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ABSTRACT 

 The quality of teacher questioning affects the extent of its utilization, particularly in a 

dynamic teacher-student interaction. I first analyze 13 preservice teachers’ questioning moves 

while elementary school students were engaged in mathematical problem solving. I then 

examined six preservice teachers’ questioning practices on whole-number arithmetic tasks in 

their single-student mathematical field experiences (SSMFE) and focused on the construction 

and functioning of teacher-student interactional turns to describe the functions of interactional 

turns and patterns.  

            Data were collected in the form of observations, video recordings, and course 

assignments and analyzed using theme-based coding from an integrated framework including 

categories of questioning moves and interactional patterns. The findings regarding questioning 

moves revealed four influential features in preservice teachers’ questioning: (a) flexibility in the 

setup, (b) limited extent of inquiry, (c) non-specific probing questions, and (d) neglect of the 

child’s unexamined but valuable strategies. The analyses show that 1) Task Clarification (TC) 

moves were successes when teachers provided flexible support in questioning, and 2) Procedural 

Understanding (PU), Making Connections (MC), Rationale Behind a Strategy (RA), and 



Alternative Strategy (AS) moves resulted in deviated from the contextual features and 

mathematical relationship in problem solving and indicate that the preservice teachers’ 

functional moves have potential to elicit multidimensional facets of students’ mathematical 

thinking and yet may not be enacted competently in mathematical problem solving.  

            These findings not only detail the conditions for enacting functional moves but also 

contribute to better document the successes and struggles a functional move prompted. Based on 

the findings, suggestions for developing a practice-based training curriculum to enhance the 

cultivation of teacher questioning are presented. In addition, how to effectively utilize student-

produced discourse to inform teacher questioning strategies in early field experiences has 

important implications for curriculum designers, teacher education programs, and for teacher 

educators and researchers. 
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CHAPTER 1 

INTRODUCTION 

In the Chinese language, the concept of knowledge is expressed as an amalgamation of 

learning and questioning. The two-component ideographs are “學 (xué)” and “問 (wèn)”. The 

ideograph for questioning shows an open mouth, presumably in the midst of evoking a question. 

The Chinese language therefore explicitly manifests the central role that questions have in the 

development of knowledge. Rather than being merely a passive accumulation of facts, 

knowledge comes from actively questioning during the learning process (Lauer, Peacock, & 

Graesser, 1992). Therefore, asking questions could be a means to accomplish the goal of 

receiving information and constructing knowledge in a dynamic interaction between the 

questioner and the respondent.  

Although asking questions is taken for granted in the usage of language in society, asking 

questions plays a considerable role in the field of education, particularly when one plans to learn 

something from others. Learning is the main goal in every classroom, regardless of subject 

matter. On the one hand, students learn how to construct knowledge through seeking relevant 

information, and, on the other hand, teachers apply instructional moves to learn about their 

students in order to scaffold students’ learning. This type of learning of teachers is also described 

as a process of learning to teach (Ball & Bass, 2000; Frank & Kazemi2001; Mewborn & Stinson, 

2007; Shulman, 1987). For most teachers, the most common technique used to access and assess 
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students’ knowledge is enacting questioning, as Wassermann (1991) underscored: “Questions are 

the building blocks of the instructional process” (p. 257). 

According to Shulman (1987), there are, at minimum, seven categories of the teacher 

knowledge base. One of them is the knowledge of learners and their characteristics, which plays 

a vital role in teachers’ teaching practices (Raymond, 1997). However, the process of 

constructing the knowledge of learners could be extremely challenging for novice teachers, who 

have relatively limited experience working with students. Therefore, I am interested in learning 

how questioning is enacted to construct the knowledge of learners in preservice elementary 

teachers’ initial learning-to-teach stage. 

 

The Importance of Teacher Questioning  

Although researchers have conceded that students rarely ask questions in their learning 

(Dillon, 1987, 1988; Flamer, 1981; Graesser, Person, & Huber, 1992), they have acknowledged 

that teachers frequently employ questioning as a tool in their teaching (Floyd, 1960; Moyer, 

1967; Stevens, 1912). Aschner (1961) called the teacher “a professional question maker” and 

asserted that teachers “probably devote more time and thought to ask[ing] questions than 

anybody since Socrates” (p. 44). Additionally, scholars have suggested that the ability to enact 

questioning considerably influences students’ learning opportunities (Hackenberg, 2005; Martino 

& Maher, 1999; van Zee & Minstrell, 1997; Webb, Nemer, & Ing, 2006). Nevertheless, teachers’ 

questioning techniques seem oriented toward particular types in their practice. For example, 

Boaler and Brodie (2004) found that teachers using traditional curricula asked 95% of their 

questions to gather information or lead students through a method, and even the experienced 
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teachers, who were using reform curricula, enacted 60% to 75% of the same type of questions in 

their teaching. 

A century ago, Stevens (1912) rightly asserted that the commonly used question-and-

answer type of recitation is more fruitful for the teaching process compared with repeating facts, 

rote testing of facts, and lecture. In addition, she warned that a teacher might “foster in her pupils 

negative habits of work, poor associations, and careless impression” (Stevens, 1912, p. 4) if she 

is not an expert in using the right questions in the right place to teach her pupils to construct 

knowledge. Equally important, when the intention of questioning is implicit, the questioning 

move per se could confuse students, particularly younger children, about teachers’ motivations 

for using questions in teaching. The following vignette described by Wragg and Brown (2001) is 

an example: 

A 5-year-old girl returned from her first day at school and announced that her teacher was 

no good because she did not know anything. When asked why she thought this, she 

replied that “the teacher just kept on asking us things.” (p. 5) 

The Professional Standards for Teaching Mathematics (NCTM, 1991) has emphasized 

that teachers are expected to ask and stimulate students to ask questions in order to help students: 

(a) “work together to make sense of mathematics;” (b) “rely more on themselves to determine 

whether something is mathematically correct;” (c) “learn to reason mathematically;” (d) “learn to 

conjecture, invent, and solve problems;” and (e) “connect mathematics, its ideas, and its 

applications” (NCTM, 1991, pp. 3-4). That is, effective classroom discourse is crucial in 

developing mathematical skills and literacy, and “this development cannot be achieved without 

teachers’ asking a variety of questions that challenge students’ thinking” (Vacc, 1993, p. 91). 
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However, Mehan (1979) warned that the questions asked in classrooms contain unique features, 

and “[t]eachers are sometimes not aware that the child’s display of knowledge is constrained by 

the structure of the task, the organization of discourse, and the physical parameters of the 

teaching-learning situation” (p. 294).  

Teacher questioning in the mathematics classroom involves multi-faceted knowledge, 

including knowledge of mathematics, knowledge of students, and knowledge of the pedagogy of 

mathematics (Lappan & Theule-Lubienski, 1994) and is “a practical matter [that can]not [be 

learned] by talking about it, but by doing it” (Fitch, 1879, p. 78). Most importantly, teacher 

educators should keep in mind that learning to enact questioning requires “shifting the practices 

and beliefs of the individuals engaged in those interactions” (Moyer & Milewicz, 2002, p. 295-

296), and could be “cognitively demanding,” as it “requires considerable pedagogical content 

knowledge[,] and necessitates that teachers know their students well” (Boaler & Brodie, 2004, p. 

773).  

Prior studies have revealed the heterogeneity of questioning performance that exists 

between novice and experienced teachers (Hyman, 1979; Sahin & Kulm, 2008; Tienken, 

Goldberg, & DiRocco, 2009). Generally, novice teachers may experience more anxiety related to 

posing questions (Brown & Edmondson, 1984; Crespo, 2003). The weaknesses in their 

questioning could include difficulties in assessing students’ understanding (Nicol, 1999), failure 

to ask probing questions to develop deeper thinking in students (Sahin & Kulm, 2008), and the 

tendency to ask more leading questions and to overlook opportunities for probing student 

thinking (Weiland, Hudson, & Amador, 2014). However, field experiences can provide 

opportunities for preservice teachers to investigate questioning strategies to gain knowledge of 

students’ mathematical thinking (Chamberlin & Chamberlin, 2010; Mewborn & Stinson, 2007). 
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For example, Chamberlin and Chamberlin (2010) stated that, “[m]any of the teachers mentioned 

questioning the students to stimulate their thinking, to refocus them on the problem at hand, to 

understand the students’ thinking, or to challenge the students in their thinking” (p. 402) in 

preservice teachers’ gifted education field experiences. This finding exemplified what Mayor and 

Milewicz (2002) concluded: “[H]aving preservice teachers focus on the skill of questioning in a 

one-on-one diagnostic interview may be an effective starting point for developing the 

mathematics questioning skills they will use as future classroom teachers” (p. 297). Furthermore, 

I argue that, after obtaining a comprehensive understanding of preservice teachers’ practices, 

teacher educators should cultivate and develop preservice teachers’ abilities to enact questioning 

through constant learning and practice, beginning at the early stages of the teacher education 

program. 

 

The Importance of this Study 

Compared to the studies on experienced teachers’ questioning skills (Boaler & Brodie, 

2004; Di Teodoro, Donders, Kemp-Davidson, Robertson, & Schuyler, 2011; Sahin & Kulm, 

2008; van Zee & Minstrll, 1997), relatively little research has examined preservice teachers’ 

questioning performance in the teacher education stage (Moyer & Milewicz, 2002; Nicol, 1999; 

Weiland et al., 2014). Preservice teachers’ field experiences serve as their first official teaching 

praxis to apply what they have learned in teacher education courses. Raymond (1997) stressed 

that “Mathematics educators cannot ignore the fact that teachers are exposed to many factors that 

may influence practice” (p. 574). Therefore, I conducted this study to investigate how preservice 

teachers enact and refine questioning strategies to support students’ problem solving in the 

mathematical field experience. 
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To provide valuable information to extend our understanding of how preservice teachers 

enact questioning in a mathematical context, I analyzed, in particular, teacher questioning in the 

stages of problem solving (Polya, 1957) and considered students’ responses during those 

interactions. By studying both verbal and nonverbal interactional moves, I gained insight into 

how preservice teachers enact questioning and students’ reactions caused by their questioning. 

The study reveals the features, functions, and constructions of interactional turns, as well as the 

successes and difficulties in preservice teachers’ questioning. Understanding preservice teachers’ 

questioning will not only help teacher educators and researchers facilitate the development of 

questioning techniques in teacher education programs but will also benefit both teachers and 

students in their interactions.  

 

The Purpose and Research Questions 

The purpose of this study was to investigate elementary preservice teachers’ questioning 

practices when they conducted mathematics interviews with only one student in the context of 

solving mathematical tasks. During the interviews, the preservice teachers were instructed to 

focus completely on how to employ questions to learn about their students’ mathematical 

thinking in a field-based activity – a Single Student Mathematics Field Experience (SSMFE), in 

which preservice teachers conduct eight interviews with the same child over the course of a 

semester (Sawyer & Lee, 2014). The following questions guided my investigation during this 

study: 
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1. What is the nature of enacted questions that elementary preservice teachers employ in 

their SSMFE interviews? 

2. How are the teacher-student interactional turns constructed and functioning in their 

SSMFE interviews? 

3. What are the successes and difficulties in elementary preservice teachers’ questioning 

practices in their SSMFE interviews?  
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CHAPTER 2 

LITERATURE REVIEW AND THEORETICAL FRAMEWORK 

Questioning is generally accepted as a move in which people employ questions to seek 

desired information from others, normally in verbal form. According to Green (1971), 

questioning is a strategic move that is evaluated by the consequences it causes. Questioning has 

been considered one of the most important methods of instruction since Ross (1860) wrote about 

it, approximately 150 years ago. In this chapter, I begin by tracing the origin of questioning in 

history. Then, I synthesize various question-classification systems and the criteria behind them 

and the literature on student learning and mathematics teaching in relation to teacher questioning. 

I conclude this chapter by describing literature that informed integrated theoretical framework 

used in the study. 

 

The Origin of Questioning 

The history of questioning can be traced back to Socrates, whose Socratic method has 

long been recognized as the practice of disciplined, rigorously thoughtful dialogue. For example, 

in Plato’s dialog Meno (Long, 2002), Socrates used a series of questions to help a slave boy 

discover the relationship between two squares. In the vignette, this geometry problem had a 

determined solution, and the purpose of the Socratic questions was to help the student arrive at a 

particular conclusion without telling him the answer directly (Graesser, Person, & Huber, 1992). 

Another example occurred in The Republic (Grube, trans. 1992), in which Socrates helped 
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Glaucon and Adeimantus reflect on a new understanding of justice by purposefully posing 

strategic questions. This process is similar to the concept of divergent thinking, which 

“represents intellectual operations wherein the individual was free to generate independently his 

own data within a data-poor situation or to take a new direction or perspective on a given topic” 

(Gallagher & Aschner, 1963, p. 187). Although the Socratic method was generally accepted by 

teachers and educators in conversations about classroom pedagogy, it was actually “deduced 

from the study of works by Plato, Aristotle, Aristophanes, and Xenophon” (Schneider, 2013, p. 

625). In other words, there was no one, definitive “Socratic method,” such that it became 

“something of a pedagogical free-for-all,” in which “educators were free to borrow what they 

liked from others, take their own liberties, and make of the methods what they wished” (p. 632). 

The application of the Socratic method has spread widely in several subdomains in 

education over time. Beginning in the late 19th century, theoretical essays that addressed the art 

of questioning, particularly with regard to the feasibility and misuse of questioning techniques, 

emerged. As the earliest record in literature, an essay by Ross (1860) defined the catechetical 

method as the method of teaching by questioning and distinguished examinatory questioning, 

which was “used to prove whether what has been previously learned has been rightly understood 

and is remembered by the pupil” (p. 367), from catechetical questioning. He then listed detailed 

descriptions, comparisons, and warnings in terms of applying questioning techniques in teaching. 

In particular, he suggested that teachers anatomize each question beginning with the individual 

words used, and then move on to syntactical relations, collateral facts, and eventually to the 

questions’ implications. Moreover, he warned that teaching by this catechetical method should 

avoid preachments and monotony of voice, so as not to descend to incorrect language or 
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manners, not stray too far from the principal point, and not to be beyond respondents’ 

comprehension. 

De Garmo (1902) asserted that “[t]o question well is to teach well” (p. 179) and 

accentuated that the fine art of teaching lies in skillful questioning more than in anything else. He 

grouped questions into four classes: (1) Analytical (to analyze knowledge into its elements), (2) 

Development (to aid the pupil in arriving at a clear comprehension of anticipated themes), (3) 

Review (to reconsider the formed conceptual construction), and (4) Examination (to inspect 

accomplished procedures). He then further emphasized that “all questions should be definite, 

comprehensible, and thought-provoking” (p. 181). He insisted that questions should be logical 

and reasonable and identified the special characteristics of questions that should be avoided, such 

as obscure and technical expressions, as well as helpful techniques for the formation and 

implementation of questioning. His essays advanced the general principles by which questions 

should be framed, delivered, and examined and simultaneously signified the merits and pitfalls 

of enacting questioning in practice. Although these theoretical, descriptive articles did not 

provide research-based evidence about questioning, they inspired scholars to conduct empirical 

studies in classrooms. 

 

Classification of Teacher Questioning 

Almost no research-based articles describing teacher questioning in classrooms existed 

prior to the work by Stevens (1912). A pioneer in examining the practice of teacher questioning, 

Stevens (1912) conducted 100 observations across multiple subjects in high schools and 

investigated the number of teachers’ questions and students’ responses. She found that the 



11 

 

average number of questions asked by teachers per day (200 total minutes of class time, on 

average) was 385 and further discussed the efficiency of instruction reflected in teacher 

questioning. Stevens (1912) claimed that “[e]fficiency of instruction involves good questioning; 

good questioning is synonymous with the use of good questions” (p. 71), and she was 

particularly concerned with two phenomena related to the rapid-fire method of teacher 

questioning: the fact that (1) the implied “high-pressure atmosphere” created by asking a large 

number of questions “produced an inconsistency between the pace of teaching and ‘nature’s own 

processes of mental activity’” (p. 17); and (2) “the largest educational assets that can be reckoned 

are verbal memory and superficial judgment” (p. 23). In sum, Stevens (1912) discussed the 

number of questions and the usage of the question-and-answer exchanges in her study but did not 

develop categories for the questions. 

To properly examine questions enacted in different subject matters and at different grade 

levels, researchers devised unique criterion measures to categorize the observed questions. The 

question-classification system developed after Stevens’ (1912) study presented, essentially, 

dichotomies, such as traditional versus unusual questioning procedure (Briggs, 1935) or memory 

versus thought-provoking questions (Corey & Fahey, 1940; Haynes, 1935). Specifically, 

analyses of teacher questioning often employed the dichotomy between eliciting factual 

knowledge and provoking thought. For example, Haynes (1935) found that 77% of teachers’ 

questions observed in elementary school called for a factual answer, with only 17% eliciting 

student thinking, and other studies demonstrated similar proportions of these two types of 

questions (Guszak, 1967; Moyer, 1967; Schreiber, 1967). 

The question classification system was eventually expanded to more than two categories; 

the most famous of these expansions was Bloom’s Taxonomy (1956), or variations based on it. 
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To illustrate how various question classification systems have employed Bloom’s Taxonomy, it 

is first necessary to outline the types of knowledge and cognitive processes in Bloom’s 

Taxonomy (see Figure 2-1) and recapitulate the definitions of both dimensions (see Table 2-1) 

before providing representative systems. In my review of relevant literature, I noticed that the 

question classification systems related to both the knowledge dimension and cognitive process, 

so I also adopted the revised Taxonomy and included definitions and examples to expose readers 

to a comprehensive understanding. 

 

 

Figure 2-1. The mapping of the original Bloom’s Taxonomy and revised Taxonomy. 
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Table 2-1  

Types in the Knowledge Dimension and Categories in the Cognitive Process Dimension in the 
Revised Taxonomy (Anderson et al., 2001) 

The knowledge dimension 
Types Examples 

Factual knowledge The basic elements students must know to be acquainted with a 
discipline or solve problems in it 

Conceptual knowledge The interrelationships among the basic elements within a larger 
structure that enable them to function together 

Procedural knowledge How to do something, methods of inquiry, and criteria for using 
skills, algorithms, techniques, and methods 

Metacognitive knowledge Knowledge of cognition in general as well as awareness and 
knowledge of one’s own cognition 

The cognitive process dimension 
Categories Definitions 
Remember Retrieve knowledge from long-term memory 

Understand Construct meaning from instructional messages, including oral, 
written, and graphic communication 

Apply Applying a procedure to a familiar task 

Analyze Break material into its constituent parts and determine how the 
parts relate to one another and to an overall structure or purpose 

Evaluate Make judgments based on criteria and standards 

Create Put elements together to form a coherent or functional whole; to 
reorganize elements into a new pattern or structure 

 

Although Bloom’s (1956) Taxonomy was proposed in the 1950s, Hunkins (1968) 

recognized in the 1960s that it had “seldom been employed as a guide for teachers’ questions and 

as a means for their study” (p. 31). Because Bloom intended his Taxonomy to provide a 

classification of educational goals instead of teacher questions, researchers seemed to favor 

Sanders’ (1966) classification system, which included an additional category, interpretation, 

over Bloom’s Taxonomy, and researchers widely adopted Sanders’ work for studying teachers’ 

questions.   

Whether the original Taxonomy was publicly mentioned or not, the idea of Bloom’s 

categories formed the central idea in a number of question-classification systems found in a 
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review of the literature on teacher questioning, as shown in Table 2-2. For example, Aschner 

(1961) found that it was easy for teachers to ask questions that call for remembering, and thus, 

the most common thinking activity that occurred in a classroom was remembering. When 

reviewing the outcomes from their studies, I recognized a very similar trend of employing 

various questions in the cognitive process dimension in that era. Sloan and Pate (1966) 

concluded that recall questions were used more than any other type of question in both 

traditional (573 out of 1,517) or new-math curriculum groups (380 out of 1,536). Moyer (1967) 

found the disappointing outcome in his study that only 29% of the 2,500 questions asked by 

teachers provoked students’ thinking and noted that questioning practices in instruction in the 

1960s were not used primarily to “stimulate thinking as opposed to the somewhat discredited 

question-answer method employed prior to 1920” (p. 214). Likewise, Schreiber (1967) 

concluded that the most prevalent type of questions asked by 14 teachers in social studies 

classrooms was the recall of facts (1,076 out of 2,704), and Davis and Tinsley (1967) analyzed 

questions asked by 44 high school social studies teachers and their students and found 1,313 

memory questions out of a total of 2,520 questions. Guszak’s (1967) study revealed, among 

1,587 questions observed from 12 elementary classrooms, that recall questions occurred in the 

highest proportion (56.9%) and that most evaluation questions called for a simple yes or no 

response.  

In the early 1970s, the field produced additional comparison studies. Godbold (1970) 

conducted a comparison study to examine questions asked by four groups of elementary and 

secondary teachers and found that the proportion of memory questions in each group ranged 

from 54.84% to 67.78% and occurred in the highest proportion among the eight categories of 

questions across all groups. Rogers (1970) focused her study on two groups of elementary 
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student teachers (experimental and control groups) with questioning interventions. In the 

cognitive categories, the mean percentages of memory oral questions in both groups were 

approximately 51% and 57%, respectively (no statistically significant difference at .05 level), but 

the mean percentage of memory test questions composed by student teachers was statistically 

different (36% in the experimental group and 91% in the control group).  

Lastly, I concluded that the application of Bloom’s Taxonomy to classifying questioning 

systems seemed to be the foundation of the question-classification systems that considered the 

cognitive process. Moreover, it could be incorporated into a more complex system that might 

include more than one parameters. For example, Enokson’s (1973) theoretical model, the 

simplified teacher question classification, included one parameter to analyze questioning quality 

and another on the cognitive level to examine cognition based on Bloom’s Taxonomy. In this 

simplified model, Enokson (1973) only divided the cognitive operations into two categories—

low and high mental operations. The low cognitive questions required memory or the simple 

retrieval of data, so this type of question was also called data recall questions and corresponded 

to the knowledge category in Bloom’s Taxonomy. The high cognitive questions asked students 

to perform higher-order mental operations and were also defined as data processing questions 

(see Table 2-2 for the classification).  
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Table 2-2  

Representative Question-Classification Systems 

Author 
(year) 

Knowledge 
(remember) 

Comprehension 
(understand) 

Application 
(apply) 

Analysis 
(analyze) 

Synthesis 
(create) 

Evaluation 
(evaluate) 

Other 

Aschner 
(1961) 

Memory   Reasoning Creative 
thinking 

Judgment  

Sloan & Pate 
(1966) 

Recall 
Recognition 

Demonstration 
Comprehension 

 Analysis Synthesis  Opinion 
Attitude 

Moyer 
(1967) 

Name 
State 

Describe 

Explain 
Define 

Illustrate 

 Compare-
contrast 

Suggest Affirm Opinion 
Alternate choice 

Yes-no 
Action 

Sanders 
(1966) 

Memory  Translation  
Interpretation 

Application  Analysis Synthesis Evaluation  

Schreiber 
(1967) 

Recall Making 
comparisons 

 Identifying Speculating  Describing 

Davis & Tinsley 
(1967) 

Memory Translation 
Interpretation 

Application  Synthesis Evaluation Affectivity 
Procedure 

Guszak 
(1967) 

Recall 
Recognition 

Translation  Explanation Conjecture Evaluation  

Godbold 
(1970) 

Memory Translation 
Interpretation 

Application Analysis Synthesis Evaluation Routine 

Rogers 
(1970) 

Memory Translation 
Interpretation 

Application Analysis Synthesis Evaluation Affective 
Procedural 
Textbook 

Pupil-initiated 
Enokson 
(1973) 

Knowledge 
 

Comprehension Application Analysis Synthesis Evaluation Guilford’s 
Structure-of-
Intellect (SI) 

Model Low mental 
operations 

High mental operations 
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Guilford’s (1956) Structure-Of-Intellect (SOI) Model was another popular question-

classification system that incorporated the cognitive process as an individual dimension—

operations. A typical and direct application of this model occurred in Gallagher and Aschner’s 

(1963) five-category system (see Table 2-3), which they used to analyze classroom verbal 

interactions in a variety of subject matter to investigate gifted junior-high school students’ 

productive thought processes. They found that the teacher’s thought productions were very 

similar to those of the students (in a social studies class), and the basis of classroom discourse 

consisted of cognitive-memory-level teacher questions and student responses.  

Table 2-3  

Gallagher and Aschner’s (1963) Classification System 

 Categories Definition 
Cognitive-memory 

operations 
(CM) 

Represents the simple reproduction of facts, formulae, or other items 
of remembered content through the use of such processes as 
recognition, rote memory, and selective recall. 

Convergent thinking 
(CT) 

Represents the analysis and integration of given or remembered data. 
CT leads to one expected end-remit or answer because of the tightly 
structured framework through which the individual must respond. 

Divergent thinking 
(DT) 

Represents intellectual operations wherein the individual is free to 
independently generate his own data within a data-poor situation or to 
take a new direction or perspective on a given topic. 

Evaluative thinking 
(ET) 

Deals with matters of judgment, value, and choice, and is 
characterized by its judgmental quality. 

Routine 
(R) 

Contains miscellaneous classroom activities, including the attitudinal 
dimensions of praise and censure, the dimensions of structuring, a 
kind of prefatory remark, telling in advance what the speaker intends 
to say or do, or what s/he expects someone else to say or do. 

 

Unlike previous studies that applied Bloom’s (1956) and Guilford’s (1956) systems 

separately, Enokson (1973) considered them “as being interrelated systems which function 

simultaneously” (p. 28) and incorporated Guilford’s (1956) Structure-of-Intellect (SI) Model into 
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his classification system as another parameter, the nature of questions, that contained convergent 

and divergent questions. The convergent category consisted of closed questions that required 

only a single possible answer and the divergent category included open questions that allowed 

several possible answers. Although Blosser (1991) criticized this closed and open dichotomy as 

over-simplified, this classification seemed properly reflected by several research results on the 

number of questions teachers asked in the classroom—the low cognitive and convergent 

questions generally outnumbered other types of questions. 

Later, in the 1990s, Wilen (1991) proposed the Gallagher-Aschner and Bloom hybrid 

system that subdivided the convergent and divergent operations into four levels as shown in Table 

2-4. To highlight the similarities this system shared with others, I have italicized the operations 

adopted from Bloom and underlined the concepts corresponding to Gallagher-Aschner’s system. 

Table 2-4  

Wilen’s (1991) Classification System 

Categories Definition 

Level I: 
Low-Order Convergent 

Questions requiring students to engage in reproductive thinking 
(e.g., recall or recognize information). Responses can easily be 
anticipated. 

Level II: 
High-Order Convergent 

Questions requiring students to engage in the first levels of 
productive thinking (e.g., demonstrate an understanding of 
information by organizing material mentally). Responses can be 
anticipated. 

Level III: 
Low-Order Divergent 

Questions requiring students to think critically about information 
(e.g., discover reasons or causes, draw conclusions or 
generalizations to support opinions). Responses may not be 
anticipated. 

Level IV: 
High-Order Divergent 

Higher-order questions requiring students to perform original and 
evaluative thinking (e.g., make predictions, solve realistic 
problems, produce original communications, and judge ideas, 
information, actions, and aesthetic expressions). Responses 
cannot be anticipated. 
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In addition, it is worth noting the differences between the two systems. First, Gallagher 

and Aschner’s (1963) five-category system described teacher-student interaction with a focus on 

student’s productive thought processes, while Wilen’s (1991) classification system categorized 

only teacher questions. Second, these two systems seemed merely to re-organize the topics in a 

different way based on the research objectives. In sum, these question-classification systems 

were primarily based on memory, cognition, and productive thinking. The inclusion of the 

cognitive process in the analysis of teacher questioning, on the one hand, accentuated students’ 

role in teacher questioning. Hogg and Wilen (1976) advocated that “[s]tudents can be a practical, 

reliable source of feedback on teachers’ performances, for they observe the teacher in action 

many hours each week” (p. 281). More than simply observing their teachers, students had a high 

possibility to enhance their learning through retrieving prior knowledge and producing new 

thoughts through teachers’ questions. On the other hand, the approach of categorizing teachers’ 

questions by referring to students’ cognitive behavior also decreased the effectiveness of the 

classification because the construction was considered an inferential result. For instance, the 

question, “How do you know 8 plus 8 equals 16?” could stimulate high-order cognitive thinking 

if students showed evidence of analyzing or reasoning by using the given information, but they 

might merely recall a memorized fact. Although Gall (1970) suggested a solution by 

appropriately controlling the instrument in research, this difficulty has continued to challenge 

researchers.  

In the comparison of various question classification systems, some researchers 

incorporated additional or alternate categories into their analytic frameworks (Davis & Tinsley, 

1967; Godbold, 1970; Moyer, 1967; Schreiber, 1967; Sloan & Pate, 1966; Rogers, 1970). Most 

of these categories aimed to elicit students’ (a) opinions (e.g., agreement), (b) action (e.g., to pick 
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up things), or (c) attitude (e.g., affectivity) – questions that did not involve any cognitive 

operations and for which it would be possible to elicit nonverbal responses from students. For 

example, a teacher might ask “Would you like me to read the problem again?” when she detected 

her student’s hesitation in action, and the student could simply nod to continue this interaction. 

This exact question could also call for a “pause” instead of “action” when used to clear up 

confusion in the ongoing interaction.  

In terms of affective questions, Davis and Tinsley (1967) defined them as those where 

“the one questioned responds with a statement of feeling, emotion, or opinion without a standard 

of appraisal” (p. 23). Hunkins (1976) described five functions of affective questions: (a) to 

sensitize students to the existence of certain phenomena and stimuli (e.g., “Would you be willing 

to read the problem for me?”); (b) to sufficiently involve students in their work (e.g., “Are you 

done with your work?”); (c) to encourage students to value their commitment to a phenomenon 

(e.g., “Do you think you can try one more time?”); (d) to help students organize the values into a 

system (e.g., “Do you want to write down all relevant numbers when I read the problem to 

you?”); and (e) to have students utilize the existing values to regulate their behavior, such as 

“What would you do to help others to solve this problem?” (p. 62-65). After Hunkins (1976), 

some researchers produced similar models to classify affective questions, with different foci such 

as student engagement (Morgan & Saxton, 1994; Wilen, 1987) and attitudes (Sloan & Pate, 

1966). 

In brief, researchers classified questions through applying alternative systems, such as 

interrogative versus rhetorical (Hyman, 1979, Moyer, 1967), tempo (Houston, 1938), open or 

closed questions (Enokson, 1973; Smith, Hardman, Wall, & Mroz, 2004), and hierarchy versus 

context involvement (Frager, 1979), in addition to incorporating cognitive operations. All these 
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studies diversified question-classification systems and broadened our horizon when evaluating 

teacher questioning. However, most research on teacher questioning insisted on considering 

student responses, and this incorporation attracted researchers’ attention to the sequential 

patterns of teacher-student interactions. 

 

The Sequential Patterns in Teacher Questioning 

To understand the interaction between teachers and students, it is imperative to examine 

the elements and patterns of teacher-student exchanges. My review of the sequential pattern of 

teacher questioning in the literature began with the initial formation of the question-response 

pattern.  

Guszak (1967) analyzed the anatomy of individual teacher-student exchanges and, as a 

result, developed the concept of the Question-Response Unit (QRU). This QRU pattern may 

contain a subset of the following elements: (a1) the teacher’s initiating question; (b) student 

response [congruent (+) or incongruent (−)]; (c) clarifying, extending, or cueing remarks from 

the teacher; (d) the teacher’s management of time allowed [did not allow time (0) or response 

allowed but only silence heard (x)]; (e) the referent in the materials for the question; (f) the way 

the student subsequently dealt with the question; and (g) the phase in which attention was shifted 

away from the initiating question. The combination of QRU patterns varied: the most frequent 

was “ab+” (86%), followed by other patterns such as “ab−” (4%) and “a0cb+”(4%). Several 

trends are notable. First, most QRU patterns consisted of “the teacher initiated a question and the 

student provided a congruent response” in which a satisfying response seemed always to be 

                                                 
1 The item letter also served as the code for pattern elements discussed in QRU. 
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given by students and functioned as a closure in the teacher-student exchanges. Second, 

regarding the type of questions initiated by the teacher, 65% of the “ab+” pattern belonged to 

recall questions, and the study also revealed that the dominant “ab+” type (recall questions) was 

most prominent in lower grade levels (second grade in this study).  

Moreover, Guszak (1967) expanded the analysis to a combination of two or more QRU 

patterns and constructed another concept called the Question-Response Episode (QRE) that 

contained four types:  

1. The setting-purpose follow-up episode occurred when a teacher followed up the 

initial question with a parallel question (e.g., a second attempt to get a response). 

2. The verification episode involved questions in which a congruent response can be 

verified by referring to the sources or text. 

3. The justification episode appeared when a teacher called upon a student to justify a 

previous response by providing an explanation that often followed a conjectural 

response.  

4. The judgmental episode occurred when a teacher asked for an evaluation of 

responses to the preceding question. 

Although these QUE types were originally used to describe teachers’ questions, I viewed the 

concept of QRE as a precursor of the Initiation-Response-Feedback (IRF) structure (Sinclair & 

Coulthard, 1975) because of certain shared features: (1) the QRE was built on the basic unit of 

“teacher-initiated question followed by student response” that corresponds to the I-R sequence, 

and (2) the follow-up episodes had correspondent occurrences similar to the feedback in IRF. 

Another famous interactional sequence was the Initiation-Response-Evaluation (IRE) pattern 

(Mehan, 1979a), in which the evaluation could be considered an evaluative response that was a 
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simplified follow-up move compared with the structure of repeat, verification, justification, and 

judgmental follow-up question in QRE. The IRF structure is so dominant that Wells (1993) 

claimed that it “accounts for some 70% of all the discourse that takes place between teacher and 

students” (p. 2) in both secondary and elementary schools, and it has been the dominant model 

even in one-on-one teacher-student interactions. In fact, the analytic model of the application of 

IRF patterns could be more complicated than merely interpreting IRF as a triadic sequence. For 

example, Wells and Arauz (2006) analyzed dialogic modes of interaction used in science 

classrooms by level, as shown in Figure 2-2. In the levels of analysis, the IRF was centered in the 

nuclear exchanges from any sequence within different episodes collected across seven years. 

This coding scheme sufficiently represented the layers of elements involved in an interactional 

episode and outlined the flow of analyzing classroom discourse. 

 

 

Figure 2-2. An overview of the coding scheme in the Developing Inquiring Communities in 
Education Project (DICEP) by Wells and Arauz (2006, p. 390). 
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Similarly, Mehan (1979a) identified the IRE as “the most recurrent pattern” (p. 72) but 

simultaneously warned that while employing the discourse patterns in instruction, “teachers are 

sometimes not aware that the child’s display of knowledge is constrained by the structure of the 

task, the organization of discourse, and the physical parameters of the teaching-learning 

situation” (Mehan, 1979b, p. 294). This lack of awareness could be due to the complexity of the 

components comprising the IRE patterns, as shown in Table 2-5. 

 

Table 2-5 

Potential Components in IRE Patterns 

Type of act Potential components 

I: Teacher initiation Directive, informative, choice elicitation, product elicitation, process 
elicitation, and metaprocess elicitation 

R: Student reply Non-verbal reaction, acknowledgement, choice response, product 
response, process response, and metaprocess response 

E: Teacher evaluation Prompt, accept, and praise 
 

While the structure and organization of question-response patterns, such as the speech act 

by Sinclair and Coulthard (1975) and the initiation act by Mehan (1979a), were exhaustively 

studied and discussed in the 1970s, the next challenge would be how to leverage established 

scholarship to improve the classroom discourse and teacher-student interactions. The Professional 

Standards for Teaching Mathematics (NCTM, 1991) advocated changes to enhance the 

environment of the mathematics classroom and reinforced the role of teacher questioning in 

teachers’ orchestration of classroom discourse. Accordingly, Mewborn and Huberty (1999) urged 

teachers to listen carefully to students so that they can ask good follow-up questions and 

encouraged teachers to utilize a triadic sequence—Question-Listen-Question—to “provoke 
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thoughtful responses from students…[and] help students clarify and extend their thinking” (p. 

226). Although the structure of classroom discourse has been a topic of continuous interest to 

researchers, the focus in the analysis of discourse shifted from overemphasizing teachers’ 

performance to increasing students’ contributions, as well as the interactive nature of teacher-

student exchanges. 

van Zee and Minstrell (1997) examined how an experienced science teacher used 

questioning to guide student thinking and defined a reflective toss, a particular kind of question 

that enabled the teacher to encourage students to elaborate their thinking. In this structure, the 

role of the teacher included catching the meaning of the student’s statement and then throwing 

responsibility for thinking back to the student(s). This reflective toss not only exemplified the 

concept of “listening carefully and asking good follow-up questions,” but also fixed the purposes 

of the teacher’s follow-up questions on (a) engaging students in a proposed method, (b) 

beginning the refinement process by clarifying a discussed method, and (c) evaluating an 

alternative method that might arise as a byproduct of the discussion. That is, the move repeatedly 

redirected the focal point of the whole discussion back to the idea students proposed at the 

moment or their on-going thinking. In particular, the reflective toss also successfully invited 

other students to help elaborate their peer’s idea when needed. Notably, the reflective toss 

excluded questioning moves like directly accepting the proposed idea or requesting an external 

evaluation of it.  

It could be beneficial to understand how teachers use follow-up moves to value and 

incorporate students’ ideas in their interactions. In her study examining teacher follow-up moves 

and student learning, Bishop (2008) used responsiveness to reflect the extent of how the teacher 

responds to their students, identifying four categories: (1) Low-level moves mainly evaluate or 
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rebroadcast a student’s idea; (2) Medium-level moves focus on the teacher’s thinking, with 

minimal response to the student; (3) High-level (I) moves respond to the student’s ideas but 

display the teacher’s thinking; and (4) High-level (II) moves explore student thinking and 

encourage his or her independent reasoning. This study added a dimension to the aforementioned 

QRE categories and clarified the goals in the reflective toss. For example, when a student 

proposes a method, the teacher could follow it up to different extents, from passively repeating 

what the student said to actively inviting high-level mental operations.  

Keeping the levels of responsiveness in mind, I expanded my focus on responsiveness to 

a mutual relationship between teacher and student due to my purpose of analyzing one-on-one 

interviews in this study. A more general model emerged in a review of the literature. Hogan, 

Nastasi, and Pressley (1999) identified three interaction patterns—consensual, responsive, and 

elaborative—while scrutinizing 32 eighth-grade students’ reasoning complexity in science 

classrooms. Consensual interaction occurred when one of the participants contributed substantive 

responses to the interaction and the other served as a “minimally verbally active audience” (p. 

393). When enacting responsive interaction sequences, two parties of participants equally 

contributed substantive responses to the interaction and could freely express their ideas on the 

topic discussed. The elaborative pattern occurred when the participants not only contributed 

substantive responses but also co-constructed additions, made corrections, or offered a 

counterargument based on any prior statement (Hogan et al., 1999). In sum, an initial question, 

generally from the teacher, could always guarantee a sequence of interactional moves that 

consisted of a response from students, feedback, evaluation, or follow-up questions from the 

teacher, or multiple recurrent utterances of the response and follow-up subset. When various 

types of teacher-student exchanges exist, it would be helpful to examine or evaluate them 
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through the lens of the function (e.g., verification, justification, or judgmental purposes in QRE), 

the structure (e.g., IRF or IRE), the extent (e.g., low, medium, or high level), or the quality (e.g., 

consensual, responsive, or elaborative pattern). 

 

Teacher Questioning in Mathematics Teaching 

In a review of the literature on questioning, I noticed that most research was conducted in 

social studies classrooms. In this section, I selected studies that focused on teacher questioning in 

mathematics classrooms.  

Comparison of Groups of Teachers in Questioning 

Some scholars attempted to compare teachers’ questioning practices while establishing 

different conditions in their study. For example, Sloan and Pate (1966) conducted a quantitative 

study to compare two groups of elementary mathematics teachers’ questioning practices based 

on what they required of the pupils. The eight categories used to analyze teachers’ questions 

were 1) recognition, 2) recall, 3) demonstration of skill, 4) comprehension, 5) analysis, 6) 

synthesis, 7) opinion, and 8) attitude. They reported a statistically significant difference between 

the questioning practices of teachers who participated in the “new math” program, which 

emphasized the objectives of inquiry and discovery, and teachers in traditional mathematics 

programs. They found that the new math teachers asked significantly fewer recall and more 

comprehension and analysis questions.  

Perry, VanderStoep, and Yu (1993) conducted a cross-country study in which they 

employed six types of questions to examine the questioning practices of teachers in Japan, 

Taiwan, and the U.S., focusing on addition and subtraction in first-grade mathematics classes. 
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The predetermined categories included 1) computation or rote recall, 2) rule recall, 3) computing 

in context, 4) making up a problem, 5) problem-solving strategies, and 6) conceptual knowledge, 

and all categories were completely related to students’ problem-solving behavior. They found 

that Asian teachers asked significantly more questions about conceptual knowledge and 

problem-solving strategies than did U.S. teachers. Taiwanese teachers asked significantly more 

questions that were embedded in a concrete context than did U.S. teachers. The kinds of 

questions typically asked in Japanese and Taiwanese classrooms may contribute to the 

construction of more sophisticated mathematical knowledge for children in those classrooms. 

Sahin and Kulm (2008) compared two sixth-grade teachers’ uses of probing, guiding, and 

factual questions to study the types of questions asked in classrooms and the intentions in 

relation to their uses of these questions. The novice teacher was a first-year male teacher, and the 

experienced teacher was a female teacher with seven years of teaching experience on the same 

topic. The results in this study showed that both teachers asked factual questions more often than 

other types of questions. Although the teachers used mostly probing questions to ask several 

students similar questions to focus on the specific exercise instead of extending or generalizing 

ideas, the novice teacher asked a far higher percentage of probing questions than the experienced 

teacher, who only enacted more probing questions during the use of manipulatives. In particular, 

the authors suggested that including students’ answers when examining the teachers’ questions 

could be a useful approach to determine the intention of teachers’ questions. 

Boaler and Brodie (2004) investigated the nature of high-school mathematics teachers’ 

questions and developed nine categories of questions from an analysis of teaching practice as 

shown in Table 2-6. The data analysis showed that the teachers using a traditional curriculum 

asked more Type 1 questions (> 95%) than the teachers who used reformed curriculum (range 
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from 60% to 75%). Moreover, this result was consistent with the study by Sloan and Pate (1966), 

in that they also compared the relationship between curriculum change and teacher questioning 

in two groups of teachers: those using “new math” materials (School Mathematics Study Group, 

SMSG) and those who used traditional materials. However, their classification of questions 

seems debatable because of the high percentage of the Type 1 questions and extremely low 

percentages of other question types, such as Type 2, 6, 7, and 8. Moreover, although the question 

types ascertained the practical purpose of teacher questioning, this classification system seems 

too behavior-oriented to highlight the thematic concepts that might derive from these questioning 

moves. 
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Table 2-6  

Boaler and Brodie’ (2004) Classification System 

Question type Description Examples 

1. Gathering information, 
leading student through a 
method 

Requires immediate answer 
Rehearses known 
facts/procedures 
Enables students to state 
facts/procedures 

What is the value of x in this 
equation? 
How would you plot that 
point? 

2. Inserting terminology 

Once ideas are under 
discussion, enables correct 
mathematical language to be 
used to talk about them 

What is this called? 
How would we write this 
correctly? 

3. Exploring mathematical 
meanings and/or 
relationships 

Points to underlying 
mathematical relationships 
and meanings. Makes links 
between mathematical ideas 
and representations 

Where is this x on the 
diagram? 
What does probability mean? 

4. Probing, getting students 
to explain their thinking 

Asks student to articulate, 
elaborate or clarify ideas 

How did you get 10? 
Can you explain your idea? 

5. Generating discussion 
Solicits contributions from 
other members of class 

Is there another opinion about 
this? 
What did you say, Justin? 

6. Linking and applying 

Points to relationships among 
mathematical ideas and 
mathematics and other areas 
of study/life 

In what other situations could 
you apply this? 
Where else have we used 
this? 

7. Extending thinking 

Extends the situation under 
discussion to other situations 
where similar ideas may be 
used 

Would this work with other 
numbers? 

8. Orienting and focusing 

Helps students to focus on 
key elements or aspects of the 
situation in order to enable 
problem-solving 

What is the problem asking 
you? 
What is important about this? 

9. Establishing context 

Talks about issues outside of 
mathematics in order to 
enable links to be made with 
mathematics 

What is the lottery? 
How old do you have to be to 
play the lottery? 
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As shown above, knowing which group of teachers outperformed on questioning under 

particular conditions would inform researchers about relative advantages and disadvantages 

when establishing a research environment in the future. In the following, I review two studies 

that identified the effectiveness of a particular type of question in mathematics classes.  

Effectiveness of Particular Types of Questioning 

Franke et al. (2009) investigated the questioning practices elementary teachers employed 

to elicit students’ thinking and stimulate mathematical discussion in three elementary 

classrooms. These teachers were participating in a professional development program that 

highlighted relational thinking.2 The authors analyzed the questioning practices these teachers 

used to follow up on students’ initial responses and identified four types of questioning practices: 

(1) General questions that were not related to anything specific that a student said, (2) specific 

questions that addressed something specific in a student’s explanation, (3) probing sequences of 

specific questions that consisted of a series of more than two related questions about something 

specific that a student said and included multiple teacher questions and multiple student 

responses, and (4) leading questions in which the teacher guided students toward particular 

answers or explanations and provided opportunities for students to respond (p. 383).  

In particular, Franke et al. (2009) discussed the relationship between teachers’ 

questioning practices and students’ explanations of their problem-solving strategies and 

concluded that (a) teacher follow-up questions were not a guarantee of students’ further 

elaboration of their thinking; (b) when teachers asked sequences of specific questions (alone or 

                                                 
2 For the detail of program content, please refer to Thinking Mathematically: Integrating Arithmetic and 
Algebra in the Elementary School by Carpenter, Franke, and Levi (2003). 
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in conjunction with other questioning types), 100% of the target students provided elaboration of 

their explanations; and (c) the target students, whose initial explanations were incorrect, 

ultimately produced correct and complete explanations primarily in segments with teachers’ 

probing sequences of specific questions. In short, probing sequences of specific questions always 

elicited further elaboration from the student and usually allowed the student the opportunity to 

articulate a correct and complete explanation regardless of whether the initial student explanation 

was ambiguous, incomplete, or incorrect.  

To explore the effect of different types of questions in an elementary teacher’s 

mathematics classroom, Parks (2010) identified four types of questions across two quality 

dimensions: “Reform versus Traditional” and “Implicit versus Explicit,” providing descriptions 

to illustrate her use of these concepts (see Table 2-7). Parks concluded that implicit questions 

particularly benefited students who shared a common cultural background and language 

practices with the teacher and that explicit questions seemed to productively support students’ 

mathematical thinking.  
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Table 2-7  

Parks’ (2010) Classification System 

 Implicit 
(questions did not provide hints or 
clues about the expected answer) 

Explicit 
(questions alluded to the kind of 

answer the teacher desired) 

Reform 
(teaching that 

includes process 
skills as well as 

content) 

Examples: 
Why? 
What do you notice about this? 
Why does this make sense? 
What’s a prediction you could 
make? 
What can you tell me about this? 
What do you think? 

Examples: 
Caitlin, can you say why you 
disagree with Sienna’s answer? 
Tell me why you’re adding 32 and 
33. 
Why would 26 not make any sense as 
an answer? 

Traditional 
(teaching that is 
more narrowly 

focused on 
content) 

Examples: 
What do you do to add two-digit 
numbers with regrouping? 
If you haven’t memorized your 
facts, what can you do to get the 
answer? 

Examples: 
What is four groups of two? 
What digit is in the one’s place, 
everybody? 
What do we call the name of this 
coin? 
Okay, in Celsius, what temperature 
does water freeze at? 

 

 

In some studies, the categories of questions in practice were derived directly from the 

data and impossible to anticipate in advance, such as Boaler and Brodie’s (2004) classification 

system. However, the following studies tended to describe the outcome teacher questioning 

might determine with regard to students’ mathematical performance. 

Teacher Questioning that Elicited Student Work 

Martino and Maher (1999) analyzed an elementary teacher’s timely questioning in 

mathematics classrooms and highlighted four functions in teacher questions: 1) facilitating 

justification, 2) offering an opportunity for generalization, 3) inviting learners to make 
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connections, and 4) facilitating awareness of solutions presented by other students. They then 

concluded that there was a strong relationship between monitoring students’ constructions and 

posing a timely question, which can challenge learners to advance their understanding. The 

authors suggested that “the type of question asked by the teacher must be connected to the 

student's present thinking about a solution” (p. 56).  

Adopting this idea of “connecting to the student’s thinking,” Webb et al. (2006) 

attempted to analyze the nature of teacher questions by taking a different approach: including the 

nature of the student’s response and of the cognitive processes required to formulate the response 

(the content). They found that most teacher questions required only low-level information, like a 

single-number answer, and they claimed that teachers infrequently prompted an elaborated 

response from students, even though they did detect a slight increase in the questions asking 

students to describe a computational procedure in general terms. In addition, teachers sparsely 

requested an explanation with regard to the rationale behind students’ procedural understanding. 

Instead, they required students to engage in only low- or medium-level cognitive processes to 

formulate a response (the operations). Particularly in problem-solving, calling on students to 

assign them a more active role only resulted in questions inquiring about numerical procedures, 

and in this process, teachers’ questions “seemed intended to uncover errors that could be 

corrected rather than to uncover misconceptions that could be rectified” (p. 109). Overall, the 

findings suggested that the role of teachers was modeled as an active help provider, and the role 

of students was modeled as a help-seeker or a passive recipient of the teacher’s instruction. 

Moreover, these roles became a consensual model existing lying in teacher-student interactions, 

particularly while working in a small group. 
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Researchers have paid substantial attention to in-service and experienced teachers’ 

questioning practices. However, how to examine preservice teachers’ questioning practices and 

evaluate the development of their questioning techniques was in fact noted by scholars 

approximately a half-century ago (Blosser, 1979; Grager, 1979; Rogers, 1970). A further 

discussion of this trend is presented below. 

Preservice Teachers’ Questioning Practices 

In her study of learning to teach mathematics by questioning, listening, and responding, 

Nicol (1999) pointed out that preservice teachers experienced tensions related to posing 

questions to 1) learn what students are thinking, 2) guide students to the answer, and 3) test 

students’ thinking. She found that prospective teachers asked questions to direct students toward 

the correct answer in the beginning sessions of her study, although they had been trained not to 

lead students through the problem. As a result, students only had limited opportunities to 

demonstrate their thinking and advance their cognitive performance because of a lack of spaces 

for inquiry in teachers’ questions.  

Moyer and Milewicz (2002) examined 48 preservice teachers’ questioning strategies in 

their one-on-one diagnostic interviews with students working on rational numbers. This approach 

was designed to exclude the uncertainty of classroom distraction so that participating teachers 

could focus on the child’s thinking. In the study, the preservice teachers utilized question 

categories provided by the instructor to analyze their own audiotaped interviews. Three dominant 

categories were revealed: 1) check-listing, 2) instructing rather than assessing, and 3) probing 

and follow-up questions. This diagnostic interview structure helped preservice teachers develop 

questioning techniques that incorporated children’s thinking “in the process of interpreting and 

responding to unexpected answers” (p. 296). Notably, however, the emerging questioning 
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patterns left out the stages of students’ problem solving, and the effects of mathematical tasks 

were underrated. For example, this study did not distinguish the teachers’ questions pertinent to 

eliciting students’ existing strategies from those used to confirm the mathematical terminology 

students produced. 

Based on an adaptation of question categories created by Moyor and Milewicz (2002), 

Weiland et al., (2014) examined the development of elementary preservice teachers’ questioning 

practices and videotaped one pair of teachers working with two students through formative 

assessment interviews on mathematics for six weeks. They found that, on the one hand, 

preservice teachers’ use of competent follow-up questions, those “attempting to draw students’ 

attention to conceptual meaning” (p. 344), increased over the course of the semester. On the 

other hand, both teachers missed many opportunities to further explore student thinking while 

directly instructing and asking leading questions.  

Teacher Questioning in Problem Solving 

Jacobs and Ambrose (2008) studied 65 K-3 teachers conducting one-on-one interviews of 

231 students solving 1,018 story problems. Their study proposed four categories of teaching 

moves to support a child’s thinking before a correct answer is given and four categories to extend 

a child’s thinking after the child gives a correct answer. Later, in 2016, Jacobs and Empson 

(2016) constructed an amalgamated framework based on Jacobs and Ambrose’s (2008) study and 

their research data—as shown in Figure 2-3—to analyze an experienced elementary teacher’s 

teaching moves.  
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Figure 2-3. An amalgamated framework of teaching moves (Jacobs & Empson, 2016, p. 189). 

 

They found that the teacher was responsive to students’ thinking and identified four 

teaching moves that were commonly used, including  

1) Regularly checking the student’s understanding of the problem or highlighting the 

specific, challenging parts of the problem in the stage of ensuring the student is making 

sense of the story problem. 
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2) Posing general starter questions, inviting explanation, linking representation and the 

story context, and making a connection in the stage of exploring details of the student’ 

existing strategy.  

3) Soliciting alternative strategies or comparing multiple strategies in the stage of 

encouraging the student to consider other strategies. 

4) Requiring formal mathematics notation for the student’s solutions in the stage of 

connecting the student’s thinking to symbolic notation. 

Jacobs and Empson’s (2016) revised framework could be practically mapped onto 

Polya’s (1957) four stages of problem solving (see Figure 2-4) and would be very useful to 

examine teaching moves in support of students’ problem-solving activities in mathematics. 

 

Figure 2-4. Teaching moves in the four-stage problem solving. The tasks become more difficult 
to the right on the x-axis. In Quadrant IV, the dashed line maintains the difficulty level in the 
next task, and the yellow line means the cognitive demand of next task will be increased.  
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An Integrated Framework of Teacher Questioning  

Based on my review of the literature, I developed an integrated framework informed by 

1) Jacobs and Ambrose’s (2008) original work on teacher moves, 2) Jacobs and Empson’s 

(2016) revised framework, and 3) Polya’s (1957) four problem-solving stages: (I) understanding 

the task, (II) devising a plan, (III) carrying out the plan, and (IV) looking back. Because Stage 

IV, with its extending moves used after the correct answer is given, is beyond the scope of this 

work, I only examined questioning moves in the first three stages, as shown in Figure 2-5. The 

original categories proposed by Jacobs and Ambrose (2008) included four types of supporting 

and four types of extending moves. I included only supporting moves because the focus of 

teacher questioning in this study was exclusively on the questioning moves teachers used to 

support students’ thinking before the posed mathematical problem was correctly solved. The four 

categories of teaching moves from Jacobs and Empson’s (2016) framework (ensuring 

understanding, exploring strategies, connecting, and considering other strategies) served as the 

categories for this framework. 

 

Figure 2-5. The integrated framework that was developed based on Jacob and Empson’s (2016) 
teaching moves and three stages in Polya’s (1957) problem-solving guidelines. 
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Given that the teacher-student interactions in this study were situated in only three of 

Polya’s problem-solving stages, a category of questioning moves used for inquiring about the 

child’s problem-solving plan was needed. Therefore, I added a new category, Supportive 

Questioning Move 2, to analyze questioning moves observed in problem-solving Stage II. 

Hereafter, teachers’ supportive questioning moves will be denoted as SQM, corresponding to 

Jacobs and Empson’s teaching moves (see Figure 2-5). Table 2-8 presents the five categories of 

teachers’ questioning moves with the description of their function. Once I determined the 

category of the questioning move, I examined the openness of the questioning move based on the 

extent of the student’s responses elicited by that questioning move. 
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Table 2-8  

The Five Categories of the Supportive Questioning Move (SQM) 

Category of Supportive 
Questioning Moves 

Description of The Function 

SQM1: Ensuring the child 
is making sense of the 
task 

To ensure that students understand  
x the contextual features of the task scenarios  
x the involved mathematical ideas and relationships within the 

tasks 
SQM2: Inquiring about 
the child’s plan to solve 
the task 

To learn about the child’s problem-solving strategies derived from 
x the given information 
x the child’s prior experience 

SQM3: Exploring details 
of the child’s existing 
strategies 

To facilitate preservice teachers’ understanding of  
x the child’s procedural understanding 
x the child’s conceptual understanding 
x the rationale behind the mathematical representations 

employed 

SQM4: Connecting the 
child’s thinking to 
symbolic notation 

To enhance the connection between  
x the child’s thinking and mathematical representations 
x informal expression and formal mathematical terminology 
x the child’s presenting idea and its corresponding 

mathematical principle 
SQM5: Encouraging the 
child to consider other 
strategies 

To elicit additional strategies by 
x providing a hint when the child is struggling to solve the task 
x leveraging the child’s successful strategy 
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CHAPTER 3 

METHODOLOGY 

The data for this study were collected in two semesters—Fall 2014 and Spring 2015—to 

address the following research questions: 

1. What is the nature of enacted questions that elementary preservice teachers employ in 

their SSMFE interviews? 

2. How are the teacher-student interactional turns constructed and functioning in their 

SSMFE interviews? 

3. What are the successes and difficulties in elementary preservice teachers’ questioning 

practices in their SSMFE interviews? 

 

Participants 

The participants who participated in this study consisted of 13 preservice teachers from 

two mathematics methods courses at the University of Georgia. All teacher participants were in 

their junior year and had completed at least two mathematics content courses and other 

mandatory education courses (e.g., investigating critical and contemporary issues in education, 

exploring socio-cultural perspectives on diversity, and exploring learning and teaching) for Early 

Childhood Education majors (certification Pre-K–5).  

The participants were selected by convenience sampling (Patton, 2002) from 28 

preservice teachers in each methods course. I initially recruited volunteers at the beginning of 
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each EMAT 3400 courses: One was in Fall 2014 and the other is in Spring 2015. The Spring 

2015 section was taught by an instructor who was the teaching assistant working in the Fall 2014 

section, so both courses were structured the same way on the campus classes (e.g., same topics 

were addressed in the same order) and tasks designed for SSMFE interviews (e.g., same weekly 

interview protocols were provided to preservice teachers). In each methods course, 

approximately ten preservice teachers showed interest in participating in this study. I determined 

the teacher participants based on my observation of their performance in the methods course. 

The candidates were those who displayed relatively positive attitudes by asking more questions 

about the course content and actively discussing their interview plans with the instructor. The 

student participants consisted of two grade levels of students at a public elementary school: 

fourth-graders in the Fall 2014 study and first-graders in the Spring 2015 study. At the beginning 

of the semester in Fall 2014 and Spring 2015, I recruited student participants in the elementary 

school that cooperated with these two mathematics methods courses, and approximately eight 

students in each grade were consented to participate in this study.  

Based on this convenience sampling (Patton, 2002), I grouped 13 pairs of teacher-student 

participants were follows: One cohort (𝑛 = 6) participated in the Fall 2014 study; the other 

cohort (𝑛 = 7) participated in the Spring 2015 study. All teacher participants then completed a 

consent form to indicate their agreement to participate in this study. The student participants’ 

consent forms were completed by their parents or guardian. 
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Settings 

Mathematics Methods Courses (EMAT 3400) 

This study was conducted in two mathematics methods courses—the first of two 

mathematics pedagogical courses in the teacher education program— at the University of 

Georgia. The mathematics methods courses consisted of field experience at Barrow Elementary 

School one day per week for eight weeks and class on campus the remainder of the semester. 

The Spring 2015 section was taught by an instructor who was the teaching assistant working in 

the Fall 2014 section, so both courses were structured the same way on the campus classes (e.g., 

same topics were addressed in the same order) and tasks designed for SSMFE interviews (e.g., 

same weekly interview protocols were provided to preservice teachers).  

Barrow Elementary School is located in Athens, Georgia, and is home to a total of 43 

teachers and 536 students (Pre-K to Grade 5). The school included 44% White students, 40% 

African-American students, 7% Asian students, 5% Hispanic students, and 4% multi-racial 

students. Barrow Elementary School has two pre-K classes, five kindergarten classes, five first-

grade classes, four second-grade classes, four third-grade classes, three fourth-grade classes, and 

three fifth-grade classes. At Barrow Elementary School, preservice elementary school teachers 

participated in a field-based activity, the Single Student Mathematical Field Experience 

(SSMFE, see Sawyer & Lee, 2014), and concentrated on learning about children’s mathematical 

thinking.  

Single Student Mathematical Field Experience (SSMFE) 

Moyer and Milewicz’s (2002) research result indicated that “[h]aving preservice teachers 

focus on the skill of questioning in a one-on-one diagnostic interview may be an effective 

starting point for developing the mathematics questioning skills they will use as future classroom 
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teachers” (p. 297). The field experience at Barrow Elementary School is addressed as the Single 

Student Mathematical Field Experience (SSMFE), in which each preservice teacher worked one-

on-one with an elementary student on mathematical topics once a week for eight weeks. During 

the eight-week period, the teacher participants worked with student participants to develop an 

understanding of the student’s mathematical thinking, explanations, and interpretation in the 

problem-solving process.  

In general, the instructors of EMAT 3400 designed interview protocols for preservice 

teachers to use in the SSMFE (see Appendix A). However, when preservice teachers decided to 

incorporate special tasks such as reading children’s literature, the course instructors would not 

prepare tasks for preservice teachers in advance. For each SSMFE interview, preservice teachers 

selected a subset of interview tasks on the protocol in advance as the intended tasks with 

potential talk moves (Ginsburg, 1997) they planned to use while working with students. In the 

actual interview, preservice teachers inevitably had to employ unanticipated questioning moves 

to accomplish the problem-solving tasks with students. These impromptu questioning moves 

were termed “enacted questioning moves.” During each SSMFE interview, the instructor and one 

teaching assistant circulated in the hallway and were ready to assist the preservice teachers at any 

time they needed help. The researcher provided no additional interventions and materials in the 

SSMFE. Each SSMFE session lasted for 35 to 45 minutes, depending on the type and level of 

difficulty of the enacted tasks. The structure of SSMFE interviews and intended and enacted 

questions is shown in Figure 3-1. 
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Figure 3-1. The structure of the Single Student Mathematical Field Experience (SSMFE). 
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After each SSMFE interviews, the preservice teachers optionally wrote follow-up 

debriefing (see Appendix B). At the end of the course, they were required to construct a final 

portfolio documenting their reflection and growth over the course of the semester. The debriefing 

form was an auxiliary assignment to help preservice teachers introspect their work in each 

SSMFE; and the final portfolio was a formal report that preservice teachers had to describe the 

interactions by issues, including describing the student’s mathematical understanding, analysis of 

mathematics content, and personal reflection. 

Intended Mathematical Tasks  

The preservice teachers’ work with children on arithmetic tasks, including addition, 

subtraction, multiplication, and division of whole numbers, was addressed in the Cognitively 

Guided Instruction (CGI) program (Carpenter, Fennema, Franke, Levi, & Empson, 1999) as the 

primary basis for the field experience. In addition, preservice teachers could adopt children’s 

mathematical literature books and adapt any mathematics problems that fit elementary students’ 

knowledge and ability. The intended mathematical tasks were categorized into one of the 

following five mathematical topics: (a) Base-N; (b) Base Ten/Place Value; (c) Number Facts; (d) 

Fraction or Equal-sharing Problems; and (e) Arithmetic problems including addition, subtraction, 

multiplication and division adapted from Children’s Mathematics: Cognitively Guided 

Instruction (CGI)  (Carpenter et al., 1999; Empson & Levi, 2011). Example tasks are listed in 

Appendix C. 
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Data Collection 

For every SSMFE interview, one pair of participants was selected. Before each SSMFE 

interview, the selected pair of participants was provided with oral instructions regarding 

participation in the study, and the participants were seated in front of videotaping equipment 

including microphones, voice recorders, and camcorders. After both participants agreed to take 

part in the videotaped activity, they were then audio-recorded and videotaped for 45 to 60 

minutes, normally longer than the actual interview. Across the two semesters of the study, I 

collected 15 videos from 13 pairs of participants, as one pair in Spring 2015 was videotaped 

twice. To precisely record the fine points of participants’ moment-to-moment interactions, one 

camera filmed the teacher, while the other filmed the student. I collected other relevant data 

sources as supplementary material for analyzing data, including students’ written work as well as 

preservice teachers’ debriefing forms, course assignments, SSMFE final portfolios, and all 

fieldnotes preservice teachers took during the session. The SSMFE interview data were collected 

over 6 weeks from September to November in Fall 2014 and over 8 weeks from January to April 

in 2015.  

 

Data Analysis 

Staller (2010) stated that “[q]ualitative research …cover[s] a wide variety of research 

methods and methodologies that provide holistic, in-depth accounts and attempt to reflect the 

complicated, contextual, interactive, and interpretive nature of our social world” (p. 1159). 

Examining teacher questioning occurring in the teacher-student interactions and its 

accompanying sequence of behavior and conversation exchanges can reveal the complicated, 

contextual, interactive, and interpretive nature of teaching practice. To investigate teacher 
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questioning in teacher-student interactions in the SSMFE, I transcribed the audio and videotaped 

recordings verbatim and applied the qualitative method to analyze the collected data.  

I conceptualized a questioning move as a unit of inquiry activity (Allender, 1969) that the 

questioner employed to seek information from the listener with respect to an intended purpose 

and that may initiate a series of conversation exchanges. A questioning move was formulated as 

an expression that had different syntactic forms and pragmatic categories of speech acts 

(Graesser et al., 1992). The most conventional format for a questioning move was an 

interrogative expression that always ends syntactically with a question mark (?) when captured in 

print, while other formats included directive and informative initiations (Mehan, 1979b). 

I analyzed the questioning moves in teacher-student interactions based on interpretive 

traditions. Prasad (2005) introduced five prominent interpretive traditions and explained that 

“[a]lthough interpretive traditions uniformly subscribe to the belief that our worlds are socially 

created, they also assert that these constructions are possible only because of our ability to attach 

meanings to objects, events, and interactions” (p. 14). The teacher-student interaction in the 

SSMFE was a co-constructed social activity comprising collaborative work. In this study, I 

examined naturally occurring interactions to “demonstrate the connection between language use 

and immediate context (indexicality) that gives it specific local meaning and relevance” (Prasad, 

2005, p. 68). Accordingly, when analyzing data in this study, I initially focused on the analysis 

of the transcripts from video recordings and scrutinized the transcripts along with the videos and 

relevant materials collected in the field and from the courses.  

To properly answer all my three research questions, I first employed framework analysis 

(Richie & Spencer, 1994) to analyze and categorize preservice teachers’ questioning moves (see 
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Figure 3-2, called as Layer I analysis) based on the proposed integrated framework (see Table 2-

8). Figure 3-3 shows the process of conducting framework analysis. During the Layer I analysis, 

I also identified the level of openness of each move using the criteria listed in Table 3-1, that 

provides the description of three subcategories of openness (open-ended, intermediate, closed) 

with examples of students’ responses to demonstrate the characteristics of teachers’ questioning 

moves. 

 

Figure 3-2. Coding flowchart for Layer I analysis: Categorizing teachers’ questioning moves by 
the integrated framework (see Table 2-8). 
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Table 3-1  

The Levels of Openness of the Teacher’s Questioning Moves 

Levels of openness Descriptions Examples of student responses 

Open-ended 

Allow the students to express 
their own opinions or 
interpretations 

T: Do you remember what you are 
trying to find in the problem? 

S: How many cookies she has in all. 
Allow the students to reflect 
on the process of making 
connections or comparisons, 
such as expressing the 
grounds of their reasoning 

T: Why did you start with the biggest 
number when adding them? 

S: Because it is the highest number, 
and it is easier for me to put it on 
top. 

Intermediate 

Allow the students to express 
(dis)agreement or a response 
from a list provided in the 
interaction 

T: Is the answer to 18 + 18 bigger or 
less than 30?  

S: Bigger. 

Allow the students to provide 
a factual response retrieved 
from their memory 

T: What are those two blocks 
representing? 

S: Two pieces of candy [in the task]. 

Closed 

Make the students obey 
teachers’ directive initiations 

S: [Reaction like nodding] 
S: Uh-huh! 

Make the students accept 
teachers’ informative 
initiations 

S: [Acknowledgement] 
S: Okay. 
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Figure 3-3. Coding flowchart for supportive questioning moves (SQMs) and the level of openness. 
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Organizing the categorized questions with its relevant interactional turns resulted in 

segments of interactional moves; I then began to analyze the function of all segments based on 

the functional categories (see Table 3-2) that stemmed from the questioning moves.  

 

Figure 3-4. Coding flowchart for Layer II analysis: Categorizing teachers’ functional moves 
based on predetermined types of questioning moves. 
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Table 3-2  

The Functional Categories 

Functional 
Category Description Sample Initial Turns 

Task 
Clarification 

(TC) 

Clarify or seek the 
given information in 
a task 

T: Do you want me to read the task again? 
or 
S: Can you read the task again? 

Plan Elicitation 
(PE) 

Elicit or produce the 
initial plan 

T: What will you do [to solve this task]? 
or 
S: This should be a multiplication [instead of a 
division]. 

Procedural 
Understanding 

(PU) 

Explore or explain 
the procedure 
involved 

T: What did you just do? 
or 
S: 2 plus 5 is 7 and 10 plus 10 is 20, so 12 plus 15 
is 27. 

Making 
Connections 

(MC) 

Make a connection 
between the answer 
and the original task 

T: What does 12 mean in the task? 
or 
S: The answer 120 means the total number of 
teeth two dinosaurs have. 

Rationale 
Behind a 
Strategy 

(RA) 

Inquire about or 
elaborate on the 
rationale behind the 
proposed strategy 

T: Why did you do multiplication? 
or 
S: I know it is multiplication because I need to 
find more not less. 

Math 
Terminology 

(MT) 

Elicit or give correct 
math terminology 

T: What do you call that piece? 
or 
S: If a cookie was cut into 4 pieces, one piece is a 
quarter.  

Alternative 
Strategy 

(AS) 

Elicit or propose an 
alternative strategy 

T: What is another way you can solve this task? 
or 
S: I want to solve it by using cubes this time. 
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To expand the analyses of teacher-student interactions, Hogan et al. (1999) identified 

three interaction patterns—consensual, responsive, and elaborative—that emerged in peer and 

teacher-guided discussion. To take a one-on-one interaction as an example, the first speaker 

initiated the conversation, and this initiation could bring up three potential types of interaction 

patterns. The consensual type occurred when one of the participants contributed substantive 

responses to the interaction, and the other served as a “minimally verbally active audience” 

(Hogan et al., 1999, p. 393). While enacting responsive interaction sequences, both participants 

equally contributed substantive responses to the interaction and could freely express their ideas 

on the topic discussed. The elaborative pattern occurred when both participants not only 

contributed substantive responses but also co-constructed additions, made corrections, or offered 

a counterargument based on any prior statement (Hogan et al., 1999). In each segment of 

functional moves, I determined who initiated the move and identified the interactional pattern 

(see Table 3-3). Lastly, with the coded functional moves at hand, I applied thematic analysis 

(Braun & Clarle, 2006) to appropriately highlight emerging features by theme (see the bottom of 

Figure 3-5). 
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Figure 3-5. Coding flowchart for interactional patterns and analyzing the features of functional moves. 
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Table 3-3  

The Framework of Interactional Patterns Adapted from Hogan et al. (1999) 

Category of Interactional Patterns Description 
 Teacher-initiated 
Nonresponse or 

Consensual reactions 
(TXC) 

The initial interactional turn is initiated by the 
teacher, and the student replies with nonresponse or 
only consensual responses.  

Teacher-initiated 
Responsive or 

Elaborative reactions 
 (TRE) 

The initial interactional turn is initiated by the 
teacher, and the student replies with responsive or 
elaborative responses. 

Student-initiated 
Nonresponse or 

Consensual reactions 
 (SXC) 

The initial interactional turn is initiated by the 
student, and the teacher replies with nonresponse or 
only consensual responses. 

Student-initiated 
Responsive or 

Elaborative reactions 
 (SRE) 

The initial interactional turn is initiated by the 
student, and the teacher replies with responsive or 
elaborative responses. 

 

To check for reliability, I repeated the coding process every two weeks, eventually 

coding all questions at least twice and achieving 86% coding agreement. I was also aware of my 

subjectivity in my conducting of these qualitative methods, and I took practical steps to deal with 

it as described in the following section.  

 

Subjectivity 

Subjectivity is defined as “the quality of an investigator that affects the results of the 

observational investigation” (Gove, 2002, Webster’s dictionary, Third) stemming from “the 

circumstance of one’s class, statuses, and values” (Peshkin, 1988, p. 17). Of particular relevance 

to this study, people are not necessarily aware of subjectivity in either the research and non-

research environment, which is why researchers should pay more attention to their subjectivity in 
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qualitative research. To seek out possible subjectivity, Peshkin (1988) identified six aspects of 

subjectivities: (a) the Ethnic-Maintenance I, (b) the Community-Maintenance I, (c) the E-

Pluribus-Unum I, (d) the Justice-Seeking I, (e) the Pedagogical-Meliorist I, and (f) the 

Nonresearch Human I. In the following section, I address three possible subjectivities in my 

study. 

First, the Ethnic-Maintenance I was obvious in my study because I am a “Taiwanese I.” 

In fact, my ethnicity shaped my being in this country. Moreover, when expanding this Ethnic-

Maintenance I in the SSMFE, every preservice teacher encountered this Ethnic-Maintenance I 

when she had to interact with a student from a different race group. Second, the Community-

Maintenance I occurred when people stepped into a new community. I was not as familiar with 

the U.S. elementary schools as I was with Taiwanese schools. Something natural for the 

members of the U.S. community might be very strange to me. Fortunately, the observation of the 

SSMFE drew my attention to the one-on-one interaction in the pair of participants and distracted 

me from the concerns of these two aspects of subjectivities. Third, I had several years of 

experience directing preservice teachers in the area of elementary mathematics teaching in my 

home country, and this prior experience might result in “the Pedagogical-Meliorist I” 

subjectivity. Peshkin (1988) described this experience in his article: “[A]s I sat in the back of the 

classroom, I felt that I wanted to remedy the poor teaching I observed. This surprised me because 

among the first things I explain to any of my study's school personnel is that I am neither 

evaluator nor reformer” (p. 20). Therefore, I strived to switch my role from a teacher to a 

researcher, as I believe this is the proper solution to combat this subjectivity.  

As an experienced teacher educator and researcher, I maintained strong student-centered 

and reform-based perspectives about mathematics teaching and learning. This point of view 
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contradicts that of a high proportion of traditional teachers in the field because most teachers 

experienced their apprenticeship years observing traditional instruction in school math (Ball, 

1990). In this research, although I was sometimes positioned as a researcher who tended to make 

evaluative judgments, implicitly or explicitly, in the process of observation, I strived to try to 

“consciously attend to the orientations that will shape what I see and what I make of what I see” 

(Peshkin, 1988, p. 21) in order to tame my subjectivity. 

 

Limitations 

The study was limited by the kinds of data collected on the participants. When I selected 

the preservice teachers in their first mathematics methods course as participant candidates, I 

recognized the limitation resulting from the lack of interview data because knowing the teachers’ 

intention when asking questions could be as important as knowing the number and categories of 

questions they asked (Sahin & Kulm, 2008). Teacher questioning has been considered as a 

professional but personal skill. I decided to exclude interview data from this study for two 

reasons: 1) several teacher participants expressed their concerns on limited experience working 

with elementary students on mathematics tasks and worried about their “inexperienced” 

questioning technique before they signed the consent form; and 2) in the pilot study, the informal 

post-session interview revealed that some preservice teachers did not really spend their time 

“contemplating” their questions before enacting them. Accordingly, I reluctantly abandoned 

interviews while designing this study. 

Although I classified the questions preservice teachers enacted in the interview as 

impromptu moves, the intention behind enacting questioning in a particular way might exist for 
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preservice teachers. Teaching practices were affected by teacher belief (Scott, 2005), knowledge 

(Grossman & McDonald, 2008), and prior experiences of learning (Ball, 1990). I believe that the 

motivation or hesitation to ask a particular type of question could have been gained through 

conducting interviews with the teacher participants. With the interview data remaining a missing 

piece, teachers’ considerations behind selecting tasks and enacting questioning remained 

implicit. 
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Abstract 

The quality of teacher questioning affects the extent of its utilization, particularly in a 

dynamic teacher-student interaction. I employed an integrated framework to analyze 13 

preservice teachers’ questioning moves while elementary school students were engaged in 

mathematical problem solving. The findings revealed four influential features in preservice 

teachers’ questioning: (a) flexibility in the setup, (b) limited extent of inquiry, (c) non-specific 

probing questions, and (d) neglect of the child’s unexamined but valuable strategies. Based on 

the findings, teacher questioning is a complicated but trainable technique. Suggestions for 

developing a practice-based training curriculum to enhance the cultivation of teacher questioning 

are presented. 

 

KEYWORDS: Teacher questioning, problem solving, field experience, methods courses 

  



63 

 

Introduction 

While we often pay very little attention to how we use questions in our daily lives, 

questions play a considerably important role in the field of education, particularly in inquiry-

based teaching and learning environments (Menezes, Guerreiro, Martinho, & Ferreira, 2013; 

Oliveira, 2010). More than a century ago, Stevens (1912) asserted that when used correctly, 

question-and-answer exchanges are better at engaging students and facilitating student learning 

compared to repeating facts, testing facts, and lecturing. She warned that teachers might “foster 

in [their] pupils negative habits of work, poor associations, and careless impression” (p. 4) if they 

do not know how to appropriately use questions to assist their students in developing knowledge. 

Many scholars extoled effective questioning and considered it as an asset in education based on 

the assumption that teachers may develop new insights into students’ thinking through enacting 

questioning to ascertain students’ prior knowledge, to assess students’ performance, and to 

arouse student curiosity (Fitch, 1879; Groisser, 1964; Houston, 1938; Hyman, 1979). The 

National Council of Teachers of Mathematics (NCTM, 2000) emphasized that, through posing 

thoughtful questions, teachers can not only motivate students to reexamine their reasoning but 

also challenge students “with varied levels of expertise…without taking over the process of 

thinking for them” (p. 19). In the National Research Council’s Adding it up: Helping Children 

Learn Mathematics (Kilpatrick, Swafford, & Findell, 2001), researchers emphasized that 

“questioning and discussion should elicit students’ thinking and solution strategies and should 

build on them, leading to greater clarity and precision” (p. 426).  

The heterogeneity of questioning performance that exists between novice and 

experienced teachers has been revealed in prior studies (Hyman, 1979; Sahin & Kulm, 2008; 

Tienken, Goldberg, & DiRocco, 2009). Generally, novice teachers experience more struggles 
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related to posing questions (Brown & Edmondson, 1984; Crespo, 2003). The weaknesses in their 

questioning could include difficulties in assessing students’ understanding (Nicol, 1999), failure 

to ask probing questions to develop deeper thinking in students (Sahin & Kulm, 2008), and the 

tendency to ask more leading questions and to overlook opportunities for probing student 

thinking (Weiland, Hudson, & Amador, 2014). These findings imply that effectively enacting 

questioning requires multi-faceted knowledge, such as subject-matter knowledge, knowledge of 

learners and their characteristics, and pedagogical content knowledge (Lappan & Theule-

Lubienski, 1994; Shulman, 1987) as well as the skills of classroom management, discussion 

leading, and communication (Baroody & Coslick, 1998; Ralph, 1999).  

Teachers’ experience, knowledge of disciplinary content, and instructional objectives 

exert a substantial influence on the questions they ask (Gall & Rhody, 1987; Haynes, 1935), but 

teacher questioning cannot be considered in isolation from student learning. Hunkins (1989) 

asserted that questioning should be viewed as a complicated linguistic device that possesses 

divergent levels of function, difficulty, interest, and feasibility based on different analytical 

frameworks. In terms of student learning, teacher questioning has the potential to initiate a series 

of cognitive processes in students such as remembering, understanding, applying, analyzing, 

evaluating, and creating (Bloom, 1956; Hyman, 1979; Strayer, 1911). The application of the 

knowledge and skills mentioned above increases the complexity of questioning in the classroom, 

and one should consider questioning as both a practical matter and professional technique that 

teachers master through empirical practice, not merely theoretical discussion (Fitch, 1879). 

Martino and Maher (1999) claimed that “[t]he art of questioning may take years to develop 

for it requires an in-depth knowledge of both mathematics and children’s learning of mathematics” 

(p. 54). Many teacher education and professional development programs are aimed at fostering 
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teachers’ questioning strategies for the purpose of enhancing students’ learning (Franke, Webb, 

Chan, Ing, Freund, & Battey, 2009; Kiemer, Groschner, Pehmer, & Seidel, 2015; Ralph, 1999; 

Weiland et al., 2014). To achieve this goal, teacher educators need to be acquainted with preservice 

teachers’ present questioning performance as well as the function of their enacted questions. 

 

Teacher Questioning  

Questioning as a Strategic Act 

Teacher questioning is the most commonly used teaching technique (Floyd, 1960; 

Stevens, 1912) and plays an essential role in effective teaching (Floyd, 1960; Moyer, 1967; 

Reynolds & Muijs, 1999). Green (1971) considered questioning as a strategic act that should be 

distinguished from other logical strategies, such as explaining, that can “be evaluated 

independently of their consequences” (p. 7). While addressing the quality of teacher questioning, 

one should include a thoughtful examination not only of the number of questions but also the 

extent to which questioning affects student learning (Houston, 1938). This interdependence 

between teacher and student suggests that teachers’ questioning performance should be evaluated 

simultaneously based on the quantity and quality of selected questions, the means and timing of 

asking a question, and the reactions a question elicits in the student. Wassermann (1991) 

considered these components as the building blocks of effective teacher questioning through 

which “teachers ascertain what students know, how much they understand, and how well they 

are able to articulate their ideas” (p. 257).  

In mathematical settings, prematurely employing questioning might not only decrease the 

positive effects of instructional scaffolds but also impede students’ development of reasoning 
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and meta-cognitive knowledge. Nicol (1999) pointed out that prospective teachers experienced 

tensions related to “posing questions to learn what students are thinking versus posing questions 

to get students to the answer versus posing questions to test students’ thinking” (p. 53). She 

found that prospective teachers asked questions to direct students toward the correct answer in 

the beginning sessions of her study even though they had been trained not to lead students 

through the problem. As a result, students only had limited opportunities to demonstrate their 

thinking and advance their cognitive performance because of a lack of spaces for inquiry in 

teachers’ questions. Moyer and Milewicz (2002) also reported that preservice teachers 

commonly enacted questioning by checking the listed items in their interview protocol rather 

than by allowing students to expand on their strategies. They claimed that approximately one-

fourth of preservice teachers in their study attempted to instruct students instead of assessing 

their knowledge during the process of mathematical problem solving. Furthermore, the 

preservice teachers conceded that they noticed a discrepancy between the intended questions and 

the enacted questions they had to improvise in the field due to “children’s unpredictable 

responses in a mathematics interaction” (Moyer & Milewicz, 2002, p. 311). As such, the 

effectiveness of teacher questioning should be strategically determined based on the student 

responses those questions elicited and what instructional goals they achieved.  

Questioning as a Social Act 

While analyzing the structure of classroom lessons, Mehan (1979) observed and 

described Initiation-Reply-Evaluation (IRE) as a common pattern occurring in teacher-student 

interactions. This structure consists of several iterated or embedded adjacency pairs (Schegloff & 

Sacks, 1973), in which the first act in a pair is conditionally relevant to the second act, which is 

meant to occur as expected in the dialogue. Mehan (1979) further identified these acts by 



67 

 

pointing out that “an elicitation does not seek just any information, it seeks particular 

information” (p. 44). That is, every interactional sequence contains a co-occurrence relationship 

(Garfinkel, 1967; Garfinkel & Sacks, 1970) that was reflexively constructed by teacher and 

student, and the first part of a sequence ultimately triggers the second part of the sequence, which 

retrospectively categorizes the initiation. Accordingly, the IRE sequences seem more like “social 

acts” (Mead, 1934) than “speech acts” (Searle, 1969, 1976) due to the feature of seeking the 

completion of the adjacency pair and giving meaning in interaction. 

When interpreting teacher questioning as a social act, van Zee and Minstrell (1997) 

defined a particular style of questioning, a reflective toss, in which the sequence typically starts 

with a student statement, proceeds with a teacher question, and continues with additional student 

statements. They highlighted that the responsibility for thinking in a reflective toss should return 

to the students and suggested that teachers should “shift toward more reflective discourse by 

asking questions” (p. 227) that help students clarify meanings, neutrally consider diverse 

viewpoints, and monitor their own ideas and actions. After successfully inviting students to 

reflect on their own thinking, teacher questioning would further facilitate collaboration through 

comparing and contrasting various perspectives among participants. When communication and 

reasoning flourish, the teacher should allow students to “play more active roles in their own and 

each other’s learning, and thus build a classroom community that invites active participation, 

confidence, and further learning” (Martina & Maher, 1999, p. 75). 

In a mathematical learning community, teachers and students possess different 

knowledge, beliefs, dispositions, and experiences related to mathematics. Normally, it is the 

teacher who takes responsibility for facilitating the interaction by applying pedagogical 

techniques and efficiently orchestrating the shared discourse. To cultivate these professional 
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skills, pedagogy courses in a training program may serve as the first official environment in 

which preservice teachers can practice and polish questioning techniques before they begin 

formal classroom teaching. In the following section, I introduce an integrated framework that 

was used to examine preservice teachers’ questioning performance during their early 

mathematics field experiences.  

 

Conceptual Framework 

I view students’ problem solving as an internalized process to solve a given mathematical 

task, so I am interested in positioning the study of teacher questioning in students’ problem-

solving within distinct stages proposed by Polya (1957). I employed an integrated framework 

informed by Jacobs and Ambrose’s (2008) original work on teacher moves, Jacobs and 

Empson’s (2016) revised framework, and Polya’s (1957) four problem-solving stages: (I) 

understanding the task, (II) devising a plan, (III) carrying out the plan, and (IV) looking back. 

Because Stage IV, with its extending moves used after the correct answer was given, is beyond 

the scope of this work, I only examined questioning moves in the first three stages, as shown in 

Figure 4-1. 
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Figure 4-1. The integrated framework developed based on Jacob and Empson’s (2016) teaching 
moves and three stages in Polya’s (1957) problem-solving guidelines. 

 

I conceptualized a questioning move as a unit of inquiry activity (Allender, 1969) that the 

questioner employed to seek information from the listener with respect to an intended purpose 

and that may initiate a series of conversation exchanges. All questioning moves presented in this 

study were teacher-initiated and formulated as an expression that had different syntactic forms 

and pragmatic categories of speech acts (Graesser et al., 1992). The most conventional format for 

a questioning move was an interrogative expression that always ends syntactically with a 

question mark (?) when captured in print. The categories of questioning moves were originally 

derived from Jacobs and Ambrose’s (2008) research, in which they proposed teachers’ 

supporting and extending moves. I only included supporting moves because the focus of this 

paper was on the questioning moves teachers used exclusively to support students’ thinking 

before the posed mathematical problem was correctly solved.  
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The four categories of teaching moves from Jacobs and Empson’s (2016) framework 

(ensuring understanding, exploring strategies, connecting, and considering other strategies) 

served as the categories for this framework. Given that the teacher-student interactions in this 

study were situated in only three of Polya’s problem-solving stages, a category of questioning 

moves used for inquiring about the child’s problem-solving plan was needed. Therefore, I added 

a new category, Supportive Questioning Move 2, to analyze questioning moves observed in 

problem-solving Stage II. Hereafter, teachers’ supportive questioning moves will be denoted as 

SQM, corresponding to Jacobs and Empson’s teaching moves, such as SQM1 (see Figure 4-1). 

Table 4-1 presents the five categories of teachers’ questioning moves with the description of 

their function.  
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Table 4-1  

The Five Categories of Supportive Questioning Move (SQM) 

Category of Supportive 
Questioning Moves 

Description of the Function 

SQM1: Ensuring the child 
is making sense of the 
task 

To ensure that students understand  
x the contextual features of the task scenarios  
x the involved mathematical ideas and relationships within the 

tasks 
SQM2: Inquiring about 
the child’s plan to solve 
the task 

To learn about the child’s problem-solving strategies derived from 
x the given information 
x the child’s prior experience 

SQM3: Exploring details 
of the child’s existing 
strategies 

To facilitate preservice teachers’ understanding of  
x the child’s procedural understanding 
x the child’s conceptual understanding 
x the rationale behind the mathematical representations 

employed 

SQM4: Connecting the 
child’s thinking to 
symbolic notation 

To enhance the connection between  
x the child’s thinking and mathematical representations 
x informal expression and formal mathematical terminology 
x the child’s presenting idea and its corresponding 

mathematical principle 
SQM5: Encouraging the 
child to consider other 
strategies 

To elicit additional strategies by 
x providing a hint when the child is struggling to solve the task 
x leveraging the child’s successful strategy 

 

Additionally, it is important to analyze teacher questioning on the aspect of openness, by 

which I mean the degree to which the question allowed the student to make flexible responses. 

For example, known information questions are closed whereas questions that attempt to elicit 

students’ interpretations and explanations based on their strategies are open. Once I determined 

the category of the questioning move, I examined the openness of the questioning move based on 

the extent of the student’s responses elicited by that questioning move. Table 4-2 provides the 
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description of three subcategories of openness (open-ended, intermediate, closed) with examples 

of students’ responses to demonstrate the characteristics of teachers’ questioning moves. 

 

Table 4-2  

The Levels of Openness of the Teacher’s Questioning Moves 

Levels of Openness Descriptions Examples of Students’ Responses 

Open-ended 

Allow the students to express 
their own opinions or 
interpretations 

T: Do you remember what you are 
trying to find in the problem? 

S: How many cookies she has in all. 
Allow the students to reflect 
on the process of making 
connections or comparisons, 
such as expressing the 
grounds of their reasoning 

T: Why did you start with the biggest 
number when adding them? 

S: Because it is the highest number, 
and it is easier for me to put it on 
top. 

Intermediate 

Allow the students to express 
(dis)agreement or a response 
from a list provided in the 
interaction 

T: Is the answer to 18+18 bigger or 
less than 30?  

S: Bigger. 

Allow the students to provide 
a factual response retrieved 
from their memory 

T: What are those two blocks 
representing? 

S: Two pieces of candy [in the task]. 

Closed 

Make the students obey 
teachers’ directive initiations 

S: [Reaction like nodding] 
S: Uh-huh! 

Make the students accept 
teachers’ informative 
initiations 

S: [Acknowledgement] 
S: Okay. 

 

Due to the inappropriateness of categorizing SQM4 and SQM5 questions by their 

openness, this open-intermediate-closed scale only applied to the first three thematic categories 

(SQM1 to SQM3) of questioning moves. The open-ended moves allowed students to express 

their thoughts to a posed problem. The most significant characteristic of open-ended moves was 

that students’ verbal responses consist of long explanations, rationale of the strategy, and 

personal opinions. The intermediate moves normally elicited short answers or a selection from a 

multiple-choice question. The closed moves included informative and directive initiations; 



73 

 

informative initiations generally resulted in acknowledgment, and directives initiated students’ 

non-verbal reactions, such as nodding (Mehan, 1979). Although most of the closed moves were 

not in the format of a question that could elicit students’ verbal elaboration, they set the teacher-

student interaction in motion and thus were worth analysis and discussion based on the rationale 

of this study. To extend the understanding of preservice teachers’ questioning in a dynamic 

problem-solving process, all employed questioning moves were examined in the moment-to-

moment interactions. Two research questions guided this study:  

1. How do preservice teachers enact questioning in each stage of mathematical problem 

solving?  

2. What features emerge in preservice teachers’ utilization of supportive questioning 

moves while working with elementary students in mathematics? 

 

Methods 

Setting and Tasks 

This research was conducted in the teacher education program for early childhood majors 

(certification Pre-K–5) at a Northeast Georgia University. The setting is a school-based activity, 

the Single Student Mathematics Field Experience (SSMFE), which was designed to facilitate 

preservice teachers’ knowledge of students’ mathematical thinking and to help them reflect on 

how student thinking can inform mathematics teaching. The SSMFE required preservice teachers 

to conduct a one-on-one interview with a single student in a local elementary school once a week 

for eight weeks during the first mathematics methods course.  
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During the methods course the preservice teachers were exposed to all problem types 

with different locations of unknown (i.e., start unknown, change unknown, and result unknown) 

while being introduced to Cognitively Guided Instruction (CGI, Carpenter, Fennema, Franke, 

Levi, & Empson, 1999). They practiced how to listen to their classmates’ mathematical thinking 

in the methods course before interviewing elementary students. In addition, preservice teachers 

worked on writing different types of problems and specifying the problem structure and location 

of the unknown as course assignments. Mandatory course work and homework assignments 

included distinguishing problem types, writing problems with particular sets of numbers, 

listening to mathematical thinking, and sharing ideas and comments. The instructors emphasized 

teachers’ use of their knowledge of problem types and the typical strategies used by children 

according to the literature to inform their instruction. Due to the adoption of the CGI frame in the 

course, preservice teachers were encouraged to practice writing problems with different numbers 

and structures and to understand the mathematical thinking that children unused in their solution 

strategies.  

Preservice teachers were also told not to discourage children’s ideas and to pay close 

attention to how children’s strategies developed over time. In particular, preservice teachers were 

encouraged to point out incongruities in children’s strategies and to ask why questions to 

understand the big mathematical ideas behind children’s thinking. The instructor also introduced 

the possible talk moves that preservice teacher could implement in the SSMFE, such as 

encouraging the child’s way of solving problems (rather than forcing the child to use the 

teacher’s preferred method), asking for justifications, and revoicing the child’s explanations. 

Before the SSMFE began, the instructor walked preservice teachers through the interview 

protocol and elaborated on the goal of the SSMFE: to understand how your child is thinking. 
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The focus of this investigation centered around understanding the nature of preservice 

teachers’ questioning performance in the eight sessions of interview-based interactions. 

Although the SSMFE was quite different from teaching and learning in a classroom setting, prior 

research has contended that preservice teachers benefit from conducting structured interviews 

with students, such as one-on-one interactions, in early field experiences (Jacobs & Ambrose, 

2008; Weiland et al., 2014). Given that teacher questioning could be considered as a strategic 

and social act, working with a single student in an inquiry-based setting might positively increase 

preservice teachers’ awareness of their questioning abilities and help them recognize the 

suitability and effectiveness of questioning strategies without being distracted by other aspects of 

classroom management. Therefore, preservice teachers were required to focus particularly on 

inquiring about the students’ thinking, explanations, and problem-solving strategies through 

asking questions.  

While working with students on diverse mathematical tasks, preservice teachers had 

opportunities to intensely practice their questioning skills with regard to different mathematical 

topics. In every session, the preservice teachers predominantly employed mathematical tasks that 

were provided by the course instructor in the format of interview protocols, although they were 

allowed to design their own intended tasks for children who might need extra help or challenge. 

All tasks were related to one of the following five mathematical topics: (a) Base-N; (b) Base 

Ten/Place Value; (c) Number Facts; (d) Fraction or equal-sharing problems; and (e) Arithmetic 

problems including addition, subtraction, multiplication and division adapted from “Children’s 

Mathematics Cognitively Guided Instruction (CGI)” (Carpenter, Fennema, Franke, Levi, & 

Empson, 1999; Empson & Levi, 2011). Each SSMFE session lasted for 35 to 45 minutes, 
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depending on the type and level of difficulty of the executed tasks. Example tasks are listed in 

the Appendix D. 

Participants 

The 13 preservice teachers who participated in this study (hereafter referred to 

as teacher participants) were eleven Caucasian female and two Asian female undergraduate 

students who were enrolled in their first mathematics methods course: One cohort (n = 6) 

participated in the Fall 2014 study; the other cohort (n = 7) participated in the Spring 2015 study. 

The participants were selected by convenience sampling (Patton, 2002) from 28 preservice 

teachers in each methods course. The Spring 2015 section was taught by an instructor who was 

the teaching assistant working in the Fall 2014 section, so both courses were structured the same 

way on the campus classes (e.g., same topics were addressed in the same order) and tasks 

designed for SSMFE interviews (e.g., same weekly interview protocols were provided to 

preservice teachers). In the recruitment, there were about 10 volunteers from each course, and I 

selected the final participants according to their participation in the course. All of the teacher 

participants were in their junior year at the University and had completed at least two 

mathematics content courses for Early Childhood Education majors.  

The student participants consisted of two grade levels of students at a public elementary 

school: fourth-graders in the Fall 2014 study and first-graders in the Spring 2015 study. At the 

beginning of the semester in Fall 2014 and Spring 2015, I recruited student participants in the 

elementary school that cooperated with these two mathematics methods courses, and about right 

students in each grade were consented to participate in this study. After having the final list of 

both teacher and student participants, the instructor and I then randomly paired up participants 

and formed 13 participating pairs for this study.  
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Data Collection 

Every SSMFE week, one pair of participants (a preservice teacher and an elementary 

school student) was videotaped during their mathematics lesson. Across the two semesters of the 

study, 13 pairs of participants were audio recorded and videotaped. However, in order to conduct 

a comparison of the same teacher’s questioning performance at two different time points, two 

pairs of participants from the Spring 2015 class were recorded twice in the SSMFE—the first 

time in the middle of the field experience and the second time in the last week of the field 

experience. Therefore, 15 videos were collected from 13 pairs of participants in this study. To 

effectively collect the moment-to-moment interactions between the teacher and the student, the 

audio recorder was focused on the teacher’s verbal expression, and the video camera was 

focused on written work produced by both teacher and student. Other data sources were collected 

as supplementary documentation, including the students’ written work as well as the notes 

preservice teachers took during the session, teachers’ debriefing forms, course assignments, and 

the teachers’ SSMFE final portfolios. 

Data Analysis 

I employed framework analysis to analyze the data sources collected in this study (Richie 

& Spencer, 1994). This process of analysis contains five key phases: (1) familiarization, (2) 

identifying recurrent themes, (3) indexing, (4) charting, and (5) mapping and interpretation (see 

Figure 4-2). I started by watching videos and reading transcripts repeatedly in order to highlight 

the most frequent patterns in teacher questioning moves based on the framework I developed. 

The key themes among the examined data were then identified, and the related moves were sifted 

and sorted into thematic categories (SQM1 to SQM5). In particular, I categorized teachers’ 

questioning moves based on stage of the interaction, not on the teachers’ purpose. For example, 
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if a questioning move occurred when the student had not yet started to devise a solution strategy 

(Stage II), the move was assigned to Stage I because the interaction initiated by this move 

happened before Stage II. 

In addition to categorizing the moves based on the thematic framework, the students’ 

reactions to each questioning move were considered so that each move could be annotated by its 

level of openness. While viewing the video recording, I took analytical notes to supplement the 

data analysis with the foreground of an enacted move, the intonation in the questioning moves, 

and notable reaction a move caused in segments of teacher-student interactions. The assigned 

code of a questioning move was in the format of “SQM thematic number (1 to 5) - openness 

number (1 to 3).” For example, SQM1-1 stands for an open-ended question within the first 

thematic category of making sure the student understands the problem (see Figure 4-2). When a 

move was classified inconsistently during different coding sessions, the entire dialogue was 

scrutinized to position the undetermined move within a suitable category. In order to address 

issues of reliability, I repeated the coding process every two weeks, and all questioning moves 

were coded more than twice, with 86% agreement of coding achieved. All moves in relation to 

students’ reactions were ultimately mapped and interpreted within each task as a complete 

scenario. 
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Figure 4-2. Coding flowchart for supportive questioning moves (SQMs) and the level of 
openness. 

 

As a result of data analysis, I compiled frequency counts of how often each type of move 

appeared and also identified some qualitative features of teacher questioning. I initially examined 

the distribution of preservice teachers’ questions within the five thematic categories along with 

their degrees of openness to delineate how preservice teachers utilized questioning moves. With 

the quantitative data in mind, the qualitative features of preservice teachers’ questioning moves 

will be characterized in isolated representative vignettes with illustrative excerpts from 

transcripts of the video recordings. Teacher participants’ reflective written assignments were 

adopted as supplementary evidence while interpreting their questioning practices. 
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Findings: The Distribution of Preservice Teachers’ Questions 

Table 4-3 presents the frequency distribution of preservice teachers’ enacted questioning 

moves within and across the five thematic categories during 15 SSMFE sessions. In total, 1,027 

supportive questioning moves were employed by 13 preservice teachers during 115 implemented 

mathematical tasks. 

 

Table 4-3  

Frequency Table of Preservice Teachers’ Questioning Moves in SSMFE 

 Subtype 

 

Thematic category 

Subtype 1 

(open-ended) 

Subtype 2 

(intermediate) 

Subtype 3 

(closed) 
Subtotal  

SQM1 163 103 3 269 

SQM2 59 48 29 136 

SQM3 201 217 96 514 

SQM4 40 18 13 71 

SQM5 22 10 5 37 

Subtotal 485 396 146 1027 (100%) 

 

There could be more than one way to measure the percentage of each type of question. 

For example, one way to evaluate the data presented above is to compute the percentage that 

each type of supportive questioning moves occupied among the total number of questions used in 

SSMFE. The outcome from this perspective would then show that 50% of the teacher 

questioning moves were categorized as SQM3; 26% of moves were SQM1; 13% were SQM2; 

7% were SQM4; and 4% were SQM5. In addition to this breakdown, Figure 4-3 provides a 

quantitative analysis of the degree of openness of each question within each thematic category. 
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The results of this analysis showed that teacher participants asked more open-ended questions in 

almost all categories except SQM3. However, employing open-ended questions within different 

categories may yield different results in the teacher-student interactions, especially with regard to 

students’ problem-solving abilities, which will be discussed in following sections. 

 

Figure 4-3. Supportive questioning moves by category in the SSMFE. 
 
 
 

Findings: The Qualitative Features of Preservice Teachers’ Questioning 

In following sections, I use representative vignettes taken from SSMFE sessions to 

illustrate how teacher participants employed questioning moves to support students’ problem 

solving and what influential features emerged in their questioning. The qualitative findings are 

presented in parallel with the order of students’ problem-solving activities from Stage I to Stage 

III. 
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Stage I: Questioning Moves Used to Build Children’s Understanding of the Task  

 Polya (1957) determined understanding the task to be solved as the most important stage 

in problem solving. As can be seen in Table 4-3, 269 of the 1027 questions asked by the 

preservice teachers were asked to assess students’ understanding of the tasks (SMQ1). However, 

the intent and outcome of enacting SQM1 questions under different circumstances were quite 

heterogeneous across participants. On one hand, the timing at which SQM1 questions occurred 

during the session varied: they could occur at the beginning of students’ problem solving or in 

the midst of the interactions. On the other hand, the formats of SQM1 questions were nearly 

identical even at different time points. Furthermore, a large group of teacher participants did not 

automatically (re)confirm students’ understanding of the tasks until they realized that students 

were struggling with the problem-solving process due to a lack of knowledge about the 

mathematical relationships among the numbers involved. The significance of the timing and 

format of enacting SQM1 questions will be further discussed later in this paper. 

Among the 269 SQM1 questions, 61% were coded as open-ended ones. The application 

of open-ended questions in SQM1 indicated that that the teacher participants devoted sufficient 

space to allowing children to identify the necessary contextual features and essential 

mathematical relationships among the given numbers in the setup stage. Jackson, Garrison, 

Wilson, Gibbons, and Shahan (2013) asserted that “the setup, or introduction, of cognitively 

demanding tasks is a crucial phase of mathematics instruction” (p. 646). When exploring the 

relationships between teachers’ arrangement of the setup and students’ opportunities to learn, 

they found that it may be helpful for students in making connections between their strategies and 

correct solutions. This arrangement relied on paying attention to establishing a “taken-as-shared 

understanding” of contextual features and mathematical relationships, one kind of understanding 
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that was “taken as, or reasonably assumed to be, compatible enough to enable students to 

communicate in consistent ways about the relevant ideas” (p. 654). In the current study, SQM1 

questions normally occurred following the posing of the task in the Stage I. While enacting this 

type of question to confirm students’ understanding, teacher participants might (a) change the 

numbers but maintain the original mathematical structure, (b) modify the mathematical structure 

of the task, (c) implement the original task when the child was able to accomplish it, (d) strictly 

implement preplanned tasks without considering the child’s struggles, (e) instruct instead of 

assessing the child’s thinking, or (f) invite students to interpret the task by themselves.  

Changing the numbers but maintaining the original mathematical structure.  In 

some cases, preservice teachers only changed the assigned numbers and declared that the change 

would decrease the cognitive demand for the student. Indeed, there was higher possibility that, 

while making this change in the interactions, teacher participants did make a problem easier from 

the aspect of the numbers while maintaining the preplanned mathematical structure. Vignette 1 

exemplifies this phenomenon.  

Vignette 1  
At the beginning of one task, Amy (preservice teacher) posed a problem with the 
mathematical structure of 23 + 7 × 10 (23 donuts plus 7 boxes of 10 donuts). However, 
Bonny (child) seemed challenged by adding 7 groups of ten. Therefore, Amy revised the 
task by changing the number of boxes from 7 to 4 by saying, “That might be a lot. Here, 
we can change it to 4 boxes [of donuts]. How about that?” In this case, Amy maintained 
the mathematical structure in the problem and was still able to assess Bonny’s ability to 
add multiple tens to a given number (Grade 1, SSMFE 8, Task 6). 

However, in some special circumstances, changing numbers also changed the mathematical 

structure of a task.  
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Modifying the mathematical structure of the task.  A few preservice teachers tried to 

modify the planned tasks when they detected that the students were struggling with solving the 

original tasks. However, this approach sometimes altered the mathematical structure of the tasks 

and it turned out students solved the problems by applying completely different mathematical 

knowledge. For example, one preservice teacher, Mariah, worked with a first-grader on the base-

ten topic, in which the warm-up question asked the child to decompose 10 into two numbers and 

then to list all pair combinations such that one number is greater than the other. However, Mariah 

changed the number 10 to a relatively easy number, 3, without considering how this change 

might completely alter the mathematical structure of the make-a-ten method the instructor 

originally designed for this SSMFE session.  

In vignette 2, another preservice teacher, Mary, planned to assess her first-grader, Abby’s 

knowledge of fractions in an equal-sharing structure 3 ÷ 10 = ___, but she ended this task with a 

different mathematical structure of whole-number division 20 ÷ 10 = ___ after modifying the 

task. 

Vignette 2 
Mary posed the task, “If I am having a party with 10 friends, and we are splitting 3 
cookie cakes, how much of the cookie cakes would each friend get?” Abby was 
struggling with partitioning all three cakes into pieces of the same size; she initially 
divided all three cakes into 5 unequally sized pieces. After she distributed each piece of 
cake to ten people, she realized that she would need to cut the last cake into ten pieces if 
everyone wanted to get an equal portion of cake. In this process, Mary tried to draw from 
Abby the mathematical terminology for the divided pieces she had created in her drawing 
and was satisfied that Abby could correctly name them as “one-fifth” and “tenths.” 
However, when Mary asked, “Do you know how much one person would get?” Abby 
replied “3 pieces.” Mary did not correct Abby; instead, she summarized the total pieces 
of cake in the drawing for Abby by changing the mathematical structure from 3 ÷ 10 =
___ to 20 ÷ 10 = ___. The task was then directed to a new scenario. Mary’s change of the 
task elicited a new strategy from Abby, who started to draw 20 tally marks, distributed 
them to 10 people, and concluded with the answer “2 pieces per person.” Mary praised 
Abby for her answer and wrapped up this task (Grade 1, SSMFE 8, Task 1). 
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Working with students on operations involving fractions could be more challenging than 

on whole-number division tasks for teachers. Ball (1993) asserted that “[i]n teaching fractions, 

the teacher must weigh the relative advantages in providing students with structured 

representational materials versus having students refine existing models and develop their own 

representational media” (p. 163). Due to the complexity of teaching fractions, researchers have 

suggested that teachers provide visual representations, use multiple references to exemplify a 

fraction, and adopt language familiar to students based on what they already know and how they 

have learned (Chick, 2007; Dufour-Janvier, Bednarz, & Belanger, 1987; Nesher, 1989). In 

addition, it is essential to provide a “fruitful thinking space” in which students may explore the 

relationship between the meaning of fractions and the representation embedded in them (Ball, 

1993). Vignette 2 showed that Mary seemed not to provide advanced “thinking space” for Abby 

in her questioning to help her explore the assigned fraction concepts (10 people are splitting 3 

cakes). Instead, after receiving the answer “3 different-size pieces” from Abby, Mary revised the 

task in a new mathematical structure 20 ÷ 10 = ___. Although this improvisatory decision to 

adapt the original structure to an easier one (10 people are sharing 20 pieces of cake) decreased 

the cognitive demand of the task, it also missed a valuable opportunity to explore the concept of 

fractions with the child.  

Implementing the original task when the child was able to accomplish it.  Most 

preservice teachers chose to implement the preplanned tasks as they were described on the 

interview protocol without making any change, regardless of what the numbers and the structure 

were. Although this might encourage the development of students’ own interpretation and 

understanding of the tasks, in most cases, students were more likely exposed to the process of 

“sinking or swimming.” When the child was able to solve the task, implementing the original 
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task reinforced teachers’ beliefs about the appropriateness of intended tasks designed by the 

course instructor and may result in their obedience to the authority in the methods courses. For 

instance, Amy and Bonny were working on a multiplication problem with the mathematical 

structure of 3 × 5 = ___, and Amy posed an “unnatural” problem, that was an intended task 

provided on the interview protocol, to Bonny in vignette 3.   

Vignette 3  
Amy posed the task to Bonny as it appeared on the protocol: “There are 3 bees. A bee has 
5 legs. How many legs are there in all?” Initially, Bonny misunderstood the problem as 
there being only one bee who has 5 legs, so she solved this problem by drawing three 
bees, and thought the other two bees were supposed to have 6 legs with a final answer 
6 + 6 + 5 = 17. Amy then asked, “Why does just the last one have 5?” and Bonny 
explained, “Maybe the bee was born without a leg.” Amy agreed but insisted on 
delivering the preplanned task by saying, “But all bees lost a leg.” Later, Bonny 
successfully solved the problem but felt sad about the fact that every bee lost a leg. Even 
though Amy admitted that it wasn’t a very good math problem, she decided to stick to the 
problem she got from the instructor (Grade 1, SSMFE 3, Task 2) 

In the above vignette, Bonny was still able to solve the problem even though the story 

struck her as unnatural, so Amy implemented this task without encountering any difficulties in 

her interaction with Bonny. However, preservice teachers’ implementation of inappropriate tasks 

might hinder student success in problem solving. The task of the Lucky 5 Candy Factory 

demonstrated this phenomenon. 

Strictly implementing preplanned tasks without considering the child’s struggles.  

Inevitably, students sometimes struggle to understand the task when its mathematical 

relationship is complicated, such as problems including multi-digit numbers, several levels of 

units, and multiple operations. The Lucky 5 Candy Factory task (see Appendix D) is an example 

of such a task. While working with her first-grader on this task, Mary employed up to 50 SQM1 

questions to inquire about Abby’s understanding of the mathematical relationship in the setup 

throughout this interview session. There are four levels of units involved in this task, which is 
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related to the base-five concept, and it was obvious that dealing with four distinct units (the 

individual candy, the roll of candy, the box of candy, and the crate of candy) at the same time 

was a demanding task for Abby. Among those units, five individual candies should be 

repackaged as one roll of candy, five rolls of candy will become one box of candy, and five 

boxes of candy must be converted into one crate of candy. To be able to simultaneously 

manipulate these four units, Abby needed the scheme of coordinating “levels of units” in this 

activity (Hackenberg, 2010). Those levels of units evolve from the “composite unit,” a unit that 

itself is composed of other units. Students are likely to need more time to comprehend the 

inclusion relations of this composite unit (Steffe, 1994a, 1994b) and to intentionally dis-embed 

the subset of units from the whole. In vignette 4, Abby demonstrated her lack of comprehension 

about the rule of repackaging, even though she had been working on six sub-tasks that complied 

with the same rule. 

Vignette 4  
The task on the protocol stated: “Another shipment comes into the factory with 3 rolls, 4 
boxes, and 1 crate. You place the shipment on the conveyer belts so it can be repackaged. 
When the machines get done repackaging, how many of each package should we expect 
to see?” Abby started with having all base-five blocks, and meanwhile, Mary tried to 
drop a hint by saying, “If repackaging, sometimes they don’t have to change the 
packaging.” However, Abby decided to first replace one roll with five individual cubes 
with a long pause. When Mary inquired about the reason why she made this change, 
Abby answered, “I am not sure.” Since this is the seventh sub-task in the Lucky 5 Candy 
Factory task, Mary did not repeat how the machines repackaged the candies; instead, she 
probed “Do you think the machines can change that [pointing to the used base-five 
blocks] more?” and “How would they change it?” After pausing for approximately 20 
seconds, Abby admitted “Not sure” with a frustrated look on her face. Mary immediately 
offered, “We can come back to it,” wrapped up this sub-task, and moved on to next one 
(Grade 1, SSMFE 4, Task 7). 

When realizing that Abby did not really comprehend what the repackaging meant in this 

task, Mary did not try alternative moves to decrease the cognitive demand of the task for Abby. 

For example, she could have simplified the task by using only two units, the individual candy 
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and the roll of candy, instead of four units at the same time. Because she did not take this 

approach, Mary witnessed Abby’s failure, which was caused by her lack of comprehension about 

repackaging among the four units and her inability to transition between them on almost half of 

the sub-tasks in the Lucky 5 Candy Factory task.  

Instructing instead of assessing the child’s thinking.  It is not uncommon for 

preservice teachers to enter the field with the intention to lead students to the correct answer 

(Nicol, 1999). In some cases, teachers explicitly highlighted the mathematical relationship or 

provided direction to their students to help them solve the problem. In vignette 5, Mary directly 

showed how to solve the task correctly in a way that Abby could only passively accept and 

mimic. 

Vignette 5  
The posed task involved finding a way to divide 50 people into teams of 4. Abby initially 
drew 50 dots to represent 50 people in the pool. Mary then tried to highlight the 
mathematical relationship for her by saying, “And we have to split them into teams of 4,” 
but Abby did not understand, so she hesitated for a while. Mary then elaborated by 
emphasizing the number of people needed in each team. Abby proposed splitting the 50 
people into 4 teams. Mary clarified by emphasizing that each team should have 4 people. 
Immediately, Abby understood and asked for guidance with the next step. Mary stepped 
in and demonstrated how to solve this task: “Why don’t we go through and circle…you 
have four dots right here; this would be a team…Circle your 4s.” After this 
demonstration, Abby began to mimic what Mary had demonstrated until she completed 
this task (Grade 1, SSMFE 8, Task 2). 

Moyer and Milewicz (2002) also observed this phenomenon in their study on preservice 

teachers’ questioning and concluded that one general questioning category preservice teachers 

commonly utilize is “instructing rather than assessing,” in which teachers directly demonstrate 

problem-solving strategies and expect their students to follow the instruction. In the setting of 

vignette 5, Mary implemented 10 tasks in 50 minutes, which suggests she had an ambition to 

accomplish all planned tasks before the session was over. It is possible that, for Mary, to have the 
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student solve all tasks in every session was the main goal in her SSMFE, but without 

interviewing Mary, I cannot draw an inference about the reason behind this ambition. In line 

with Moyer and Milewicz’s (2002) research, this study also revealed that preservice teachers had 

the tendency to instruct their students on how to correctly solve the posed task rather than 

striving to assess student thinking. 

Inviting students to interpret the task.  Polya (1957) suggested that, to effectively 

enhance students’ understanding of a task in Stage I, teachers can check students’ understanding 

by asking them to repeat the problem they need to solve. Moreover, letting students point out the 

principal parts of the problem is also a strategic way to ensure they do not miss the essential 

conditions of the task. For instance, one preservice teacher, Sami, not only asked her student, 

Vicky, to repeat the task but also required her to interpret the mathematical relationship from her 

perspective. Therefore, she frequently assessed Vicky’s understanding of the task by asking 

questions like “I forget the problem, can you tell me the problem again? Do you remember the 

problem?”, “Can you repeat that question for me?”, “Do you remember what you are trying to 

find in the problem?” and “Can you tell me what happened in the problem?” in several tasks 

throughout the session on that day (Grade 1, SSMFE 2). Although Vicky spent plenty of time 

retrieving information and forming the sentence to express what she knew about the task, the 

wait time Sami applied was fairly appropriate and successful to invite Vicky to interpret the 

tasks. Because Sami took this approach, Vicky had opportunities to revisit the problems, select 

essential information, and demonstrate her understanding of the tasks to Sami before she started 

to solve them. Sami’s SSMFE set up a positive questioning example in problem-solving Stage I. 
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Stage II: Questioning Moves Used to Inquire about the Devised Plan 

Devising a plan in problem solving could be described as selecting suitable heuristics 

based on the solver’s understanding of the problem in the first stage. To achieve this, students 

must monitor their comprehension, examine the connection between the received information 

and the unknown, and establish potential solution paths (Carlson & Bloom, 2005; Peker, 2009; 

Printrich, 2002). Polya (1957) pointed out that “[t]he way from understanding the problem to 

conceiving a plan may be long and tortuous” (p. 8). In SSMFE, there were a total of 136 moves 

in SQM2, and 44% of these moves were open-ended, which meant that students had an 

opportunity to elaborate on the reasons behind conceiving a feasible plan. However, most 

enacted tasks were taught in school mathematics class, so the student participants generally 

began to solve the posed task right after it was posed by the preservice teachers. In addition, 

students habitually conceived plans in their head, so the rationale behind the devised plan 

became relatively implicit in the process of problem solving. It is important to mention that 

questioning moves positioned in Stage II occurred before students began to carry out their 

solution strategies. Two phenomena of teachers’ questioning behavior are worth discussing: (a) 

easily accepting an oversimplified reason for the devised strategy and (b) directly suggesting a 

possible direction to develop a strategy.  

Teacher accepted an oversimplified reason for the devised strategy.  In many cases, 

teacher participants chose not to prompt students further to articulate the rationale for their 

devised plans, so they missed the opportunity to acquire students’ insights into the proposed 

plan. The observed vignettes affiliated with Stage II illustrated the tendency of preservice 

teachers to complacently accept an oversimplified reason about how the plan was devised or 

selected, rather than conduct a thorough inquiry about the students’ rationale behind their 
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strategies. Vignette 6 demonstrates how the teacher enacted open-ended SQM2 questions to 

inquire about the child’s plan but stopped exploring when receiving a response stemming from 

an oversimplified reason for the decision on employing subtraction. 

Vignette 6  
The original task was posed as, “Danny has 2001 points on his favorite video game. He 
forgot to save the game before turning it off, and he loses 956 points. How many points 
does he have now? Solve the problem in two ways.” Sam automatically articulated his 
plan of solving this task by saying, “Well, you don’t need this information that he forgets, 
but you need that [pointing to ‘he loses 965 points’], then I am gonna subtract. So, if I 
subtract 2001 by 965, I will get my answer.” Teresa inquired, “How’d you know that?” 
and Sam answered, “Because the key word is ‘loses’, and then he loses 965 points, and 
he has 2001 points” (Grade 4, SSMFE 4, Task 1).   

In vignette 6, Sam demonstrated his ability to sieve the information and devise a strategy, 

so Teresa tried to inquire about the rationale behind his plan. Sam then indicated that the key 

word was “loses” so he conducted subtraction. However, Teresa accepted this reply without 

endeavoring to elicit further explanation on this statement. Beckmann (2016) emphasized that 

the construction of mathematical relationships among numbers in a math word problem should 

not be determined by merely focusing on a key word. Due to Teresa’s acceptance of Sam’s 

oversimplified reason, she might have unintentionally reinforced the use of key words. 

Conversely, when Sam asserted that the key word “loses” told him to subtract, one possible 

move for Teresa was to invite Sam to explain the mathematical reasoning behind his decision by 

asking questions such as “Why does the word ‘loses’ mean ‘to subtract’ to you?”, which was a 

typical question suggested by the instructor of the methods course. 

Teacher suggested a possible direction to develop a strategy.  In the remaining moves 

in SQM2, preservice teachers normally directly suggested a possible strategy that was either 

derived from students’ existing work or from the teachers themselves. Vignette 7 shows how the 

teacher initially tried to discover the child’s intended plan via a SQM2 question, “What are you 
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thinking about doing?” but then followed up by suggesting a new strategy without extending the 

child’s proposed idea. 

Vignette 7  
Bonny has been struggling to figure out how to equally distribute 30 basketballs among 
10 bins. After some trial-and-error methods, Amy asked, “What are you thinking about 
doing?” Bonny described her plan and the difficulty she encountered: “I am thinking 
about how to put all of them [30 basketballs], the same number in here [10 bins], but she 
has 30 basketballs, and I have nine more bins.” Amy then suggested a new strategy by 
saying, “Can you write a number sentence for it? Remember how last week we wrote a 
number sentence for that one problem?” based on their prior experience (Grade 1, 
SSMFE 3, Task 1). 

As a result, Bonny wrote the sentence, 18 + 18 = ___, in which she assumed that 30 

would be the answer to the unknown number and began solving her equation by arranging 18 

cubes plus 18 cubes on the table. Compared to the questioning move of “instructing instead of 

assessing” shown in vignette 5, Amy’s suggestion left relatively more learning space for Bonny 

in vignette 7. That is, Amy’s suggestion of solving the problem using a number sentence without 

regulating the format of the sentence and the numbers in it did not limit Bonny’s creation. 

According to Polya (1957), there are several functional questions that would help students devise 

a plan, such as “Did you use all the data? Did you use the whole condition?” and “Could you use 

any (previous) problem with a similar unknown?” (p. 10). It is evident that knowing how to solve 

a problem relies on how well the problem solvers understand the mathematical relationships in 

the task and can make connections between the current situation and their past experiences. 

Without this firm fundamental understanding, it is difficult for students to solve the tasks 

successfully. 

After watching Bonny struggle for ten minutes, Amy realized that Bonny did not 

understand the mathematical relationship between the two given numbers. During this ten-

minute span, Amy’s questions superficially focused on Bonny’s trial actions, such as “Why did 
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you try 8?” and “Is 18+18 bigger or less than 30?” However, Bonny still could not move on 

without devising a proper plan for this task, even though she admitted that this process did 

challenge her in a positive way. Ultimately, one questioning move enacted by Amy, “Can you 

think of another way of doing it besides putting them all in one bin at the same time?” stopped 

Bonny from trying to put several objects in the same container and inspired Bonny by only 

putting one object in each of the ten bins at one time. This nudge, besides putting them all in one 

bin at the same time, might not suggest a possible plan to solve the task, but it excluded an 

impractical strategy and finally helped Bonny successfully solve this task. In other cases, 

however, when students spent more than 3 minutes to figure out how to solve a task, preservice 

teachers were inclined to terminate the task and move on to the next.  

Stage III: Questioning Moves Used to Investigate the Existing Strategy 

Half of preservice teachers’ questions in SSMFE fell into the category of SQM3, and this 

use of questioning was consistent with the course goal of understanding children’s mathematical 

thinking. Most preservice teachers were eager to dive into the mission of exploring student 

thinking while observing the students solving math problems in SSMFE. Although the preservice 

teachers in this study were provided with exemplary talk moves, such as asking questions like 

“How did you do that?” “How did you figure that out?” or “Why” (Ginsburg, Jacobs, & Lopez, 

1993). The relative nature of enacting SQM3 questioning is in line with the “responsive moves” 

described by Jacobs and Empson (2016), who proposed that there is no way that preservice 

teachers can predict the best time to enact SQM3 questioning because those moves are subject to 

what students do and come in response to the previous question under a specific set of 

circumstances.  
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Open-ended SQM3 questions required students to demonstrate their existing strategies in 

detail. Teachers typically used direct probing questions like “What did you do?” or “How did 

you do that?” in a problem-solving interview. However, in most cases, these types of questions 

exclusively elicited students’ procedural knowledge rather than their conceptual knowledge. One 

could ascribe this outcome to teachers’ deficient questioning techniques, such as (a) using non-

specific probing questions and (b) neglecting unexamined but valuable strategy devised by 

students.  

Teachers used non-specific probing questions.  Similar to what Moyer and Milewicz 

(2002) found in their study, preservice teachers in this study used many “non-specific” probing 

questions. This type of question did not “acknowledge the child’s specific response, resorting 

instead to general follow-up questions such as ‘What were you thinking?’” (p. 307). In this 

current study, some teachers risked obscuring their questions by not specifically indicating the 

parts of the students’ strategies that they intended to probe using SQM3 questions. As a result, 

teachers failed to tailor their questions to the appropriate responses that really interested them in 

the interactions. Linked to this issue, even though the first-grade student, Alia, clearly described 

how she converted a Start Unknown Join problem into a Change Unknown problem adapted 

from the CGI problems, Tina’s question consisted of non-specific indicator such as the pronoun 

“that” in this task: 

Vignette 8  
The posed task was, “Julia had some markers. She gave 2 markers to her brother. Now 
she only has 4 markers. How many markers did Julia start with?” After Alia gave her 
solution, “She started with 6 markers,” Tina asked her, “How’d you know that?” Alia 
replied, “Because 2 plus 4 is 6, and…you add those up, and I did an inverse [computing 
6 − 2 on paper], so I got 4…I also knew 4 plus 2 was 6, so if you added 2 plus 4 [it’d be] 
6 markers.” Tina did not inquire further about the strategy (Grade 4, SSMFE 1, Task 1). 



95 

 

The pronoun “that” in Tina’s question could have meant the answer 6 and been intended 

to elicit how the 6 was produced in the computational procedure, or it could have meant how the 

strategy was devised by the student. Preservice teachers might have considered these non-

specific questions as “routine questions” that they had to enact in the interview, without 

contemplating how to use them strategically to elicit pertinent information from the students. 

Therefore, preservice teachers sometimes wrapped up the task after receiving any response from 

their students. In this study, most SQM3 questions exclusively ascertained students’ 

computational explanations, and this outcome seemed sufficient to teacher participants because 

they did not pursue further questioning. 

Teachers neglected to examine strategy devised by students.  In the next vignette, the 

preservice teacher Alice missed an opportunity to inquire about her student’s initial strategy 

when the student was trying to solve the task involving the mathematical structure 54 =

___ × 10 + ___. 

Vignette 9  
After posing the task to Sandy, Alice was taking notes to record what Sandy did in her 
first strategy, and Sandy said: “It was 10 and the other one number [sic] was 54. Let’s 
try…five… [computing 5 times 10 in the long division]…50 equals…so it’s 5, remainder 
of 4 (see Figure 4-4)” Alice immediately asked, “How did you know?” Rather than 
elaborating on the original strategy, Sandy responded to this probing question by 
demonstrating another strategy, “I try 2, and do 2 again, and then that’s 20, so I can do 
one to 14. It’s gonna be 5” (Grade 4, SSMFE 2, Task 1).   

 
Figure 4-4. Sandy’s first strategy and second strategy. 
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In vignette 9, Sandy’s first strategy is unexamined but valuable. However, Alice did not 

probe the original strategy further, even though she recorded it in her notebook. She accepted 

that Sandy responded to the question, which was intentionally used to explore how she figured 

out the first strategy, with her second strategy. In accepting this response without further 

probing, Alice missed an opportunity to inquire about the reason why Sandy tried the number 5 

in her first strategy. During the session, Sandy had explained that she usually employed a 

different method to check her original solution due to her self-doubt regarding the initial 

solution. However, Alice could have leveraged Sandy’s “old habit” of producing at least two 

strategies while solving a problem through effectively enacting questioning for both strategies. 

Another example was from a fourth-grade session in which the student, Natasha, was 

working on 60 × 10 by using the partial-products method with a rectangle drawing, called the 

Box Problem, as shown in Figure 4-5 (SSMFE 5, Task 3). Natasha did not solve this problem 

correctly, and her explanation of the procedure was flawed. However, the only question from the 

teacher, Tiffany, was “so is it 6,000 or 600?” and Natasha’s strategy remained unexamined. After 

receiving the confirmation of the incorrect solution, 6,000, from Natasha, Tiffany moved to the 

next problem without inspecting the pieces of information Natasha provided. 

 

Figure 4-5. Natasha’s solution to 60 × 10 by conducting the partial-products method. 



97 

 

In conclusion, when preservice teachers were satisfied with “listening, not to the child’s 

thinking, but for a response which then allows the interview to continue” (Moyer & Milewicz, 

2002, p. 301), they did not actively clarify the undefined indicators in their questions and 

occasionally neglected to probe some underdeveloped responses. Because carefully following up 

on students’ thinking was suppressed by the ambition to complete all tasks in the SSMFE 

interviews in the time allotted, more than half of teacher participants failed to discover the 

rationale behind the implemented procedure. Although using the “What,” “How,” or 

confirmative questions successfully elicited the steps of a computation procedure, preservice 

teachers lost valuable opportunities to invite further elaboration and reflection on the students’ 

decision-making processes in problem solving. 

Stage III: Questioning Moves Used to Elicit Mathematical Terminology 

 In terms of using mathematical terminology, NCTM (2000) suggests that teachers should 

help K-2 students relate everyday language to mathematical language and symbols in a 

meaningful way. In SSMFE, 55% of SQM4 questions allowed the students to express 

mathematical representations in the ways they preferred. In these relatively open circumstances, 

most preservice teachers primarily requested that students write “a mathematical sentence” that 

comprises two given numbers, one unknown number, and the equal sign. However, students 

were allowed to decide the type of operations and the location of the unknown number in the 

sentence. In contrast to this open approach, some preservice teachers insisted on students 

incorporating the correct mathematical terminology (e.g., the names of unit fractions and the 

structure of a mathematical problem), which is a relatively closed approach because this 

questioning behavior confined students’ responses to a particular answer.  
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NCTM (2000) warns that “[i]t is important to avoid a premature rush to impose formal 

mathematical language” (p. 63) on students and proposed that teachers must provide sufficient 

time and experiences to help students make a connection to formal mathematical language and to 

develop their communicative power with conventional mathematical terms. In the next vignette, 

Mary was delighted that Abby successfully named the correct mathematical terminology in the 

interaction while they were working on an equal-sharing task.  

Vignette 10  
After Abby partitioned two cakes into five pieces and one into ten pieces with different-
size pieces in all three cakes, Mary elaborated on the question in a more specific way by 
saying, “Let’s just take one of the friends. How much of the cookie cake does one friend 
have? Remember how we talk about, when it’s split into five pieces, what’s that called?” 
and simultaneously pointed to the first cake that was partitioned into five pieces. Abby 
responded, “A fifth?” with an uncertain intonation. Then, Mary pointed to the cake that 
was divided into 10 pieces and tried to direct Abby to another mathematical term by 
saying, “So, remember how we have…these are broken up into what, if you have 10 
pieces?” Abby answered, “Tenths.” Mary was delighted at this response and replied 
“Right!” (Grade 1, SSMFE 8-4, Task 1). 

In this case, Abby was able to recall the terms of unit fractions such as “fifth” after Mary 

reminded her by stating “Remember how we talk about, when it’s split into five pieces, what’s 

that called?” and did the same to address the term of “tenth.” Although Abby correctly 

enunciated the mathematical terminologies, she did not demonstrate her understanding of 

fractions in the context as she solved this equal-sharing task by concluding that each friend 

would get three pieces even though the pieces were not properly divided into the same size. 

According to Empson and Levi (2011), working with students on equal-sharing problems 

is a beneficial way to introduce fractions because those problems can help students “understand 

that a countable set of objects can also include fractions of an object” (p. 6). In this vignette, 

Mary was satisfied merely with Abby’s ability to name the unit fractions, even though the goal 

of this task was to expose Abby to a setting in which she was supposed to create a fractional 
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quantity that allowed her to relate it to a whole-number quantity. Mary’s use of questions like 

“What would you call this?” and “Do you know its name?” while working on the topics of 

fractions, division, and other operations evinced her intent of eliciting correct mathematical 

terms. In Mary’s final portfolio, she asserted that focusing on the use of correct language as a 

follow-up activity on the topic of fractions was the goal in her SSMFE. This goal affected 

Mary’s entire SSMFE, and vignette 11 exhibits how Mary required Abby to identify the type of 

problem in her questions.  

Vignette 11  
Abby solved the task, “There are 20 petals on a flower. If we wanted to split the petals 
into groups of 4, how many groups would there be?” by drawing 20 petals on paper and 
circling groups of 4. She then obtained the correct answer, “5 groups.” Mary posed a 
follow-up question by asking, “Can you tell me what type of problem this is? Is this 
addition, subtraction, multiplication, or division? Do you know?” Abby was uncertain 
and replied, “Multiplication?” Mary provided more information related to her question by 
stating, “If we’re divi-, if we’re splitting ‘em up into groups?” and led Abby to say the 
word with her by pronouncing, “Di-vi-sion.” Once Mary heard what she expected, she 
wrapped up the task (Grade 1, SSMFE 8-4, Task 7). 

For Mary, it seemed very important to maintain the goals of introducing mathematical 

language and helping Abby use correct mathematical terms, so she insisted on spending time 

waiting for a correct response to the question, “What is the mathematical word for how much 

each person would get?” (Mary, final portfolio, p. 12) throughout her SSMFE. However, the 

instructor’s goal of the SSMFE was aimed at providing preservice teachers with an opportunity 

to understand their students’ mathematical thinking, so it is not necessary for preservice teachers 

to overemphasize the correct use of mathematical terms during the SSMFE. In other words, it 

was acceptable to allow students to use their own language in their explanations to better express 

their thinking. Rushing students into using formal mathematical language prematurely could 

thwart the exploration of their existing knowledge and on-going thinking processes.  
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Stage III: Questioning Moves Used to Elicit Alternative Strategies 

The SQM5 questions (37 out of 1027) were the least prevalent. For most preservice 

teachers, it was sufficient if their students were able to solve the tasks by employing just one 

strategy. However, because students’ first choice of strategy might fail or the original task might 

require two different strategies, teachers need to understand the importance and timing of 

inviting alternative strategies from students. Normally, the preservice teachers in this study did 

not correct students’ strategies and answers, even when those were flawed. Instead, they tried to 

ask questions to encourage students to share other strategies. In the following vignette, Tiffany 

successfully elicited a second strategy from her fourth-grader, Natasha, by employing a typical 

SQM5 question. 

Vignette 12  
After posing the task, “If each T-Rex has 60 teeth, how many would 10 of them have in 
all?” Natasha solved the task by adding a 0 to her previous answer (120) but obtained a 
wrong answer of “A thousand two-hundred.” Tiffany then asked, “Could you show me 
another way to solve this problem [60 × 10]? What’s another way you could solve it? 
Other than using mental math and annexing the zeros?” Natasha immediately proposed 
her second strategy by saying “Box problem” (Grade 4, SSMFE 5, Task 3). 

Even though the term “another way” generally elicited new strategies from the fourth-

graders, proposing a different strategy might be difficult for some students, especially for first-

graders. In some cases, the first-grade students merely rearranged numbers in the sentence, 

restated existing strategies with an inverse operation, or accepted what the teacher suggested 

passively. If students assume that finding another way implies conducting a different 

rearrangement of their original expression, one way teachers can respond is to clarify their 

intention and indicate that finding another way means creating a new strategy to solve the task. 

This phenomenon corresponds to what Lampert (1990) pointed out, “Doing mathematics means 

following the rules laid down by the teacher; knowing mathematics means remembering and 
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applying the correct rule when the teacher asks a question, mathematical truth is determined 

when the answer is ratified by the teacher” (p. 32). Finally, only five questions of the 37 SMQ5 

posed by the preservice teachers focused on the comparison of strategies rather than encouraging 

a new strategy. Those comparison questions were mostly conducted by the teacher through 

initiating the analysis of similarities and differences among distinct strategies, so they are not 

discussed further in this paper. 

 

Discussion 

In this study, I sought not only to categorize preservice teachers’ supportive questioning 

moves but also to characterize those moves in relation to students’ reactions in Polya’s problem-

solving stages. On the basis of the data presented above, I suggest examining teachers’ 

questioning moves in a teacher-student interaction context that encourages students to 

demonstrate their mathematical thinking with regard to how to interpret a mathematical task, 

devise a problem-solving plan, justify a strategy, and perform a computational procedure. In 

particular, the aspects of analysis should include the timing, format, and features of the 

questioning moves teachers enacted while working with different student populations. 

Teachers’ Flexibility in the Setup  

The task posed in Stage I is the origin point of the entire sequence of a SSMFE session, 

and it should be understandable and solvable for students in order to accomplish the problem-

solving mission successfully. If the task requires spontaneous revision in the SSMFE, to what 

extent the student participants can understand the task will depend on how capable teachers are 

of modifying the intended task and posing SQM1 questions appropriately. During the eight-week 

period, only 4 out of 11 preservice teachers tried to modify pre-planned tasks in setup to decrease 
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the task’s cognitive demand. However, the outcomes of such modifications were not positive 

experiences for them due to the resulting defects in the altered mathematical structure. This 

phenomenon could stem from preservice teachers’ insufficient mathematical content knowledge 

(Ball, 1990) and might reinforce their beliefs about authority that they should follow the 

interview protocol provided by the methods course instructor (Cooney, Shealy, & Arvold, 1998; 

Mewborn, 1999). In addition, preservice teachers’ open-ended questions did not always 

guarantee a fruitful opportunity for students to reason and communicate in Stage I. For example, 

most teacher participants generally repeated the original syntactic formulation as it was provided 

on the interview protocol and reenacted it the moment their students showed hesitation in the 

problem-solving activity. These inflexible SQM1 questions constituted an obstacle for first-grade 

students who have not sufficiently developed the taken-as-shared understanding of context 

(Cobb, Wood, Yackel, & McNeal, 1992), use of mathematizing language (Cobb, Gravemeijer, 

Yachel, McClain, & Whitenack, 1997), and mathematical fluency (Parks, 2010). Hence, 

teachers’ flexibility in the set-up phase deserves attention. 

Teachers’ Limited Extent of Inquiry 

Examining preservice teachers’ questioning in relation to students’ problem-solving 

performance also revealed that most teacher participants stopped their inquiry after receiving a 

plausible response from the students. For example, when the child replied to the question “How 

did you conceive that plan?” with “my teacher taught me in school,” or responded to “Why did 

you know that strategy is correct?” with “because the keyword more means plus,” preservice 

teachers’ inquiries ceased. Given that the process of devising a plan at Stage II and the rationale 

behind it could reflect the problem solver’s mathematical knowledge and logical reasoning, 

which are fundamental for implementing the strategy in Stage III, the limited extent of inquiry in 
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Stage II not only shortened the string of teacher-student interactions but failed to inform the 

teacher with a thorough explanation of the student’s plan. As a result, it centered the 

conversation on computational steps exclusively. 

Preservice teachers terminated the task for different reasons. In some cases, when student 

participants encountered unclear terminology in the question, they responded by saying “I don’t 

know,” and preservice teachers stopped questioning, presumably because they had been 

instructed not to compel the students to continue if they seemed uncomfortable. In other cases, 

preservice teachers simply accepted student responses and terminated the task without follow up, 

regardless of students’ problem-solving performance. This phenomenon was detected in both 

Stage II and Stage III, and these instances did not allow the preservice teachers to develop or 

improve their questioning. 

Teachers’ Neglect of Unexamined Strategies  

Some teacher participants neglected to examine students’ valuable strategies in their 

questioning, regardless of whether the solution was correct or incorrect. This phenomenon was 

illustrated by vignette 9, in which Sandy’s first strategy was completely ignored, even though 

Alice recorded that strategy in her notebook. The eight-week SSMFE was designed to enhance 

teacher participants’ understanding of students’ thinking in mathematical problem-solving 

activities. Questioning was one of the few assessment techniques preservice teachers could use to 

inquire into students’ conceptions in different types of mathematical tasks. When teachers miss 

the opportunity to probe into students’ responses and the strategies students develop, the learning 

opportunity preservice teachers might only gain once in their education programs will be in vain.  
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Conclusions 

The teacher participants demonstrated their questioning in an incremental rather than an 

accumulated progression. That is, every time preservice teachers started a new task, they, except 

two of the 13 teacher participants, showed improvement in the selection of questions and the 

extent to which they had to discontinue a particular type of questioning. Through gauging their 

students’ responses and attitudes in previous tasks, they strived to avoid the mistakes that were 

noticeably harmful. However, since questioning is an art, preservice teachers must experience 

unpredictable variables in related to their questioning (Dillon, 1983; Fitch, 1879; Wassermann, 

1991), and accordingly, the accumulated progression of questioning was hindered. In other 

words, the student may decide to approach next task by applying another strategy that required 

different knowledge and skills, and based on what the student performed, the preservice teacher 

had to discard the questioning techniques that were inappropriate and modified former questions 

for a specific context.  

This study provides insight into how preservice teachers’ questioning performance was 

influenced by interacting with single student on designated mathematical tasks. I concluded that 

teacher questioning was a contextual, situated behavior and when being promised with an 

assisted-learning opportunity, they may successfully develop the knowledge and abilities to (a) 

effectively modify tasks, (b) efficiently extend inquiries, (c) precisely define probing questions, 

and (d) promptly detect and react to students’ underdeveloped responses in their questioning. 

After learning the nature and features of teacher questioning, questioning should be identified as 

a teachable technique, in which teacher educators can assist preservice teachers’ learning to 

question through providing a practice-based analytic framework in a field-based activity starting 

in the early stage of teacher education programs. 
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Limitations  

In this observational study I documented and analyzed teacher questioning that occurred 

during an 8-week SSMFE in mathematics methods courses. My analysis was based on a short 

interaction for each pair of participants, which limited its comprehensiveness and applicability. 

Teacher questioning is a dynamic, moment-to-moment behavior, and teachers might improvise 

their questions in a flash of intuition or deliberately employ questions with a solid conceptual 

guideline, but I cannot determine which was the basis for teacher questions in this study. 

Because I did not conduct interviews with preservice teachers, there are likely many relevant 

issues that have not been addressed in the findings, such as the teachers’ intention and self-

reflection process with regard to asking particular questions. Furthermore, the perspective of the 

student participants in the interaction was not documented other than verbal responses audible on 

the tape and nonverbal reactions in the video. I did not analyze how students processed the posed 

questions, which I consider an important aspect of problem solving. 

 

Implications 

In closing, I will address two categories of implications are arising from this study: 1) 

implications for future research on teacher questioning and 2) implications for the design of field 

experiences and clinical practice. A further discussion of this trend is presented below. 

Implications for future research   

This study was based on thirteen pairs of preservice teachers and elementary school 

students’ interactions on mathematical tasks. Through analyzing teachers’ questioning moves in 

different stages of problem-solving activities, I have identified the influences of teachers’ 

weakness on modifying the intended tasks, extending the inquiry, utilizing indicators, and 
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following up on students’ strategies in their questioning. All influences have close interactions 

with one another and play a critical role in each stage of mathematical problem solving. Thus, 

one approach to research about teacher questioning should continue to connect the enacted 

questioning to the problem-solving context. Future research can draw from the conceptual 

framework and coding schemes presented in this study, and then further consider employing (a) 

well-developed measures (Hill, Schilling, & Ball, 2004) to assess teacher participants’ content 

knowledge for teaching elementary mathematics and (b) well-structured interviews to inquire 

about teachers’ intentions behind questioning moves observed in their teaching practice. 

The design of field experience 

The fact that teacher participants enacted questioning less effectively while working with 

students on multi-topic mathematical tasks has implications for the design of field experience. 

NCATE (2008) emphasizes the importance of field experiences and clinical practice in teacher 

education programs. Well-designed field experiences can expose teacher candidates to an 

environment where they can “develop and demonstrate the knowledge, skills, and professional 

dispositions necessary to help all students learn” (p. 12). In general, scholars who focus on 

teacher questioning have employed a variety of tasks across multiple mathematical topics and 

paid close attention to how teachers demonstrate their mastery of questioning skills while 

inquiring about students’ thinking. However, to develop advantageous mathematical field 

experiences, an important procedure is to scrutinize the components needed in teachers’ clinical 

practice including the selection of student populations and the adoption of appropriate 

mathematical tasks. For example, when Mary adapted the multilevel-unit Lucky 5 Candy Factory 

task, which had unfamiliar terms and a complicated structure, to her first-grade student, the 

problem-solving failure frustrated not only the student but also the teacher. This finding not only 
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reinforces DeCorte and Verschaffel’s (1987) assertion that the semantic structure impacts first-

graders’ strategies for solving addition and subtraction word problems but also echoes Linville’s 

(1976) conclusion that syntax and vocabulary levels impact the difficulty of verbal arithmetic 

problems. In other words, the relationships between the selected student population and the 

appropriateness of enacted tasks should be thoroughly examined in order to ascertain the 

appropriateness. Once the working environment and tasks are appropriately set and the student 

population is properly selected, preservice teachers can concentrate on practicing their 

questioning technique in the field experience. 

The cultivation of teacher questioning 

In this study, preservice teachers demonstrated they were good at asking questions that 

elicited specific information from students (i.e., the procedures used by students). For example, 

they asked what students understood about the task or what steps they took. However, they 

tended not to use their questioning to support the problem-solving process from a broader 

perspective. In particular, they did not effectively help students devise a plan for solving the 

problem, an essential bridge between understanding the task and carrying out solution strategies. 

They did not leverage the CGI frame they had being given to elicit students’ ideas or extend 

them. 

Clegg (1987) contended that “[t]eachers use questions more than any other activity. They 

are central to such strategies as recitation, review, discussion, inquiry, and problem solving” (p. 

11). While accepting the definition of teaching as “[e]verything that teachers must do to support 

the learning of their students” (Ball, Thames, & Phelps, 2008, p. 395), I further value effective 

questioning moves as a professional technique with the characteristics of strategical and social 
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acts that will not only support preservice teachers’ learning to teach in the teacher education 

programs but also empower their learning in the post-training journey. 
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APPENDIX D  

Mathematical Tasks Within Five Topics in the SSMFE 

1) Base-N 
In the fourth-grade class: A Base-4 math task 
In the first-grade class: A Base-5 math task 
Example task: The Lucky 5 Candy Factory task, used in the first-grade class 

At the Lucky 5 Candy factory, machines do the packaging. At this factory, there are the 
following types of packaging: individual candies, rolls of candies, boxes of candies, 
and crates of candies. The machines look for groups of 5. This means that every time a 
machine sees a 5, they put the candies into a container of the next size. So, every time 
they see 5 individual candies, the machines put them into a roll. Rolls can only hold 5 
candies. Every time the machines see 5 rolls, they put them into a box. Boxes can only 
hold 5 rolls. And every time the machines see 5 boxes, they put them into a crate. 
Crates can only hold 5 boxes. 

Question #1: 9 candies were dumped onto a conveyer belt below. How many of each type of 
package should we expect to see after the machines finish packaging the candies? 

2) Base-Ten/Place Value 
In the fourth-grade class: Multi-digits operation tasks  
In the first-grade class: Two-digit adding the multiples of 10 tasks, and place value tasks 
Example task: Base-ten subtraction problem, used in the fourth-grade class 

Nicky has 2001 points on his favorite video game. He forgets to save the game before 
turning it off, and he loses 956 points. How many points does he have now? Solve the 
problem in two ways. 

3) Number Facts 
Example tasks: 

____ + ____ = 11 
45=25+20=___ + 15 
8+9=___ (naked number fact problem) 
17+25=___ (naked number fact problem) 

4) Fraction or equal-sharing problems 
Example task: Equal-sharing problem, used in the first-grade class 

If I am having a party with 10 friends. We are splitting 3 cookie cakes. How much of 
the cookie cakes would each friend get? 

5) CGI problems types 
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Sources: https://elemath.hallco.org/web/wp-content/uploads/2015/06/CGI-Problem-Types.pdf  
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Abstract  

This study illustrates the construction and functioning of teacher-student interactional 

turns in support of elementary students’ mathematical problem solving. Data were collected in 

the form of observations, video recordings, and course assignments. Two frameworks were 

employed to describe the functions and patterns of interactional turns. In particular, the 

constructions of sequencing patterns of the functional moves are presented, and the features 

emerging from them are discussed. The findings indicate that the well-performing functional 

moves have potential to elicit multidimensional facets of students’ mathematical thinking and yet 

may not be enacted competently in mathematical problem solving. How to effectively utilize 

student-produced discourse to inform teacher questioning strategies in early field experiences has 

important implications in learning to teach mathematics. 

 

KEYWORDS: Teacher questioning, problem solving, mathematics methods courses, field 

experience 
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Introduction 

Teacher-student interactions are ubiquitous in every educational setting, and the modes of 

interaction vary depending on the teacher’s goals or the student’s purpose for study. Among all 

interactional modes, the question-and-answer interaction is a prominent discourse pattern 

enacted in classrooms, and most teacher-student conversation is led by teacher questioning. To 

enhance the environment of teaching and learning mathematics, the National Council of 

Teachers of Mathematics (NCTM) (1991) suggests that teachers should orchestrate classroom 

discourse by: 1) “posing questions and tasks that elicit, engage, and challenge each student’s 

thinking;” 2) “listening carefully to students’ ideas;” and 3) “asking students to clarify and justify 

their ideas orally and in writing” (p. 35). Accordingly, teacher questioning plays a substantial 

role in teacher-student interactions, and effective mathematics teaching relies heavily on 

teachers’ questioning techniques. I begin with a close look at the historical development of and 

prior research on questioning. 

More than a century ago, Stevens (1912) asserted that “[t]he question and answer type of 

recitation, when rightly used, is more fruitful for the teaching process than … the topical 

recitation, the written lesson, or the lecture”3 (p. 2). As enacting questioning in the classroom has 

become a prevalent pedagogical move, the affiliated condition in Stevens’ assertion, “when 

rightly used,” has gained relatively less attention than the enacting of questioning itself. Ross 

(1860) was the earliest educator to overtly discuss the method of teaching by questioning and to 

                                                 
3 Stevens (1912) defined “the topical recitation as a method employed for repeating facts that are 
presented and systematized by someone else; the written lesson as a test of the facts a student 
possesses and, at best, his method of classifying them; and the lecture as a pouring in process” 
(p. 2). 
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distinguish the difference between catechetical questioning, the method of teaching by 

questioning, and examinatory questions, which were used for testing or proving. In historical 

records, questioning did not become a topic studied in education until Stevens (1912) 

systematically observed high school teachers’ questioning across different subject matters 

including English, History, Science, Modern Language, and Mathematics. Her research 

represented a significant step toward the study of teacher questioning in many respects. For 

example, her research shone a light on how teachers’ questions could be tallied and scrutinized in 

the context of teaching. Research on analyzing the frequency and categories of teachers’ 

questions in classrooms has flourished since. 

For much of the 20th century, studies focused on expert teachers and the quantitative and 

practical characteristics of questions employed in the classroom (Floyd, 1960; Gallagher & 

Aschner, 1963; Haynes, 1935; Houston, 1938; Hunkins, 1976; Morgan & Saxton, 1994; Moyer, 

1967; Wilen, 1987), although researchers have increasingly seemed dissatisfied with merely 

categorizing teachers’ questions as the importance of student participation has become more of a 

research trend. Hogg and Wilen (1976) suggested that “[s]tudents can be a practical, reliable 

source of feedback on teachers’ performances” (p. 281). Researchers have urged that including 

students as sources in teacher questioning could reduce the view of teachers as the single 

authority in classrooms and increase student engagement during the interaction (Di Teodoro, 

Donders, Kemp-Davidson, Robertson, & Schuyler, 2011; Franke et al., 2009; Ralph, 1999; Sahin 

& Kulm, 2008; van Zee & Minstrel, 1997). Based on the historical evolution of teacher 

questioning as well as previous research on questioning in classrooms, I take the analytical 

perspective that factors the context of mathematical problems in the foreground and examines 

the outcomes of questions in teacher-student interactions. Accordingly, the primary purpose of 
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this study was to explore the functions and constructions of teacher questioning in a 

mathematical problem-solving setting. 

 

Conceptual Frameworks  

Effective Mathematics Teaching and Questioning in Interactions 

Teaching efficacy is a pursuit in the field of education. With regard to mathematics 

teaching, NCTM (2000) emphasized that “[e]ffective mathematics teaching requires 

understanding what students know and need to learn and then challenging and support them to 

learn it well” (p. 11). In practical applications, teaching includes a series of decisions regarding 

“what to teach, how to teach, who to call on, how fast the lesson should move, how to respond to 

a child, and so on” (Carpenter, Fennema, Franke, Levi, & Empson, 1999, p. 95). Therefore, 

effective mathematics teaching is affected by teachers’ knowledge, beliefs and attitudes that are 

“stored as schemas in the mind of the teacher” (Ernest, 1989, p. 13) and should be considered as 

an evolutionary process. 

To further illustrate the components that affect teachers’ learning to teach, Ernest (1989) 

distinguished between teachers’ thought processes (e.g., planning, interactive decision-making, 

and reflection) and thought structures (e.g., knowledge, beliefs, and attitudes) and then offered 

conceptual models to elucidate mathematics instruction. Ball and McDiarmid (1989) also pointed 

out that “teachers’ conceptions of knowledge shape their practice – the kinds of questions they 

ask, the ideas they reinforce, the sorts of tasks they assign” (p. 2). That is, teachers’ thought 

structures dominate their instructional practice, and teachers’ performance could partially reflect 

their thought structures. Therefore, examining the modes of teachers’ practical work, including 
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verbal expression, the use of multiple representations, and nonverbal behavior, might provide 

insight into the knowledge, beliefs, and attitude teachers possess. 

Questioning, as a strategic act in teaching (Green 1971), normally comprises a sequence 

of questions that aims to support a predetermined goal the initiator expects to achieve. Mewborn 

and Huberty (1999) suggested that, after initiating the first question in the sequence, teachers 

should listen carefully to students so that they can ask good follow-up questions. This observed 

three-part sequence of the “Question-Listen-Question” technique could be viewed as a structure 

analyzed from the teacher’s standpoint relative to the well-known “Initiation-Response-

Evaluation” (IRE) pattern (Mehan, 1979) and the “Initiation-Response-Feedback” (IRF) 

sequence (Sinclair & Coulthard, 1975). In addition, Mewborn and Huberty (1999) identified two 

challenges observed in the classroom including (1) “dealing with incorrect or incomplete 

solutions” and (2) “finding time to use this type [effective initial and follow-up] of questions” (p. 

243).  

Many researchers have noted that teachers’ experiences working with students can play a 

role in teacher questioning (Hyman, 1979; Sahin & Kulm, 2008; Tienken, Goldberg, & DiRocco, 

2009). For example, Fitch (1879) emphasized that questioning is a practical matter and usually 

occurs in an environment where teacher-student dialogue plays a more critical role than teacher 

monologues do. Furthermore, enacting questioning is considered a complicated undertaking 

because it demands effort to masterfully accomplish the series of asking an initial question, 

listening to students, and providing proper feedback (or asking follow-up questions). 

Accordingly, Martino and Maher (1999) asserted that “[t]he art of questioning may take years to 

develop for it requires an in-depth knowledge of both mathematics and children’s learning of 

mathematics” (p. 54). As a result, this mission becomes especially difficult for novice teachers, 
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who have relatively limited experience working with students. Hence, I argue that without 

knowing the strengths and weakness in novice teachers’ questioning, providing any interventions 

for the purpose of cultivating questioning techniques could be impractical. 

Although questioning ability could develop along with teachers’ experience of enacting 

it, every teacher will gain different experiences in learning how to ask questions that depend 

largely on their respective teaching environment and disposition toward mathematics. In 

addition, complex psychological elements also play a role in this learning process, such as the 

questioner’s expectations and prediction of the responses and the respondent’s cognitive 

behavior as initiated by the questions. Therefore, one should not expect that teachers will 

ultimately become experts on questioning at the same satisfactory level while allowing this 

technique to self-evolve. This complexity is also the reason why helping teachers systematically 

develop effective questioning techniques—including what question to ask, how to ask it, how the 

respondent receives it and replies, and how the answer contributes to the interaction—has 

become indispensable in teacher preparation programs.  

Cognitively Guided Instruction (CGI) Context 

Cognitively Guided Instruction (CGI) professional development program originally 

proposed by three researchers—Thomas Carpenter, Elizabeth Fennema, and Penelope 

Peterson—at the Wisconsin Research and Development Center in 1985 for the purpose of 

helping teachers utilize research-based knowledge on children’s mathematical thinking to make 

informed instructional decisions in the classroom (Carpenter & Fennema, 1992). The CGI 

program was grounded on a series of studies on young children’s addition and subtraction 

concept and skills (Carpenter, 1985; Carpenter & Moser, 1984; Riley, Greeno, & Heller, 1983). 

Along with the analysis of children’s solution strategies, CGI researchers identified 11 types of 
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addition and subtraction word problems distinguished by the involvement of action or 

relationships with different location of unknown quantity in each type of problems (Carpenter et 

al., 1999).  

Based on the problem types and solution strategies, various research stemmed from the 

CGI program including: (1) teachers’ knowledge of students’ solution strategies, problem-

solving ability, and students’ beliefs about learning (Carpenter, Fennema, Peterson, Chiang, & 

Loef, 1989; Peterson, Carpenter, & Fennema, 1989); (2) teachers’ pedagogical content 

knowledge (Carpenter, Fennema, Peterson, & Carey, 1988); and (3) teachers’ content beliefs in 

mathematics (Peterson, Fennema, Carpenter, & Loef, 1989). CGI researchers believed that the 

understanding of the development of children’s mathematical thinking would result in changes in 

teachers’ beliefs and practices and then these changes would be ultimately reflected in students’ 

mathematical learning. In short, the main CGI tenet emphasizes that “instruction should be based 

on what each child knows, [and] it is necessary to continually assess not only whether a learner 

can solve a particular problem but also how the learner solves the problem” (Carpenter et al., 

1989, p. 505). In the past three decades, the CGI program strived to assist teachers in developing 

the relevant knowledge to evaluate students’ knowledge via the guidance of evidence-based 

research, and eventually help teachers improve their classroom instruction.  

The tasks analyzed in this study centered on addition, subtraction, multiplication, and 

division word problems due to the participating students’ grade level. For addition and 

subtraction problems, four basic classes of problems can be identified: (a) join problems, (b) 

separate problems, (c) part-part-whole problems, and (d) comparison problems. Join problems 

are similar to separate problems, and both of them involve a direct or implied action over time 

with the increase or decrease of the initial quantity in the problems. Part-part-whole problems 
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involve a static relationship that contains a particular set (e.g., marbles) and its disjoint subsets 

(e.g., red and blue), whereas compare problems involve the comparison of two distinct, disjoint 

sets (e.g., Jessica’s marbles and Carol’s marbles). 

Although the basic structure involving actions and relations within each class of problems 

remains the same, the unknown quantity among problems within a class could vary. There are 

regularly three distinct quantities in each problem, and any one of which can be the unknown. 

For joining and separating action problems, there are three distinct types of problems that can be 

generated by varying the unknown: result unknown, change unknown, and start unknown; for 

part-part-whole problems, there are whole unknown and part unknown problems; and for 

compare problems, the three distinct types of problems are difference unknown, compare 

quantity unknown, and referent unknown problems. 

The analysis of addition and subtraction in CGI studies provides a framework that can be 

extended to multiplication and division (Carpenter et al., 1999). The initial discussion of 

multiplication and division problems in CGI considers the problems in “which collections can be 

grouped or partitioned into equivalent groups with no remainders” (Carpenter et al., 1999, p. 33). 

Three basic classes of problems can be identified as multiplication (product unknown), 

measurement division (number of sets unknown), and partitive division (number of elements in 

each set unknown), depending on which quantity in the word problem serves as the unknown in 

the problem (Kouba, 1989). In detail, multiplication problems provide the number of groups and 

the number of objects in each group, and the unknown is the total number of objects. 

Measurement Division problems merely have the unknown number of groups, and Partitive 

Division problems possess an unknown number of objects in each group.  
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The distinctions among different types of word problems were reflected in students’ 

development of solution strategies in the process of their problem solving. When solving join 

and separate problems, children may start with modeling the action and relations in the word 

problems and the location of the unknow quantity played a role in students’ selecting of 

strategies. For example, the joining all strategy was conducted to deal with the result or whole 

unknown problems and the joining to strategy was for join change unknown problems. When 

students perceived the needlessness of physically modeling, they began to develop more abstract 

strategies—the counting strategies, such as counting on from the first, counting on from larger, 

counting on to, counting down, and counting down to. Lastly, the number facts strategies might 

be performed to replace the strategies that focus on manipulating counting sequence (Carpenter 

et al., 1999).  

While solving multiplication and measurement division problems, students’ solution 

strategies could be advanced from using the counting-on and counting-down strategies 

experienced in join and separate problems to counting by multiples (e.g., counting by doubles, by 

fives, and by tens). Furthermore, multiplication and measurement division problems could also 

foster the development of base-ten system understanding when they involve the amount of ten in 

each unit (e.g., the number of cookies in each bag is ten) and multidigit algorithms. To 

distinguish the two types of division, it is worthwhile to mention that measurement division 

problems involve the capacity of measuring quantity from the original set, and partitive division 

problems benefit the development of fractions learning due to their property of equal 

distribution.  

The knowledge derived from CGI-related studies provides teachers a foundation to (1) 

better understand their students’ problem-solving strategies that related distinctions between 
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types of word problems, (2) adapt their own instructional methodologies to match students’ 

learning capacity, (3) reinforce their beliefs about instructing upon students’ existing knowledge 

and (4) experience the role of knowledge facilitator instead of knowledge transmitter in students’ 

learning (Carpenter et al., 1988; Carpenter & Fennema, 1992; Peterson et al., 1989). Carpenter 

(1988) considered the process of teaching in the CGI context as problem solving. The CGI 

approach valued the opportunity for teachers to implement their knowledge and guaranteed 

teachers the time they need to reflect on their practices. As a result, the CGI teachers spent more 

time on enhancing students’ problem-solving ability, allowed students to flexibly use different 

strategies, and listened to students’ solution processes attentively.  

While engaging in the CGI approach, teachers had a better understanding of students’ 

mathematical thinking that allowed them “to interpret students' responses and modify 

questioning or instruction accordingly” (Carpenter & Fennema, 1992, p. 462). Furthermore, 

Lindquist (2015) concluded that “central to instruction in CGI is the art of questioning” (p. xvi). 

Accordingly, I situated the investigation of preservice teachers’ questioning in the CGI context 

based on the aforementioned features observed in CGI classrooms.   

Categorizing Interactional Patterns 

Carpenter, Fennema, Franke, Levi, & Empson (2015) advocated that “interacting with 

children is essential to learn about children’s mathematical thinking” (p. 6). From the perspective 

of engaging students in mathematics, Battey, Neal, and Hunsdon (2018) emphasized that how 

teachers handle classroom interactions “plays a role in how all students experience mathematics 

(p. 433). Accordingly, this section outlines some interactional patterns and elaborates their 

functions and characteristics in teacher-student interactions. 
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In his analysis of the anatomy of individual teacher-student exchanges, Guszak (1967) 

developed the concept of the Question-Response Unit (QRU). This pattern of questioner-

respondent exchanges generally develops in a sequence of dialogues and consists of several 

dynamic sub-chains in discourse. In the mathematics classroom, teacher-student interactions 

could build on verbal exchanges, along with nonverbal interactions such as gesturing and written 

responses. Within verbal exchanges, the unit of dialogue is regularly circumscribed as a 

complete statement made by a speaker, and this is particularly obvious in the analysis of 

questioning. For example, Mehan (1979a) identified the “Initiation-Response-Evaluation” (IRE) 

as “the most recurrent pattern” (p. 72) observed in classrooms, in which the questioner, normally 

the teacher, initiates a question or inquiry followed by the respondent’s (normally the student) 

reply, and then the whole sequence ends with the teacher’s evaluation or feedback. Another 

similar triad is known as the “Initiation-Response-Feedback” (IRF) sequence (Sinclair & 

Coulthard, 1975), which describes teachers’ questions, whether questions were answered and by 

whom, and the types of feedback given in response to student responses (Smith, Hardman, Wall, 

& Mroz, 2004). However, this Question-Response type of interactional patterns merely identifies 

the turn taking in the dialogues and it could be imperative to understand how teachers could 

follow up students’ ideas in their interactions. 

van Zee and Minstrell (1997) examined how an experienced science teacher used 

questioning to guide student thinking and defined a reflective toss, a particular kind of question 

that enabled the teacher to encourage students to elaborate their thinking. In this structure, the 

role of the teacher included catching the meaning of the student’s statement and then throwing 

responsibility for thinking back to the student(s). This reflective toss not only exemplified the 

concept of “listening carefully and asking good follow-up questions,” but also fixed the purposes 
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of the teacher’s follow-up questions on (a) engaging students in a proposed method, (b) 

beginning the refinement process by clarifying a discussed method, and (c) evaluating an 

alternative method that might arise as a byproduct of the discussion. That is, the move repeatedly 

redirected the focal point of the whole discussion back to the idea students proposed at the 

moment or their on-going thinking. In particular, the reflective toss also successfully invited 

other students to help elaborate their peer’s idea when needed. The reflective toss was situated in 

one experienced teacher’s expertise to interact with his students, and it is necessary to investigate 

other interactional patterns. 

To further investigate the contribution of the single statement in the exchanges, Hogan, 

Nastasi, and Pressley (1999) identified three interactional patterns—consensual, responsive, and 

elaborative—that emerged in peer and teacher-guided discussion while scrutinizing 32 eighth-

grade students’ reasoning complexity in science classrooms. These patterns were different from 

the IRE and IRF because the contribution of the follow-up statements was factored in the 

interactions. To take a one-on-one interaction as an example, the first speaker initiated the 

conversation, and this initiation could bring up three potential types of interaction patterns. The 

first type was considered as consensual when one of the participants contributed substantive 

responses to the interaction and the other served as a “minimally verbally active audience” 

(Hogan, Nastasi, & Pressley, 1999, p. 393). While enacting responsive interaction sequences, 

both participants equally contributed substantive responses to the interaction and could freely 

express their ideas on the topic discussed. The elaborative pattern occurred when both 

participants not only contributed substantive responses but also co-constructed additions, made 

corrections, or offered a counterargument based on any prior statement (Hogan, Nastasi, & 

Pressley, 1999).  
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In this paper, I particularly analyzed the interactional patterns constructed by teacher and 

student in CGI problem-solving settings through an integrated framework. By describing 

teacher-student interactions I hope to illuminate ways that teacher preparation and professional 

development programs can provide appropriate assistance to cultivate preservice and inservice 

teachers’ questioning techniques. 

 

Methods 

Study Background and Participants 

The setting for the study was a field-based activity named the Single Student 

Mathematics Field Experience (SSMFE), which was embedded in the first mathematics methods 

course in the teacher education program for early childhood majors (certification Pre-K–5) at a 

Northeast Georgia university. Although conducting a single student interview is quite different 

from teaching a class of students, prior research has contended that conducting one-on-one 

interviews with students in early field experiences could benefit preservice teachers’ learning to 

teach (Jacobs & Ambrose, 2008; Weiland, Hudson, & Amador, 2014).  

The one-on-one settings in SSMFE were designed to 1) offer participating teachers a 

practical, structured opportunity to develop their questioning strategies and 2) allow them to 

actively listen for and reflect on students’ responses to their questions. In the SSMFE interviews, 

preservice teachers concentrated on understanding what their students know and are able to do in 

solving arithmetic problems. During the activity, students might fail to respond to teachers’ 

questions or present unexpected solutions, and this could be considered as a valuable opportunity 

for preservice teacher to learn how to employ follow-up questions to probe student thinking. This 
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setting appropriately reflects Moyer and Milewicz’s (2002) assertion that learning to ask a good 

question requires “shifting the practices and beliefs of the individuals engaged in those 

interactions” (pp. 295-296). Therefore, the SSMFE is a well-designed setting in which to 

investigate teacher questioning because preservice teachers could enact and reflect on 

questioning to learn student thinking in problem solving (Chamberlin & Chamberlin, 2010; 

Nicol, 1998; Ralph, 1999).  

The teacher participants in this study were from two mathematics methods courses: One 

cohort (𝑛 = 3) participated in the Fall 2014 study; the other cohort (𝑛 = 3) participated in the 

Spring 2015 study. The 6 teacher participants were a subset of 13 preservice teachers who 

participated in a dissertation study and they were the only teacher participants who conducted 

whole-number arithmetic word problems including addition, subtraction, multiplication, and 

division in the CGI context. In the method class, preservice teachers were exposed to children’s 

strategies for all problem types including addition, subtraction, multiplication, and division. In 

their SSMFE interview, preservice teachers were able to annotate students’ strategies—

modeling, counting, or number facts—during the session, and almost all teacher participants 

provided detailed description about what students did while they solved the tasks posed in the 

interview.  

The teacher participants were in their junior year at the University and had completed at 

least two mathematics content courses and other mandatory education courses (e.g., investigating 

critical and contemporary issues in education, exploring socio-cultural perspectives on diversity, 

and exploring learning and teaching) for early childhood education majors. Among them, 4 

participants were White females and 2 participants were Asian females. The student participants 



134 

 

were selected by convenience sampling (Patton, 2002) and consisted of 3 fourth-grade and 3 

first-grade students at a public elementary school. 

Data Collection 

The participating teachers conducted a one-on-one interview with a single student once a 

week for eight weeks during a semester, and each SSMFE session lasted for 30 to 45 minutes, 

depending on the students’ problem-solving performance. In order to investigate how preservice 

teachers adapted intended tasks from the interview protocols and enacted spontaneous questions 

in the CGI settings, I videotaped only one pair of teacher and student participants per week. To 

increase the diversity of data collected for this study, my data set consisted of only one interview 

from per pair of participants. Therefore, I totally collected 6 SSMFE interview sessions from 6 

different pairs of participants.  

The focus of each interview was to elicit the student’s mathematical thinking, 

explanations, and problem-solving strategies through enacting questioning around tasks 

conducted in the CGI settings. The majority of the enacted tasks were part of the interview 

protocol compiled by the course instructors and comprised types of whole-number arithmetic 

tasks from the CGI problem types as shown in Section 2.2. The rest of the tasks included multi-

step arithmetic problems and problems that focused on the properties of operation and number 

sense.  

All the interviews were videotaped by two cameras—one filming the preservice teacher 

and the other the student—in order to catch the moment-to-moment dynamics in the interactions. 

Other data sources included the children’s written work; preservice teachers’ field notes, 

debriefing form, course assignments, and the SSMFE final portfolio; and the researcher’s 
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analytic notes taken while viewing the video recordings. All video recordings were transcribed to 

enhance the accuracy of analyses.  

Analyses 

The detailed transcriptions of spoken discourse along with the descriptions of nonverbal 

moves from the six videotaped interviews were the primary data. During the analytic procedure, 

I primarily conducted framework analysis (Richie & Spencer, 1994) to examine the trends and 

details along with quantitative analysis to depict a synoptic view of the relative distribution of 

different types of moves. An interactional turn was the unit of analysis for the codes in which “a 

turn began when a person took the floor in a conversation and ended when another person took 

the floor” (Hogan, Nastasi, & Pressley, 1999, p. 387). It is important to note that first, an 

interactional turn could be initiated by either teacher or student. For example, in some 

conversations, the student was the one who initiated a move with a specific function, and the 

teacher might merely provide encouragement or acknowledgement without any substantial 

contribution to the content of the conversation. Second, an interactional turn might not have any 

function. Taking an opening conversation in the interview for an instance, the teacher might 

greet the student with “how are you today?” or “I like your dress.” These turns were considered 

interactional turns in the conversation, but they did not play a role in my analysis of the function 

of the turns used in the SSMFE. 

In the analysis, the framework employed in this study stemmed from three resources: 1) 

Jacobs and Empson’s (2016) framework of teaching moves; 2) Hogan, Nastasi, and Pressley’s 

(1999) interaction patterns; and 3) the pilot analysis of the data. In a study of teaching moves in 

one-on-one problem-solving interviews, Jacobs and Ambrose (2008) identified four categories of 

teachers’ supporting moves and four categories of extending moves. After further research, 
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Jacobs and Empson (2016) proposed a revised framework comprising five categories: (1) 

ensuring the child is making sense of the story problem, (2) exploring details of the child’s 

existing strategies, (3) encouraging the child to consider other strategies, (4) connecting the 

child’s thinking to symbolic notation, and (5) posing a related problem linked to what the child 

understands. These categories of teaching moves served as a basis to classify the types of 

functional moves in this study. Below, the coding process for the function of moves is first 

presented and the categorization of interactional patterns follows. 

The functions of moves. Transcripts of each interviews were broken into tasks, and each 

task started with a Task Posing (TP) turn4. All TP turns were enacted by the teachers and were 

immediately followed by one or several interactional turns, that could be verbally or nonverbally, 

from the student or the teacher. To further analyzing the functions of interactional turns, I 

conceptualized a functional move as a sequence of interactional turns containing participants’ 

verbal or visual action that has a particular function, and every functional move was initiated and 

categorized based on the function of the first observed interactional turn. That is, a functional 

move consisted of a sequence of interactional turns and was categorized into one of the seven 

functional categories depending on its initial turn in the sequence. The term “functional moves” 

emphasized the functions of the moves. 

Through repeated readings of transcripts, seven main categories of functional moves 

emerged (see Table 5-1). A functional move could be initiated by either the teacher or the 

student with a verbal turn (e.g., asking a question) or visual action (e.g., directly solving the task 

                                                 
4 Task Posing was a turn because it was normally initiated by the teacher and executed by only the 
teacher. 
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on paper). To illustrate the functions of the moves from the teacher and the student respectively, 

two sample initial turns were provided in each category.  

 

Table 5-1  

The Categories of Functional Categories 

Category of 
Functional 

Move 

Description Sample Initial Turns 

Task 
Clarification 

(TC) 

Clarify or seek the 
given information in 
a task 

T: Do you want me to read the task again? 
or 
S: Can you read the task again? 

Plan Elicitation 
(PE) 

Elicit or produce the 
initial plan 

T: What will you do [to solve this task]? 
or 
S: This should be a multiplication [instead of a 
division]. 

Procedural 
Understanding 

(PU) 

Explore or explain 
the procedure 
involved 

T: What did you just do? 
or 
S: 2 plus 5 is 7 and 10 plus 10 is 20, so 12 plus 15 
is 27. 

Making 
Connections 

(MC) 

Make connections 
between the answer 
and the original task 

T: What does 12 mean in the task? 
or 
S: The answer 120 means the total number of 
teeth two dinosaurs have. 

Rationale 
Behind a 
Strategy 

(RA) 

Inquire about or 
elaborate on the 
rationale behind the 
proposed strategy 

T: Why did you do multiplication? 
or 
S: I know it is multiplication because I need to 
find more not less. 

Math 
Terminology 

(MT) 

Elicit or give correct 
math terminology 

T: What do you call that piece? 
or 
S: If a cookie was cut into 4 pieces, one piece is a 
quarter.  

Alternative 
Strategy 

(AS) 

Elicit or propose an 
alternative strategy 

T: What is another way you can solve this task? 
or 
S: I want to solve it by using cubes this time. 
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The patterns of functional moves. The pattern of functional moves was categorized 

based on the types of interaction patterns proposed by Hogan, Nastasi, and Pressley’s (1999) (see 

section 2.3). I coded the initial turn in a functional move by answering two questions: 1) who 

(the teacher or the student) initiated a move? and 2) what function did the first interactional turn 

demonstrate? After the initiation of a move was identified, the remainder of the interactional 

moves consisted of either a single response or a subset of recurring pairs of the response and 

follow-up turns. The responses and follow-up turns were then identified as a) consensual, b) 

responsive, or c) elaborative patterns. Because a functional move might comprise several pairs of 

the response and follow-up turns, it is possible that more than one type of pattern occurred in one 

move. Under this circumstance, the criterion to determine the type was to prioritize the pattern 

from elaborative, responsive, to consensual. As a result, there were six categories of interactional 

patterns emerged in this coding process as shown in Table 5-2, and Figure 5-1 shows the level of 

analysis in one SSMFE interview in this study. 

The analysis of interactional patterns helped me identify the features and contributions of 

the turns in the conversation between the initiator and respondent at three analytic levels. First, it 

is imperative to investigate how a single functional move was co-constructed by both 

participating teacher and student within mathematical problem-solving activities. To reveal this, 

I explored who took the first move after a task was posed, which function came first and 

occurred predominantly in the stream of conversation, and under what circumstance the 

functional move was terminated. Second, an SSMFE interview consisted of several tasks, so it 

was useful to analyze and compare different functional moves the teacher tended to employ in 

one interview session. In so doing, the features situated in similar or different tasks from the 

same teacher could be detected. Last, when the analysis was expanded to all six pairs of 
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participants, a general description with regard to the functional moves with interactional patterns 

enriched the understanding of how each interactional turns was functioning and constructed in 

the SSMFE. 

 

Table 5-2  

The Categories of Interactional Patterns 

Category of Interactional 
Patterns 

Description 

Teacher-initiated 
Nonresponse 

The initial interactional turn is initiated by the teacher, 
and the student replies with nonresponse.  

Teacher-initiated 
Consensual reaction 

The initial interactional turn in a functional move is 
initiated by the teacher, and the student replies with only 
consensual responses, such as “yeah” or “uh-huh.”  

Teacher-initiated 
Responsive reaction 

The initial interactional turn in a functional move is 
initiated by the teacher, and the student replies with 
responsive responses, such as an answer to a question and 
an expression of personal ideas 

Teacher-initiated 
Elaborative reaction 

The initial interactional turn in a functional move is 
initiated by the teacher, and the student replies with 
elaborative responses, such as a co-constructed additions 
or a counterarguments based on a prior statement. 

Student-initiated 
Nonresponse 

The initial interactional turn is initiated by the student, 
and the teacher replies with nonresponse. 

Student-initiated 
Consensual reaction 

The initial interactional turn in a functional move is 
initiated by the student, and the teacher replies with 
nonresponse or only consensual responses, such as “yeah” 
or “uh-huh.” 

Student-initiated 
Responsive reaction 

The initial interactional turn in a functional move is 
initiated by the student, and the teacher replies with 
responsive responses, such as an answer to a question and 
an expression of personal ideas. 

Student-initiated 
Elaborative reaction 

The initial interactional turn in a functional move is 
initiated by the student, and the teacher replies with 
elaborative responses, such as a co-constructed additions 
or a counterarguments based on a prior statement. 
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Figure 5-1. Level of analysis of one example SSMFE interview session. 

 

To describe features of functional moves, I employed two types of ratios (in the format of 

a decimal) to present the descriptive statistics: 1) the “move-count ratio” was defined as the ratio 

of the number of a particular type of moves to the total number of the employed functional 

moves in a single task, and 2) the “word-count ratio” was defined as the ratio of  the word counts 

of a particular type of moves to the word counts of all the moves in one task. The move-count 

ratio reflected how often a particular type of move was employed, whereas the word-count ratio 

represented the extent to which the move was expanded in a task. For example, the measurement 

division task “Each dinosaur is given three Hawaiian lei necklaces as they walk in the door. If 

783 leis are given out, how many dinosaurs were in attendance?” with the structure of 783 ÷ 3 

was conducted in week 6 with a fourth grader (see Figure 5-2), and the procedural understanding 

(PU) move occurred once in task 5, so both the number of times it was employed, and the word 

counts it occupied across the whole task were counted. Specifically, the move-count ratio of the 

PU moves to all functional moves in this task was calculated by the formula of “the number of 

PU moves (= 1) divided by the number of total functional moves (= 4)” to gain 0.25 for this 

task. Although the move-count ratio of the PU moves was not high, the word-count ratio of the 
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PU moves was computed as 549 ÷ 611, i.e., approximately 0.9 in this task. Every task 

conducted in the SSMFE was considered as an individual scenario. The number of a particular 

type of moves (e.g., PU moves) used in all tasks across the SSMFE sessions and the extent to 

which they were enacted were taken into consideration in the analysis. 
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Figure 5-2. The functional moves employed in Task 5 with the structure of 783 ÷ 3 (week 6 in the fourth grade).  
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Findings and Discussion 

I first present an overview of the number of functional moves by category and then 

discuss the enactment of Procedural Understanding (PU) moves and compare them with Task 

Clarification (TC) and Alternative Strategy (AS) moves in terms of move-count ratio, word-

count ratio, and interactional pattern. Next, I display representative function-switch sequences 

used in the SSMFE and relate the functional moves to the CGI context.  

The Predominance of the Procedural Understanding (PU) Move 

Throughout six SSMFE sessions, 281 functional moves were identified in 44 main tasks 

conducted in the CGI settings. The frequency distribution of the 281 functional moves is shown 

in Figure 5-3, and three functional categories—Procedural Understanding (PU), Task 

Clarification (TC), and Alternative Strategy (AS)—comprised more than 10% of the moves, 

individually, used in SSMFE. Given the focus on eliciting students’ mathematical thinking 

emphasized in the mathematics methods courses, it is legitimate that 41% of the 281 functional 

moves were used to explore students’ procedural understanding. 
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Figure 5-3. Frequency and percentage of functional moves by category.  

In addition to the predominance of the PU moves, the significance of the employment of 

the PU moves emerged under scrutiny in every task by comparison with TC moves and AS 

moves. To paint an overall portrait of how these moves were functioning in each task, the results 

of “move-count ratio” and “the word-count ratio” of the three types of functional moves are first 

presented (see Figure 5-4). 

The move-count ratio of PU moves was in the range of 0.22 to 0.71 with an outlier 1. The 

low boundary 0.22 revealed that participating teachers employed at least one PU move in every 

task in order to inquire about students’ mathematical thinking on the computational procedures. 

The outlier 1 reported that the PU move was the only type of functional moves used in one 

particular task. Compared with the PU moves, TC moves and AS moves had lower boundary 0 in 
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both ratios, so they were not employed in some tasks, indicating that the clarification of the given 

information and alternative strategies were not employed to accomplish the task. In addition, the 

word-count ratio of PU moves ranged similarly to its move-count ratio (0.19 to 1), and the 

central 50% of measured word-count ratios of PU moves ranged from 0.4 to 0.77, that were 

higher than the word-count ratios in TC moves and AS moves. That is, the participating teachers 

and students had longer conversations while addressing procedural understanding. 

 

Figure 5-4. Distribution of word-count ratio and move-count ratio of TC, PU, and AS moves.   

 

In terms of the interaction patterns (Hogan, Nastasi, & Pressley, 1999), 85% of the PU 

moves were initiated by students instead of by teachers, likely because the participating students 

were used to solving the problem immediately after the teachers posed it even though they might 
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not completely understand the task. In a further pattern analysis, 25% of the student-initiated PU 

moves were categorized as “Consensual pattern,” in which the responders either simply agreed 

with the statement or actively accepted what was said to keep the conversation continuing, and 

19% of the student-initiated PU moves received no responses. Regardless of whether the moves 

were initiated by teachers or by students, more than 61% of the PU moves were identified as 

Responsive pattern, in which the responders contributed to the conversations with questions, 

comments, or concerns regarding the initiated content. 

With regard to the length of the PU moves, the longest interaction consisted of more than 

500 words5, and it occurred in a session with a fourth-grade student at the sixth week in the 

SSMFE. A measurement division task with the structure of 783 ÷ 3 was posed (Week 6, Task 5, 

see Figure 5-2). This task began with a student-initiated TC move after the teacher posed the 

task, and then the student immediately proposed his plan to solve the problem by saying “partial 

quotient,” which was categorized as a PE move. The teacher then initiated the PU move by 

asking the question “What you are doing?” and the student was patient in introducing the partial 

quotient when he realized that his teacher had not learned this method. During the time the 

student demonstrated how to find a partial quotient correctly, the teacher simply replied “okay” 

several times until the student had accomplished two sets of 3 × 100 in the partial quotient 

procedure. The first half part of this loquacious PU move was interrupted by an off-track 

conversation that was excluded from the word counts of this PU move. To refocus the student’s 

concentration on the task, the teacher then initiated the second part of the PU conversation by 

asking a typical question, “What are you thinking now?” and the student then explained his 

                                                 
5 These are the word counts on the transcript that includes some explanations of nonverbal action, so the real verbal 
expression might be less than this number. 
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computational procedures that led to the answer “261.” This task was concluded by a MC move 

by the question “Can you remember what the problem was?” in which the teacher tried to help 

the student make a connection between what he accomplished and what his answer represented 

within the scenario, but the student merely summarized the procedural steps by using a 

mathematical equation 783 ÷ 3 = 261 to wind up this task.  

The Function-switch Sequences 

In all six SSMFE interviews, 48 tasks were posed, including four sub-tasks that were 

embedded in the original problem theme and context of three tasks, and the middle 50% of the 

number of functional types ranged from 2 to 4 types in the conversations (out of 7 types). In this 

section, the task that comprised most functional moves will be presented first. 

The more different types of functional moves preservice teachers employed in practices, 

the more opportunities they elicited different cognitive processes from students. For example, the 

PU moves evoked students’ explanations of computational procedure while the RA moves 

educed students’ reasoning. Therefore, the number of functions in one task could be considered 

as an indicator of the variety of functions. The task that employed most distinct functions was 

conducted in Week 1 with a fourth grader. A partitive division task “Seven friends want to share 

63 candies equally. How many candies should each friend get?” with the structure of 63 ÷ 7 was 

posed and all seven types of functions were performed during this interview (see Figure 5-5).  

The horizontal axis represents the order of functional moves in use throughout the task. 

After the teacher posed the task, the first move was a student-initiated PU move in which the 

student wrote down 63 × 7 on the paper and explicated the procedure of how he obtained the 

answer “441” after the teacher posed the task. In this initial PU move, the student did not realize 
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that the strategy he used to solve this problem was not correct, and during this move, the teacher 

asked the question “Can you explain to me what you were doing over here?” that only elicited 

more explanation of his procedural understanding in solving 63 × 7. Then the teacher employed 

an MC move to help the student reexamine the executed procedure within the context by asking 

“Can you explain what 63 is in the problem?” and the student failed. Hence, the teacher offered 

to repeat the task, which was the turning point at which the student proposed a correct strategy 

(PE move) by saying “you have to divide, instead of multiply” as the fourth move in the 

interview. Instead of letting the student perform the correct strategy directly, the teacher 

prompted for the rationale behind this proposed strategy (RA move) by asking “Why do you say 

that?” and then the student elaborated on his strategy with the given numbers and concluded that 

7 times 9 would be equal to 63 but struggled to show this process in writing. The teacher then 

immediately suggested “using the cubes,” and in the rest of the interview, she initiated two more 

AS moves by asking the student to try “counting the cubes” and “writing the numbers out;” one 

MK move to discuss the property of even and odd numbers; two RA moves to inquire about the 

rationale behind the strategy; four MC moves to invite the meaning of the produced numbers in 

the context; and offered to read the problem again twice during the task. In terms of student-

initiated moves, 12 of them were PU moves that were used throughout the interview with the 

move-count ratio 0.39 and the word-count ratio 0.62. In other words, most of the conversation 

focused on the student’s procedural understanding with sparse functional moves from other 

categories.  

Although the student ended up with the answer of “each friend would get 8 pieces and 

then one friend would get 7” based on the final arrangement of the cubes on the table, which was 

mistakenly set up by the student, the preservice teachers elicited multidimensional facets of the 
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student’s mathematical thinking. Figure 5-5 provides the distribution of types of the 31 

functional moved employed by the teacher and the word counts in the conversation of each 

move.   
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Figure 5-5. The functional moves employed in Task 3 with the structure of 63 ÷ 7 (week 1 in the fourth grade). The horizontal axis 
represents the order of functional moves in use throughout the task and the first functional moved was a PU move containing 265 
words in the teacher-student conversation after the teacher posed the task.   
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In the following sections, I will illustrate the function-switch sequences in the SSMFE 

interactions with relevant discussions. All tasks began with the TP turn, and TC moves came 

after the posed task in 21 out of the 48 tasks, and another 21 tasks had a PU move following the 

TP move. In the rest of 6 tasks, 5 tasks were followed by a PE move and one task by an AS 

move. In the 21 “TP-TC” sequential tasks, 20 tasks had student-initiated TC moves. Most 

students required task clarification right after the task was posed by teachers, and this outcome 

gives rise to a number of critical questions, such as “Were the tasks too hard/complicated to 

understand for the students the first time they received them?” “Was the way the teacher posed a 

task inappropriate?” When expanding the sequence with one more functional move, 16 tasks out 

of the 48 tasks shared the same sequence of “TP-TC-PU,” and 14 out of the 16 tasks were 

student-initiated PU moves. That is, once the task was clarified, students would begin to solve 

the problem in their own way. In addition, 9 tasks out of the 48 tasks had the sequence of “TP-

PU-AS,” and among them, 8 AS moves were initiated by teachers, mostly from the first-grade 

cohort. That is, when students started solving a problem after task posing without a request of TC 

move, the teachers had the tendency to suggest alternative strategies in the interactions. 

While scrutinizing the 48 initial PU moves, I found that 13 of them had the sequence of 

“PU-AS,” even though the PU moves did not occur immediately after the TP moves. Overall, 

13% of functional moves were used to suggest an alternative strategy. Although switching to 

another strategy did benefit students in some cases, particularly when they were struggling with 

the prior strategy, employing AS moves too early could cause some problematic issues because 

1) it might cease students’ spontaneous strategies and 2) it could impose teachers’ strategies on 

students. Furthermore, among the 48 initial PU moves, 10 of them were also the last functional 

move in the interview, and 5 of these closing moves were from the same interview—the first 
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week interview from the first-grade cohort. In that interview, 3 tasks were not successfully 

solved by the student, and the teacher did not address the mistakes. Those tasks were relatively 

short and consisted of only 3 functional moves. The anticipated question arising from this 

phenomenon would be “Why did the teacher wrap up the task so quickly with acceptance of the 

student’s incorrect procedural understanding?”  

It is worth mentioning that there was a total of 15 “PU-MC” and “PU-RA” sequences of 

moves in the 48 tasks when the PU moves were initially used, 90% of which were teacher-

initiated. By initiating MC moves in the interactions, preservice teachers were not only learning 

what the students can do but also practicing assisting them to discover connections among the 

numbers, mathematical relationships, and the meaning of the solutions. However, these MC 

moves were initiated by questions that involved both the given numbers and the unknown 

number from the tasks, and it is possible that the students’ responses did not reflect their ability 

to make connections. Instead, they merely demonstrated the ability to repeat the exact 

description about the known numbers. That is, not all MC moves were successfully enacted to 

make connections in the SSMFE interviews. For example, a teacher began a MC move by asking 

“What does 6 represent and what does 4 mean, then?” after the student solved the task “There are 

some kids on the playground. After 6 kids went home, 10 kids were still left on the playground. 

How many kids did they start off with on the playground?” by performing 10 − 6 = 4. The 

student then replied with “6 is the kids that went home and the 4 is the kids that were still on the 

playground” and the teacher terminated the task by saying “Okay, good.” In this explanation, 

although the student repeated the description about 6, which represents “the kids that went 

home” from the original task, the function of making connections failed to relate the answer 4 

and the given number 10 back to the original mathematical relationship and context of this task.    
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By enacting the RA moves, preservice teachers actually elevated the cognitive level of 

their questions to the “know why” stage, which might involve more complicated cognitive 

processing (Bloom, 1956). On the students’ side, they were given the opportunity to reflect on 

the logic behind their performance; on the teachers’ side, learning how to evaluate the logical 

thoughts in students was challenging but important. However, most preservice teachers failed to 

follow up students’ responses after the RA moves were carried out and were content with 

students’ procedural reasoning. For example, a teacher continuously posed two tasks with the 

following structures: 12 × 3 and 3 × 12. The student immediately answered “The [answer is] 

same” in the second task 3 × 12 so the teacher asked, “Why are they the same?” that elicited the 

response “since multiplication doesn’t matter out of order” from the student. However, the 

conversation ended at this point. This situation should have served as a great opportunity to 

inquire about the student’s thoughts regarding the commutative property of multiplication, but 

the teacher did not follow up. 

The Functional Moves in the CGI Problem-solving Settings 

In the analysis of functional moves in tasks in the CGI settings, I purposefully excluded 

the nontypical task involving mixed operations in this study in order to center the discussion on 

the problem types (see Section 2.2). The constructions and the features of the functional moves 

used in four CGI problem types were presented regarding the aspects of the word counts, the 

number of moves, and the number of functions. 

Sixteen addition, seven subtraction, eight multiplication, and 12 division tasks were 

enacted in six interviews. Most addition tasks were enacted in the first grade, and 50% were the 

result unknown tasks. The number of moves ranged from one to nine, and four out of the 16 

addition tasks were not successfully solved (27%). Two addition tasks that was conducted with 
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first-grade students used the most functional moves (9 moves): A part-part-whole context with 

the structure of 8 = 3 + ___  contained three TC moves, and the student continually showed 

uncertainty about the mathematical relationship necessary for solving this task; and a task with 

the structure of 23 + 4 × 10 had the greatest number of different types of functional moves (6 

types) because of its two-step procedure. Similarly, most subtraction tasks were enacted in the 

first grade. Among the seven tasks, only one task was with result unknown structure, and four 

tasks were not successfully solved (57%) due to the student’s misunderstanding of the 

mathematical relationship in tasks. Overall, the participants employed relatively fewer moves in 

the subtraction tasks (ranging from two to seven), and the 14 − ___ = 3 task used the greatest 

number of functions (5 types) in six moves. It is worth mentioning that the same teacher used 

the greatest variety of the types of functions in both addition and subtraction tasks. Therefore, I 

argue that the diversity of functions in moves could depend on the participants, which might 

deserve further investigation.  

Most multiplication and division tasks were conducted in the fourth grade, and the 

number of moves employed was higher compared with addition and subtraction tasks. The 

multiplication tasks ranged from 4 to 12 moves, and the division tasks ranged from 3 to 12, 

excluding the two extreme cases with more than 20 moves. Conversations in the two division 

tasks with more than 20 moves had an extremely large number of words: the week 1 task 63 ÷ 7 

used approximately 2,300 words, and the week 3 task 49 ÷ 8 used 1,117 words. Moreover, the 

word counts in multiplication and division tasks were more than twice the word counts in 

addition and subtraction tasks. This difference could be attributed to the fact that the fourth-grade 

students had more mature language development to express their thoughts as compared with the 
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first-grade participants, and most multiplication and division tasks were enacted in the fourth 

grade. 

Lastly, the findings revealed some features of functional moves while tracing the trends 

of moves in four CGI problem types. Most addition and subtraction tasks involved 2 to 4 

functions while most multiplication tasks used 3 or 4 types of functions, and most division tasks 

had 3 to 5 types. The division tasks provided a rich environment for teachers and students to 

clarify tasks, develop strategies, and make connections. If the special cases that involved large 

numbers of moves or words were excluded, the addition tasks engaged the participants in making 

connections and exploring new strategies more frequently. Overall, the division tasks were 

loaded with the most PE moves, and almost all of them were initiated by students. The addition 

tasks had more moves that were used to evaluate students’ knowledge of using correct 

mathematical representations and terminologies, although some did provoke more abstract 

mathematical discussions, such as the base-ten system and number theory. 

 

Conclusions 

The functions and constructions of interactional turns examined in this paper show 1) the 

pervasive use of PU moves, 2) the inevitable use of TC moves, and 3) the ineffectiveness of MC 

moves. Moreover, no matter who initiated a functional move, teacher questioning was the center 

of the enacted moves in SSMFE interactions.  

It is not surprising that there were more student-initiated PU moves in the SSMFE 

because students were the problem solvers and were encouraged to explain what they were doing 

in their problem solving. Accordingly, it is important for the teacher to notice what the student 
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did and listen to what the student said in order to effectively enact follow up questions. However, 

preservice teachers seemed not to leverage the student-initiated PU moves because 50% of 

student-initiated PU moves in the fourth grade ended up with the teacher either (a) repeating 

what students said with an upward inflection at the last word in her sentence, or (b) commenting 

with a short acknowledgment like “okay,” “uh-huh [with nodding],” or “gotcha.” 

No matter who initiated the PU moves, these moves were normally used to elicit 

students’ procedural knowledge during mathematical problem solving. In addition, the analysis 

also revealed that a portion of preservice teachers nonetheless barely contributed to the student-

initiated PU moves: they either merely watched students solving the tasks, or they passively 

agreed with what the students said in order to reach a solution. This acceptance of students’ 

procedural knowledge with no questions is not an effective teaching move because teachers 

failed to provide students with an opportunity to clarify and justify their ideas orally and in 

writing (NCTM, 1991). Based on the questioning performance in Task 3 (see Figure 5-5), the 

praxis of teacher questioning has the potential to elicit multidimensional facets of students’ 

mathematical thinking even when the construction of PU moves was predominant and inevitable 

in teacher-student interactions in the setting of mathematical problem solving. 

The inevitable use for TC moves was associated with the setup in mathematical task 

posing and reflected the importance of establishing “taken-as-shared understanding” of 

contextual features and mathematical relationships to help students make connections between 

their strategies and correct solutions (Cobb, Wood, Yackel, & McNeal, 1992; Cobb, Yackel, & 

Wood, 1992). Because most students requested task clarification right after the task was posed, 

one can assume that they were not sufficiently informed when the teachers merely verbalized the 

tasks. In most cases, the teachers resolved this issue by repeating the task verbatim, either 
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partially or as a whole, and this approach did not work, particularly in atypical tasks (e.g., the 

start and change unknown problems). This finding revealed the essential gap between teachers’ 

assumptions and students’ abilities about the comprehension of mathematics word problems. It 

was frustrating but thought-provoking to observe participating students rejecting their teachers’ 

offer to repeat the task and remaining stuck with their own misunderstanding, producing 

incorrect answers to several tasks. It is imperative to ask why our preservice teachers failed to 

pose the tasks in a more comprehensible way for students in the interactions. The success of 

supporting students’ problem solving begins with ensuring that students completely understand 

the task. “Variations in the wording of the problems … can make a problem more or less difficult 

for children to solve” (Carpenter et al., 2015, p. 12). Therefore, it is paramount to better equip 

teachers to explain the task in multiple ways based on a structured interview protocol designed to 

guide their practices. 

Not all MC moves were effectively enacted in the SSMFE interviews although MC 

moves were enacted to invite the meaning of the solution and associate it with the task context. 

Most preservice teachers were satisfied with eliciting the unit of each number and ignored to 

accurately engage students in the contextual feature and mathematical relationship. For example, 

a fourth grader was able to repeat the task “63 means the candies and 7 means there are 7 friends 

who want to share candies,” but after working with cubes, the student concluded that “each 

friend would have 8 [having 7 groups of 8], and one would get 7. Yes, the total is 63” to the task 

63 ÷ 7. Throughout the process, the teacher attempted to help the student make connections by 

asking “what do 63, 7, and the numbers of cubes on the table mean?” four times, but none of 

them successfully helped the student associate all the numbers with the correct problem context. 

I conclude that MC moves should be expanded further to connect with prior steps, proposed 
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plans, operations employed, and the manipulatives used or alternative mathematical 

representations in a broader horizon, rather than being enacted merely to repeat the original task 

stem and satisfy with the unit of referent numbers. 

In their course assignments and final SSMFE portfolio, preservice teachers in this study, 

to a lesser extent, asserted that they did realize that some of their questioning did not work in the 

construction of effective functional moves. Although they were encouraged to note both positive 

and negative experiences of their interactions with elementary students for future reference in 

their teaching, it was difficult for novice teachers to efficiently analyze and effectively modify 

their questioning along with students’ reactions without a systematic and analytical framework. 

Teacher education programs should provide an environment that supports preservice teachers in 

systematically developing inquiry-based questioning techniques to enhance teacher-student 

interactions in mathematics classroom. 
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Abstract  

I examined six preservice teachers’ questioning practices in their single-student 

mathematical field experiences (SSMFE) on whole-number arithmetic tasks. Each pair of 

participants was videotaped during one session, and the written work related to the session was 

collected. Data were analyzed using theme-based coding based on two frameworks: the 

categories of functional moves and interactional patterns. The analyses show that 1) Task 

Clarification (TC) moves elicited contextualization when teachers provided flexible support in 

questioning, and 2) Procedural Understanding (PU), Making Connections (MC), Rationale 

Behind a Strategy (RA), and Alternative Strategy (AS) moves resulted in deviated from the 

contextual features and mathematical relationship when students’ focus of attention on the 

superficial feature in a task was not redirected. These findings not only detail the conditions for 

enacting functional moves but also contribute to better document the successes and struggles a 

functional move prompted. Findings also suggest implications for curriculum designers, teacher 

education programs, and for teacher educators and researchers. 

 

KEYWORDS: Teacher questioning, mathematics methods courses, field experience 
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Introduction 

Wassermann (1991) pointed out that “[q]uestions are the building blocks of the 

instructional process” (p. 257), and Aschner (1961) called teachers “professional question 

maker[s]” because they “probably [devote] more time and thought to asking questions than 

anybody since Socrates” (p. 44). Studies investigating teachers’ use of questions in grade schools 

support this contention that classroom teachers often use question-and-answer recitations in their 

instruction (Floyd, 1960; Moyer, 1967; Stevens, 1912). Since the mid-20th century, researchers 

have increasingly focused on the quality of teacher questioning, including the types (e.g., open-

ended or closed, see Hargreaves, 1984), purposes (e.g., eliciting or evaluating thoughts, see 

Mehan, 1979), patterns (e.g., the IRF structure, see Sinclair & Coulthard, 1975) and the resulting 

outcomes (e.g., the resultant cognitive process, see Smart & Marshall, 2013). In addition to 

adopting these determinate divisions to analyze classroom questions, scholars have also 

developed categories derived from the analysis of teachers’ questioning practices in the field 

(e.g., Boaler & Brodie, 2004; Hufferd-Ackles, Fuson, & Sherin, 2004; Martino & Maher, 1999; 

Franke et al., 2009; van Zee & Minstrll, 1997). These studies reflect the consensus that teacher 

questioning is a multi-faceted, pervasive, and “influential teaching act because it is the most 

basic way teachers use to stimulate participation, thinking and learning in the classroom” (Wilen 

& Clegg, 1986, p. 53). Moreover, teacher questioning should be regarded as incorporating other 

teaching practices that could be affected by many factors, such as teachers’ beliefs, social 

teaching norms, and classroom situations (Raymond 1997). 

Some researchers have explored the difference between experienced and novice teachers’ 

questioning performance, and their findings reflect convergent views on the phenomenon: 

novice, including preservice, teachers normally lack efficiency and fluency in their questioning 
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(Jacobs, Ambrose, Philipp, & Martin, 2011; Tienken, Goldberg, & DiRocco, 2009). Examining 

novice teachers’ questioning performance has illuminated the dilemmas and challenges 

inexperienced teachers encounter in their praxis (Moyer & Milewicz, 2002; Nicol, 1998; Ralph, 

1999; Weiland, Hudson, & Amador, 2014) and has resulted in agreement among scholars that 

effectively enacting questioning can pose a challenge, particularly for inexperienced teachers. 

This finding aligns with the observation by Christensen (1991) that “[questioning] requires 

asking the right questions of the right student at the right time” (p. 154), yet the constraints of the 

classroom make questioning complicated and difficult, particularly for preservice teachers. 

Accordingly, it is imperative to scrutinize preservice teachers’ questioning, including how their 

questions function and what effects those questions have in interactions with students. Only once 

those questions are answered can teacher educators provide appropriate assistance to preservice 

teachers in teacher education and professional development programs to help them learn to enact 

effective questioning. 

 

Learning to Enact Questioning in Mathematical Field Experience 

Since the initiation of official teacher education programs, there has been substantial 

discussion and debate regarding the role that field experiences play in teacher preparation 

(Borrowman, 1956; Lortie, 1975; Zeichner, 1980). Although preservice teachers may enter their 

teacher education programs with established learning experiences, Ball (1990) found that “many 

of them lack alternative images of mathematics teaching” (p. 11) and believed that prospective 

teachers’ future experiences are still “affected, redirected, by such changes in ideas, ways of 

seeing, or ways of doing things” (p. 12). Studies have found that field experiences provide 

preservice teachers with an opportunity to apply questioning strategies to gain knowledge of 
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students’ mathematical thinking (Martino & Maher, 1999; Mewborn & Stinson, 2007) and, 

further, to analyze or reflect on their questioning strategies (Moyer & Milewicz, 2002; Nicol, 

1998). For example, preservice teachers in Chamberlin and Chamberlin’s (2010) study 

mentioned that they had learned “questioning the students to stimulate their thinking, to refocus 

them on the problem at hand, to understand the students’ thinking, or to challenge the students in 

their thinking” (p. 402) in their field experiences.  

Generally, preservice teachers have relatively little experience working with elementary 

students, particularly on mathematical tasks. Therefore, field-based activities in practicum 

settings can serve as great resources and opportunities to expose preservice teachers to an 

environment in which they can gain knowledge of children’s thinking in mathematical problem 

solving. Although Zeichner (2010) warned that there exists “the disconnection between what 

students are taught in campus courses and their opportunities for learning to enact these practices 

in their school placements” (p. 91), Feiman-Nemser (2001) advocated “[o]bservation, 

apprenticeship, guided practice, knowledge application, and inquiry all have a place in field-

based learning” (p.1024). Moreover, Mewborn and Stinson (2007) contended that “[f]ield 

experiences provide a rich ground for questioning why we do the things we do and how we 

might do them differently if we are serving the goal of creating opportunities for preservice 

teachers to engage in assisted performance” (p. 1482-1483). Such findings support the idea that 

developing questioning proficiency relies on using carefully designed tasks in an assisted 

learning environment instead of on preservice teachers’ self-evolving development over time. 

There are few studies examining preservice teachers’ questioning performance 

exclusively in mathematical field experiences. Nicol (1998) studied 14 prospective elementary 

teachers while they were working with small groups of students for 10 weeks and noted that, at 



171 

 

the end of their experiences, “[t]hey were posing questions of students for the purposes of 

learning what students were thinking rather than with the intended emphasis on leading students 

to the correct answer” (p. 62). Weiland, Hudson, and Amador (2014) examined the development 

of preservice teachers’ questioning practice in weekly formative assessment interviews and 

concluded that the field-experience approach provided rich opportunities for preservice teachers 

not only to develop the core practice of questioning but also to practice “adapt[ing] their 

questioning practice to offer more competent questions in their interactions with students (p. 

349). 

To diminish the distraction of classroom management and instead focus on the child’s 

thinking, Mayor and Milewicz (2002) investigated 48 preservice teachers in their one-on-one 

mathematics interviews with elementary students and asserted that “using the diagnostic 

interview format allowed them [preservice teachers] to recognize and reflect on effective 

questioning techniques” (p. 293). They further concluded that “[h]aving preservice teachers 

focus on the skill of questioning in a one-on-one diagnostic interview may be an effective 

starting point for developing the mathematics questioning skills they will use as future classroom 

teachers” (p. 297). In summary, these studies revealed the following: 1) preservice teachers’ 

questioning techniques can be challenged and can develop within the context of face-to-face 

interaction with small numbers of students, 2) their questioning functioned in relation to the 

students’ responses and the milieu in which they were working, and 3) there existed difficulties 

and dilemmas in their questioning practices that could serve as starting points for teacher 

educators to intervene. 
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Accordingly, I addressed the following questions in this study: 

1. How do preservice teachers’ questioning moves function while working with 

elementary students on arithmetic word problems? 

2. What were the successes and difficulties of enacting functional moves in their 

SSMFE sessions? 

 

Conceptual Frameworks  

To better examine teacher questioning with functions, I employed two frameworks in this 

study. The first framework consisted of seven categories of functional moves. The types of 

functional moves stemmed from Jacobs and Empson’s (2016) framework of teaching moves, and 

Figure 6-1 shows the correspondences between the four categories of teaching moves and the 

seven categories of functional moves. The Task Clarification (TC) was used to ensure the student 

is making sense of the posed problem, so the occurrence of this move could be either the teacher 

clarified, or the student sought the given information in the original task. In Jacobs and 

Empson’s (2016) framework, the category of Plan Elicitation (PE) moves was not existing, so I 

added this category for the purpose of analyzing teachers’ questioning moves in students’ 

mathematical problem solving. To explore details of the student’s existing strategies, teachers 

centered their questions on three aspects: the student’s procedural understanding (PU), student’s 

ability to make connections (MC), and reasoning about their strategies (RA). The Math 

Terminology (MT) moves were corresponding to connecting the student’s thinking to symbolic 

notation and the Alternative Strategy (AS) moves accorded with the teaching move “encouraging 

the child to consider other strategies.” 
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Figure 6-1. The correspondences between the four categories of teaching moves and the seven 
categories of functional moves. 

 

The second framework was adapted from Hogan, Nastasi, and Pressley’s (1999) 

interaction patterns as shown in Table 6-1 and I combined the nonresponse and consensual 

reactions as the NC pattern, and the responsive reactions and elaborative reactions merged into 

the RE pattern. Additionally, I distinguished the NC and RE patters by considering who initiated 

the unit of functional move, so there were four categories of interactional patterns in total: (1) 

Teacher-initiated Nonresponse or Consensual reactions (TNC), (2) Teacher-initiated Responsive 

or Elaborative reactions (TRE), (3) Student-initiated Nonresponse or Consensual reactions 

(SNC), and (4) Student-initiated Responsive or Elaborative reactions (SRE). 
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Table 6-1  

The Framework of Interactional Patterns Adapted from Hogan, et al. (1999) 

Category of Interactional Patterns Description 

 Teacher-initiated 
Nonresponse or 

Consensual reactions 
(TNC) 

The initial interactional turn is initiated by the 
teacher, and the student replies with nonresponse or 
only consensual responses.  

Teacher-initiated 
Responsive or 

Elaborative reactions 
 (TRE) 

The initial interactional turn is initiated by the 
teacher, and the student replies with responsive or 
elaborative responses. 

Student-initiated 
Nonresponse or 

Consensual reactions 
 (SNC) 

The initial interactional turn is initiated by the 
student, and the teacher replies with nonresponse or 
only consensual responses. 

Student-initiated 
Responsive or 

Elaborative reactions 
 (SRE) 

The initial interactional turn is initiated by the 
student, and the teacher replies with responsive or 
elaborative responses. 
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Methodology 

Participants and Settings 

The participants were six pairs of preservice teachers and elementary school students who 

were selected by convenience sampling (Patton, 2002). The participating teachers were all 

female, but the students were both male (𝑛 = 2) and female (𝑛 = 4). Three students were from 

the fourth grade and three were from the first grade in a local public elementary school.  

During their first mathematics methods course, all participating teachers conducted 

single-student mathematical interviews weekly in a public elementary school for eight weeks. 

The instructor provided tasks that were whole-number word problems involving four 

operations—addition, subtraction, multiplication, and division and the problems were adapted 

from the Cognitively Guided Instruction (CGI) (Carpenter, Fennema, Peterson, Chiang, & Loef, 

1989). The course instructor provided weekly interview protocol composed of less than ten tasks 

to preservice teachers before every session but allowed teacher participants to adapt or redesign 

the given tasks to fit students’ problem-solving ability. Additionally, preservice teachers were 

required to audiotape their interviews as references for accomplishing course assignments. 

Data Collection and Analysis 

Each interview session lasted approximately 35 to 45 minutes, and the participants were 

both videotaped and audio recorded. Following the interviews, the protocol, preservice teachers’ 

field notes, and students’ written work were collected. In addition, all debriefing forms, course 

assignments, and the final portfolio from participating teachers served as supplementary 

materials in the analysis. All video clips were transcribed verbatim, and nonverbal actions were 

included to enrich the record of the interviews. 
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Every turn that occurred in teacher-student interactions was defined as an interactional 

turn, which referred to either the teacher’s questioning move or the student’s response. Most 

teacher-initiated interactional turns consisted of a questioning move that was conceptualized as a 

verbal expression that prompted a student to provide a verbal response or nonverbal action. 

Additionally, I grouped several interactional turns together and assigned a function based on the 

role the initial turn played. These grouped interactional turns constituted a functional move, 

which was the unit of analysis in this study. In short, a functional move contained several 

interactional moves that could be initiated by either the teacher or the student.  

I analyzed the data by applying thematic analysis (Braun & Clarle, 2006), defined as a 

method “for identifying, analyzing and reporting patterns (themes) within data” (p. 79). It 

contained five steps: (1) Familiarization: I delved deeper into the data by repeatedly reading the 

transcripts, along with watching the corresponding videos; (2) Coding and indexing: I coded the 

data by highlighting the characteristic of interactional turn based on two frameworks. I first 

determine whether an interactional turn was a questioning move to precisely distinguish 

preservice teachers’ questioning moves and students’ responses. I then grouped interactional 

turns with the same function into units of functional moves using the functional framework (see 

Figure 6-1) and detached irrelevant turns. After determining the function of every functional 

move, I began analyzing “interactional pattern” using the framework of interactional patterns 

(see Table 6-1); (3) Thematizing: I discerned potential themes and grouped coded data under 

broad themes. I further read through the coded interactional turns several times to determine and 

discern potential themes; (4) Reexamining I checked the themes thoroughly to confirm the 

patterns and reassessed the classification of functional moves if necessary; and (5) Interpreting 

the themes: I assigned meaning and defined the themes by producing thick description to 
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interpret observed phenomena. To check for reliability, I repeated this coding process on partial 

data every two weeks, and all questions were coded at least twice, achieving 86% agreement of 

coding.  

 

Findings 

In this section, I first present the frequency and percentage of functional moves by 

category to provide an overview of the quantitative outcomes in the data and follow it with the 

analysis of the interactional patterns including the identification of the initiator and the 

respondent’s contributions to the conversation. Figure 6-2 presents a breakdown of the functional 

moves employed by preservice teachers, indicating the frequency at different grade levels (fourth 

and first grades). 

 

Figure 6-2. Frequency and percentage of functional moves by category and grade (4th G: the 
fourth grade; 1st G: the first grade). 
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During the six SSMFE interview sessions, the most frequently used moves were: (1) TC 

moves (19% of total moves), (2) PU moves (40%), and (3) AS moves (13%). Therefore, this 

paper focuses specifically on discussing how preservice teachers orchestrated these functional 

moves to (a) promote task understanding, (b) disclose existing strategy, and (c) incorporate 

alternative strategy. Furthermore, comparisons between the first-grade and fourth-grade cohorts 

are discussed in particular. 

Promoting Task Understanding-TC Moves 

In Figure 6-3, I provided a quantitative comparison of the number of TC moves by grade. 

In total, 53 TC moves were used, 26 in the first grade and 27 in the fourth grade, demonstrating a 

balanced usage at different grade levels. 

 

Figure 6-3. Frequency of TC moves by grade level and pattern. 



179 

 

For the TC moves that were initiated by teachers (TNC and TRE), fourth-graders 

acquiesced to their teachers’ offerings more often than first-graders did (8:5), and first-graders 

demonstrated higher verbal engagement with teacher-initiated TC moves (11:4). When the TC 

moves were initiated by students (SNC and SRE), teachers tended to be responsive6 to the 

student-initiated TC moves in all but three tasks. In terms of the format of TC moves, teachers 

either repeated the entire task verbatim or merely highlighted a particular part of the task for 

students. Among the 53 TC moves, most moves successfully facilitated students’ understanding 

of the task, and only six TC moves malfunctioned or were ignored. Below, I present four 

selective scenarios to illustrate certain outcomes of enacting TC moves. 

Scenario 1 

Task: Our class made some clay animals. The following day, our class made five more 
clay animals. Now there are nine clay animals. How many clay animals were there before 
our class made any more? 

S: [Drawing five circles, and then freezing] 
T: Do you want me to read the question again? 
S: [Shaking head] 
T: No? Okay. 
S: [Drawing nine circles after the 5 circles. Numbering 

circles from 1 to 5. Writing down 5 + 9 = 14.] (see 
Figure 6-4). 

     (W1-1st G-Task#3) 

Figure 6-4. The student’s 
solution  
to __ + 5 = 9 

 

The teacher in this interview spontaneously enacted a TC move (highlighted) after 

noticing an incorrect written representation and a long pause from the student, but the student 

rejected this offer and continued to solve this task based on her perceived understanding of the 

task. Accordingly, this task was concluded with an incorrect answer. 

                                                 
6 Being responsive meant that the teachers normally contributed essential content to the conversation. 
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Scenario 2 

Task: Eric made eight cookies. Three were chocolate chip and the rest were oatmeal 
raisin. How many oatmeal raisin cookies did Eric make? 

S: [Drawing three more circles, and another set of three, and 
another set of three, writing down 8 + 3, then pausing] (see 
Figure 6-5). 

… 
T: So, I said that he made three chocolate chip, right? And the rest 
were oatmeal raisin, so how many oatmeal raisin did he make? 
S: Four? 
T: So eight…there are eight total cookies, right?  
S: [Nodding] 
T: And he made three chocolate chip cookies, so how many oatmeal 
raisin cookies did he make? You wanna do it with cubes? Maybe 
it’d be easier to look at? 
S: [Pulling out eight cubes, grabbing three more in his hand] …8, 

and, made 3… 
T: Okay, so what do you think the answer is? It’s 11, right?  
S: [Nodding] 
T: Yeah? Okay, alright. 
     (W1-1st G-Task#10) 

Figure 6-5. The 
student’s 
solution to  8 =
3 + __ 

 

In Scenario 2, the teacher, like most other teacher participants, enacted the TC move by 

restating the given information eight total cookies and three chocolate chip cookies. Without a 

correct understanding of the mathematical relationship among the given numbers, the student 

was still not able to solve this task successfully. In other words, no matter what representations 

(drawn circles, cubes, numerals) he adopted to solve this task, the student was obviously stuck in 

his misinterpretation of the mathematical relationship between the whole eight cookies and the 

subset entity three chocolate chip cookies. Such a situation highlights that when the problem 

solver does not correctly understand the mathematical relationship, enacting the TC move by 

restating the given information might not be an optimal choice for the purpose of clarifying a 

mathematical task. 
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Scenario 3 

Task: Seven friends had 63 candies, they want to share equally. How many candies 
should each friend get? 

In this scenario, the student had already correctly solved the task by claiming that she 
knew the fact that 7 times 9 equals 63. The teacher asked the student to verify the 
solution using another method, and the student chose to use cubes. Before the student 
began to employ the second strategy, the teacher employed a TC move as shown in the 
following exchange. However, the student ignored this offer due to her concentration on 
a new strategy when the teacher offered to read the problem again. 

I: If you need me to read the problem again, I can totally do that too, okay?  
P: [Pulling out cubes] Three! So you wanna split this into seven groups, so I have 1, 2, 3, 

4, …[continuing working on the cubes] 
     (W1-4th G-Task#3) 

 

Scenario 4 

Task: 49 dinosaurs are coming, and they have 8 caves. If they spread the family out as 
equally as possible, how many dinosaurs will need to sleep in each cave? 

In this scenario, the teacher attempted to use a TC move to help the student clarify the 
task after she noticed that the student was using an incorrect number in his computation.  

T: Okay, well, fifty-se--…so what does this number mean? This number down here? We 
just added up all these [numbers] right? 

S: [Adding all numbers in his drawing up by conducting 7 + 7 + 7 + 7 + 8 + 7 + 7 +
7 = 28 + 29 but resulting in only 47] It’s supposed to be 57, but I am checking my 
answer ’cause we did it so fast.  

T: Well, is that how many dinosaurs were coming, in the beginning? 
S: I am checking my answer to see if we did something. Um, 7, that would be…8…38; 

I’m off by 10…But where? 
T: Wait so, okay, so repeat the problem to me, what were we trying to do in the 

beginning. 
     (W6-4th G-Task#4) 

 

The analyses show that preservice teachers encountered both successes and difficulties in 

their questioning practices while working with elementary students on whole-number word 

problems adapted from CGI. I defined difficulty as a situation in which a relatively negative 
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outcome resulted from the functional move that was enacted in the interaction. For example, 

when the teacher initiated a MC move to help the student make connections among the given 

information and produced solution, the outcome was considered a difficulty if a) the move was 

completely ignored, b) the student only provided superficial connections as responses (i.e., 

merely addressed the referent unit without mentioning the mathematical relationships), or c) the 

student failed to make correct connections. If the interaction did not result in the negative 

outcomes mentioned above, it was considered a successful enactment of functional moves. For 

example, when the first TC move the teacher employed in Scenario 4 was ignored because of the 

student’s focus on his computation, she attempted to enact another TC move by asking the 

student to repeat the problem from the beginning, which successfully redirected the student to 

the original context.  

While comparing teachers’ questioning practice at different grade levels, I noted that 

teachers of first-grade students enacted TC moves to (a) answer students uncertainty, (b) ensure 

students were informed, (c) help students correctly represent the task in their solution (e.g., 

complete a number sentence or grab correct number of cubes), or (d) correct students’ 

misunderstanding while noticing a mistake in their students’ problem solving. For example, one 

preservice teacher required her first-grader to interpret the mathematical relationship in her own 

words based on the given information, and only when the student failed, the teacher stepped in 

by supplying needed information. Teachers of fourth-grade students often enacted TC moves to 

complement their students’ incomplete statement about the task, which mainly occurred at the 

early stage of the student’s problem solving. This is, the first-grade students often initiated TC 

moves by asking a real question, such as “How many did he have?” and the fourth-grade 

students were inclined to initiate TC moves by restating the task with the information they 
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perceived, which might be incomplete and incorrect. In addition, I found that first-grade students 

were more likely given opportunities to make responsive and elaborative responses than fourth-

grade students when TC moves were initiated by teachers. It is also worth noting that the 

teachers working with first-grade students were more adept at helping students “construct” the 

meaning of the task (e.g., tried to elicit students’ interpretation about the task), rather than merely 

keeping their students “informed” (e.g., provided the answer or explanation students were 

looking for). As a result, the difference was reflected in the quantitative data (the TRE ratio is 

11:4) 

Although a move might be ignored with a nonresponse reaction in the interaction in 

sparse cases, most moves in this study were identified as valid moves because they successfully 

elicited one of the three reactions: consensual, responsive, and elaborative. Most tasks with the 

fourth graders contained up to three valid TC moves, except for one task that consisted of five 

valid TC moves. This special case occurred when solving a multistep problem with the 

mathematical structure “5 × 6 + 4 − 3 = __ × 6 + __.” While delivering this task to a fourth-

grade student, the teacher attempted to clarify one condition at a time alongside the student’s 

step-by-step computational procedure. The sequence of interactional turns included the following 

actions: (1) The teacher posed the task: “Five bags of peanuts and six peanuts in each bag,” and 

the student wrote a vertical form for 5 × 6 = 30; (2) the teacher then provided the information 

that there were “Four extra peanuts not in a bag and three peanuts were given away. How many 

left?” and the student added 30 and 4 to obtain 34, and then stated that minus 3 equals 31 as the 

answer; (3) the teacher then continued the second part of the task by asking “how many complete 

bags of six are there after giving those three away?” after which the student performed the 

division by using the long-division method to divide 31 by 6, concluding that the answer is 5 
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with a remainder of 1. In this case, the whole task was broken down into small pieces of 

information, so all five TC moves were effectively enacted. These breakdown questioning moves 

created greater leverage for students’ problem-solving performance by reducing their working 

memory loads. In addition, these TC moves were precisely enacted in alignment with their 

corresponding actions, so they functioned as step-by-step directions in the problem-solving task. 

From the result, the student successfully solved this task, but it was built on the process in which 

the teacher had to provide fragmentary information as directions and worse, it narrowed the 

student’s creativity on solving this task.    

In sum, the ways preservice teachers enacted TC moves were very similar, and the 

interactional situations included: (a) students verbally requested repetition or partial clarification 

of the tasks in order to embark on the problem solving, normally immediately after the task 

posing; (b) teachers asked students to rephrase the task; (c) teachers actively offered repetition 

when students showed uncertainty in their problem solving; and (d) teachers highlighted 

particular pieces of information for students to reinforce partial clarification. TC moves were 

employed in different format and the way teachers enacted them affected students’ performance 

in their problem solving, so it is important to well-equip teachers with diverse tactics of enacting 

TC moves.  

Disclosing Existing Strategy-PU, MC, RA Moves 

Preservice teachers employed three different types of functional moves—Procedural 

Understanding (PU), Making Connections (MC), and Rationale Behind a Strategy (RA)—to 

explore students’ mathematical thinking related to their work in progress. The quantitative data 

show that teachers working with the fourth-grade students, compared with teachers working with 

first-grade students, used more PU, MC, and RA moves (93:63).  
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Regarding PU moves, it is not surprising that there were more student-initiated moves 

than teacher-initiated moves (97:17) because students were the problem solver in the activity and 

they automatically began to solve the task after the teacher posed it. When the PU moves were 

initiated by teachers, students in both grades attained a 100% rate of providing responsive or 

elaborative reactions, which means that the students were able and willing to enrich the 

conversation. Teachers working with first-grade students more actively initiated PU moves in the 

interactions.  

 Most teachers in both grades contributed responsive reactions (26 moves in the first 

grade and 29 moves in the fourth grade) to the student-initiated PU moves with inquiries such as 

“How did you know that?” or “Show me more about your work.” However, it is worth 

discussing the successes and difficulties that teachers experienced when they encountered 

student-initiated PU moves in both grades. The imbalanced number of overall student-initiated 

PU moves (60:37) revealed that the fourth-grade students were more likely to elaborate on their 

computational procedures than the first graders were, likely due to their language development 

and mathematical knowledge. Therefore, preservice teachers who were assigned to work with 

fourth-grade students should have an opportunity to learn more about students’ thinking in their 

problem solving. However, preservice teachers seemed unable to gain this advantage by 

leveraging this opportunity because 50% of student-initiated PU moves in the fourth grade ended 

up with the teacher either (a) repeating what students said with an upward inflection at the last 

word in her sentence, or (b) commenting with a short acknowledgment like “okay,” “uh-huh 

[with nodding],” or “gotcha” to continue the conversation. 
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Most MC and RA moves were teacher-initiated (see Figure 6-6). Compared by grade, the 

MC and RA moves seemed to share a similar distribution of the number of moves used in the 

interactions. For example, when it was the teachers who initiated MC and RA moves, they were 

more likely to receive responsive reactions from students (the TRE moves). This finding implies 

that, when employing MC and RA moves, preservice teachers were inclined to ask open-ended 

questions to invite students’ elaboration of the mathematical relationship among the numbers and 

the rationale behind their strategies.  

 

Figure 6-6. Frequency of PU, MC, and RA moves by grade level and pattern. 

 

In the following sections, I present three results of preservice teachers’ MC moves: (a) a 

contextualized connection was successfully produced, (b) the contextual features were 
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maintained but the key mathematical relationship was diminished, and (c) the mathematical 

relationship was ignored. 

The contextualized connection. The preservice teachers working with fourth-grade 

students more frequently elicited precise description while enacting questioning moves to help 

students make connections between the solutions and contextual features.  

Scenario 5 

Task: Julie had some markers. She gave four markers to her brother. Now she only has 
two markers. How many markers did Julie start with? 

After the teacher posed the task, the student came up with her solution strategy (see 
Figure 6-7) and explained “because 2 plus 4 is 6, and you add those [numbers] up. I did 
an inverse [6 − 2] so I got 4. I also knew 4 plus 2 was 6, so if you added 2 plus 4, it’d be 
6 markers. So it’s six markers.” The teacher then initiated the MC move as shown in the 
following exchange: 

T: So the 2 is what in the problem? 
S: The 2 is how many markers she gave to 

her brother, and the 4 is how many 
markers she had left. 

T: And what’s the 6? 
S: The 6 is how many she had before she 

gave 2 to her brother, and before she 
had four left. 

     (W1-4th G-Task#1) 

  
 
 
 
 
 
 
Figure 6-7.  

The student’s solution to ___ − 4 = 2 
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Scenario 6 

Task: Rosa had 69 diamond rings, and then she bought 316 more. How many diamond 
rings does Rosa have now? 

After the teacher posed the task, the student then fluently performed a computational 
procedure by explaining “So, if she had 69 rings and she bought 316. Six plus 9 is 15, so 
you add the one [in the tens place] up here. Six plus 1 is 7, plus 1 more is 8, so you have 
385” with a vertical form of the addition 69 + 316 = 385. The teacher then prompted 
with an MC move as shown in following exchange: 

T: So the 69 is what? 
S: Sixty-nine is how many rings she has, and 316 is how many she bought. 
T: And then 385 is what? 
S: How many she has in all. 

    (W1-4th G-Task#2) 

Fourth-grade students seemed more able to make contextualized connections on their 

own even when the teachers’ questions lacked specific indicators to relate to the original task. In 

Scenario 6, the student not only knew the unit of the numbers 69 and 385, but she also 

understood the problem structure that involved an action related to the given numbers. However, 

first-grade students might maintain the contextual features but diminish the key mathematical 

relationship in a task. 

The diminished mathematical relationship. In some first-grade cases, the students 

simply preserved the contextual feature (e.g., a superficial impression such as the unit of the 

number) and the mathematical relationship was diminished. Thus, the correct mathematical 

structure was not completely carried over to the stage of devising strategies, not to mention the 

stage of carrying out strategies.  
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Scenario 7 

Task: There are some kids on the playground. After six kids went home, 10 kids were 
still left on the playground. How many kids did they start off with on the playground? 

After the teacher posed the task, the student incorrectly represented and solved this 
problem by drawing 10 circles in total, crossing out 6, then writing down 10 − 6 = 4 
(see Figure 6-8). The student then explained as follows: “First, I did 10. Second, I x-ed 
out 6. Third, I counted, and then the number was 4…when I counted them. Only 4 were 
left.” The teacher then initiated a MC move as shown in following excerpt: 

T: Okay, what does the 10 and the 6 and the 4 stand for? What 
would be the word problem you give them?  

S: [long pausing] 
T: So if they ask you what does 10 minus 6 equal 4 mean? What 

would you say then? 
S: Equals… 
T: So what is… what does the number 10 mean? Is it the number 

of kids on the playground? Or is it the number that left? 
S: The number that left… think… okay, the playground? 
T: Okay, so it’s the kids on the playground, so then what does 6 

represent?  
S: The kids that went home?  
T: The kids that went home. And so what does 4 mean, then? 
S: Kids that were still on the playground. 
T: Okay, good! 
     (W1-1st G-Task#9) 

Figure 6-8. The 
student’s solution to 
__ − 6 = 10 

 

In Scenario 7, the student mentioned contextual features from the task stem, such as “in 

the playground,” “went home,” and “left.” However, the student did not comprehend the key 

mathematical relationship in this separate, start unknown problem, and the student’s 

misunderstanding of this task was reflected in her solution strategy: “Ten on the playground, six 

went home, and four were still on the playground.” The student clearly failed to solve this task, 

but the preservice teachers did not leverage the contextual features the student retained to help 

her reconstruct the correct mathematical relationship and succeed in his or her problem solving. 
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Ignoring the contextual features. When students demonstrated their computational 

procedures, they sometimes completely ignore contextual features of the task.  

Scenario 8 

Task: Eric brought 11 boxes of cookies to school. There are 12 cookies in each box. How 
many cookies did Eric bring to school? 

While solving this task, the student drew 11 circles with 12 dots in each circle and 
explained “So 12 plus 12 is 24 [repeating five times] and there’s gonna be one extra of 
12. So this is 48, this is 48, and this [48 plus 48] would be 96, and you add 96 and 24” 
(see Figure 6-9). The teacher then initiated an MC move, as shown in the following 
exchange: 

T: Here you had 24…you did 96, I am just making 
sure I am following, so 96 is this [pointing two 
sets of 48] number, right? 

S: Yes. 
T: And that represents… 
S: Eight plus 8 is 16, but that, you can’t do, so you 

have to add 1 to, um, each of…well, that is 8. So 
you have to add 1 to 8, which is 9,  

T: Okay 
S: And you put the 6, is 96 
T: And the 96 represents what? 
S: Um, how many I added up, for…so like, I added 

those up, which is 24, 
T: Okay 
S: And I add it 4 up, which is 48, 
T: Okay 
S: And then, I added those up, and I got 96. 
T: So 96 represents…  
S: How many this [circling 8 groups of 12 in her 

written work] is. 
T: Okay! gotcha! 
     (W1-4th G-Task#4) 

 
Figure 6-9. The student’s 
solution to 11 × 12 = __. 

 

In Scenario 8, the teacher enacted MC moves three times, but the student continued to 

reply with her computational steps and result without associating them to the context of this task.  
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Scenario 9 

Task: Tyrannosaurus Math goes to the World’s First Dinosaur prom. Tons of dinosaurs 
attend. Each dinosaur is given three Hawaiian lei necklaces as they walk in the door. If 
783 leis are given out, how many dinosaurs were in attendance? 

To solve this problem, the student employed the partial quotient method of division and 
accomplished all steps by mumbling “One hundred…[writing 100 on the side]…3 times 
50…150…and, that would be 3…33…[tried]10 [getting 30] minus 30 [doing 33 − 30] 3 
[figuring out 3 × __ = 3] is 1…plus all these [numbers on the side]…261” (see Figure 6-
10). After he concluded that the answer was 261, the teacher tried to help him make 
connections back to the task context, as shown in the following exchange: 

T: So tell me, what did we just do--all that work? 
S: Partial quotient. 
T: No, but what was the problem? Can you remember? 
S: Seven hundred and eighty-three divided by 3, right here 

[pointing to her written work]. 
T: Equals?  
S: Two-hundred and sixty-one.  
T: Perfect. Okay. 
     (W5-4th G-Task#5) 
 

 
Figure 6-10. The student’s 
solution to 783 ÷ 3 = __. 

 

In these two scenarios, both fourth-grade students were fluent in articulating or 

demonstrating all computational steps in verbal expressions or written representations and 

capable of devising a solution strategy for the task, carrying out their plans, and attaining a 

satisfactory result in their interactions with the teachers. Although these students were able to 

perform complicated computations and attain the correct answer, the teachers’ use of MC moves 

elicited procedural explanations of the computation rather than conceptual explanations of the 

way in which the numbers and operations corresponded to the story in the task. Although the 

teachers each made multiple attempts to elicit contextual explanations using MC moves, each 
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time the students interpreted them as requests for procedural explanations, and the teachers 

seemed unable to phrase the MC move to elicit a contextual explanation.  

In sum, enacting MC moves provided preservice teachers with an opportunity to test 

students’ understanding of the contextual features and mathematical relationships in the task, 

discover students’ capacity to make connections among given and unknown information, and 

experience diverse outcomes stemming from their moment-to-moment praxis of questioning. 

Incorporate Alternative Strategy-AS Moves 

The quantitative results (see Figure 6-11) show that most AS moves (82%) were initiated 

by teachers in both grades, and preservice teachers teaching fourth graders were more likely to 

employ AS moves compared to teachers working with first graders (23:15). For the teacher-

initiated AS moves, students in both grades demonstrated a responsive tendency in the 

interactional patterns; for the student-initiated moves, teachers displayed more consensual 

behavior and easily accepted what students proposed. 
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Figure 6-11. Frequency of AS moves by grade level and pattern. 

 

The strategies students used included: (a) a drawing, (b) an equation, (c) an equation 

corresponding to the mathematical relationship (e.g., horizontal or vertical form), or (d) cubes. 

Students used an alternative strategy or representation when: (a) the initial strategy had been 

used to solve the problem and the teacher required another strategy (an open-ended move), (b) 

students were struggling with the first strategy, so they wanted to try another one, or (c) teachers 

directly reminded students about other possible strategies regardless of the implementation of the 

initial strategy (a closed move). In addition, the questions “How can you check your solution by 

using another way?” or “Is there another way you can write it?” also elicited another strategy 

(including representation) in students’ solutions. The open-ended AS move usually left more 

freedom for students to employ their desired strategies to solve or check their existing solutions. 
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However, asking open-ended AS moves also resulted in some consequences that are worth 

discussing. In the findings addressing the MC move, I discussed how the fourth graders tended to 

ignore the contextual features of the task and concentrate on computational procedures. Below, I 

present representative scenarios from the first-grade cohort to illustrate a similar phenomenon, 

but one caused, in this instance, by AS moves. 

Scenario 10 

Task: Our class made some clay animals. The following day, our class made five more 
clay animals. Now there are nine clay animals. How many clay animals were there before 
our class made any more? 

The student initially solved the task by drawing circles and writing an equation 
corresponding to his misunderstanding. After the student concluded the task with the 
wrong solution 14, the teacher employed an AS move to suggest using cubes (the 
highlighted part). 

S: [Drawing nine circles after the five circles. Numbering circles from 1 to 5. Writing 
down 5 + 9 = 14.] (see Figure 6-4). 

T: So what’s the answer? 
S: 14. 
T: Do you think, um…using the cubes or anything would help you with the problem? Do 

you wanna try that? 
S: [Nodding] 
T: Yeah? You can do that.  
S: [Grabbing the bag of cubes, taking some blocks out] 

  (W1-1st G-Task#3) 

The student then put five cubes on the table and held one cube in his hand with a long 

pause. The student admitted that this task was too hard for him, so the teacher terminated this 

task. Although the student accepted the suggestion of incorporating cubes, the student’s 

misunderstanding of the mathematical relationship of this task had been constructed. Hence, the 

teacher’s suggestion to use the second strategy resulted in a false duplication of his initial 
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solution strategy. In the next two scenarios, the AS moves were more likely used to emphasize 

computational understanding instead of strategic reasoning. 

Scenario 11 

Task: Ms. Park had 13 cookies, and Vail gave her some more. Now Ms. Park had 20 
cookies. How many cookies did Vail give Ms. Park? 

The student successfully solved this task using the “adding up to 20” strategy and was 
required to show a different way. She then replied “you could have 7, then you could add 
13. It could also equal 20.” (W2-1st G-Task#2). 

 

Scenario 12 

Task: A teacher brings 24 cookies for her class. Amy’s mom brings 12 more cookies. 
How many cookies does the class have in all?  

The student initially tried to solve this task by applying several known facts including 
12 + 15 = 27 and 10 + 15 = 25, but was interrupted by the teacher’s first AS move 
suggesting her to break down the numbers.  

T: Can you make it break down somehow?  
S: Yeah! Like that other problem that we did. 
T: Mm-hmm. 
S: 24 [Writes 24 and 12 vertically] 
… 
S: 36! Cause I know that 4+2=6. So it’s gonna be 36. 
T: Is that another way you can write that maybe? 
S: [Writes down 12 + 24 = 36] 36. There! 
T: Is there any way you can break it down and write it? Do you know? 
S: …If I wanted to do a minus one, then it would be 36 minus 12, or 24. 
T: 36 minus what? 
S: 36 minus 12 equals 24. 
T: How do you know that all equals each other? How do you know that you can flip it 

around, and that it can do that? 
S: Because, um, I know that 24 plus 12 equals 36, so if I did 36 minus 12, it equals 24. 
T: Good job. 
    (W8-1st G-Task#5) 
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In Scenario 12, the teacher employed AS moves three times, and the student produced (1) 

a vertical form of the equation 24 + 12 = 36, (2) another equation 12 + 24 = 36, and (3) 

another equation 36 − 12 = 24 respectively to the three moves. The teacher then inquired about 

the reasoning by asking “How do you know that all equals each other?” to which the student 

replied, “Because I know 24 + 12 equals 36, so if I did 36 − 12, it equals 24.” The teacher 

praised the student and moved to next task.  

The application of arithmetic properties became the focus in Scenario 11 and 12. In 

Scenario 11, the student essentially applied the commutative property of addition to switch the 

numbers 7 and 13 as a different way to solve this task. In Scenario 12, the student started with 

some facts she knew about the given numbers, and the teacher then suggested the “break down” 

method. The wording in the next question was about “another way you can write it,” which 

elicited the student’s knowledge about the addition and subtraction facts that deviated from the 

contextual features and mathematical relationship of the task. That is, once the number sentence 

was constructed, the conversation was redirected to the focus of the manipulation of the written 

equation or the implicit numerical relationship. Hence, the teachers’ use of AS moves 

consistently led to students focusing on the format of written equation rather than linking the 

numbers and operations to the context of the task. 

 

Discussion and Implications 

This study revealed the successes and difficulties of preservice teachers’ questioning 

enacted in their single-student mathematical field experience and provides evidence about the 

mutual relations between teachers’ questions and students’ reactions. The literature is clear that, 
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through interacting with students, preservice teachers can not only practice their questioning 

strategies but also have opportunities to reflect on them (Moyer & Milewicz, 2002; Nicol, 1998; 

Weiland, Hudson, & Amador, 2014) However, I argue that for preservice teachers for whom this 

experience is the first time enacting questioning with students, it is imperative that they learn 

about the practicality and versatility of questioning because “[t]eachers use questions more than 

any other instructional tool, and good questioning is perceived as a hallmark of good teaching” 

(Wassermann, 1991, p. 257). Despite a variety of functional moves employed in the 

mathematical interviews, the scenarios examined in this study shed light on the tendency of 

teachers to pose questions that lead student to consider numerical expressions and equations 

decontextualized from the tasks they represent.  

While promoting task understanding, preservice teachers habitually repeated tasks 

verbatim, a move that did not help students rectify misunderstanding, particularly when working 

with first-grade students. Due to a lack of flexibility in the delivery of intended tasks, preservice 

teachers were not able to ask effective questions when students experienced difficulty working 

on the tasks. However, the teachers’ use of TC moves did sometimes help students clarify the 

tasks, particularly when preservice teachers required students to rephrase the mathematical 

relationship. These successes and difficulties have curriculum implications in relation to field-

based activity design and implementation, and teacher educators should consider whether we 

provide sufficient assistance to help preservice teachers with selecting tasks and enacting them. 

In this study teachers were provided with prepared interview protocols and were allowed 

to modify the tasks in a way that better fit their interviewee’s ability and knowledge. In addition 

to or instead of such protocols, teacher educators should consider providing a frame-based 

questioning protocol and intervening in teacher-student interactions in interview-based field 
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experiences. This idea echoes the notion Stein, Smith, Henningsen, and Silver (2009) advocated: 

teacher educators should provide a scaffold for teachers to “allow them to do something that they 

would otherwise not be able to do” (p. 135). Although preservice teachers in this study had tasks 

ready for their students, they did not seem well-prepared to implement the tasks they brought 

into the field. I observed preservice teachers’ hesitation about how to better re-pose questions 

after noticing students’ confusion and inability to solve the problem; some preservice teachers 

showed uncertainty regarding the content of the tasks, such as the correct problem structure and 

solution in the delivery; moreover, two teachers even admitted in front of their students that the 

task they posed was difficult for them. If the teachers’ understanding about the tasks is uncertain, 

they will not be able to solidify students’ comprehension in their understanding of the task. 

Enacting TC moves needs to be handled delicately because it could result in deviated from the 

contextual features and mathematical relationship of the task.  

While trying to get students to explain their strategies, preservice teachers successfully 

employed diverse functional moves, which resulted in diverse responses from students. 

However, preservice teachers seemed to provide unproductive responses, in which they either 

repeated what students said or commented with a short acknowledgment. Although the format of 

follow-up questions could vary under different circumstances (Franke et al., 2009), I found a 

lack of follow-up questions in preservice teachers’ PU moves in this study, particularly in the 

fourth grade. That is, most preservice teachers granted the students the agency of authority and 

accepted what the students said. However, I argue that it is beneficial for the teacher to nudge the 

student further to request more clarification, especially when working with elementary students. 

At times, students fluently explicated their mathematical thinking with detailed computational 

procedures. At other times, they were unclear in their explanations and even showed flaws in 
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their computations, but preservice teachers did not push for further explanation. It is critical for 

preservice teachers to learn how to elicit multiple types of knowledge from students without 

discouraging their thoughts. 

With regard to the MC moves, most successful contextualized connections occurred with 

fourth-grade students, and a plausible interpretation could be that the fourth-grade students more 

likely shared a common basis of mathematics language and knowledge with peers and teachers 

(Cobb, Wood, Yackel, & McNeal, 1992), so they were more capable of making connections 

between the mathematical elements in use and the solutions they produced. The difficulties 

normally occurred when the mathematical relationship was diminished (e.g., Scenario 7) or 

ignored in students’ explanations (e.g., Scenario 8 and 9), and preservice teachers were unable to 

resolve this difficulty through questioning. Because preservice teachers were not encouraged to 

correct students’ mistakes, they used a conservative strategy in their questioning even when 

receiving irrelevant or wrong connections from students. In some cases, dealing with Start or 

Change Unknown tasks perplexed younger students (Peterson, Fennema, & Carpenter, 1989), 

and learning how to support students in solving these types of tasks by enacting questioning is a 

necessary challenge for preservice teachers.  

In this study somepreservice teachers encouraged students to incorporate alternative 

strategies (including representations) into the existing process either through directly assigning a 

strategy or overtly inviting “other ways” of solving the problem. Most preservice teachers did 

not attempt to dictate students’ initial problem-solving strategies. Furthermore, for preservice 

teachers, initiating AS moves also provided students with an opportunity to demonstrate their 

mathematical thinking through using multiple representations. Promisingly, the AS moves served 

as an incentive for students to create more ways to solve or represent the posed problem. 
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However, these moves sometimes resulted in the use of decontextualized number sentences 

(correct and incorrect) that were not explicitly connected to the context of the task or the process 

the student used to solve the problem. For example, the teacher employed three AS moves in 

Scenario 12 and the last one elicited an equation 36 − 12 = 24, which neither corresponded to 

the problem structure “join, result unknown” nor matched the student’s solution strategy “adding 

20 and 10 first and then adding the ones.” Although this case has methodological implications 

for future research, and researchers should investigate the intention behind the enacted moves, a 

more practical question arises based on this phenomenon: in what way and to what extent can 

teacher educators provide the assistance preservice teachers need in their early field experiences 

to cultivate their questioning techniques and optimize their learning to teach? 

To better cultivate teachers’ ability to enact effective functional moves, educators should 

encourage teachers to develop and refine their practices with the considerations of key aspects of 

a task, including contextual features, mathematical relationships, the cognitive demand (Jackson, 

Garrison, Wilson, Gibbons, & Shahan, 2013), students’ verbal communication skills, the range 

of methods a student might use to solve a task, and the misconceptions student might have and 

errors they might make (Stein, Smith, Henningsen, & Silver, 2009). In conclusion, I cited three 

excerpts from preservice teachers’ final portfolios in which they described their questioning 

experiences in SSMFE:  

Sandy: I asked a lot of fundamental questions such as “How did you so that?” Or “Can 

you show me how you did that?” to identify which strategies my student used to 

solve the problem. It was really helpful especially when my student used only her 

brain to find a solution to the problem (Final portfolio, 2015). 
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Abby: If I had not asked these fundamental questions, I do not believe she [the student] 

would have just shown me that she could exhibit commutativity. Because of these 

questions, I was able to see my student’s growth and more of her abilities and 

understand my student’s mathematical understanding at a deeper level (Final 

portfolio, 2015). 

Alisha: It seems that my student knew how to solve problems but only in one specific 

strategy. It would be great to be able to see if I could probe him to try another way 

of solving the problem. I want to see if using this move helps my student learn of 

new ways to solve a problem (Final portfolio, 2015). 

I view the SSMFE as a successful activity not only because the teachers recognized 

questioning as a powerful technique by which they could help students solve most tasks but 

because they also experienced struggles in their learning to question and then determined to 

develop their knowledge of learners through questioning. Experiencing these struggles in early 

field experience and then learning to systematically analyze questions enacted in the teacher-

student interactions could help future teachers develop mathematics teaching practices that are 

responsive to student’s thinking and focus on the important mathematical ideas in tasks. 
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CHAPTER 7 

DISCUSSION AND CONCLUSION 

In this chapter, I describe how I examined preservice teachers’ questioning practices by 

classifying their supporting questioning moves within the problem-solving context and further 

analyze the reorganized interactional turns to scrutinize functional moves between teacher and 

student in SSMFE interactions. Supported by the findings derived from the data, I discuss the 

features that emerged from the analyses as an overall phenomenon in terms of the praxis of 

teacher questioning.     

 

Using an Integrated Framework in a Problem-solving Context 

As noted in Chapter 2, I developed an integrated framework based on prior work through 

a particular procedure: I embedded Jacobs and Empson’s (2016) teaching moves into Polya’s 

(1957) four-stage problem-solving process, and then I added a new category, SQM2 inquiring 

about the child’s plan to solve the task, to finalize the question inventory in accordance with the 

problem-solving stages (see Figure 2-4).  

The four original categories of teaching moves—ensuring the child is making sense of 

the story problem [SQM1], exploring details of the child’s existing strategies [SQM3], 

connecting the child’s thinking to symbolic notation [SQM4], and encouraging the child to 

consider other strategies [SQM5] (see Figure 2-5) in Jacobs and Empson’s (2016) framework—

were originally proposed by Jacobs and Ambrose (2008) as a result of analyzing 65 teachers 
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interviewing 231 elementary students solving 1,018 story problems. I used this framework to 

analyze the collected data.  

Questioning Moves in Stage I 

There is no doubt that the problem solvers must understand the problem and desire its 

solution in Stage I. Because the SSMFE served as an interactive activity in mathematical 

problem solving, the factors hampering its accomplishment remained: (1) the problem might not 

be well selected, such that the level of difficulty is not consistent with the problem solver’s 

capability, or (2) regarding flaws of representation and description, the problem might not be 

appropriately introduced to the problem solver. When noting students’ difficulties in Stage I, 

teacher participants implemented one or more of five strategies in their questioning practices: (a) 

changing the numbers but maintaining the original mathematical structure, (b) modifying the 

mathematical structure of the task, (c) strictly implementing preplanned tasks without 

considering the child’s struggles, (d) instructing instead of assessing the child’s thinking, or (f) 

inviting students to interpret the task by themselves.  

In the cases of changing numbers but keeping the structure of the task, preservice 

teachers took advantage of reducing the students’ working load, resulting in successful problem 

solving. However, it is worth noting that the move of modifying the original mathematical 

structure exposed students to completely different experiences. The move of modifying the 

structure of the task deprived students of the opportunity to solve the task designed based on a 

particular mathematical structure (e.g., an equally sharing task) and more importantly, when the 

teacher changed the structure of the problem, it was no longer possible to assess the student’s 

understanding of that type of problem. That is, when the structure of the problem was changed, 
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neither the teacher nor the student learns anything about what the student knows about the 

original type of problem. 

In some cases, preservice teachers strictly implemented preplanned tasks without 

considering the child’s struggles and instructing instead of assessing the child’s thinking. 

However, whether students successfully solved the posed task or not, this type of move either 

overestimated students’ cognitive operational abilities or ignored students’ role in their problem 

solving. To effectively but unobtrusively help students in their problem solving, Polya (1957) 

emphasized that “the teacher should put himself in the student’s place…and ask a question or 

indicate a step that could have occurred to the student himself” (p. 1). 

Last, when teachers decided to invite students to interpret the task by themselves, it 

elicited diverse reactions from students, including (a) maintaining the structure and successfully 

solving the task, (b) maintaining the structure but failing to solve the task, or (c) changing the 

structure so that students failed to solve the task. However, I value this questioning move 

because it was able not only to produce alternative outcomes in students’ problem solving but 

also to enrich preservice teachers’ learning regarding the aspects of understanding the learners 

and enacting questioning. This idea echoes Polya’s (1957) suggestion of asking students to 

repeat the task and “point out the principal parts of the problem” (p. 6). 

Questioning Moves in Stage II 

Previous question classification systems have lacked corresponding questioning moves in 

Stage II. Polya (1957) commented that “[i]n fact, the main achievement in the solution of a 

problem is to conceive the idea of a plan…[that] may emerge…after apparently unsuccessful 

trials and a period of hesitation” (p. 8). In this study, I found that preservice teachers were: (a) 
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easily accepting an oversimplified reason for the devised strategy, (b) directly suggesting a 

possible direction to develop a strategy, and (c) asking a “how” instead of a “why” question 

while trying to discover the rationale behind the proposed strategy. All these phenomena 

stemmed from the common mathematics knowledge and language that teacher participants 

shared with the student with whom they were working. For example, when a student claimed that 

the word “loses” means “subtraction,” the preservice teacher accepted this answer with no 

questions because this reasoning was logical to the teacher as well. This unquestioning 

acceptance operated in the cases when teachers directly suggested strategies rather than allowing 

more time to students and were content with students’ procedural explanations instead of 

inquiring about the rationale behind students’ explanations. Polya (1957) noted that “the way 

from understanding the problem to conceiving a plan may be long and tortuous” (p. 8), and I 

believe that including the move SQM2 in the framework enables researchers to pay special 

attention to the questioning moves used to inquire about the child’s devising plan in problem 

solving. 

Questioning Moves in Stage III 

It is a common conclusion in the literature that teacher questioning has focused on factual 

knowledge and procedural understanding since the first empirical research conducted by Stevens 

(1912) in her classroom observations. In this study preservice teachers’ questioning also 

exclusively elicited students’ procedural knowledge rather than their conceptual knowledge in 

Stage III, but I would like to discuss two additional features that emerged in the analyses: (1) 

preservice teachers unwittingly used pronouns or terms that could have different meanings in 

daily use in their SSMFE sessions; and (2) they neglected unexamined but valuable strategies 

devised by students while exploring student mathematical thinking. I relate both phenomena in 
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teacher questioning to teachers’ immature professional development in noticing students’ 

mathematical thinking (Sherin, Jacobs, & Philipp, 2011). Sherin and van Es (2005) summarized 

that noticing involves (1) identifying what is important in a situation, (2) making connections 

between specific interactions and the broader principles, and (3) using what they [teachers] know 

about the interactional context. For preservice teachers who were working with students on 

mathematics for the first time, it is not surprising that they had difficulty in refining their use of 

questions and identifying the important ideas worth pursuing. However, analyzing questioning 

moves by applying this integrated framework enables not only researchers but also educators and 

teachers to identify successes and difficulties in teacher questioning and to improve this 

important teaching technique in practice. 

 

The Features of Functional Moves in Problem Solving 

Teacher questioning has pedagogical importance because it elicits “many different kinds 

of logical operations that might be required to answer a question” (Riegle, 1976). To determine 

the function of interactional episodes, it is necessary to appraise not only the question asked by 

teachers but also the answer from students.  

Through categorizing all questioning moves (see Figure 3-2, Layer I analysis) and then 

organizing segments of functional moves (see Figure 3-4, Layer II analysis), I noticed patterns in 

SSMFE sessions. First, the predominance of the procedural understanding (PU) moves, 

unsurprisingly, was borne out in teacher-student interactions, and this feature was consistent with 

the course goal of understanding children’s mathematical thinking. However, it is disconcerting 

to see that some preservice teachers barely responded to student-initiated PU moves. In those 

cases, they either merely watched students solving the tasks without any reaction, or they 
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passively agreed with what the students performed and said to achieve a solution. While working 

on arithmetic tasks, students’ relational reasoning often remained unarticulated. For example, 

students may have demonstrated implicit awareness of the commutative property in their 

arithmetic calculations, but when the teacher did not inquire about the reasoning behind the 

calculation, the teacher was unable to conclude what the student knew or understood about the 

commutative property. In this study, I found that teachers’ unconditional acceptance of students’ 

PU statements limited the opportunity to help students develop a deeper understanding of 

particular relationships in arithmetic. Jacobs, Franke, Carpenter, Levi, and Battey (2007) noted 

that “developing an understanding of this relation in learning arithmetic may go a long way 

toward preventing common algebraic errors” (p. 261), so it is important to explore ways that 

teachers can learn to probe students’ thinking in similar situations. Therefore, I concluded that 

learning to elicit legitimate mathematical reasoning that supports students’ strategies and 

solutions through enacting effective questioning is essential in preservice teachers’ early field 

experiences. 

Preservice teachers’ assumptions about students’ learning appeared in the inevitable use 

of TC moves and the ineffectiveness of MC moves. Both features revealed the gap between what 

the teacher assumed her student should know and be able to do and what the students really 

knew and were capable of doing while solving word problems. It was interesting to witness that 

the preservice teachers were good at clarifying meanings in their everyday conversations with 

students, but they experienced frustration when trying to explain mathematics tasks when 

students did not understand them right away. When the routine strategy of restating the task did 

not resolve students’ confusion, preservice teachers were generally unable to use alternative task-

posing moves in practice, which could suggest deficiencies in their mathematics content 
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knowledge, pedagogical content knowledge, and the knowledge of learners (Shulman, 1987). 

With respect to the MC moves, most preservice teachers who worked with fourth graders 

successfully elicited the connections. To address the struggles participating teachers experienced 

with the first graders in the SSMFE, I suggest that preservice teachers should expand their MC 

questioning moves further to connect with prior steps, proposed plans, operations employed, and 

the manipulatives used or alternative mathematical representations in a broader horizon, rather 

than being enacted merely to repeat the original task stem and satisfy with the unit of referent 

numbers. Based on the complexity of this mission, preservice teachers need guidance and 

opportunities to practice how to realize broader instructional objectives and assist in developing 

students’ power to organize their thoughts in their questioning (Houston, 1938). 

Lastly, another salient feature was that preservice teachers seemed to diminish the 

contextual features or ignore the mathematical relationship of the task while enacting MC and 

AS moves. In this study, decontextualization refers to the situation in which the students 

extracted the numbers from the context of the task and focused only on computational operation. 

The participating students sometimes decontextualized their solutions in problem-solving 

activities while concentrating on the computational procedures. However, it is worth discussing 

why teachers were not able to help their students reconnect the solution to the context of the task. 

First, preservice teachers were not encouraged to correct students’ mistakes, so they were 

generally conservative while enacting questioning. As a result, they accepted whatever their 

students concluded once the students’ answers were correct. Second, some teachers encountered 

situations in which their students completely misunderstood the mathematical relationship of the 

task they posed, and they did not do anything to help students make sense of the structure using 

the context of the problem and eventually posed tasks with a different structure, which their 



214 

 

students were able to solve. For example, a teacher who worked with a first grader posed an 

addition change unknown problem, but her student used the start and result numbers to create a 

result unknown problem (i.e., instead of solving 7 + ___ = 10, the child solved 7 + 10 = 17). She 

then tried another set of numbers within the same problem structure (i.e., posing the 12 + ___ =

21 problem), but again the student changed the problem structure to result unknown using the 

given numbers. The teacher then decided to pose a result unknown problem with the structure of 

8 + 7 = ___, which the student was able to solve successfully. In this case, the student solved the 

tasks in a way he was able to handle, and the teacher initially tried to keep the problem structure 

but changed the numbers, but the student repeatedly changed the structure (i.e., computing 12 +

21). As a result, posing the task that the student was able to solve became the teacher’s last 

option. I concluded that teachers need to develop the ability to help students re-contextualize a 

mathematics task to make it more reasonable and comprehensible. Working one-on-one with 

students is a particularly valuable opportunity for preservice teachers to learn about and practice 

recontextualization. 

Overall, preservice teachers’ development of their questioning skills was an incremental 

progression. Eleven of the 13 preservice teachers showed improvement in their selection of 

questions and the extent to which they had to discontinue a particular type of questioning across 

the enactment of a task. Through better grasping their students’ responses and attitude in 

previous tasks, preservice teachers strived to avoid the mistakes that were noticeably harmful. 

However, preservice teachers’ questioning might not be an accumulated progression in the 

SSMFE because the student might approach the next task by applying a strategy that required 

different knowledge and skills from the student, and based on what the student did, preservice 
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teachers had to discard the questioning techniques that were inappropriate and modify previous 

questions for the specific context. 

SSMFE evoked preservice teachers’ awareness that some of their questioning moves did 

not work in the construction of effective functional moves. It was especially difficult for novice 

teachers to efficiently analyze and effectively modify their questioning along with students’ 

reactions without a systematic and analytical framework. Hence, SSMFE was considered a 

successful activity to cultivate teacher questioning not only because the teachers recognized 

questioning as a useful technique they could employ to understand students’ mathematical 

thinking and reasoning behind computational procedures but because they also experienced 

struggles in their learning to question and then determined to develop their knowledge of learners 

through effective questioning in their future teaching. 

 

Implications 

This dissertation provided evidence of the praxis of preservice teachers’ questioning in an 

early mathematics field experience. The literature showed that relatively few studies focused on 

preservice teachers’ questioning performance (Moyer & Milewicz, 2002; Weiland et al., 2014), 

limiting our capacity to cultivate preservice teachers’ questioning skills, which are “pivotal to the 

instructional process, [but] teachers do not learn this art from any serious study of questioning 

strategies during their teacher education programs” (Wassermann, 1991, p. 257).   

Implications for Teacher Education 

The participants in this study not only needed time to enact questioning but also lacked 

systematical analysis and an iterative process of reflection on their enacted questions. While they 
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had an opportunity to inquire about students’ mathematical thinking in the context of one-on-one 

interactions, they did not spend much time analyzing students’ thinking and their own 

questioning.  

The cultivation of preservice teachers’ learning of questioning can be carried out on three 

aspects: 

The contextual aspect. The analysis of participating teachers’ questioning performance 

leads to the first implication: the importance of developing effective questioning ability with 

careful attention to student responses in the context of mathematical problem solving. CGI tasks 

provide a promising environment for development these skills because teaching moves, 

including questioning, are dependent on how well teachers know their students. Both the types of 

questioning moves and functional moves stem from the stages of students’ problem solving, and 

they are categories for which to examine both preplanned and enacted questioning moves in the 

context in which students solve mathematical tasks. 

The tactical aspect. There are implications related to the implementation of questioning 

moves to learn children’s mathematical thinking. The situated nature of this analysis indicates 

that how the tasks are selected from the interview protocols and how the questioning moves are 

enacted in the SSMFE (i.e., change number or structure) can significantly influence PSTs’ 

practices. In addition, this study shows that PSTs do not always follow up their students’ 

thinking with refined, effective questioning moves. Because it is essential for PSTs to develop 

their questioning moves and reflect on them as they work with students, establishing a 

mechanism for selecting, enacting, reflecting, and reapplying questioning moves in a dynamic 

interaction becomes imperative. In short, careful attention should be given to teachers’ skills in 
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posing tasks and the ways in which the questioning moves are (re)enacted in a timely and 

appropriate manner in learning children’s mathematical thinking. Simply asking PSTs to reflect 

is not sufficient; teacher educators need to structure opportunities for PSTs to link their 

questioning with students’ responses and to consider possible alternatives moves. 

The instructional aspect. Lastly, this study also has implications related to the role of 

the methods course instructors in the design of the SSMFE interviews. Through this study, I 

noticed that the interview protocols and grade levels selected by the instructors played a role in 

PSTs’ questioning. I suggest that instructors explicitly discuss appropriate principles of enacting 

questioning moves in different conditions, including the mathematics problem structures and 

students’ development in math and language by grade. Furthermore, the methods course 

instructors can also model appropriate techniques of questioning in a specific context in the 

SSMFE. In so doing, preservice teachers have an opportunity to expand their questioning 

inventory and tool kit for their future use. 

Overall, teacher questioning is a contextual, situated behavior that relies on the tactic of 

questioning and when being promised with an assisted-learning opportunity, they may 

successfully develop the knowledge and abilities to (a) effectively select tasks, (b) precisely 

enact questions, (c) efficiently extend inquiries, and (d) promptly detect and react to students 

responses in their questioning. 

Implications for Researchers 

There exist a variety of question-classification systems that can be employed to 

investigate how preservice teachers perform questioning in the field. Some researchers adopted 

predetermined categories for the aspects of the cognitive operations (Sloan & Pate, 1966), 
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action-oriented (Perry et al., 1993), instruction-oriented (Sahin & Kulm, 2008), and formats 

(Park, 2010). Other scholars reported categories derived from the data (Jacobs & Ambrose, 2008; 

Moyer & Milewicz, 2002; Weiland et al., 2014). No single best system exists that will be a good 

fit for all teacher questioning scenarios. One can imagine the result could have been very 

different from prior studies if I had employed the cognitive process dimension to analyze my 

data.   

My integrated framework allowed me to analyze preservice teachers’ questioning 

practices in the context of students’ problem-solving behavior, which allowed me to interweave 

teacher questions and student responses as a complete interactional scenario and connect 

teachers’ questioning moves to the stages of problem solving: understanding the task, devising a 

plan, and carrying out the plan. Researchers investigating preservice teachers’ questioning 

practices should also consider the relevant influences, including the interactional context, in 

addition to the tasks and grade levels, when making sense of teachers’ questioning practices.  

 

Future Research 

This study cannot necessarily be generalized to different populations because it lacked a 

large number of preservice teachers from different teacher preparation programs. However, from 

this investigation, there are multiple approaches researchers can take to develop a better 

understanding of teacher questioning and seek an appropriate framework that can be used to help 

preservice teachers analyze and reflect on their questioning moves in practice. Future studies 

could explore the relationship between preservice teachers’ mathematics content knowledge and 

their praxis of questioning, particularly in the task posing and delivering stage. Ball (1990) found 

that almost all prospective teachers (including mathematics majors) have difficulty articulating 
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and connecting underlying mathematical concepts, principles, and meanings. She further claimed 

that “teachers must understand mathematics deeply themselves” (p. 458) to facilitate their pupils’ 

understanding of mathematics concepts and procedures. Future studies could consider teachers’ 

mathematical knowledge for teaching as they try to uncover the reasons preservice teachers 

hesitate to react to students’ mistakes and uncertainty.  

Future studies could also explore what specific conditions (e.g., controlling the 

mathematical tasks) have an influence on the praxis of teacher questioning. Having one teacher 

one-on-one work with different students at the same grade level on the same tasks could obviate 

the discrepancy stemming from the tasks. In addition, longitudinal studies that study the same 

participants could be particularly useful for examining the development of teacher questioning. 

Lastly, future research could be conducted in a broader setting than mathematics 

instruction. For example, mathematics problem solving is a critical component of STEM 

programs, which reflect NCTM’s (1989) recommendation that teachers focus on tasks that 

encourage students “to explore, to guess, and even to make and correct errors so they gain 

confidence in their ability to solve complex problems” (p. 5). Solving word problems, working 

on contextualized tasks, and dealing with real-world problems might require different 

questioning techniques, and researchers could broaden the horizon of current understanding and 

application of questioning in education. 
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APPENDIX C  

SSMFE Mathematical topics with exemplary tasks 

1) Base-N 

In the fourth-grade class: A Base-4 math task; in the first-grade class: A Base-5 math task 

Exemplary task: The Luck 5 Candy Factory task (1st Grade) 

At the lucky 5 candy factory, machines do the packaging. At this factory, there are the 

following types of packaging: individual candies, rolls of candies, boxes of candies, and crates 

of candies. The machines look for groups of 5. This means that every time a machine sees a 5, 

they put the candies into a container of the next size. So, every time they see 5 individual 

candies, the machines put them into a roll. Rolls can only hold 5 candies. Every time the 

machines see 5 rolls, they put them into a box. Boxes can only hold 5 rolls. And every time the 

machines see 5 boxes, they put them into a crate. Crates can only hold 5 boxes. 

Question #1: 9 candies were dumped onto a conveyer belt below. How many of each type of 

package should we expect to see after the machines finish packaging the candies? 

 

2) Base Ten/Place Value 

In the fourth-grade class: Multi-digits operation tasks  

In the first-grade class: Two-digit adding the multiples of 10 tasks, and place value tasks 

Exemplary task: Base ten subtraction (4th Grade) 

Nicky has 2001 points on his favorite video game. He forgets to save the game before turning 

it off, and he loses 956 points. How many points does he have now? Solve the problem in two 

ways. 
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3) Number Facts 

Exemplary task: 

____ + ____ = 11 

45=25+20=___ + 15 

8+9=___ (naked number fact problem) 

4) Fractions or equally sharing 

Exemplary task (1st Grade): 

If I am having a party with 10 friends. We are splitting 3 cookie cakes. How much of the 

cookie cakes would each friend get? 
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5) CGI problems types 

 

Sources: https://elemath.hallco.org/web/wp-content/uploads/2015/06/CGI-Problem-Types.pdf  

 


