

USING MASSIVELY PARALLEL EVOLUTIONARY COMPUTATION ON GPUS

FOR BIOLOGICAL CIRCUIT RECONSTRUCTION

by

CHULWOO LIM

(Under the Direction of Khaled Rasheed)

ABSTRACT

 A fundamental and ubiquitous difficulty of systems biology is identifying relevant

model parameters. A genetic network model of the biological clock of Neurospora crassa

that is quantitatively consistent with the available RNA and protein profiling data was

proposed. However, the oscillating nature of biological models poses more challenge for

identifying model parameters due to the high dimensional complex search space and

computational cost of numerically solving ODEs. In this work, an Evolutionary

Algorithm leveraging the GPU architecture is proposed. Our implementation identified

promising model parameters with a speedup of two orders of magnitude compared to the

CPU implementation.

INDEX WORDS: Evolutionary Computing, Biological networks, Graphical

processing unit, Runge-Kutta method

USING MASSIVELY PARALLEL EVOLUTIONARY COMPUTATION ON GPUS

FOR BIOLOGICAL CIRCUIT RECONSTRUCTION

by

CHULWOO LIM

B.S., Korea University, South Korea, 2008

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial

Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2013

© 2013

Chulwoo Lim

All Rights Reserved

USING MASSIVELY PARALLEL EVOLUTIONARY COMPUTATION ON GPUS

FOR BIOLOGICAL CIRCUIT RECONSTRUCTION

by

CHULWOO LIM

 Major Professor: Khaled Rasheed

 Committee: Thiab Taha

 Tianming Liu

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

December 2013

iv

ACKNOWLEDGEMENTS

 I would like to thank Dr. Rasheed for his guidance and patience in helping me

complete this thesis. I would like to thank Dr. Bernd Schüttler for providing the

biological data and guiding me through understanding and solving the problem. I would

also like to thank Dr. Taha and the NVIDIA CUDA teaching center at UGA for the

support on CUDA programming and providing the device for running the experiments. I

would like to thank William Dale Richardson for his help with proofreading and

correcting the English for this thesis.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ... iv

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

CHAPTER

 1 INTRODUCTION ...1

 The biological circuit reconstruction problem ...1

 Searching model parameters and evolution strategy4

 Evolution strategy and GPU architecture ..6

 2 EVOLUTION STRATEGY ...14

 Overview ..14

 Representation..16

 Operations ..19

 Fitness evaluation...21

 Island model and reseeding ..25

 3 ACCELERATING EC ON GPU ARCHITECTURE......................................27

 Exploiting the massive parallelism ..27

 Load balancing the computation ..30

 Efficient shared memory communication ..31

 Hierarchical caching ..33

vi

 Distributing computational load on GPU and CPU with Island model35

 4 EXPERIMENTS AND RESULTS ..37

 Circuit reconstruction for biological clock system37

 Comparison with Particle Swarm Optimization ..38

 Island model and single population comparison ..39

 Experiments on Evolution strategy ..40

 Speed up from utilizing GPU architecture ...45

 5 CONCLUSION AND FUTURE WORK ..47

 Conclusion ...47

 Future work ..48

REFERENCES ..49

vii

LIST OF TABLES

Page

Table 1: Technical Overview ...15

viii

LIST OF FIGURES

Page

Figure 1: Genetic Network Model and Rage Equations(ODEs) defining the system2

Figure 2: Finding Parameters for Genetic Network Model ...4

Figure 3: FLOPS and Memory Bandwidth for CPU and GPU ..9

Figure 4: CPU and GPU architecure ..10

Figure 5: Automatic scalability with Streaming Multiprocessors on defferent GPUs10

Figure 6: Grid of thread blocks ..12

Figure 7: Overview of Evolution Stretegy ...14

Figure 8: Overall Circuit reconstruction process ...16

Figure 9: Initial Condition and Coefficients to define a Genetic Network Model17

Figure 10: Genotype and Phenotype of representation ..18

Figure 11: Population of candidate solutions for circuit reconstruction18

Figure 12: Mutation formula ..20

Figure 13: Global trend and higher frequency component of the signal22

Figure 14: Measuring without χ2 ...24

Figure 15: Strong χ
2
 score candidate and

balanced score candidate24

Figure 16: Fitness function for circuit reconstruction..25

Figure 17: Progressive and Conservative Islands stimulating each other..........................26

Figure 18: GPU branch divergence..28

Figure 19: Overall ODE solving algorithm on GPU ...30

ix

Figure 20: Load balancing the computational load on rate equations31

Figure 21: GPU memory access hierachy ..32

Figure 22: GPU Memory size and bandwidth hierarchy ...33

Figure 23: Caching different parameter variables for each thread34

Figure 24: Utilizing both CPU and GPU computing power with Island model36

Figure 25: Identified solution by our method ..38

Figure 26: Fitting Errors of Evolution Strategy and Particle Swarm Optimazation39

Figure 27: Performance of (,) and (+) ...40

Figure 28: Object variable recombination Strategy ...41

Figure 29: Comparesion of uniform and diverse island models ..42

Figure 30: Evolution process of uniform islands ...43

Figure 31: Evolution process of profressive and conservative islands43

Figure 32: Diversity of population on each islands through evolutinary process44

Figure 33: Diversity of population on progressive and conservative islands through

evolutinary process ..45

Figure 34: x81 Speed up evaluating 7,680 ODE systems ..46

1

CHAPTER 1

INTRODUCTION

1.1 The biological circuit reconstruction problem

 A living system can be viewed as a chemical reaction network described as a

“biological circuit,” in which genes and their products are represented by nodes in the

circuit. Constructing an operating circuit model requires the computation of effective

rules to simplify complex circuits. A genetic network is introduced as a hypothesis to

explain how genes and their products control the biological system to define a complex

trait [1]. A complex organization of gene regulatory networks controls the overall

behavior of an organism, and allows it to adapt to the surrounding environment and

stimuli. A gene regulatory network allows the individual organism to regulate gene

expression starting from the interacting DNA segments (genes) in a cell and controlling

expression levels of mRNA and proteins (signaling pathway). A single, simple network

controlling a model cannot explain or predict the entire complex nature of a gene

regulatory network. Mathematical models of gene regulatory networks should function

as physical models of natural gene networks. In some cases of modeling it was proven to

give a reliable prediction which can be tested experimentally. One of the dependable

approaches to modeling is using Ordinary Differential Equations (ODEs) [2]. Several

other modeling methods involve Boolean Networks [3], Petri Nets [4], Bayesian

Networks [5], graphical Gaussian models [6], Stochastic [7], and Process Calculi. Figure

1 presents a genetic network model of the biological clock of Neurospora crassa in ODEs.

2

This model proposed in Yu, Y. et al. [9], is quantitatively consistent with the available

RNA and protein profiling. In the figure, boxes represent molecular species, arrows

entering circles identify reactants, arrows leaving circles identify products, and

bidirectional arrows identify catalysts. The relationships represented by arrows are

defined by the rate equations in Figure 1. Identification of the genetic network is

important in molecular level quantitative genetics because it enables one to integrate

diverse experimental information and predict the behavior of complex traits, such as the

biological clock in this model. The circadian clock has a characteristic of interconnected

network portraying system approach. A systems approach can be used to identify

oscillator circuits. Various kinetic models were applied to explain the periodic nature of

the biological clock.

Figure 1: Genetic Network Model and Rage Equations(ODEs) defining the system

 Yu, Y. et al. [9] have applied a human analytical assistant approach to guide the

search for model parameters that present the oscillating behavior of the network model.

The mathematical characteristic of the network model producing oscillation was enforced

to the parameters selected. The goal of our method is to perform the search with purely

3

data-driven guidance (i.e. without any human enforcement) to find more accurate

solutions more quickly. Neurospora crassa is a type of red bread mold that is often used

in biological experiments because it is easy to grow and has a haploid life cycle, which

makes genetic analysis simple [10]. A biological clock is an internal mechanism in

organisms that controls the periodicity of various functions or activities, such as

metabolic changes, sleep cycles, etc [11]. This periodicity appears with 24 hour

frequency of oscillation as shown in Figure 2. The circadian clock triggers rhythms of

biological activities including cellular functions, development and growth in all aspects

of a living system. The assembly of a consistent, functional nature of the biological clock

warrants the extensive measurement of various parameters of the clock function. In

addition, oscillations should be mathematically identified by amplitude and phase, and it

is absolutely necessary to maintain consistent periodicity in the circadian oscillation.

Although much experimental data on the biological clock have been compiled at great

effort and expense, mathematical modeling may not predict the deeper nature of the

biological clock. Recently devised kinetic linear mathematical models of the clock

network lack a rationally-definable overall integration of the models. The massive

divergent and disparate signaling to and from the clock should be appropriately

interconnected to the clock system. The circadian network model should resolve

modeling and experimental efforts.

4

Figure 2: Finding Parameters for Genetic Network Model

1.2 Searching model parameters and evolution strategy

 A fundamental and ubiquitous difficulty of system biology is that the relevant

model parameters are not completely known while the available and meaningful

experimental data may be sparse and noisy. This makes it difficult to unravel the basic

nature of the biological activities such as the circadian clock network. There have been

numerous attempts to connect the oscillator circuit to the kinetic modeling, but they

appear to be fragmentary to explain circuit mechanism. An integrative approach to build

up the circuit model through the suitable algorithms is necessary. The search space of

model parameters is extremely complex due to the oscillating nature of biological clock

models. The relationships between variables are non-linear and highly complex, and

defined by an ODE system. The biological clock model targeted in this thesis has 20

5

coefficients and 7 initial conditions. This high dimensionality of the search space makes

exhaustive search impractical. The only known way of evaluating the genetic network is

to plug the coefficients and initial conditions into an ODE solver which attempts to

numerically compute the output of the defined system to compare it with the profiling

data. The ODE system is very sensitive to changes in the coefficients. Small changes in

parameters may yield drastic changes in model behavior, making the system numerically

unstable. This makes our search space very discontinuous with regions of un-evaluable

points. Population based evolutionary algorithms are suitable for problems with such

complexity, high dimensionality and discontinuity in the search space. In particular, the

algorithms appear to exhibit reliable performance in such discontinuous spaces where

analytical search would fail. Karr, C. L. et al. [12] demonstrated the potential for

searching for parameters for curve fitting with evolutionary algorithms. Simonsen, Martin,

et al.[13] efficiently used the GPU computation power in Differential Evolution. Their

work demonstrates the potential of GPU acceleration for real world application of

Evolutionary computing. Many Evolutionary algorithms were implemented on GPUs.

Longo, G., & Ventre, G. [14] implemented a general framework for genetic algorithms

on a GPU architecture which was intensively tested and validated on massive

Astrophysical data classification problems. Cano et al. [15] implemented three different

approaches to run Genetic Programming on GPUs. Cárdenas-Montes, Miguel, et al. [18]

implemented a Particle swarm algorithm on GPUs. Franco et al. [16] parallelized the

fitness evaluation on a GPU demonstrating the potential for speedup of evolutionary

learning systems. Jaros,J. et al. [17] demonstrated an effective use of Multiple GPUs with

Island-based genetic algorithms. Ramirez-Chavez et al. [19] implemented GPU-Based

6

Deferential Evolution for solving the gene regulatory network model inference problem

achieving significant speedups by utilizing the GPU. Their work is on a similar problem

with GPU and evolutionary computation as ours, but the network model we are dealing

with is much more complex, and their approach is therefore not suitable. We have

selected an Evolution Strategy to utilize the GPU on fitness evaluation of the circuit

reconstruction with an Island model approach to utilize both a multi-core CPU and GPU.

We have selected the Evolution Strategy to maximally utilize the GPU architecture, as

explained in the next section.

1.3 Evolution strategy and GPU architecture

 Computer algorithms can be applied to exploit the biological circuit starting from

the initial conditions and all the way to the output of the system under diverse emergent

behaviors. It can highlight the relevance of setting a variable parameterization of the

model. The exploration of dimensional parameter spaces would permit us to explore the

system functioning throughout the broad spectrum of conditions and to produce

statistically meaningful results. The methodologies include parameter involving analysis,

sensitivity analysis, and parameter estimation. Most of these methodologies involve the

repetitive application of simulation. General purpose computing on graphics processing

units (GPUs) is an emerging technology that reduces computation time for many

applications. GPUs are designed specifically for processing graphics which requires the

parallel processing of thousands of triangles and rasterizing them to millions of pixels in

a fraction of a second. A stream is a set of records that require similar computation. The

GPU is designed to utilize this data parallelism in the streams of computation required for

7

rendering thousands of triangles. Data parallelism has focuses on distributing the data and

is different from Task parallelism. Task parallelism is a common form of parallelism

when we have for example multiple cores or servers running in parallel to achieve fast

computation. However, in data parallelism each thread will focus on distributing large

amounts of data and applying similar tasks to the data. To deal with the demands for

processing thousands of triangle meshes to render 60 or more frames per seconds, GPUs

have evolved to become massive parallel streaming processors which can handle

GFLOPS of stream operations with high bandwidth as shown in Figure 3. To achieve this

special purpose, the GPU architecture became quite different in architecture from the

traditional CPU as shown in Figure 4. The GPU devotes transistors to data processing

more than data caching and flow control that CPUs do because it is specialized for

computation-intensive, highly parallel computation – exactly what graphics rendering is

about. The GPU is especially well-suited for problems that fall into the category of data-

parallel computation with high arithmetic intensity [20]. A GPU is built around an array

of Streaming Multiprocessors (SMs) and each SM runs the program in units of blocks as

shown in Figure 5. The streams of work get grouped into multiple blocks and get

dispatched to SMs by the GPU scheduler. This enables the GPU architecture to be

scalable to different hardware settings ranging from supercomputers to mobile devices.

 Another reason for adopting GPUs in computations is their low energy

consumption. The Top500 supercomputers list shows that GPU powered systems are

growing. China’s Tianhe-1A (one of the supercomputers in the top of the list), which uses

more than 7,000 GPUs, consumes about half as much power as the CPU powered Jaguar

does. The GPU based Tsubame has 92% fewer servers and consumes only 1/7th the

8

power that the CPU based Jaguar consumes and still shows competitive performance

compared to the Jaguar. Industries outside the supercomputing community are also

adapting GPUs to yield benefits. HESS (a major oil and gas firm in the US) replaced a

2,000 CPU cluster with 32 Tesla S1070 (GPU) servers and reduced power consumption

from 1340 kwatts to 47 kwatts thus reducing an operational cost of 2.3 million dollars to

only 82 thousand dollars. Today, more than 20 energy firms are in the process of

migrating to GPU-based processing, including Chevron, Schlumberger and BR Petrobras

[21].

9

Figure 3: FLOPS and Memory Bandwidth for CPU and GPU (Adapted version source:

NVIDIA CUDA Programming Guide Version 5.5 [20] available at

http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf. Last accessed

November 2013)

http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

10

Figure 4: CPU and GPU architecure (Adapted version source: NVIDIA CUDA

Programming Guide Version 5.5)

Figure 5: Automatic scalability with Streaming Multiprocessors on different GPUs

(Adapted version source: NVIDIA CUDA Programming Guide Version 5.5 [20])

 GPUs have multi-level parallelism in the form of threads, blocks and grids as

shown in Figure 6. A thread is the smallest unit that can execute a sequence of

11

instructions. A block is a group of threads which is assigned to a SM (Streaming

Multiprocessor). Multiple blocks are executed in parallel by multiple SMs, while threads

run in parallel within the block. However, threads within the block cooperate closely by

having a synchronization barrier point and shared memory space which enables fast

communication between them. Our fitness calculation for the Evolution Strategy

especially fits well to massive streaming GPU architecture because an Evolution Strategy

requires fitness evaluation of all children only at one point every generation. This is

important because we need to stream enough parallel work to the GPU to saturate the

computing power of the device. Otherwise we have to frequently launch the GPU calls

from the CPU, and the GPU computation-launching overhead will be more than the

performance benefit we gain from running the task on the GPU. In our implementation,

we can stream a massive population to the GPU and execute massively parallel fitness

evaluations. This will return fitness values to the CPU for the entire child population at

one point in time in each generation. In this manner, the parallel tasks streamed to the

GPU are sufficient to saturate the full GPU computing power. In our method, we assign

16 individuals to each block with each individual utilizing 8 threads (8 threads

communicating through shared memory within the block). To get the fitness of a total of

3584 children (the parent population contains 512 individuals and the child to parent ratio

is set to 7 as explained in the next chapter) we create 224 blocks (16 x 224 =3584) and

stream them to the GPU to run the computation at each fitness evaluation step. The

fitness of 3584 children consumes 8 threads for each which results in a total of 28672

threads launched on the GPU. When there is a sufficient number of thread blocks

assigned to the GPU device, the GPU scheduler assigns multiple blocks to a single SM.

12

The benefit of having multiple blocks on a SM is that the SM can juggle the blocks

hiding the latency of any operation by utilizing the hardware. For example, if block A is

fetching some data from the global memory (which takes hundreds of clock cycles), the

SM will set aside block A for a moment and run block B’s arithmetic operations and

possibly block C next, etc. Multiple blocks will be assigned to one SM to always keep the

SM busy. This way, even though some memory operations are very slow, one can hide

that latency by executing other available instructions while waiting for the data to arrive.

Figure 6: Grid of thread blocks

(Adapted version source: NVIDIA CUDA Programming Guide Version 5.5 [20])

13

 The rest of the thesis is organized as follows: Chapter 2 begins with an

introduction to the Evolution Strategy. Then the implementation details and our strategy

are described. Chapter 3 continues with utilization of the massive parallel GPU

architecture in our work. Chapter 4 presents the experimental results. Chapter 5 contains

the conclusion and suggested future work.

14

CHAPTER 2

EVOLUTION STRATEGY

2.1 Overview

 The general algorithm of the Evolution Strategy that we have adopted for

biological circuit reconstruction is depicted in Figure 7. An initial population of randomly

generated candidate solutions forms the first seeded generation. Then, it goes through the

evolutionary process of parent selection, recombination, mutation, fitness evaluation and

survivor selection to produce the next generation [22]. Multiple iterations of this

evolutionary process lead the population search through the solution space towards an

optimal solution.

Figure 7: Overview of Evolution Stretegy

15

 A technical overview of the Evolution Strategy used for our circuit reconstruction

is given in Table 1. By leveraging the massive parallel computation power of the GPU,

we were able to handle a large population size (512 on four islands) efficiently.

Table 1: Technical Overview

Representation Continuous real value for rate coefficient and initial condition

Recombination Local discrete on object variables & Global intermediary on
strategy variables

Mutation Gaussian perturbation

Parent selection Uniform random

Survivor selection (,)

Population size Four islands with 512 on each

Niching Fitness Sharing

 The circuit reconstruction process with the Evolution Strategy is depicted in

Figure 8. Each individual of the population encodes the realized unknown parameters of

the ODE system. The genes define the numeric ODE system which can be solved by

numerical methods. We assign a fitness value to each individual by actually solving the

ODE system numerically and comparing the result with the target data. Having a fitness

for each individual, we can go through the evolutionary process to evolve the population

towards the matching solution for the targeted system.

16

Figure 8: Overall Circuit reconstruction process

2.2 Representation

 Each individual consists of real-valued genes representing rate coefficients and

initial values of the ODE system as shown in figure 9. The values have bounds of 0.0 and

100.0, but in the implementation we used a very small floating point value ϵ instead of

0.0 to avoid numerical instability. Each individual also has a set of strategy variables

representing the standard deviations for mutating the object variables which represent the

ODE parameters.

17

Figure 9: Initial Condition and Coefficients to define a Genetic Network Model

With the given genotype we can solve the ODE system numerically to produce the

phenotype as shown in Figure 10. The genotype in evolutionary terminology is an

organism’s full hereditary information which is encoded by genes. The phenotype is an

organism’s actual observed properties. There is not a one-to-one mapping between

genotypes and phenotypes because it is possible for different parameters to produce the

same series as output. However, our target is to find one gene encoding for a given

protein profiling data series. The existence of at least one genotype for a targeted

phenotype is sufficient for our goal. Initially, candidate solutions will form a population

to start the evolutionary process (Figure 11).

18

Figure 10: Genotype and Phenotype of representation

Figure 11: Population of candidate solutions for circuit reconstruction

19

2.3 Operations

2.3.1 Recombination

 In our Evolution Strategy, the object variables are the rate coefficients and initial

condition of each variable. Rate coefficients are constants which define the reaction rate

between chemicals on genetic network model. Rate coefficients have very close

relationship to each other in a system, and they fall into certain scaling range for each

system. For this reason, we perform local recombination by selecting genes from only

two parents for object variables. Also, the rate coefficient search space is not smooth and

continuous, meaning that from range A to B there could be critical points which break the

whole system even though most of the values between A and B may give stable solutions

to the system. Consequently, we use discrete recombination to randomly choose one gene

from either parent which allows us to avoid invalid ones in between. The experiments

below confirm that this local discrete recombination strategy works fairly well for our

problem domain.

 In contrast, we use global intermediary recombination for strategy variables.

Global intermediary recombination generates the values from any pair of parents for each

gene and selects the intermediary values of the selected genes from the parents. This is

much more aggressive than local discrete recombination. Aggressive evolution of

strategy variables results in a more diverse perturbation space for mutation, resulting in a

better chance of leaving local optima. The recombination probability is set differently on

each island with a strategy that is discussed in section 2.5.

2.3.2 Mutation and parent selection

20

 We use uncorrelated mutations with n strategy variables followed by the

corresponding object variables which gives our chromosome a x1,…,xn, 1,…, n

format. There is an overall learning rate ’ and a coordinate-wise learning rate . The

learning rate controls the range over which the variable is portable, indirectly controlling

the mutation range. The formula used for mutation is described in Figure 12, (N(0,1) is a

sample drawn from a Normal distribution with mean 0 and standard deviation 1). Our

search space has significant slope differences by gene and by region of the search space.

It is therefore appropriate to have a strategy variable for each object variable. As in a

typical Evolution Strategy, we select parents from the population with uniform random

probability. Each selected candidate will go through mutation to produce a child and

would go through recombination according to the recombination probability we have

setup for each island.

Figure 12: Mutation formula

2.3.3 Survivor selection

 A typical Evolution Strategy is designed to create children from parents with

the children being more than the parents. We adopted the recommended default setting of

 7 • , having 7:1 ratio. The (,) selection strategy, selects survivors (the parents

of the next generation) from among the children, excluding all parents from the

21

competition. Another common selection strategy is (+), in which parents are included

in the competition. As will be shown below, (,) gives much better performance in our

experiments because (,) selection gives a better chance to leave the local optima.

2.4 Fitness evaluation

 Measuring the similarity of output signals for different ODE systems is a

challenging task. We have to carefully measure multiple sets of time series data to rate

the similarity of the ODE systems’ outputs. The naïve idea of measuring the

accumulated sum of differences of each point between the two series is very deceptive

and likely to lead us to local optima. In this section, we describe a fitness measurement

formula specially designed for a class of ODE systems which generates oscillating

behavior in the output signal.

2.4.1 Shape matching - Correlation and Detrending

 Shape and pattern are both important features of any signal. In a biological clock

system, the oscillating behavior and its frequency are key features of the system. Our

focus is to quantitatively measure the similarity of the shape and pattern from the output

signal of our candidate solutions. As in previous works [9, 19], this shape measuring was

often ignored. Thus, we have adopted the Pearson Correlation measurement in our fitness

function aiming for this feature. The Pearson Correlation coefficient is a well-designed

statistical tool to measure linear correlation between two variables. It gives a quantitative

measurement in the range from 1.0 to -1.0 with 1.0 being most positive and -1.0 being

most negative correlation. This measurement lets us screen the oscillation feature of each

output series.

22

 Figure 13 shows curves having high correlation in different frequency ranges. To

measure the oscillating feature, we have to target the most relevant frequency range. The

Pearson Correlation is a good measurement for shape, but it often gets dominated by a

low frequency factor in the shape. For example, if there is a global increasing trend like

the green curve shown in Figure 13(a), the green curve and blue curve have a high

correlation even though they are completely off on higher frequency factors. To target the

higher frequency, we need to remove the low frequency factor (the global trend) from the

signal and measure correlation. Figure 13(b) shows two signals with low frequency factor

removed and now they will have high correlation only when they match in high

frequency factors as shown in the figure. We have used b-spline curve fitting to detect the

global trend and removed it from the signal when measuring the shape with the Pearson

Correlation function.

Figure 13: Global trend and higher frequency component of the signal

(a) low frequency global trend line (green) on the curve (blue)

(b) high frequency sine curve(blue) fitting the noisy target curve(green)

23

2.4.2 Absolute difference – Chi-square

 With Pearson correlation measuring the shape of the output signal from the ODE

system, we still cannot ignore the magnitude of the signal. Figure 14 demonstrates the

effect of the χ
2
 monument on our fitness measure. The blue curve is the target fitting

curve and the green curve is the solution found from an evolutionary process guided by

the Pearson Correlation error measure. The signal matches perfectly in shape and

frequency but the magnitude gets really off track. However, without the correlation

measurement, the Evolution Strategy can be easily deceived by local optima as shown in

Figure 15. The left-hand side of Figure 15 demonstrates local optima where the search

can fall when the fitness lacks the correlation measure. On the other hand, the right-hand

side of Figure 15 shows a point which is much closer to the global optimum than the left-

hand side. Even though this candidate solution has a much lower score on the χ
2
, the

actual parameters are very similar to the global optimum.

24

Figure 14: Measuring without χ
2

Figure 15: Strong χ
2
 score candidate and balanced score candidate

25

2.4.3 Fitness function for circuit evaluation

 In our biological clock ODE system model, there are a total of seven variables,

each of which represents a biological species. Among those seven, only four species can

be quantitatively measured from protein profiling data. For this reason, only four

observable variables can be used to guide the circuit reconstruction. By combining the

correlation factor and χ
2
 factor of four variables, we define the fitness function f(θ) shown

in Figure 16.

Figure 16: Fitness function for circuit reconstruction

2.5 Island model and reseeding

 The Island model is a popular approach for evolutionary computation in parallel

computing environments. The Island model helps maintain diversity by imposing

separation between populations while they evolve. Each island evolves for a number of

generations and then undergoes a periodic migration of individuals to stimulate evolution.

 We have characterized islands as progressive and conservative islands.

Progressive islands keep a high recombination rate to aggressively explore the search

space and retain the diversity of the population. Conservative islands focus on searching

intensively near promising candidates by having low recombination rate. The migration is

performed in a ring structure as shown in Figure 17. The conservative solutions (green

26

arrow) will migrate to stimulate progressive islands and progressive solutions (red arrow)

will migrate to stimulate conservative islands on each epoch. We achieved the best results

when our epoch was 150 generations.

Figure 17: Progressive and Conservative Islands stimulating each other

.

 Reseeding the population is an effective way of escaping local optima. When

there is no improvement on the evolution process for many generations, it is helpful to

start the evolution again with a new random population. Our islands fully restart when

there is no significant improvement for over 30% of the evolutionary process. This

mechanism enables our island model to be fault-tolerant to poor initial seeding that may

lead the population to local optima. Without the acceleration by the GPU architecture,

reseeding would be a challenging task because of the computational overhead, but GPU

acceleration enables us to reseed the population many times within a couple of hours.

27

CHAPTER 3

ACCELERATING EC ON GPU ARCHITECTURE

 Solving an ODE system with the Runge-Kutta Numerical method is inherently a

sequential process. In our ODE system, computing the first order derivatives of seven

equations could be parallelized, but this is not sufficient for the massive parallelism of a

typical GPU architecture. On the other hand, solving a population of ODEs with different

parameters (rate coefficients and initial conditions) can effectively leverage the massive

parallelism of the GPU architecture.

3.1 Exploiting the massive parallelism

 The GPU architecture is designed to operate on SIMD instructions (SIMD is an

acronym for Single Instruction, Multiple Data) which exploit data level parallelism. The

graphics card we are using (the GTX 480) follows the Cuda 2.0 compute capability

standard which groups every 32 threads as one unit called “Warp”. This means that it is

most efficient when 32 threads run the same instruction on multiple data fed to each

thread. When a conditional branch inside this unit (one warp) diverts threads into two

separate instruction paths, a set of threads which fulfill the condition will take path A and

the others will take path B. As shown in Figure 18, threads go to sleep when they are not

executing instructions according to a branch condition. If we assign seven equations from

our ODE into one warp to compute, this will result in running seven times slower.

28

Figure 18: GPU branch divergence

 The major computational cost of solving ODE systems often resides in computing

the Y Prime portion. In our biological clock model, Y Prime functions are defined by the

rate equations. Our biological clock genetic network model also has a high computational

load for computing this Y prime portion. The major challenge of branch divergence

comes in when we try to distribute the seven equations to parallel threads. Simply

assigning each equation to a thread will cause seven way branch divergences which may

take seven times more time and have only 1/7 of each thread being activated at a time. To

avoid branch divergence and fully exploit the massive parallelism, we have grouped 16

different ODE systems having 16 sets of different parameters (each |θ|=24) to assign for

each thread block and run on SIMD fashion as a group. The 16 individuals (which are

ODE systems having each different coefficients and initial conditions) are assigned to

one block in GPU. Then each ODE system occupies 8 threads for computing the seven

29

equations which makes the thread block size 8×16. It is possible to assign 32 sets to a

block, with no branch divergence on each warp, but assigning 16 sets of individuals per

block was found to be more efficient. The details are given in section 3.2. Overall, the

computation of the Runge-Kutta order 4 algorithm simultaneously solving 16 different

systems on each streaming multiprocessor of GPU is depicted in Figure 19. Figure 19(a)

shows the pseudo code of the Runge-Kutta order 4 algorithm which the 16 different

systems go through. Figure 19(b) depicts the Runge-Kutta execution of 8×16 threads in a

single GPU block having 8 threads assigned for each ODE system. A total of 8×16

threads proceed through one time step at a time to compute the value of each variable at a

given time point. First, each group of 16 threads is split into running Y Prime1 for seven

equations. The 16 threads will run in SIMD fashion, running the same instructions used

to compute equation x in Y Primei (i is 1 to 4 as described in Figure 19) but having

different data for the coefficients and variables according to which individual the thread

belongs to. Then, each thread performs a common Runge-Kutta operation like

multiplying ki by h or dividing in half and storing the computed ki value in the GPU

block-wise shared memory so that other threads can access it. The next Y Primei+1

function splits again but all the values of ki are computed from Y Primei which were

stored in shared memory on the previous step. One important thing to recall is to

synchronize all the threads after each Runge Kutta operation by placing a block-wide

synchronize barrier. Otherwise, the value fetched from shared memory will fall into race

condition, and the correct value will not be guaranteed.

30

Figure 19: Overall ODE solving algorithm on GPU

3.2 Load balancing the computation

 In each block, we have to compute 16 instances of rate equation 1 for each

individual. The parallel computation of equations 1 through 6 is shown in Figure 20.

However, Equation 7 has twice as much computational load. If we assign the same

resources to equation 7, the other threads must wait for equation 7 to be computed. So our

strategy is to balance the workload by allowing time sharing (one branch divergence) on

equations 1 through 6 and giving full compute time to equation 7 as shown in Figure 20.

31

One warp will compute equations 5 and 6 while another warp computes equation 7. This

is the reason that we did not assign 32 individual ODE systems to a block, which would

not allow any branch divergence. We gained almost 1.5 times speedup by assigning 16

individuals to each block.

Figure 20: Load balancing the computational load on rate equations

3.3 Efficient shared memory communication

 On Y Prime computation, many equations require the values of other variables

from previous compute steps. Since the result of each computation is saved to a register

which is private to each thread, we need to efficiently communicate those results between

threads. The GPU memory access hierarchy is shown in Figure 21. We can store the

results of each calculation in the global memory of the GPU so that every other thread

can gain access to them, but that would be very inefficient. The GPU has shared memory

inside each streaming multiprocessor for this special purpose which is much more

32

efficient. This shared memory’s access scope is limited to the GPU block, which works in

our case. The result of the computation is copied into shared memory after each Y Prime

calculation. Then we put a block-wise synchronization barrier to make sure that the data

is multi-thread safe. Each Y Prime computation will now read other variables’ up-to-date

values by accessing the shared memory.

Figure 21: GPU memory access hierachy (Adapted version source: NVIDIA CUDA

Programming Guide Version 5.5 [20])

33

3.4 Hierarchical caching

 In massive parallel computation, memory bandwidth is often a bottleneck. An

efficient strategy to resolve this issue on GPU architectures is hierarchical memory

caching. The GPU architecture provides a hierarchical memory structure as shown in

Figure 22. With this architecture, we transfer the massive data in chunks from global

memory to shared memory and cache most frequently used data into registers. Since

accessing global memory takes hundreds of clock cycles, it is very important to avoid

frequent data fetching from global memory. It is better to fetch large chucks of useful

data at each access. In our implementation, the parameter values stored in global memory

are transferred to shared memory as a large, aligned chunk at the initial phase to fully

utilize the global memory bandwidth.

Figure 22: GPU Memory size and bandwidth hierarchy

34

 We have applied a special strategy for register caching. In our genetic network

model, each individual has 18 parameter values which are used in Y Prime computation

throughout the loop from the start time point to the end time point. To reach a high

degree of precision, we have set the time step as 0.005 time unit. Thus it takes 50,000

loops to compute the whole time span of 250 units. Each GPU thread has a very small

number of registers available which makes it impossible to save all 18 parameter values

of the ODE system to registers. However, for each rate equation, only a few coefficients

are required for computation. We utilize only four registers per rate equation and save

only up to four parameters that are essential for each rate equation as shown in Figure 23.

Figure 23: Caching different parameter variables for each thread

35

3.5 Distributing computational load on GPU and CPU with Island model

 Using the massively parallel strategy described above, we have greatly

accelerated the massive Runge-Kutta algorithm which is the core of the fitness evaluation

function. Since most of the computational load is in fitness evaluation, this already gives

us a significant speedup. However, with the island model, we can achieve further gain by

executing CPU and GPU computation in parallel. As shown in the two-island model in

Figure 24, CPU Core 1 executes all the genetic operations for Island 1, excluding fitness

evaluations, and then it streams the data to the GPU. The GPU then runs all fitness

evaluations of the submitted individuals from CPU core 1. While the GPU is computing

fitness, CPU Core 2 runs genetic operations for island 2. Again, when CPU Core 2

streams the individuals to the GPU, CPU Core 1 gets the fitness values streamed out from

the GPU. In this manner Islands 1 and 2 run genetic operations in parallel with GPU

fitness computations. We therefore gain the extra benefit of earning more CPU time to

spend on genetic operations. With more CPU time being available, we were able to use a

high level language (Python) for genetic operations without sacrificing performance.

Using Python gives us considerable flexibility in implementation and a fast prototype

development cycle. Python lets us pass function arguments as map data structures, giving

us the freedom to pass in any configuration for any step as a single set instance. Even

though Python has poor performance as a disadvantage, our island model alternating

GPU and CPU hides that disadvantage and lets us enjoy the full flexibility of the high

level language. In our final implementation, we fully utilized the four CPU cores and the

two GPUs in our machine to run four islands of Evolution Strategy as in the four-island

model in Figure 24.

36

Figure 24: Utilizing both CPU and GPU computing power with Island model

37

CHAPTER 4

EXPERIMENTS AND RESULTS

4.1 Circuit reconstruction for biological clock system

 We have generated synthetic data as our target data series from one of the

parameter sets in an ODE system in [9] to evaluate the circuit reconstruction ability of

our method. The ODE system parameters in [9] were computed by a Monte Carlo

algorithm with strong constraints on the search space with analytical background

knowledge of the ODE system itself. The Monte Carlo method used was not truly data

driven because of the influence of a human expert on the search process. In contrast, our

method is purely data driven having no analytical constraints at all. Our only constraint

on the search space was setting the boundaries of the range to 0.0 and 100.0. This range

was chosen because a rate coefficient is positive by definition and 100.0 is a reasonable

limit that cannot be exceeded in a realistic genetic network. Our method is able to

consistently find the solution shown in Figure 25 within 2 hours on multiple trials

whereas the method in [9] was never able to find that solution without enforced analytical

constraints to assist in searching the space. The green curves are the outputs from our

identified solution and the blue curves are the target data series given to our method. In

our search process we do not include the variable w in our fitness function because this is

a species we cannot directly measure. However, it is an important modulation variable

which controls the oscillation behavior, and as Figure 25 shows, the frequency perfectly

matches the target data series.

38

 The experiments we use to evaluate our method are described in the following

sections. GPUs played a vital role in this work, because the GPU parallel implementation

cut down the run time of the algorithm from 310 hours to 2 hours, which enabled us to

run multiple runs with various experimental settings.

Figure 25: Identified solution by our method

4.2 Comparison with Particle Swarm Optimization

 To examine the performance of our Evolution Strategy, we compared it with the

Particle Swarm Optimization [23] approach. The same population of 512 particles was

generated and a ring topology was used to select the neighborhoods of the particles. We

experimented with neighborhood sizes of 5, 10, 15 and 20 respectively. Each particle

maintains its own velocity, though it also gets influenced by local and global best

velocities and locations. Particles will move around the search space with their velocity to

reach the optimal solution. The best solutions found with Particle Swarm Optimization

39

and Evolution Strategy in multiple runs are shown in Figure 26. Particle Swarm

Optimization did reach promising solutions for two runs, but on the rest of the runs it was

apparently trapped in local optima. It seems that the PSO evolutionary process finds

relatively low error solutions in the early stages with no sustained improvement over time.

Figure 26: Fitting Errors of Evolution Strategy and Particle Swarm Optimazation

4.3 Island model and single population comparison

 Of the 24 runs of ES with a single population performed, only 29% are successful

in finding compatible solutions. Assuming this 29% to be the general success rate,

running 4 independent islands would have only 74% probability of success, which is

inferior to running 4 islands having 100% success rate with the reseeding approach. We

have migrated 5 individuals every 150 generations. The migrations require the process-

to-process communication because each island runs on a different CPU core. This is a

40

huge bottle neck in computation speed when migration happens frequently. Limiting

migration to once every 150 generations helped reduce the overall migration cost. Once

every 150 generations was frequent enough to stimulate the evolutionary process.

4.4 Experiments on Evolution strategy

 As described in section 2.3.3, we have experimented with the (,) and (+)

survivor selection strategies. The results are shown in Figure 27. Intuitively, the (,)

strategy has a better chance to forget and leave the local optima because it does not

include the parents in the survivor competition. In Figure 27 there are 3 runs where (+)

errors are above 1,000,000. In those 3 runs, it seems that the (+) approach had the

entire population fall into local optima and lost all diversity. Therefore, our choice of the

(,) strategy is justified.

Figure 27: Performance of (,) and (+)

41

 We described the recombination choices on section 2.3.1. Each object variable

can chose either two parents (Local) to select the value for all gene positions or select any

random parents (Global) for each and every gene position to inherit from them. As shown

in Figure 28, Global recombination resulted in very poor performance. In 8 out of 12 runs

it did not even converge to a fair solution. Therefore, our choice of local recombination is

justified.

Figure 28:Object variable recombination Strategy

 With four islands, we can either set all islands to uniform parameters or set them

to diverse parameters. One diverse approach setting the role of Progressive and

Conservative islands with different recombination rates is described in section 2.5. In this

experiment we compare the uniform island model and the diverse island (Progressive and

42

Conservative island) model. As shown in Figure 29, both approaches had similar

performance with just one exceptional fail on the 5
th

 run for the uniform model. However,

the evolutionary process and the diversity state of the islands on each model were quite

different.

Figure 29: Comparesion of uniform and diverse island models

 Figure 30 shows the evolutionary process of a set of four islands from one

experimental run with uniform settings. Although there are some varying delays on

convergence, the islands generally follow similar water fall curves down to the

convergence point. On the other hand, Figure 31 shows the evolutionary process of a set

of progressive and conservative islands in an experimental run. In contrast to the uniform

model, we can observe that the progressive island experiences a much slower fall,

maintaining a more diverse population on the island until it converges to the best solution.

43

There is also a noticeable bouncing pattern on the curve climbing uphill trying to escape

from a local optimum and maintain diversity.

Figure 30: Evolution process of uniform islands

Figure 31: Evolution process of progressive and conservative islands

44

 We measure the diversity of the population quantitatively by calculating the

standard deviation of the error scores of the population. As shown in Figure 32, islands 1

and 3 maintain diversity for a longer period than islands 2 and 4. However, we can

observe a longer-lasting and greater diversity maintained on progressive islands 1 and 2

in Figure 33. With 70% probability of recombination on the progressive island 1, it does

not quickly converge to current optimal solutions from other islands. Instead, it maintains

the diversity of the population while it explores uncovered search areas with the help of

migrated promising solutions from other islands. Although both island models showed

similar performance, having the Progressive Island provides more diversity in the

population which is often preferred in evolutionary computation.

Figure 32: Diversity of population on each islands through evolutinary process

45

Figure 33: Diversity of population on progressive and conservative islands through

evolutinary process

4.5 Speedup from utilizing the GPU architecture

 Solving a massive population of ODE systems with the Runge-Kutta method is

the core computational portion of our evolutionary algorithm. This fitness evaluation step

has to run on each generation for thousands of generations to reach convergence. The

speedup from using our GPU implementation compared to an optimized single threaded

C code implementation (compiled with gcc having –O2 option) of the Runge-Kutta

method is shown in Figure 34. We gained a speedup up to 81 times on evaluating 7,680

individuals as shown in the figure.

46

Figure 34: x81 Speed up evaluating 7,680 ODE systems

 The island model utilizing 2 GPUs + 4 CPU cores gained x155 speedup compared

to using a single threaded CPU implementation. The entire work is implemented on a PC

workstation with a GTX 480 GPU and an Intel(R) Core(TM) i5-2400@3.6 GHz CPU.

47

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

 We have introduced a new fitness function which captures the shapes and

magnitudes of the signals generated from a biological clock system. We have shown that

a correlation measure with de-trending is effective for capturing the quantitative

similarity of high level frequency features of the series. We have also demonstrated that

the conventional approach based on chi square error [9, 19] is not sufficient to accurately

measure the full similarity of the outputs of the ODE system especially for biological

clock model. A massive population-based searching Evolution Strategy was applied to

the circuit reconstruction problem, and the proposed fitness function shows a consistent

ability to find very good solutions. We have utilized a GPU implementation of massively

parallel evolutionary algorithms for the biological circuit reconstruction. Our tests show

that the GPU implementation is efficient and suitable for application in the investigation

of the biological clock circuit system. The GPU serves a purpose, through the

mathematical formalization of complex biological networks, of the understanding of the

emergent and dynamic control of the biological system. The GPU based parallel

implementation of the Evolution Strategy resulted in up to a 155 times speedup in our

experiments. The speedup gave us the opportunity to run multiple experiments with

different settings, helping us to gain insight into the problem and the selected algorithm.

48

The GPU-powered Evolution Strategy clearly demonstrated that it is a powerful tool in

building a genetic network model of the biological clock of Neurospora crassa.

5.2 Future work

 Working with real protein profiling data, there is another unknown variable we

need to fit called the Scaling Factor. Often the data is generated from multiple different

environments. The Scaling Factor is a scalar value used to modulate the different

magnitude scale of the experimental data which varies by each environment. Our next

step would be encoding this scaling factor into an additional gene so that we can run our

circuit reconstruction targeting protein profiling data.

 Furthermore, the typical protein profiling data measure is far sparser than the

sampling rate we used on this work. Some robust interpolation method or down sampling

should be implemented to fill the gaps introduced by this factor.

49

REFERENCES

[1] D’haeseleer, P., Liang, S., & Somogyi, R. (2000). Genetic network inference:

from co-expression clustering to reverse engineering. Bioinformatics, 16(8), 707-

726.

[2] Chen, T., He, H. L., & Church, G. M. (1999, January). Modeling gene expression

with differential equations. In Pacific symposium on biocomputing (Vol. 4, No.

29, p. 4).

[3] Liang, S., Fuhrman, S., & Somogyi, R. (1998, January). REVEAL, a general

reverse engineering algorithm for inference of genetic network architectures. In

Pacific symposium on biocomputing (Vol. 3, No. 18-29, p. 2).

[4] Goss, P. J., & Peccoud, J. (1998). Quantitative modeling of stochastic systems in

molecular biology by using stochastic Petri nets. Proceedings of the National

Academy of Sciences, 95(12), 6750-6755.

[5] Friedman, N., Linial, M., Nachman, I., & Pe'er, D. (2000). Using Bayesian

networks to analyze expression data. Journal of computational biology, 7(3-4),

601-620.

[6] Toh, H., & Horimoto, K. (2002). Inference of a genetic network by a combined

approach of cluster analysis and graphical Gaussian modeling. Bioinformatics,

18(2), 287-297.

[7] Elowitz, M. B., Levine, A. J., Siggia, E. D., & Swain, P. S. (2002). Stochastic

gene expression in a single cell. Science, 297(5584), 1183-1186.

[8] Blossey, R., Cardelli, L., & Phillips, A. (2006). A compositional approach to the

stochastic dynamics of gene networks. In Transactions on Computational Systems

Biology IV (pp. 99-122). Springer Berlin Heidelberg.

[9] Yu, Y., Dong, W., Altimus, C., Tang, X., Griffith, J., Morello, M., ... & Schüttler,

H. B. (2007). A genetic network for the clock of Neurospora crassa. Proceedings

of the National Academy of Sciences, 104(8), 2809-2814.

50

[10] Vollmer, S. J., & Yanofsky, C. (1986). Efficient cloning of genes of Neurospora

crassa. Proceedings of the National Academy of Sciences, 83(13), 4869-4873.

[11] Johnson, C. H., & Hastings, J. W. (1986). The Elusive Mechanism of the

Circadian Clock: The quest for the chemical basis of the biological clock is

beginning to yield tantalizing clues. American Scientist, 74(1), 29-37.

[12] Karr, C. L., Weck, B., Massart, D. L., & Vankeerberghen, P. (1995). Least median

squares curve fitting using a genetic algorithm. Engineering Applications of

Artificial Intelligence, 8(2), 177-189.

[13] Simonsen, M., Pedersen, C. N., Christensen, M. H., & Thomsen, R. (2011, July).

GPU-accelerated high-accuracy molecular docking using guided differential

evolution: real world applications. In Proceedings of the 13th annual conference

on Genetic and evolutionary computation (pp. 1803-1810). ACM.

[14] Longo, G., & Ventre, G. Genetic Algorithm Modeling with GPU Parallel

Computing Technology.

[15] Cano, Alberto, Amelia Zafra, and Sebastián Ventura. "Speeding up the evaluation

phase of GP classification algorithms on GPUs." Soft Computing 16.2 (2012):

187-202.

[16] Franco, María A., Natalio Krasnogor, and Jaume Bacardit. "Speeding up the

evaluation of evolutionary learning systems using GPGPUs." Proceedings of the

12th annual conference on Genetic and evolutionary computation. ACM, 2010.

[17] Jaros, J. (2012, June). Multi-GPU island-based genetic algorithm for solving the

knapsack problem. In Evolutionary Computation (CEC), 2012 IEEE Congress on

(pp. 1-8). IEEE.

[18] Cárdenas-Montes, M., Vega-Rodríguez, M. A., Rodríguez-Vázquez, J. J., &

Gómez-Iglesias, A. (2012). GPU-Based evaluation to accelerate particle swarm

algorithm. In Computer Aided Systems Theory–EUROCAST 2011 (pp. 272-279).

Springer Berlin Heidelberg.

[19] Ramírez-Chavez, L. E., Coello Coello, C. A., & Rodríguez-Tello, E. (2011,

October). A GPU-based implementation of differential evolution for solving the

gene regulatory network model inference problem. In Proc. of the 4th

51

International Workshop on Parallel Architectures and Bioinspired Algorithms

(WPABA'2011) (pp. 10-14).

[20] NVIDIA Inc. (2013) NVIDIA CUDA Programming Guide v5.5. Resource

document. http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf.

Accessed November, 2013.

[21] NVIDIA Inc. (2013) GPU energy efficiency. Resource document.

http://www.nvidia.com/object/gcr-energy-efficiency.html. Accessed November,

2013.

[22] Eiben, A. E., & Smith, J. E. (2003). Introduction to Evolutionary Computing.

Springer Berlin Heidelberg.

[23] Kennedy, J. (2010). Particle swarm optimization. In Encyclopedia of Machine

Learning (pp. 760-766). Springer US.

http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://www.nvidia.com/object/gcr-energy-efficiency.html

