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Abstract

Infectious diseases have threatened the health of Africa’s endangered great apes. Work

on pathogen dynamics in humans demonstrates that pathogen transmission can increase

with social and mating contacts, yet few studies have examined the role of host behavior

in wildlife pathogen spread. Further, despite promiscuous mating behavior among African

apes (i.e., chimpanzees, bonobos and to a lesser extent gorillas), little is known about the

prevalence or impact of sexually transmitted diseases (STDs) on this primate group. To

better understand the social and ecological drivers of pathogen transmission dynamics in

wild apes, I used a combination of field, molecular, and mathematical modeling techniques

to 1) assess how temporal contact heterogeneity affects pathogen dynamics and control, and

2) examine the diversity and prevalence of potential STDs. To address goal 1, I collected

nine months of behavioral association data from a wild chimpanzee community in Kibale

Forest, Uganda, and I used these data to build monthly chimpanzee contact networks. I then

used a combination of network analysis and epidemiological modeling to simulate pathogen

spread on networks for a range of pathogen types. To explore optimal pathogen control

strategies, I identified risk groups of individuals most likely to initiate large outbreaks and



compared model simulations of network-based vaccination strategies that targeted these

risk groups. To address goal 2, I collected and screened samples from wild and sanctuary

chimpanzees and gorillas for putative STDs, compared infection status against ecological

factors, and used sequence analysis to better characterize positive samples. Overall, this work

represents a multi-disciplinary approach to understand social and ecological factors affecting

pathogen transmission in East African apes and provides crucial information for developing

management strategies to protect endangered apes from current and future disease threats.

Index words: disease control, epidemiology, Gorilla beringei, Pan troglodytes, sexually
transmitted disease, social network analysis, wildlife conservation
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Dedication

To the Kanyawara chimpanzees. I feel very fortunate to have spent this time with them.
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Chapter 1
INTRODUCTION AND LITERATURE

REVIEW

A key objective of epidemiology is to identify host traits that affect pathogen transmission

dynamics (Anderson and May 1991; Keeling and Rohani 2008). Because many directly

transmitted pathogens spread through social contacts, highly social individuals are expected

to have a greater infection probability than less social individuals, and might also contribute

disproportionately to pathogen spread (Altizer et al. 2003). Thus, social behaviors that

affect the frequency and duration of contacts, and the underlying ecological factors that

shape social interactions, can play a prominent role in determining patterns of pathogen

transmission (Altizer et al. 2006, 2003). The major aim of this dissertation is to examine

social and ecological drivers of pathogen transmission in an endangered wildlife host system.

Host social organization can affect individual infection risk in several ways. Specifically,

host parasite burden often increases with social group size (Hoogland 1979; Poulin 1995;

Wilkinson 1985) and host density (Nunn et al. 2000; Packer et al. 1999). Similarly, species

with promiscuous mating systems are expected to harbor more sexually transmitted diseases

(STDs) than species with monogamous mating systems (Nunn and Altizer 2004), and several
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studies have demonstrated that host immune defenses (a proxy for pathogen risk) increase

with promiscuity (Nunn et al. 2003; Nunn 2002; Nunn et al. 2000). Further, within a species

or population, individual traits (such as age, sex, or dominance rank) can greatly affect

individual exposure to pathogens through variation in contact rates. For example, Caillaud

et al. (2006) demonstrated that during a 2003-2004 Ebola outbreak in Congo, gorillas living in

social groups (i.e., dominant adult males, adult females, and juveniles) were more than twice

as likely to die of Ebola than bachelor males not living in social groups. These differences in

mortality were largely attributed group-living gorillas having higher contact rates and thus

increased exposure to infected individuals.

Ecological and seasonal factors can influence host behavior, thus affecting frequency and

duration of contacts (Altizer et al. 2006). In humans, childhood diseases such as measles

are regulated in part by the academic calendar year, in which contact rates and infection

levels rise when school is in session and fall and when school is out of session (Fine and

Clarkson 1982; Finkenstädt and Grenfell 2000). Similarly, patterns of host aggregation in

wildlife species that are driven by mating events or resource availability are expected to alter

contact rates and thus pathogen transmission dynamics (Altizer et al. 2006; Newton-Fisher

et al. 2000). For example, phocine distemper virus outbreaks in seals have been shown to

coincide with seasonal haul-outs, in which seals form densely packed mating groups on land

(Swinton et al. 1998). Annual outbreaks of house finch conjunctivitis similarly coincide with

the fall months when susceptible juveniles and adults aggregate and intermingle in flocks at

backyard bird feeders (Altizer et al. 2004). Elucidating the social and ecological processes

that affect pathogen transmission dynamics will help predict and control outbreaks in both

human and animal systems.

To characterize patterns of inter-individual contacts, populations can be represented as

networks, in which nodes depict individuals (or groups of individuals) and edges represent

contacts allowing for pathogen transmission (Newman 2010). Thus, social network analysis
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offers an effective approach to mathematically formalize transmission pathways and host

contact variation (Newman 2010). Further, network analysis can identify superspreaders,

which are individuals with disproportionately high contact rates that could be targeted for

control efforts (Lloyd-Smith et al. 2005). Studies of human contact networks have advanced

scientific understanding of transmission dynamics for directly transmitted pathogens such

as SIV and HIV (Anderson et al. 1990; Lloyd-Smith et al. 2005; Meyers et al. 2005). Mod-

eling studies in human populations have demonstrated that targeting the most connected

individuals for pathogen control strategies such as vaccination can be much more effective

than random control (Lloyd-Smith et al. 2005; Salathé et al. 2010). However, because con-

tact networks are more difficult to define for animal populations than human populations

(largely because animals cannot self-report their contacts the way that humans can), net-

work analysis is rarely used to investigate the epidemiology and control of wildlife diseases

(Craft and Caillaud 2011).

Owing to their complex and often well-studied social systems, wild primates and espe-

cially African apes (e.g., chimpanzees, Pan troglodytes ; bonobos, Pan paniscus ; and to lesser

extent gorillas, Gorilla beringei) could help bridge this gap. In particular, habituated great

ape communities, which have been the focus of several long-term research projects (e.g.,

Wrangham and Ross 2008), offer a unique opportunity to conduct community-wide obser-

vations of fine-scale individual contacts. Notably, because apes in these communities are

habituated to human observers, there is no need for the expensive technologies or invasive

procedures typically required for collecting detailed observational data via tracking devices

(e.g., radio-tracking devices and proximity-logging collars: Cross et al. 2004; Hamede et al.

2009). Further, all great apes are listed by the IUCN as endangered species (IUCN 2012),

and pathogens are a key cause of ape population declines (Ryan and Walsh 2011). Specifi-

cally, outbreaks of Ebola and respiratory infections have caused dramatic declines in several

gorilla and chimpanzee populations (Bermejo et al. 2006; Kaur et al. 2008; Köndgen et al.
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2008). Importantly, African apes are highly social animals that frequently interact with

group members while foraging, playing, and grooming (Goodall 1986; Kano 1992; Schaller

1963). Further, chimpanzees and bonobos are also considered to be highly promiscuous

(Goodall 1986; Kano 1992), and mating contacts can provide key transfer routes for STDs

and non-STDs alike (Nunn and Altizer 2006; Nunn et al. 2000).

In a comprehensive review article, Lockhart et al. (1996) determined that over 200 STDs

have been reported among wild animal species. However, wild apes have not yet been

comprehensively studied for STDs, perhaps because STDs rarely lead to visible clinical signs

(Holmes et al. 2008; Lockhart et al. 1996). In humans, STDs can cause sterility and infant

mortality (Ntozi 2002). STDs have also been reported to cause declines in some wildlife

populations (Augustine 1998). Because STDs can go undetected for long periods and might

lower population recruitment in small host populations (Lockhart et al. 1996), research aimed

at investigating naturally occurring ape STDs could inform efforts to manage and conserve

wild ape populations.

To better understand how social and ecological drivers affect pathogen transmission dy-

namics in East African apes, this dissertation undertook two key goals: i) integrate field

behavioral data with network-based epidemiological models to simulate the transmission

and control of pathogens within a wild ape community (Chapters 2 and 3), and ii) use field-

and sanctuary-collected samples to quantify the occurrence of STDs in East African apes

(Chapter 4). To address the first goal, I observed behavioral associations in a habituated

wild chimpanzee community at Kanyawara, Kibale National Park in Uganda. In Chapter 2,

I used these field data to construct monthly party (i.e., group) and close-contact (i.e., ≤ 5m)

association networks over a period of nine months. Using a combination of network analysis

and Bayesian approaches, I assessed how contact patterns change over time in relation to

estrous events and seasonal changes in fruit availability. To determine which individuals are

likely to generate large outbreaks, I used permutation tests and examined how individual
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traits (e.g., age, sex, dominance status) affect an individual’s connectivity and position in

the monthly networks.

In Chapter 3, I combined the chimpanzee behavioral association data with epidemiolog-

ical network models to design and evaluate disease intervention strategies. Specifically, I

simulated outbreaks on monthly contact networks parameterized with association data from

the Kanyawara chimpanzee community to ask how final outbreak size depends on the net-

work position of the index case, outbreak timing, and pathogen infectiousness. I then used

permutation tests to determine traits associated with individuals most likely to initiate large

epidemics and to identify risk groups that could be targeted for pathogen control. Lastly, I

simulated vaccination on the observed chimpanzee networks to evaluate the effectiveness of

network-based control efforts as compared to randomly applied control efforts.

To address the second project goal, I collaborated with the Kibale Chimpanzee Project

(KCP), the Mountain Gorilla Veterinary Project (MGVP), and the Chimpanzee Sanctuary

and Wildlife Conservation Trust (CSWCT) to collect biological samples from East African

chimpanzees and gorillas in the wild and in African sanctuaries. In Chapter 4, I used these

samples to screen East African apes for putative STDs from four major groups. Using gener-

alized linear models, I examined the social and ecological factors associated with individual

infection status. I also used molecular techniques to build a phylogeny of one pathogen

group using sequence data from positive samples. Ultimately, this dissertation lends support

for the effects of social and ecological variables on pathogen transmission dynamics in a

wildlife species. Further, this work shows that behavioral and ecological factors can play an

important role in forecasting outbreaks and designing vaccination programs for endangered

wildlife.
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Chapter 2
SOCIAL NETWORK ANALYSIS OF

WILD CHIMPANZEES PROVIDES

INSIGHTS FOR PREDICTING

INFECTIOUS DISEASE RISK

J. Rushmore, D. Caillaud, L. Matamba, R. M. Stumpf, S. P. Borgatti, and S. Altizer. Accepted by Journal
of Animal Ecology. Reprinted here with permission of the publisher.
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2.1 Abstract

Heterogeneity in host associations can alter pathogen transmission and strategies for control.

Great apes are highly social and endangered animals that have experienced substantial popu-

lation declines from directly transmitted pathogens; as such, network approaches to quantify

contact heterogeneity could be crucially important for predicting infection probability and

outbreak size following pathogen introduction, especially owing to challenges in collecting

real-time infection data for endangered wildlife. We present here the first study using net-

work analysis to quantify contact heterogeneity in wild apes, with applications for predicting

community-wide infectious disease risk. Specifically, within a wild chimpanzee community,

we ask how associations between individuals vary over time, and we identify traits of highly

connected individuals that might contribute disproportionately to pathogen spread. We used

field observations of behavioral encounters in a habituated wild chimpanzee community in

Kibale Forest, Uganda to construct party-level (i.e., subgroup) and close-contact (i.e., ≤ 5m)

association networks over a nine-month period. Network analysis revealed that networks were

highly dynamic over time. In particular, estrous events significantly increased pairwise party

associations, suggesting that community-wide disease outbreaks should be more likely to oc-

cur when many females are in estrus. Bayesian mixed-effects models and permutation tests

identified traits of chimpanzees that were highly connected within the network. Individuals

with large families (i.e., mothers and their juveniles) that range in the core of the community

territory and to a lesser extent high-ranking males were central to association networks, and

thus represent the most important individuals to target for disease intervention strategies.

Overall, we show striking temporal variation in network structure and traits that predict

association patterns in a wild chimpanzee community. These empirically-derived networks

can inform dynamic models of pathogen transmission and have practical applications for

infectious disease management of endangered wildlife species.
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Key words: association patterns, infectious disease dynamics, Pan troglodytes, wildlife

conservation, pathogen control

2.2 Introduction

Many pathogens spread through host populations via social interactions (Altizer et al. 2003);

thus, knowledge of a community’s social system and contact structure can provide crucial

information for predicting infectious disease outbreaks (e.g., Drewe 2010; Griffin and Nunn

2012; Nunn et al. 2008). Inter-individual contacts that lead to pathogen transmission can

be represented using networks, where each node represents an individual, and edges between

nodes represent interactions that allow for pathogen transmission. Contact networks for hu-

mans and animals are often heterogeneous (e.g., Lusseau 2003; Schneeberger et al. 2004; Wey

and Blumstein 2010), which violates the common assumption of many basic epidemiological

models that contacts are random and individuals are well mixed (Anderson and May 1991).

Network analysis provides a feasible (albeit data intensive) approach to mathematically for-

malize transmission pathways and host contact variation (Newman 2010). Further, network

analysis can identify potential superspreaders, individuals with disproportionately high con-

tact levels, that could be targeted for vaccination, treatment, or isolation (Lloyd-Smith et al.

2005). Studies of human contact networks often detect heterogeneity and the presence of

superspreaders, which has been extremely influential in our understanding of transmission

dynamics for SARS and HIV/AIDS (Anderson et al. 1990; Lloyd-Smith et al. 2005; Meyers

et al. 2005). Superspreaders have also been identified in a few wildlife populations (e.g.,

possums and deer mice: Clay et al. 2009; Porphyre et al. 2008); however, network analysis is

rarely used to investigate the epidemiology and control of wildlife diseases (Craft and Cail-

laud 2011). Here we present the first study to analyze empirical wild chimpanzee contact

networks within a framework of predicting implications for infectious disease risk.

8



Endangered wild ape populations have recently experienced outbreaks of Ebola, measles

and respiratory viruses, making infectious disease a major threat to their survival (Ryan and

Walsh 2011), in part owing to the risk of pathogen spillover from humans to wild apes (Kaur

et al. 2008; Köndgen et al. 2008). Thus, given the push to habituate wild apes for tourism

across more than 15 African sites (Muehlenbein and Ancrenaz 2009), infectious disease risks

for apes will likely continue or escalate. Respiratory diseases in particular have resulted

in outbreaks with up to 25% community-level mortality at several long-term chimpanzee

research sites (Ryan and Walsh 2011). With low birth rates and late reproductive maturity,

ape populations can take decades to recover in size after an outbreak. For example, using

mathematical models and a range of parameters derived from published ape epidemics (i.e.,

mortality rates of 4 – 25%), Ryan and Walsh (2011) estimated that a mountain gorilla

population would require 5 – 32 years to recover following an outbreak of respiratory disease.

In accordance with these predictions, a Tanzanian chimpanzee community took 15 years to

return to its pre-epidemic population size after a 1987 respiratory disease outbreak (Williams

et al. 2008).

In addition to the detrimental impact that pathogens can have on endangered apes,

obtaining real-time infection data for wildlife is notoriously difficult. Collecting biologi-

cal samples often requires risky interventions including darting and possibly anesthetizing

immune-challenged individuals. Furthermore, the speed with which respiratory pathogens

typically spread through ape communities (e.g., with a duration of roughly two weeks to

two months: Hanamura et al. 2008; Köndgen et al. 2010; Williams et al. 2008) can limit

researchers’ abilities to collect comprehensive health data during an outbreak. Given these

challenges, parameterizing realistic epidemiological models with empirical association data

(Davis et al. 2008; Hamede et al. 2011) is essential for developing strategies to reduce the

risk and impact of infectious diseases. An underlying assumption of these models is that

network edges represent possible pathogen transmission routes. Indeed, while relatively few
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wildlife studies have both host infection and host association data, there is a growing body

of evidence that wildlife social networks strongly predict individual infection status (Bull

et al. 2012; Leu et al. 2010; Otterstatter and Thomson 2007) and that highly connected

individuals tend to have greater parasite burdens than less connected individuals (Corner

et al. 2003; Godfrey et al. 2009; Leu et al. 2010, but see: Otterstatter and Thomson, 2007).

Great ape societies are highly structured and complex. Chimpanzees in particular live

in permanent social groups termed communities, and have a fission-fusion social structure,

whereby individuals within the community frequently break off into subgroups, called parties,

that vary in size and composition (Goodall 1986). A chimpanzee mother and her offspring

travel together in a family unit, and sociality can vary greatly among adult females (Boesch

and Boesch-Achermann 2000). In fact, Goodall (1986) noted that eastern chimpanzee fe-

males ranging in the core of the community’s territory encountered other individuals on a

daily or weekly basis, whereas females ranging on the periphery of the territory might en-

counter community members only a few times per year. Compared to females, males follow

a linear dominance hierarchy (Muller and Wrangham 2004) and tend to be more gregarious

(Gilby and Wrangham 2008). Additionally, other studies showed that party size tends to

increase when females are in estrus or when ripe fruits are available (e.g., Anderson et al.

2002; Itoh and Nishida 2007; Wrangham 2000).

In this study, we use network analysis to examine association patterns among individuals

in a community of wild chimpanzees at Kibale National Park, Uganda. In particular, we

quantify how association patterns that represent potential pathogen transmission routes

vary over time, in response to factors such as fruit availability or the number of estrous

females. We also examine individual traits that contribute to high levels of association, and

predict that high-ranking males and estrous females will have disproportionately high levels

of association with community members owing to increased rates of grooming and mating

(e.g., Emery Thompson and Wrangham 2008; Goodall 1986). Importantly, investigating the
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dynamics and drivers of contact variation in wild apes is a necessary step for simulating

pathogen spread and evaluating the success of much needed disease intervention strategies

for this highly threatened primate clade.

2.3 Methods

Study site and population

We studied the habituated wild Kanyawara chimpanzee community at Kibale National Park

(0 ◦34′N, 30 ◦21′E) in Uganda. The site is dominated by moist deciduous forest interspersed

with secondary forest, grassland, and swamp (Chapman and Wrangham 1993). Weather

data for the site were provided by C. Chapman. Further details on the ecology of Kibale are

discussed in Struhsaker (1997). The Kanywara chimpanzee community occupies roughly 37.8

km2 of forest (Wilson et al. 2001), and during the time of the study the community included

48 chimpanzees with 12 adult males (aged > 14), 14 adult females (aged > 13), 9 immature

males and 6 immature females (aged between 5 – 14 and 5 – 13 respectively; hereafter referred

to as juveniles), and 7 dependent offspring (aged ≤ 4). For additional information on the

Kanyawara community, see Supporting Information (Appendix Text A.1.1).

Data collection

We collected data on chimpanzee association patterns over nine months between Dec 2009 –

Aug 2010 for 4 – 6 days per week between 6:00am and 7:30pm. Each morning, we randomly

selected a focal chimpanzee from a party (typically at a nest site) to follow for 10 hours.

Every 15 min, we scanned the focal individual’s party and recorded the identity of all party

members based on individuals within a 50m radius, a common criterion for estimating chim-

panzee party sizes (Clark and Wrangham 1994). As an index for assessing patterns of close
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association within parties, at the same 15-min intervals, we also recorded pairs of individ-

uals that were within 5m of each other, which is a measure that commonly contributes to

identifying close associations among primates (e.g., Gilby and Wrangham 2008). We limited

our focal follows and party composition data to chimpanzees greater than 4 years of age

(i.e., excluding dependent offspring, which remain in close contact with their mothers); we

also excluded two adult females and a juvenile male on the periphery of the community who

were observed only twice during the study. Our total sample size was 37 individuals (12

adult males, 12 adult females, 7 juvenile males, and 6 juvenile females). We recorded days

when parous females had maximal sexual swellings and noted ripe fruit species on which

focal animals foraged.

Estimating association indices

We calculated monthly pairwise association indices between individuals at two spatial scales:

i) party-level association indices were based on the frequency of monthly co-occurrence in

the same party, and ii) close contact association indices (i.e., within-party and overall 5m-

associations, described below) were based on the frequency with which two individuals were

seen within 5m of each other during a given month. We examined associations at the party-

level as a proxy for the transmission of pathogens spread by non-close contact (e.g., via

fomites, aerosol transmission, or fecal-oral routes). To estimate party-level associations, we

calculated a monthly ‘twice weight index’ (Cairns and Schwager 1987), hereafter referred to

as a monthly party association index (PAI), from party membership scans. This parameter

calculates the ratio of scans in which chimpanzees A and B were observed in the same party

relative to the total number of scans in which either A or B was observed in any party as

follows:

PAIAB =
SAB

SA + SB + SAB
(2.1)
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where SAB represents the number of scans where A and B were observed in the same party,

SA represents scans where A was observed in a party without B, and SB represents scans

where B was observed in a party without A. PAIs and subsequent indices described below

could range from 0 (i.e., individuals in a pair were never observed associating in the given

month) to 1 (i.e., individuals in a pair were observed to be associating during 100% of the

observations for the given month).

Close-contact interactions were examined as a proxy for pathogens requiring direct con-

tact or respiratory droplets to spread. As one close-contact measure, within-party association

indices (WPAI) represent the proportion of scans in which chimpanzees A and B were ob-

served within 5m of each other, given that they were within the same party:

WPAIAB =
SAB5

SAB
(2.2)

where SAB5 represents the number of scans where A and B were observed within 5m of each

other. To examine which individuals were most central to the 5m-networks, we calculated

an overall 5m-association index (5mAI), which incorporated the probabilities that

individuals A and B would be both within the same party and within 5m of each other:

5mAIAB = PAIAB ·WPAIAB (2.3)

Thus, this index estimates the overall proportion of time that individuals A and B were

within a 5m distance.

To examine host interactions at a temporal scale that reflects the transmission biology

of real-world pathogens, we analyzed association patterns at both two-week and monthly

intervals, as respiratory diseases common to chimpanzees and humans have infectious periods

that range from a few days to one month (e.g., influenza: 2 – 3 days, measles: 6 – 7 days,

chicken pox: 10 – 11 days, Streptococcus spp.: 14 – 30 days; Anderson and May 1991;

Ekdahl et al. 1997) and published reports of wild chimpanzee respiratory illnesses suggest
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that epidemic durations often range from roughly two weeks to two months (Hanamura et al.

2008; Köndgen et al. 2010; Williams et al. 2008). Because associations across both time steps

were significantly correlated for both PAIs and 5mAIs (Appendix A: Table A.1), and other

results were robust across both time steps, we present results for monthly associations in the

main text (see Appendix A Tables A.2 and A.3 for two-week time step results).

Visualizing networks

We constructed monthly party and 5m-association networks in R version 2.15.1 (R Core

Development Team 2010) with the igraph package version 0.5.5-4 (Csardi and Nepusz 2006).

Party and 5m-network edges were weighted according to the monthly pairwise PAIs and

5mAIs respectively, such that pairs with higher association indices had thicker edges.

Individual trait data

In all analyses, we categorized chimpanzees based on their age, sex, dominance rank category,

family size (Table A.4), and for pairwise analyses, whether two individuals were related

to each other. Chimpanzee rank, based on dominance interactions for adult males, was

categorized such that high-, medium-, and low-ranking adult males respectively occupied

the rank categories of Male 1 (M1, n = 5), Male 2 (M2, n = 4), and Male 3 (M3, n

= 3). By grouping individuals in this way, all males stayed within their respective rank

categories throughout the study period, despite minor reshuffling in the linear hierarchy.

Female chimpanzees rarely show dominance interactions; however, females occupying and

foraging in the core area of the territory (at Kanyawara) tend to be higher ranking than

those occupying the peripheral areas (Kahlenberg et al. 2008). Thus, we assigned core-

area adult females and their juvenile offspring to rank categories Female 1 (F1, n = 6) and

Juvenile 1 (J1, n = 9), and edge-ranging adult females and their offspring to Female 2 (F2, n
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= 6) and Juvenile 2 (J2, n = 4). Additional details on rank categorization are in Appendix

Text A.1.2 and Table A.4.

Lastly, we defined a family unit as a mother and her non-infant offspring, such that an

individual’s family size was the total number of non-infant chimpanzees in this family unit.

In one unique case, a young adult male and his juvenile sibling were considered a family

unit (Table A.4), as their mother was deceased. Chimpanzees who traveled without a family

unit (e.g., adult males, females with infants only) were assigned a family size of one. We

considered mother-offspring pairs and maternal siblings to be related, based on long-term

records from the field site.

Monthly changes in network density

To compare PAIs and 5mAIs over time, we calculated monthly network density as the sum

of the network’s observed edge weights divided by the sum of the maximum possible edge

weights (Hanneman and Riddle 2005). To examine how stable party and 5m-networks were

over time, we assessed correlations between monthly association index matrices using a

quadratic assignment procedure (see Appendix Text A.1.3 for details) in UCINET version

6.343 (Borgatti et al. 2002).

Analyses of pairwise associations

To examine how social factors (e.g., rank status) and ecological factors (e.g., fruit availability)

affect temporal pairwise associations at party and 5m-levels, we fit two models (for PAI and

WPAI data, respectively) to Bayesian logistic mixed-effects models using a Markov chain

Monte Carlo (MCMC) framework. We tested for significant relationships between monthly

pairwise associations and the following predictor variables: age (adult-adult, adult-juvenile,

juvenile-juvenile), sex/estrus (i.e., pairwise combinations of males, non-estrous females, and
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estrous females, Note: parous females were categorized as estrous during months in which

they were observed to be in estrus; nulliparous females were never categorized as estrous),

relatedness (related, unrelated), difference in family size (range: 0 – 3), and difference in

rank category (scored as 1/0 where a pair in the same rank category scored a 0 and a pair

in different ranks scored a 1). Because we expected mothers and their juveniles to associate

frequently, for this analysis we collapsed the adult female and juvenile ranks into FJ1 (core-

ranging individuals) and FJ2 (edge-ranging individuals).

We also included two key parameters that could affect associations over time. First, we in-

cluded a parameter for the number of parous estrous females observed during each month, as

males prefer mating with parous over nulliparous females (Muller et al. 2006). Additionally,

research at some sites shows that increased fruit availability is linked to larger parties (e.g.,

Wrangham 2000). We did not have fruit abundance data; however, we included parameters

for the monthly presence/absence of preferred ripe fruit species (Mimusops bagshawei, Pseu-

dospondias microcarpa, Uvariopsis congensis : Wrangham et al. 1996) according to our focal

data, as eating of preferred fruits is strongly associated with fruit availability for Kanyawara

chimpanzees (Wrangham et al. 1991). We also included a parameter for the mean daily rain-

fall from two months prior, which we considered to be a proxy for current fruit availability.

To account for autocorrelation from repeated measures, we assessed model fit with ran-

dom effects of chimpanzee ID, chimpanzee pair, and month. One difficulty with including

a random effect for individual ID was that an individual could appear interchangeably as

individual A or individual B in the observed pairwise associations described in equations

1 – 3. This interchangeability was due to the fact that the associations were not directed,

meaning they did not have a specific ‘sender’ and ‘receiver.’ We resolved this issue by using

the multi-membership modeling capabilities of the MCMCglmm package (Hadfield 2010) in

R. Additional analysis details are in Appendix Text A.1.3; R code is available upon request.
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Individual traits associated with network centrality

To identify individual traits associated with increased contact, we used UCINET to calculate

three weighted network centrality measures for each chimpanzee: degree, eigenvector, and

flow-betweenness. Weighted degree centrality (hereafter referred to as degree) for each node

is the sum of the node’s edge weights (Newman 2010). Eigenvector centrality is based on an

individual’s connectedness and the connectedness of an individual’s associates, where an in-

dividual with high eigenvector centrality is connected to well-connected associates (Newman

2010). Lastly, flow-betweenness centrality is defined as the proportion of times an individual

lies along the shortest path between pairs in the network (Freeman et al. 1991). Previous

theoretical and empirical work in human and wildlife systems has shown that individuals

with high degree, eigenvector, or flow-betweenness centrality are more likely to contract and

transmit pathogens than individuals with low centrality (e.g., Corner et al. 2003; Salathé

et al. 2010).

Using node-level permutation-based regressions, we fit individual centrality data in R

with 30,000 permutations per test to investigate relationships between each centrality mea-

sure and the following predictor variables: rank, estrous-status, family size, continuous age,

and sex (while controlling for month effects). We controlled for sampling effort across indi-

viduals by weighting the model variance structure according to the number of scans in which

each individual was a focal subject. To account for comparisons of three centrality measures,

we applied a Bonferroni correction and considered relationships where P < 0.017 (i.e., P <

0.05/3) to be significant. Age and sex were excluded from the final models because they were

confounded with rank (which was already separated by age and sex groups), explained less

than one percent of the variation (as determined by adjusted R2), and were never significant

after Bonferroni correction. Additional analysis details are in Appendix Text A.1.3.
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2.4 Results

Association patterns and social network descriptions

On average, each chimpanzee was followed as a focal subject for 27.79 (± 3.6) hours (Fig. A.1),

comprising a total of 1,028 focal observation hours and 4,114 fifteen-minute scans for all in-

dividuals combined. Our analysis included 306,212 pairwise party associations and 14,673

pairwise 5m-associations over the nine month period. When averaged across months and

individuals, randomly selected chimpanzee pairs were observed associating at the party-level

approximately 26% of the time (mean PAI: 0.255, range: 0.0 – 1.0, SE: 0.003) and at the

5m-level 4% of the time (mean 5mAI: 0.041, range: 0.0 – 1.0, SE: 0.001). Three parous

females came into estrus at different points in the study; the number of estrous females per

month was low (range: 0 – 2) owing to a high proportion of lactating females in the study

population.

Monthly party networks were dynamic over time (Figs 2.1 – 2.2, A.2 – A.3) and network

density ranged from 0.14 (Jan) to 0.42 (Apr). Party networks for consecutive months were

highly correlated (Fig. A.3), but correlation coefficients decayed as the time lag increased,

indicating that party networks were locally stable within 2 – 3 month periods but were

dynamic on a longer time scale. The 5m-network density ranged from 0.03 (Mar) to 0.06

(Jan) (Figs 2.2, A.4). There was no significant relationship between monthly party network

density and monthly 5m-network density (R2 = 0.17, P = 0.270; Fig. 2.2 inset). Variance-

to-mean ratios of total edge weights per individual (i.e., weighted degree centrality) for party

and 5m-networks were relatively low across months (party network: 3.52, 5m-network: 0.73;

Fig. A.5), and while monthly party networks were significantly more aggregated than 5m-

networks (t8.3 = 4.38, P = 0.002), degree distributions indicated that networks were not

highly aggregated at either scale (Figs A.6 – A.7).
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Figure 2.1: Monthly party association networks for a month with a) no estrous
females (March), b) one estrous female (June), and c) two estrous females (Au-
gust). Nodes (circles) represent individual chimpanzees (n = 37) and edges (lines) represent
observed associations, where edge thickness corresponds to the pairwise party association in-
dices (PAIs). All networks are displayed with identical layouts and only edges with PAIs >
0.35 are shown. Dark red nodes have at least one edge above the PAI cutoff whereas light
red nodes do not have any edges above the PAI cutoff. All nine monthly party association
networks are shown in Fig. A.2.

Effects of social and ecological factors on pairwise associations

The number of estrous females in a given month significantly increased pairwise associations

at the party-level, where for each additional estrous female, the odds of a pair associating

were roughly twice as high (Table 2.1, Fig. 2.3). There was a significant interaction be-

tween the number of estrous females and age, such that adult-adult pairs experienced the

largest increase in associations as the number of females in estrus increased. Similarly, of all

the pairwise sex combinations, pairs that included one estrous female associated the most

frequently. The odds of related pairs being in a party together were over 20 times greater

than the odds for unrelated pairs, and chimpanzees were significantly more likely to associate

with individuals of their own rank category. Family size difference negatively affected associ-
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Figure 2.2: Density of monthly party networks (blue solid line) and 5m-networks
(red dashed line) with standard error bars. The inset shows that there is no signifi-
cant relationship between monthly party network density and monthly 5m-network density
(Spearman Rank Test: ρ = - 0.4, P = 0.291). Circled numbers show the number of estrous
females in each month.

ation indices, indicating that individuals with large families (i.e., 3 – 4 members, Table A.4)

tended to associate with other large families, and individuals without family units tended to

associate with each other (Table 2.1).

The final model for pairwise party associations included random effects of chimpanzee ID

and pair ID. Month was not included as a fixed or random effect, as the number of estrous

females per month was a better predictor of monthly pairwise associations than month per

se, based on the relative deviance information criterion, DIC (∆ DIC > 50). Rainfall lag

and fruit availability parameters were removed because their exclusion increased model fit
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Table 2.1: Effect of social factors on pairwise associations in party networks.
The posterior mean, 95% credible interval, P-value based on MCMC sampling, and odds
ratios (OR) are shown for fixed effect parameters. Bolded relationships are significant at P
< 0.05. Sex/estrus and age categories are abbreviated as follows: age (adult: adult, AA;
adult: juvenile, AJ; juvenile: juvenile, JJ), sex/estrus (pairwise combinations of male (M),
female in estrus (Fe) and female not in estrus (F)).

Factor Posterior Mean 95% CI P OR
Intercept -3.58 -4.90, -2.22 <0.001

Related 3.01 2.63, 3.39 <0.001 20.2
Sex (M:F) 0.73 -0.11, 1.57 0.087 2.07
Sex (M:M) 1.3 -0.38, 2.92 0.119 3.67
Sex (F:Fe) 1.76 1.24, 2.28 <0.001 5.83
Sex (M:Fe) 2.67 1.72, 3.65 <0.001 14.44
Difference in family size -0.13 -0.20, -0.06 <0.001 0.88
Difference in rank -1.04 -1.21, -0.86 <0.001 0.35
Age (AJ) 0.69 -0.23, 1.55 0.125 1.99
Age (JJ) 1.16 -0.59, 2.92 0.191 3.10
Number of estrous females 0.98 0.84, 1.12 <0.001 2.65
Number of estrous females:Age (AJ) -0.22 -0.40, -0.02 0.025 2.14
Number of estrous females:Age (JJ) -0.44 -0.72, -0.16 0.003 1.70

(rainfall: ∆ DIC > 30, fruit: ∆ DIC > 20, see Appendix Text A.1.4 for discussion of fruit

availability and network structure). The final model had R2 values that ranged from 0.32

– 0.58 for the amount of variation explained in each of the monthly networks, with the

exception of August (R2 = 0.07; Fig. A.8).

Results for 5mAIs were similar to the party-level results, although several variables in

the 5m-model were significant in some but not all months (Table A.5). A major difference

between these two levels of association was that pairs including an estrous female were often

less likely to associate within 5m (as compared to pairs including an estrous female being

more likely to associate at the party-level). As a second key difference, month was included

as a fixed effect variable that interacted with every other fixed effect variable (age, sex/estrus,
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Figure 2.3: Estimated effect of estrous events on pairwise party associations.
Model estimates of average association indices are shown for the three age-pair combina-
tions with 95% credible intervals. The x-axis shows the number of females in estrus for a
given month. Age combinations of adult-adult, adult-juvenile, and juvenile-juvenile pairs are
represented by squares, circles, and triangles respectively. Figure estimates were calculated
from the MCMC posterior distributions, while holding the presented parameters constant
and allowing all other parameters to range across their possible values.

relatedness, family size difference, rank category difference), allowing the coefficients of these

variables to vary for each monthly network (Table A.5). While more challenging to interpret,

this final model fitted the data much better than the model including month as a random

(and hence, additive) effect (∆ DIC > 100), or excluding month and including the number of

estrous females to describe monthly change (∆ DIC > 350). This indicates that the number

of estrous females was not as good of a predictor for 5m-associations as it was for party
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 Party association networks, N=294  5m association networks, N=294 
 Degree Eigenvector Flow-betweenness  Degree Eigenvector Flow-betweenness 
 ! P ! P ! P  ! P ! P ! P 
Intercept  17.36 <0.001  0.17  0.269  33.41   0.058    1.35   0.096  0.13   0.324   35.52 0.109 
Rank: M2 -1.43 0.108 -0.03 0.052 -1.41 0.212  -0.23 0.153 -0.04 0.085  -0.75 0.449 
Rank: M3 -1.54 0.112 -0.02 0.078 -2.11 0.135  -0.65 0.004 -0.05 0.028  -0.15 0.496 
Rank: F1 -1.19 0.150 -0.01 0.230 -3.51 0.023  -0.18 0.209 -0.02 0.271  -5.08 0.163 
Rank: J1 -0.82 0.253  0.00 0.389 -3.74 0.019  -0.28 0.112 -0.02 0.221  -3.49 0.255 
Rank: F2 -5.30 <0.001 -0.09 <0.001 -6.91 <0.001  -1.20 <0.001 -0.12 <0.001  -7.43 0.074 
Rank: J2 -4.47 <0.001 -0.08 <0.001 -5.82   0.002  -1.13 <0.001 -0.13 <0.001   1.57 0.389 
Estrus  0.85 0.324  0.01 0.404  0.24 0.443   0.30 0.204  0.05 0.102   3.72 0.272 
Family size  0.73 0.008  0.01 <0.001  0.57 0.114   0.18 0.001  0.02 0.001  -0.50 0.356 
R2  0.618  <0.001 0.347 <0.001  0.195 <0.001   0.406 <0.001  0.251 <0.001   0.037 0.835 
 

Table 2.2: Effect of social factors on party and 5m-association network centrality
measures. Coefficients (β) and P-values are presented. Bolded values indicate significant
relationships after Bonferroni correction. R2 values are shown for each test. P-values for rank
post-hoc significance tests are in Table A.6. Coefficients and P-values for month parameters
are presented in Table A.7.

associations. The incorporation of month as a fixed effect precluded testing temporal vari-

ables (i.e., fruit availability, rainfall, and number of estrous females per month). Monthly R2

values for the final 5m-association model ranged between 0.18 – 0.53 (mean: 0.34; Fig. A.8).

Predictors of individual centrality

Family size and dominance rank were the most important predictors for individual centrality

at both the party and 5m-levels after controlling for the month of observation (Table 2.2;

Figs 2.4, A.9). Adult females and juveniles with large families (i.e., 3-4 members) had signif-

icantly higher degree and eigenvector centrality; however, family size was not an important

predictor for an individual’s flow-betweenness centrality. This indicates that chimpanzees

with large families had more edges and associated with other well-connected individuals, but

were not more likely than random to connect two other individuals in the community.

Regarding rank, in both the party and 5m-association networks edge-ranging females and

juveniles (F2 and J2) had significantly lower degree and eigenvector centrality than all other
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ranks in both party and 5m-networks (with the exception that J2 did not have significantly

lower degree centrality than low-ranking males in 5m-networks after Bonferroni correction;

Figs 2.4, A.9; Table A.6). F2 and J2 also had significantly lower flow-betweenness centrality

in party networks than high- and medium-ranking males. Altogether, these results indicate

that edge-ranging adult females and juveniles were less connected to others and had fewer

well-connected associates than all other ranks. They were also less likely than adult males

to connect two random individuals in the party networks.

In 5m networks, high-ranking males (M1) had significantly higher degree centrality than

low-ranking males (M3) (Figs 2.4, A.9; Table A.6). Additionally, there was a strong trend

(P < 0.05) for M1 to have higher eigenvector centrality than M3 in 5m networks and higher

flow-betweenness than core-ranging adult females and juveniles (F1, J1) in party networks;

however, these differences were not significant after Bonferroni correction. Thus, while edge-

ranging females and juveniles were nearly always the least central to the community, the

relationship between high-ranking males and centrality was weaker and less consistent, with

high-ranking males being significantly more central than other community members (e.g.,

M3, F2, J2) for some but not all centrality measures (Figs 2.4, A.9; Table A.6). Lastly, es-

trous status was never significantly related to centrality in party or 5m-networks (Table 2.2).

2.5 Discussion

Association patterns and insights for disease transmission

Our results demonstrate inter-individual and temporal variation in association patterns of

wild chimpanzees, which should have profound effects on pathogen transmission dynamics.

A main advantage of network analysis over more traditional connectivity measures, such as

party size, is that network analysis explicitly quantifies how connectivity varies in relation

to demographic and behavioral traits, and among individuals in a community. Degree dis-
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tributions demonstrated that neither party nor 5m-networks were highly aggregated (i.e.,

most individuals had moderate centrality as opposed to a few superspreaders accounting for

a majority of contacts); yet certain types of individuals had significantly higher association

rates than others.

Adult females and juveniles with large families (i.e., 3 – 4 family members) were signifi-

cantly more central than expected by chance in both party and 5m-networks, and individuals

in core-ranging families were significantly more central than those in edge-ranging families.

Thus, core-ranging adult females and juveniles with large families were the most central to

the community. Additionally, chimpanzees associated more frequently with related individ-

uals and individuals that had similar family sizes. Therefore, it seems that core-ranging

chimpanzees with large families associated frequently with family members and also formed

what Goodall (1986) referred to as nursing parties, where mothers and juveniles of different

family units socialize together. Notably, there is evidence in West African chimpanzees (Täı

Forest) that young juveniles maintain respiratory diseases in the community through play

or close contact (Kuehl et al. 2008), a dynamic that has been demonstrated among human

children for various childhood diseases (e.g., Fine and Clarkson 1982). Edge-ranging families

were nearly always the least central to the community. In fact, the average degree centrality

between a core-ranging adult female with a large family and an edge-ranging adult female

without any juvenile offspring differed roughly by a factor of 2 in party networks and 2.5 in

5m-networks. Thus, individuals from edge-ranging families were the least likely to contribute

to or be affected by pathogen transmission (although peripheral individuals could be exposed

to pathogens from other communities or human settlements that overlap with forest edges).

Among core-ranging individuals, the average centrality of an adult female chimpanzee

with three juveniles was roughly 2.5 degrees higher than that of an adult female with no

juveniles. Previous wildlife network studies have demonstrated that even small differences

in centrality can be linked to key differences in individual infection status. For example, a
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study examining parasites in gidgee skinks (Egernia stokesii) determined that while network

centrality was an effective predictor of parasite burden, the average difference in centrality

between skinks with and without ticks was only ≈ 0.35 degrees (Godfrey et al. 2009). Thus,

while we recognize that the magnitude of centrality metrics (which depend on network size

and system-specific association definitions) should not be directly compared across systems,

the significant increase we observed in chimpanzee centrality due to family size (even if

modest in magnitude) could have a crucial impact on individual infection status.

While not as consistently central as core-ranging adult females and juveniles with large

families, high-ranking males also had high centrality. Past work on the same study commu-

nity showed high-ranking males tend to have increased levels of immunosuppressing testos-

terone (Muller and Wrangham 2004), and work in a nearby chimpanzee community (Ngogo)

recently demonstrated that high-ranking males had both increased testosterone levels and

greater helminth burdens (Muehlenbein and Watts 2010). Thus, in combination with the

well-established immunosuppressive effects of sex hormones, their moderately central loca-

tion in the network should make high-ranking males susceptible to contracting and trans-

mitting a variety of pathogens. Taken altogether, we expect that core-ranging chimpanzees

with large families, and to a lesser extent high-ranking males, should play an important role

in pathogen transmission.

Contrary to our predictions, estrous females were not significantly more central than

expected by chance in party or 5m-networks. This is surprising considering that among party

networks, pairs including estrous females had higher levels of association and estrous females

significantly increased association patterns across the community. Because a majority of

adult females in our study community were nursing infants, the sample size for estrous

females was limited (n = 3). Furthermore, one estrous female was frequently absent from

the community and was presumed to be engaging in consortships, in which a mating pair

travels away from the community (Goodall 1986). In future studies of centrality with larger
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samples of estrous females, it may be necessary to develop networks that span shorter time

frames (i.e., the length of maximal swelling, or roughly one week), as examining longer time

steps includes times when the female does not have an estrous swelling and is potentially

experiencing lower centrality.

While often overlooked in epidemiological analysis, temporal changes in behavioral in-

teractions can affect outbreak timing (Altizer et al. 2006), as demonstrated by peaks in

measles transmission in children during school sessions (Fine and Clarkson 1982) or by

phocine distemper outbreaks coinciding with the haul-out behavior of seals (Swinton et al.

1998). Chimpanzee pairs were twice as likely to associate and party networks were denser

when females were in estrus, suggesting that estrous events represent times of high vulner-

ability to infectious disease outbreaks. This result confirms findings from long-term field

studies showing that chimpanzee party size increases with the number of estrous females

(e.g., Wrangham 2000). Notably, there was no significant relationship between party and

5m-network density, and the number of estrous females did not significantly affect 5m-level

associations. Thus, our network analyses suggest that the potential risk of outbreaks from

pathogens that require very close contact for transmission might not increase with estrous

events.

Implications for conservation and pathogen management

Epidemiological modeling studies in humans have shown that targeting central individuals

for control efforts is significantly more effective in mitigating disease than applying control

efforts randomly (Lloyd-Smith et al. 2005; Salathé et al. 2010). In a handful of cases, vac-

cination has been used to reduce the impact of emergent epidemics in endangered wildlife

populations (Haydon et al. 2006; Woodford et al. 2002). Given the detrimental impacts of

pathogens on great ape communities (e.g., Bermejo et al. 2006; Caillaud et al. 2006; Köndgen

et al. 2008), some wildlife biologists have called for vaccinating great apes prophylactically
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for high-risk pathogens (Ryan and Walsh 2011). To effectively plan control strategies and

minimize human interference, network models can indicate the minimum number of well-

connected individuals that should be vaccinated to reduce outbreak sizes (as per: Salathé

et al. 2010). Importantly, using coarser connectivity metrics such as party size or group

membership to parameterize infectious disease models would only capture a fraction of the

contact heterogeneity observed in the networks described here. Our next steps include us-

ing Susceptible-Infected-Recovered (SIR) bond percolation models (Meyers 2007; Newman

2010) to simulate pathogen transmission on the observed monthly chimpanzee networks to

assess the effectiveness of different intervention strategies in mitigating epidemics (such as

targeting core-ranging individuals with large families for vaccination). This work is already

underway with results from these simulations showing that moderately infectious pathogens

(e.g., influenza) starting in core-ranging adult females and juveniles with large families are

likely to generate significantly larger outbreaks than infections starting in other individuals

(J. Rushmore, unpublished data).

Our findings are limited by examining a single chimpanzee community, and we recognize

the need for similar analyses at additional field sites to provide a more comprehensive frame-

work for designing disease management plans. Notably, the association data necessary for

network analyses are likely available in long-term databases for many habituated wild ape

communities. We encourage additional researchers to analyze such association data with a

focus on potential pathogen transmission routes. In conclusion, our findings demonstrate

temporal and inter-individual variation in association patterns for a wild chimpanzee commu-

nity, and highlight how such behavioral variation could be incorporated into the development

of disease management strategies for an endangered wildlife population.
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DISEASE CONTROL IN WILD

CHIMPANZEES
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3.1 Abstract

Many endangered wildlife populations are vulnerable to infectious diseases for which vaccines

exist; yet, pragmatic considerations often preclude large-scale vaccination efforts. These bar-

riers can potentially be reduced by focusing on individuals with the highest contact rates.

However, the question then becomes whether targeted vaccination is sufficient to achieve herd

immunity. To evaluate the efficacy of targeted wildlife vaccinations, we simulate pathogen

transmission and control on monthly association networks informed by behavioral data from

a wild chimpanzee community (Kanyawara, Kibale National Park, Uganda). Despite consid-

erable variation across monthly networks, we find that targeted vaccinations greatly reduce

the required level of coverage as compared to a random (null) vaccination strategy. Specifi-

cally, our simulations indicate that using network data (degree centrality) to target the most

connected individuals can reduce the number of chimpanzees requiring vaccination by up

to 35% as compared to random vaccination. Because transmission heterogeneities may be

attributed to biological differences among individuals (sex, age, dominance, and family size),

we also evaluate the effectiveness of a trait-based vaccination strategy. The key benefit of

this approach is that trait data are often easier to collect than data on individual positions

in a social network. As compared to random vaccinations, our simulations suggest that

the trait-based strategy can reduce the number of chimpanzees requiring vaccination by up

to 18%, demonstrating that individual traits can serve as effective estimates of connectiv-

ity. Overall, our work indicates that parameterizing epidemiological models with fine-scale

behavioral data can help optimize pathogen control efforts for endangered wildlife.

Key words: contact networks, disease management, epidemiological modeling, Pan

troglodytes, pathogen dynamics, wildlife conservation
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3.2 Introduction

Vaccines exist for many infectious diseases that threaten wildlife populations (Haydon et al.

2006; Ryan and Walsh 2011), yet immunization is rarely implemented as a conservation

strategy. This is partly due to logistical difficulties in administering vaccines to large portions

of wildlife populations. In particular, models based on homogeneous mixing typically indicate

that a majority of individuals must be vaccinated to eliminate most pathogens (Anderson

and May 1991). Further, because vaccination is economically costly and can carry its own

risks (Wobeser 2007), high coverage levels can be infeasible or undesirable, particularly when

dealing with endangered animals. For many wildlife species, individuals vary in contact rates

(e.g., Lusseau 2003). Thus, to achieve herd immunity, control efforts focused on animals with

the highest contact rates are expected to require considerably less coverage than random

control (Meyers 2007).

Data on wildlife transmission and infection are challenging to collect, as darting or anes-

thetizing a sufficient number of individuals to assess pathogen prevalence can pose safety risks

for humans and wildlife. Further, because epidemics can sweep through populations quickly,

researchers often have inadequate time to obtain comprehensive health data (Leroy et al.

2004). On the other hand, behavioral association data, which can provide useful estimates

for transmission pathways (Salathé et al. 2010), is readily collected through behavioral ob-

servation or tracking devices (Hamede et al. 2009). While rarely applied to wildlife systems,

network epidemiology (in which nodes represent individuals and edges represent interactions

allowing for pathogen transmission) is a powerful tool that can be applied to association

data to mathematically represent heterogeneity among transmission pathways (Craft and

Caillaud 2011). We present here the first application of network-based pathogen control

strategies to a wild ape species; our results indicate that network-based vaccinations require

markedly less coverage than random vaccinations to curtail outbreaks in a wild chimpanzee
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community.

Great apes have experienced considerable declines from infectious diseases such as Ebola

and respiratory viruses (Bermejo et al. 2006; Köndgen et al. 2008). Apes also demonstrate

substantial heterogeneity in individual contact rates that can induce tremendous individual

variation in the risk of acquiring or spreading infections (Caillaud et al. 2006). In particular,

chimpanzees have highly structured, fission-fusion societies, where individuals within com-

munities break off into smaller parties of variable size and composition over days to months

(Goodall 1986). Previous work on the same population examined here showed high vari-

ability in contact rates over time and across individuals (Rushmore et al. In review), with

individuals with large families (i.e., adult females and juveniles) that range in the core area

of the community territory being consistently more central to the community than other

chimpanzees. Thus, for populations where network data are not available, targeting individ-

uals with easily identifiable social traits (as a proxy for network connectedness) may reduce

coverage levels as compared to random vaccination.

We investigated how contact heterogeneity within a chimpanzee community affects dy-

namics of pathogen transmission and control using network epidemiology and empirically-

derived contact networks. Specifically, we simulated pathogen spread on a series of monthly

contact networks to assess how final outbreak sizes were affected by i) the network position

of the index case (first individual to be infected), ii) the timing of the initial case (month),

and iii) pathogen infectiousness. Our simulations used estimated values of the basic repro-

ductive number (R0) reported in the human literature for a range of mild to highly infectious

pathogens (Anderson and May 1991). We then identified key traits of individuals likely to

initiate large outbreaks (similar to high-risk groups identified for human diseases such as

HIV), and we compared the effectiveness of a random (null) vaccination strategy versus two

network-based vaccination strategies: i) vaccinations based on network centrality data and

ii) vaccinations targeting individuals with high-risk social traits. We predicted that final
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outbreak size would increase with index case centrality and that infections starting in core-

ranging adult females and juveniles with large families would lead to the largest outbreaks.

We also expected the centrality-based targeted vaccinations to require the least coverage to

mitigate outbreaks; however, the trait-based vaccinations might be the most practical to

implement in the field.

3.3 Results

Effects of network heterogeneity on outbreak size

The network position of the index case, the month of the initial case, and pathogen infec-

tiousness strongly affected mean outbreak size for the chimpanzee community in our simu-

lations. We estimated outbreak size (the cumulative number of individuals infected during

an outbreak) for every combination of index case (n = 37), month (n = 9), and pathogen

infectiousness (n = 4) by stochastically simulating pathogen transmission on observed con-

tact networks using bond percolation (Methods, Appendix Text B.1.1). Our models used

basic reproductive numbers averaged across monthly networks (R0) for a range of values of

pathogen infectiousness (from mildly contagious: R0 = 0.7, to highly contagious: R0 = 10;

Methods, Appendix Text B.1.1).

Network density (mean edge weight) varied across months by a factor of 2.4 (Appendix

B: Fig. B.1), which greatly influenced mean outbreak size (e.g., outbreak sizes varied across

months by a factor of 3.0 when R0 = 0.7 and by a factor of 1.8 when R0 = 10). Outbreak

size generally increased with monthly network density, with stronger relationships for low

and moderate R0 values (Fig. B.1), as higher R0 values had large outbreak sizes for most

months. Additionally, time series chain-binomial models (which were run for a subset of

network months and index cases: Methods) revealed that outbreaks parameterized with

estimates for moderate or highly infectious pathogens (e.g., influenza or measles) lasted less
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than a month (Fig. B.2). This finding suggests that the one-month static networks (which

were significantly correlated with the corresponding two-week static networks: Rushmore

et al. In review) used in our simulations should capture host interactions at a temporal scale

that reflects realistic pathogen transmission.

Within a given monthly network, mean outbreak size increased with node centrality of

the index case. This was the case for three weighted centrality measures (degree, eigenvector,

and betweenness: Methods) across all R0 values, with higher correlations for lower R0 values

(e.g., degree centrality: for R0 = 0.7, R2 = 0.97; for R0 = 10.0, R2 = 0.52; Figs. 3.1, B.3).

Notably, the extent of contact variation within and across months allowed mildly infectious

pathogens (R0 = 0.7) to affect up to 30% of the community, provided that the infection

started with a highly central index case, whereas outbreaks of highly infectious pathogens

(R0 = 10) could be avoided if the infection started in a less central index case (Fig. 3.1).

Additionally, the mean outbreak size linked to an index case varied across months, as a less

central individual in one month could be a moderately central individual in another month

(Fig. 3.1). The dynamic nature of the contact structure may thus appear as an obstacle to

efficient network-based vaccinations. However, for our study system, degree centrality was

the best predictor of mean outbreak size (across all R0 values: Fig. B.4), and average degree

centrality of the index case was strongly correlated with outbreak size. Thus, vaccination

based on average degree should be robust to monthly network variation.

Parameterizing vaccination strategies

As compared to a random (null) vaccination strategy, we investigated the efficacy of two

network-based vaccination approaches: i) targeting individuals in order from high to low

average degree centrality, and ii) targeting individuals based on social traits that predict

high centrality. Rushmore et al. (In review) showed that the most important predictors

for individual centrality in our study community were family size and range location (core
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Figure 3.1: Mean outbreak size as a function of index case, month of initial case,
and pathogen infectiousness (R0). The color of each cell shows the average proportion of
the chimpanzee community (n = 37) that was infected across the 1000 replicates per unique
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versus edge) for adult female and juvenile groups, and dominance rank for males. Thus,

we placed individuals in trait-based groups (Methods, Fig. 3.2, Table B.1) and verified that

our classification scheme predicted outbreak sizes using permutation-based regression tests

(Methods, Appendix Text B.1.1). Results showed that for adult females and juveniles,

infections starting in core-ranging individuals from large families (hereafter, CR-L) led to

significantly larger outbreaks across all R0 values than infections starting in core-ranging

individuals with small families (CR-S) or edge-ranging (ER) individuals (Fig. 3.3). Infections

starting in ER individuals led to significantly smaller outbreaks than for any other group,

making ER individuals poor targets for vaccination (Fig. 3.3). For low R0 values, high

rank (HM) adult male index cases tended to cause larger outbreaks than mid- (MM) or

low-ranking (LM) adult males but this pattern was not consistent across R0 values, and

differences were never significant. Thus, we collapsed HM, MM, and LM into a single adult

male group (M), and found that infections originating in CR-L individuals, but not CR-S

individuals, generally caused significantly larger outbreaks than infections starting in adult

males (Fig. 3.3).

Given these findings, we parameterized the trait-based vaccination strategy to prefer-

entially vaccinate in the following order: CR-L, M, CR-S, ER. Thus, for each simulation,

individuals were first immunized randomly within the CR-L group. Once all individuals in

this group were vaccinated, individuals in the M group were randomly immunized, and so on

until the predetermined level of coverage was reached. To ensure that collapsing the adult

male categories did not influence results, we also simulated vaccinations with the following

order: CR-L, HM, MM, LM, CR-S, ER. The main text and figures present results for a

single male category; however, results for both scenarios are shown in Table 3.1.
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Figure 3.2: Mean outbreak size for index case trait-based groups across different
values of pathogen infectiousness (R0). Mean outbreak size is shown as a proportion of
the whole community, and trait-based groups are abbreviated as follows: CR-L, core-ranging
individuals with large families; M, adult males; CR-S, core-ranging individuals with small
families; ER, edge-ranging individuals. Red circles show outbreak size averaged across 1000
simulations per unique combination of monthly network and index case for a given R0. Black
diamonds mark the mean outbreak size averaged across each trait-based group. Note the
different y-axis scale for the first panel (R0 = 0.7). Significant relationships are indicated:
(–) P < 0.05, (*) P < 0.01, (**) P < 0.001, (***) P < 0.0001.

Evaluation of vaccination strategies

We evaluated vaccination strategies in two ways: i) to assess coverage needed to protect

against the central outbreak tendency (hereafter, the Minimum Coverage Threshold ap-

proach), we determined the coverage required to constrain the mean outbreak size to less

than 10% of the community, ii) to assess coverage needed to protect against rare outbreak

events (hereafter, the Conservative Coverage Threshold approach), we determined the cov-

erage required to reduce at least 95% of the simulated outbreaks to less than 10% of the

community. Constraining outbreaks to 30% of the community (instead of 10%) showed qual-

itatively similar results for both approaches (Table B.2). Results based on the Minimum
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Figure 3.3: Evaluation of vaccination strategies by Minimum Coverage Thresh-
old. Mean outbreak sizes (as proportions of the community) are shown for varying levels
of vaccination coverage (as percentages of the community) when R0 = 3.0. Colored dots
show mean outbreak size by month, and thick black lines show mean outbreak size aver-
aged across months. Red dotted lines indicate the Minimum Coverage Threshold (with the
number of chimpanzees in parentheses) required to curb outbreaks to < 10% of the com-
munity. The dotted black lines show upper 95% confidence intervals, which are equivalent
to the Conservative Coverage Thresholds depicted in Fig. 3.4. For all coverage levels and
vaccination strategies, the lower 5% of simulations (not shown) had a mean outbreak size of
2.7%, indicating that only the index case was infected.

Coverage Threshold showed that pathogens with intermediate R0 values required randomly

vaccinating between 30-50% of the community, and highly contagious pathogens required

randomly vaccinating roughly 65% of the community (Table 3.1). By the Conservative Cov-

erage Threshold, pathogens with intermediate R0 values required randomly vaccinating up to

75% of the community, with roughly 85% coverage required for a highly contagious pathogen

(Table 3.1).

Across all R0 values, network-based strategies consistently required less coverage than
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Table 1. Comparison of coverage thresholds across vaccination strategies and pathogen infectiousness.  442 

  A. Minimum Coverage Threshold: 
Vaccination strategy  !!= 0.7 !!= 1.5 !!= 3.0 !!= 10.0 
Centrality-based  0% (0) 24.32% (9) 40.54% (15) 56.76% (21) 
Trait-based  0% (0) 29.72% (11) 43.24% (16)* 59.46% (22) 
Random  0% (0) 35.13% (13) 51.35% (19) 64.86% (24) 
      
  B. Conservative Coverage Threshold: 
Vaccination strategy  !!= 0.7 !!= 1.5 !!= 3.0 !!= 10.0 
Centrality-based  29.72% (11) 51.35% (19) 59.46% (22) 81.08% (30) 
Trait-based  37.84% (14)* 54.05% (20)* 64.86% (24) 81.08% (30)** 
Random  45.95% (17) 64.86% (24) 75.68% (28) 86.49% (32) 

 443 

For each vaccination strategy, the coverage threshold is provided as a percentage of the community, with the number of individuals 444 

vaccinated in parentheses, for A) the mean outbreak size to affect < 10% of the community (Minimum Coverage Threshold), and B) 445 

an outbreak to affect < 10% of the community in at least 95% of the simulations (Conservative Coverage Threshold). The table shows 446 

results for trait-based simulations using a single adult male category (M). Results were identical for simulations using this category M 447 

or three adult male categories (HM, MM, LM; see Results), except for a few instances, denoted by superscripts (*) and (**) in which 448 

simulations using HM, MM, and LM categories required vaccinating one less or one more individual, respectively. 449 

Table 3.1: Comparison of coverage thresholds across vaccination strategies and
pathogen infectiousness. For each vaccination strategy, the coverage threshold is provided
as a percentage of the community, with the number of individuals vaccinated in parentheses,
for A) the mean outbreak size to affect < 10% of the community (Minimum Coverage
Threshold), and B) an outbreak to affect < 10% of the community in at least 95% of
the simulations (Conservative Coverage Threshold). The table shows results for trait-based
simulations using a single adult male category (M). Results were identical for simulations
using this category M or three adult male categories (HM, MM, LM; see Results), except for
a few instances, denoted by superscripts (*) and (**) in which simulations using HM, MM,
and LM categories required vaccinating one less or one more individual, respectively.

random vaccinations to achieve the same level of protection; although, network-based strate-

gies offered the greatest advantage for pathogens with low to moderate infectiousness (Figs 3.3-

3.4, B.6; Tables 3.1, B.2). While centrality- and trait-based strategies occasionally performed

equivalently, centrality-based vaccinations typically required less coverage (Figs 3.4, B.6; Ta-

bles 3.1, B.2). The Conservative Coverage Threshold showed that as compared to random

vaccinations, the number of individuals requiring vaccination was reduced by up to 17.65%

with the trait-based strategy and by up to 35.29% with the centrality-based approach. Lastly,

because each vaccination strategy uniquely changed the underlying network for a given month

by removing immunized nodes and adjacent edges, responses to the three vaccination strate-

gies differed across months. For example, when R0 = 3.0, April required twice as much
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coverage as March with network-based strategies, whereas the two months required equal

coverage with random vaccinations (Fig. 3.3). Nonetheless, network-based vaccinations were

considerably more effective than random control when averaged across months.

3.4 Discussion

Our study provides support for the effects of temporal contact heterogeneity on pathogen

transmission dynamics and shows that these variables play a crucial role in predicting out-

break probability and designing vaccination programs for endangered wildlife. Outbreaks

were largest when the index case had high degree centrality, and these individuals were gen-

erally core-ranging females or juveniles with a large family. Compared to random control,

simulated vaccinations that preferentially targeted individuals based on high-risk traits or

degree centrality reduced the number of chimpanzees requiring vaccination by up to 18% and

35%, respectively. Thus, our simulations show that targeting individuals with high contact

rates effectively reduces the level of vaccination coverage required to achieve herd immunity

and could help make wildlife vaccination a more tractable pathogen control tool.

Models assuming homogeneous mixing show that outbreak size is larger for high R0 values

than for R0 values close to one (Anderson and May 1991); however, our analysis showed this

was not always the case when accounting for heterogeneous contact rates. We observed

that outbreaks of mildly infectious pathogens could affect up to 30% of the community

if introduced via highly connected individuals during a well-connected month, whereas an

extremely infectious pathogen was unlikely to spread to anyone when starting in a peripheral

index case during a sparsely connected month. These findings suggest that contact structure

can play a fundamental role in pathogen emergence and evolution. For example, a mildly

contagious pathogen could become more infectious through selection occurring during the

early stages of an outbreak (Antia et al. 2003). Although a growing number of studies have
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Figure 3.4: Evaluation of vaccination strategies by the Conservative Coverage
Threshold. The top panel shows the outbreak probability (the proportion of simulations
resulting in an outbreak greater than 10% of the community) for centrality-based vaccinations
(blue), trait-based vaccinations (red), and random vaccinations (green) at varying levels of
coverage (shown as a proportion of the community) when R0 = 3.0. The black dotted line
marks the Conservative Coverage Threshold, at which no more than 5% of the simulations
result in outbreaks. The bottom panel shows this Conservative Coverage Threshold for each
vaccination strategy and R0 combination.
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used temporal contact variation to predict disease outbreaks for human populations (e.g.,

Stoddard et al. 2013), our study is one of the first to demonstrate these dynamics for an

endangered wildlife species.

As compared to random vaccination, our analysis pointed to improved control strategies

that could be implemented for communities both with and without network data. Given the

extreme speed with which many pathogens spread through chimpanzee populations (both in

our temporal simulations and in observed outbreaks: Hanamura et al. 2008; Williams et al.

2008), prophylactic vaccination is likely a more effective intervention option than treating

sick individuals in the midst of an epidemic. Due to herd immunity, our results predict that

even the least effective (random) strategy would not require vaccinating the entire commu-

nity to prevent an outbreak. Of the random and network-based strategies we tested, the

most effective method was prophylactically vaccinating individuals based on degree central-

ity; however, this strategy is only feasible for populations with readily available network

data. For populations lacking such data, trait-based immunizations could offer a more prac-

tical approach, where wildlife managers could target individuals for vaccination based on

traits known to be associated with high contact rates for a given species or population. In

this small study community of 37 chimpanzees, the impacts of trait-based vaccinations on

the total number of animals to be treated were somewhat modest. However, we expect

that trait-based immunizations could substantially decrease the number of animals requiring

vaccination for larger communities (such as the Ngogo chimpanzee community, n ≈ 150, in

Kibale Forest, Uganda: Mitani et al. 2010) or for large populations of other wildlife species.

Moreover, as many vaccines are administered to wildlife via hypodermic dart, there is always

some expense and risk associated with immunizing endangered animals. For example, the

darted animals may experience wounds, falls, or adverse effects from the vaccine, and the

veterinarian performing the darting could experience counterattacks or loss of trust from

habituated animals. Thus, even moderate coverage reductions offer an extremely valuable
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conservation advantage.

We recognize there are limitations of our study. In particular, further work is needed

to determine if the traits associated with high network centrality here also apply to other

habituated chimpanzee communities. Second, our simulations revealed that correlations be-

tween outbreak size and index case centrality were highest when pathogen infectiousness was

low or moderate, indicating that the benefits of network-based immunizations over random

vaccination could be minimal for highly contagious pathogens. Third, we were unable to

identify temporal drivers for pathogen transmission in the proximity networks presented in

the Results (but see Methods and Appendix B for evidence of a positive relationship between

the number of estrous females and outbreak size in party networks). Nevertheless, our tar-

geted vaccinations showed marked improvements over random control when averaged across

months. Lastly, our models assumed that vaccinated individuals received full protection and

that infected individuals had equal-length infectious periods. Future work aimed at relaxing

these assumptions could help clarify the role that individual immunity plays in pathogen

transmission dynamics and could further improve disease control efforts.

Our finding that network-based vaccinations require less coverage than random vacci-

nations should apply broadly to other social wildlife species. New technologies, such as

proximity-logging collars, have made collecting fine-scale association data more feasible than

ever, even for elusive or nocturnal wildlife (Hamede et al. 2009). Thus, our methods for

developing and assessing network-based control could readily be adapted to other host sys-

tems. Further, because index case centrality was highly associated with outbreak size, our

results indicate that contact rates generate useful predictions of which individuals to vacci-

nate, even in lieu of mechanistic modeling. Overall, we argue that incorporating temporal

contact variation into epidemiological models can help optimize disease control efforts across

a range of host systems, including many social wildlife species.
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3.5 Methods

Field data collection

Over a nine-month period (Dec 2009 - Aug 2010), we collected behavioral contact data on

the habituated, wild Kanyawara chimpanzee community (n = 48) in Kibale National Park,

Uganda. Further information on the study site and community is provided in Appendix Text

B.1.2. Each morning, we randomly selected a focal chimpanzee from a party (i.e., individuals

within a 50m radius). At 15-minute intervals, we scanned the focal animal’s party to record

party member identities and pairs of individuals that were within 5m of each other. Our

total sample size was 37 individuals (adults: 12 males and 12 females; juveniles: 7 males

and 6 females), excluding dependent offspring (< 4 years old). On average, we followed

each chimpanzee as a focal subject for 27.79 (±3.6) hours, comprising a total of 1,028 focal

observation hours and 4,114 fifteen-minute scans. Our analysis included 306,212 pairwise

party associations and 14,673 pairwise 5m-associations. See Rushmore et al. (In review) for

full data collection details.

Quantifying contact networks

We created monthly contact networks at two spatial scales (proximity networks and party

networks) across nine months, in which nodes represented chimpanzees. Proximity network

edges were weighted by 5m association indices, which were based on the probability that a

pair would be both within the same party and within 5m of each other in a given month

(Appendix Text B.1.1). Hence, proximity networks were a proxy for transmission routes of

pathogens spreading by direct contact or respiratory droplets. Alternatively, party network

edges were weighted by party association indices, which were based on the frequency of

monthly co-occurrence in the same party for a pair of chimpanzees (Appendix Text B.1.1).

Thus, party networks were a proxy for pathogen transmission not requiring close contact
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(via aerosol transmission or fomites). Because many pathogens require close contact for

transmission, results in the main text are intended to pertain to proximity networks unless

otherwise stated; party network results are in the supporting information (Figs. B.1, B.4 –

B.6). Results were consistent across network scales, with the exception of a positive rela-

tionship between mean outbreak size and the number of estrous females for party networks

(Fig. B.5), but not for proximity networks (Fig. B.3).

Individual trait data

Adult male chimpanzees tend to follow a linear hierarchy, which is not the case for eastern

chimpanzee adult females (Goodall 1986). In the Kanywara community however, adult

females that occupy the territory core tend to be higher ranking than those occupying the

territory edges (Kahlenberg et al. 2008). Adult females and their juveniles typically travel in

family units, but not females without juveniles or adult males (Goodall 1986). We considered

large families to be a mother with two or more juveniles (Table B.1). Additional details are

described in Rushmore et al. (In review).

Calculating centrality measures

For each individual in each month, we calculated the following weighted centrality measures:

degree (the sum of a node’s edge weights: Newman 2010), eigenvector centrality (a metric

based on a node’s connectedness and the connectedness of the nodes’ associates: Newman

2010), and betweenness (the proportion of times an individual lies along the shortest path

between pairs in the network: Freeman et al. 1991). To test for relationships between mean

outbreak size and each of the index case centrality metrics, we used linear models that

controlled for month.
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Simulating pathogen transmission on observed networks

We simulated pathogen transmission on observed contact networks using bond percolation,

a computationally tractable approach to estimate the final outbreak size of a stochastic,

network-based Susceptible-Infected-Recovered (SIR) model (Meyers 2007; Newman 2010).

In a bond percolation model, the probability of an infectious disease being transmitted (T )

along an edge connecting nodes i and j, given that one of the nodes is infected, is related

to the contact rate between individuals (cij), the pathogen transmission rate (β), and the

infectious period (τ) as follows (Newman 2010):

Tij = 1 − e−cijβτ (3.1)

In our case of weighted networks, we parameterized cij using pairwise association indices

from monthly networks. We assumed that for a given pathogen, the transmission rates and

infectious periods were the same across all transmission events and individuals.

In each simulation, the bond percolation method simplified the observed network by

removing edges (with probability 1-T ) that would not lead to transmission events. The re-

maining graph represented possible transmission routes, where nodes connected to the index

case represented individuals that became infected during the simulation. Therefore, the size

of the component (i.e., connected network) with the index case was the final outbreak size.

Unlike methods that reproduce temporal outbreak dynamics, such as chain-binomial mod-

els (Bailey 1957), bond percolation does not track temporal changes in individual infection

status, and hence substantially reduces computational time relative to the chain binomial

method. To check the validity of our models, we simulated time series pathogen transmis-

sion for a subset of parameter combinations using the chain-binomial method, which yielded

identical results to our percolation-based simulations (Fig. B.2).

The basic reproductive number (pathogen infectiousness) depends on the probability of

48



transmission (T
ij) and network connectivity. In the specific case of our study population,

we defined the basic reproductive number as the mean number of secondary infections that

arise from a randomly infected index case, averaged across all nine monthly networks:

R0 =
1

9

∑
m

1

37

∑
i

∑
i 6=j

Tij (3.2)

where m represents each of the nine monthly networks at a given spatial scale (i.e., prox-

imity versus party networks) and i and s are the indices of the 37 individuals (Appendix

Text B.1.1). Averaging R0 across monthly networks allowed us to measure the effect of

network structure (month) on outbreak size, for a given level of pathogen infectiousness. We

calculated pathogen transmission rate (β) so that the resulting R0 matched estimates for

infectious pathogens reported in the human literature that showed potential for infecting

wild apes (Appendix Text B.1.1). Specifically, we used values of R0 = 0.7 (representing

mildly contagious pathogens in which the average index case does not consistently infect

at least one other individual), R0 = 1.5 (moderately infectious pathogens, such as Ebola

or influenza: Chowell et al. 2006, 2004), R0 = 3.0 (moderately infectious pathogens, such

as influenza: Mills et al. 2004), and R0 = 10 (highly infectious pathogens, such as measles:

Anderson and May 1991). Notably, these referenced R0 values were calculated for a small

number of human populations and should be extrapolated to other human and great ape

populations with caution. Nevertheless, while the R0 for these diseases may vary slightly

in our study population, their respective ranks should be consistent. Further information

regarding our definition of R0, which differs slightly from another definition often used in

network epidemiology, is in Appendix Text B.1.1.

To examine the effect of index case centrality, month of initial case, and pathogen in-

fectiousness (R0 = 0.7, 1.5, 3.0, 10.0) on outbreak size, we ran 1000 simulations per unique

combination of these three parameters at two spatial scales (i.e., proximity networks and
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party networks), resulting in 2,664,000 simulations. All simulations and subsequent analyses

were run in R v. 2.15 (R Core Development Team 2010); code is available from J. Rushmore

upon request.

Parameterizing trait-based vaccination strategies

To determine which individuals were associated with high outbreak sizes, we used permutation-

based regressions with 30,000 permutations per test (Appendix Text B.1.1). While control-

ling for month and R0, we examined relationships between mean outbreak size and the

trait-based group of the index case (e.g., based on the individual’s rank and family size).

Simulating vaccination strategies

Using bond percolation as described above, we simulated vaccination strategies on observed

monthly networks with the assumption that vaccination conferred full protection to treated

individuals. For each strategy, we ran 5,000 simulations per unique combination of month,

R0, and coverage level (which varied sequentially from 1 to 37 individuals).
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4.1 Abstract

Sexually transmitted diseases (STDs) can persist endemically and are known to cause sterility

and increased infant mortality in humans. STDs could have similar impacts in wildlife pop-

ulations, yet studies to date are generally limited to cases where outward signs are apparent.

African apes (i.e., chimpanzees, bonobos and to a lesser extent gorillas) show promiscu-

ous mating behavior that could offer opportunities for STD transmission, yet little is known

about the prevalence and impact of STDs for this endangered primate group. The goal of our

study was to test African great apes for putative STDs that either commonly affect humans

or were previously detected in captive apes. We screened biological samples from a total of

172 wild and orphaned eastern chimpanzees and gorillas for four classes of pathogens: tri-

chomonads, Chlamydia spp., Treponema pallidum (syphilis and yaws), and papillomaviruses.

All samples were negative for Chlamydia, Treponema pallidum, and papillomaviruses; how-

ever, a high percentage of wild chimpanzee urine and fecal samples showed evidence of

trichomonads. Generalized linear models revealed that females were more likely than males

to have positive urine, but not fecal, samples. Moreover, positive urine samples were more

frequent during dry months whereas positive fecal samples were more common during wet

months. Sequence analysis of positive urine samples and previously described genetically

similar trichomonads revealed three trichomonad groups within the genus Tetrarichomonas,

with newly generated sequences from our study occupying two groups. Evidence from other

studies suggests that one sequence group is likely transmitted via fecal-oral routes, but the

transmission of other sequences remains unclear. We encourage additional researchers to in-

vestigate great ape STDs, as this work could offer insights for the management of endangered

great apes and for our understanding human STD origins.

Key words: Chlamydia spp., Gorilla beringei, Pan troglodytes, papillomavirus,

Tetratrichomonas spp., Treponema pallidum, venereal disease, wildlife conservation

53



4.2 Introduction

While often overlooked in non-human hosts, sexually transmitted diseases (STDs) are widespread

throughout the animal kingdom and can impact host reproduction and evolution (Lockhart

et al. 1996; Smith and Dobson 1992). Knowledge of non-human STDs is largely focused

on animals of economic value (e.g., pets or food animals: Cameron 1947; Carmichael and

Kenney 1968), whereas relatively little is known about STDs in wildlife populations. Mat-

ing provides a key transfer route for STDs, and species with promiscuous mating systems

are expected to harbor more STDs than monogamous species (Lockhart et al. 1996; Loehle

1995). African great apes (chimpanzees, Pan troglodytes ; bonobos, Pan paniscus ; and to

lesser extent gorillas, Gorilla beringei) exhibit extreme promiscuity (Campbell et al. 2011),

with estrous female chimpanzees mating up to 50 times in one day with several different

males (Goodall 1986). In addition, the great apes are the closest living relatives to humans,

a host species known to harbor a high diversity of STDs, including viruses, bacteria, protozoa

and lice (Holmes et al. 2008).

STDs often show few outward signs (Holmes et al. 2008), which could result from selec-

tion favoring reduced virulence, as apparent or virulent afflictions could lower transmission

by preventing infected hosts from pursuing or attracting mates (Knell 2004). Despite low

impacts on host survival, many human and some animal STDs are known to cause persistent

infections associated with sterility or infant mortality, suggesting a high cost to fecundity of

infected hosts (Lockhart et al. 1996). Further, owing to their mode of transmission, models

predict that STDs can persist in small, declining host populations (de Castro and Bolker

2005; Lockhart et al. 1996; Smith and Dobson 1992), and could pose unusually high risks

for threatened populations. Given the endangered status of great apes (IUCN 2012) and

the known effects of STDs on human sterility (Holmes et al. 2008), studies that examine the

prevalence and impacts of STDs on great apes are urgently needed.
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It seems probable that cryptic great ape STDs could go undetected for long time periods,

even in small, closely monitored populations. As an example, wild chimpanzees have been

the subject of intense observational research since the 1960’s (Pusey et al. 2007); yet it took

several decades to realize that chimpanzees harbor SIV (Peeters et al. 1989). SIV is now

one of the best-studied STDs among African apes; SIV prevalence is known to vary greatly

(from absent to high prevalence) among chimpanzee and gorilla communities (Neel et al.

2010; Rudicell et al. 2010), and the virus has been shown to be pathogenic and can lead to

reduced immunity and premature death for chimpanzees (Keele et al. 2009). Other putative

STDs that have been isolated from African apes include Simian T-Lymphotrophic Viruses

(e.g., Junglen et al. 2010), herpes viruses (Luebcke et al. 2006, e.g.,), papillomaviruses (e.g.,

Sundberg et al. 1992), and syphilis (e.g., Lovell et al. 2000). Notably however, a majority

of these pathogens were detected in zoo or laboratory apes, with few studies demonstrating

population-level prevalence for wild apes (but see: Leendertz et al. 2004). Further, we are

not aware of any studies that have screened wild or captive apes for naturally occurring

Trichomonas vaginalis, Chlamydia trachomatis, Mycoplasma genitalium, or Neisseria gon-

orrhoeae, even though these pathogens are prevalent in human populations (Holmes et al.

2008) and early experimental work demonstrated that apes and monkeys inoculated with

these species develop infections similar to those observed in humans (Brown and Lucas 1973;

Hegner 1928; Taylor-Robinson et al. 1981; Tully et al. 1986).

To examine population-level prevalence for putative STDs that are common in human

populations but have not yet been studied in (non-human) great apes, we screened urine

samples from wild eastern chimpanzees for Trichomonas spp. and Chlamydia spp. using

PCR. To investigate if putative STDs previously detected in captive apes are also present in

their wild and sanctuary counterparts, we screened vaginal swabs from sanctuary chimpanzee

and sera from wild and orphaned eastern gorillas for papillomavirus and Treponema pallidum

(syphilis and yaws). We also examined how infection status covaries with biological and
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ecological factors, such as sex, age, and season. Based on results of prior modeling and

comparative research, we predicted that STD prevalence in females would be higher than in

males (Nunn and Altizer 2004; Thrall et al. 2000). We also predicted that older, sexually

mature individuals would be more likely to test positive for STDs than young individuals.

Lastly, to help distinguish whether infectious agents isolated from urine might be originating

from genitalia versus fecal contamination, we tested fecal samples for these same organisms,

assuming that a high frequency in fecal samples would point towards fecal-oral transmission

and away from sexual transmission.

4.3 Methods

Study sites, populations, and samples

Wild chimpanzees: urine and fecal samples

We collected a total of 393 urine samples from 111 wild Ugandan chimpanzees, representing

two separate populations. During 2002 – 2010 we collected 294 urine samples from the

wild Kanyawara chimpanzee community (n = 62 individuals; demography in Table C.1) in

Kibale National Park in Southwestern Uganda (Struhsaker 1997). During 2001 – 2007 we

collected 99 urine samples from the Sonso community (n = 49 individuals; Table C.2) in

Budongo Forest in Western Uganda (Reynolds 2005). We collected urine opportunistically

throughout the day, immediately following excretion by the animal. Typically, we used a

disposable plastic bag attached to a 2m pole to catch urine from a chimpanzee in a tree (as

per: Muller and Wrangham 2004); we subsequently pipetted approximately 2ml of urine into

sterile tubes. Occasionally, urine was pipetted off of ground leaves, with care taken to avoid

visible contaminants. Urine samples were frozen at - 20◦C within 1 – 12 hours of collection.

Samples were transported on ice to the United States, where they were stored at - 80◦C until
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analysis.

To assess if trichomonds detected in urine were a possible STD or were more likely

associated with fecal contamination, fecal samples (n = 70) were collected non-invasively

from a subset of Kibale chimpanzees (n = 30 individuals, Table C.1) during Jan 2010 – Aug

2010. Within 12 hours of collection, feces were preserved in RNAlater nucleic acid buffer

(Ambion) (as per: Johnston et al. 2010). Samples were transported to the United States,

where they were stored at - 80◦C until analysis.

Sanctuary chimpanzees: vaginal swabs

We collected vaginal swab samples from 15 adult and subadult female chimpanzees at

Ngamba Island Chimpanzee Sanctuary (hereafter, Ngamba). This 100-acre forested island in

Lake Victoria, Uganda, houses rescued or confiscated chimpanzees, most of which are wild-

born. In collaboration with the Chimpanzee Sanctuary and Wildlife Conservation Trust, we

collected vaginal swabs (n = 15) from the same sanctuary chimpanzees at Ngamba. Sterile

swabs (Copan Diagnostics, Corona, CA) were inserted into the vaginal cavity to a depth

about 0.5 cm from the vestibule and gently rotated to enable collection of microbes from the

vaginal walls. Duplicate samples from the same animal were collected. Swabs were imme-

diately placed in sterilized screw cap tubes pre-filled with RNAlater (Ambion Cat # 7020);

tubes were flash frozen or placed on ice and then transferred to - 80◦C freezers until sample

processing.

Wild and orphan gorillas: serum samples

We collected serum samples (n = 46) from gorillas between 1988 and 2007, which included

both wild mountain gorillas (G. b. beringei, n = 40 gorillas) and eastern lowland gorillas

(G. b. graueri, n = 6 gorillas). Mountain gorilla subjects were located in the Virunga Massif

habitat or the Bwindi Impenetrable Forest. Wild-born eastern lowland gorilla orphans were
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confiscated by the law enforcement and housed at the Eastern Gorilla Interim Quarantine

Facility in Kinigi, Rwanda. Blood samples were opportunistically collected from identified,

habituated, wild mountain gorillas during emergency health interventions and from orphaned

gorillas during regular health exams (as per: Milligan et al. 2008). Sera were frozen at - 20◦C

within 6 hours and were shipped on dry ice to the United States where they were stored at

- 80◦C until analysis. Demographics for gorilla subjects are included in Table C.3.

Molecular methods

DNA extraction

We extracted DNA from chimpanzee urine samples using the DNeasy Blood and Tissue

Kit (QIAGEN, Valencia California) with the manufacturer protocol for cultured cells. To

extract DNA from chimpanzee fecal samples, we used the QIAamp DNA Stool Mini Kit

per the manufacturer’s instructions. Lastly, to extract DNA from vaginal swabs, the frozen

samples were thawed on ice and homogenized in sterile phosphate buffered saline. Samples

were then spun for 5 min at full speed to wash out salts in RNAlater. Subsequent steps in-

cluded lysozyme incubation (20 mM Tris-HCl at pH 7.4, 100 mM EDTA, 50 mM NaCl, 0.2%

Tween), addition of 10% SDS, freeze-thaw cycling, proteinase-K incubation, protein precip-

itation using 5M NaCl, incubation on ice, and centrifugation, RNAse treatment, followed

by phenol-chloroform extraction and alcohol precipitation. To prevent and detect potential

contamination, all DNA extraction, primary PCR, secondary PCR, and gel electrophoresis

were all conducted in separate laboratory areas and at least one negative control sample was

included in each extraction and PCR batch.
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PCR assays

Wild chimpanzee urine samples were tested for trichomonads using a nested PCR as de-

scribed in Felleisen (1997) and following the manufacturer’s conditions (Promega, Madison,

Wisconsin). Primary amplification used trichomonad-specific primers TFR1 and TFR2,

which amplified the ITS1, 5.8S rRNA, and ITS2 regions (Felleisen 1997, Table C.4); primers

K1-5.8S-100 and K1-28S-338 were used in secondary reactions (Table C.4). We included

samples of T. vaginalis and T. gallinae in each run as positive controls and separate water

negative controls in primary and secondary PCR batches. We visualized amplicons using

gel electrophoresis and considered samples positive for trichomonads when bands of ≈ 246

bp were present. Following the detection of positive samples, we conducted follow-up PCR

with wild chimpanzee fecal samples. Because of the high prevalence using only the primary

primers TFR1 and TFR2, no secondary PCR was run on fecal samples. We considered fecal

samples with bands of ≈ 388 bp to be positive for trichomonads.

To screen wild chimpanzee urine samples for Chlamydia spp., we used nested PCR tar-

geting a 142 bp segment of the omp1 gene, which encodes the major outer membrane protein

of chlamydiae (Sachse and Hotzel 2003). PCR was set up according to the manufacturer’s

conditions (Promega, Madison, Wisconsin). For primary amplification, we used primers

CG-Omp-1-F and CG-Omp-424-R, and for the secondary amplification, we used primers

CG-Omp-78-Fi and CG-Omp-219-Ri (Table C.4). As positive controls, we included samples

of C. psittaci and C. trachomatis in each run, along with negative separate water controls in

primary and secondary amplifications. We assessed amplicons with gel electrophoresis and

considered samples with 142 bp bands to be positive for Chlamydia spp.

To screen sanctuary chimpanzees for papillomaviruses, DNA extracted from vaginal swabs

were submitted to a professional diagnostic company (Zoologix Inc., CA, USA), for real time

PCR testing designed to detect papillomaviruses in nonhuman primates. Lastly, we screened

gorilla serum samples for Treponema pallidum using a qualitative rapid plasma reagin (RPR)
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test (Inverness Medical, NJ) as per the manufacturer’s instructions.

Sequencing and phylogenetic analysis of positive samples

We sequenced a subset of positive trichomonad PCR amplicons from urine samples using

an Illumina MiSeq instrument. Amplicons were ligated to Illumina TruSeq style adapters

with custom indexes (Faircloth and Glenn 2012) using a protocol derived from Fisher et al.

(2011). The resulting libraries were spiked into a pool of genomic libraries unrelated to this

research. Because the amplicon libraries were only a small percentage of the overall pool (<

1%), no special accommodations were required. Paired-end 150 base reads were obtained

and samples were demultiplexed using Illumina MiSeq software.

For phylogenetic analysis, we aligned paired forward and reverse sequences using Geneious

v. 5.5.6 (Drummond et al. 2010). We then clustered redundant sequences with more than

96% overlap. We identified a single representative sequence from each cluster with CD-hit

(Li and Godzik 2006). Using the default settings in MAFFT v. 7 (Katoh et al. 2002),

we aligned the resulting seven sequence reads from our study with eight Trichomonas spp.

and Tetratrichomonas spp. sequences from the NCBI GenBank database. Bayesian trees

were generated in MrBayes v. 3.2.1 (Ronquist and Huelsenbeck 2003) with two independent

runs of four chains that each ran for 20 million generations. Trees were sampled every 200

generations, with the first 25% of sampled trees discarded as burn in. Because the model

for nucleotide substitution determined by jModelTest (Posada 2008) was not available in

MrBayes, we used a mixed model with gamma substitution. We compared tree files obtained

from independent runs using AWTY (Nylander et al. 2008) to confirm convergence.

Statistical analysis

To identify biological factors associated with infection status, we used generalized linear

models (GLMs) to test for significant relationships between the infection status of an indi-
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vidual (1/0), where chimpanzees with at least one positive sample were assigned a 1, and the

following predictor variables: sex, age (averaged across sample collection dates), population,

the number of samples per individual, and two-way interactions. To further examine ecolog-

ical and temporal predictors of infection status, we controlled for sample collection year and

used generalized linear mixed models (GLMMs) to test the following predictor variables: age

at time of sample collection, sex, sample collection season, and two-way interactions. We

categorized season as dry (Dec – Feb, Jun – Aug) or rainy (Mar – May, Sept – May) (Hartter

et al. 2012; Reynolds 2005). To account for repeated sample collection from some individuals,

we assessed model fit with a random effect of individual nested within population.

4.4 Results

All chimpanzee urine samples, chimpanzee vaginal swabs, and gorilla serum samples were

negative for Chlamydia spp., papillomavirus, and Treponema pallidum, respectively (Table

4.1). However, 35.9% of the chimpanzee urine samples tested positive for trichomonads,

including 39.5% and 25.3% of the samples from Kibale and Budongo populations, respec-

tively. The status of some individuals transitioned between time points from either positive

to negative, or vice versa. Based on individuals, a total of 77.4% of the Kibale population

and 36.7% of the Budongo population had at least one positive sample.

GLMs revealed that males were significantly less likely than females to have at least one

urine sample positive for trichomonads (β = – 1.20, P = 0.018, Table 4.2a, Figure 4.1), and

chimpanzees in Kibale were significantly more likely to have at least one positive sample

than chimpanzees in Budongo (β = 1.09, P = 0.023, Table 4.2a). Individuals with more

samples were significantly more likely to have at least one positive sample (β = 0.68, P <

0.001, Table 4.2a). After controlling for collection year, GLMMs conducted at the level of the

sample again showed that urine samples collected from males were less likely to be infected
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with Trichomonas spp. than samples from females (β = – 0.49, P = 0.032, Table 4.2b).

Additionally, samples were significantly more likely to be positive during the dry season (β

= – 0.62, P = 0.014, Table 4.2b). Neither age nor any two way-interactions were significant

at the individual or sample level.
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Table 4.2: Model estimates for individual and sample Trichomonadidae infection
status.

 26!

Table 2. Model estimates for individual and sample Trichomonadidae infection status.  "#$!
  "#%!
a. Predictors of individuals with at least one positive sample a 

     Urine data  Feces data 
Predictor Estimate SE     P  Estimate SE     P 
Intercept -2.00 0.67     0.003   18.89 4052.9 0.996 
Sex (male)  -1.20 0.51     0.018  -19.42 4052.9 0.996 
Age  0.03  0.02     0.169  -0.04 0.05 0.475 
Number of samples  0.68 0.20  < 0.001   1.40 1.11 0.207 
Population (Kibale)  1.09  0.48     0.023   NAb NA NA 
        
b. Predictors of sample infection status 
     Urine data  Feces data 
Predictor Estimate SE     P  Estimate SE     P 
Intercept  0.57 0.57 0.315  1.56 0.60 0.009 
Sex (male)  -0.49 0.23 0.037  -0.65 0.59 0.267 
Age  0.02 0.01 0.112  -0.04 0.02 0.052 
Season (wet) -0.62 0.25 0.014  2.13 0.85 0.012 
a After controlling for year of sample collection (full table in Appendix C: Table C.6) "##!
b Population was not included in models for fecal data, as feces were only collected in one population "#&!

We found that 68.1% of the fecal samples collected from Kibale chimpanzees were positive

for trichomonads, with 90.0% of the individuals screened having at least one positive sample.

Similar to data from urine samples, some individuals changed infection status over time.

GLMs showed no significant relationships between the likelihood of an individual having at

least one fecal sample positive for trichomonads and the following predictors: sex, age and

the number of fecal samples collected per individual (Table 4.2a). The lack of significant

results is likely an effect of low variance due to extremely high prevalence. At the level of the

sample, GLMMs showed that fecal samples were significantly more likely to be infected with

trichomonads during the wet season than during the dry season (β = 2.13, P = 0.012, Table

4.2b). Additionally, infection probability decreased with age, with more positive samples
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Figure 4.1: Positive trichomonad urine samples broken down by population and
sex.The percentages of wild chimpanzee positive urine samples are shown for Budongo and
Kibale populations, with light and dark bars representing males and females, respectively.
Error bars show 95% confidence intervals.

Budongo Kibale

Pe
rc

en
ta

ge
 o

f p
os

iti
ve

 s
am

pl
es

0

10

20

30

40

50

60
Male
Female

pe
rc

en
ta

ge
 o

f p
os

iti
ve

 s
am

pl
es

from younger chimpanzees (β = – 0.04, P = 0.052, Table 4.2b), but did not depend on sex.

A subset (n = 16) of wild chimpanzee urine samples positive for trichomonads were se-

quenced. When compared to existing sequence data in GenBank, the sequences were most

similar to previously described Tetratrichomonas spp. Thus, we constructed a phylogenetic

tree using our newly generated sequences, previously described Tetratrichomonas spp. se-

quences (Cepicka et al. 2006; Crespo et al. 2001; Reinmann et al. 2012; Smejkalova et al.

2012; Walker et al. 2003) and a Trichomonas vaginalis outgroup (Cepicka et al. 2005, Figure

4.2). The tree revealed three major sequence groups (in addition to the T. vaginalis root),
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with two groups containing chimpanzee sequences. Group 1 included Tetratrichomonas spp.

from a turkey (i.e., Tetratrichomonas gallinarum: undescribed sample type) and a Tetratri-

chomonas spp. isolated from the oviduct of a Pekin duck. Group 2 included only sequences

from chimpanzees sampled here, and Group 3 included sequences from chimpanzees in this

study in addition to previously described Tetratrichomonas spp. isolated from the feces or

gastrointestinal tract of cows, tortoises, chimpanzees and gibbons.

4.5 Discussion

Among wild and sanctuary chimpanzees and gorillas examined here, we found no evidence for

three out of four unique pathogen groups representing known or suspected STDs. Specifically,

wild chimpanzee urine samples, chimpanzee vaginal swabs, and gorilla serum samples were

all negative for Chlamydia spp., papillomavirus, and Treponema pallidum, respectively. This

is surprising considering that chlamydia is one of the most prevalent human STDs (Holmes

et al. 2008) and syphilis is well documented in other primates, including baboons (Fribourg-

Blanc and Mollaret 1969; Harper et al. 2012). We note that due to small sample size, a

lack of positive Treponema pallidum and papillomavirus results do not necessarily imply

absence among all wild ape populations. However, given our large sample size for Chlamydia

tests, our results indicate that Chlamydia spp. are either absent or present at extremely

low rates in the two populations we sampled. Despite evidence that other bacteria in the

Chlamydia genus have zoonotic origins (Myers et al. 2009), little is currently known about

the evolution of human-infecting C. trachomatis (Clarke 2011). Some human STDs (e.g.,

HIV/SIV, HTLV/STLV) are thought to have originated in wild primates (Courgnaud et al.

2004; Keele et al. 2006), but our results are not consistent with a shared origin of chlamydia

in chimpanzees, although more work is needed to investigate the presence or absence of this

pathogen in additional ape populations.
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Figure 4.2: A Bayesian phylogeny of positive trichomonad sample sequences.
Samples tested here fell into two distinct groups (Groups 2 and 3). Group 1 sequences in-
cluded a putative STD (Trich Duck AF236105.1); Group 2 sequences were only from samples
tested here, and Group 3 samples were closely related to Tetratrichomonas spp. isolated from
feces or gastrointestinal tracts of animals. Phylogenies were constructed using MrBayes v.
3.2.1 and FigTree v. 1.3.1. Numbers on branches indicate Bayesian posterior probabilities.
Newly generated sequences are shown in bold as T Chimp with an arbitrary sequence number
and the name of the population from which the sample was collected. Referenced sequences
are shown with GenBank accession numbers. The scale bar indicates genetic distance.
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In contrast to the other tests, the trichomonad PCR yielded many positive results, with

37% of Budongo chimpanzees and 77% of Kibale chimpanzees having at least one positive

urine sample. Follow-up tests revealed that 90% of Kibale chimpanzees had at least one

positive fecal sample, indicating that some or all of the positive urine samples could have

been contaminated with feces prior to sample collection (e.g., by urine running across fecal

particles on hair or skin in the genital region). However, GLMs indicated different predictors

of infection status for pathogens isolated from urine and fecal samples, suggesting they could

be different pathogens or that they have different transmission routes. In particular, females

were significantly more likely than males to have positive urine samples, whereas there was

no sex effect for fecal sample infection status. There was no effect of age on the infection

status of urine samples, whereas younger chimpanzees were more likely to have positive fecal

samples. Lastly, urine samples were more likely to be positive during the dry season, whereas

fecal samples were more likely to be positive during rainy months.

Sequencing revealed that the positive chimpanzee urine samples were genetically sim-

ilar to previously detected Tetratrichomonas spp. The genus Tetratrichomonas, like Tri-

chomonas, belongs to the family Trichomonadidae. To our knowledge, this is the first de-

scription of tetratrichomonads in wild chimpanzees; however several tetratrichomonads have

recently been reported from captive, wild, and domestic animal hosts, including some cap-

tive apes (Cepicka et al. 2006; Crespo et al. 2001; Reinmann et al. 2012; Smejkalova et al.

2012; Walker et al. 2003). Phylogenetic analysis of eight recently reported tetratrichomad

sequences along with our newly generated sequences revealed two main sequence groups from

chimpanzees, one of which contained only newly generated sequences from urine samples in

our study, and a second of which contained both urine sample sequences from our study

and previously described sequences from feces or the cecum of mammals and reptiles (e.g.,

Cepicka et al. 2006). Most previously described tetratrichomonads are believed to be trans-

mitted via fecal-oral routes (Cepicka et al. 2006, 2005), although the duck tetratrichomonad
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could be sexually transmitted (Crespo et al. 2001). Tetratrichomonas are not generally con-

sidered to be pathogenic; however, rare cases of morbidity or mortality do occur (Laing et al.

2013; Mantini et al. 2009).

It is not yet clear how the chimpanzee Tetratrichomonas are transmitted, as our findings

offer evidence for both sexual and fecal-oral transmission routes. The increased infection

rate in female versus male urine samples is characteristic of STDs in polygynous mating

systems (Nunn and Altizer 2004; Thrall et al. 2000). On the other hand, the sex difference

could result from anatomical factors, as urine collected from females might more commonly

contact feces than urine collected from males. Also, some urine sequences were highly similar

to tetratrichomonads thought to spread via fecal-oral routes, and the lack of an age effect

on urine sample infection status suggests fecal-oral over sexual transmission (although play

mating, which starts at a very young age in chimpanzees, could allow for STD transmission

prior to sexual maturity). Thus, while some urine sequences (those in Group 3) are likely

transmitted via feces, other urine sequences (e.g., Group 2) could be sexually transmitted.

More work, including sequencing and comparison of Trichomonadidae isolates from positive

fecal samples, is needed to better clarify the transmission routes of these isolates.

Increasing awareness and knowledge of great ape STDs could contribute crucial informa-

tion for great ape conservation and management. Animal reintroduction, in which captive

animals are released into the wild, is a conservation tool currently used for great apes (Farmer

and Courage 2008; Tutin et al. 2001); yet, to maintain healthy wild populations, the success

of these reintroductions relies on the release of healthy individuals. With limited knowledge

of ape STDs, comprehensive STD panels cannot currently be performed prior to release.

Identifying which STDs might negatively affect host fitness could greatly improve reintro-

duction project screening. Similarly, understanding the distribution of STDs in wild ape

populations could provide important insights for disease management, particularly if those

pathogens lower fecundity (e.g., Keele et al. 2009). Lastly, more extensive data on great
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ape STDs could point towards the evolutionary origins of human STDs (beyond our current

knowledge of SIV/HIV, STLV/HTLV: Courgnaud et al. 2004; Keele et al. 2009, 2006), and

might even provide insights towards novel resistance traits.

Future work on STDs in apes could focus on culturing the Tetratrichomonas organ-

isms detected in the current study and on investigating its pathogenicity and transmission

routes. Other work might also explore evidence for STDs in bonobos, which demonstrate

extreme promiscuity (Kano 1992) and thus might support multiple STDs (Nunn and Altizer

2006). Lastly, researchers should screen apes for additional putative STDs, including My-

coplasma genitalium or Neisseria gonorrhoeae, two pathogens that are highly prevalent in

human populations (Holmes et al. 2008) and can cause infection in apes and monkeys after

experimental inoculation (Brown and Lucas 1973; Tully et al. 1986). In conclusion, while

our study provided little evidence of STDs in wild and sanctuary apes, we argue that addi-

tional work focused on this subject will provide invaluable information for the management

of endangered great ape species and for our knowledge of human STD origins.
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Chapter 5
CONCLUSIONS

Because pathogen-induced population declines can threaten wild ape persistence, under-

standing drivers of pathogen transmission in great apes is an important conservation concern.

By incorporating innovative field and computational approaches, this research represents the

first network analysis to examine infectious disease dynamics in wild apes. Work described

here lends support to the prediction that social and ecological factors can profoundly affect

host-parasite dynamics in free-living populations. Modeling techniques developed here could

be applied to a broad range of social animals for which contact network data or individual

trait data are available. Importantly, this research offers insights for control measures by

illustrating how a better understanding of contact heterogeneity and its effect on pathogen

outbreaks can help to focus vaccination programs. In particular, results from this work

indicate that imperfect vaccination coverage targeted at highly connected individuals is con-

siderably more effective than random control efforts. Although the STD survey of wild

and sanctuary apes conducted here did not provide strong evidence for sexually transmitted

pathogens, we described for the first time a new tetratrichomonad infecting wild apes. In

Summer 2013, I will return to Uganda to share results with veterinarians and wildlife man-

agement planners. It is my hope that findings from this research will be incorporated into

disease control strategies for habituated wild ape populations.
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A.1 Supplementary Text

A.1.1: Additional information on the Kanyawara chimpanzee

community

The Kanywara chimpanzee community was partially habituated to human presence by M.

Ghiglieri during 1979-1980 and G. Isabirye-Basuta during 1983-1985. R. Wrangham founded

the Kibale Chimpanzee Project (KCP) in 1987. Since this date, Wrangham and colleagues

have continuously collected systematic data (e.g., including information on life history, be-

havioral development, and social relationships) on the Kanyawara chimpanzees, which have

been habituated to human presence since 1990 (Wrangham et al. 1992). KCP, including a

site manager and five full-time field assistants, is currently funded by grants from the U.S.

National Science Foundation (awards 9807448 and 0416125), the U.S. National Institutes

of Health, National Geographic Society, L.S.B. Leakey Foundation, and the Wenner-Gren

Foundation. To collect behavioral data for this paper, J. Rushmore worked alongside and

received assistance from KCP researchers and field assistants.

A.1.2: Rank categorization of study subjects

Chimpanzees were assigned to one of seven coarse rank categories (for adult males: M1,

M2, or M3; for adult females: F1 or F2, and for juveniles: J1 or J2) where lower numbers

indicate higher ranks. Females were categorized as core-ranging (higher rank F1) or edge-

ranging (lower rank F2) according to Kahlenberg et al. (2008) with one exception. BL, a

female that Kahlenberg et al. (2008) categorized as core-ranging, was typically found in the

southern (i.e., periphery) areas of the Kanyawara range during our study period. Because

female range can change over time, we conducted all data analyses twice: first with BL

categorized as a core female and again with BL categorized as an edge female. Results were
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consistent regardless of how BL was categorized; however, scoring BL as an edge female

(lower ranking) consistently increased model fit (as demonstrated by R2 and DIC values).

Thus, for the present study, we considered BL to be an edge female. Juveniles were assigned

to the same range areas as their mothers (i.e., ranks J1 or J2, where J1 corresponds to the

juvenile offspring of a higher ranking mother).

Adult males were grouped into three rank categories: high (M1)-, medium (M2)-, or

low (M3)-rank. To assign males to rank categories, we asked each of six field assistants

who had observed the Kanyawara chimpanzee community for 1 – 17+ years to score the 12

adult males in a linear hierarchy from highest- to lowest-rank at the start and end of the

study period based on cumulative observations of pant-grunt vocalizations and outcomes

of agonistic interactions (after Wittig and Boesch 2003). We then calculated the average

linear hierarchy score assignment for each adult male at the start and end of the study. By

assigning five males to the high-ranking category (M1), four males to the medium-ranking

category (M2), and three males to the low-ranking category (M3), we developed a ranking

system in which every male stayed within the same rank category throughout the entire

study period (despite minor reshuffling in the linear hierarchy over the nine-month study

duration).

A.1.3: Supplementary information on statistical analyses

Quadratic Assignment Procedure

The quadratic assignment procedure (QAP) calculates a Pearson’s correlation coefficient for

corresponding cells in two observed matrices and then re-calculates the correlation coefficient

after the rows and corresponding columns of one of the matrices are randomly permuted

(Baker and Hubert 1981). In our analyses, this process was repeated 30,000 times to calculate

a P-value.
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Bayesian Logistic Mixed Effects Models

When fitting models to our data, we used uninformative priors, which we tested with sen-

sitivity analyses following Kéry (2010), and we inspected goodness of fit across models by

calculating the deviance information criterion (DIC) (Kéry 2010). During model selection

we removed non-significant terms in favor of the most parsimonious model with the best fit

(as demonstrated by low DIC). We ran the models for 300,000 iterations with a burn-in of

25,000 iterations and a sampling regime (i.e., thin) of 15.

Node-level regression

Node-level permutation-based regression is a valuable statistical test for network analysis be-

cause it accounts for the fact that network nodes are not independent (Hanneman and Riddle

2005). The test first calculates the regression slope coefficients of the observed dataset; then,

over a large number of permutations, the algorithm randomly shuffles values of the depen-

dent variable among network nodes while leaving the values of the independent variables in

place. Regression coefficients are recalculated after each permutation, and the P-value for

each parameter is calculated by determining the proportion of permutations that yielded

values as or more extreme than the original regression for the observed dataset.

A.1.4: Discussion of how fruit availability or presence of sick

chimpanzees might affect network structure

Past studies at some field sites showed that chimpanzee party sizes increase with food avail-

ability (e.g., Wrangham 2000) whereas no or limited effects of food were seen at other sites

(Hashimoto et al. 2003; Newton-Fisher et al. 2000; Reynolds 2005). Given our limited data on

fruit availability, we were unable to fully explore how fruiting patterns affect network dynam-

ics. Additionally, little is currently known about how the presence of sick chimpanzees might
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affect network structure. During the study duration, we occasionally observed chimpanzees

showing outward signs of respiratory infections (e.g., sneezing, coughing), but we did not

observe any major respiratory outbreaks (e.g., Köndgen et al. 2008; Williams et al. 2008).

While anecdotal evidence suggests that primates can sometimes identify sick community

members, there is little indication in the primate literature that individuals self-quarantine

or avoid sick conspecifics (Nunn and Altizer 2006). Thus, understanding how network dy-

namics might be affected by fruiting patterns or the presence of sick individuals remain

important areas for future research.
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A.2 Supplementary Tables

Table A.1: Stability of networks across two-week to month time steps. For each
month, a) party association indices (PAIs) and b) 5m association indices (5mAIs) calculated
for weeks 1 – 2 and weeks 3 – 4 were compared to the respective association indices calcu-
lated during the entire month. Correlation values (r) and probabilities (P) are based on a
quadratic assignment procedure with 30,000 permutations. All correlations are significant
with P < 0.001. See Appendix Text A.1.3 for additional analysis details.

! "!

Table S1. Stability of networks across two-week to month time steps. For each month, a) #$!

party association indices (PAIs) and b) 5m association indices (5mAIs) calculated for weeks 1-2 #"!

and weeks 3-4 were compared to the respective association indices calculated during the entire #%!

month. Correlation values (r) and probabilities (P) are based on a quadratic assignment #&!

procedure with 30,000 permutations. All correlations are significant with P < 0.001. See #'!

Appendix S3 for additional analysis details.  ()!

   Dec Jan Feb Mar Apr May Jun Jul Aug 
a. PAIs 
Weeks 1-2 r 0.395 0.787 0.921 0.867 0.900 0.976 0.986 0.949 1.000 
 P <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
Weeks 3-4 r 0.955 0.979 0.818 0.952 0.967 0.852 0.963 0.568  
 P <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001  

b. 5mAIs 
Weeks 1-2 r 0.675 0.584 0.845 0.922 0.132 0.878 0.851 0.822 1.00 
 P <0.001 <0.001 <0.001 <0.001   0.019 <0.001 <0.001 <0.001 <0.001 
Weeks 3-4 r 0.775 0.849 0.816 0.860 0.835 0.645 0.490 0.859  
 P <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001  

 (#!
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Table A.2: Effect of social factors on pairwise associations (PAIs) in party net-
works using two-week time steps. The posterior mean, 95% credible interval, P-value
based on MCMC sampling, and odds ratios (OR) are shown for fixed effect parameters.
Bolded relationships are significant at P < 0.05. Sex/estrus and age categories are ab-
breviated as follows: age (adult: adult, AA; adult: juvenile, AJ; juvenile: juvenile, JJ),
sex/estrous (pairwise combinations of male (M), female in estrus (Fe) and female not in es-
trus (F)). Baseline age (AA) and sex/estrus (F:F) are not shown. MCMC simulations were
run for 300,000 iterations with a burn-in of 25,000 iterations and a sampling regime of 15.
The main difference between analyses conducted at two-week and monthly time steps is that
with the two-week data set, there was not a significant interaction between the number of
estrous females per month and age, whereas this interaction was significant with the monthly
time scale (Table 2.1). All other results were consistent across time steps.

! "!

Table S2. Effect of social factors on pairwise associations (PAIs) in party networks using ##!

two-week time steps. The posterior mean, 95% credible interval, P-value based on MCMC #$!

sampling, and odds ratios (OR) are shown for fixed effect parameters. Bolded relationships are #%!

significant at P < 0.05. Sex/estrus and age categories are abbreviated as follows: age (adult: adult, #&!

AA; adult: juvenile, AJ; juvenile: juvenile, JJ), sex/estrous (pairwise combinations of male (M), #'!

female in estrus (Fe) and female not in estrus (F)). Baseline age (AA) and sex/estrus (F:F) are not #"!

shown.  MCMC simulations were run for 300,000 iterations with a burn-in of 25,000 iterations #(!

and a sampling regime of 15. The main difference between analyses conducted at two-week and #)!

monthly time steps is that with the two-week data set, there was not a significant interaction $*!

between the number of estrous females per month and age, whereas this interaction was $+!

significant with the monthly time scale (Table 1). All other results were consistent across time $#!

steps.  $$!

Factor Posterior 
Mean 

95% CI    P  OR 

Intercept -3.88 (-5.4, -2.29) <0.001  
Related 3.55 (3.15, 3.95) <0.001 34.83 
Sex (M:F) 0.78 (-0.37, 1.73) 0.162 2.18 
Sex (M:M) 1.32 (-0.75, 3.38) 0.226 3.74 
Sex (F:Fe) 3.01 (2.48, 3.59) <0.001 20.2 
Sex (M:Fe) 4.16 (2.8, 5.21) <0.001 63.8 
Difference in family size -0.16 (-0.23, -0.08) <0.001 0.86 
Difference in rank -1.29 (-1.48, -1.12) <0.001 0.27 
Age (AJ) 0.65 (-0.33, 1.77) 0.212 1.92 
Age (JJ) 0.91 (-1.2, 2.9) 0.358 2.49 
Number (#) of estrous females 1.00 (0.82, 1.16) <0.001 2.71 
# of estrous females:Age (AJ) -0.16 (-0.38, 0.06) 0.168 2.31 
# of estrous females:Age (JJ) -0.26 (-0.61, 0.05) 0.134 2.09 
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Table A.3: Effect of social factors on party and 5m-association network centrality
measures using two-week time steps. Coefficients (β) and P-values are presented.
Bolded values indicate significant relationships after Bonferroni correction. R2 values are
shown for each test; baseline rank (M1) and time interval (Apr: Wk 1 – 2) categories are
not shown. Results are consistent between two-week and monthly time steps (Table 2.2) in
that family size and rank were the most important predictors for individual centrality at
both the party and 5m-level after controlling for the time interval of observation (i.e., the
first and second two weeks of a month: Wk 1 – 2 and Wk 3 – 4, respectively). Analyses
at both time steps indicated that core-ranging females and juveniles (F1 and J1) with large
families and to a lesser extent high-ranking males (M1) were significantly more central than
other community members.

*Table shown on next page.
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Table A.4: Individual trait data for study subjects (n = 37). This table shows the
sex, age class, family size, and rank category for all chimpanzees included in the study.

! "#!

Table S4. Individual trait data for study subjects (N = 37). This table shows the sex, age, age 

class, family size, and rank category for all chimpanzees included in the study.  

Chimpanzee  
ID 

Sex1 Age  
Class2 

Family  
Size 

Rank  
Category3 

AJ M A 1 M1 
AL F A 3 F1 
AT M J 3 J1 
AZ M J 3 J1 
BB M A 1 M1 
BL F A 3 F2 
BO M J 3 J2 
BU F J 3 J2 
ES M A 24 M2 
EU F J 24 J1 
KK M A 1 M1 
LK M A 1 M1 
LR F A 1 F1 
ML F A 1 F2 
MS M A 1 M1 
MU F A 2 F2 
MX M J 2 J2 
NP F J 1 J1 
OG M J 4 J1 
OM F J 4 J1 
OT F J 4 J1 
OU F A 4 F1 
PB M A 1 M3 
PG M A 1 M2 
QT F A 1 F1 
RD F A 1 F2 
ST M A 1 M2 
TG F A 4 F1 
TJ M A 4 M3 
TS F J 4 J1 
TT M J 4 J1 
TU M A 1 M2 
UM F A 2 F2 
UN M J 2 J2 
WA F A 1 F2 
WL F A 1 F1 
YB M A 1 M3 

1Sex: M = male, F = female 
2Age Class: A = adult, J = juvenile (as defined in the main text) 
3Rank Category: M1, M2, and M3 refer to high-, medium-, and low-ranking adult males, respectively; F1 and J1 
refer to core-area adult females and juveniles, respectively; F2 and J2 refer to edge-area adult females and juveniles, 
respectively 

4As described in the main text, even though their mother was deceased, ES and EU (a brother-sister pair) were 
considered a family unit, as ES and EU spent more than 65% of their time together 
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Table A.5: Effect of social factors on within-party association indices (WPAIs)
with best-fit model using monthly time steps. Posterior means (β) and 95% cred-
ible intervals (CI) are shown for fixed effect parameters in each of the monthly networks.
Sex/estrus and age categories are abbreviated as follows: age (adult: adult, AA; adult: ju-
venile, AJ; juvenile: juvenile, JJ), sex/estrous (pairwise combinations of male (M), female
in estrus (Fe) and female not in estrus (F)). Baseline age (AA) and sex/estrus (FF) are not
shown. The results are broken down by month because there was a month interaction with
every other parameter. NAs exist in months where no females were observed in estrus, and
thus the effect of a pair with an estrous female could not be considered. MCMC simulations
were run for 300,000 iterations with a burn-in of 25,000 iterations and a sampling regime of
15. Bolded relationships are significant at the 0.05 level.

*Table shown on next page.
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A.3 Supplementary Figures

number of scans as focal
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Figure A.1: Histogram of observation effort across individuals. The frequency
of individuals is plotted against the number of scans in which an individual was the focal
subject. Notably, calculations of weighted centrality measures were based on association
indices, which account for observation effort across individuals (see equation 2.1). However,
to ensure that sampling effort did not drive centrality measures, we tested for correlations
between the number of scans in which an individual was the focal subject and each of the
three centrality measures for the individual. As expected, we found no correlations: degree
centrality, R2 = 0.008; eigenvector centrality, R2 = 0.018; flow-betweenness centrality, R2 =
0.004.
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Figure A.2: Monthly party association networks. Nodes (circles) represent individual
chimpanzees (n = 37) and edges (lines) represent observed associations, where edge thickness
corresponds to the pairwise party association index (PAI) between nodes. All networks are
displayed with identical layouts and only edges with PAIs > 0.35 are shown. Node color
represents connectedness, where dark red nodes have at least one edge above the PAI cutoff
and light red nodes do not have any edges above the PAI cutoff. Networks were constructed
in R with the igraph package version 0.5.5-4 (Csardi and Nepusz 2006).
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Figure A.3: Stability of party association networks over time. Shading represents
Pearson correlation coefficients for pairs of monthly party networks, with yellow representing
low correlations and red representing high correlations. All pairwise month combinations
were significantly correlated as compared to randomized networks, indicating that the social
structure was not random.
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Figure A.4: Monthly 5m association networks. Observed 5m association networks are
shown for each of the nine study months. Nodes (circles) represent individual chimpanzees (n
= 37) and edges (lines) represent observed associations, where edge thickness corresponds
to the pairwise 5m association index (5mAI) between nodes. All networks are displayed
with identical layouts and only edges with PAIs > 0.1 are shown. All 37 individuals in the
community are displayed as nodes regardless of whether they have a connection. Networks
were constructed in R with the igraph package version 0.5.5-4 (Csardi and Nepusz 2006).
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Figure A.5: Overall degree distributions of all individuals (n = 37) across all
study months (n = 9) for a) monthly party association networks and b) monthly
5m association networks. The means and variances are shown for each distribution.
While all individuals were not observed every month, we used the party and within-party
mixed effects models presented in the main text to predict network degree values for unob-
served individuals in a given month. Thus, the degree distributions presented display both
observed degree (for observed individuals, where the total sample of observed individuals
by month was n = 294) and estimated degree (for unobserved individuals, where the total
sample of unobserved individuals by month was n = 39).
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Figure A.8: Goodness of fit for monthly party and within-party association
models. R2 values are shown for monthly PAIs (solid red line) and WPAIs (dashed black
line), based on comparisons between logistic mixed-effect model estimates and observed
values.
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Appendix B
SUPPORTING INFORMATION FOR

CHAPTER 3
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B.1 Supplementary Text

B.1.1: Additional Methods

Quantifying contact networks

To quantify party association indices (PAIs) used to weight party network edges, we deter-

mined the number of scans in which chimpanzees A and B were observed in the same party

relative to the total number of scans in which either A or B was observed in any party:

PAIAB =
SAB

SA + SB + SAB
(B.1)

where SAB represents scans where A and B were observed in the same party, SA represents

scans where A was observed in a party without B, and SB represents scans where B was

observed in a party without A. To quantify 5m association indices (5mAIs) used to weight

edges of proximity networks, we calculated the probabilities that individuals A and B would

be both within the same party and within 5m of each other:

5mAI = PAIAB

(
SAB5

SAB

)
(B.2)

where SAB5 represents scans where A and B were observed within 5m of each other. Thus,

this index, which could range from 0 to 1, represents the overall proportion of time that

individuals A and B were within 5m of each other.

A major challenge in quantifying contact networks for wildlife is that it is often difficult to

observe all study subjects within a given time frame. In our monthly networks, 1.72% of the

monthly pairwise interactions were undefined because neither individual A or B was observed

within the given month, making it impossible to directly quantify the amount of time the

two individuals spent together. To circumvent this issue, we used a Bayesian logistic mixed
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effects model (with pairwise predictor variables of age, sex, relatedness, difference in rank,

difference in family size, and number of females in estrus) to predict the missing pairwise

association indices. The model details are described in Rushmore et al. (In review).

Simulating infectious disease transmission on observed networks

The following three equations demonstrate how we calculated βτ values that were used

in pathogen transmission simulations. First, for each individual in each monthly network,

we set R0(i,m) for an individual (i) in a given month (m) to the sum of the transmission

probabilities between individuals i and j in the network:

R0(i,m) =
∑
i 6=j

1 − e−cijβτ (B.3)

where cij refers to the association index between i and j in a given monthly network; βτ

is not yet known and will be solved for in the equations below. We then set R0(m) for a

monthly network to the mean of R0(i,m) for all 37 individuals in that monthly network:

R0(m) =
1

37

∑
i

R0(i,m) (B.4)

The average R0 (R0) across networks was then equivalent to the mean of R0(m) for all 9

monthly networks:

R0 =
1

9

∑
m

R0(m) =
1

9

∑
m

1

37

∑
i

∑
i 6=j

1 − e−cijβτ (B.5)

Using a range of biologically relevant estimates for R0 (see Methods), we fixed R0 and used

a root solver in R to calculate corresponding βτ values.

Our R0 calculations strictly correspond to the reproductive rate definition typically used

in epidemiology literature, where R0 is the average number of secondary infections caused
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by one primary infection in a completely nave population (Anderson et al. 1986). This R0

definition (hereafter referred to as PR0 for primary infection R0) has been used by others to

model pathogen transmission on contact networks (Davis et al. 2008; Hamede et al. 2011).

However, several other studies use an alternate definition for R0 in reference to network epi-

demiology, in which R0 is the number of secondary infections caused by a randomly selected

infected node (i.e., not the index case: Meyers 2007; Newman 2002). We will henceforth refer

to this second definition as SR0 (for secondary infection R0).

PR0 depends only on mean degree of the population and edge-specific transmissibilities

(Tij) of the pathogen, whereas SR0 also depends on the variance of the degree distribution

and clustering. Hence, using the basis of the PR0 definition (which was then averaged

across months to create R0 as described above) allowed us to assess the impact of network

structure (month) on outbreak size for a pathogen characterized by a particular R0, without

the circular issue of R0 also being dependent on inherent aspects of network structure (e.g.,

degree distribution and clustering). Furthermore, using the definition of PR0 allowed us

to easily calculate R0 for a given βτ (pathogen infectiousness and duration of infection),

by averaging the expected number of secondary cases for each of the possible 37 index

cases across the nine monthly networks. Using the definition of SR0 to calculate R0 would

require substantially more complicated simulations (i.e., calculating the expected number of

secondary cases that result from a randomly selected secondary case for each of the 37 index

cases across all nine months). Also, SR0 may not be appropriate for simulating pathogen

transmission on small networks, as basic reproductive rate estimates based on the number

of secondary cases could be biased due to the network already being saturated. Lastly, we

note that because PR0 refers to the reproductive rate for an index case, which on average

will have a lower mean degree than a secondary case, our R0 calculations are expected to be

slightly lower than SR0 calculations.
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Permutation tests

The permutation-based regression test (Hanneman and Riddle 2005) uses node-level param-

eters (where each row in the dataset represents a node and columns provide attribute data

for each node). The test first calculates the regression slope coefficients of the observed

dataset; then, over 30,000 permutations, the algorithm randomly shuffles values of the de-

pendent variable while leaving the values of the independent variables in place. Regression

coefficients are recalculated after each permutation, and the P-value for each parameter is

calculated by determining the proportion of permutations that yielded values as or more

extreme than the original regression for the observed dataset. This test controls for the

interdependencies of network nodes. Because we observed a non-linear relationship between

mean outbreak size and R0, we ran a separate model for each of the four R0 values.

Calculating centrality measures

We calculated weighted centrality metrics (degree, eigenvector, betweenness) for each indi-

vidual in each month using UCINET (Borgatti et al. 2002).

B.1.2: Information on Kibale Forest and the Kanyawara Chim-

panzee Community

Struhsaker (1997) provides an overview of Kibale National Park, including forest ecology.

The Kanywara chimpanzee community, which occupies roughly 37.8 km2 of Kibale (Wilson

et al. 2001), was partially habituated to human presence by M. Ghiglieri during 1979-1980

and G. Isabirye-Basuta during 1983-1985. The Kanyawara community was fully habituated

to human observers by 1990 (Wrangham et al. 1992). R. Wrangham founded the Kibale

Chimpanzee Project (KCP) in 1987, and along with colleagues, has continuously collected

data on chimpanzee life history, behavioral development, and social relationships (among
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other topics). Funding for KCP is provided by the U.S. National Science Foundation (awards

9807448 and 0416125), the U.S. National Institutes of Health, National Geographic Society,

L.S.B. Leakey Foundation, and the Wenner-Gren Foundation.

To collect behavioral data for this paper, J. Rushmore worked alongside KCP researchers

and field assistants. At the time of this study, the community was comprised of 48 chim-

panzees with 12 adult males (aged > 14), 14 adult females (aged > 13), 9 immature males

and 6 immature females (aged between 5-14 and 5-13 respectively; referred to throughout

the main text as juveniles), and 7 dependent offspring (aged ≤ 4).
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B.2 Supplementary Tables

Table B.1: Chimpanzee trait data for study subjects (n = 37). This table shows
the sex, age class, family size, and trait-based group for all chimpanzees included in the
study.

! "!

Table S1: Chimpanzee trait data for study subjects (n = 37). This table shows the sex, age, #$!

age class, family size, and trait-based group for all chimpanzees included in the study.  ##!

Chimpanzee  
ID 

Sex1 Age  
Class2 

Family  
Size 

Trait-based 
Group3 

AJ M A 1 HM 
AL F A 3 CR-L 
AT M J 3 CR-L 
AZ M J 3 CR-L 
BB M A 1 HM 
BL F A 3 ER 
BO M J 3 ER 
BU F J 3 ER 
ES M A 24 MM 
EU F J 24 CR-S 
KK M A 1 HM 
LK M A 1 HM 
LR F A 1 CR-S 
ML F A 1 ER 
MS M A 1 HM 
MU F A 2 ER 
MX M J 2 ER 
NP F J 1 CR-S 
OG M J 4 CR-L 
OM F J 4 CR-L 
OT F J 4 CR-L 
OU F A 4 CR-L 
PB M A 1 LM 
PG M A 1 MM 
QT F A 1 CR-S 
RD F A 1 ER 
ST M A 1 MM 
TG F A 4 CR-L 
TJ M A 4 LM 
TS F J 4 CR-L 
TT M J 4 CR-L 
TU M A 1 MM 
UM F A 2 ER 
UN M J 2 ER 
WA F A 1 ER 
WL F A 1 CR-S 
YB M A 1 LM 

1Sex: M=male, F=female %&&!
2Age Class: A=adult, J=juvenile (as defined in the main text) %&%!
3Trait-based group: HM, MM, and LM refer to high-, medium-, and low-ranking adult males, respectively; CR-L %&'!
refers to core-ranging adult females and juveniles with families larger than 2 members; CR-S refers to core-ranging %&(!
adult females and juveniles with families smaller than 3 members; ER refers to edge-ranging adult females and %&)!
juveniles %&*!

4Even though their mother was deceased, ES and EU (a brother-sister pair) were considered a family unit, as ES and %&"!
EU spent more than 65% of their time together %&+!
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Table B.2: Comparison of minimum coverage requirements across vaccination
strategies. For each vaccination strategy, the coverage threshold is provided as a percentage
of the community, with the number of individuals vaccinated in parentheses, for A) the mean
outbreak size to affect < 10% of the community (Minimum Coverage Threshold), and B) an
outbreak to affect < 10% of the community in at least 95% of the simulations (Conservative
Coverage Threshold). The table shows results for trait-based simulations using a single adult
male category (M). Results for trait-based vaccinations represent simulations with a single
adult male category. Results were identical for simulations using this category M or three
adult male categories (HM, MM, LM; see Chapter 3 Results), except for a couple instances
(*) in which simulations using HM, MM, and LM categories required vaccinating one less
individual.

  A. Minimum Coverage Threshold: 
Vaccination strategy  !! = 0.7 !! = 1.5 !!!= 3.0 !! = 10.0 
Centrality-based  0% (0) 2.70% (1) 18.92% (7) 32.43% (12) 
Trait-based  0% (0) 2.70% (1) 21.62% (8)* 32.43% (12) 
Random  0% (0) 5.41% (2) 24.32% (9) 37.84% (14) 
      
  B. Conservative Coverage Threshold: 
Vaccination strategy  !! = 0.7 !! = 1.5 !! = 3.0 !! = 10.0 
Centrality-based  0%      (0) 27.03% (10) 45.95% (17) 62.16% (23) 
Trait-based  5.41% (2) 35.14% (13)* 45.95% (17) 64.86% (24) 
Random  8.11% (3) 43.24% (16) 56.76% (21) 67.57% (25) 
!
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Figure B.4: Correlations of mean outbreak sizes and centrality measures of index
cases. Correlations (R2) for mean outbreak size and three weighted centrality measures of
the index case (degree: blue, eigenvector: red, betweenness: green) are shown for varying
levels of pathogen infectiousness (R0) in party networks (top panel) and proximity networks
(bottom panel).
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Figure B.5: Mean outbreak size results for pathogen transmission simulations on
party-level chimpanzee networks. The color of each cell shows the average proportion of
the community (n = 37) that was infected across the 1000 replicates per unique combination
of parameters The x-axis shows the identities of the index cases, ordered from highest to
lowest mean degree centrality (i.e., averaged across months). Estrous females were present
during Jan (n = 1), Apr (n = 1), May (n = 1), Jun (n = 1), Jul (n = 2), and Aug (n = 2).
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Figure B.6: Evaluation of vaccination strategies on party networks by the Con-
servative Coverage Threshold. The top panel shows the outbreak probability (the pro-
portion of simulations resulting in an outbreak greater than 10% of the community) for
centrality-based vaccinations (blue), trait-based vaccinations (red), and random vaccinations
(green) at varying levels of coverage (shown as a proportion of the community) when R0 =
3.0. The black dotted line marks the Conservative Coverage Threshold, at which no more
than 5% of the simulations result in outbreaks. The bottom panel shows this Conservative
Coverage Threshold for each vaccination strategy and R0 combination.
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C.1 Supplementary Tables

Table C.1: Wild Kanyawara chimpanzee subjects from Kibale National Park,
Uganda. Urine samples were screened for trichomonads and Chlamydia spp. Fecal samples
were screened for trichomonads. The table shows results for trichomonads; all samples were
negative for Chlamydia spp. Table continued onto the next page.

Stump Female Adult 2 1 0 NA 
Tacugama Male Immature 8 2 3 3 
Teddy Female Infant 2 1 0 NA 
Tenkere Female Immature 5 0 2 1 
Tofu Male Adult 4 2 3 1 
Tongo Female Adult 10 4 1 1 
Tsunami Female Immature 4 1 0 NA 
Tuber Male Immature 2 1 1 1 
Tuke Male Immature 8 2 2 1 
Twig Male Adult 22 7 0 NA 
Umbrella Female Adult 3 1 5 3 
Wangari Female Adult 2 1 2 1 
Wilma Female Adult 10 2 2 2 
Yogi Male Adult 7 4 1 1 
aInfants (! 4 y), Immatures (males: 5 – 14 y, females: 5 – 13 y), Adults (males: > 14 y, females > 13 y) !"
b NA = Not applicable: the given sample type was not available for the given individual  #"
  $"

ID Sex 
Age Class at Sample 

Collectiona 
Total Urine 
Samples 

Positive Urine 
Samples 

Fecal Samples 
Collected 

Positive Fecal 
Samples 

AuntieRose Female Adult 2 2 0 NA 
BadFoot Male Adult 1 0 0 NA 
Beatle Male Immature 2 0 0 NA 
Big Brown Male Adult 8 5 2 0 
Bono Male Immature 5 0 0 NA 
Bubbles Female Adult 2 1 2 2 
Bud Male Adult 17 8 2 2 
Budongo Female Immature 4 2 6 6 
Edward Male Adult 3 1 0 NA 
Ekisigi Female Adult 2 2 0 NA 
Eslom Male Adult 7 2 4 2 
Euro Female Immature 6 5 3 2 
Finger Female Adult 3 2 0 NA 
Goodall Female Adult 1 1 0 NA 
Harare Female Adult 1 0 0 NA 
Imoso Male Adult 6 2 2 0 
Ipassa Female Adult 2 0 0 NA 
Johnny Male Adult 6 2 0 NA 
Josta Female Adult 3 2 0 NA 
Kaana Female Adult 1 1 0 NA 
Kabarole Female Adult 1 1 0 NA 
Kakama Male Adult 13 5 2 1 
Kilimi Female Adult 2 1 0 NA 
Lanjo Male Adult 8 2 3 3 
Lia Female Adult 11 5 2 1 
Light Brown Male Adult 1 1 0 NA 
Likizo Male Immature 4 1 1 0 
Lope Female Adult 1 1 0 NA 
Makoku Male Adult 11 2 2 2 
Mandela Male Immature 4 1 0 NA 
Max Male Immature 2 0 0 NA 
Michelle Female Adult 2 1 3 2 
Mususu Female Adult 6 1 2 1 
Nectar Female Immature 2 0 0 NA 
Ngamba Female Immature 1 1 0 NA 
Nile Female Adult 2 0 0 NA 
Nyenka Female Adult 3 3 0 NA 
Omusisa Female Immature 7 3 1 1 
Outamba Female Adult 14 7 2 1 
Quinto Female Adult 3 0 1 1 
Rafiki Male Immature 1 0 0 NA 
Rosa Female Adult 10 6 0 NA 
Rwanda Female Adult 1 0 1 1 
Sanyu Female Immature 1 1 0 NA 
Slim Male Adult 1 0 0 NA 
Special Female Immature 5 3 2 2 
Stocky Male Adult 1 0 0 NA 
Stout Male Adult 5 3 4 2 
Stump Female Adult 2 1 0 NA 
Tacugama Male Immature 8 2 3 3 
Teddy Female Infant 2 1 0 NA 
Tenkere Female Immature 5 0 2 1 
Tofu Male Adult 4 2 3 1 
Tongo Female Adult 10 4 1 1 
Tsunami Female Immature 4 1 0 NA 
Tuber Male Immature 2 1 1 1 
Tuke Male Immature 8 2 2 1 
Twig Male Adult 22 7 0 NA 
Umbrella Female Adult 3 1 5 3 
Wangari Female Adult 2 1 2 1 
Wilma Female Adult 10 2 2 2 
Yogi Male Adult 7 4 1 1 

Continued onto the next page… 
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Table C.1 (continued)

ID Sex 
Age Class at Sample 

Collectiona 
Total Urine 
Samples 

Positive Urine 
Samples 

Fecal Samples 
Collected 

Positive Fecal 
Samples 

AuntieRose Female Adult 2 2 0 NA 
BadFoot Male Adult 1 0 0 NA 
Beatle Male Immature 2 0 0 NA 
Big Brown Male Adult 8 5 2 0 
Bono Male Immature 5 0 0 NA 
Bubbles Female Adult 2 1 2 2 
Bud Male Adult 17 8 2 2 
Budongo Female Immature 4 2 6 6 
Edward Male Adult 3 1 0 NA 
Ekisigi Female Adult 2 2 0 NA 
Eslom Male Adult 7 2 4 2 
Euro Female Immature 6 5 3 2 
Finger Female Adult 3 2 0 NA 
Goodall Female Adult 1 1 0 NA 
Harare Female Adult 1 0 0 NA 
Imoso Male Adult 6 2 2 0 
Ipassa Female Adult 2 0 0 NA 
Johnny Male Adult 6 2 0 NA 
Josta Female Adult 3 2 0 NA 
Kaana Female Adult 1 1 0 NA 
Kabarole Female Adult 1 1 0 NA 
Kakama Male Adult 13 5 2 1 
Kilimi Female Adult 2 1 0 NA 
Lanjo Male Adult 8 2 3 3 
Lia Female Adult 11 5 2 1 
Light Brown Male Adult 1 1 0 NA 
Likizo Male Immature 4 1 1 0 
Lope Female Adult 1 1 0 NA 
Makoku Male Adult 11 2 2 2 
Mandela Male Immature 4 1 0 NA 
Max Male Immature 2 0 0 NA 
Michelle Female Adult 2 1 3 2 
Mususu Female Adult 6 1 2 1 
Nectar Female Immature 2 0 0 NA 
Ngamba Female Immature 1 1 0 NA 
Nile Female Adult 2 0 0 NA 
Nyenka Female Adult 3 3 0 NA 
Omusisa Female Immature 7 3 1 1 
Outamba Female Adult 14 7 2 1 
Quinto Female Adult 3 0 1 1 
Rafiki Male Immature 1 0 0 NA 
Rosa Female Adult 10 6 0 NA 
Rwanda Female Adult 1 0 1 1 
Sanyu Female Immature 1 1 0 NA 
Slim Male Adult 1 0 0 NA 
Special Female Immature 5 3 2 2 
Stocky Male Adult 1 0 0 NA 
Stout Male Adult 5 3 4 2 
Stump Female Adult 2 1 0 NA 
Tacugama Male Immature 8 2 3 3 
Teddy Female Infant 2 1 0 NA 
Tenkere Female Immature 5 0 2 1 
Tofu Male Adult 4 2 3 1 
Tongo Female Adult 10 4 1 1 
Tsunami Female Immature 4 1 0 NA 
Tuber Male Immature 2 1 1 1 
Tuke Male Immature 8 2 2 1 
Twig Male Adult 22 7 0 NA 
Umbrella Female Adult 3 1 5 3 
Wangari Female Adult 2 1 2 1 
Wilma Female Adult 10 2 2 2 
Yogi Male Adult 7 4 1 1 

ID Sex 
Age Class at Sample 

Collectiona 
Total Urine 
Samples 

Positive Urine 
Samples 

Fecal Samples 
Collected 

Positive Fecal 
Samples 

AuntieRose Female Adult 2 2 0 NA 
BadFoot Male Adult 1 0 0 NA 
Beatle Male Immature 2 0 0 NA 
Big Brown Male Adult 8 5 2 0 
Bono Male Immature 5 0 0 NA 
Bubbles Female Adult 2 1 2 2 
Bud Male Adult 17 8 2 2 
Budongo Female Immature 4 2 6 6 
Edward Male Adult 3 1 0 NA 
Ekisigi Female Adult 2 2 0 NA 
Eslom Male Adult 7 2 4 2 
Euro Female Immature 6 5 3 2 
Finger Female Adult 3 2 0 NA 
Goodall Female Adult 1 1 0 NA 
Harare Female Adult 1 0 0 NA 
Imoso Male Adult 6 2 2 0 
Ipassa Female Adult 2 0 0 NA 
Johnny Male Adult 6 2 0 NA 
Josta Female Adult 3 2 0 NA 
Kaana Female Adult 1 1 0 NA 
Kabarole Female Adult 1 1 0 NA 
Kakama Male Adult 13 5 2 1 
Kilimi Female Adult 2 1 0 NA 
Lanjo Male Adult 8 2 3 3 
Lia Female Adult 11 5 2 1 
Light Brown Male Adult 1 1 0 NA 
Likizo Male Immature 4 1 1 0 
Lope Female Adult 1 1 0 NA 
Makoku Male Adult 11 2 2 2 
Mandela Male Immature 4 1 0 NA 
Max Male Immature 2 0 0 NA 
Michelle Female Adult 2 1 3 2 
Mususu Female Adult 6 1 2 1 
Nectar Female Immature 2 0 0 NA 
Ngamba Female Immature 1 1 0 NA 
Nile Female Adult 2 0 0 NA 
Nyenka Female Adult 3 3 0 NA 
Omusisa Female Immature 7 3 1 1 
Outamba Female Adult 14 7 2 1 
Quinto Female Adult 3 0 1 1 
Rafiki Male Immature 1 0 0 NA 
Rosa Female Adult 10 6 0 NA 
Rwanda Female Adult 1 0 1 1 
Sanyu Female Immature 1 1 0 NA 
Slim Male Adult 1 0 0 NA 
Special Female Immature 5 3 2 2 
Stocky Male Adult 1 0 0 NA 
Stout Male Adult 5 3 4 2 
Stump Female Adult 2 1 0 NA 
Tacugama Male Immature 8 2 3 3 
Teddy Female Infant 2 1 0 NA 
Tenkere Female Immature 5 0 2 1 
Tofu Male Adult 4 2 3 1 
Tongo Female Adult 10 4 1 1 
Tsunami Female Immature 4 1 0 NA 
Tuber Male Immature 2 1 1 1 
Tuke Male Immature 8 2 2 1 
Twig Male Adult 22 7 0 NA 
Umbrella Female Adult 3 1 5 3 
Wangari Female Adult 2 1 2 1 
Wilma Female Adult 10 2 2 2 
Yogi Male Adult 7 4 1 1 

Continued from the previous page… 

Stump Female Adult 2 1 0 NA 
Tacugama Male Immature 8 2 3 3 
Teddy Female Infant 2 1 0 NA 
Tenkere Female Immature 5 0 2 1 
Tofu Male Adult 4 2 3 1 
Tongo Female Adult 10 4 1 1 
Tsunami Female Immature 4 1 0 NA 
Tuber Male Immature 2 1 1 1 
Tuke Male Immature 8 2 2 1 
Twig Male Adult 22 7 0 NA 
Umbrella Female Adult 3 1 5 3 
Wangari Female Adult 2 1 2 1 
Wilma Female Adult 10 2 2 2 
Yogi Male Adult 7 4 1 1 
aInfants (! 4 y), Immatures (males: 5 – 14 y, females: 5 – 13 y), Adults (males: > 14 y, females > 13 y) !"
b NA = Not applicable: the given sample type was not available for the given individual  #"
  $"
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ID Sex Age Class 
at Urine 

Collection* 

Number of Urine 
Samples 

Number of Positive  
Urine Samples 

Bwoba Male Adult 2 0 
Bahati Female Immature 3 1 
Black Male Adult 1 1 
Banura Female Adult 1 0 
Bob Male Adult 2 0 
Beti Female Immature 1 0 
Clea Female Adult  1 0 
Duane Male Adult 2 0 
Emma Female Immature 3 3 
Fred Male Immature 1 0 
Gashom Male Adult 2 1 
Gonza Female Immature 3 0 
Harriet Female Adult 3 1 
Hawa Male Immature 3 0 
Juliet Female Adult 2 1 
Jambo Male Adult 3 2 
Janie Female Adult 1 1 
Janet Female Infant 2 0 
Katia Female Infant 3 0 
Keti Female Immature 1 1 
Kigere Female Adult 1 0 
Kalema Female Adult 3 1 
Kana Female Immature 1 0 
Kato Male Immature 3 1 
Kutu Female Adult 1 0 
Kwera Female Adult 1 0 
Kewaya Female Adult 3 3 
Kwezi Male Immature 4 2 
Maani Male Infant 2 0 
Mukwano Female Adult 1 0 
Melissa Female Adult 1 1 
Mark Male Immature 1 0 
Musa Male Adult 3 0 
Nambi Female Adult 1 0 
Nkojo Male Adult 3 0 
Nick Male Adult 2 0 
Nora Female Immature 3 1 
Rachel Female Immature 1 0 
Ruhara Female Adult 1 0 
Sabrina Female Adult 3 1 
Shida Female Immature 3 0 
Squibbs Male Adult 1 0 
Tinka Male Adult 2 0 
Wilma Female Adult 3 2 
Zana Female Adult 4 0 
Zefa Male Adult 3 0 
Zig Male Immature 1 0 
Zalu Male Immature 1 0 
Zimba Female Adult 2 1 
*Infants (! 4 y), Immatures (males: 5 – 14 y, females: 5 – 13 y) 
  Adults (males: > 14 y, females > 13 y)  
!
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e. ID Subspecies Sex Date of birth* Positive samples 
Amahoro G. b. beringei Male 3/20/02 0 
Bikenge G. b. beringei Male 2/3/01 0 
Binyindo G. b. beringei Female Adult 0 
Bukima G. b. beringei Female 7/3/94 0 
Bukumu G. b. beringei Female Adult 0 
Dufantanye G. b. beringei Female 10/24/89 0 
Dunia G. b. graueri Female 3/7/06 0 
Gukunda G. b. beringei Female 1/1/73 0 
Icyi G. b. beringei Female 6/13/04 0 
Icyzere G. b. beringei Female 1/1/97 0 
Inkumbuza G. b. beringei Male Infant 0 
Isoni G. b. beringei Female Adult 0 
Itebero G. b. graueri Male 11/4/03 0 
Joli Ami G. b. beringei Male Adult 0 
Juma Unknown Unknown Unknown 0 
Kaboko G. b. beringei Male Infant 0 
Kagofero G. b. beringei Female Adult 0 
Kajoriti G. b. beringei Male 1/1/94 0 
Kibeye G. b. beringei Female 1/1/88 0 
Kidole G. b. beringei Female Adult 0 
Kubinya G. b. beringei Female 8/1/81 0 
Kureba G. b. beringei Male  29/03/2003 

 
0 

Maisha G. b. beringei Female Infant 0 
Manzero G. b. beringei Female Adult 0 
Mararo G. b. beringei Female 6/1/98 0 
Missing Finger G. b. beringei Female 1/1/85 0 
Mpore G. b. beringei Female 3/20/02 0 
Mukecuru G. b. beringei Female Adult 0 
Mukecuru-Humba G. b. beringei Female 1/1/69 0 
Munyinya G. b. beringei Male  7/20/2008 0 
Mvuyekure G. b. beringei Female Infant 0 
Mwirakazi G. b. beringei Female  Unknown 0 
Ndunguntse G. b. beringei Male Juvenile 0 
Ntabwoba G. b. graueri Male Infant 0 
Okapi G. b. beringei Male 5/20/02 0 
Pasika G. b. beringei Female 4/1/91 0 
Pinga G. b. graueri Female 9/7/08 0 
Puck G. b. beringei Female 12/15/68 0 
Ruvumu G. b. beringei Female 9/2/95 0 
Sebagabo G. b. beringei Male Juvenile 0 
Serufuli G. b. graueri Female 3/25/2007 0 
Tumaini G. b. graueri Female  1/19/2005 0 
Tuyishimi G. b. beringei Female 3/21/89 0 
Umrava G. b. beringei Male 1/4/86 0 
Umwe G. b. beringei Female 3/13/00 0 
Walanza G. b. beringei Female 1/1/69 0 

* Age class is denoted when date of birth is not known !

114



Table C.4: Oligonucloetide primers used in Trichomonas spp. and Chlamydia
spp. PCR.Table S5. Oligonucloetide primers used in Trichomonas spp. and Chlamydia spp. PCR !"#

 !$#
Primer ID Sense PCR Type1 Sequence (5’ – 3’)  
TFR1 Forward Trichomonas primary1 TGCTTCAGTTCAGCGGGTCTTCC 
TFR2 Reverse Trichomonas primary1 CGGTAGGTGAACCTGCCGTTGG 
K1-5.8S-100 Forward Trichomonas secondary2 GTCTTGGCTCCTCACACGATG 
K1-28S-338 Reverse Trichomonas secondary2 CTTCAGTTCAGCGGGTCTTCCT  
CG-Omp-1-F Forward Chlamydia primary3 AGGTAAGWATGAAAAAACTCTTGAAA!
CG-Omp-424-R Reverse Chlamydia primary3 CAGAAWAYATCAAARCGATCCCA 
CG-Omp-78-Fi Forward Chlamydia secondary3 CCTGTRGGGAAYCCWGCTGAACCAAG 
CG-Omp-219-Ri Reverse Chlamydia secondary3 CGAAAACAWARTCTCCGTAG 
Cycling parameters: !%#
1 94°C for 2min, 40 cycles of (94°C for 30 sec, 66°C for 30 sec, 72°C for 1 min), 6 min at 72°C !&#
2 94°C for 2min, 40 cycles of (94°C for 1 min, 50°C for 1 min, 72°C for 1 min), 10 min at 72°C !'#
3 94°C for 2min, 40 cycles of (94°C for 1 min, 50°C for 1 min, 72°C for 1 min), 10 min at 72°C ()#
 (*#
Table S6. Model estimates for predictors of urine sample Trichomonas spp. infection status (full (!#
table)  ((#
 (+#
Predictor Estimate SE P 
Intercept  0.57 0.57 0.315 
Sex (male)1  -0.49 0.23 0.037 
Age  0.02 0.01 0.112 
Season (wet)2 -0.62 0.25 0.014 
Year3    
 1999  1.69 1.19 0.158 
 2000 -0.09 1.04 0.934 
 2001 -0.71 0.76 0.352 
 2002 -0.40 0.73 0.587 
 2003 -1.89 0.67 0.005 
 2004 -0.94 0.63 0.136 
 2005 -0.35 0.67 0.606 
 2006 -1.87 0.70 0.008 
 2007 -1.35 0.62 0.029 
 2008 -16.19 1373.00 0.991 
 2009 -0.83 0.57 0.142 
 2010 -1.08 0.54 0.045 

1Baseline sex is female ("#
2Baseline season is dry ($#
3Baseline year is 1998 (%#
 (&#
 ('#
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Table C.5: Model estimates for predictors of urine sample Trichomonas spp.
infection status (full table).

Table S5. Oligonucloetide primers used in Trichomonas spp. and Chlamydia spp. PCR !"#
 !$#
Primer ID Sense PCR Type1 Sequence (5’ – 3’)  
TFR1 Forward Trichomonas primary1 TGCTTCAGTTCAGCGGGTCTTCC 
TFR2 Reverse Trichomonas primary1 CGGTAGGTGAACCTGCCGTTGG 
K1-5.8S-100 Forward Trichomonas secondary2 GTCTTGGCTCCTCACACGATG 
K1-28S-338 Reverse Trichomonas secondary2 CTTCAGTTCAGCGGGTCTTCCT  
CG-Omp-1-F Forward Chlamydia primary3 AGGTAAGWATGAAAAAACTCTTGAAA!
CG-Omp-424-R Reverse Chlamydia primary3 CAGAAWAYATCAAARCGATCCCA 
CG-Omp-78-Fi Forward Chlamydia secondary3 CCTGTRGGGAAYCCWGCTGAACCAAG 
CG-Omp-219-Ri Reverse Chlamydia secondary3 CGAAAACAWARTCTCCGTAG 
Cycling parameters: !%#
1 94°C for 2min, 40 cycles of (94°C for 30 sec, 66°C for 30 sec, 72°C for 1 min), 6 min at 72°C !&#
2 94°C for 2min, 40 cycles of (94°C for 1 min, 50°C for 1 min, 72°C for 1 min), 10 min at 72°C !'#
3 94°C for 2min, 40 cycles of (94°C for 1 min, 50°C for 1 min, 72°C for 1 min), 10 min at 72°C ()#
 (*#
Table S6. Model estimates for predictors of urine sample Trichomonas spp. infection status (full (!#
table)  ((#
 (+#
Predictor Estimate SE P 
Intercept  0.57 0.57 0.315 
Sex (male)1  -0.49 0.23 0.037 
Age  0.02 0.01 0.112 
Season (wet)2 -0.62 0.25 0.014 
Year3    
 1999  1.69 1.19 0.158 
 2000 -0.09 1.04 0.934 
 2001 -0.71 0.76 0.352 
 2002 -0.40 0.73 0.587 
 2003 -1.89 0.67 0.005 
 2004 -0.94 0.63 0.136 
 2005 -0.35 0.67 0.606 
 2006 -1.87 0.70 0.008 
 2007 -1.35 0.62 0.029 
 2008 -16.19 1373.00 0.991 
 2009 -0.83 0.57 0.142 
 2010 -1.08 0.54 0.045 

1Baseline sex is female ("#
2Baseline season is dry ($#
3Baseline year is 1998 (%#
 (&#
 ('#
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