

KEYWORD SEARCH IN THE GLYCOMICS PORTAL

by

KI TAE MYOUNG

(Under the Direction of John A. Miller)

ABSTRACT

In this thesis, I have developed keyword search capabilities for the GlycomicsPortal,

where a user can simply type keywords to access information. The search includes parsing of the

user keywords, searching the parsed user keywords in Lucene, retrieving information from

Lucene search results and the database, finding common portal objects from the retrieved

information, and ranking the retrieved information. On the result page, users can see reasons for

all results. Each reason is displayed indicating how the search rank algorithm works, so that the

users can understand why the result was found and how the rank score was calculated. We also

have the advanced search where a user can specify different options such as a phrase search,

proximity search, or field restriction. In the advanced search, a query is generated based on the

user’s keywords and specified options. Here, the user can restrict to fields or specify Boolean

operators (AND, OR, and NOT), or choose a phrase or proximity search. Since results are

hyperlinks, the user can navigate through the list of ranked results to examine the details of each.

INDEX WORDS: GlycomicsPortal, Full text search in relational databases, Keyword search

in relational databases

KEYWORD SEARCH IN GLYCOMICS PORTAL

by

KI TAE MYOUNG

B.A. University of Mississippi, 2009

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment

of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2012

© 2012

Ki Tae Myoung

All Rights Reserved

KEYWORD SEARCH IN THE GLYCOMICS PORTAL

by

KI TAE MYOUNG

 Approved:

 Major Professor: John A. Miller
 Ismailcem Budak Arpinar

 Committee: Krzysztof J. Kochut
 William York

Electronic Version Approved:

Maureen Grasso
Dean of the Graduate School
The University of Georgia
May 2012

iv

DEDICATION

Our Father in heaven,

hallowed be Your name,

Your kingdom come, Your will be done on earth, as it is in heaven.

Give us today our daily bread.

Forgive us our debts, as we also have forgiven our debtors,

and lead us not into temptation, but deliver us from the evil one.

For Yours is the Kingdom, and the power, and the glory, forever, Amen.

v

ACKNOWLEDGEMENTS

 Thanks to Dr. Miller for his time and devotion on my work. Without his advise, I would

not be finishing my thesis. I specially thank to Rene Ranzinger for being my teacher and his

time. Thanks to Dr. Kochut for his keen advise at every Friday meeting. Thanks to Dr. York for

his support and advise. Last, thanks to Dr. Arpinar who always encourages me. My work would

not be finished without support and help from these professors and Rene.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS...v

LIST OF TABLES... viii

LIST OF FIGURES ... ix

CHAPTER

1 INTRODUCTION .. 1

1.1 Overview of the work ... 1

2 BACKGROUND AND RELATED WORK .. 5

2.1 Introduction... 5

2.2 Advanced full text search.. 6

2.2 Limitations in query languages for relational databases................................... 6

3 ARCHITECTURE AND SOFTWARE COMPONENTS.. 11

3.1 Architecture... 11

4 KEYWORD	
 SEARCH ... 13

4.1 Regular Search .. 13

4.2 Advanced Search .. 27

5 EVALUATION OF WORK ... 29

6 CONCLUSIONS AND FUTURE WORK ... 36

vii

6.1 Conclusions... 36

6.2 Future Work .. 36

REFERENCES ..37

APPENDICES

 A Result scores with different standard deviations ...39

 B Queries ...52

 C User guide ..56

viii

LIST OF TABLES

Page

Table 1: 8 human queries used in the evaluation.. 31

Table 2: 8 advanced search queries with Boolean operators used in the evaluation 31

Table 3: 18 different advanced search queries for each human query used in the evaluation...... 32

Table 4: A precision, recall and F0.5 score .. 32

ix

LIST OF FIGURES

Page

Figure 1: The schema picture in BANKS... 8

Figure 2: A Fragment of the database picture in BANKS.. 8

Figure 3: An example of a search result in BANKS... 9

Figure 4: Architecture of GlycomicsPortal search ... 11

Figure 5: UML class diagram of searchable portion of the GlycomicsPortal 14

Figure 6: UML activity diagram of the search algorithm... 16

Figure 7: SearchResults Java class... 18

Figure 8: An example of combining searchable fields ... 20

Figure 9: An example of a PortalDocument ... 20

Figure 10. Key variables and functions in search rank algorithm .. 22

Figure 11. Search rank algorithm ... 23

Figure 12: The advanced search query with an example.. 27

Figure 13. Average F0.5 scores of 8 search queries compared to Expert1’s answer. 33

Figure 14. Average F0.5 scores of 8 search queries compared to Expert2’s answer. 33

Figure 15: An example of regular search.. 57

Figure 16: An error page in regular search ... 57

Figure 17: Search button in regular search ... 58

Figure 18: No results page in regular search .. 58

x

Figure 19: Results in regular search ... 59

Figure 20: An explanation of advanced search... 60

Figure 21: A search query in advanced search ... 61

Figure 22: An example of expanding a search query in advanced search.................................... 62

1

CHAPTER 1

INTRODUCTION

1.1 Overview of the work

Over the last two decades, a large number of GlycoInformatics tools and systems have

been developed [1]. They include databases, Web applications, Web services and workflows.

Even though most tools and systems are accessible to users, the users are not aware of many of

them. It is hard for a user to know about all of the existing tools and systems, or even the ones

that the user is interested in. Also, searching for tools can be tedious and time-consuming. Most

tools are available on Websites, each of which has a Web address. Typically, users will find

hyperlinks that do not provide details about how to use the tools, so they will need to search for

additional documentation about the tools. Unfortunately, such information is often not up-to-

date, or the links are not working properly. Therefore, there is a need to address these

shortcomings, in particular, for scientists working in the Glycomics domain, as there currently is

little support in this domain.

To address the needs of scientists working in Glycomics, the GlycomicsPortal has been

created. The GlycomicsPortal (http://glycomics.ccrc.uga.edu/GlycomicsPortal/) is a Web-based

portal where researchers can register and find tools for GlycoInformatics. The portal contains

descriptions, keywords and user comments about more than 60 GlycoInformatics tools and

databases.

2

PostgreSQL, Hibernate, and Webwork are used for a database management system,

Object Relational Mapping tool, and Web application framework, respectively in the portal.

Information is stored in our portal database and is periodically updated. As the amount of

information increases, it becomes difficult to search for relevant information.

In the past, to search in a relational database, a user would need to know the schema of

the database and the query language. Currently, database management systems provide

alternative solutions, such as keyword search. A user can simply type keywords to access

information and get ranked results. There are two common approaches for searching in a

relational database: full text search provided by the databases and third-party database search

tools.

The full text search (keyword search) is implemented by relational database management

systems such as IBM DB2, Microsoft SQL Server, Oracle, PostgreSQL, and MySQL. According

to the PostgreSQL Website, “an index cannot span multiple tables” [5]. In other words, an index

cannot be created on joins of tables. Thus, in order to search in multiple tables, an index needs to

be created on each table. After the indexing, we query on each index of a table. However, it is

not enough to capture relationships between the tables. To capture the relationships results from

all the queries need to be joined. However, the results show only linked tuples that matched

every table that was queried. In order to retrieve results that are partially matching the user

search words, the OR operator and the WHERE clause are used with tables as shown in

Appendix A. Unfortunately, this becomes too slow as more tables are added.

Several third-party database search tools exist such as Hibernate Search [8], Solr [9], and

Compass [10], which are built on Lucene [12]. Results of full text search (e.g., full text search

3

query is ‘cancer lectin’) in a database are often a set of tuples, each of which is a list of

information stored in the database. Also, these results can be related to each other in the database

through foreign key references. Unfortunately, Lucene does not support the JOIN operator,

which enables joining results to find relationships among the results. In other words, none of the

third-party database search tools mentioned above are able to capture the relationships in the

results. Thus, we query on each table and then join the results from the queries. Unfortunately,

after the join, no ranking on the results is available.

As commonly available search mechanisms and tools are not sufficient for our particular

search problem, solutions from research literature are sought. One research prototype called

BANKS (Browsing ANd Keyword Searching) [3] allows searching over multiple tables utilizing

relationships to provide search results. BANKS uses a directed graph for the database where

each node and edge represents a tuple and foreign key to primary key relationship, respectively.

First, tuples matching a user’s search keywords are retrieved from a database. Next, BANKS

finds a common tuple of the results. Finding the common tuple means finding connections

between tuples in the search results. Unfortunately, BANKS is not available to the public.

Thus, we used the idea of finding a common tuple connecting the results used in BANKS

and created the portal-object centered database structure where a main object is connected to all

other objects in the database. Using this database structure, we can find a main object as a

common object based on the individual search results. First, Lucene documents (including table

name and “row id”, e.g., example.hibernateClass.Keyword and row41) matching the user’s

search keywords are retrieved from Lucene indexes. From the table names and row ids, we

4

access the corresponding tuples in the database. We then find the main object by following the

relationships in the retrieved tuples.

In this thesis, I have developed keyword search capabilities for the GlycomicsPortal,

where a user can simply type keywords to access information. The search includes parsing of the

user keywords, searching the parsed user keywords in Lucene, retrieving information from

Lucene search results and the database, finding common portal objects from the retrieved

information, and ranking the retrieved information. On the result page, users can see rank

reasons for all results. Each rank reason is displayed indicating how the search rank algorithm

works, so that the users can understand why the result was found and how the rank score was

calculated. We also have the advanced search where a user can specify different options such as

a phrase search, proximity search, or field restriction. In the advanced search, a query is

generated based on the user’s keywords and specified options. Here, the user can restrict to fields

or specify Boolean operators (AND, OR, and NOT), or choose a phrase or proximity search.

Since results are hyperlinks, the user can navigate through the list of ranked results to examine

the details of each.

The rest of the thesis is organized as follows: Chapter 2 presents background information

and a brief overview of the recent approaches in the area of keyword search on databases.

Chapter 3 gives a brief overview of the software we used. Chapter 4 describes the

implementation of the search algorithm. Chapter 5 presents the evaluation of the results. Chapter

6 contains the conclusions of the work and suggests future work.

5

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Introduction

Keyword search provides a simple way to access information in a database for a user by

typing keywords. Full text search for relational databases provides keyword search and rank

capabilities. It has been implemented on relational database management systems such as IBM

DB2, Microsoft SQL Server, Oracle, PostgreSQL, and MySQL. Unfortunately, there are some

limitations within those systems. In order to use full text search functions fully, a user needs to

know the database schema and the query language. If the user’s keywords are found in several

database tables, then the user has to figure out which tables contain the search terms and how to

join the tables to retrieve a result. Most Web search engines, for instance, Google or Bing,

support keyword search. Keyword search is the most popular search method because of its

simplicity, and users do not need to know additional information such as query languages or

database schemas. Unfortunately, keyword search cannot be applied directly to the database.

Information needed to answer the user query is often found across multiple tables because of

data normalization. To overcome this problem, many advanced full text search systems for

relational databases have been developed. In the following sections, I introduce a brief overview

of advanced full text search for relational databases. Then, I explain limitations in query

languages for relational databases, full text search in free relational database management

6

systems and Lucene-based search tools. Then, I will explain the current advanced full text search

system in BANKS.

2.2 Advanced full text search

Traditional approaches for full text search focused on efficient ways of retrieving

documents, but recent approaches (advanced full text search) focus on relationships of tuples in a

relational database [1,2,3,4,13,14]. Finding connections between tuples reveals relationships of

these tuples. Generally, two techniques are used to find relationships. Keywords are searched on

a schema graph where a relational database schema is considered as a directed graph or a data

graph where parts of relational database containing a user’s keywords are mapped into a graph

[11]. I then show what is available in relational databases.

2.2 Limitations in query languages for relational databases

SQL query is a common query language for searching in a relational database.

Converting a user’s keywords into an SQL query enables one to capture relationships between

search results. However, after executing an SQL query, there is no rank score available. This is a

limitation in query languages for relational databases. I then show a limitation of full text search

in current relational database management systems in the following section.

2.3 Full text search in relational database management systems

Current database management systems enable full text search in a database. However, it

is not easy for a user to search keywords in multiple tables. The example shown below is a full

7

text search query found at the MySQL Website [5]:

SELECT * FROM articles WHERE MATCH (title,body)

In order to search over multiple tables, the user has to know how to combine tables in the

database and needs to know column names as well. According to the MySQL Website, “A full-

text search that uses an index can name columns only from a single table in the MATCH() clause

because an index cannot span multiple tables” [5]. This is a common issue with full text search

systems in existing systems.

2.4 Lucene full text search

Lucene is a free Java search engine library that can be used to search in multiple

documents, based on Lucene index. Lucene uses inverted indexes for a search, where each

keyword maps to documents containing keyword. With inverted indexes, Lucene search is faster

than the full text searches implemented in relational database management systems [4].

However, Lucene does not directly support searching databases. There are open source tools

built using Lucene such as Solr, Hibernate search, and Compass, which support full text search

in a database. However, the full text search in these systems do not support the JOIN operator. In

other words, the full text search does not capture relationships between tuples matching the

user’s keywords.

2.5 Advanced full text search using a graph in BANKS

In BANKS [3], tuples containing keywords are retrieved from the database, and then an

8

index is created, which contains ids of the tuples and node ids, one of which represents a

corresponding tuple. We assume that a directed graph as a model of the database is already

created. A tree structure is created from the tuples containing the keywords. The index is used to

map nodes in the tree structure to tuples. Another index is also created for mapping user

keywords to ids of tuples where the user keywords are found.

BANKS uses the idea of finding a common root from tuples that contain user keywords.

Finding the common root means finding connections between tuples that contain user keywords.

BANKS uses a directed graph for the database where each node and edge represents a tuple and

foreign key to primary key relationship, respectively.

Figure 1: Example schema graph used in BANKS

Figure 2: A fragment of the database picture in BANKS

9

Figure 3: An example of a search result in BANKS

The above three figures describe the main algorithm in BANKS. Figure 1 shows an example of a

part of the schema in BANKS. First, we explain the example in Figure 2. The Paper tuple has

relationships with three Author tuples, each of which has an author name, Soumen, Sunita and

Byron, respectively. In other words, the paper described in the Paper tuple is written by the three

authors. Then, we explain how to find the Paper tuple for the user’s keywords (Soumen, Sunita)

in BANKS.

There are the following four major steps:

1) Searching the user’s keywords in the database

2) Returning associated nodes for the retrieved tuples

3) Finding a common root node from the nodes

4) Showing the results

We then explain how each step works in detail:

1) Searching the user’s keywords in the database

10

The user’s keywords are searched in the database. Tuples matching the user’s keywords

are retrieved from the database.

2) Returning associated nodes for the retrieved tuples

The nodes corresponding to the tuples are retrieved. There are two Author tuples where

the keywords are found, because we can find two Author nodes that contain keywords (nodes’

ids are SoumenC and SunitaS, respectively) as shown in Figure 2.

3) Finding a common root node from the nodes

There is a relationship between an Author table and a Writes table. Two Writes nodes are

discovered for the two Author nodes following the foreign key to primary key relationships.

Then, the common root, the Paper tuple, is discovered. This is how to form a tree in BANKS,

and this algorithm is called the backward expanding search algorithm [3]. The backward

expanding search algorithm uses Dijkstra’s algorithm to find the shortest path to the common

root.

4) Showing the results

Figure 3 shows the search result for the user’s keywords. The result is a tree, which keeps

corresponding nodes to the joins of tuples containing the user’s keywords following foreign key

relationships.

BANKS uses a schema graph where a relational database schema is considered as a

directed graph to find relationships of tuples in a database. In the following chapters, I will

introduce full text search in the GlycomicsPortal where Lucene and PostgreSQL are used to find

relationships between tuples in our database.

11

CHAPTER 3

ARCHITECTURE AND SOFTWARE COMPONENTS

This chapter shows the architecture of the GlycomicsPortal. Also, we give a brief overview of

the software to develop the portal.

3.1 Architecture

Figure 4: Architecture of GlycomicsPortal search

12

1) Lucene search

 Lucene 3.0.3 is the core part of our search. It is a free and powerful Java search engine

library. It supports different queries such as wildcard search and fuzzy search. A user’s keywords

are converted into a Lucene search string. Lucene search then uses this Lucene search string on

one or more Lucene indexes and returns a set of Lucene documents. Lucene indexes are used to

index various tables in the GlycomicsPortal database.

2) Hibernate Search

 Hibernate Search 3.3.0.Final is built on Lucene and is a sub project of Hibernate.

Hibernate is a free ORM (Object Relational Mapping) tool for mapping between Java objets and

a relational database. Lucene indexes are built by the Hibernate Search tool, which also controls

updating the index for changes in the database.

3) Information extractor

 After retrieving the set of Lucene documents from Lucene search, we extract information

of fields containing the user’s keywords and portal objects that are entries in the main table

PortalObject. More details are explained in chapter 4.

4) Ranking system

 Using the extracted information, we calculate importance of the user’s keywords, fields

and portal documents as shown in Chapter 4.1.3. An importance aspect of searching for portal

documents is the rank score for the user’s keywords search.

13

CHAPTER 4

KEYWORD	
 SEARCH	

In this chapter, we introduce how our database structure helps our search, and explain the

implementation of regular search and advanced search. Also, we show the algorithm used to rank

the search results.

4.1 Regular Search

In this section, we introduce the database structure in the GlycomicsPortal and explain

the implementation of regular search.

4.1.1 Database	
 structure	
 of	
 GlycomicsPortal	

 Information is spread out across several tables in the database. In the database, all

information is related to the main table entries, each of which is called a PortalObject.

PortalObjects have four sub-types: Web service, workflow, software and database.

14

Figure 5: UML class diagram of searchable portion of the GlycomicsPortal

Figure 5 shows the UML class diagram of the searchable portion of the GlycomicsPortal. The

main table, Portal Object, contains the common information about PortalObjects. Other tables

contain related information for the PortalObjects. Except four tables that are sub-types of Portal

Object, the other tables have 1:n or m-to-n relationships to the main table. Designing a portal-

object centered database facilitates finding relationships between search results. Search results in

the GlycomicsPortal are PortalObjects along with relevant information in related tables. We can

create a PortalDocument by joining the tuples resulting from the Lucene searches following

relationships indicated by foreign keys incident upon a common Portal Object.

15

4.1.2 Search Algorithm

The search algorithm has the following seven major steps (or 8 individual steps/activities

as shown in Figure 6):

1) Processing the user’s query (step 1)

2) Searching the parsed user’s keywords using Lucene (step 2)

3) Retrieving information from Lucene search results (step 3)

4) Finding common PortalObjects from the retrieved information (steps 4 - 5)

5) Grouping the retrieved information by PortalObjects (step 6)

6) Ranking the retrieved information (step 7)

7) Displaying the results (step 8)

Figure 6 shows how the search algorithm works with an example. I then explain how each step

works in detail.

16

Figure 6: UML activity diagram of the search algorithm

1) Processing the user’s query

For regular search, the user’s query string is tokenized using

LuceneStandardAnalyzer, which removes stop words and converts the keywords into

lowercase. Then, the filtered keywords are saved into a Set<String> collection to remove

duplicates.

For advanced search, each character in the user’s query is checked using validation rules.

While validating the user’s query, a tree-based data structure is also built to represents the query.

17

2) Searching the filtered keywords in Lucene

The filtered keywords in the Set<String> collection are searched over Lucene

indexes. Lucene search uses inverted indexes, which are automatically built and updated by

HibernateSearch. First, the filtered keywords are searched over the Lucene indexes using the

Lucene wildcard (*) and the Boolean OR operator. For instance, if the filtered keywords are ‘A

B C’, then the Lucene search string becomes “*A* OR *B* OR *C*”. This string is passed to

the parse method of Lucene’s queryParser, which generates an expanded search string that

includes all searchable fields in the database. In order to retrieve the results/hits (up to 100)

based on the expanded search string, the search method of Lucene’s indexSearcher is called as

shown below:

indexSearcher.search(queryParser.parse(“*A* OR *B* OR *C*”), 100)

Each hit corresponds to a tuple in the database that matched part of the expanded search

string. Each hit contains information about the tuple, including the table name, primary key and

all matching searchable fields with corresponding values for the tuple. Note, not all fields in the

database are searchable, because some contain private information or information that is not

useful for searching.

3) Retrieving information from Lucene search results

In this step, information about the searchable fields is retrieved from each hit. Although

Lucene indicates whether a tuple matches the expanded search string, it does not indicate which

of the searchable fields actually matched. Thus, I have created a field extractor that retrieves the

fields that matched the expanded search string. If a field contains one of the filtered keywords,

18

then the field extractor retrieves the field’s information and offsets of the filtered keywords. The

offsets of the filtered keywords are retrieved from the TermPositionVector of

Lucene.index, which also stores the frequencies of all terms in the searchable fields. All the

retrieved information is stored in an object called SearchResults as shown in Figure 7.

Figure 7: SearchResults Java class

4) Finding common PortalObjects from the retrieved information

After retrieving the information, we find associated tuples in the database using table

names and primary keys. We then join each tuple with the main table to find a common

19

PortalObject using the Hibernate Query Language (HQL). An example of a HQL is shown

below.

SELECT distinct O.id

FROM PortalObject AS O inner join O.objectToKeywords as OK

WHERE keyword_id = :id

This query retrieves the ids of PortalObjects from the join of Portal Object and its associations

where the id for the keyword is given by the parameter :id (for example, in Figure 6 :id = 43).

5) Grouping the retrieved information by PortalObjects

After PortalObjects are found from the retrieved information, we group this information

by PortalObjects, because we want to know which searchable fields stored in the database are

related to which PortalObjects. During the grouping by PortalObjects, parts of the retrieved

information such as offsets or search words (as shown in Figure 8) are combined. An example of

combining the information is shown in Figure 8. After combining, we can see which

PortalObject is related to which searchable fields and which user’s keywords. Figure 9 shows an

example of a PortalDocument that results from combining information in the common

PortalObject’s group.

20

Figure 8: An example of combining searchable fields

Figure 9: An example of a PortalDocument

21

6) Ranking the retrieved information

Based on the information in each PortalDocument, we rank the PortalObjects to indicate

how well they match the keywords. The algorithm used to rank PortalObjects is a modified

version of the original tf_idf algorithm, which is explained in the next section. In this step, we

also show which fields are matched and on what keywords.

7) Displaying the results

For each ranked PortalObject, the name, description and rank score of the PortalObject

are shown in the search result page. Each search result has a link to the detailed description page

where more information about the PortalObject is shown such as keywords and publications. An

example of a result is shown in Appendix C.

4.1.3 Search Rank Algorithm

The rank algorithm is slightly modified from the original tf-idf (term frequency – inverse

document frequency) formula [7]. We have added a function called match ratio (mr) that will be

1 if the keywords are found exactly in the text and will decrease as keywords are found

embedded in longer words. All the key variables used in the search rank algorithm are defined in

Figure 10 (a). Figure 10 (b) shows an example of how key variables are used in the search rank

algorithm. More details are available in Figure 11.

Variables:
k = a keyword, which is a string consisting of letters and numbers
Q = {k}representing a user’s query
t = a table in the Portal database
c = a column in the Portal database
f = t.c such that column c within table t is chosen to be a searchable field

22

F = {f}representing all the searchable fields
R = {r}representing all the rows containing k

Functions:
R(q) = select * from t where c LIKE ‘%k%’
 for any k in Q and t.c in F
 ResultsSet of rows matching a user’s keywords in their searchable fields
PO(q) = R(q) ∩ PortalObjects ∪{ r in PortalObject | ∃ r’ in R(q) where r’ joins with r}
 Set of PortalObjects directly or indirectly related to the ResultsSet
PD(q) = a merge of PO(q) and R(q) forming PortalDocuments

 For each PortalObject, all rows in the ResultSet referencing to this PortalObject are
joined with it.

fs(f) =a field score, which is a numerical value indicating the importance of f and is in the
range (0,1]

ncw(k,f,r) = numbers of characters in a word containing keyword k in row r of field f
nw(k,f,r) = numbers of words containing keyword k in row r of field f
npd(k,f) = number of PortalObjects referenced by field f, when the field contains keyword k.

(a)

(b)

Figure 10. Key variables and functions in search rank algorithm

23

Figure 11. Search rank algorithm

First, I explain the main idea of the search rank algorithm. As shown in Figure 11, from

the left hand side to the right hand side, I show the logic of the search rank algorithm. The

importance of each component (a keyword, field or document) is a numerical value representing

its importance. A modified tf_idf score indicates the importance of a keyword (k). A total field

score indicates the importance of all keywords in that field. A document score indicates the

importance of all fields containing the keywords in that document.

24

Next, we explain how the search rank algorithm works in detail. We will show all the

formulas used in the rank algorithm. For every formula, we give an example and description.

Match Ratio:

mr(k, f ,r) = len(k)
nw(k, f ,r)

 ⋅ 1
ncwj (k, f ,r)j=1

nw(k , f ,r)

∑
mr(k, f ,r)∈Z*

mr (lectin, publication_title, row43) = (6/2) · (1/14 + 1/7) = 0.643

The match ratio score shows how much the keywords are matched in words. For example, the

keyword ‘lectin’ is found two times in the words “CancerLectinDB” and “lectins” in the

publication_title field of the row43 in Figure 11. The length of each word containing the user’s

keyword is 14 and 7, respectively. Note that each occurrence of the word becomes a term in the

mr formula (e.g., if “lectins” appeared twice, the result would be (6/3) · (1/14+1/7+1/7) = 0.714).

Term Frequency:

tf (k, f ,r) = frequency of keyword k in row r of field f
tf (k, f ,r) ∈Z*

�

tf (lectin, publication_title, row43) = 2

This tf formula is an application of tf to PortalDocuments. A common variant of the tf formula is

shown below.

 tf (k,d) = the frequency of keyword/term k in document d

This tf formula is used to weigh frequently occurring keywords more highly. In the example, the

number of occurrences of the keyword lectin in the publication.publication_title field is 2.

25

Inverse Document Frequency:

idf (k,PD) = ln |PD |+1
| {pd ∈PD | k in pd} |+1

⎛
⎝⎜

⎞
⎠⎟

idf (k, f) ∈R*

�

idf (lectin, PD) = ln 62 +1
5 +1

⎛
⎝
⎜

⎞
⎠
⎟

= 2.351

This formula is an application of idf to PortalDocuments. A common variant of the idf formula is

shown below.

�

idf (k,D) = ln |D | +1
|{d∈D | k in d} | +1
⎛

⎝
⎜

⎞

⎠
⎟

This idf formula is used to weigh uncommon (or less frequently occurring) keywords more

highly. In the example, the total number of PortalDocuments is 62, while the number of

occurrences of the keyword ‘lectin’ in all the PortalDocuments is 5.

Modified tf_idf:

tf _ idf (k, f ,r) = tf (k, f ,r) ⋅ idf (k,PD) ⋅mr(k, f ,r)
tf _ idf (k, f ,r)∈R*

�

tf_idf (lectin, publication_title, row43)
= 2 ⋅ 2.351 ⋅ 0.643 = 3.023

The tf_idf shows the importance of the keyword. In each cell, the keyword either fully matched

or partially matched. Thus, we multiply the match ratio score of the keyword by the tf_idf score.

Cell Score:

cs(f ,r) = tf _ idf (k, f ,r)
k∈K
∑

cs(f ,r) ∈R*

�

tf_idf (lectin, publication_title, row43)
2 ⋅ 2.351 ⋅ 0.643 +
tf_idf (cancer, publication_title, row43)
2 ⋅ 3.045 ⋅ 0.714 +
= 7.373

26

The cell score show the importance of the keyword in that field in a given row. Several keywords

can be found in a cell defined by a particular field and row. Thus, we sum the tf_idf scores of the

keywords found in the cell. In the example, two keywords (lectin, cancer) are found in the field

(publication_title) in the row43.

Total Field Score:

tfs(pd, f) = fs(f) ⋅ cs(f ,r)
r∈R(pd)
∑

tfs(pd, f) ∈R*

�

tfs (70, publication_title) = 1 ⋅ 7.373 = 7.373

A total field score indicates the importance of all keywords in that field. We multiply the sum of

cell scores by the field score of publication_title, which is manually assigned and stored in the

database. The function R(pd) represents a set of rows that contain keywords and reference a

particular PortalDocument. In the example, only one cell in the publication_title that contains

keywords and references PortalDocument 70.

Document Score:

ds(pd)= tfs(pd, f)
 f∈F
∑

ds(pd) ∈R*

�

ds(70) = tfs (70, publication_title) +
 tfs (70, description) +
 tfs (70, object_name) +
 tfs (70, keyword_name)

�

ds(70) = 7.373 +
 2.503 +
 2.313 +
 2.351
 = 14.539

27

The document score (ds) is the sum of all total field scores. Thus, a document score indicates the

importance of all fields containing the keywords in that document. We consider a higher

document score is more relevant to the keywords.

4.2 Advanced Search

4.2.1 Introduction

In this section, we introduce our advanced search. Advanced search is inspired by the

Pubmed’s advanced search where a query is generated based on a user’s inputs such as a field

name and keyword. Similarly, in our advanced search, a query is generated based on the user’s

inputs. An example of a query in advanced search is shown below.

Figure 12: The advanced search query with an example

The search query shown in Figure 12 is generated based on a user’s inputs. More details are

explained in Appendix B.

We explain how an advanced search query is performed in our system. Each keyword is

written between “<” and “>”, and each searchable field name is written between “[” and “]”.

First, a keyword and field are captured from an advanced search query. Next, the keyword and

28

field are passed into the function, which performs a search over Lucene indexes to retrieve

related information. A search is performed over Lucene indexes for each keyword with a field.

After retrieving the information, we find common PortalObjects and group the retrieved

information by PortalObjects. We then process Boolean Operators in the user query with all the

retrieved information.

4.2.2 Different search options

We show different options in advanced search in this section.

Proximity Search: Search for the exact matching words and different orders of a user’s

keywords can be found.

Phrase Search: Search for the words that are exactly matched.

Field Restriction: A user can restrict to fields.

Boolean Search: OR, AND or combination of OR and AND operators are available.

29

CHAPTER 5

EVALUATION OF WORK

There are free full text search systems available, such as Lucene, Hibernate Search and

PostgreSQL, but there are some drawbacks in these systems. We have attempted to make those

systems comparable to our full text search system. We explain why these full text search systems

are not comparable with our search system, and we describe our evaluation with human experts.

In order to perform a comparison, first, we need to create joins of each table containing

the searchable fields with the main table. These joins enable finding PortalObjects in the main

table from the tables that are queried and contain user’s keywords. Next, we create a big table

that contains all the joins using the OUTER UNION operator. The purpose of creating the big

table is to be able to capture the results partially matching the user’s keywords. Since a query on

joins of tables reveals only linked tuples that matched every table that was queried, we need to

create the big table. Then, we can create indexes of columns on the big table to perform full text

search that supports rank scores.

We then explain the drawbacks in these systems. The drawback of Lucene is that it does

not support the JOIN operator. Thus, we join each result returned from Lucene search with the

main table to find PortalObjects using PostgreSQL. However, after the join, there is no rank

score available. In other words, we do not have any criteria for the comparison.

30

Hibernate Search takes a Hibernate query and converts it to a Lucene query for full text

search. However, Hibernate Search does not support the JOIN operator when creating a full text

search query [8], we face the same issue that we have with Lucene.

For PostgreSQL, which supports the JOIN operator, there are different issues. In order to

create the big table, we need to use the OUTER UNION operator. Unfortunately, PostgreSQL

does not support the OUTER UNION operator yet. We also have tried to build joins of tables

containing all the searchable fields and save the result of the joins using the MATERIALIZED

VIEW operator. Using the MATERIALIZED VIEW, we can reuse the result of the joins. Then,

we can create an index on fields in the result to perform full text search. However, PostgreSQL

does not support the MATERIALIZED VIEW operator. Next, we tried to use the full text search

with tsvectors, which is described in the PostgreSQL Website [6]. The tsvectors becomes less

effective when there are many characters in a text. In other words, it becomes fairly slow. We

have also tried indexes of tsvectors to enhance the speed of a query. Even though we found it

faster than tsvectors, it is still not fast enough as shown in Appendix B.

Finally, we decided to compare our search results with results from two experts. We

show the precision and recall of our search for user queries and which search options give more

impact to our search. We created 8 queries written in English, each of which is converted to an

advanced search query that can be used in our search. The 8 queries are shown in Table 1, and

Table 2 shows the 8 advanced search queries with Boolean operators.

31

Table 1: 8 human queries used in the evaluation

Query 1: Find tools for processing Mass spectrometry

Query 2: Find tools for processing Glycosylation site prediction

Query 3: Find tools related to Carbohydrate

Query 4: Find databases related to Carbohydrate structure

Query 5: Find databases related to Enzyme OR Lectin

Query 6: Find carbohydrate structure databases that provide a substructure search

Query 7: Find all software and databases related to NMR

Query 8: Find all software and databases related to 3D structure of Glycan

Table 2: 8 advanced search queries with Boolean operators used in the evaluation

Query 1: Find tools for processing Mass spectrometry ="mass spectrometry[ALL] AND software[ALL]"

Query 2: Find tools for processing Glycosylation site prediction = "Glycosylation site prediction[ALL]

AND software[ALL]"

Query 3: Find tools related to Carbohydrate ="carbohydrate[ALL] AND software[ALL]"

Query 4: Find databases related to Carbohydrate structure ="carbohydrate structure[ALL] AND Data

source[ALL]"

Query 5: Find databases related to Enzyme or lectin ="Enzyme[ALL] OR lectin[ALL] AND Data

source[ALL]"

Query 6: Find databases that provide a substructure search ="sub structure search[ALL] AND Data

source[ALL]"

Query 7: Find all software and databases related to NMR ="nmr[ALL]

Query 8: Find all software and databases related to 3D structure of Glycan ="3D structure[ALL]"

For each query, we applied 6 different search options to find out which search options

give more impact to the search as shown in Table 3. For each search query with a search option,

we generate 3 queries, each of which uses only the OR, AND or both Boolean operators. Thus,

32

we have 8 advanced queries with 6 options, each of which has 3 queries. In other words, for each

query, there are 18 different queries are used as shown in Table 3.

Table 3: 18 different advanced search queries for each human query used in the evaluation

Boolean Operators Search Options Description
OR AND OR + AND

Regular No restrictions 1st 2nd 3rd
Phrase Only search for an exact user input 4th 5th 6th
Proximity Same as Phrase, but not ordered 7th 8th 9th
Field Restriction Can restrict to fields 10th 11th 12th
Phrase + Field Combination of Phrase and Field Restriction 13th 14th 15th
Proximity + Field Combination of Proximity and Field

Restriction
16th 17th 18th

We have calculated precision, recall, and F0.5 scores for each query. We then calculate the

average of the F0.5 scores. F0.5 score weights precision more than recall. This is why we have

used F0.5 instead of F1, which considers precision and recall equally. Table 4 shows how to

calculate precision, recall and F0.5 scores.

Table 4: A precision, recall and F0.5 score

 Retrieved Not retrieved
Number of relevant results a b
Number of irrelevant results c d
Precision a / (a+c)
Recall a / (a+b)
F0.5 score

�

(1+0.52)*Precision*Recall
0.52 *Precision +Recall

33

Precision is the number of relevant results retrieved divided by the total number of results

that are retrieved. Recall is the number of relevant results retrieved divided by the total number

of relevant results.

Figure 13. Average F0.5 scores of 8 search queries compared to Expert1’s answer.

Figure 14. Average F0.5 scores of 8 search queries compared to Expert2’s answer.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

34

We take two examples from the results performed (mean -1.3 * standard deviation used

as a cut-off threshold) as shown in Figure 13 and 14. Based on all the results in Appendix A, we

found that precision scores tend to get higher as we apply more options; combinations of

Boolean operators (as shown ORAND) show higher F0.5 scores than using only a Boolean

operator (as shown OR or AND) in Figures 13 and 14. It shows that it is hard to express a query

written in English using only the OR Boolean operator or AND Boolean operator. Also,

searching with the AND Boolean operator shows higher F0.5 scores than using the OR Boolean

operator. The reason, we found, is that most of the advanced search queries use the AND

Boolean operator. We also found that when fields are restricted, F0.5 scores and precision scores

get higher than when the other search options are applied. When fields are restricted, the user’s

keywords are found in the restricted fields. As a result of applying the field restrictions, precision

scores will be increased, because keywords found in other fields will not be retrieved. For

example, when a user searches for all PortalObjects of type software without applying field

restrictions, the word, ‘software,’ in a description field may also be retrieved. The word

‘software’ may also be found with databases or workflows. In this case, the search results

contain irrelevant results to the keyword ‘software’, which lowers the precision score of the

search results.

We then discuss what lowers the F0.5 scores. We observed that some user’s keywords

were not found by our search. In fact, all PortalObjects are related to the keyword,

‘carbohydrate’, but only some PortalObjects were retrieved. The reason is that this keyword is

similar in meaning to other words such as ‘glycan’. Without ontology or dictionaries, our search

35

system is not able to find synonyms or related words of the keyword. This would be a good

example that shows the limitation of text search without ontology.

36

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This chapter contains the conclusions about this work and suggests future work.

6.1 Conclusions

This thesis demonstrates a different approach to full text search in relational databases

using Lucene. We have developed a full text search, where a user can simply type keywords to

access information. The contribution of our work is as follows. Our keyword search is able to

search multiple tables in a relational database with rank capability. Next, we have built the

Lucene field extractor, which can retrieve the information about fields where the user’s

keywords are found. In section 6.2, I provide some ideas for future work.

6.2 Future Work

1. User search histories

The field scores can be generated based on the popularity scores of PortalObjects and

user search histories. The popularity scores of PortalObjects are not used in the GlycomicsPortal

yet, and the popularity score is the number of user clicks on each PortalObject. The user search

histories may reveal additional information such as the users’ interests, which can be used to find

out popular keywords among users and popular PortalObjects. Search histories may also reveal

how many active users there are, which can be used to show the popularity of the portal. The

37

portal makes use of the information to learn more about the users. This feature will improve the

rank for the search, because the field scores will be determined by the user search histories. Last,

the user search histories can be also used in the search bar to show similar search words that

were used before.

2.Stemming

 Stemming extracts a root form from a word. Using stemming, we can find the plural of a

word or different words having the same root form. For instance, two words (‘swimmer’ and

‘swimming’) have the same root form ‘swim’. Using this technique, we can find similar words

having the same meaning or derived from the same root.

3. Synonyms

Wordnet synonym sets can be used for finding synonyms. The synonyms are useful for

finding words similar to a user’s keyword when the keyword is not found in the search results.

The user keyword can be replaced with those similar words to retrieve relevant information. The

synonyms will be helpful to obtain desired results in the search.

38

REFERENCES

[1] Von der Lieth, C.-W.; Lütteke, T. and Frank, M. : The role of informatics in glycobiology

research with special emphasis on automatic interpretation of MS spectra. Biochim

Biophys Acta, 2006, 1760, 568-577

[2] Agrawal, S., S. Chaudhuri, et al. (2002). DBXplorer: A System for Keyword-Based

Search over Relational Databases. Proceedings of the 18th International Conference on

Data Engineering, IEEE Computer Society: 5.

[3] Hulgeri, A. and C. Nakhe (2002). Keyword Searching and Browsing in Databases using

BANKS. Proceedings of the 18th International Conference on Data Engineering, IEEE

Computer Society: 431.

[4] A. Arslan and O. Yilmazel, “A comparison of relational databases and information

retrieval libraries on turkish text retrieval,” in Natural Language Processing and

Knowledge Engineering, 2008. NLP-KE ’08. International Conference on, 19-22 2008,

pp. 1 –8.

[5] MySQL; http://dev.mysql.com/doc/refman/5.0/en/fulltext-natural-language.html,

accessed April 2012

[6] PostgreSQL; http://www.postgresql.org/docs/9.1/static/textsearch-controls.html, accessed

April 2012

[7] G. Salton, A. Wong, and C. S. Yang (1975), "A Vector Space Model for Automatic

Indexing," Communications of the ACM, vol. 18, nr. 11, pages 613–620.

[8] HibernateSearch; http://docs.jboss.org/hibernate/search/3.3/reference/en-US/html/search-

query.html, accessed April 2012

[9] Solr; http://lucene.apache.org/solr/, accessed April 2012

[10] Compass; http://compass-project.org, accessed April 2012

39

[11] Yu, Jeffrey Xu, Lu Qin, and Lijun Chang. "Keyword Search in Relational Databases: A

Survey." IEEE Data Eng. Bull. 1st ser. 33 (2010): 67-78. Web.

[12] Lucene; http://lucene.apache.org/core/, accessed April 2012

[13] Fang Liu, Clement Yu, Weiyi Meng, Abdur Chowdhury, Effective keyword search in

relational databases, Proceedings of the 2006 ACM SIGMOD international conference on

Management of data, June 27-29, 2006, Chicago, IL, USA

[14] A. Baid, I. Rae, J. Li, A. Doan, and J. Naughton, “Toward Scalable Keyword Search over

Relational Data,” Proceedings of the VLDB Endowment, vol. 3, no. 1, pp. 140–149, 2010.

40

APPENDIX A

RESULT SCORES WITH DIFFERENT STANDARD DEVIATIONS

This Appendix contains all the F0.5 scores with different standard deviations. We tested

our search results with 6 different standard deviation thresholds to measure, which give higher

F0.5 scores. The 6 different standard deviation thresholds are used (0, 1, 1.3, 1.5, 1.7 and 2.0).

For instance, the number “0” means the mean of rank scores of the results - 0 * standard

deviation used as a cute-off threshold.

Expert1 with no standard deviation
F0.5 score

Recall

0.3

0.4

0.5

0.6

0.7

0.8

0.9

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

0.5

0.6

0.7

0.8

0.9

1

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

41

Precision

Expert2 with no standard deviation
F0.5 score

Recall

Precision

0.3

0.4

0.5

0.6

0.7

0.8

0.9

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

0.5

0.6

0.7

0.8

0.9

1

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

42

Expert1 with one standard deviation from the mean
F0.5 score

Recall

Precision

0.4
0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

0.35

0.45

0.55

0.65

0.75

0.85

0.95

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

0.5

0.6

0.7

0.8

0.9

1

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

43

Expert2 with one standard deviation from the mean
F0.5 score

Recall

Precision

0.4

0.5

0.6

0.7

0.8

0.9

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

0.5
0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

44

Expert1 with 1.3 standard deviation from the mean

F0.5 score

Recall

0.4
0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

0.35

0.45

0.55

0.65

0.75

0.85

0.95

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

0.5

0.6

0.7

0.8

0.9

1

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

45

Precision

Expert2 with 1.3 standard deviation from the mean
F0.5 score

Recall

Precision

0.4

0.5

0.6

0.7

0.8

0.9

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

0.5

0.6

0.7

0.8

0.9

1

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

46

Expert1 with 1.5 standard deviation from the mean
F0.5 score

Recall

Precision

0.4
0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

0.3

0.4

0.5

0.6

0.7

0.8

0.9

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

0.5

0.6

0.7

0.8

0.9

1

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

47

Expert2 with 1.5 standard deviation from the mean
F0.5 score

Recall

Precision

0.4
0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

0.5

0.6

0.7

0.8

0.9

1

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

48

Expert1 with 1.7 standard deviation from the mean
F0.5 score

Recall

0.4
0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

0.3

0.4

0.5

0.6

0.7

0.8

0.9

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

0.5

0.6

0.7

0.8

0.9

1

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

49

Precision

Expert2 with 1.7 standard deviation from the mean
F0.5 score

Recall

Precision

0.4
0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

0.5

0.6

0.7

0.8

0.9

1

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

50

Expert1 with 2.0 standard deviation from the mean
F0.5 score

Recall

Precision

0.4
0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

0.3

0.4

0.5

0.6

0.7

0.8

0.9

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

0.5

0.6

0.7

0.8

0.9

1

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

51

Expert2 with 2.0 standard deviation from the mean
F0.5 score

Recall

Precision

0.4
0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

0.5

0.6

0.7

0.8

0.9

1

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

52

0.4
0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85

regular Phrase Proxi Field Phrase Field Proxi Field

OR

AND

ORAND

53

APPENDIX B

QUERIES

This appendix shows the queries used to build the joins of tables containing the searchable fields

in the database. In order to enable full text search and create the big table, we have tried to build

the big table using PostgreSQL queries. We show each query and its run time.

Query run time Query
No index With Index

Query 1 0.055 seconds 0.024 seconds
Query 2 6.405 seconds 2.35 seconds
Query 3 2.052 hours 1.445 hours

Query 1

SELECT	
 one.object_name,	
 two.name,	
 	

	
 	
 	
 	
 	
 	
 	
 (one.rank1	
 +	
 two.rank2)/2	
 AS	
 rank	

FROM	
 portal.object_to_keyword	
 OK,	

-­‐-­‐portal.object(description,object_name)	
 	
 	
 	
 	
 	

(SELECT	
 object_id,	
 object_name,	
 description,	
 ts_rank_cd	
 (to_tsvector('english',	
 object_name	
 ||	
 '	
 '	
 ||	
 description),	

query)	
 AS	
 rank1	
 	

FROM	
 portal.object,	
 to_tsquery('english','lectin:*	
 |	
 cancer:*	
 |	
 data:*	
 |	
 Damodaran:*	
 |	
 Jeyakani:*	
 |	
 stable:*	
 |	

open:*')	
 query	
 	

WHERE	
 query	
 @@	
 to_tsvector('english',	
 object_name	
 ||	
 '	
 '	
 ||	
 description)	
)	
 AS	
 one,	

-­‐-­‐portal.keyword(name)	

(SELECT	
 name,	
 keyword_id,	
 ts_rank_cd(to_tsvector('english',	
 name),	
 query2)	
 AS	
 rank2	
 	

FROM	
 portal.keyword,	
 to_tsquery('english','lectin:*	
 |	
 cancer:*	
 |	
 data:*	
 |	
 Damodaran:*	
 |	
 Jeyakani:*	
 |	
 stable:*	
 |	

open:*')	
 query2	
 	

WHERE	
 query2	
 @@	
 to_tsvector('english',	
 name)	
)	
 AS	
 two	

WHERE	
 (one.object_id	
 =	
 OK.object_id	
 AND	
 	

	
 	
 	
 	
 	
 two.keyword_id	
 =	
 OK.keyword_id)	
 ;	

54

Query 1 with indexes

SELECT	
 one.object_name,	
 two.name,	
 	

	
 	
 	
 	
 	
 	
 	
 (one.rank1	
 +	
 two.rank2)/2	
 AS	
 rank	

FROM	
 portal.object_to_keyword	
 OK,	

-­‐-­‐portal.object(description,object_name)	
 	
 	
 	
 	
 	

(SELECT	
 object_id,	
 object_name,	
 description,	
 ts_rank_cd	
 (poindex,	
 query)	
 AS	
 rank1	
 	

FROM	
 portal.object,	
 to_tsquery('english','lectin:*	
 |	
 cancer:*	
 |	
 data:*	
 |	
 Damodaran:*	
 |	
 Jeyakani:*	
 |	
 stable:*	
 |	

open:*')	
 query	
 	

WHERE	
 query	
 @@	
 poindex	
)	
 AS	
 one,	

-­‐-­‐portal.keyword(name)	

(SELECT	
 name,	
 keyword_id,	
 ts_rank_cd	
 (pkindex,	
 query2	
)	
 AS	
 rank2	
 	

FROM	
 portal.keyword,	
 to_tsquery('english','lectin:*	
 |	
 cancer:*	
 |	
 data:*	
 |	
 Damodaran:*	
 |	
 Jeyakani:*	
 |	
 stable:*	
 |	

open:*')	
 query2	
 	

WHERE	
 query2	
 @@	
 pkindex	
)	
 AS	
 two	

WHERE	
 (one.object_id	
 =	
 OK.object_id	
 AND	
 	

	
 	
 	
 	
 	
 two.keyword_id	
 =	
 OK.keyword_id)	
 ;	

Query 2

SELECT	
 one.object_name,	
 (one.rank1	
 +	
 two.rank2	
 +	
 three.rank3)/3	
 AS	
 rank	

FROM	
 portal.object_to_keyword	
 OK,	
 	

-­‐-­‐portal.object(description,object_name)	
 	
 	
 	
 	
 	

(SELECT	
 object_id,	
 object_type_id,	
 object_name,	
 development_status_id,	
 availibility_id,	
 description,	
 ts_rank_cd	

(to_tsvector('english',	
 object_name	
 ||	
 '	
 '	
 ||	
 description),	
 query)	
 AS	
 rank1	
 	

FROM	
 portal.object,	
 to_tsquery('english','lectin:*	
 |	
 cancer:*	
 |	
 data:*	
 |	
 Damodaran:*	
 |	
 Jeyakani:*	
 |	
 stable:*	
 |	

open:*')	
 query	
 	

WHERE	
 query	
 @@	
 to_tsvector('english',	
 object_name	
 ||	
 '	
 '	
 ||	
 description)	
)	
 AS	
 one,	

-­‐-­‐portal.keyword(name)	

(SELECT	
 name,	
 keyword_id,	
 ts_rank_cd(to_tsvector('english',	
 name),	
 query2)	
 AS	
 rank2	
 	

FROM	
 portal.keyword,	
 to_tsquery('english','lectin:*	
 |	
 cancer:*	
 |	
 data:*	
 |	
 Damodaran:*	
 |	
 Jeyakani:*	
 |	
 stable:*	
 |	

open:*')	
 query2	
 	

WHERE	
 query2	
 @@	
 to_tsvector('english',	
 name)	
)	
 AS	
 two,	

-­‐-­‐portal.object_type(object_type_name)	

(SELECT	
 object_type_id,	
 object_type_name,	
 ts_rank_cd(to_tsvector('english',	
 object_type_name),	
 query3)	
 AS	

rank3	
 	

FROM	
 portal.object_type,	
 to_tsquery('english','lectin:*	
 |	
 cancer:*	
 |	
 data:*	
 |	
 Damodaran:*	
 |	
 Jeyakani:*	
 |	
 stable:*	
 |	

open:*')	
 query3	
 	

WHERE	
 query3	
 @@	
 to_tsvector('english',	
 object_type_name)	
)	
 AS	
 three	

WHERE	
 (one.object_id	
 =	
 OK.object_id	
 AND	
 	

	
 	
 	
 	
 	
 two.keyword_id	
 =	
 OK.keyword_id)	
 OR	

	
 	
 	
 	
 	
 (one.object_type_id	
 =	
 three.object_type_id)	
 	

GROUP	
 BY	
 one.object_name,	
 one.rank1,	
 two.rank2,	
 three.rank3	

55

Query 2 with indexes

SELECT	
 one.object_name,	
 (one.rank1	
 +	
 two.rank2	
 +	
 three.rank3)/3	
 AS	
 rank	

FROM	
 portal.object_to_keyword	
 OK,	
 	

-­‐-­‐portal.object(description,object_name)	
 	
 	
 	
 	
 	

(SELECT	
 object_id,	
 object_type_id,	
 object_name,	
 development_status_id,	
 availibility_id,	
 description,	
 ts_rank_cd	

(poindex,	
 query)	
 AS	
 rank1	
 	

FROM	
 portal.object,	
 to_tsquery('english','lectin:*	
 |	
 cancer:*	
 |	
 data:*	
 |	
 Damodaran:*	
 |	
 Jeyakani:*	
 |	
 stable:*	
 |	

open:*')	
 query	
 	

WHERE	
 query	
 @@	
 poindex	
)	
 AS	
 one,	

-­‐-­‐portal.keyword(name)	

(SELECT	
 name,	
 keyword_id,	
 ts_rank_cd(pkindex,	
 query2)	
 AS	
 rank2	
 	

FROM	
 portal.keyword,	
 to_tsquery('english','lectin:*	
 |	
 cancer:*	
 |	
 data:*	
 |	
 Damodaran:*	
 |	
 Jeyakani:*	
 |	
 stable:*	
 |	

open:*')	
 query2	
 	

WHERE	
 query2	
 @@	
 pkindex	
)	
 AS	
 two,	

-­‐-­‐portal.object_type(object_type_name)	

(SELECT	
 object_type_id,	
 object_type_name,	
 ts_rank_cd(potindex,	
 query3)	
 AS	
 rank3	
 	

FROM	
 portal.object_type,	
 to_tsquery('english','lectin:*	
 |	
 cancer:*	
 |	
 data:*	
 |	
 Damodaran:*	
 |	
 Jeyakani:*	
 |	
 stable:*	
 |	

open:*')	
 query3	
 	

WHERE	
 query3	
 @@	
 potindex)	
 AS	
 three	

WHERE	
 (one.object_id	
 =	
 OK.object_id	
 AND	
 	

	
 	
 	
 	
 	
 two.keyword_id	
 =	
 OK.keyword_id)	
 OR	

	
 	
 	
 	
 	
 (one.object_type_id	
 =	
 three.object_type_id)	
 	

GROUP	
 BY	
 one.object_name,	
 one.rank1,	
 two.rank2,	
 three.rank3;	

Query 3

SELECT	
 one.object_name,	
 (one.rank1	
 +	
 two.rank2	
 +	
 three.rank3	
 +	
 four.rank4)/4	
 AS	
 rank	

FROM	
 portal.object_to_keyword	
 OK,	
 	

	
 	
 	
 	
 	
 portal.object_to_publication	
 PUB,	

-­‐-­‐portal.object(description,object_name)	
 	
 	
 	
 	
 	

(SELECT	
 object_id,	
 object_type_id,	
 object_name,	
 development_status_id,	
 availibility_id,	
 description,	
 ts_rank_cd	

(to_tsvector('english',	
 object_name	
 ||	
 '	
 '	
 ||	
 description),	
 query)	
 AS	
 rank1	
 	

FROM	
 portal.object,	
 to_tsquery('english','lectin:*	
 |	
 cancer:*	
 |	
 data:*	
 |	
 Damodaran:*	
 |	
 Jeyakani:*	
 |	
 stable:*	
 |	

open:*')	
 query	
 	

WHERE	
 query	
 @@	
 to_tsvector('english',	
 object_name	
 ||	
 '	
 '	
 ||	
 description)	
)	
 AS	
 one,	

-­‐-­‐portal.keyword(name)	

(SELECT	
 name,	
 keyword_id,	
 ts_rank_cd(to_tsvector('english',	
 name),	
 query2)	
 AS	
 rank2	
 	

FROM	
 portal.keyword,	
 to_tsquery('english','lectin:*	
 |	
 cancer:*	
 |	
 data:*	
 |	
 Damodaran:*	
 |	
 Jeyakani:*	
 |	
 stable:*	
 |	

open:*')	
 query2	
 	

WHERE	
 query2	
 @@	
 to_tsvector('english',	
 name)	
)	
 AS	
 two,	

-­‐-­‐portal.object_type(object_type_name)	

(SELECT	
 object_type_id,	
 object_type_name,	
 ts_rank_cd(to_tsvector('english',	
 object_type_name),	
 query3)	
 AS	

rank3	
 	

FROM	
 portal.object_type,	
 to_tsquery('english','lectin:*	
 |	
 cancer:*	
 |	
 data:*	
 |	
 Damodaran:*	
 |	
 Jeyakani:*	
 |	
 stable:*	
 |	

open:*')	
 query3	
 	

WHERE	
 query3	
 @@	
 to_tsvector('english',	
 object_type_name)	
)	
 AS	
 three,	

56

-­‐-­‐portal.publication(title,journal)	

(SELECT	
 publication_id,	
 title,	
 journal,	
 ts_rank_cd(to_tsvector('english',	
 title	
 ||	
 '	
 '	
 ||	
 journal),	
 query4)	
 AS	
 rank4	
 	

FROM	
 portal.publication,	
 to_tsquery('english','lectin:*	
 |	
 cancer:*	
 |	
 data:*	
 |	
 Damodaran:*	
 |	
 Jeyakani:*	
 |	
 stable:*	
 |	

open:*')	
 query4	
 	

WHERE	
 query4	
 @@	
 to_tsvector('english',	
 title	
 ||	
 '	
 '	
 ||	
 journal)	
)	
 AS	
 four	

WHERE	
 (one.object_id	
 =	
 OK.object_id	
 AND	
 	

	
 	
 	
 	
 	
 two.keyword_id	
 =	
 OK.keyword_id)	
 OR	

	
 	
 	
 	
 	
 (one.object_type_id	
 =	
 three.object_type_id)	
 OR	

	
 	
 	
 	
 	
 (one.object_id	
 =	
 PUB.object_id	
 AND	

	
 	
 	
 	
 	
 four.publication_id	
 =	
 PUB.publication_id)	

GROUP	
 BY	
 one.object_name,	
 one.rank1,	
 two.rank2,	
 three.rank3,	
 four.rank4;	

Query 3 with indexes

SELECT	
 one.object_name,	
 (one.rank1	
 +	
 two.rank2	
 +	
 three.rank3	
 +	
 four.rank4)/4	
 AS	
 rank	

FROM	
 portal.object_to_keyword	
 OK,	
 	

	
 	
 	
 	
 	
 portal.object_to_publication	
 PUB,	

-­‐-­‐portal.object(description,object_name)	
 	
 	
 	
 	
 	

(SELECT	
 object_id,	
 object_type_id,	
 object_name,	
 development_status_id,	
 availibility_id,	
 description,	
 ts_rank_cd	

(poindex,	
 query)	
 AS	
 rank1	
 	

FROM	
 portal.object,	
 to_tsquery('english','lectin:*	
 |	
 cancer:*	
 |	
 data:*	
 |	
 Damodaran:*	
 |	
 Jeyakani:*	
 |	
 stable:*	
 |	

open:*')	
 query	
 	

WHERE	
 query	
 @@	
 poindex)	
 AS	
 one,	

-­‐-­‐portal.keyword(name)	

(SELECT	
 name,	
 keyword_id,	
 ts_rank_cd(to_tsvector('english',	
 name),	
 query2)	
 AS	
 rank2	
 	

FROM	
 portal.keyword,	
 to_tsquery('english','lectin:*	
 |	
 cancer:*	
 |	
 data:*	
 |	
 Damodaran:*	
 |	
 Jeyakani:*	
 |	
 stable:*	
 |	

open:*')	
 query2	
 	

WHERE	
 query2	
 @@	
 pkindex)	
 AS	
 two,	

-­‐-­‐portal.object_type(object_type_name)	

(SELECT	
 object_type_id,	
 object_type_name,	
 ts_rank_cd(potindex,	
 query3)	
 AS	
 rank3	
 	

FROM	
 portal.object_type,	
 to_tsquery('english','lectin:*	
 |	
 cancer:*	
 |	
 data:*	
 |	
 Damodaran:*	
 |	
 Jeyakani:*	
 |	
 stable:*	
 |	

open:*')	
 query3	
 	

WHERE	
 query3	
 @@	
 potindex	
)	
 AS	
 three,	

-­‐-­‐portal.publication(title,journal)	

(SELECT	
 publication_id,	
 title,	
 journal,	
 ts_rank_cd(popindex,	
 query4)	
 AS	
 rank4	
 	

FROM	
 portal.publication,	
 to_tsquery('english','lectin:*	
 |	
 cancer:*	
 |	
 data:*	
 |	
 Damodaran:*	
 |	
 Jeyakani:*	
 |	
 stable:*	
 |	

open:*')	
 query4	
 	

WHERE	
 query4	
 @@	
 popindex	
)	
 AS	
 four	

WHERE	
 (one.object_id	
 =	
 OK.object_id	
 AND	
 	

	
 	
 	
 	
 	
 two.keyword_id	
 =	
 OK.keyword_id)	
 OR	

	
 	
 	
 	
 	
 (one.object_type_id	
 =	
 three.object_type_id)	
 OR	

	
 	
 	
 	
 	
 (one.object_id	
 =	
 PUB.object_id	
 AND	

	
 	
 	
 	
 	
 four.publication_id	
 =	
 PUB.publication_id)	

GROUP	
 BY	
 one.object_name,	
 one.rank1,	
 two.rank2,	
 three.rank3,	
 four.rank4;	

57

APPENDIX C

USERS GUIDE

This chapter contains the instructions for performing regular search and advanced search

in the GlycomicsPortal, and different search options.

Regular search

In the regular search, a user can simply type keywords in the search bar. An example is

shown below.

Figure 15: An example of regular search

The size of the user keyword is from 2 to 100 characters. If it is not, then an error

message will be shown on the search page.

Figure 16: An error page in regular search

58

If there is no error when the user clicks the search button as shown below, simply search

results will be shown on the same page.

Figure 17: Search button in regular search

Next, the user may see some results for the keywords or may encounter the empty page

with no results. If there are no results, then please try to search with different keywords.

Figure 18: No results page in regular search

If not, then the user will see some results. An example is shown below.

59

Figure 19: Results in regular search

60

Advanced search

 In the advanced search, a user can specify fields, keywords, and operators. An example is

shown below.

Search Query: where a query is shown based on a field, search keywords, and an operator.

Fields: where all fields’ names are shown in the drop down menu.

Search keywords: user search keywords.

Options: Phrase search, exact search or no options

Operators: AND, OR, or NOT.

Add query text button: button to create a search query.

Clear query test button: button to clear current search query.

Search button: performs a search with a given query.

Figure 20: An explanation of advanced search

61

How to create a search query

1. Choose a field name and type search keywords. Operators are not used for the first search

query.

2. And click the ‘Add query text’ button.

3. A new query is shown in the search query bar. An example is shown below.

Figure 21: A search query in advanced search

4. If you would like to add more queries, then repeat the number 1 through 3 again. An

example is shown below.

 Before the second query

62

After adding the second query

Figure 22: An example of expanding a search query in advanced search

Different search options

Phrase search

Phrase search can find an exact user input. It is an exact and ordered search.

Proximity search

Proximity search can find an exact user input, but it is not ordered.

