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CHAPTER 1 

INTRODUCTION 

Literature Review 

Water quality evaluation is an inherently high dimensional problem. We might consider 

any of a number of physical and chemical habitat variables as well as biological conditions 

reflecting abiotic habitat characteristics (Jackson & Pringle, 2010). Furthermore, each aspect of 

water quality features temporal variability. Comprehensive assessments of water quality are 

therefore costly, and simplified metrics that assess the condition of waterbodies are fundamental 

to aquatic resource management. 

Metrics for quantifying the aquatic community provide the means for managers to define 

biological criteria goals (biocriteria) and to assess the biological status of waterbodies 

(bioassessment) (Karr, 1981; Yoder & Rankin, 1998). These metrics can help characterize the 

severity, or identify the cause, of environmental damage, or evaluate the effectiveness of 

restoration actions (Barbour, Gerritsen, Snyder, & Stribling, 1999). Ideally, the metrics 

employed will be simple enough for routine monitoring, and their responses to anthropogenic 

impacts will be sensitive, integrative, and predictable (Dale & Beyeler, 2001). 

In streams, fish communities can provide a measure of ecological status that is responsive 

to changing water quality, habitat, and biotic interactions (Karr, 1991). Fish can temporally 

integrate water quality conditions, reflecting cumulative exposures over their lives to chemical, 

physical, or radiological stressors. Fish can manifest the synergistic effects of multiple 

contaminants, at biologically relevant levels, and express sub-lethal effects (reduced growth, 
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depressed reproduction, or increased external anomalies) (Karr, Fausch, Angermeier, Yant, & 

Schlosser, 1986). The fish community can reflect the effects of interspecific interactions and 

changes across the food web, since different fish species inhabit a variety of trophic levels (e.g., 

herbivores, insectivores, planktivores, piscivores, and omnivores) (Karr & Chu, 1997). 

Moreover, fish can commonly be identified and released at the field site, and therefore their 

monitoring can potentially be less time-consuming than other assemblages requiring more 

extensive laboratory sorting and identification (e.g., diatoms or macroinvertebrates). Finally, fish 

species are often the focus of aquatic conservation, and changes in the fish community can be 

interpreted based on the respective species’ life histories, which aids in communicating impacts 

to the general public. 

Conversely, the bioassessment approach is observational and lacks experimental control 

to isolate the effects of covariates along natural gradients (geology, climate, and biogeography), 

and human disturbance gradients (e.g., land use, and habitat fragmentation) (Hawkins, Norris, 

Gerritsen, et al., 2000). Biological monitoring can also be influenced by variability over time 

(seasonality, climate cycles, or stochastic weather events), variability within a site (depending on 

which microhabitats are accessible and chosen for sampling), variability in detection probability 

across sites and species, and sampling error (inconsistent application of methodology or 

identification errors). The physiological and behavioral complexity of fishes can also make it 

difficult to relate fish community composition to specific anthropogenic stressors. Genetic 

adaptations can confer increased toxicant resistance in a fish population, (Klerks & Weis, 1987) 

so that damage at the subcellular, tissue, or organismal level may not be reflected at the 

population, community and ecosystem level.  Likewise, fish can selectively avoid pollutant 

plumes (Beitinger, 1990; Giattina & Garton, 1983) and move beyond the boundaries of local 
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sampling units (Hitt & Angermeier, 2008, 2011), potentially confounding the presumed 

relationship between their presence and local environmental quality. Although rare species are of 

particular conservation concern, they are frequently excluded from bioassessment calculations 

due to an inherent scarcity of occurrence data (Cao, Larsen, & Thorne, 2001; Cao, Williams, & 

Williams, 1998; Marchant, 2002). Finally, a structural metric like biodiversity is calculated from 

a single fish community sample reflecting ecological conditions at a given point-in-time and 

therefore may respond differently than functional metrics, which collect repeated measures to 

derive rates such as productivity (Palmer & Febria, 2012). 

Cognizant of these strengths and limitations, aquatic assessment programs generally use 

point-in-time samples of fishes, macroinvertebrates, and diatoms to infer biological conditions. 

Biological monitoring results are then assessed under environmental regulations in areas such as 

Australia (Davies, Wright, Sutcliffe, & Furse, 2000), Canada (Borisko, Kilgour, & Stanfield, 

2007), the European Union (Hering et al., 2010), South Africa (Dickens & Graham, 2002), the 

United Kingdom (J. F. Wright, Sutcliffe, & Furse, 2000), and the United States (Barbour et al., 

1999). In the U.S., the Federal Water Pollution Control Act (Clean Water Act) includes biotic 

integrity as a goal in its first line, stating that, “The objective of this Act is to restore and 

maintain the chemical, physical, and biological integrity of the Nation’s waters.” (U.S.C., 2002). 

More specifically, the European Union Water Directive Framework specifies elements for 

classifying the ecological status of different waterbody types, including guidelines for biological 

monitoring design and frequency, and plans for calibrating and presenting bioassessment results 

(European Community, 2000). 

Pursuant to these regulatory goals, most bioassessment approaches have adopted one of 

two general methodologies for quantifying biotic integrity (Figure 1). The first is the 
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“multimetric” approach, which combines multiple taxa metrics (e.g., biota abundances, ratios, 

and functional groups) into a single index to quantifying biotic integrity. The second is the 

“multivariate” approach, which uses multiple environmental variables to predict expected 

species richness for a site, and then uses the ratio of observed to expected species richness (O/E) 

to quantify biotic integrity. Given adequate species data for a site, either methodology can be 

used to calculate a measure of biotic condition (Roset, Grenouillet, Goffaux, Pont, & Kestemont, 

2007). A literature search of Google Scholar (http://scholar.google.com/) was conducted to 

survey the most highly cited bioassesment publications returned by the search terms “Index of 

Biotic Integrity” and "RIVPACS.” These terms are most closely associated with the two most 

common bioassessment approaches: IBI, the Index of Biotic Integrity, and RIVPACS, the River 

InVertebrate Prediction And Classification System, which are explained in further detail below 

(R T Clarke, Furse, Wright, & Moss, 1996; Karr, 1981). Relevant publications were considered 

to be those describing the development and evaluation of bioassessment models, excluding 

review papers and evaluations of methods that were not specific to a given assemblage or 

location (avian publications were also excluded). Where there were multiple publications 

regarding the same bioassessment index, the most highly cited publication was retained. This 

analysis returned 51 publications based on multimetric approaches compared to 14 based on 

multivariate approaches (see Appendix A, Table A.1). 80% of the bioassessment indices 

described in these publications were for streams or rivers (with the remainder for lakes, wetlands, 

and estuaries), while approximately 60% were for fish, 30% for macroinvertebrates, and 10% for 

the remaining assemblages (periphyton, phytoplankton, zooplankton, macrophytes, and aquatic 

amphibians) (Figure 2). 
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The multimetric approach is widely used in the form of the Index of Biotic Integrity 

method (Karr, 1981). The IBI approach summarizes the observed species into a single index 

based on multiple traits such as trophic characteristics, habitat guilds, and phylogeny. These 

metrics are chosen based on their responsiveness to human disturbances and are intended to 

measure multiple aspects of an aquatic community’s structural integrity (e.g., presence of 

intolerant species, proportion of omnivores or top carnivores, richness and composition of taxa) 

(Karr et al., 1986). IBIs have been developed for a variety of assemblages, and waterbody types, 

and the methodology has also been considered in terrestrial environments (Andreasen, O’Neill, 

Noss, & Slosser, 2001). The common elements of these IBIs include grouping based on natural 

assemblage variability, defining a reference condition for these groups, screening metrics based 

on discrimination efficiency, and selecting the most sensitive and complementary metrics (Roset 

et al., 2007). 

The term IBI is used here in reference to any multimetric bioassessment approach, both 

those adapted from Karr 1981, as well as alternatives that use different site classification, metric 

selection, or model calibration approaches to derive a multimetric index. The application of the 

IBI outside of the ecoregion where it was initially developed, with minimal adaptation, has been 

critiqued, and it has been suggested that round-robin testing (independent biota sampling and 

identification for inter-comparison) should be used to determine the variance of sampling 

methods, and to better quantify the accuracy and precision of a biological index (Seegert, 2000). 

IBI scores can also be strongly influenced by a sample’s location in a drainage network, so IBIs 

generally need to be developed independently for headwaters, tributaries, and main-channels 

(Osborne et al., 1992). To account for these natural gradients in species distributions (Gorman & 

Karr, 1978), an approach has been explored that combines some of the advantages of multimetric 
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and multivariate bioassessment models. These “predictive-IBIs” directly model expected IBI 

metric scores based on natural variables such as temperature, channel gradient, and geology (D. 

Pont et al., 2006; Didier Pont, Hughes, Whittier, & Schmutz, 2009). 

The alternative approach to IBIs is the Observed-Expected (O/E) method, which reports a 

richness ratio of species observed to those that were expected based on the environmental 

characteristics of the sample location (e.g., stream size, elevation, basin, and ecoregion). This 

approach assumes that the observed taxa richness (O) will depart from the expected taxa richness 

(E) as the aquatic community becomes increasingly dissimilar from the biota observed at least-

disturbed locations (Figure 3). The multivariate O/E method was pioneered by the RIVPACS 

approach for application to stream benthic macroinvertebrates in the United Kingdom (R T 

Clarke et al., 1996). The O/E approach is particularly useful when dealing with large numbers of 

taxa whose life histories or tolerances may not be sufficiently known to select IBI metrics. It is 

also well-suited for assessments over heterogeneous regions based on its ability to continuously 

correct for variation in species richness across environmental gradients (Carlisle, Hawkins, 

Meador, Potapova, & Falcone, 2008). Multivariate predictive models can also benefit from 

continued advancements in modeling species distributions, which help refine the expected taxa 

richness used in the denominator of the O/E metric (Buisson, Blanc, & Grenouillet, 2008; 

Flebbe, Roghair, & Bruggink, 2006; J. R. Leathwick, Rowe, Richardson, Elith, & Hastie, 2005; 

Olden & Jackson, 2002; D Pont, Hugueny, & Oberdorff, 2005). 

The O/E approach has a number of potential deficiencies as well. On a pragmatic level, 

the empirical modeling approach may require high biodiversity and large data sets to train 

effective models. From a more theoretical perspective, it’s ambiguous whether species richness 

is the most sensitive indicator to anthropogenic stress, or whether O/E values greater than one 
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(i.e., those “enriched” with species) indicate that a site is degraded (Meador & Carlisle, 2009). 

While a comparison of the fishes observed to those expected can be communicated intuitively 

and enables comparisons between regions, the expression of the metric as a ratio, rather than a 

magnitude, may be problematic when the modelled biodiversity is low. For example, if managers 

select the O/E threshold for determining healthy waterbodies as 0.8 or greater, failure to detect 

just one out of four taxa would result in the conclusion that the waterbody is impaired. 

An underlying assumption of both the multimetric and multivariate methods is that 

streams with depauperate biotic communities reflect extirpations due to anthropogenic stressors 

in the catchment. This follows from the idea that a least-disturbed reach will support an 

indigenous biological community with a particular array and abundance of species. If natural 

variation in community composition has been accounted for (correcting for factors such as 

stream size, elevation, and biogeographic constraints), then the residual variation is attributable 

to human disturbance. Not all of the “expected” species are likely to be present in a given stream 

site at all times, nor is probability of detection likely to be 100%. Each species belonging to the 

expected community, therefore, has some probability of being present and detected in any given 

undisturbed reach, at any given time. As capacity of the system to support species declines (for 

example, because of land use intensification), occurrence probabilities for those species also 

decline, resulting in lower observed richness. Therefore, human influences on streams are 

manifested as changes in species abundances, and by definition, these changes reflect a loss of 

biotic integrity. The goal of bioassessment, therefore is to estimate whether a site is close to, or 

far from a least-disturbed condition, based on observations of biotic assemblages.  

Both the multimetric and multivariate assessment methods define the expected healthy 

biotic community based on reference conditions, while attempting to account for natural 
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variation among streams. A reference condition is defined as a biotic community with structure 

and function that would occur in the absence of anthropogenic impact, based on observations of 

minimally disturbed sites and historical conditions, or in modified areas, based on least-disturbed 

sites and best attainable conditions (Stoddard & Larsen, 2006). Streams distant from human land 

use, infrastructure and other impacts are commonly identified as reference streams. These biotic 

communities, from presumably less anthropogenically influenced locations, are used as 

benchmarks for measuring the severity of disturbances elsewhere (Hawkins, Olson, & Hill, 

2010). In IBI assessments, stream types, and the corresponding reference sites, are generally 

determined based on predefined geographic groupings such as ecoregions (Omernik, 1987). The 

O/E approach relies on the selection of reference sites as well, but its multivariate methodology 

uses statistical methods to group and model “virtual” (Borja et al., 2004) or “predicted” (Hughes, 

Gore, Brossett, & Olson, 2009) reference communities. These methods predict which species are 

likely to be found at a location in the absence of human impacts, given species habitat 

requirements (such as water temperature) and biogeographic constraints (such as basin 

boundaries). In addition to defining reference sites spatially, (e.g., using regional reference sites) 

alternative approaches are also possible, including defining a reference condition temporally 

(e.g., using historical or paleoecological data), or using other lines of evidence (e.g., using 

experimental laboratory data or best professional judgment) (Reynoldson, Norris, Resh, Day, & 

Rosenberg, 1997). Ecologists have proposed refinements and alternatives to these methods. For 

example, some bioassesment advancements has focused on species-specific modeling (Olden, 

2003), probabilistic approaches for measuring species richness (Oberdorff & Pont, 2001), 

variance component modeling to summarize the magnitude of among-site, among-year, site-year, 

and residual variance (Zuellig, Carlisle, Meador, & Potapova, 2012), and standardizing reference 
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site selection (Hawkins et al., 2010), as well as alternatives that don’t require reference sites for 

regions with pervasive anthropogenic impacts (Chessman & Royal, 2004). Multimetric and 

multivariate models can also be used as complements, as in a recently developed bioassessment 

index in the state of California which calculates both IBI and O/E scores for stream 

macroinvertebrates, and then averages both into the final combined index (Rehn, Mazor, & Ode, 

2015). 

Fishes are commonly included in stream assessment programs, potentially because they 

are considered to be of interest to the general public to whom managers may report assessment 

results. Overwhelmingly, managers have employed IBI approaches for assessing stream fish 

communities – of the 32 widely cited bioassessment indices for stream fish reviewed in a 

literature search, all but 5 applied an IBI approach. The opposite is true for stream 

macroinvertebrate assessment programs, for which 9 out of the 14 widely cited publications 

employed an O/E approach. 

Although applications of multivariate O/E approaches to stream fishes are limited, a 

number of papers have explored their use. The first example related to the multivariate approach 

used occurrence data for the 34 most common freshwater fish species in France at 650 reference 

sites to develop logistic regression equations predicting species occurrence, validated with 88 

reference sites, and then compared the log likelihood for the observed and expected taxa in 88 

disturbed sites to inform metric selection for an IBI (Oberdorff & Pont, 2001). This publication 

analyzed a large dataset and proposed a useful probabilistic method for calculating the deviation 

between observed and expected assemblages, but the research goal was the derivation of an IBI 

tool, so the development of O/E metric was not pursued. A second multivariate fish modelling 

application the following year used fish occurrences from 142 reference sites in a region of New 
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Zealand to develop a discriminant function model that successfully assigned 67% (20 of 30) of 

validation sites to the correct group – although the model only included 13 fish species, with 

usually less than five species expected (Joy & Death, 2002). A third publication mirrored this 

approach using 72 reference sites in Eastern Australia (withholding 10 additional reference sites 

for external validation and 48 disturbed test sites to measure model sensitivity) and built a 

discriminant function model that was also limited by the depauperate ichthyofauna of only 24 

fish species, so that the average expected richness predicted by the final model was six species. 

A similar approach was developed in the more species-rich Appalachian streams in the U.S., 

using 73 sites reference sites and a discriminant function model that predicted 4-22 fish taxa at 

sites, although the model lacked an independent validation set and performance was judged 

based on internal validation (Carlisle et al., 2008). This approach was expanded the following 

year using 228 reference sites (and 38 validation sites) from fish surveys made from 1993-2004 

in 28 basins in the Eastern U.S. to build two separate (north and south) discriminant function 

models (Meador & Carlisle, 2009).  

This later paper also examined average taxa O/E response, and found that nearly two-

thirds of the Southeastern U.S. fish species were observed less than expected at disturbed sites. 

This is particularly relevant in a region where 28% of freshwater fish taxa are considered extinct, 

endangered, threatened, or vulnerable (Warren et al., 2000; Warren, Angermeier, Burr, & Haag, 

1997), including endemic species with narrow geographic ranges and restricted habitat 

requirements (Meador, Coles, & Zappia, 2005). One state in the U.S. of particular concern is 

Georgia, which has the third most diverse fish fauna in the U.S., of which 17% are considered at 

risk (Stein, 2002), with 58 taxa under state or federal protection (GAWRD, 2015). 
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Bioassessment refinements in such locations could improve our understanding of protected 

stream fish distributions and provide a metric to guide habitat conservation and restoration. 

Although few in number, these stream fish O/E publications addressed a variety of 

locations (Australia, France, New Zealand, and the U.S.). Modeling approaches generally used 

discriminant function models, with one exception of a logistic regression framework. The 

datasets used to train, validate, and test the models ranged from one to twelve years of sampling 

data, 72 to 650 reference sites, 0 to 171 validation sites (using internal validation methods), and 

30 to 283 test sites. The number of taxa modelled varied as well, from 13 to 60 fish taxa and the 

models used from 7 to 11 predictor variables (Table 1). All models included elevation as a 

variable, all but one included drainage area, and all but two included stream gradient or slope 

(Table 2). These modeling efforts set the stage for further applications and refinements, 

particularly opportunities for exploring alternative modeling approaches that leverage 

continually growing biological monitoring datasets, with a need to develop these tools for the 

species-rich, but threatened, Southeastern U.S. fish communities. 

 

Research Objective 

Stream fish communities have been monitored and assessed since 1998 in the state of 

Georgia using a multimetric IBI approach directed by the stream survey group (Stream Team) 

within the Georgia Wildlife Resource Division (GAWRD) (Marcinek & Lanford, 2013). These 

monitoring results inform water quality management, including assessment and restoration under 

the Clean Water Act, by the Georgia Environmental Protection Division (GAEPD), which is a 

sister agency within the Georgia Department of Natural Resources (GADNR). As of 2015, 

agency biologists are exploring potential refinements in Georgia’s IBI, and are interested in 



12 

testing the utility of an O/E for Georgia’s stream fishes. The objective of this research has been 

to collaborate with the Stream Team in their analyses and refinement of the state’s stream fish 

assessment methods by developing a complementary O/E model. This O/E model could be 

incorporated as a measure into Georgia’s bioassessment methodology and also could assist in the 

selection of metrics for a revised IBI. 

The methods for building the O/E model are described in Chapter 2. The approach began 

with linking a dataset comprising samples of fishes from wadeable streams statewide to 

geographic databases of environmental and anthropogenic variables. Samples classified with the 

least amount of human land use and infrastructure in their drainages were then identified as least-

disturbed sites, under the assumption that the samples would best reflect the natural diversity of 

stream fish communities. This subset of samples was grouped into community types via 

statistical clustering methods, and then used to train a multivariate model for predicting taxa 

occurrences in relation to naturally variable stream characteristics. Together, the clustering and 

prediction techniques created a species distribution model for estimating taxa-specific 

probabilities of occurring and being caught in a given site, taking into consideration the site’s 

physical characteristics and location. Taxa occurrence probabilities expected by this model were 

compared with the taxa observed in the sample, and the end product was a ratio of taxa richness. 

The results in Chapter 3 discuss how the performance of the model was validated with 

subsets of data which had been withheld during the model calibration phase. In the future, new 

samples can be assessed on the same basis, comparing the observed taxa against those expected 

by the model, to provide a metric for quantifying stream conditions. 

Finally the discussion in Chapter 4 considers how this research has been useful for 

examining the relative strengths and weaknesses of the IBI and O/E approaches for fish 
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bioassessment. Georgia has a particularly diverse fish fauna relative to other regions of the U.S. 

(Master, Flack, & Stein, 1998), and this biodiversity provided an opportunity to apply an O/E 

model, commonly used for invertebrates, to Georgia’s species-rich fish taxa. Insights into the 

biogeography and sensitivity Georgia’s fish taxa are discussed along with suggestions for 

continued stream bioassessment refinements. 

 



14 

Table 1. Summary of six stream fish multivariate models using observed and expected taxa richness. Years indicates the number of 

years of fish samples in the data set used to train the model. Model indicates the statistical framework (logistic regression, 

discriminant function or Random Forest) used to model species occurrence probabilities. Predictors indicates the number of 

environmental predictors used to train the model. Reference, validation, and test indicate the number of samples used in the training 

(least-disturbed sites), validation (set aside sites), and application (stressed sites) of the model. Models with zero validation sites used 

internal validation methods. Taxa indicates the approximate number of taxa in the local fish assemblage potentially available for 

modeling. Results are based on a Google Scholar (http://scholar.google.com/) literature search for “RIVPACS” modeling of stream 

fish communities. 

 

Location Years Model Predictors Reference Validation Test Taxa  

France 10 Logistic Regression 9 650 88 88 34 1 

New Zealand 1 Discriminant Function 11 142 0 30 13 2 

Eastern Australian 4 Discriminant Function 7 72 10 48 24 3 

Appalachia, US 10 Discriminant Function 10 73 0 54 ? 4 

Eastern US 12 Discriminant Function 9 228 38 80-116 58 - 60 5 

Georgia, US 16 Random Forest 21 272 171 283 189 6 

 

1 Oberdorff & Pont, 2001;  2 Joy & Death, 2002;  3 Kennard, Pusey, Arthington, Harch, & Mackay, 2006;  4 Carlisle et al., 2008;   
5 Meador & Carlisle, 2009;  6 Maurano, 2015.  
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Table 2. Predictor variables included in the six stream fish multivariate models reviewed. Results 

are based on a Google Scholar (http://scholar.google.com/) literature search for the term 

“RIVPACS”. Publications summarized below, in addition to this thesis, are Oberdorff & Pont, 

2001; Joy & Death, 2002; Kennard, Pusey, Arthington, Harch, & Mackay, 2006; Carlisle et al., 

2008; and Meador & Carlisle, 2009. 

 

Variable Number of Models Included In 

(of six reviewed) 

Elevation 6 

Drainage Area 5 

Gradient / Slope 4 

Distance from Headwaters 3 

Stream Depth 3 

Stream Width 3 

Air Temperature 2 

Basin 2 

Distance Inland 2 

Ecoregion 2 

Flow / Velocity 2 

Geology / Soil 2 

Latitude 2 

Longitude 2 

Precipitation 2 

Water Temperature 2 

Base Flow Index 1 

Drainage Density 1 

Embeddedness 1 

Flow Type (Riffle, Run, Pool…) 1 

Reach Length 1 

Sample Date / Year / Day of Year 1 

Substrate Size 1 
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Figure 1. Comparison of the processes for developing and applying multimetric versus 

multivariate bioassessment metric methodologies. Adapted from Reynoldson et al., 1997.  
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Figure 2. Graphical display of literature search results for bioassessment publications. Results are 

from a literature search of Google Scholar (http://scholar.google.com/) which returned 51 

publications based on multimetric approaches compared to 14 based on multivariate approaches. 

Results offset from the pie graph indicate the application of this research: multivariate stream 

fish bioassessment.  
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Multivariate Bioassessment 

   

Reference Site Species Data  Reference Site Environmental Data 

 
  

Cluster Analysis   

 
  

Community Types (groups, j)  
Random Forest Model 

   

Species Frequencies in groups (gj,x)  Prob. new site belongs to group (pj) 

                 .  .                  

Multiply (pjgj,x), Sum for Expected Richness 

validate model, set thresholds for impairment, and assess sites in the future based on number 

of species observed, to those expected by the model, e.g., 

Observed 20 spp.

Expected 24 spp.
= 0.8 ∴ unimpaired 

Figure 3. Multivariate model construction process. Sites are limited to those in least-impacted 

“reference” condition. “Community types” are derived via cluster analysis, and then predicted 

via Random Forest model using site environmental variables. The probability that a new site 

belongs to each group is then multiplied by the species frequencies in those groups, and summed 

for richness.  
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CHAPTER 2 

METHODS 

 

Field Data Collection 

Fish were sampled by GAWRD at wadeable stream sites statewide (Figure 4, See 

Appendix B, Table B.1). Samples were collected from sixteen basins (Figure 5) and six 

ecoregions (Figure 6), and the product of these two factors created numerous biogeographic units 

(Figure 7). Surveys were conducted from 1998 to 2013, generally during the April through 

October period (Figure 8). Fish sampling combined electrofishing and seining techniques in a 

single upstream pass for 35 times the mean stream width (up to 500 meters sampled) to ensure 

inclusion of all major habitat types (pools, riffles, runs, woody debris, undercut banks, large 

rocks, thick root mats, etc.) (GAWRD, 2005). 

The young-of-the-year (less than 25 mm total length) individuals were excluded during 

sample processing since capture efficiency tends to be low and variable (Freeman & Crawford, 

1988; Holland-Bartels & Dewey, 1997; Moore & Gregory, 1988; Parsley, Palmer, & Burkhardt, 

1989) and those cohorts had not been subject to site conditions for a prolonged period of time, 

and therefore might not have reflected the long-term conditions in the reach (Schleiger, 2000; 

Schlosser, 1985). Fish species and abundance in the catch were recorded along with the 

occurrence of external anomalies (deformations, erosions, lesions, and tumors). Site 

characteristics including location, elevation, rapid geomorphic and habitat assessment variables, 

and physicochemical water quality parameters also were recorded. 
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Geospatial Data Processing 

I compiled these field data into a geospatial database and dropped repeated samples 

(retaining the earliest) to maintain independence of samples. Data quality checks were conducted 

with the guidance of the Stream Team to drop samples that hadn’t meet sampling protocols (e.g., 

a collection that took place on a braided river site rather than stream), fix data entry errors (e.g., 

transposed data), and correct species misidentifications. Additional site variables were then 

derived from a Geographic Information Systems (GIS) analysis (Table 3, Table 4) and associated 

with the field data. The GIS variables were proxies for the environmental factors (independent of 

human impacts) that define fish niches and constrain species distributions and abundances: 

biogeography, geomorphology, temperature, temporal variation, stream size, and connectivity 

(Poff, 1997). The species distribution model then used these variables to predict species 

occurrences, in order to account for the influence of biogeography, geology, geomorphology, and 

temporal variation. 

Drainage basin areas were derived using the ArcGIS 10.2 watershed delineation and flow 

accumulation toolset, by applying the flow direction, sink, and watershed tools (ESRI, 2014). 

The basin and physiographic province in which sites were located was determined via spatial 

joins with Level III Ecoregions of the Coterminous United States (Omernik, 1987) and Georgia 

Department of Natural Resource Basins (GAEPD, 2003) (See Appendix C, Table C.1). Sixteen 

basins were used in the analysis, as defined by GADNR, based on level six (basin) and eight 

(subbasin) digit hydrologic unit codes (HUCs) (Seaber, Kapinos, & Knapp, 1987). Temporal 

variables for the effects of seasonality (day of the year) and inter-annual variation (year) were 

included. In order to associate the samples with National Hydrograph Dataset (NHD) Plus 
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Version 2 attributes (Dewald et al., 2012), sites were snapped with a one kilometer tolerance 

(Figure 9) via the ArcGIS Editing toolbox snap tool to the South Atlantic and Tennessee Vector 

Processing Units downloaded from http://www.horizon-systems.com/NHDPlus/. NHD flowlines 

were joined to attribute tables by one of three geoprocessesing methods: via latitude and 

longitude coordinates, via NHD common identification numbers, or via linear referencing with 

the NHD network. Reach data were then extracted for mean annual stream velocity, mean annual 

stream flow, mean annual stream temperature, modified Strahler stream order, stream slope, and 

arbolate sum of upstream stream kilometers (Table 5). 

In order to identify reference sites, variables measuring human disturbance upstream of 

the sample site were calculated and aggregated. National land cover database data (Fry et al., 

2011; C. G. Homer et al., 2015; C. Homer et al., 2007) downloaded from http://www.mrlc.gov/ 

were associated by the year closest to the sample date (2001, 2006, 2011). Land cover was 

weighted by a landscape development intensity index that measures levels of human activity as 

nonrenewable energy input (e.g., electricity, fuel, fertilizer, pesticide, public water supply, and 

irrigation), in solar energy joules per hectare per year (empirical coefficients corrected for 

different qualities and normalized on a scale of 1-10) (Brown & Vivas, 2005). Coefficients 

published for use with the NLCD coverage were used so, for example, land uses of open water, 

wetland, and forest were assigned a value of 1.00, cultivated crops 4.54, and high density 

development 9.42 (Gara & Micacchion, 2010). Additionally, dam density, road density, and 

stream crossings were generated for each site catchment. Dam density was obtained from the 

SouthEast Aquatic Connectivity Assessment Project coverage at http://maps.tnc.org/seacap/. 

Road density was generated from 2014 U.S. Census Bureau TIGER/Line Shapefiles downloaded 

from https://www.census.gov/geo/maps-data/data/tiger.html, and stream crossing density was 
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tabulated from intersections with the NHD+v2 network. Sites with the lowest combined 

percentile scores, stratified by basin and ecoregion, were identified as least-disturbed sites for 

model calibration. Samples were subset into least-disturbed (n = 272), stressed (n = 283), 

validation (n = 171), and no designation (n = 548). The “least-disturbed” sites were treated here 

as synonymous with the term “least impacted” sites (Davis & Simon, 1995). Of these least-

disturbed sites, 86% were used in model calibration and 14% were set aside for model validation. 

These impact designations were reviewed graphically with respect to the most commonly 

occurring species (Figure 10) and with respect to environmental gradients (Figure 11) and spatial 

distribution that might influence taxa richness (Figure 12). Model construction and diagnostics 

were performed in R version 3.2.2 (R Core Team, 2015). Scripts for building and applying the 

model were based on a RIVPACS-type approach (Ralph T. Clarke, Wright, & Furse, 2003; J. F. 

Wright et al., 2000) and adapted from a macroinvertebrate implementation by the US 

Environmental Protection Agency Western Ecology Division (Van Sickle, Hawkins, Larsen, & 

Herlihy, 2005; Van Sickle, Huff, & Hawkins, 2006; Van Sickle, Larsen, & Hawkins, 2007) 

downloaded from http://www.epa.gov/wed/pages/models/rivpacs/rivpacs.htm. A subset of draft 

revised IBI scores for the Apalachicola-Chattahoochee-Flint Basin portion of the Piedmont 

Ecoregion (ACF-PDM) were derived by the Stream Team using multimetric bioassessment 

techniques and used to tentatively compare results between draft IBI and O/E indices. 

 

Fish Community Types 

Over two-hundred fish taxa were observed in Georgia streams, and several methods were 

applied to reduce the community data. First, the following species were combined to the genus 

level because congeneric species occurring allopatrically in different river systems or because of 
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uncertainty in their field identification: Campostoma, Cottus, Gambusia, Hybopsis, Nocomis, 

Pimephales, Rhinichthys, Semotilus, Pteronotropis, and “Redeye Bass Species” (Micropterus 

spp.) (See Appendix C, Table C.2). Second, the matrix of catch-abundances was converted to 

detections and non-detections, in response to the potentially high variability in fish counts caused 

by incomplete and variable detection of individuals – potential biases which are difficult to 

mitigate in a dataset with relatively few repeat samples. Third, rare taxa (present at less than five 

percent of sites) were screened from the dataset because they often have higher variability in 

detection probability, which may lead to over-splitting when discriminating between site groups 

(Hawkins, Norris, Hogue, & Feminella, 2000). Fourth, taxa from samples at least impacted sites 

were clustered into six groups with the flexible-Beta method (β = -0.6), based on Sørensen 

distance (Bray & Curtis, 1957) using the “agnes” function in the “cluster” package (Cluster 

Analysis Extended Rousseeuw et al) in R. Flexible-beta is one of six methods for the function 

“agnes” (Agglomerative Nesting) in the "cluster" package, where at each iteration, the two 

nearest clusters are combined based on one of several potential methods: average of 

dissimilarities of points in one cluster versus points in another cluster, nearest neighbor, furthest 

neighbor, or flexible, which is specified by the Lance-Williams formula (Murtagh & Legendre 

2011). The flexible beta approach which was employed is a generalization of a weighted average 

method and was chosen because it can be used to balance clustering and chaining in the final 

dendrogram. Beta (β) = -0.6 was selected after visually examining plots from β = -1 

(overclustered) to 0.5 (badly chained) in increments of 0.25 (Figure 13). 
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Model Construction 

 A Random Forest (RF) model was built to predict the probability that a site belongs to 

one of the previously defined community types. RF is a data mining technique based on a 

machine learning algorithm that builds an ensemble of classification or regression trees through 

binary recursive partitioning, and outputs the mode (classification) or mean prediction 

(regression) of the “forest” of trees (Breiman, 2001). Classification trees are trained on 

independent predictors in a learning dataset to project a dependent categorical outcome. The 

algorithm uses the predictors to repeatedly split the data from a “parent” node into two parts, 

based on an “impurity function” that maximize the homogeneity of the “child” nodes (Lewis, 

2000; Loh, 2011). The RF methodology selects about 2/3 of the samples (with replacement, i.e., 

bootstrapping) to build a “forest” of trees, but randomly selects only a small number of the 

predictor variables to use at each split. Increasing the number of predictor variables used at each 

split increases the strength of an individual tree, but also increases the correlation between trees, 

resulting in a tradeoff in the overall error rate. Each tree is then used to predict the observations 

from the original dataset that weren’t included in the bootstrap training sample (called “out-of-

bag” (OOB) observations), which provides cross-validated accuracies and error rates that can be 

averaged over all trees (Breiman, 2001). Whereas a number of statistical methods measure 

variable importance indirectly using metrics of a model’s statistical significance or Akaike’s 

Information Criterion, the RF method derives novel variable importance measures (Cutler et al., 

2007). The value for each predictor variable is then randomly permuted for the OOB 

observations, passed down the tree, and the difference in misclassification rates between the 

permuted and unpermuted OOB data provides a measure of variable importance (Breiman, 

2001). 
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This modeling approach was chosen based on its performance in other ecological 

applications, particularly species distribution and bioassessment modeling, where RF has 

demonstrated high classification accuracy, ability to model complex interactions among 

predictor variables, and flexibility for handling disparate data types, with relatively few tuning 

parameters and multiple variable importance metrics (Cutler et al., 2007). In a species 

distribution modeling application in the Eastern U.S., the RF model was more predictive than 

regression tree analysis and multivariate adaptive regression splines (Prasad, Iverson, & Liaw, 

2006). RF also had the highest predictive accuracy in a Northern European species distribution 

modeling application, based on the area under the curve performance metric, when compared to 

generalized linear and additive models, multivariate adaptive regression splines, artificial neural 

networks, a general boosting method, classification tree analysis, and mixture discriminant 

analysis (Marmion, Parviainen, Luoto, Heikkinen, & Thuiller, 2009). Specific to aquatic 

ecosystems, the approach better predicted the biological condition of stream benthic 

macroinvertebrate communities in the Chesapeake Bay watershed when compared to 

classification and regression trees, conditional inference trees, and ordinal logistic regression 

(Maloney, Weller, Russell, & Hothorn, 2009). The approach has also been extended to predict 

the macroinvertebrates in streams across a large portion of the Eastern U.S. (Carlisle, Falcone, & 

Meador, 2009). In a similar application in the Western United Sates, the advantages of ensemble 

regression tree approaches compared to multiple linear regression were highlighted, including 

the ability to include more variables in the model building phase, easier testing for interaction 

effects, and the availability of model diagnostics such as partial dependency plots (Waite et al., 

2012). A closely related ensemble regression tree approach, boosted regression trees, has 

successfully been applied to predict algal and macroinvertebrate communities in National Water-
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Quality Assessment sites across the U.S. (Waite, 2014). Conversely, applying RF to model 

species distribution has potential drawbacks, as the models can be difficult to visualize or 

interpret, the measures of performance and variable importance have been critiqued, and the 

model may be prone to over-fitting data, resulting in a less transferable model (Lobo, Jiménez-

valverde, & Real, 2008; Strobl, Boulesteix, Zeileis, & Hothorn, 2007; Wenger & Olden, 2012). 

These limitations were considered when selecting the modeling approach and when interpreting 

results, and the RF approach was ultimately chosen since it represented a novel application for 

stream fish O/E assessments, an exploratory machine-learning approach with few prior 

assumptions required, a wide window for tuning parameters, and it had strong performance in a 

range of related applications. 

The RF model was built via the “randomForest” function in the "randomForest" package 

(Breiman & Cutler's Random Forests for classification & regression). The parameters “ntree” for 

number of trees and "mtry" for number of variables tried at each split were tuned to OOB error 

(Liaw & Wiener, 2002). The parameter “ntree” was iterated in increments of 100 (up to 10,000) 

searching for an asymptote in OOB error, but this resulted in multiple OOB minima at widely 

different “ntree” values, so the default value of 500 was retained. Higher values of "mtry" 

increase correlation between trees (increasing forest OOB error rate) but also increase the 

strength of individual trees (decreasing OOB error). Setting “mtry” as the square root of the 

number of predictors is considered the “Random Forest” method while the use all predictors is 

known as the “bagging” method. The “tuneRF” function within the randomForest package was 

used to search for an optimum “mtry” number of variables to be randomly selected at each split, 

based on OOB error (in steps of 1.5, searching until improvement was <0.01) (Figure 14). 
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Variables were removed from the model if they were sparsely populated in the dataset or 

had low mean decreases in either the “accuracy” or “Gini” variable importance metrics (Figure 

15). The mean decrease in accuracy metric quantifies changes in OOB error from variable 

permutations, as previously described. Gini measures homogeneity in a child node and ranges 

from zero (homogeneous) to one (heterogeneous), so decreases in Gini reflect increases in purity. 

Mean decreases in Gini from each parent to child node are summed over all trees, and 

normalized for each variable (Breiman, 2001). Although the variable importance measures were 

sensitive to the tuning parameters chosen, their rankings were generally stable. The model 

domain was limited to predicting species found in the majority of samples (i.e., overall 

occurrence, called “probability of capture (Pc)” greater than 0.5) to decrease the variability in 

predictions (Hawkins, Norris, Hogue, et al., 2000). In order to decrease variability in O/E scores, 

Pc was iterated from near zero (including all taxa) to 0.5 (including only taxa found in >50% of 

samples) (Figure 16). The predicted relationships between the site environmental variables and 

group membership were examined in partial dependence plots where the Y-axis is the mean 

value of logit(p) and p is the predicted probability of being in a group, with the mean taken over 

all other combinations of the other predictors (Cutler et al., 2007). 

The final model was used to assess fish assemblage integrity at each site. In order to 

predict a site’s identity in one of the aforementioned six community groups, the site’s 

environmental variables were run down the RF trees, and their votes summed and divided by the 

total number of trees. Then the probabilities of a site belonging to each community group were 

multiplied by the taxa frequencies in that group (previously defined in the clustering and model 

calibration stage from taxa occurrences at least impacted sites). The product of the group 

probabilities matrix and taxa frequencies matrix was summed for each taxa, to calculate a 
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probability of occurrence for that taxa at the site. The predicted probabilities of those taxa above 

the Pc threshold (previously defined as 0.5, that is, predicted to occur at 50% or more of the sites 

in that community group), were summed for each site. This taxa richness expected by the model 

was used as the denominator for the final metric. The numerator was the summed richness 

observed for the same subset of taxa (i.e., those above the Pc threshold). The final metric, 

therefore, was a ratio of observed to expected taxa richness (over the domain of frequent taxa). 

The O/E scores and model were analyzed with several methods. The distribution of 

calibration and validation sites were examined for normality, and the O/E scores were plotted to 

examine their deviation from one (the theoretical value for least-impacted sites). O/E scores were 

graphed against the environmental predictor variables (e.g., drainage basin area, elevation, etc.) 

to confirm that the model wasn’t confounded by unexplained variation in these natural gradients. 

Outliers in O/E scores were mapped to examine potential spatial patterns or biases in the model. 

Model performance was measured primarily by two metrics: the standard deviation of 

O/E, and the ability of O/E scores to discriminated between sites that had been designated least-

impacted and those designated as stressed. The effects of varying probability of capture on O/E 

scores were examined empirically and hypothetically. Empirically, the Pc values were iterated in 

the model and the resulting O/E discrimination efficiency was examined. This interaction was 

also examined through simulations with theoretical data sets of varying taxon occurrences. 

Because setting Pc at 0.5 resulted in low (<10) expected taxon richness for most regions of the 

state, the effect of low richness on O/E score variability and on discrimination between least 

impacted and stressed conditions was examined using data simulations performed in R. 

Specifically, for taxa richness of 3, 6, 9 and 18 (representing the range of expected richness 

generated for clusters in this analysis), 10,000 random binomial samples were generated using a 
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mean probability of occurrence and capture of 0.75 (i.e., midway between the Pc threshold for 

taxa inclusion of 0.5 and 1.0) at least impacted sites. To simulate samples from stressed sites, 

10,000 random binomial samples were generated using a mean probability of occurrence and 

capture of 0.60 (i.e., a 20% reduction in mean occurrence compared to least impacted sites). 

Values for O/E (where expected richness was mean probability of occurrence and capture, 0.75, 

times number of number of taxa) were generated for the 10,000 samples at each level of taxa 

richness and plotted to examine score variability and discrimination between least impacted and 

stressed sites. 

O/E scores were also plotted against the potential revised IBI scores in the Apalachicola-

Chattahoochee-Flint Basin portion of the Piedmont Ecoregion (ACF-PDM; provided by P. 

Marcinek and J. Argentina, GADNR), to compare the potential assessment outcomes of the two 

candidate bioassessment metrics. The scores were plotted for all subsets of the data (calibration, 

validation, no designation, and stressed), and the discrimination of least-impacted versus stressed 

sites was examined by basin and ecoregion. In addition to site O/E scores, taxa O/E scores were 

calculated at stressed sites (based on a O/E model that included all taxa, with Pc > 0), to examine 

taxa that occurred more or less frequently than expected in response to anthropogenic 

disturbances (Meador & Carlisle, 2009). Taxa O/E summed and averaged expectations across 

sites, as compared to a site O/E, which summed expectations across taxa. The average taxa O/E 

scores were analyzed against traits assigned by the Stream Team on the basis of other fish traits 

databases, local knowledge, regional taxonomy books, and peer reviewed publications. Where 

adequate information was available, the Stream Team assigned taxa feeding designations based 

on the fishes’ foraging methods: generalist feeder (may prefer a certain source but will readily 

consume plants, invertebrates, fish; i.e., omnivore), herbivore (consumes plant matter including, 
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but not limited to, aquatic vegetation, algae, detritus and plankton), parasitic (feeds off of fish), 

and predator (adults consume fish and invertebrates; juveniles may feed primarily on 

invertebrates due to limited gape). Similarly, taxa were assigned to habitat preference categories: 

habitat generalist which will thrive in impoundments; fluvial (stream) specialist which relies on 

flow and will not thrive in impoundments; and swamp specialist, strongly associated with 

swamps, backwater, and ditches, often associated with vegetation, and life cycles tied to flood 

plain inundation. Finally, taxa were grouped into qualitative tolerance categories, based on their 

presumed tolerance (high, medium, or low) to anthropogenic disturbance. Response of taxa O/E 

score were analyzed with summary statistics, and graphed with density and strip plots.  
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Table 3. Variables retained in the Random Forest (RF) model to predict the probability that a site 

belongs to one of the defined community types. Variables were used to train the RF model, and 

retained based RF’s internal variable importance metrics. 

 

Variable Description   

ArbolateSum Arbolate sum in kilometers of stream upstream of the bottom of 

the NHDFlowline feature 

4 

Atlantic_Slope  Atlantic Slope Drainage 2 

Bas_Coo  Coosa Basin 2 

Bas_Ten  Tennessee Basin 2 

Date  Sampling Date 1 

DayOfYear  Sampling Day of Year 1 

DBA_km2 Drainage Basin Area in square kilometers 5 

Eco_BRM  Blue Ridge Ecoregion 3 

Eco_PDM  Piedmont Ecoregion 3 

Eco_SCP  Southern Coastal Plain 3 

Eco_SEP  Southeastern Plains Ecoregion 3 

Elevation_m Elevation in meters 1 

Flow_m3ps Mean Annual Stream Flow at downstream end with gage 

adjustment in cubic meters per second 

4 

Gulf_Slope  Gulf Slope Drainage 2 

Lat  Latitude in decimal degrees 1 

Long  Longitude in decimal degrees 1 

Mean_Ann_Temp_C Mean Annual Stream Temperature in Celsius 4 

RL_m Reach Length in meters 1 

Slope Unitless slope of reach 4 

Velocity_mps Mean Annual Stream Velocity at downstream end with gage 

adjustment in meters per second 

4 

Year  Sampling Year 1 

Sources: (1) Field data collection; (2) Georgia DNR Basins (GAEPD, 2003) (3) Ecoregions of the 

Coterminous United States (Omernik, 1987); (4) National Hydrography Plus Version 2 (Dewald et al, 

2012). (5) ArcGIS 10.2 watershed delineation and flow accumulation toolset (ESRI, 2014).  
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Table 4. Variables dropped from Random Forest (RF) model for predicting site membership 

probability. Candidate variables were dropped from the model based on their low variable 

importance metrics, relative to the variables retained and used to train the model. 

 

Variable Description  

Bas_Alt  Altamaha Basin 2 

Bas_Apa  Apalachicola Basin 2 

Bas_Auc  Aucilla Basin 2 

Bas_Cht  Chattahoochee Basin 2 

Bas_Fli  Flint Basin 2 

Bas_Och  Ochlockonee Basin 2 

Bas_Ocm  Ocmulgee Basin 2 

Bas_Oco  Oconee Basin 2 

Bas_Oge  Ogeechee Basin 2 

Bas_Sat  Satilla Basin 2 

Bas_Sav  Savannah Basin 2 

Bas_Stm  St. Marys Basin 2 

Bas_Suw  Suwanee Basin 2 

Bas_Tal  Tallapoosa Basin 2 

Eco_RGV  Ridge and Valley Ecoregion 3 

StreamOrder Modified Strahler Stream Order 4 

Sources: (2) Georgia DNR Basins (GAEPD, 2003); (3) Ecoregions of the Coterminous United States 

(Omernik, 1987); (4) National Hydrography Plus Version 2 (Dewald et al, 2012).  
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Table 5. In order to associate the database of field fish monitoring with other site environmental 

data, the sample sites were joined to National Hydrograph Dataset (NHD) Plus Version 2 

attributes by one of three geoprocesses (via latitude and longitude coordinates, via NHD 

common identification numbers, or via linear referencing with the NHD network). The 

parameters for the join are specified in the first three columns, and the data that were extracted 

for site environmental characteristics are summarized in the final two columns. 

 

From 

Feature  

Join 

Field 

To 

Attribute 

Extracted 

Data 

Data 

Summary 

NHDFlowline.shp ComID EROM_MA0001 Q0001E, 

V0001E 

Stream Flow, 

Stream Velocity 

 

NHDFlowline.shp ComID PlusFlowlineVAA StreamOrde, 

StreamCalc 

Stream Order 

 

 

NHDFlowline.shp ComID ElevSlope Slope Stream Slope 

 

 

Catchment.shp FeatureID IncrTempMA.txt TempV Catchment 

Temperature 

 

NHDFlowline.shp ReachCode 

via linear 

reference 

IBI_Site_NHD_Sna

pped_Table 

n/a Stream 

Hydrography 

 

 

Site Spatial Join Ecoregion_Level3 Ecoregion Level III 

Ecoregions 

 

 

Site Spatial Join WBD_Subwatershed Hydrologic 

Unit Code 

GADNR Basins 
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Figure 4. Locations and drainages of GADNR wadeable stream samples from 1998-2013. 

Sampling effort was focused in subregions in certain years. Nearly twice as many samples were 

collected in the Gulf Slope (n = 941) as the Atlantic slope (n = 563).  
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Figure 5. GADNR wadeable stream fish samples, 1998-2013, overlain on the sixteen basins in 

the state. Sampling effort was spread relatively evenly over the state, although there are fewer 

samples in some basins below the Fall Line. The Coosa, Chattahoochee, and Ocmulgee Basins 

had the greatest number of samples (n > 200) over the monitoring period.  
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Figure 6. GADNR wadeable stream fish samples, 1998-2013, overlain on the six ecoregions in 

the state. Sampling density was greatest in the northern mountainous regions of the state and 

least in the Southern Coastal Plain.  
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Figure 7. Biogeographic units created from the overlay of Ecoregions on Basins (clipped to 

Georgia state border and generated via geometric union in ESRI ArcGIS Analysis Toolbox 

Overlay Toolset). Points are locations of GA wadeable stream fish samples, 1998-2013.  
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Figure 8. Temporal trends in Georgia Wildlife Resource Division wadeable stream fish sampling 

from 1998-2013. Ecoregions and Basins are color coded green and blue respectively with greater 

opacity indicating higher number of samples, and totals are presented in bar charts. Sampling 

effort rotated among basins and ecoregions, focusing on different parts of the state at different 

time periods.  
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Figure 9. Most sample sites were close to, or spatially coincident with, the hydrography network 

and features used for deriving environmental variables. Samples sites were snapped (with a 1 

kilometer tolerance) to National Hydrograph Dataset (NHD) Plus Version 2 http://www.horizon-

systems.com/NHDPlus/. 
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Figure 10. Summary of taxa that were found most frequently at sites which had been designated 

least impacted and stressed sites, based on anthropogenic influence in the catchment.  
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Figure 11. Box and whisker plot diagrams displaying the distribution of predictor variables by 

impact designation. LI denotes “least impacted”; ND denotes, “no designation”, “S” denotes 

“stressed”, and V denotes “validation” samples. 
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Figure 12. Spatial distribution of reference sites used for community clustering and taxa 

prediction (above) and mapped separately by impact designation (below).  
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Figure 13. Results from balancing the chaining and clustering of the dendrogram via the flexible 

beta method for cluster analysis. Positive β’s resulted in chaining, while β’s approaching -1 

resulted in overclustering of the dataset. Final β selected for cluster analysis was -0.6.  
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Figure 14. Example of tuning graph for selecting mtry, the number of variables to select at each 

split by the Random Forest (RF) model. Optimum mtry value is based on out-of-bag error rate, 

selected by left and right searches by the “tuneRF” function in steps of 1.5, searching until 

improvement was <0.01.  
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Figure 15. Mean decrease in accuracy and Gini as measures of variable importance for 

classification in the Random Forest model with all candidate variables. These metrics were used 

to select the most predictive variables for inclusion in the final model. To derive mean decrease 

in accuracy, the values of a predictor variable are randomly permuted for the “out-of-bag” OOB 

observations (those withheld while bootstrapping the dataset during construction of the forest), 

passed down the tree, and the difference in misclassification rates between the permuted and 

unpermuted OOB data provides a measure of variable importance. Gini measures homogeneity 

and ranges from zero (homogeneous) to one (heterogeneous), so decreases in Gini reflect 

increases in purity. Mean decreases in Gini from each parent to child node are summed over all 

trees, and normalized for each variable.  
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Figure 16. Density plot of O/E for calibration sites iterating probability of capture from near zero 

(include all taxa) to 0.5 (only include taxa found in >50% of samples for a given group). Greater 

Pc increased the model domain over a wider range of taxa, but increased the dispersion of O/E 

scores, even amongst least-disturbed calibration sites.   



47 

 

 

CHAPTER 3 

RESULTS 

 

Multivariate Model of Georgia Fish Assemblages 

The clustering of fish communities was cut at six groups based on visual examination of 

the dendrogram, after observing the concordance of the groups with basin and ecoregional 

boundaries, and in order to ensure that adequate data was available to train the model for each 

group (Figure 17, Figure 18). One notable exception to this concordance is the boundary between 

the Southern Coastal Plain and the Southeastern Plains Ecoregions, where the grouping 

correlated poorly, regardless of the number of clusters selected (Figure 19). The six groups, 

derived from the fish communities observed at least impacted sites, represented theoretical 

community types of stream fishes in Georgia and reflected basin and ecoregional biogeographic 

influences: the Piedmont Ecoregion, Southeastern Plains Ecoregion, Coosa-Tallapoosa Basins, 

Tennessee Basin in the Ridge and Valley Ecoregion, the Tennessee Basin in the Blue Ridge 

Ecoregion, and the Southern Coastal Plain Ecoregion. The names assigned to the groups are 

generalizations reflecting the locations where the majority of the samples were located. The 

pruning of the tree at this level resulted in theoretical fish communities groups that most 

intuitively aligned with these biogeographic regions (Figure 20). 

The final RF model included twenty-one predictor variables (Table 6). The most 

predictive variable was mean annual temperature, followed by elevation and geographic 

coordinates (Figure 21). Variables were retained to account for drainages (Coosa and Tennessee 
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Basins, and Atlantic and Gulf Slopes), ecoregions (South Eastern Plain, Piedmont, Blue Ridge 

Mountains, and Southern Coastal Plain), and temporal variation (Date, Year, and Day of Year). 

Physical site characteristics in the final model included slope, reach length, stream flow, and 

velocity. The measure of upstream drainage network length was retained, but stream order was 

not. The remaining basins and ecoregional candidate variables were dropped from the model. 

The responses of the community groups to some of the environmental variables were 

intuitive and reflected in the partial dependency plots. For example, membership in the groups 

above the Fall Line was more likely to be predicted by the model for sites at higher elevations, 

whereas membership in groups below the Fall Line were more likely to be predicted for sites at 

lower elevations (Figure 22). Other modelled relationships exhibited in the partial dependency 

plots are difficult to interpret ecologically. For example, the response of the groups to drainage 

basin area may be indicative of overfitting of the data or the limited range of stream sizes used to 

calibrate the model. 

The final RF model’s OOB error was 6.62%, making 0 to 7% classification errors for the 

Piedmont Ecoregion, Coosa-Tallapoosa and Tennessee Basins (including both the Ridge and 

Valley and Blue Ridge Ecoregions), and approximately a 12% and 21% error for the 

Southeastern Plains and Southern Coastal Plain Ecoregions (Table 7). The predictive model had 

an observed/expected (O/E) richness ratio of 1.09 for calibration (least impacted sites), indicating 

a slight bias in the model to under predict species richness (Figure 23), which was also evident in 

histogram, density, and Q-Q plots (Figure 24). The uncertainty in model predictions for 

Southeastern Plains, Southern Coastal Plains, and Tennessee Basin in the Blue Ridge Ecoregion 

translated into wider uncertainty in O/E scores for reference sites in those locations (Figure 25). 
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Model performance was also measured by the standard deviation (σ) of observed to 

expected richness, with a smaller σ indicating that the model accounted for a larger proportion of 

the variability associated with natural environmental gradients. Replicate sample σ is expected to 

represent a theoretical lower bound for variance in this type of model. In contrast, a null model 

which assumes fixed occurrence probabilities for individual taxa across reference sites 

(explaining none of the variability from natural gradients) is expected to represent the upper 

bound of model σ (Van Sickle et al., 2005). The model had a σ of 0.262 which is bracketed by a 

σ of 0.251 from replicate samples and a σ of 0.554 from the null model. This indicates that the 

model was able to explain a substantial amount of the variability in species richness that was due 

to natural environmental variation. The O/E scores were also visually examined, via scatterplot 

with LOWESS (locally weighted scatterplot smoothing) line, to determine the degree to which 

they accounted for natural gradients in the model (Figure 26). Trends were not evident for most 

variables included in the model, although there was an upward trend in O/E scores with 

increasing stream size (stream flow, order, and upstream arbolate stream kilometers). No spatial 

patterns were evident in the highest and lowest O/E scores for the least impacted sites used in 

model calibration (Figure 27). The model was also tested against the subset of validation data, 

which exhibited a slight bias in mean O/E scores (1.024), and a slightly larger σ (0.331) (Figure 

28). 

Discrimination of the O/E scores between least impacted and stressed sites was weak 

across the range of Pc (Figure 29). Greater Pc decreased σ in O/E scores up to about a 0.3 level, 

but a 0.5 threshold was ultimately selected for its slightly greater discrimination (the stressed site 

median O/E below the lower quartile O/E of least impacted sites) and for greater consistency 

with numerous O/E models and reviews (Hawkins, Norris, Hogue, et al., 2000; Moss, Wright, 
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Furse, & Clarke, 1999; Van Sickle et al., 2007; J. F. Wright et al., 2000). Standard deviation of 

O/E scores decreased from 0.484 to 0.302 when iterating Pc from near 0 to 0.6. Above this Pc 

level, model results became unstable since no taxa were predicted to occur at or above this 

frequency in a number of groups. 

The effect of varying the Pc value in the model was also examined through simulations 

with a theoretical data set. Mean O/E scores for simulated samples from groups of 3, 6, 9 or 18 

taxa with a mean probability of occurrence of 0.75 (least impacted) or 0.6 (stressed) sites 

averaged 1.0 and 0.8 regardless of level of taxa richness. However, standard deviation of scores 

decreased with increasing taxa richness (e.g., from 0.34 to 0.13 at least impacted sites). Ranges 

of O/E scores overlapped extensively between least impacted and stressed sites at all levels of 

taxa richness, although with 18 taxa the range of scores at stressed sites at least did not 

encompass the full range of possible scores (Figure 30). Lower Pc and lower expected richness 

both increased variability in scores even at least impacted sites. 

Further diagnostics were conducted for the ACF-PDM subregion in Georgia. The revised 

O/E scores in the ACF-PDM demonstrated greater discrimination than statewide. However, the 

model was not able to discriminate as well (Figure 31), nor did it exhibit a strong relationship 

with (Figure 32) the state’s draft multimetric IBI index. The performance of the O/E model 

statewide was driven by the range in performance in each of the various basins and ecoregions 

(Figure 33, Figure 34). For example, variability was lowest in the Ridge and Valley Ecoregion, 

but widest in the Southern Coastal Plain Ecoregion. Additionally, the distributions of O/E scores 

were examined to evaluate whether they were bimodal (Figure 35). If so, extremely high and low 

O/E scores (i.e., sites enriched and depleted in species) may not have been evident when viewing 

average scores, but the O/E scores did not appear to be distributed in this manner. 
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 Due to the wide variability in O/E scores at least impacted sites, and their contribution of 

relatively few samples to the model, several basins and ecoregions were removed from the 

results. The Saint Marys, Apalachicola, and Aucilla basins had too little data to be evaluated and 

were removed. The Ochlockonee, Suwanee, Tallapoosa, Ocmulgee basins and Southern Coastal 

Plain, Southeastern Plains Ecoregion ecoregions did not have a positive relationship or multiple 

linear regression coefficient of determination greater than 0.3 and were also removed (Figure 36, 

Figure 37). Removing these poorly performing basins and ecoregions improved the relationship 

between observed and expected scores at all validation sites from an r2 of 0.57 to 0.67 (Figure 

38). 

 

Functional Group Responses to Disturbance 

The analysis of taxa O/E scores indicated increases or decreases in some taxa at stressed 

sites. Of the five families with 10 or more taxa, the taxa O/E of Centrarchidae, on average, just 

slightly exceeded one (1.05), indicating that these taxa tend to occur about as often as predicted 

by the model at stressed sites. Ictaluridae and Catostomidae had lower average O/E scores at 

stressed sites (0.87 and 0.85 respectively), as did Cyprinidae (0.78) and Percidae (0.63) (Figure 

39). Species defined as feeding generalists increased at stressed sites (1.15 average taxa O/E) 

while invertivores decreased (0.72) (Figure 40). Most striking were the increases in habitat 

generalists (1.22), versus the decreases in fluvial and swamp specialists (0.67 and 0.54, 

respectively) (Figure 41). The a priori designations of tolerance responded as expected with 

mean O/E taxa scores increasing notably for high tolerance taxa (1.33), decreasing slightly for 

medium (0.76), and decreasing dramatically for low tolerance taxa (0.53). The responses of the 

most extreme “increasers” and “decreasers” typified trends at the family level, as the most 
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extreme decreaser taxon, Etheostoma jessiae (0.08), is an invertivorous fluvial specialist, while 

the most extreme increaser taxon, Micropterus punctulatus (2.60) is a predatory habitat 

generalist (See Appendix D, Table D.1). The only parasitic taxon analyzed, Ichthyomyzon 

castaneus, was a slight decreaser (0.74). Of Georgia’s protected fish species in the model, some 

had marginal changes such as Cyprinella xaenura (1.05) and Etheostoma scotti (0.91), and others 

were decreasers, such as Etheostoma duryi (0.70) and Percina sciera (0.70). However, many of 

the protected species demonstrated extreme responses as out of the 136 taxa analyzed, they 

ranked as the 21st greatest decreaser, Percina smithvanizi (0.32), 17th greatest decreaser, 

Etheostoma tallapoosae (0.28), 6th greatest decreaser, Notropis hypsilepis (0.19), and 2nd greatest 

decreaser, Moxostoma sp. Apalachicola redhorse (0.14).  
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Table 6. Importance values for the 21 variables used in the final Random Forest model. Ranks 

(1-21) are shown for each community cluster (1 through 6) with the highest ranks indicating the 

greatest importance for assigning samples to that cluster. Gini measures homogeneity and ranges 

from zero (homogeneous) to one (heterogeneous), so decreases in Gini reflect increases in purity. 

Mean decreases in Gini from each parent to child node are summed over all trees, and 

normalized for each variable. Mean decrease in accuracy is derived from permuting values from 

a single predictor variable for the out-of-bag observations, running the permuted data down the 

forest trees, and averaging mean decrease in accuracy between the permuted and unpermuted 

variable across all observations, normalized by the standard deviation of the differences. 

 

Variable 
      MeanDecrease

Accuracy 

MeanDecrease

Gini 1 2 3 4 5 6 

Mean_Ann_Temp_C 14 13 19 15 21 14 26 31 

Elevation_m 9 12 16 14 19 13 21 25 

Lat 16 13 14 15 13 13 21 21 

Long 13 5 18 15 7 11 22 18 

Eco_SEP 15 20 12 9 10 10 20 16 

Bas_Coo 11 8 17 11 0 6 17 10 

Atlantic_Slope 14 5 15 10 0 -1 16 9 

Eco_PDM 16 9 11 10 10 9 17 10 

Gulf_Slope 13 3 13 8 1 -2 14 8 

Date 10 6 7 8 7 5 14 7 

Slope 4 4 6 6 10 1 10 8 

Bas_Ten 6 5 13 20 6 3 18 8 

Eco_BRM 8 6 4 6 12 4 11 5 

Year 6 3 5 7 6 5 11 4 

Eco_SCP 4 -1 3 2 2 14 12 4 

DayOfYear 6 -4 6 5 1 9 10 5 

ArbolateSum_m 5 3 6 0 5 4 10 4 

Velocity_mps 7 2 7 3 4 1 10 4 

DBA_km2 7 3 2 0 4 -1 8 4 

Flow_m3ps 4 3 4 1 3 2 7 3 

RL_m 5 5 5 2 2 -5 6 4 
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Table 7. Random Forest model classification confusion matrix. Colors correspond to the 

mapping of the six theoretical Georgia stream fish community types. Final column reflects 

classification error. Overall out-of-bag error (a cross validation measure of model performance) 

was 6.62%. 

 

   1 2 3 4 5 6 Error 

Piedmont Ecoregion  1 54 0 2 0 0 0 3.57% 

Southeastern Plains Ecoregion  2 4 73 1 0 0 5 12.05% 

Coosa-Tallapoosa Basins  3 0 0 71 0 0 0 0.00% 

Tennessee Basin x Ridge and Valley Ecoregion  4 0 0 0 14 0 0 0.00% 

Tennessee Basin x Blue Ridge Ecoregion  5 0 0 2 0 27 0 6.90% 

Southern Coastal Plain Ecoregion  6 0 4 0 0 0 15 21.05% 
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Figure 17. Alternate clustering of theoretical stream fish communities in Georgia, based on 

selection of 2 (upper left) to 9 (lower right) clusters of sample data, as indicated by differing 

colors.  
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Figure 18. Georgia stream fish groups overlain on ecoregion (left) and basin (right), based on 

observations at least impacted sites. The Piedmont was not well represented among least 

impacted sites due to the extensive urbanization from the greater metro Atlanta area. Names 

assigned to the groups are generalizations reflecting the locations where the majority of the 

samples were located.  
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Figure 19. An alternate division of theoretical stream fish communities in Georgia with 15 

groups, overlain on basins (left) and ecoregions (right), to demonstrate the effects of dividing the 

groups at a higher level.  
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Figure 20. There was strong concordance between the Random Forest predicted group 

membership and Georgia’s biogeographic regions (basin and ecoregions), with the notable 

except of samples in the Southern Coastal Plain.  
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Figure 21. Mean decrease in accuracy and Gini as measures of variable importance for 

classification in the final Random Forest model. 500 trees were included in the final forest and 4 

variables were randomly selected as classifiers at each split.  
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Figure 22. Partial dependence plot for drainage basin area (DBA) in square kilometers (top) and 

elevation in meters (bottom) where Y-axis is the mean value of logit(p) and p is the predicted 

probability of being in a group and the mean is taken over all other combinations of the other 

predictors. Community types displayed are Group 1 (Piedmont Ecoregion), Group 2 

(Southeastern Plains Ecoregion), Group 3 (Coosa-Tallapoosa Basins), Group 4 (Tennessee Basin 

x Ridge and Valley Ecoregion), Group 5 (Tennessee Basin x Blue Ridge Ecoregion), and Group 

6 (Southern Coastal Plain Ecoregion).  



61 

 

 

Figure 23. Observed versus expected species richness for calibration sites. Choice of axes based 

on Piñeiro, Perelman, Guerschman, & Paruelo, 2008. Top figure displays across the range of 

modelled richness (0-20 taxa), while the bottom figure displays a subset (2-9 taxa). Points are 

color coded by theoretical Georgia stream fish communities: PDM (Piedmont Ecoregion), SEP 

(Southeastern Plains Ecoregion), CTA (Coosa-Tallapoosa Basins), TRV (Tennessee Basin x 

Ridge and Valley Ecoregion), TBR (Tennessee Basin x Blue Ridge Ecoregion), and SCP 

(Southern Coastal Plain Ecoregion). The predictive model had an observed/expected (O/E) 

richness ratio of 1.085, indicating a slight bias in the model to under predict species richness.  
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Figure 24. Histogram, density and Q-Q plots of O/E scores for least impacted sites indicating a 

slight bias in the model to under predict species richness.  
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Figure 25. Median and range of O/E scores for Least Impacted Sites by community group: PDM 

(Piedmont Ecoregion), SEP (Southeastern Plains Ecoregion), CTA (Coosa-Tallapoosa Basins), 

TRV (Tennessee Basin x Ridge and Valley Ecoregion), TBR (Tennessee Basin x Blue Ridge 

Ecoregion), and SCP (Southern Coastal Plain Ecoregion). The widest range in O/E scores were 

observed among the Tennessee-Blue Ridge and Southern Coastal Plain groups.  
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Figure 26. Variation in O/E scores for all sites across natural gradients displayed via scatterplot 

with LOWESS line. Top panel displays eleven variables without evident trends, bottom panel 

displays three variables with possible trends, although they appear to be influenced primarily by 

outlying points.  
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Figure 27. Most extreme O/E scores for least impacted reference sites are graphed spatially.  

No patterns were evident in the spatial distribution of the highest and lowest O/E scores.  
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Figure 28. Histogram, density and Q-Q plots of O/E scores for validations sites indicating a bias 

in the model to under predict species richness.  
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Figure 29. Discrimination of O/E scores for least impacted versus stressed sites, iterating the 

probability of capture (Pc) from near 0 to 0.6. Inclusion of rare taxa (as Pc approaches 0) 

increased the model domain over a wider range of fish diversity, but decreased the ability to 

differentiate between least impacted and stressed sites.  



68 

 
Figure 30. Simulated O/E scores for 10,000 samples taken from least impacted (mean species 

occurrence and capture, Pc = 0.75) and stressed (mean Pc =0.6) sites having 3, 6, 9, or 18 

species included in analyses. Horizontal lines show mean scores for least impacted (solid) and 

stressed (dashed) sites.  
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Figure 31. Discrimination of bioassessment scores by impact designation. The relative 

discrimination efficiency of the O/E approach (top) is compared with IBI discrimination for the 

Apalachicola-Chattahoochee-Flint Basin portion of the Piedmont Ecoregion (ACF-PDM) region.  
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Figure 32. Draft revised O/E Scores and draft revised IBI scores for Apalachicola-

Chattahoochee-Flint Basin portion of the Piedmont Ecoregion (ACF-PDM) region. Red line 

displays a locally weighted scatterplot smoothing (LOWESS) non-parametric regression (nearest 

neighbor) line. Blue lines represent examples of impairment thresholds: a horizontal line for O/E 

scores <0.8 and a vertical line for IBI scores <350.  



71 

 

 
Figure 33. Variability in the range of O/E Scores for all sites by impact designation depended 

largely on the basin (top) and ecoregion (bottom). “LI” indicates least impacted sites, “ND” sites 

with no-designation, “S” stressed sites and “V” validation sites.  
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Figure 34. Variability in the range of O/E Scores for least impacted and stressed sites are 

displayed by likely group assignment (the group with the most votes from the RF model). A site 

may have been assigned, with nearly equal probability, to one or more other groups. “LI” 

indicates least impacted sites and “S” stressed sites. Group assignments are 1 (Piedmont 

Ecoregion), 2 (Southeastern Plains Ecoregion), 3 (Coosa-Tallapoosa Basins), 4 (Tennessee Basin 

x Ridge and Valley Ecoregion), 5 (Tennessee Basin x Blue Ridge Ecoregion), 6 (Southern 

Coastal Plain Ecoregion). Note that the model assigned very few sites to the sixth group, the 

Southern Coastal Plain Ecoregion.  
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Figure 35. The distributions of O/E scores from all samples did not appear to be bimodal with a 

large percentage of high and low O/E scores (i.e., sites enriched and depleted in species).  
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Figure 36. Ecoregion relationships between observed and expected fish taxa richness at 

validation sites. Those considered strongest have a positive multiple linear regression slope and 

r2 greater than 0.30.  
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Figure 37. Basins with the strongest relationship between the observed and expected fish taxa 

richness at validation sites, defined as having a positive multiple linear regression slope and r2 

greater than 0.30. 
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Figure 38.  O/E Scores for validation sites showed a stronger relationship with poorly performing 

basins and ecoregions removed (above, r2 = 0.67), rather than included (below, r2 = 0.57). 
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Figure 39. Mean taxa O/E scores, displayed by the five most species-rich families, indicated taxa 

which occurred more or less frequently at stressed sites.  
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Figure 40. Strip plots of taxa O/E by feeding, habitat, and tolerance groups. Species defined as 

feeding generalists increased at stressed sites (1.15 average taxa O/E) while invertivores 

decreased (0.72). Increases in habitat generalist (1.22), are contrasted with decreases in fluvial 

and swamp specialists (0.67 and 0.54, respectively). The a priori designations of tolerance 

responded predictably with mean O/E taxa scores increasing notably for high tolerance taxa 

(1.33), decreasing slightly for medium (0.76), and decreasing dramatically for low tolerance taxa 

(0.53).  
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Figure 41. Density plots of taxa O/E by feeding, habitat, and tolerance groups show notable 

declines in invertivores, swamp and fluvial specialists, and increases in feeding and habitat 

generalists.  
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CHAPTER 4 

DISCUSSION 

 

This project has demonstrated the feasibility of developing an O/E assessment metric 

based on samples of fish assemblages in wadeable streams in a geologically and biologically 

diverse region. After a literature search on the topic, this appears to be the first O/E model that 

uses a Random Forest model (O/E-RF) to predict fish distributions for bioassessment. The O/E-

RF approach is a particularly good complement to the IBI approach. The IBI uses a priori 

assumptions based on ecological theory to define biogeographical regions and select candidate 

metrics. In the O/E-RF framework, those decisions are largely made a posteriori in a data 

exploration approach via statistical clustering techniques and a machine learning algorithm. Both 

methods address the same question from slightly different approaches, and therefore provide two 

relatively independent lines of evidence. 

The best predictors of sample assignment to a group were mean annual temperature, 

elevation, geographic coordinates, and slope. These variables are understood to be important in 

determining the distribution of organism due to their impact on the metabolism, particularly for 

fish which are poikilothermic. Classification error was generally low, with the exception of the 

Southeastern Plains and Southern Coastal Plains Ecoregions. This result may relate to a lack of 

narrow endemic fishes in these ecoregions, particularly in comparison to other regions in 

Georgia. The restriction of fish species to particular basins likely aided in the clustering of 
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community types in these basins, whereas the clustering below the fall line was less well defined, 

and this uncertainty likely propagated through the RF modeling and calculation of O/E scores. 

The multivariate cluster analysis grouped samples largely according to ecoregion and 

basin, providing an intuitive understanding of natural variability in Georgia’s stream fish 

communities. Comparisons of O/E scores between sites considered “least impacted” and those 

categorized as “stressed” supported the hypothesis that loss of expected species richness could be 

a sensitive metric of human disturbance, with the exception of the basins and ecoregions dropped 

from the model. 

The RF model was a useful statistical approach for predicting stream fish occurrences in 

Georgia, particularly the multiple variable importance measures it produced and its ability to 

handle complex interactions between variables. The majority of published O/E bioassessments 

used discriminant function models, but that approach was not pursued here because some 

comparisons indicate instability in the stepwise model selection procedures (Van Sickle et al., 

2006). Although care was taken in selection of tuning parameters in the RF model, the response 

of community groups to some environmental variables may have been indicative of overfitting, 

or may have reflected the narrow range of data (just for wadeable streams) used to train the 

model. Predictive ability of the model could potentially be improved with additional 

environmental variables, such as additional measures of habitat connectivity between reaches, or 

leveraging the habitat and water quality data measured in the field. There is also opportunity for 

modeling refinements, such as the use of a more mature CART based modeling approach via the 

alternate “gbm” package in R, based on related applications that have observed superior 

performance by boosted regression trees (J R Leathwick, Elith, Francis, Hastie, & Taylor, 2006). 
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The clustering of fish community types also informs our understanding of the 

biogeography of Georgia’s fishes. Georgia’s stream fish community groups, to a first 

approximation, appear to be a product of ecoregion and basin factors. Georgia’s northern 

ecoregions (Piedmont, Blue Ridge, and Ridge and Valley) are bisected from the southern 

ecoregions (Southern Coastal Plain and Southeastern Plains) by the Atlantic Seaboard Fall Line. 

Areas south of this geographic feature are hydrogeomorphically distinct, characterized by low-

gradient, meandering rivers, broad floodplains with prolonged flooding, bottomland hardwoods, 

substantial sediment (and adsorbed contaminant) retention, and extensive hydrologic alteration 

from surface and groundwater withdrawals (Hupp, 2000). In these areas, the biogeographic 

groups, defined in the cluster analysis and predicted for each site by the RF model, aligned 

closest to ecoregions. Therefore, presumably the community groups were more strongly 

influenced by factors used to delineate these regions (e.g., soils and land cover) which reflect 

habitat constraints (e.g., the underlying geology and its impact on water chemistry). Conversely, 

in the northern plateau and mountainous areas above the fall line, groups aligned more closely 

with basins and subbasins, potentially reflecting constraints on dispersal in steep topography or 

long isolation of populations resulting in basin endemics. 

This research demonstrated the advantage and constraints of applying the O/E assessment 

approach to stream fishes and presented an additional metric for monitoring and assessing 

Georgia’s streams. Model results in the southern part of the state seem to have been limited by 

the relatively low fish diversity in the region – leading to greater variability in scores from 

stochastic effects in species occurrence and detection. Additionally, the complex groundwater 

dynamics from the karst topography in the region were likely not accounted for in the 

environmental predictor variables, particularly the temperature and flow variables which were 
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based on surface precipitation and runoff models. The impact designations also could not 

account for some presumed stressors in the region, such as reductions in baseflow from 

groundwater pumping and small impoundments. Furthermore, the extensive agricultural land use 

in the area may have limited the availability of reference sites, and more generally, the IBI 

program has had less intensive sampling in the area, limiting data available for training and 

validating the model. 

Based on the analysis of a simulated bioassessment dataset, stochastic variation in scores, 

even at least impacted sites, clearly can obscure the ability of the O/E method to discriminate 

among levels of impact when the number of possible taxa is low (e.g., <10). The method was 

designed for application to species-rich faunal groups, and application to low numbers of taxa 

reduces discriminatory power. Although occurrence data for over two-hundred fish taxa from 

Georgia’s streams were available for this analysis, this diversity is still about one-third of the 

macroinvertebrate diversity (over six-hundred taxa) used in the development of the initial 

RIVPACS modeling framework (J F Wright et al., 1996). Furthermore, the distribution of fish 

taxa may be more geographically restricted, since some macroinvertebrate taxa have life stages 

able to disperse across catchment boundaries, whereas fish are generally limited to distribution 

via the stream network (with the exceptions, perhaps, of migration during flooding or via human 

introductions). Ecologists using invertebrate O/E models have also explored the biodiversity and 

taxonomic resolution necessary to build effective O/E models, and have concluded that higher 

taxonomic resolution (e.g., genera, species, or subspecies) may be necessary in areas where 

families have a high amount of adaptive radiation (Hawkins, Norris, Wright, Sutcliffe, & Furse, 

2000). Other analyses of bioassessment modeling have investigated additional possible 

conditions that could lead to systematic biases in O/E scores, depending on the number of 
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reference sites used to build the model, the distribution of those sites, the distribution of 

estimated capture probabilities of the taxa in the reference sites, and the capture probability value 

used to screen taxa for inclusion in the model (Yuan, 2006). 

The impairment threshold used in this analysis (O/E scores of 0.8 or less) was derived 

from similar O/E modeling for fishes, macroinvertebrates, and diatoms (Carlisle et al., 2008), 

however these values are tentative, and additional analysis would be required to determine 

threshold relevant to bioassessment in Georgia. The selection of impairment thresholds for 

regulatory purposes requires additional expert and stakeholder involvement and is beyond the 

scope of this work. One common approach to calibrating bioassessment indices is the use of an 

expert elicitation process where biological criteria scores are correlated with desired biological 

conditions such as the presence of endemic, sensitive, and rare taxa, ecosystem function, and 

waterbody connectivity (Davies & Jackson, 2006). 

The observation that taxa O/E scores at stressed sites increased the most for centrachids, 

and decreased the most for percids, cyprinids, and catostomids, confirms a similar result made in 

a larger regional model of southeastern U.S. stream fishes (Meador & Carlisle, 2009). The 

successful reproduction of their finding, using over a decade of samples from a large 

independent data set, provides a strong additional line of evidence demonstrating the sensitivity 

of stream fish families, such as fluvial percids, to human disturbance.  

These results also points to several potential next steps for research. Additional analyses 

of functional traits should be pursued to examine which taxa are extirpated more easily as the 

biotic community becomes increasingly disturbed (as measured by O/E scores). The analysis of 

increasers and decreasers provided initial indications of some taxa, family, and functional group 

sensitivities. This line of questioning could be extended by modeling species occurrences as a 
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function of taxa traits in combination with O/E scores. These empirical results, indicating which 

fish guilds respond most to disturbances, could help inform a more mechanistic understanding of 

what life history traits, pathways, and anthropogenic stressors impact Georgia’s stream fish 

populations. 

While the refinement of the state’s multimetric IBI is still ongoing, the results of this O/E 

modeling could support a number of tentative recommendations for the Stream Team. First, prior 

to the classification of stream types or selection of metrics for IBIs, it may be useful to complete 

exploratory data analyses, such as clustering fish community types and examining modelled 

species distributions. Whereas defining IBI site classifications and metrics likely begins with a 

literature search, these analyses require few assumptions regarding the ecology of fishes, and 

may elucidate patterns in fish distributions or responses to disturbance. The results of the 

exploratory analyses can then be incorporated into IBI development if they appear meaningful, 

rejected if they conflict with our understanding of fish ecology, or researched further. Second, 

the O/E metric constructed in this research can provide a measure of stream health to be analyzed 

independently, or as an additional line of evidence, in areas where the model performed 

strongest. A stream fish IBI approach may perform the best in screening sites in Georgia, since 

the metrics are purposely chosen on the basis of their specific response in disturbed versus 

undisturbed sites. The IBI, therefore, may be an ideal tool for identifying reaches with 

undiagnosed chemical or physical stressors. The O/E approach may have particular utility after a 

site has been identified as impacted, in order to determine the underlying cause. The species 

distribution model, built via the O/E methodology or another methods, provides an expectation 

of which fish fauna are predicted to be present in a stream. The absence of these taxa or 

functional groups can be used to infer what physiological or behavioral traits are being selected 
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against at the site, potential pathways of the impact, and what the ultimate cause may be. Finally, 

the inability of the O/E approach to more explicitly incorporate rare taxa into the metric 

highlights the need for further improvements in methodology. Although bioassessments 

generally ask whether a particular site is disturbed for the purposes of restoring and maintaining 

water quality, other management objectives specifically entail conserving a region’s native biota. 

The monitoring data collected for bioassessments can answer not only, “what proportion of sites 

are relatively undisturbed?” but additionally, “are species disappearing, and at what rate?” Future 

refinements in stream bioassessment will need to broaden the focus from the health of fish 

populations in a given reach, to the viability of fish populations regionally. 
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Table A.1. Summary of the most widely cited publications describing the development or evaluation of bioassessment indices. The 

terms "Index of Biotic Integrity" and "RIVPACS" were queried in Google Scholar. Relevant publications, which were cited at least 50 

and 10 times, respectively for the two search terms, were reviewed, up to the first 100 results. Relevant publications included those 

which describe the development and evaluation of bioassessment models, excluding summaries, reviews, or description of evaluation 

methods that were not specific to a given assemblage or location. Where there were multiple publications regarding the same 

bioassessment index development, the most highly cited publication was retained. “Other” assemblages includes periphyton, 

phytoplankton, zooplankton, macrophytes, or aquatic amphibians. Table is sorted in descending order based on number of citations. 
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USA, Tennessee Valley 1   1           1   Kerans, B. L., & Karr, J. R. (1994). A benthic index of 

biotic integrity (B-IBI) for rivers of the Tennessee 

Valley. Ecological applications, 4(4), 768-785. 

USA, Midwest 1   1         1     Fausch, K. D., Karr, J. R., & Yant, P. R. (1984). Regional 

application of an index of biotic integrity based on stream 

fish communities. Transactions of the American Fisheries 

Society, 113(1), 39-55. 

USA, Chesapeake Bay 1           1   1   Weisberg, S. B., Ranasinghe, J. A., Dauer, D. M., 

Schaffner, L. C., Diaz, R. J., & Frithsen, J. B. (1997). An 

estuarine benthic index of biotic integrity (B-IBI) for 

Chesapeake Bay. Estuaries, 20(1), 149-158. 

Canada, Ontario 1   1         1     Steedman, R. J. (1988). Modification and assessment of an 

index of biotic integrity to quantify stream quality in 

southern Ontario. Canadian Journal of Fisheries and 

Aquatic Sciences, 45(3), 492-501. 

Canada, Great Lakes   1     1       1   Reynoldson, T. B., Bailey, R. C., Day, K. E., & Norris, R. 

H. (1995). Biological guidelines for freshwater sediment 

based on BEnthic Assessment of SedimenT (the BEAST) 

using a multivariate approach for predicting biological 

state.Australian journal of ecology, 20(1), 198-219. 
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1   1         1     Miller, D. L., Hughes, R. M., Karr, J. R., Leonard, P. M., 

Moyle, P. B., Schrader, L. H., ... & Orth, D. J. (1988). 

Regional applications of an index of biotic integrity for 

use in water resource management. Fisheries, 13(5), 12-

20. 

France, Seine Basin 1     1       1     Oberdorff, T., & Hughes, R. M. (1992). Modification of an 

index of biotic integrity based on fish assemblages to 

characterize rivers of the Seine Basin, 

France. Hydrobiologia, 228(2), 117-130. 

USA, Mid-Appalachians 1   1         1     Hill, B. H., Herlihy, A. T., Kaufmann, P. R., Stevenson, R. 

J., McCormick, F. H., & Johnson, C. B. (2000). Use of 

periphyton assemblage data as an index of biotic 

integrity. Journal of the North American Benthological 

Society, 19(1), 50-67. 

United Kingdom, All   1 1           1   Wright, J. F., Furse, M. T., & Armitage, P. D. (1993). 

RIVPACS-a technique for evaluating the biological 

quality of rivers in the UK. European Water Pollution 

Control, 3, 15-15. 

USA, Wisconsin 1   1         1     Lyons, J., Wang, L., & Simonson, T. D. (1996). 

Development and validation of an index of biotic integrity 

for coldwater streams in Wisconsin. North American 

Journal of Fisheries Management, 16(2), 241-256. 

France, All   1 1 1       1     Oberdorff, T., Pont, D., Hugueny, B., & Chessel, D. 

(2001). A probabilistic model characterizing fish 

assemblages of French rivers: a framework for 

environmental assessment. Freshwater Biology, 46(3), 

399-415. 

USA, Illinois, Ohio & 

West Virginia 

1   1         1     Angermeier, P. L., & Karr, J. R. (1986). Applying an 

index of biotic integrity based on stream-fish 

communities: considerations in sampling and 

interpretation. North American Journal of Fisheries 

Management, 6(3), 418-429. 
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USA, Wisconsin 1   1         1     Lyons, J. (1992). Using the index of biotic integrity (IBI) 

to measure environmental quality in warmwater streams of 

Wisconsin. General technical report NC (USA). 

USA, Mid-Atlantic 

Highlands 

1   1         1     McCormick, F. H., Hughes, R. M., Kaufmann, P. R., Peck, 

D. V., Stoddard, J. L., & Herlihy, A. T. (2001). 

Development of an index of biotic integrity for the Mid-

Atlantic Highlands region. Transactions of the American 

Fisheries Society,130(5), 857-877. 

USA, Massachusetts 1           1 1     Deegan, L. A., Finn, J. T., Ayvazian, S. G., Ryder-Kieffer, 

C. A., & Buonaccorsi, J. (1997). Development and 

validation of an estuarine biotic integrity 

index. Estuaries, 20(3), 601-617. 

Mexico, West Central 1   1 1       1     Lyons, J., Navarro‐Pérez, S., Cochran, P. A., Santana, E. 

C., & Guzmán‐Arroyo, M. (1995). Index of Biotic 

Integrity Based on Fish Assemblages for the Conservation 

of Streams and Rivers in West‐Central 

Mexico. Conservation Biology, 9(3), 569-584. 

USA, West Virginia 1   1         1     Leonard, P. M., & Orth, D. J. (1986). Application and 

testing of an index of biotic integrity in small, coolwater 

streams. Transactions of the American Fisheries 

Society, 115(3), 401-414. 

USA, Southeast 1           1   1   Van Dolah, R. F., Hyland, J. L., Holland, A. F., Rosen, J. 

S., & Snoots, T. R. (1999). A benthic index of biological 

integrity for assessing habitat quality in estuaries of the 

southeastern USA. Marine Environmental 

Research, 48(4), 269-283. 

Australia, All   1 1           1   Davies, P. E., Wright, J. F., Sutcliffe, D. W., & Furse, M. 

T. (2000). Development of a national river bioassessment 

system (AUSRIVAS) in Australia. In Assessing the 

biological quality of fresh waters: RIVPACS and other 

techniques. Proceedings of an International Workshop 

held in Oxford, UK, on 16-18 September 1997. (pp. 113-
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Australia, New South 

Wales 

1   1 1       1     Harris, J. H., & Silveira, R. (1999). Large-scale 

assessments of river health using an Index of Biotic 

Integrity with low-diversity fish communities.Freshwater 

Biology, 41(2), 235-252. 

USA, Mid-Atlantic 

Highlands 

1   1           1   Klemm, D. J., Blocksom, K. A., Fulk, F. A., Herlihy, A. 

T., Hughes, R. M., Kaufmann, P. R., ... & Davis, W. S. 

(2003). Development and evaluation of a 

macroinvertebrate biotic integrity index (MBII) for 

regionally assessing Mid-Atlantic Highlands 

streams. Environmental Management, 31(5), 0656-0669. 

USA, Great Lakes 1         1   1 1 1 Wilcox, D. A., Meeker, J. E., Hudson, P. L., Armitage, B. 

J., Black, M. G., & Uzarski, D. G. (2002). Hydrologic 

variability and the application of index of biotic integrity 

metrics to wetlands: a Great Lakes 

evaluation. Wetlands, 22(3), 588-615. 

USA, Illinois & Indiana 1   1         1     Karr, J. R., Yant, P. R., Fausch, K. D., & Schlosser, I. J. 

(1987). Spatial and temporal variability of the index of 

biotic integrity in three midwestern streams.Transactions 

of the American Fisheries Society, 116(1), 1-11. 

USA, Maryland 1   1         1     Stribling, JB (1998) Development of a benthic index of 

biotic integrity for Maryland streams. Maryland 

Department of Natural Resources, Monitoring and Non-

Tidal Assessment Division. 

USA, Colorado 1   1         1 1 1 Griffith, M. B., Hill, B. H., McCormick, F. H., Kaufmann, 

P. R., Herlihy, A. T., & Selle, A. R. (2005). Comparative 

application of indices of biotic integrity based on 

periphyton, macroinvertebrates, and fish to southern 

Rocky Mountain streams. Ecological Indicators, 5(2), 

117-136. 

Belgium, Flanders 1   1 1       1     Belpaire, C., Smolders, R., Auweele, I. V., Ercken, D., 

Breine, J., Van Thuyne, G., & Ollevier, F. (2000). An 

Index of Biotic Integrity characterizing fish populations 

and the ecological quality of Flandrian water 

bodies. Hydrobiologia,434(1-3), 17-33. 
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USA, Wisconsin 1     1       1     Lyons, J., Piette, R. R., & Niermeyer, K. W. (2001). 

Development, validation, and application of a fish-based 

index of biotic integrity for Wisconsin's large warmwater 

rivers. Transactions of the American Fisheries 

Society, 130(6), 1077-1094. 

USA, Oregon & 

Washington 

  1 1           1   Ostermiller, J. D., & Hawkins, C. P. (2004). Effects of 

sampling error on bioassessments of stream ecosystems: 

application to RIVPACS-type models.Journal of the North 

American Benthological Society, 23(2), 363-382. 

USA, Interior Plateau 1   1             1 Wang, Y. K., Stevenson, R. J., & Metzmeier, L. (2005). 

Development and evaluation of a diatom-based Index of 

Biotic Integrity for the Interior Plateau Ecoregion, 

USA. Journal of the North American Benthological 

Society, 24(4), 990-1008. 

USA, Colorado 1   1         1     Bramblett, R. G., & Fausch, K. D. (1991). Variable fish 

communities and the index of biotic integrity in a western 

Great Plains river. Transactions of the American Fisheries 

Society, 120(6), 752-769. 

USA, Georgia 1   1         1     Schleiger, S. L. (2000). Use of an index of biotic integrity 

to detect effects of land uses on stream fish communities 

in west-central Georgia. Transactions of the American 

Fisheries Society, 129(5), 1118-1133. 

USA, Great Lakes 1         1     1   Burton, T. M., Uzarski, D. G., Gathman, J. P., Genet, J. 

A., Keas, B. E., & Stricker, C. A. (1999). Development of 

a preliminary invertebrate index of biotic integrity for 

Lake Huron coastal wetlands. Wetlands, 19(4), 869-882. 

USA, Great Lakes 1         1   1     Uzarski, D. G., Burton, T. M., Cooper, M. J., Ingram, J. 

W., & Timmermans, S. T. (2005). Fish habitat use within 

and across wetland classes in coastal wetlands of the five 

Great Lakes: development of a fish-based index of biotic 

integrity. Journal of Great Lakes Research, 31, 171-187. 
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USA, Northeastern 1   1 1           1 Hill, B. H., Herlihy, A. T., Kaufmann, P. R., DeCelles, S. 

J., & Vander Borgh, M. A. (2003). Assessment of streams 

of the eastern United States using a periphyton index of 

biotic integrity. Ecological Indicators, 2(4), 325-338. 

New Zealand, All   1 1         1     Joy, M. K., & Death, R. G. (2002). Predictive modeling of 

freshwater fish as a biomonitoring tool in New 

Zealand. Freshwater Biology, 47(11), 2261-2275. 

Brazil, South 1   1         1     Bozzetti, M., & Schulz, U. H. (2004). An index of biotic 

integrity based on fish assemblages for subtropical streams 

in southern Brazil. Hydrobiologia, 529(1-3), 133-144. 

Republic of Guinea, 

Konkoure River 

1     1       1     Hugueny, B., Camara, S., Samoura, B., & Magassouba, M. 

(1996). Applying an index of biotic integrity based on fish 

assemblages in a West African 

river.Hydrobiologia, 331(1-3), 71-78. 

Mexico, West Central 1   1           1   Weigel, B. M., Henne, L. J., & Martínez-Rivera, L. M. 

(2002). Macroinvertebrate-based index of biotic integrity 

for protection of streams in west-central Mexico. Journal 

of the North American Benthological Society,21(4), 686-

700. 

USA, Mississippi 1   1         1     Shields Jr, F. D., Knight, S. S., & Cooper, C. M. (1995). 

Use of the index of biotic integrity to assess physical 

habitat degradation in warmwater 

streams.Hydrobiologia, 312(3), 191-208. 

USA, Appalachian   1 1         1 1 1 Carlisle, D. M., Hawkins, C. P., Meador, M. R., Potapova, 

M., & Falcone, J. (2008). Biological assessments of 

Appalachian streams based on predictive models for fish, 

macroinvertebrate, and diatom assemblages. Journal of the 

North American Benthological Society, 27(1), 16-37. 

Cameroon, Lower Ntem 

River 

1   1         1     Toham, A. K., & Teugels, G. G. (1999). First data on an 

index of biotic integrity (IBI) based on fish assemblages 

for the assessment of the impact of deforestation in a 

tropical West African river system. Hydrobiologia, 397, 

29-38. 
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Mexico, Central 1       1     1     Lyons, J., Gutierrez-Hernandez, A., Diaz-Pardo, E., Soto-

Galera, E., Medina-Nava, M., & Pineda-Lopez, R. (2000). 

Development of a preliminary index of biotic integrity 

(IBI) based on fish assemblages to assess ecosystem 

condition in the lakes of central 

Mexico. Hydrobiologia, 418(1), 57-72. 

USA, Mid-Atlantic 1           1   1   Llansó, R. J., Scott, L. C., Hyland, J. L., Dauer, D. M., 

Russell, D. E., & Kutz, F. W. (2002). An estuarine benthic 

index of biotic integrity for the mid-Atlantic region of the 

United States. II. Index development. Estuaries, 25(6), 

1231-1242. 

USA, Minnesota 1       1     1     Drake, M. T., & Pereira, D. L. (2002). Development of a 

fish-based index of biotic integrity for small inland lakes 

in central Minnesota. North American Journal of Fisheries 

Management, 22(4), 1105-1123. 

USA, Maryland 1   1         1     Roth, N., Southerland, M., Chaillou, J., Klauda, R., 

Kazyak, P., Stranko, S., ... & Morgan II, R. (1998). 

Maryland biological stream survey: development of a fish 

index of biotic integrity. In Monitoring Ecological 

Condition at Regional Scales (pp. 89-106). Springer 

Netherlands. 

New Zealand, All 1   1         1     Joy, M. K., & Death, R. G. (2004). Application of the 

index of biotic integrity methodology to New Zealand 

freshwater fish communities. Environmental 

Management, 34(3), 415-428. 

USA, Northwest Great 

Plains 

1   1         1     Bramblett, R. G., Johnson, T. R., Zale, A. V., & Heggem, 

D. G. (2005). Development and evaluation of a fish 

assemblage index of biotic integrity for northwestern 

Great Plains streams. Transactions of the American 

Fisheries Society, 134(3), 624-640. 
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USA, Western 1   1         1   1 Pont, D., Hughes, R. M., Whittier, T. R., & Schmutz, S. 

(2009). A predictive index of biotic integrity model for 

aquatic-vertebrate assemblages of western US 

streams. Transactions of the american Fisheries 

Society, 138(2), 292-305. 

Brazil, Rio Paraiba do Sul 1     1       1     Araujo, F. G., Fichberg, I., Pinto, B. C. T., & Peixoto, M. 

G. (2003). A preliminary index of biotic integrity for 

monitoring the condition of the Rio Paraíba do Sul, 

southeast Brazil. Environmental management, 32(4), 516-

526. 

Australia, Eastern   1 1 1       1     Kennard, M. J., Pusey, B. J., Arthington, A. H., Harch, B. 

D., & Mackay, S. J. (2006). Development and application 

of a predictive model of freshwater fish assemblage 

composition to evaluate river health in eastern 

Australia.Hydrobiologia, 572(1), 33-57. 

USA, Midwest 1   1         1     Mundahl, N. D., & Simon, T. P. (1999). Development and 

application of an index of biotic integrity for coldwater 

streams of the upper Midwestern United States. Assessing 

the sustainability and biological integrity of water 

resources using fish communities. CRC Press, Boca Raton, 

Florida, 383-415. 

USA, Florida 1       1     1     Schulz, E. J., Hoyer, M. V., & Canfield Jr, D. E. (1999). 

An index of biotic integrity: a test with limnological and 

fish data from sixty Florida lakes.Transactions of the 

American Fisheries Society, 128(4), 564-577. 

China, Upper Yangtze 

River 

1     1       1     Zhu, D., & Chang, J. (2008). Annual variations of biotic 

integrity in the upper Yangtze River using an adapted 

index of biotic integrity (IBI). Ecological Indicators, 8(5), 

564-572. 

USA, Chesapeake Bay 1           1     1 Lacouture, R. V., Johnson, J. M., Buchanan, C., & 

Marshall, H. G. (2006). Phytoplankton index of biotic 

integrity for Chesapeake Bay and its tidal 

tributaries. Estuaries and Coasts, 29(4), 598-616. 
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Romania, All 1   1         1     Angermeier, P. L., & Davideanu, G. (2004). Using Fish 

Communities to Assess Streams in Romania: Initial 

Development of an Index of Biotic 

Integrity*.Hydrobiologia, 511(1-3), 65-78. 

China, Anhui Province 1   1           1   Wang, B. X., Yang, L. F., Hu, B. J., & SHAN, L. N. 

(2005). A preliminary study on the assessment of stream 

ecosystem health in south of Anhui Province using 

benthic-index of biotic integrity. Acta Ecologica 

Sinica, 25(6), 1481-1490. 

USA, Great Lakes 1       1         2 Kane, D. D., Gordon, S. I., Munawar, M., Charlton, M. N., 

& Culver, D. A. (2009). The Planktonic Index of Biotic 

Integrity (P-IBI): an approach for assessing lake 

ecosystem health. Ecological Indicators, 9(6), 1234-1247. 

USA, Texas 1   1         1     Linam, G. W., Kleinsasser, L. J., & Mayes, K. B. (2009). 

Regionalization of the index of biotic integrity for Texas 

streams. 

USA, Wisconsin 1       1     1     Jennings, M. J., Lyons, J., Emmons, E. E., Hatzenbeler, G. 

R., Bozek, M. A., Simonson, T. D., ... & Fago, D. (1999). 

Toward the development of an index of biotic integrity for 

inland lakes in Wisconsin. Assessing the sustainability and 

biological integrity of water resource quality using fish 

communities, 541-562. 

Great Britain, All; 

Australia, All; 

USA, California 

  1 1           1   Hawkins, C. P., Norris, R. H., Wright, J. F., Sutcliffe, D. 

W., & Furse, M. T. (2000). Effects of taxonomic 

resolution and use of subsets of the fauna on the 

performance of RIVPACS-type models. In Assessing the 

biological quality of fresh waters: RIVPACS and other 

techniques. Proceedings of an International Workshop 

held in Oxford, UK, on 16-18 September 1997. (pp. 217-

228). Freshwater Biological Association (FBA). 
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 Reference 

Great Britain, All; 

Sweden, All; 

Czech Republic, All 

  1 1           1   Davy-Bowker, J., Clarke, R. T., Johnson, R. K., Kokes, J., 

Murphy, J. F., & Zahradkova, S. (2006). A comparison of 

the European Water Framework Directive physical 

typology and RIVPACS-type models as alternative 

methods of establishing reference conditions for benthic 

macroinvertebrates. In The Ecological Status of European 

Rivers: Evaluation and Intercalibration of Assessment 

Methods (pp. 91-105). Springer Netherlands. 

Spain, All   1 1           1   Poquet, J. M., Alba-Tercedor, J., Puntí, T., del Mar 

Sánchez-Montoya, M., Robles, S., Alvarez, M., ... & Prat, 

N. (2009). The MEDiterranean Prediction And 

Classification System (MEDPACS): an implementation of 

the RIVPACS/AUSRIVAS predictive approach for 

assessing Mediterranean aquatic macroinvertebrate 

communities. Hydrobiologia, 623(1), 153-171. 

USA, Wyoming   1 1           1   Hargett, E. G., ZumBerge, J. R., Hawkins, C. P., & Olson, 

J. R. (2007). Development of a RIVPACS-type predictive 

model for bioassessment of wadeable streams in 

Wyoming. Ecological Indicators, 7(4), 807-826. 

USA, Oregon   1 1           1   Hubler, S. (2008). PREDATOR: Development and use of 

RIVPACS-type macroinvertebrate models to assess the 

biotic condition of wadeable Oregon streams. Unpublished 

report prepared by the Oregon Department of 

Environmental Quality, Watershed Assessment Section. 

USA, Eastern   1 1         1     Meador, M. R., & Carlisle, D. M. (2009). Predictive 

models for fish assemblages in eastern US streams: 

implications for assessing biodiversity.Transactions of the 

American Fisheries Society, 138(4), 725-740. 
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Table B.1. Percentages of all samples (including reference, stressed, validation, and no designation) that taxa were observed in, by 

ecoregion and basin. Dash “-” represents that taxa was not observed (0%) and tile “~” signifies observed in a marginal number 

(<0.5%) of samples within that ecoregion or basin. Cells are shaded with increasing gray opacity at 25, 50, and 75% thresholds. 
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Aca_pom %   5 - - - 23   12 19 - - - - - 3 1 3 18 4 33 14 - - 

Amb_ari %   4 10 3 13 -   - - 60 - 1 18 10 - - - - - - - 26 - 

Amb_rup %   - 11 - 26 -   - - - - - - - - - - - 1 - - - 49 

Ame_bru %   11 6 36 1 3   6 6 - - 32 10 12 - 38 30 25 26 - - 3 1 

Ame_cat %   - - 1 - -   - - - - - - - - 1 2 - 1 - - - - 

Ame_mel %   - ~ 1 6 -   - - - - ~ 3 - - - - - - - - - 3 

Ame_nat %   38 2 29 23 31   27 38 100 40 37 12 35 28 22 27 21 33 67 48 26 15 

Ame_neb %   5 1 7 2 12   9 31 - - 4 2 4 8 7 9 13 5 33 7 5 1 

Ame_pla %   3 ~ 3 - -   - 6 - - 1 - - - 4 4 4 8 - - - - 

Ame_ser %   ~ - - - -   - - - - - - - 3 - - - - - - - - 

Ame_spp %   ~ - - - -   - - - - - - - 3 - - - - - - - - 

Ami_cal %   7 - 1 - 29   33 25 - 20 1 - 4 - 2 3 20 1 - 17 5 - 

Ang_ros %   27 - 6 - 18   18 38 100 20 3 - 4 - 28 15 52 7 33 9 - - 

Aph_say %   79 - 9 - 59   58 69 100 60 16 - 59 85 16 49 75 24 100 69 - - 

Apl_gru %   - - ~ 5 -   - - - - - 3 - - - - - - - - - - 

Cam_spp %   - 76 44 96 -   - - - - 56 91 17 - 16 2 - 8 - - 95 93 

Cat_com %   - ~ 3 22 -   - - - - 9 - - - ~ - - - - - - 27 

Cen_mac %   11 - 1 - 53   45 50 - 40 - - - 8 4 6 41 5 67 28 - - 

Cho_cor %   - - - - 1   - - - - - - - - - - 2 - - - - - 

Chr_ten %   - - - 1 -   - - - - - - - - - - - - - - - 1 

Cli_fun %   - 13 - - -   - - - - - - - - - - - 5 - - - 17 
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Cot_spp %   - 84 18 80 -   - - - - 21 81 - - - - - 14 - - 77 88 

Cyp_cae %   - ~ - - -   - - - - - ~ - - - - - - - - - - 

Cyp_cam %   2 - 5 - -   - - - - - - - - 9 13 9 - - - - - 

Cyp_cat %   - 31 7 7 -   - - - - - 43 - - - - - - - - 21 - 

Cyp_can %   - - ~ - -   - - - - - - 3 - - - - - - - - - 

Cyp_gal %   - 3 - 11 -   - - - - - - - - - - - 1 - - - 17 

Cyp_gib %   - - 5 - -   - - - - - - - - - - - - - - 85 - 

Cyp_lee %   2 - - - -   - - - - - - - - 1 2 4 - - - - - 

Cyp_lut %   - - 2 2 -   - - - - 6 1 - - - - - - - - - - 

Cyp_niv %   - - 1 - -   - - - - - - - - - - - 6 - - - - 

Cyp_hyb %   - - - 1 -   - - - - - 1 - - - - - - - - - - 

Cyp_spi %   - - - 2 -   - - - - - - - - - - - - - - - 2 

Cyp_tri %   - 32 3 23 -   - - - - - 47 - - - - - - - - - - 

Cyp_ven %   23 3 13 21 -   - - 100 - 25 23 50 28 1 - - - - 2 13 - 

Cyp_xae %   - - 4 - -   - - - - - - - - 6 10 - - - - - - 

Cyp_car %   - 1 1 5 -   - - - - 1 2 - - ~ 3 - 1 - - - 3 

Dor_cep %   ~ ~ 3 7 -   - - - - 3 4 1 3 1 2 - 2 - - 3 2 

Ela_eve %   1 - - - 7   3 - - - - - - - - - 4 2 - 5 - - 

Ela_zon %   5 - - - 2   6 13 - - - - 1 3 3 2 5 - - - - - 

Enn_glo %   1 - - - 21   24 13 - - - - - - ~ - 9 2 - 5 - - 

Enn_obe %   1 - - - 27   9 13 - - - - - - - 1 16 1 33 16 - - 

Eri_ins %   - 1 - - -   - - - - - - - - - - - - - - - 2 

Eri_obl %   22 - 18 - 14   6 38 - - 14 - 12 - 25 41 39 16 - 7 - - 

Eri_spp %   - - ~ - 1   - - - - - - - - - 1 2 1 - - - - 

Eri_suc %   9 - ~ - 17   9 6 - 20 1 - 4 8 1 - 23 4 67 19 - - 
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Eso_ame %   82 - 11 - 92   94 94 80 80 19 - 58 85 23 43 91 23 100 91 - - 

Eso_nig %   24 - 7 1 12   15 25 20 - 7 1 21 8 16 14 25 10 33 10 - - 

Eth_ble %   - 12 - 18 -   - - - - - - - - - - - - - - - 40 

Eth_bre %   - 4 1 - -   - - - - - 5 - - - - - - - - - - 

Eth_cae %   - - - 15 -   - - - - - - - - - - - - - - - 18 

Eth_chl %   - 1 - - -   - - - - - - - - - - - - - - - 1 

Eth_chu %   - - 2 - -   - - - - - - - - - - - - - - 33 - 

Eth_coo %   - 11 ~ 52 -   - - - - - 42 - - - - - - - - - - 

Eth_dur %   - - - 1 -   - - - - - - - - - - - - - - - 1 

Eth_edw %   14 - - - -   - - 60 - 7 - 18 23 - - - - - - - - 

Eth_eto %   - 3 1 - -   - - - - - 5 - - - - - - - - - - 

Eth_fri %   ~ - - - -   - - - - - - - - - - - 1 - - - - 

Eth_fus %   3 - ~ - 7   12 6 20 - - - 1 10 1 1 2 1 - 3 - - 

Eth_hop %   13 - 13 - -   - 6 - - - - - - 25 36 27 14 - - - - 

Eth_ins %   - 1 17 - -   - - - - - - - - 26 34 5 8 - - - - 

Eth_jes %   - - - 14 -   - - - - - - - - - - - - - - - 17 

Eth_jor %   - 3 ~ 9 -   - - - - - 9 - - - - - - - - - - 

Eth_olm %   14 - 7 - 1   - 13 - - - - - - 9 11 39 29 - - - - 

Eth_par %   1 - ~ - -   - - - - ~ - - - ~ 1 - - - - - - 

Eth_ruf %   - 11 - 25 -   - - - - - - - - - - - - - - - 48 

Eth_sco %   - 14 5 - -   - - - - - 22 - - - - - - - - - - 

Eth_ser %   1 - - - -   - - - - - - - - - - 4 - - - - - 

Eth_sti %   - 5 3 25 -   - - - - - 22 - - - - - - - - 28 - 

Eth_swa %   13 - 2 - -   - - 40 - 3 - 34 21 - - - - - - - - 

Eth_tal %   - - 5 - -   - - - - - - - - - - - - - - 85 - 
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Eth_ten %   - - - 34 -   - - - - - - - - - - - - - - - 40 

Eth_tri %   - ~ - 3 -   - - - - - 2 - - - - - - - - - - 

Eth_zon %   - 4 - 3 -   - - - - - - - - - - - - - - - 10 

Fun_cat %   - - - 10 -   - - - - - - - - - - - - - - - 11 

Fun_chr %   1 - - - 2   - - - - - - 1 3 - - - 1 - 3 - - 

Fun_esc %   1 - - - -   - - - - ~ - 1 - - - - - - - - - 

Fun_lin %   4 - - - 3   3 6 - - - - 1 - 2 2 5 2 - 3 - - 

Fun_oli %   6 - ~ 29 -   - - - - 10 4 - - - - - - - - 3 27 

Fun_ste %   - 11 10 29 -   - - - - 14 38 - - - - - - - - - - 

Gam_spp %   52 1 28 51 50   45 56 100 60 29 25 41 62 25 41 66 33 - 47 21 25 

Hem_fla %   - - - 1 -   - - - - - - - - - - - - - - - 1 

Het_for %   ~ - - - 3   6 - - - - - 1 - - - 2 - - - - - 

Hyb_spp %   19 3 38 19 -   - - 20 - 24 2 52 5 22 42 27 39 - - 72 23 

Hyp_eto %   - 47 29 52 -   - - - - 39 91 - - - - - - - - 97 - 

Hyp_nig %   1 32 11 32 -   - - - - - - - - - 13 - 50 - - - 83 

Ich_cas %   - 6 ~ 1 -   - - - - - 3 - - - - - - - - - 6 

Ich_gag %   23 16 17 15 -   - - 100 - 31 33 48 10 - - - - - - 69 - 

Ich_gre %   - 17 - 1 -   - - - - - - - - - - - - - - - 29 

Ict_fur %   - - - 1 -   - - - - - ~ - - - - - - - - - - 

Ict_pun %   3 2 5 6 1   - - - - 3 6 5 8 2 5 5 1 - 2 13 1 

Lab_sic %   30 - 6 1 11   15 38 20 20 11 - 27 38 10 13 21 3 - 22 - 1 

Lam_aep %   - - - 1 -   - - - - - ~ - - - - - - - - - - 

Lep_ocu %   1 - ~ - -   - - - - - - 5 - - - - - - - - - 

Lep_oss %   1 - 1 - 2   3 - - - - - - - 1 2 7 1 - 3 - - 

Lep_pla %   1 - ~ - 1   - - - - - - - - ~ - 4 - - 2 - - 
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Lei_spp %   - - - - 1   - - - - - - - - - - 2 - - - - - 

Lep_aur %   85 55 88 96 31   27 63 100 40 77 83 85 95 89 84 73 72 67 62 100 70 

Lep_cya %   22 30 40 96 -   - 6 - - 46 61 19 51 20 22 9 30 - 33 67 62 

Lep_gul %   66 1 32 51 52   61 81 40 60 35 22 54 77 38 41 71 22 67 76 36 26 

Lep_mac %   72 51 78 92 44   61 56 100 60 70 80 76 90 72 66 70 50 33 69 100 69 

Lep_mar %   55 - 1 - 42   42 81 80 40 3 - 23 51 17 26 61 14 33 47 - - 

Lep_meg %   2 5 5 54 -   - - - - 6 33 - - 7 - 2 3 - - 3 9 

Lep_mic %   21 3 15 51 6   9 19 - 60 15 24 22 31 10 14 18 9 - 14 23 28 

Lep_pun %   82 2 14 61 38   42 63 100 60 35 31 79 90 24 27 66 14 100 55 3 17 

Lep_spp %   9 5 9 41 8   6 6 - - 11 18 6 31 5 5 5 5 - 17 3 28 

Let_app %   - - - 1 -   - - - - - - - - - - - - - - - 1 

Lux_chr %   - 2 6 82 -   - - - - - 29 - - - - - - - - 97 43 

Lux_coc %   - 18 - 17 -   - - - - - - - - - - - 3 - - - 46 

Lux_zon %   4 12 16 - -   - - 100 - 48 9 1 - - - - 2 - - 15 1 

Lyt_atr %   1 - 2 - -   - - - - 6 - 3 - - - - - - - - - 

Lyt_bel %   - - 1 - -   - - - - - - - - - - - - - - 18 - 

Lyt_fas %   - - - 21 -   - - - - - - - - - - - - - - - 24 

Lyt_lir %   - ~ - 17 -   - - - - - 11 - - - - - - - - - - 

Mic_cat %   2 - 2 - -   - - - - 2 - 10 - - - - - - - - - 

Mic_dol %   - 3 - 4 -   - - - - - - - - - - - - - - - 10 

Mic_hen %   - 5 3 9 -   - - - - - 14 - - - 1 - - - - 10 - 

Mic_pun %   1 6 4 5 -   - - - - 11 - - - 2 - 2 - - - - 17 

Mic_sal %   49 23 43 56 18   18 31 100 40 46 37 60 62 32 37 41 32 33 40 54 46 

Mic_spp %   - 42 28 58 -   - - - - 16 78 - - 13 14 9 11 - - 67 17 

Min_mel %   31 2 16 24 1   - 13 100 - 23 15 49 13 15 14 23 11 - 5 10 9 
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Mor_chr %   - - ~ - -   - - - - - - - - - 2 - - - - - - 

Mor_sax %   ~ - - - -   - - - - ~ - - - - - - - - - - - 

Mor_spp %   - - ~ - -   - - - - - - - - - 1 - 1 - - - - 

Mox_car %   - ~ - - -   - - - - - - - - - - - - - - - 1 

Mox_col %   2 ~ 4 - -   - - - - - - - - 5 6 9 5 - - - - 

Mox_duq %   - 31 7 48 -   - - - - - 47 - - - - - - - - 36 36 

Mox_ery %   - 13 1 43 -   - - - - - 26 - - - - - - - - 3 25 

Mox_lac %   4 ~ 8 - -   - - - - 22 - 15 - - - - - - - - - 

Mox_poe %   - 5 5 12 -   - - - - - 14 - - - - - - - - 59 - 

Mox_rup %   1 5 30 - -   - - - - 7 - - - 53 39 - 26 - - - - 

Mox_spa %   5 - 3 - -   - - - - 10 - 14 - - - - - - - - - 

Mox_spb %   - - 2 - -   - - - - - - - - ~ 2 11 4 - - - - 

Mug_cep %   - - - - 1   - - - - - - - - - - 2 - - - - - 

Noc_spp %   12 42 81 10 -   - - - - 54 20 36 - 78 66 25 78 - - 95 40 

Not_cry %   19 3 11 8 30   24 31 20 60 12 6 10 10 15 17 36 12 33 16 5 7 

Not_amp %   16 - 21 - -   - - 80 - 35 - 43 - 28 3 - - - - - - 

Not_asp %   - ~ - 3 -   - - - - - 2 - - - - - - - - - - 

Not_bai %   - - 1 - -   - - - - 3 - - - - - - - - - - - 

Not_cha %   4 - - - -   - 6 - - - - 1 - 2 1 11 - - - - - 

Not_chr %   - 8 2 35 -   - - - - - 32 - - - - - - - - - - 

Not_cum %   26 - 3 - 4   - 6 - - - - 4 36 13 20 46 12 - - - - 

Not_har %   7 - - - -   - - - - 5 - 9 - 2 - - - - - - - 

Not_hud %   2 ~ 19 - -   - - - - 4 - 10 - 23 30 11 13 - - - - 

Not_hyp %   - - 4 - -   - - - - 8 - 6 - - - - - - - - - 

Not_leu %   - 16 ~ 4 -   - - - - 1 - - - - - - 2 - - - 28 
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Not_lon %   17 - 11 - -   - - - - 34 1 41 - 2 - - - - - - - 

Not_lut %   13 13 60 - -   - - - - 16 11 38 - 74 65 25 72 - - - 2 

Not_mac %   6 - - - 6   12 - - - 1 - 3 - ~ 2 13 1 - 5 - - 

Not_pet %   17 - 3 - 4   9 13 20 20 2 - 7 - 14 13 18 6 - - - - 

Not_sce %   - - ~ - -   - - - - - - - - - - - 2 - - - - 

Not_spp %   ~ ~ - - -   - - - - - - - - - - - - - 2 - 1 

Not_spe %   - 11 - - -   - - - - - - - - - - - 1 - - - 18 

Not_sti %   - 11 5 16 -   - - - - - 27 - - - - - - - - 21 - 

Not_tel %   - ~ - 5 -   - - - - - - - - - - - - - - - 6 

Not_tex %   39 - 8 - -   - - 100 20 22 - 65 77 2 2 - - - 31 - - 

Not_vol %   - - - 1 -   - - - - - - - - - - - - - - - 1 

Not_xae %   - 25 5 39 -   - - - - - 56 - - - - - - - - - - 

Not_fun %   - - 8 - -   - - - - 10 - - - - - - - - - 72 - 

Not_gyr %   7 - 5 - 11   12 19 - - ~ - 1 8 1 17 27 7 - 5 - - 

Not_ins %   1 - 12 - -   - - - - - - - - 11 15 2 29 - - - - 

Not_lep %   43 11 13 4 3   6 6 100 - 23 15 53 62 11 6 27 9 - 28 21 - 

Onc_myk %   - 52 2 7 -   - - - - 12 15 - - - - - 18 - - - 40 

Ops_emi %   14 - 1 - 1   3 - 40 - 3 - 22 38 1 - 5 - - 2 - - 

Per_fla %   1 8 6 - -   - - - - 10 3 1 - 1 6 - 3 - - 10 7 

Per_aur %   - 2 - - -   - - - - - 1 - - - - - - - - - - 

Per_cap %   - - - 5 -   - - - - - - - - - - - - - - - 6 

Per_evi %   - 10 - 1 -   - - - - - - - - - - - - - - - 17 

Per_kat %   - 19 3 26 -   - - - - - 37 - - - - - - - - 5 - 

Per_kus %   - 1 ~ - -   - - - - - 1 - - - - - - - - - - 

Per_nig %   60 23 54 41 6   - 19 100 - 73 61 82 62 41 33 39 36 - 38 15 - 
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Per_pal %   - 25 5 1 -   - - - - - 29 - - - - - - - - 23 - 

Per_sci %   - - - 5 -   - - - - - - - - - - - - - - - 6 

Per_smi %   - - 4 - -   - - - - - - - - - - - - - - 62 - 

Pet_spp %   - 2 - 11 -   - - - - - ~ - - - - - - - - - 15 

Phe_cat %   - 7 2 5 -   - - - - - 10 - - - - - - - - 21 - 

Phe_cra %   - 1 - - -   - - - - - - - - - - - - - - - 1 

Phe_ura %   - - - 1 -   - - - - - - - - - - - - - - - 1 

Pim_spp %   - - 2 15 -   - - - - - 2 - - - - - - - - 23 16 

Pom_ann %   - - ~ - -   - - - - - - - - - 1 - - - - - - 

Pom_nig %   7 3 12 24 6   12 6 - 20 12 12 12 5 9 11 11 6 - - 15 12 

Pte_spp %   38 - ~ - 3   6 6 100 - 15 - 49 18 6 6 7 2 - 9 - - 

Pyl_oli %   1 ~ 1 1 -   - - - - ~ 1 1 - 2 1 - - - - - - 

Rhi_spp %   - 20 - 32 -   - - - - - 7 - - - - - 7 - - - 52 

Sal_tru %   - 25 ~ - -   - - - - 5 4 - - - - - 14 - - - 16 

Sal_fon %   - 3 - - -   - - - - - ~ - - - - - 3 - - - 1 

Sem_spp %   11 77 59 69 -   - - 40 - 55 83 29 3 23 43 9 54 - - 85 75 

Tri_mac %   - - - - 1   - - - - - - - - - - 2 - - - - - 

Umb_pyg %   ~ - - - 1   - - - - - - - - - - 2 1 - - - - 
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APPENDIX C 

ABBREVIATIONS FOR TAXA, BASINS, AND ECOREGIONS 
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Table C.1. Abbreviations of Georgia’s Basins and Ecoregions. 

 

Acronym  Description 

     
ALT  Altamaha Basin 

APA  Apalachicola Basin 

AUC  Aucilla Basin 

CHT  Chattahoochee Basin 

COO  Coosa Basin 

FLI  Flint Basin 

OCH  Ochlockonee Basin 

OCM  Ocmulgee Basin 

OCO  Oconee Basin 

OGE  Ogeechee Basin 

SAT  Satilla Basin 

SAV  Savannah Basin 

STM  St. Marys Basin 

SUW  Suwanee Basin 

TAL  Tallapoosa Basin 

TEN  Tennessee Basin 

    

BRM  Blue Ridge Ecoregion 

PDM  Piedmont Ecoregion 

RGV  Ridge and Valley Ecoregion 

SCP  Southern Coastal Plain 

SEP  Southeastern Plains Ecoregion 
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Table C.2. Abbreviations of stream fish taxa observed in GADNR Stream Team samples. 

 

Abbreviation Scientific Name Common Name 

   

Aca_pom Acantharchus pomotis Mud sunfish 

Amb_ari Ambloplites ariommus Shadow bass 

Amb_rup Ambloplites rupestris Rock bass 

Ame_bru Ameiurus brunneus Snail bullhead 

Ame_cat Ameiurus catus White catfish 

Ame_mel Ameiurus melas Black bullhead 

Ame_nat Ameiurus natalis Yellow bullhead 

Ame_neb Ameiurus nebulosus Brown bullhead 

Ame_pla Ameiurus platycephalus Flat bullhead 

Ame_ser Ameiurus serracanthus Spotted bullhead 

Ame_spp Ameiurus spp Ameiurus species 

Ami_cal Amia calva Bowfin 

Ang_ros Anguilla rostrata American eel 

Aph_say Aphredoderus sayanus Pirate perch 

Apl_gru Aplodinotus grunniens Freshwater drum 

Cam_spp Campostoma anomalum Central stoneroller 

Cam_spp Campostoma oligolepis Largescale stoneroller 

Cam_spp Campostoma pauciradii Bluefin stoneroller 

Cat_com Catostomus commersonii White sucker 

Cen_mac Centrarchus macropterus Flier 

Cho_cor Chologaster cornuta Swampfish 

Chr_ten Chrosomus tennesseensis Tennessee dace 
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Abbreviation Scientific Name Common Name 

   

Cli_fun Clinostomus funduloides Rosyside dace 

Cot_spp Cottus bairdi Mottled sculpin 

Cot_spp Cottus carolinae Banded sculpin 

Cot_spp Cottus chattahoochae Chattahoochee sculpin 

Cot_spp Cottus spp Cottus species 

Cot_spp Cottus tallapoosae Tallapoosa sculpin 

Cyp_cae Cyprinella caerulea Blue shiner 

Cyp_cam Cyprinella callisema Ocmulgee shiner 

Cyp_cat Cyprinella callistia Alabama shiner 

Cyp_can Cyprinella callitaenia Bluestripe shiner 

Cyp_gal Cyprinella galactura Whitetail shiner 

Cyp_gib Cyprinella gibbsi Tallapoosa shiner 

Cyp_lee Cyprinella leedsi Bannerfin shiner 

Cyp_lut Cyprinella lutrensis Red Shiner 

Cyp_niv Cyprinella nivea Whitefin shiner 

Cyp_hyb Cyprinella hybrid Cyprinella hybrid 

Cyp_spi Cyprinella spiloptera Spotfin shiner 

Cyp_tri Cyprinella trichroistia Tricolor shiner 

Cyp_ven Cyprinella venusta Blacktail shiner 

Cyp_xae Cyprinella xaenura Altamaha shiner 

Cyp_car Cyprinus carpio Common carp 

Dor_cep Dorosoma cepedianum Gizzard shad 

Ela_eve Elassoma evergladei Everglades pygmy sunfish 

Ela_zon Elassoma zonatum Banded pygmy sunfish 

Enn_glo Enneacanthus gloriosus Bluespotted sunfish 
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Abbreviation Scientific Name Common Name 

   

Enn_obe Enneacanthus obesus Banded sunfish 

Eri_ins Erimystax insignis Blotched chub 

Eri_obl Erimyzon oblongus Creek chubsucker 

Eri_spp Erimyzon spp Erimyzon species 

Eri_suc Erimyzon sucetta Lake chubsucker 

Eso_ame Esox americanus Redfin pickerel 

Eso_nig Esox niger Chain pickerel 

Eth_ble Etheostoma blennioides Greenside darter 

Eth_bre Etheostoma brevirostrum Holiday darter 

Eth_cae Etheostoma caeruleum Rainbow darter 

Eth_chl Etheostoma chlorobranchium Greenfin darter 

Eth_chu Etheostoma chuckwachatte Lipstick darter 

Eth_coo Etheostoma coosae Coosa darter 

Eth_dur Etheostoma duryi Black darter 

Eth_edw Etheostoma edwini Brown darter 

Eth_eto Etheostoma etowahae Etowah darter 

Eth_fri Etheostoma fricksium Savannah darter 

Eth_fus Etheostoma fusiforme Swamp darter 

Eth_hop Etheostoma hopkinsi Christmas darter 

Eth_ins Etheostoma inscriptum Turquoise darter 

Eth_jes Etheostoma jessiae Blueside darter 

Eth_jor Etheostoma jordani Greenbreast darter 

Eth_olm Etheostoma olmstedi Tessellated darter 

Eth_par Etheostoma parvipinne Goldstripe darter 

Eth_ruf Etheostoma rufilineatum Redline darter 
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Abbreviation Scientific Name Common Name 

   

Eth_sco Etheostoma scotti Cherokee darter 

Eth_ser Etheostoma serrifer Sawcheek darter 

Eth_sti Etheostoma stigmaeum Speckled darter 

Eth_swa Etheostoma swaini Gulf darter 

Eth_tal Etheostoma tallapoosae Tallapoosa darter 

Eth_ten Etheostoma tennesseense Tennessee darter 

Eth_tri Etheostoma trisella Trispot darter 

Eth_zon Etheostoma zonale Banded darter 

Fun_cat Fundulus catenatus Northern studfish 

Fun_chr Fundulus chrysotus Golden topminnow 

Fun_esc Fundulus escambiae Russetfin topminnow 

Fun_lin Fundulus lineolatus Lined topminnow 

Fun_oli Fundulus olivaceus Blackspotted topminnow 

Fun_ste Fundulus stellifer Southern studfish 

Gam_spp Gambusia affinis Western mosquitofish 

Gam_spp Gambusia holbrooki Eastern mosquitofish 

Gam_spp Gambusia spp Moquitofish species 

Hem_fla Hemitremia flammea Flame chub 

Het_for Heterandria formosa Least killifish 

Hyb_spp Hybognathus regius Eastern silvery minnow 

Hyb_spp Hybopsis amblops Bigeye chub 

Hyb_spp Hybopsis lineapunctata Lined chub 

Hyb_spp Hybopsis rubrifrons Rosyface chub 

Hyb_spp Hybopsis winchelli Clear Chub 

Hyp_eto Hypentelium etowanum Alabama hogsucker 



131 

Abbreviation Scientific Name Common Name 

   

Hyp_nig Hypentelium nigricans Northern hogsucker 

Ich_cas Ichthyomyzon castaneus Chestnut lamprey 

Ich_gag Ichthyomyzon gagei Southern brook lamprey 

Ich_gre Ichthyomyzon greeleyi Mountain brook lamprey 

Ict_fur Ictalurus furcatus Blue catfish 

Ict_pun Ictalurus punctatus Channel catfish 

Lab_sic Labidesthes sicculus Brook silverside 

Lam_aep Lampetra aepyptera Least brook lamprey 

Lep_ocu Lepisosteus oculatus Spotted gar 

Lep_oss Lepisosteus osseus Longnose gar 

Lep_pla Lepisosteus platyrhincus Florida gar 

Lei_spp Lepisosteus spp Lepisosteus species 

Lep_aur Lepomis auritus Redbreast sunfish 

Lep_cya Lepomis cyanellus Green sunfish 

Lep_gul Lepomis gulosus Warmouth 

Lep_mac Lepomis macrochirus Bluegill 

Lep_mar Lepomis marginatus Dollar sunfish 

Lep_meg Lepomis megalotis Longear sunfish 

Lep_mic Lepomis microlophus Redear sunfish 

Lep_pun Lepomis punctatus Spotted sunfish 

Lep_spp Lepomis spp Lepomis species 

Let_app Lethenteron appendix American brook lamprey 

Lux_chr Luxilus chrysocephalus Striped shiner 

Lux_coc Luxilus coccogenis Warpaint shiner 

Lux_zon Luxilus zonistius Bandfin shiner 
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Abbreviation Scientific Name Common Name 

   

Lyt_atr Lythrurus atrapiculus Blacktip shiner 

Lyt_bel Lythrurus bellus Pretty shiner 

Lyt_fas Lythrurus fasciolaris Scarlet shiner 

Lyt_lir Lythrurus lirus Mountain shiner 

Mic_cat Micropterus cataractae Shoal bass 

Mic_spp Micropterus chattahoochae Redeye bass Chattahoochae 

Mic_spp Micropterus coosae Redeye bass 

Mic_dol Micropterus dolomieu Smallmouth bass 

Mic_hen Micropterus henshalli Alabama bass 

Mic_pun Micropterus punctulatus Spotted bass 

Mic_sal Micropterus salmoides Largemouth bass 

Mic_spp Micropterus sp Altamaha bass Altamaha Black Bass 

Mic_spp Micropterus sp Bartrams bass Bartrams Black Bass 

Mic_spp Micropterus tallapoosae Tallapoosa Black Bass 

Min_mel Minytrema melanops Spotted sucker 

Mor_chr Morone chrysops White bass 

Mor_sax Morone saxatilis Striped bass 

Mor_spp Morone spp Morone species 

Mox_car Moxostoma carinatum River redhorse 

Mox_col Moxostoma collapsum Notchlip redhorse 

Mox_duq Moxostoma duquesnei Black redhorse 

Mox_ery Moxostoma erythrurum Golden redhorse 

Mox_lac Moxostoma lachneri Greater jumprock 

Mox_poe Moxostoma poecilurum Blacktail redhorse 

Mox_rup Moxostoma rupiscartes Striped jumprock 
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Abbreviation Scientific Name Common Name 

   

Mox_spa Moxostoma sp Apalachicola redhorse Apalachicola redhorse 

Mox_spb Moxostoma sp Brassy Jumprock Brassy jumprock 

Mug_cep Mugil cepahlus Flathead grey mullet 

Noc_spp Nocomis leptocephalus Bluehead chub 

Noc_spp Nocomis micropogon River chub 

Not_cry Notemigonus crysoleucas Golden shiner 

Not_amp Notropis amplamala Longjaw minnow 

Not_asp Notropis asperifrons Burrhead shiner 

Not_bai Notropis baileyi Rough shiner 

Not_cha Notropis chalybaeus Ironcolor shiner 

Not_chr Notropis chrosomus Rainbow shiner 

Not_cum Notropis cummingsae Dusky shiner 

Not_har Notropis harperi Redeye chub 

Not_hud Notropis hudsonius Spottail shiner 

Not_hyp Notropis hypsilepis Highscale shiner 

Not_leu Notropis leuciodus Tennessee shiner 

Not_lon Notropis longirostris Longnose shiner 

Not_lut Notropis lutipinnis Yellowfin shiner 

Not_mac Notropis maculatus Taillight shiner 

Not_pet Notropis petersoni Coastal shiner 

Not_sce Notropis scepticus Sandbar shiner 

Not_spp Notropis spp Notropis species 

Not_spe Notropis spectrunculus Mirror shiner 

Not_sti Notropis stilbius Silverstripe shiner 

Not_tel Notropis telescopus Telescope shiner 
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Abbreviation Scientific Name Common Name 

   

Not_tex Notropis texanus Weed shiner 

Not_vol Notropis volucellus Mimic shiner 

Not_xae Notropis xaenocephalus Coosa shiner 

Not_fun Noturus funebris Black madtom 

Not_gyr Noturus gyrinus Tadpole madtom 

Not_ins Noturus insignis Margined madtom 

Not_lep Noturus leptacanthus Speckled madtom 

Onc_myk Oncorhynchus mykiss Rainbow trout 

Ops_emi Opsopoeodus emiliae Pugnose minnow 

Per_fla Perca flavescens Yellow perch 

Per_aur Percina aurolineata Goldline darter 

Per_cap Percina caprodes Logperch 

Per_evi Percina evides Gilt darter 

Per_kat Percina kathae Mobile logperch 

Per_kus Percina kusha Bridled darter 

Per_nig Percina nigrofasciata Blackbanded darter 

Per_pal Percina palmaris Bronze darter 

Per_sci Percina sciera Dusky darter 

Per_smi Percina smithvanizi Muscadine darter 

Pet_spp Petromyzontidae spp Petromyzontidae species 

Phe_cat Phenacobius catostomus Riffle minnow 

Phe_cra Phenacobius crassilabrum Fatlips minnow 

Phe_ura Phenacobius uranops Stargazing minnow 

Pim_spp Pimephales notatus Bluntnose minnow 

Pim_spp Pimephales vigilax Bullhead minnow 
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Abbreviation Scientific Name Common Name 

   

Pom_ann Pomoxis annularis White crappie 

Pom_nig Pomoxis nigromaculatus Black crappie 

Pte_spp Pteronotropis euryzonus Broadstripe shiner 

Pte_spp Pteronotropis grandipinnis Apalachee shiner 

Pte_spp Pteronotropis metallicus Metallic Shiner 

Pte_spp Pteronotropis stonei Lowland shiner 

Pyl_oli Pylodictis olivaris Flathead catfish 

Rhi_spp Rhinichthys atratulus Blacknose dace 

Rhi_spp Rhinichthys cataractae Longnose dace 

Sal_tru Salmo trutta Brown trout 

Sal_fon Salvelinus fontinalis Brook trout 

Sem_spp Semotilus atromaculatus Creek chub 

Sem_spp Semotilus thoreauianus Dixie chub 

Tri_mac Trinectes maculatus Hogchoker 

Umb_pyg Umbra pygmaea Eastern mudminnow 
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APPENDIX D 

MEAN TAXA RESPONSES IN DISTURBED SITES 
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Table D.1. Mean taxa O/E at stressed sites indicates taxa which were found more or less often than expected in disturbed areas. 

These “increasers” taxa are associated with disturbed areas whereas “decreasers” are less likely to be present there 

(sensu Meador & Carlisle, 2009). Median of mean taxa O/E is 0.70. The traits were synthesized by the GADNR Stream Team. 

Taxa 

O/E 
Family Genus Species Feeding Habitat Tolerance 

2.60 Centrarchidae Micropterus punctulatus predator habitat generalist high 

2.23 Cyprinidae Notropis spectrunculus invertivore fluvial specialist medium 

2.23 Percidae Percina evides invertivore fluvial specialist low 

2.22 Sciaenidae Aplodinotus grunniens predator habitat generalist medium 

2.11 Cyprinidae Notemigonus crysoleucas generalist habitat generalist high 

2.10 Centrarchidae Pomoxis nigromaculatus generalist habitat generalist medium 

2.01 Poeciliidae Gambusia spp. invertivore habitat generalist high 

1.79 Ictaluridae Ameiurus melas generalist habitat generalist high 

1.79 Catostomidae Catostomus commersonii generalist habitat generalist high 

1.69 Cyprinidae Pimephales spp. invertivore habitat generalist high 

1.68 Centrarchidae Micropterus salmoides predator habitat generalist high 

1.65 Catostomidae Moxostoma poecilurum invertivore fluvial specialist medium 

1.58 Ictaluridae Ameiurus natalis generalist habitat generalist high 

1.57 Centrarchidae Lepomis microlophus invertivore habitat generalist medium 

1.54 Lepisosteidae Lepisosteus platyrhincus predator habitat generalist medium 

1.49 Petromyzontidae Ichthyomyzon greeleyi generalist fluvial specialist low 

1.48 Cyprinidae Notropis baileyi invertivore fluvial specialist medium 

1.47 Centrarchidae Lepomis cyanellus predator habitat generalist high 

1.47 Percidae Perca flavescens predator habitat generalist medium 

1.43 Cyprinidae Clinostomus funduloides invertivore fluvial specialist medium 

1.38 Ictaluridae Ictalurus punctatus predator habitat generalist medium 

1.33 Centrarchidae Lepomis gulosus predator habitat generalist medium 

1.33 Ictaluridae Ameiurus nebulosus generalist habitat generalist high 

1.26 Centrarchidae Lepomis macrochirus invertivore habitat generalist high 

1.25 Cyprinidae Notropis leuciodus invertivore fluvial specialist medium 

1.21 Centrarchidae Lepomis spp. invertivore habitat generalist unknown 
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Taxa 

O/E 
Family Genus Species Feeding Habitat Tolerance 

1.19 Cyprinidae Cyprinus carpio generalist habitat generalist high 

1.13 Cyprinidae Cyprinella venusta invertivore fluvial specialist medium 

1.12 Clupeidae Dorosoma cepedianum generalist habitat generalist high 

1.11 Centrarchidae Micropterus henshalli predator habitat generalist medium 

1.05 Cyprinidae Cyprinella xaenura invertivore fluvial specialist low 

1.04 Centrarchidae Lepomis auritus invertivore habitat generalist high 

1.04 Percidae Percina nigrofasciata invertivore fluvial specialist medium 

1.03 Fundulidae Fundulus olivaceus invertivore fluvial specialist medium 

1.03 Cyprinidae Notropis maculatus invertivore fluvial specialist medium 

1.00 Catostomidae Minytrema melanops invertivore fluvial specialist medium 

0.99 Catostomidae Moxostoma erythrurum invertivore fluvial specialist medium 

0.96 Cyprinidae Notropis petersoni invertivore fluvial specialist medium 

0.94 Centrarchidae Lepomis megalotis invertivore habitat generalist medium 

0.93 Cyprinidae Nocomis spp. generalist fluvial specialist medium 

0.92 Ictaluridae Ameiurus brunneus generalist fluvial specialist medium 

0.91 Percidae Etheostoma scotti invertivore fluvial specialist medium 

0.90 Cyprinidae Notropis lutipinnis invertivore fluvial specialist high 

0.90 Catostomidae Hypentelium nigricans invertivore fluvial specialist high 

0.90 Cyprinidae Notropis stilbius invertivore fluvial specialist medium 

0.90 Cyprinidae Campostoma spp. herbivore fluvial specialist high 

0.90 Catostomidae Moxostoma rupiscartes invertivore fluvial specialist medium 

0.87 Cyprinidae Notropis longirostris invertivore fluvial specialist high 

0.86 Cyprinidae Phenacobius catostomus invertivore fluvial specialist low 

0.86 Cyprinidae Cyprinella callisema invertivore fluvial specialist medium 

0.85 Centrarchidae Lepomis punctatus invertivore habitat generalist medium 

0.84 Catostomidae Erimyzon oblongus invertivore fluvial specialist medium 

0.84 Esocidae Esox americanus predator habitat generalist medium 

0.82 Fundulidae Fundulus stellifer invertivore fluvial specialist medium 
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Taxa 

O/E 
Family Genus Species Feeding Habitat Tolerance 

0.82 Cyprinidae Luxilus coccogenis invertivore fluvial specialist medium 

0.81 Cyprinidae Luxilus chrysocephalus invertivore fluvial specialist high 

0.80 Cyprinidae Notropis texanus invertivore fluvial specialist medium 

0.79 Catostomidae Hypentelium etowanum invertivore fluvial specialist high 

0.78 Percidae Etheostoma coosae invertivore fluvial specialist medium 

0.77 Cyprinidae Semotilus spp generalist fluvial specialist high 

0.77 Centrarchidae Enneacanthus gloriosus invertivore swamp specialist medium 

0.77 Lepisosteidae Lepisosteus oculatus predator habitat generalist medium 

0.74 Petromyzontidae Ichthyomyzon castaneus parasitic fluvial specialist medium 

0.73 Percidae Etheostoma fusiforme invertivore fluvial specialist medium 

0.72 Catostomidae Erimyzon sucetta invertivore habitat generalist medium 

0.71 Cyprinidae Notropis hudsonius invertivore fluvial specialist medium 

0.71 Aphredoderidae Aphredoderus sayanus invertivore swamp specialist high 

0.70 Amiidae Amia calva predator habitat generalist medium 

0.70 Percidae Etheostoma edwini invertivore fluvial specialist low 

0.70 Percidae Etheostoma duryi invertivore fluvial specialist medium 

0.70 Percidae Etheostoma zonale invertivore fluvial specialist medium 

0.70 Percidae Percina caprodes invertivore habitat generalist medium 

0.70 Percidae Percina sciera invertivore fluvial specialist medium 

0.69 Salmonidae Salmo trutta predator fluvial specialist medium 

0.66 Atherinopsidae Labidesthes sicculus invertivore habitat generalist medium 

0.66 Percidae Percina kathae invertivore fluvial specialist medium 

0.65 Cyprinidae Pteronotropis spp. invertivore fluvial specialist medium 

0.62 Catostomidae Moxostoma collapsum invertivore fluvial specialist low 

0.62 Percidae Etheostoma stigmaeum invertivore fluvial specialist medium 

0.61 Petromyzontidae Ichthyomyzon gagei generalist fluvial specialist medium 

0.60 Cottidae Cottus spp. generalist fluvial specialist medium 

0.60 Percidae Etheostoma tennesseense invertivore fluvial specialist medium 
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Taxa 

O/E 
Family Genus Species Feeding Habitat Tolerance 

0.59 Cyprinidae Luxilus zonistius invertivore fluvial specialist medium 

0.58 Centrarchidae Acantharchus pomotis invertivore swamp specialist medium 

0.57 Centrarchidae Ambloplites rupestris predator fluvial specialist medium 

0.56 Cyprinidae Hybopsis spp. invertivore fluvial specialist medium 

0.56 Esocidae Esox niger predator habitat generalist medium 

0.55 Catostomidae Moxostoma lachneri invertivore fluvial specialist low 

0.55 Percidae Etheostoma swaini invertivore fluvial specialist medium 

0.54 Percidae Etheostoma blennioides invertivore fluvial specialist medium 

0.53 Centrarchidae Centrarchus macropterus invertivore swamp specialist medium 

0.53 Catostomidae Moxostoma duquesnei invertivore fluvial specialist low 

0.53 Ictaluridae Noturus insignis invertivore fluvial specialist medium 

0.52 Centrarchidae Lepomis marginatus invertivore habitat generalist medium 

0.51 Percidae Etheostoma rufilineatum invertivore fluvial specialist medium 

0.51 Cyprinidae Rhinichthys spp. invertivore fluvial specialist medium 

0.50 Cyprinidae Lythrurus atrapiculus invertivore fluvial specialist low 

0.49 Cyprinidae Notropis xaenocephalus invertivore fluvial specialist medium 

0.48 Catostomidae Moxostoma sp. brassy jumprock invertivore fluvial specialist low 

0.48 Ictaluridae Pylodictis olivaris predator habitat generalist medium 

0.48 Ictaluridae Ameiurus platycephalus generalist habitat generalist medium 

0.47 Ictaluridae Noturus leptacanthus invertivore fluvial specialist medium 

0.47 Anguillidae Anguilla rostrata generalist fluvial specialist medium 

0.45 Cyprinidae Cyprinella callistia invertivore fluvial specialist medium 

0.43 Fundulidae Fundulus lineolatus invertivore swamp specialist medium 

0.42 Centrarchidae Micropterus spp. predator fluvial specialist medium 

0.42 Cyprinidae Notropis amplamala invertivore fluvial specialist medium 

0.41 Percidae Etheostoma hopkinsi invertivore fluvial specialist medium 

0.39 Percidae Etheostoma olmstedi invertivore fluvial specialist medium 

0.39 Salmonidae Oncorhynchus mykiss predator fluvial specialist low 
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Taxa 

O/E 
Family Genus Species Feeding Habitat Tolerance 

0.37 Cyprinidae Cyprinella gibbsi invertivore fluvial specialist medium 

0.37 Cyprinidae Lythrurus bellus invertivore fluvial specialist low 

0.37 Percidae Etheostoma inscriptum invertivore fluvial specialist medium 

0.35 Cyprinidae Notropis chrosomus invertivore fluvial specialist low 

0.35 Cyprinidae Notropis cummingsae invertivore fluvial specialist medium 

0.32 Percidae Percina smithvanizi invertivore fluvial specialist medium 

0.30 Petromyzontidae Petromyzontidae spp. generalist no designation unknown 

0.30 Cyprinidae Lythrurus lirus invertivore fluvial specialist low 

0.30 Ictaluridae Noturus funebris invertivore fluvial specialist medium 

0.28 Percidae Etheostoma tallapoosae invertivore fluvial specialist medium 

0.26 Ictaluridae Noturus gyrinus invertivore fluvial specialist medium 

0.25 Salmonidae Salvelinus fontinalis predator fluvial specialist low 

0.24 Cyprinidae Opsopoeodus emiliae invertivore habitat generalist low 

0.24 Centrarchidae Ambloplites ariommus predator fluvial specialist low 

0.24 Cyprinidae Cyprinella trichroistia invertivore fluvial specialist low 

0.23 Cyprinidae Cyprinella nivea invertivore fluvial specialist medium 

0.23 Centrarchidae Micropterus dolomieu predator habitat generalist medium 

0.22 Elassomatidae Elassoma zonatum invertivore swamp specialist medium 

0.21 Percidae Etheostoma caeruleum invertivore fluvial specialist medium 

0.19 Cyprinidae Lythrurus fasciolaris invertivore fluvial specialist medium 

0.19 Cyprinidae Notropis hypsilepis invertivore fluvial specialist low 

0.15 Percidae Etheostoma etowahae invertivore fluvial specialist low 

0.14 Cyprinidae Cyprinella galactura invertivore fluvial specialist medium 

0.14 Percidae Percina palmaris invertivore fluvial specialist low 

0.14 Catostomidae Moxostoma sp. Apalachicola redhorse invertivore fluvial specialist low 

0.08 Percidae Etheostoma jessiae invertivore fluvial specialist low 

 


