively impact the performance of the genetic

algorithm separately for this graph. Figure 6.36 shows that the

performance increase is much more dramatic when the the local

search operator is not performed. However, Figure 6.37 shows that

when the Kernighan–Lin local improvement is used with problems

for which KL does not perform well, the performance improvement

when engineering individuals outperforms the plain GA by a more

significant margin.
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Chapter 7 - Conclusion

In conclusion, there remains a tremendous amount of work to be

done with singular value decomposition for information retrieval,

graph bisection, and genetic algorithms. It is hoped that the work

in this dissertation will provide a head start to future researchers

willing to tackle these important research tasks. A review of the

contributions of this dissertation and a few open questions raised

by it follow.

7.1 Future Research

A few open questions that have been raised by the work in this

dissertation are listed below.

• Is there a single proof strategy for identifying which singular

vectors give minimum bisection solutions when using

different adjacency representations on different graphs?

• What is the difference between the singular vectors in

different representations? Given the algebraic relations

between the matrices themselves, is there an algebraic

equation to convert between their singular vectors?
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• Do algorithms exist that can take advantage of the cut size

solution quality oscillations by combining eigenvectors to give

better solutions to graph bisection problems?

• How do convergence and alternate eigenvector finding

algorithms influence partitionings?

7.2 Review of Contributions

Below is a brief summary of some of the major contributions of

this dissertation.

• Clarification of a well known LSI theorem, with

counterexamples.

• Improvement of heuristics for finding the minimum bisection

of a graph.

• Minimum bisection guarantees for graphs with a certain

structures using a new proof strategy.

• Empirical evidence that multiple eigenvectors can be useful

in spectral bisection.

• Several novel applications of singular value decomposition in

genetic algorithms.
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Mathématiques Pures et Appliquées, Deuxième Série 19

(1874), 35–54.

[56] Ravi Kannan, Santosh Vempala, and Adrian Vetta, On

clusterings: good, bad and spectral, J. ACM 51 (2004), no. 3,

497–515 (electronic). MR MR2145863

184



[57] Richard M. Karp, Reducibility among combinatorial problems,

Complexity of computer computations (Proc. Sympos., IBM

Thomas J. Watson Res. Center, Yorktown Heights, N.Y.,

1972), Plenum, New York, 1972, pp. 85–103. MR MR0378476

(51 #14644)

[58] B. Kernighan and S. Lin, An Efficient Heuristic Procedure for

Partitioning Graphs, Bell Systems Journal 49 (1972),

291–307.

[59] Jong-Pil Kim and Byung-Ro Moon, A hybrid genetic search for

multi-way graph partitioning based on direct partitioning,

Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO–2001) (San Francisco, California, USA)

(Lee Spector et al., ed.), Morgan Kaufmann, 7–11 July 2001,

pp. 408–415.

[60] Harpal S. Maini, Kishan G. Mehrotra, Mohan Mohan, and

Sanjay Ranka, Genetic algorithms for graph partitioning and

incremental graph partitioning, Tech. Report CRPC–TR94504,

Center for Research on Parallel Computation, Rice University,

Houston, TX, 1994.

[61] Jacob G. Martin, Subproblem optimization by gene correlation

with singular value decomposition, GECCO ’05: Proceedings

185



of the 2005 conference on Genetic and evolutionary

computation (New York, NY, USA), ACM Press, 2005,

pp. 1507–1514.

[62] Jacob G. Martin and Khaled Rasheed, Using singular value

decomposition to improve a genetic algorithm’s performance,

Proceedings of the 2003 Congress on Evolutionary

Computation CEC2003 (Canberra), IEEE Press, 8-12

December 2003, pp. 1612–1617.

[63] Colin McDiarmid, On the method of bounded differences,

Surveys in combinatorics, 1989 (Norwich, 1989), London

Math. Soc. Lecture Note Ser., vol. 141, Cambridge Univ.

Press, Cambridge, 1989, pp. 148–188. MR MR1036755

(91e:05077)

[64] Zbigniew Michalewicz, Genetic algorithms + data structures =

evolution programs, Springer–Verlag, Berlin, 1994. MR

MR1329091 (96h:68001)

[65] Ryszard S. Michalski, Learnable evolution model:

Evolutionary processes guided by machine learning, Mach.

Learn. 38 (2000), no. 1–2, 9–40.

186



[66] Cleve Moler and Donald Morrison, Singular value analysis of

cryptograms, Amer. Math. Monthly 90 (1983), no. 2, 78–87.

MR MR691178 (84c:68080)

[67] Burkhard Monien, The bandwidth minimization problem for

caterpillars with hair length 3 is NP–complete, SIAM J.

Algebraic Discrete Methods 7 (1986), no. 4, 505–512. MR

MR857587 (88b:68064)

[68] Ben Noble and James W. Daniel, Applied linear algebra, third

ed., Prentice–Hall, Englewood Cliffs, NJ, USA, 1988.

[69] C. H. Papadimitriou and M. Sideri, The bisection width of grid

graphs, Math. Systems Theory 29 (1996), no. 2, 97–110. MR

MR1368793 (97d:68093)

[70] Christos H. Papadimitriou, Prabhakar Raghavan, Hisao

Tamaki, and Santosh Vempala, Latent semantic indexing: a

probabilistic analysis, J. Comput. System Sci. 61 (2000),

no. 2, 217–235. MR MR1802556 (2001m:68039)

[71] Alex Pothen, Horst D. Simon, and Kang-Pu Liou, Partitioning

sparse matrices with eigenvectors of graphs, SIAM J. Matrix

Anal. Appl. 11 (1990), no. 3, 430–452. MR MR1054210

(91h:65064)

187



[72] Kumara Sastry and David E. Goldberg, Probabilistic model

building and competent genetic programming, Genetic

Programming Theory and Practise (Rick L. Riolo and Bill

Worzel, eds.), Kluwer, 2003, pp. 205–220.

[73] John E. Savage and Markus G. Wloka, Parallelism in

graph–partitioning, J. Parallel Distrib. Comput. 13 (1991),

no. 3, 257–272. MR MR1136211 (92g:68058)

[74] Bruce R. Schatz, Automated analysis of cryptogram cipher

equipment, CRYPTOLOGIA 1 (1977), no. 2, 116–142.

[75] Erhard Schmidt, Zur Theorie der linearen und nichtlinearen

Integralgleichungen, Math. Ann. 63 (1907), no. 4, 433–476.

MR MR1511415

[76] J. J. Seidel, A survey of two-graphs, Colloquio Internazionale

sulle Teorie Combinatorie (Rome, 1973), Tomo I, Accad. Naz.

Lincei, Rome, 1976, pp. 481–511. Atti dei Convegni Lincei,

No. 17. MR MR0550136 (58 #27659)

[77] Jouni K. Seppänen, Ella Bingham, and Heikki Mannila, A

simple algorithm for topic identification in 0–1 data, PKDD,

2003, pp. 423–434.

[78] A. J. Soper, C. Walshaw, and M. Cross, A combined

evolutionary search and multilevel optimisation approach to

188



graph–partitioning, J. Global Optim. 29 (2004), no. 2,

225–241. MR MR2092958 (2005k:05228)

[79] Alan J. Soper, Chris Walshaw, and Mark Cross, A combined

evolutionary search and multilevel approach to graph

partitioning, Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO–2000) (Las Vegas, Nevada,

USA) (David Goldberg Darrell Whitley et al., ed.), Morgan

Kaufmann, 10–12 July 2000, pp. 674–681.

[80] G. W. Stewart, On the early history of the singular value

decomposition, SIAM Rev. 35 (1993), no. 4, 551–566. MR

MR1247916 (94f:15001)

[81] G. W Stewart, Matrix algorithms. Vol. I, Society for Industrial

and Applied Mathematics, Philadelphia, PA, 1998. MR

MR1653546

[82] J. J. Sylvester, On the reduction of a bilinear quantic of the nTH

order to the form of a sum of n products by a double orthogonal

substitution, Messenger of Mathematics 19 (1889), 42–46.

[83] Edwin R. van Dam and Willem H. Haemers, Which graphs are

determined by their spectrum?, Linear Algebra Appl. 373

(2003), 241–272. MR MR2022290 (2005a:05135)

189



[84] J. H. van Lint and J. J. Seidel, Equilateral point sets in elliptic

geometry, Nederl. Akad. Wetensch. Proc. Ser. A 69=Indag.

Math. 28 (1966), 335–348. MR MR0200799 (34 #685)

[85] Richard S. Varga, Matrix iterative analysis, Prentice–Hall Inc.,

Englewood Cliffs, N.J., 1962. MR MR0158502 (28 #1725)

[86] Hermann Weyl, Das asymptotische Verteilungsgesetz der

Eigenwerte linearer partieller Differentialgleichungen (mit einer

Anwendung auf die Theorie der Hohlraumstrahlung), Math.

Ann. 71 (1912), no. 4, 441–479. MR MR1511670

190


