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ABSTRACT 

 A fundamental and ubiquitous difficulty of systems biology is identifying relevant 

model parameters. A genetic network model of the biological clock of Neurospora crassa 

that is quantitatively consistent with the available RNA and protein profiling data was 

proposed. However, the oscillating nature of biological models poses more challenge for 

identifying model parameters due to the high dimensional complex search space and 

computational cost of numerically solving ODEs. In this work, an Evolutionary 

Algorithm leveraging the GPU architecture is proposed. Our implementation identified 

promising model parameters with a speedup of two orders of magnitude compared to the 

CPU implementation. 
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CHAPTER 1 

INTRODUCTION 

1.1 The biological circuit reconstruction problem 

 A living system can be viewed as a chemical reaction network described as a 

“biological circuit,” in which genes and their products are represented by nodes in the 

circuit. Constructing an operating circuit model requires the computation of effective 

rules to simplify complex circuits. A genetic network is introduced as a hypothesis to 

explain how genes and their products control the biological system to define a complex 

trait [1]. A complex organization of gene regulatory networks controls the overall 

behavior of an organism, and allows it to adapt to the surrounding environment and 

stimuli. A gene regulatory network allows the individual organism to regulate gene 

expression starting from the interacting DNA segments (genes) in a cell and controlling 

expression levels of mRNA and proteins (signaling pathway). A single, simple network 

controlling a model cannot explain or predict the entire complex nature of a gene 

regulatory network.  Mathematical models of gene regulatory networks should function 

as physical models of natural gene networks. In some cases of modeling it was proven to 

give a reliable prediction which can be tested experimentally. One of the dependable 

approaches to modeling is using Ordinary Differential Equations (ODEs) [2].  Several 

other modeling methods involve Boolean Networks [3], Petri Nets [4], Bayesian 

Networks [5], graphical Gaussian models [6], Stochastic [7], and Process Calculi. Figure 

1 presents a genetic network model of the biological clock of Neurospora crassa in ODEs. 
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This model proposed in Yu, Y. et al. [9], is quantitatively consistent with the available 

RNA and protein profiling. In the figure, boxes represent molecular species, arrows 

entering circles identify reactants, arrows leaving circles identify products, and 

bidirectional arrows identify catalysts. The relationships represented by arrows are 

defined by the rate equations in Figure 1.  Identification of the genetic network is 

important in molecular level quantitative genetics because it enables one to integrate 

diverse experimental information and predict the behavior of complex traits, such as the 

biological clock in this model. The circadian clock has a characteristic of interconnected 

network portraying system approach.  A systems approach can be used to identify 

oscillator circuits.  Various kinetic models were applied to explain the periodic nature of 

the biological clock. 

 

Figure 1: Genetic Network Model and Rage Equations(ODEs) defining the system 

 

 Yu, Y. et al. [9] have applied a human analytical assistant approach to guide the 

search for model parameters that present the oscillating behavior of the network model. 

The mathematical characteristic of the network model producing oscillation was enforced 

to the parameters selected. The goal of our method is to perform the search with purely 
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data-driven guidance (i.e. without any human enforcement) to find more accurate 

solutions more quickly. Neurospora crassa is a type of red bread mold that is often used 

in biological experiments because it is easy to grow and has a haploid life cycle, which 

makes genetic analysis simple [10]. A biological clock is an internal mechanism in 

organisms that controls the periodicity of various functions or activities, such as 

metabolic changes, sleep cycles, etc [11]. This periodicity appears with 24 hour 

frequency of oscillation as shown in Figure 2. The circadian clock triggers rhythms of 

biological activities including cellular functions, development and growth in all aspects 

of a living system. The assembly of a consistent, functional nature of the biological clock 

warrants the extensive measurement of various parameters of the clock function.  In 

addition, oscillations should be mathematically identified by amplitude and phase, and it 

is absolutely necessary to maintain consistent periodicity in the circadian oscillation. 

Although much experimental data on the biological clock have been compiled at great 

effort and expense, mathematical modeling may not predict the deeper nature of the 

biological clock. Recently devised kinetic linear mathematical models of the clock 

network lack a rationally-definable overall integration of the models. The massive 

divergent and disparate signaling to and from the clock should be appropriately 

interconnected to the clock system.  The circadian network model should resolve 

modeling and experimental efforts. 
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Figure 2: Finding Parameters for Genetic Network Model 

 

1.2 Searching model parameters and evolution strategy 

 A fundamental and ubiquitous difficulty of system biology is that the relevant 

model parameters are not completely known while the available and meaningful 

experimental data may be sparse and noisy. This makes it difficult to unravel the basic 

nature of the biological activities such as the circadian clock network. There have been 

numerous attempts to connect the oscillator circuit to the kinetic modeling, but they 

appear to be fragmentary to explain circuit mechanism. An integrative approach to build 

up the circuit model through the suitable algorithms is necessary. The search space of 

model parameters is extremely complex due to the oscillating nature of biological clock 

models. The relationships between variables are non-linear and highly complex, and 

defined by an ODE system. The biological clock model targeted in this thesis has 20 
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coefficients and 7 initial conditions. This high dimensionality of the search space makes 

exhaustive search impractical. The only known way of evaluating the genetic network is 

to plug the coefficients and initial conditions into an ODE solver which attempts to 

numerically compute the output of the defined system to compare it with the profiling 

data. The ODE system is very sensitive to changes in the coefficients. Small changes in 

parameters may yield drastic changes in model behavior, making the system numerically 

unstable. This makes our search space very discontinuous with regions of un-evaluable 

points. Population based evolutionary algorithms are suitable for problems with such 

complexity, high dimensionality and discontinuity in the search space. In particular, the 

algorithms appear to exhibit reliable performance in such discontinuous spaces where 

analytical search would fail. Karr, C. L. et al. [12] demonstrated the potential for 

searching for parameters for curve fitting with evolutionary algorithms. Simonsen, Martin, 

et al.[13] efficiently used the GPU computation power in Differential Evolution. Their 

work demonstrates the potential of GPU acceleration for real world application of 

Evolutionary computing. Many Evolutionary algorithms were implemented on GPUs. 

Longo, G., & Ventre, G. [14] implemented a general framework for genetic algorithms 

on a GPU architecture which was intensively tested and validated on massive 

Astrophysical data classification problems. Cano et al. [15] implemented three different 

approaches to run Genetic Programming on GPUs. Cárdenas-Montes, Miguel, et al. [18] 

implemented a Particle swarm algorithm on GPUs.  Franco et al. [16] parallelized the 

fitness evaluation on a GPU demonstrating the potential for speedup of evolutionary 

learning systems. Jaros,J. et al. [17] demonstrated an effective use of Multiple GPUs with 

Island-based genetic algorithms. Ramirez-Chavez et al. [19] implemented GPU-Based 
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Deferential Evolution for solving the gene regulatory network model inference problem 

achieving significant speedups by utilizing the GPU. Their work is on a similar problem 

with GPU and evolutionary computation as ours, but the network model we are dealing 

with is much more complex, and their approach is therefore not suitable. We have 

selected an Evolution Strategy to utilize the GPU on fitness evaluation of the circuit 

reconstruction with an Island model approach to utilize both a multi-core CPU and GPU. 

We have selected the Evolution Strategy to maximally utilize the GPU architecture, as 

explained in the next section. 

 

1.3 Evolution strategy and GPU architecture 

 Computer algorithms can be applied to exploit the biological circuit starting from 

the initial conditions and all the way to the output of the system under diverse emergent 

behaviors.  It can highlight the relevance of setting a variable parameterization of the 

model. The exploration of dimensional parameter spaces would permit us to explore the 

system functioning throughout the broad spectrum of conditions and to produce 

statistically meaningful results.  The methodologies include parameter involving analysis, 

sensitivity analysis, and parameter estimation.  Most of these methodologies involve the 

repetitive application of simulation.  General purpose computing on graphics processing 

units (GPUs) is an emerging technology that reduces computation time for many 

applications. GPUs are designed specifically for processing graphics which requires the 

parallel processing of thousands of triangles and rasterizing them to millions of pixels in 

a fraction of a second.  A stream is a set of records that require similar computation. The 

GPU is designed to utilize this data parallelism in the streams of computation required for 
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rendering thousands of triangles. Data parallelism has focuses on distributing the data and 

is different from Task parallelism. Task parallelism is a common form of parallelism 

when we have for example multiple cores or servers running in parallel to achieve fast 

computation. However, in data parallelism each thread will focus on distributing large 

amounts of data and applying similar tasks to the data. To deal with the demands for 

processing thousands of triangle meshes to render 60 or more frames per seconds, GPUs 

have evolved to become massive parallel streaming processors which can handle 

GFLOPS of stream operations with high bandwidth as shown in Figure 3. To achieve this 

special purpose, the GPU architecture became quite different in architecture from the 

traditional CPU as shown in Figure 4. The GPU devotes transistors to data processing 

more than data caching and flow control that CPUs do because it is specialized for 

computation-intensive, highly parallel computation – exactly what graphics rendering is 

about. The GPU is especially well-suited for problems that fall into the category of data-

parallel computation with high arithmetic intensity [20]. A GPU is built around an array 

of Streaming Multiprocessors (SMs) and each SM runs the program in units of blocks as 

shown in Figure 5. The streams of work get grouped into multiple blocks and get 

dispatched to SMs by the GPU scheduler. This enables the GPU architecture to be 

scalable to different hardware settings ranging from supercomputers to mobile devices.  

 Another reason for adopting GPUs in computations is their low energy 

consumption. The Top500 supercomputers list shows that GPU powered systems are 

growing. China’s Tianhe-1A (one of the supercomputers in the top of the list), which uses 

more than 7,000 GPUs, consumes about half as much power as the CPU powered Jaguar 

does. The GPU based Tsubame has 92% fewer servers and consumes only 1/7th the 
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power that the CPU based Jaguar consumes and still shows competitive performance 

compared to the Jaguar. Industries outside the supercomputing community are also 

adapting GPUs to yield benefits. HESS (a major oil and gas firm in the US) replaced a 

2,000 CPU cluster with 32 Tesla S1070 (GPU) servers and reduced power consumption 

from 1340 kwatts to 47 kwatts thus reducing an operational cost of 2.3 million dollars to 

only 82 thousand dollars. Today, more than 20 energy firms are in the process of 

migrating to GPU-based processing, including Chevron, Schlumberger and BR Petrobras 

[21]. 
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Figure 3: FLOPS and Memory Bandwidth for CPU and GPU (Adapted version source: 

NVIDIA CUDA Programming Guide Version 5.5 [20] available at 

http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf. Last accessed 

November 2013) 

http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf


 

 

10 

 

 

Figure 4: CPU and GPU architecure (Adapted version source: NVIDIA CUDA 

Programming Guide Version 5.5) 

 

Figure 5: Automatic scalability with Streaming Multiprocessors on different GPUs 

(Adapted version source: NVIDIA CUDA Programming Guide Version 5.5 [20])  

 GPUs have multi-level parallelism in the form of threads, blocks and grids as 

shown in Figure 6. A thread is the smallest unit that can execute a sequence of 
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instructions. A block is a group of threads which is assigned to a SM (Streaming 

Multiprocessor). Multiple blocks are executed in parallel by multiple SMs, while threads 

run in parallel within the block. However, threads within the block cooperate closely by 

having a synchronization barrier point and shared memory space which enables fast 

communication between them. Our fitness calculation for the Evolution Strategy 

especially fits well to massive streaming GPU architecture because an Evolution Strategy 

requires fitness evaluation of all children only at one point every generation. This is 

important because we need to stream enough parallel work to the GPU to saturate the 

computing power of the device. Otherwise we have to frequently launch the GPU calls 

from the CPU, and the GPU computation-launching overhead will be more than the 

performance benefit we gain from running the task on the GPU. In our implementation, 

we can stream a massive population to the GPU and execute massively parallel fitness 

evaluations. This will return fitness values to the CPU for the entire child population at 

one point in time in each generation. In this manner, the parallel tasks streamed to the 

GPU are sufficient to saturate the full GPU computing power. In our method, we assign 

16 individuals to each block with each individual utilizing 8 threads (8 threads 

communicating through shared memory within the block).  To get the fitness of a total of 

3584 children (the parent population contains 512 individuals and the child to parent ratio 

is set to 7 as explained in the next chapter) we create 224 blocks (16 x 224 =3584) and 

stream them to the GPU to run the computation at each fitness evaluation step. The 

fitness of 3584 children consumes 8 threads for each which results in a total of 28672 

threads launched on the GPU. When there is a sufficient number of thread blocks 

assigned to the GPU device, the GPU scheduler assigns multiple blocks to a single SM. 
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The benefit of having multiple blocks on a SM is that the SM can juggle the blocks 

hiding the latency of any operation by utilizing the hardware. For example, if block A is 

fetching some data from the global memory (which takes hundreds of clock cycles), the 

SM will set aside block A for a moment and run block B’s arithmetic operations and 

possibly block C next, etc. Multiple blocks will be assigned to one SM to always keep the 

SM busy. This way, even though some memory operations are very slow, one can hide 

that latency by executing other available instructions while waiting for the data to arrive.  

 

 

Figure 6: Grid of thread blocks  

(Adapted version source: NVIDIA CUDA Programming Guide Version 5.5 [20]) 



 

 

13 

 

 The rest of the thesis is organized as follows: Chapter 2 begins with an 

introduction to the Evolution Strategy. Then the implementation details and our strategy 

are described.  Chapter 3 continues with utilization of the massive parallel GPU 

architecture in our work. Chapter 4 presents the experimental results. Chapter 5 contains 

the conclusion and suggested future work. 
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CHAPTER 2 

EVOLUTION STRATEGY 

 

2.1 Overview 

 The general algorithm of the Evolution Strategy that we have adopted for 

biological circuit reconstruction is depicted in Figure 7. An initial population of randomly 

generated candidate solutions forms the first seeded generation. Then, it goes through the 

evolutionary process of parent selection, recombination, mutation, fitness evaluation and 

survivor selection to produce the next generation [22]. Multiple iterations of this 

evolutionary process lead the population search through the solution space towards an 

optimal solution.    

 

Figure 7: Overview of Evolution Stretegy 
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 A technical overview of the Evolution Strategy used for our circuit reconstruction 

is given in Table 1. By leveraging the massive parallel computation power of the GPU, 

we were able to handle a large population size (512 on four islands) efficiently.   

Table 1: Technical Overview 

Representation Continuous real value for rate coefficient and initial condition 

Recombination Local discrete on object variables & Global intermediary on 
strategy variables 

Mutation Gaussian perturbation 

Parent selection Uniform random 

Survivor selection (,) 

Population size Four islands with 512 on each 

Niching Fitness Sharing 

 

 The circuit reconstruction process with the Evolution Strategy is depicted in 

Figure 8. Each individual of the population encodes the realized unknown parameters of 

the ODE system. The genes define the numeric ODE system which can be solved by 

numerical methods. We assign a fitness value to each individual by actually solving the 

ODE system numerically and comparing the result with the target data. Having a fitness 

for each individual, we can go through the evolutionary process to evolve the population 

towards the matching solution for the targeted system. 
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Figure 8: Overall Circuit reconstruction process 

 

2.2 Representation 

 Each individual consists of real-valued genes representing rate coefficients and 

initial values of the ODE system as shown in figure 9. The values have bounds of 0.0 and 

100.0, but in the implementation we used a very small floating point value ϵ instead of 

0.0 to avoid numerical instability. Each individual also has a set of strategy variables 

representing the standard deviations for mutating the object variables which represent the 

ODE parameters. 
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Figure 9: Initial Condition and Coefficients to define a Genetic Network Model 

 

With the given genotype we can solve the ODE system numerically to produce the 

phenotype as shown in Figure 10. The genotype in evolutionary terminology is an 

organism’s full hereditary information which is encoded by genes. The phenotype is an 

organism’s actual observed properties. There is not a one-to-one mapping between 

genotypes and phenotypes because it is possible for different parameters to produce the 

same series as output. However, our target is to find one gene encoding for a given 

protein profiling data series. The existence of at least one genotype for a targeted 

phenotype is sufficient for our goal. Initially, candidate solutions will form a population 

to start the evolutionary process (Figure 11).     
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Figure 10: Genotype and Phenotype of representation 

 

 

Figure 11: Population of candidate solutions for circuit reconstruction 
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2.3 Operations 

2.3.1 Recombination  

 In our Evolution Strategy, the object variables are the rate coefficients and initial 

condition of each variable. Rate coefficients are constants which define the reaction rate 

between chemicals on genetic network model. Rate coefficients have very close 

relationship to each other in a system, and they fall into certain scaling range for each 

system. For this reason, we perform local recombination by selecting genes from only 

two parents for object variables. Also, the rate coefficient search space is not smooth and 

continuous, meaning that from range A to B there could be critical points which break the 

whole system even though most of the values between A and B may give stable solutions 

to the system. Consequently, we use discrete recombination to randomly choose one gene 

from either parent which allows us to avoid invalid ones in between. The experiments 

below confirm that this local discrete recombination strategy works fairly well for our 

problem domain. 

 In contrast, we use global intermediary recombination for strategy variables. 

Global intermediary recombination generates the values from any pair of parents for each 

gene and selects the intermediary values of the selected genes from the parents. This is 

much more aggressive than local discrete recombination. Aggressive evolution of 

strategy variables results in a more diverse perturbation space for mutation, resulting in a 

better chance of leaving local optima. The recombination probability is set differently on 

each island with a strategy that is discussed in section 2.5. 

2.3.2 Mutation and parent selection 
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 We use uncorrelated mutations with n strategy variables followed by the 

corresponding object variables which gives our chromosome a  x1,…,xn, 1,…, n  

format. There is an overall learning rate ’ and a coordinate-wise learning rate . The 

learning rate controls the range over which the variable is portable, indirectly controlling 

the mutation range. The formula used for mutation is described in Figure 12, (N(0,1) is a 

sample drawn from a Normal distribution with mean 0 and standard deviation 1). Our 

search space has significant slope differences by gene and by region of the search space. 

It is therefore appropriate to have a strategy variable for each object variable. As in a 

typical Evolution Strategy, we select parents from the population with uniform random 

probability. Each selected candidate will go through mutation to produce a child and 

would go through recombination according to the recombination probability we have 

setup for each island.    

 

Figure 12: Mutation formula 

 

2.3.3 Survivor selection  

 A typical Evolution Strategy is designed to create  children from  parents with 

the children being more than the parents. We adopted the recommended default setting of 

   7 • , having 7:1 ratio. The (,) selection strategy, selects survivors (the  parents 

of the next generation) from among the   children, excluding all parents from the 



 

 

21 

 

competition. Another common selection strategy is (+), in which parents are included 

in the competition. As will be shown below, (,) gives much better performance in our 

experiments because (,) selection gives a better chance to leave the local optima.  

 

2.4 Fitness evaluation 

 Measuring the similarity of output signals for different ODE systems is a 

challenging task. We have to carefully measure multiple sets of time series data to rate 

the similarity of the ODE systems’ outputs.  The naïve idea of measuring the 

accumulated sum of differences of each point between the two series is very deceptive 

and likely to lead us to local optima. In this section, we describe a fitness measurement 

formula specially designed for a class of ODE systems which generates oscillating 

behavior in the output signal.   

2.4.1 Shape matching - Correlation and Detrending 

 Shape and pattern are both important features of any signal. In a biological clock 

system, the oscillating behavior and its frequency are key features of the system. Our 

focus is to quantitatively measure the similarity of the shape and pattern from the output 

signal of our candidate solutions. As in previous works [9, 19], this shape measuring was 

often ignored. Thus, we have adopted the Pearson Correlation measurement in our fitness 

function aiming for this feature. The Pearson Correlation coefficient is a well-designed 

statistical tool to measure linear correlation between two variables. It gives a quantitative 

measurement in the range from 1.0 to -1.0 with 1.0 being most positive and -1.0 being 

most negative correlation. This measurement lets us screen the oscillation feature of each 

output series. 
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 Figure 13 shows curves having high correlation in different frequency ranges. To 

measure the oscillating feature, we have to target the most relevant frequency range. The 

Pearson Correlation is a good measurement for shape, but it often gets dominated by a 

low frequency factor in the shape. For example, if there is a global increasing trend like 

the green curve shown in Figure 13(a), the green curve and blue curve have a high 

correlation even though they are completely off on higher frequency factors. To target the 

higher frequency, we need to remove the low frequency factor (the global trend) from the 

signal and measure correlation. Figure 13(b) shows two signals with low frequency factor 

removed and now they will have high correlation only when they match in high 

frequency factors as shown in the figure. We have used b-spline curve fitting to detect the 

global trend and removed it from the signal when measuring the shape with the Pearson 

Correlation function. 

 

Figure 13: Global trend and higher frequency component of the signal   

(a) low frequency global trend line (green) on the curve (blue)   

(b) high frequency sine curve(blue) fitting the noisy target curve(green) 
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2.4.2 Absolute difference – Chi-square 

 With Pearson correlation measuring the shape of the output signal from the ODE 

system, we still cannot ignore the magnitude of the signal. Figure 14 demonstrates the 

effect of the χ
2
 monument on our fitness measure. The blue curve is the target fitting 

curve and the green curve is the solution found from an evolutionary process guided by 

the Pearson Correlation error measure. The signal matches perfectly in shape and 

frequency but the magnitude gets really off track. However, without the correlation 

measurement, the Evolution Strategy can be easily deceived by local optima as shown in 

Figure 15. The left-hand side of Figure 15 demonstrates local optima where the search 

can fall when the fitness lacks the correlation measure. On the other hand, the right-hand 

side of Figure 15 shows a point which is much closer to the global optimum than the left-

hand side. Even though this candidate solution has a much lower score on the χ
2
, the 

actual parameters are very similar to the global optimum.   
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Figure 14: Measuring without χ
2 

 

 

Figure 15: Strong χ
2
 score candidate and balanced score candidate 
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2.4.3 Fitness function for circuit evaluation 

 In our biological clock ODE system model, there are a total of seven variables, 

each of which represents a biological species. Among those seven, only four species can 

be quantitatively measured from protein profiling data. For this reason, only four 

observable variables can be used to guide the circuit reconstruction. By combining the 

correlation factor and χ
2
 factor of four variables, we define the fitness function f(θ) shown 

in Figure 16.  

 

Figure 16: Fitness function for circuit reconstruction 

2.5 Island model and reseeding  

 The Island model is a popular approach for evolutionary computation in parallel 

computing environments. The Island model helps maintain diversity by imposing 

separation between populations while they evolve. Each island evolves for a number of 

generations and then undergoes a periodic migration of individuals to stimulate evolution.  

 We have characterized islands as progressive and conservative islands. 

Progressive islands keep a high recombination rate to aggressively explore the search 

space and retain the diversity of the population. Conservative islands focus on searching 

intensively near promising candidates by having low recombination rate. The migration is 

performed in a ring structure as shown in Figure 17. The conservative solutions (green 
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arrow) will migrate to stimulate progressive islands and progressive solutions (red arrow) 

will migrate to stimulate conservative islands on each epoch. We achieved the best results 

when our epoch was 150 generations. 

 

Figure 17: Progressive and Conservative Islands stimulating each other 

.  

 Reseeding the population is an effective way of escaping local optima. When 

there is no improvement on the evolution process for many generations, it is helpful to 

start the evolution again with a new random population. Our islands fully restart when 

there is no significant improvement for over 30% of the evolutionary process. This 

mechanism enables our island model to be fault-tolerant to poor initial seeding that may 

lead the population to local optima. Without the acceleration by the GPU architecture, 

reseeding would be a challenging task because of the computational overhead, but GPU 

acceleration enables us to reseed the population many times within a couple of hours.   

 



 

 

27 

 

 

 

CHAPTER 3 

ACCELERATING EC ON GPU ARCHITECTURE 

 

 Solving an ODE system with the Runge-Kutta Numerical method is inherently a 

sequential process. In our ODE system, computing the first order derivatives of seven 

equations could be parallelized, but this is not sufficient for the massive parallelism of a 

typical GPU architecture. On the other hand, solving a population of ODEs with different 

parameters (rate coefficients and initial conditions) can effectively leverage the massive 

parallelism of the GPU architecture.   

3.1 Exploiting the massive parallelism  

 The GPU architecture is designed to operate on SIMD instructions (SIMD is an 

acronym for Single Instruction, Multiple Data) which exploit data level parallelism. The 

graphics card we are using (the GTX 480) follows the Cuda 2.0 compute capability 

standard which groups every 32 threads as one unit called “Warp”. This means that it is 

most efficient when 32 threads run the same instruction on multiple data fed to each 

thread. When a conditional branch inside this unit (one warp) diverts threads into two 

separate instruction paths, a set of threads which fulfill the condition will take path A and 

the others will take path B. As shown in Figure 18, threads go to sleep when they are not 

executing instructions according to a branch condition. If we assign seven equations from 

our ODE into one warp to compute, this will result in running seven times slower.     
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Figure 18: GPU branch divergence 

 

 The major computational cost of solving ODE systems often resides in computing 

the Y Prime portion. In our biological clock model, Y Prime functions are defined by the 

rate equations. Our biological clock genetic network model also has a high computational 

load for computing this Y prime portion. The major challenge of branch divergence 

comes in when we try to distribute the seven equations to parallel threads. Simply 

assigning each equation to a thread will cause seven way branch divergences which may 

take seven times more time and have only 1/7 of each thread being activated at a time. To 

avoid branch divergence and fully exploit the massive parallelism, we have grouped 16 

different ODE systems having 16 sets of different parameters (each |θ|=24) to assign for 

each thread block and run on SIMD fashion as a group. The 16 individuals (which are 

ODE systems having each different coefficients and initial conditions) are assigned to 

one block in GPU. Then each ODE system occupies 8 threads for computing the seven 
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equations which makes the thread block size 8×16. It is possible to assign 32 sets to a 

block, with no branch divergence on each warp, but assigning 16 sets of individuals per 

block was found to be more efficient. The details are given in section 3.2. Overall, the 

computation of the Runge-Kutta order 4 algorithm simultaneously solving 16 different 

systems on each streaming multiprocessor of GPU is depicted in Figure 19. Figure 19(a) 

shows the pseudo code of the Runge-Kutta order 4 algorithm which the 16 different 

systems go through. Figure 19(b) depicts the Runge-Kutta execution of 8×16 threads in a 

single GPU block having 8 threads assigned for each ODE system. A total of 8×16 

threads proceed through one time step at a time to compute the value of each variable at a 

given time point. First, each group of 16 threads is split into running Y Prime1 for seven 

equations. The 16 threads will run in SIMD fashion, running the same instructions used 

to compute equation x in Y Primei (i is 1 to 4 as described in Figure 19) but having 

different data for the coefficients and variables according to which individual the thread 

belongs to. Then, each thread performs a common Runge-Kutta operation like 

multiplying ki by h or dividing in half and storing the computed ki value in the GPU 

block-wise shared memory so that other threads can access it. The next Y Primei+1 

function splits again but all the values of ki are computed from Y Primei which were 

stored in shared memory on the previous step. One important thing to recall is to 

synchronize all the threads after each Runge Kutta operation by placing a block-wide 

synchronize barrier. Otherwise, the value fetched from shared memory will fall into race 

condition, and the correct value will not be guaranteed. 
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Figure 19: Overall ODE solving algorithm on GPU 

 

3.2 Load balancing the computation 

 In each block, we have to compute 16 instances of rate equation 1 for each 

individual. The parallel computation of equations 1 through 6 is shown in Figure 20. 

However, Equation 7 has twice as much computational load. If we assign the same 

resources to equation 7, the other threads must wait for equation 7 to be computed. So our 

strategy is to balance the workload by allowing time sharing (one branch divergence) on 

equations 1 through 6 and giving full compute time to equation 7 as shown in Figure 20. 
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One warp will compute equations 5 and 6 while another warp computes equation 7. This 

is the reason that we did not assign 32 individual ODE systems to a block, which would 

not allow any branch divergence. We gained almost 1.5 times speedup by assigning 16 

individuals to each block. 

 

  
Figure 20: Load balancing the computational load on rate equations 

 

  

3.3 Efficient shared memory communication 

 On Y Prime computation, many equations require the values of other variables 

from previous compute steps. Since the result of each computation is saved to a register 

which is private to each thread, we need to efficiently communicate those results between 

threads. The GPU memory access hierarchy is shown in Figure 21. We can store the 

results of each calculation in the global memory of the GPU so that every other thread 

can gain access to them, but that would be very inefficient. The GPU has shared memory 

inside each streaming multiprocessor for this special purpose which is much more 
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efficient. This shared memory’s access scope is limited to the GPU block, which works in 

our case. The result of the computation is copied into shared memory after each Y Prime 

calculation. Then we put a block-wise synchronization barrier to make sure that the data 

is multi-thread safe. Each Y Prime computation will now read other variables’ up-to-date 

values by accessing the shared memory.  

 

Figure 21: GPU memory access hierachy (Adapted version source: NVIDIA CUDA 

Programming Guide Version 5.5 [20]) 
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3.4 Hierarchical caching 

 In massive parallel computation, memory bandwidth is often a bottleneck. An 

efficient strategy to resolve this issue on GPU architectures is hierarchical memory 

caching. The GPU architecture provides a hierarchical memory structure as shown in 

Figure 22. With this architecture, we transfer the massive data in chunks from global 

memory to shared memory and cache most frequently used data into registers. Since 

accessing global memory takes hundreds of clock cycles, it is very important to avoid 

frequent data fetching from global memory. It is better to fetch large chucks of useful 

data at each access. In our implementation, the parameter values stored in global memory 

are transferred to shared memory as a large, aligned chunk at the initial phase to fully 

utilize the global memory bandwidth.  

 

Figure 22: GPU Memory size and bandwidth hierarchy  
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 We have applied a special strategy for register caching. In our genetic network 

model, each individual has 18 parameter values which are used in Y Prime computation 

throughout the loop from the start time point to the end time point. To reach a high 

degree of precision, we have set the time step as 0.005 time unit. Thus it takes 50,000 

loops to compute the whole time span of 250 units. Each GPU thread has a very small 

number of registers available which makes it impossible to save all 18 parameter values 

of the ODE system to registers. However, for each rate equation, only a few coefficients 

are required for computation. We utilize only four registers per rate equation and save 

only up to four parameters that are essential for each rate equation as shown in Figure 23. 

 

Figure 23: Caching different parameter variables for each thread 
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3.5 Distributing computational load on GPU and CPU with Island model 

 Using the massively parallel strategy described above, we have greatly 

accelerated the massive Runge-Kutta algorithm which is the core of the fitness evaluation 

function. Since most of the computational load is in fitness evaluation, this already gives 

us a significant speedup. However, with the island model, we can achieve further gain by 

executing CPU and GPU computation in parallel. As shown in the two-island model in 

Figure 24, CPU Core 1 executes all the genetic operations for Island 1, excluding fitness 

evaluations, and then it streams the data to the GPU. The GPU then runs all fitness 

evaluations of the submitted individuals from CPU core 1. While the GPU is computing 

fitness, CPU Core 2 runs genetic operations for island 2. Again, when CPU Core 2 

streams the individuals to the GPU, CPU Core 1 gets the fitness values streamed out from 

the GPU. In this manner Islands 1 and 2 run genetic operations in parallel with GPU 

fitness computations. We therefore gain the extra benefit of earning more CPU time to 

spend on genetic operations. With more CPU time being available, we were able to use a 

high level language (Python) for genetic operations without sacrificing performance. 

Using Python gives us considerable flexibility in implementation and a fast prototype 

development cycle. Python lets us pass function arguments as map data structures, giving 

us the freedom to pass in any configuration for any step as a single set instance. Even 

though Python has poor performance as a disadvantage, our island model alternating 

GPU and CPU hides that disadvantage and lets us enjoy the full flexibility of the high 

level language. In our final implementation, we fully utilized the four CPU cores and the 

two GPUs in our machine to run four islands of Evolution Strategy as in the four-island 

model in Figure 24. 



 

 

36 

 

 

Figure 24: Utilizing both CPU and GPU computing power with Island model 
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CHAPTER 4 

EXPERIMENTS AND RESULTS 

4.1 Circuit reconstruction for biological clock system 

 We have generated synthetic data as our target data series from one of the 

parameter sets in an ODE system in [9] to evaluate the circuit reconstruction ability of 

our method. The ODE system parameters in [9] were computed by a Monte Carlo 

algorithm with strong constraints on the search space with analytical background 

knowledge of the ODE system itself. The Monte Carlo method used was not truly data 

driven because of the influence of a human expert on the search process. In contrast, our 

method is purely data driven having no analytical constraints at all. Our only constraint 

on the search space was setting the boundaries of the range to 0.0 and 100.0. This range 

was chosen because a rate coefficient is positive by definition and 100.0 is a reasonable 

limit that cannot be exceeded in a realistic genetic network. Our method is able to 

consistently find the solution shown in Figure 25 within 2 hours on multiple trials 

whereas the method in [9] was never able to find that solution without enforced analytical 

constraints to assist in searching the space. The green curves are the outputs from our 

identified solution and the blue curves are the target data series given to our method. In 

our search process we do not include the variable w in our fitness function because this is 

a species we cannot directly measure. However, it is an important modulation variable 

which controls the oscillation behavior, and as Figure 25 shows, the frequency perfectly 

matches the target data series.  
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 The experiments we use to evaluate our method are described in the following 

sections. GPUs played a vital role in this work, because the GPU parallel implementation 

cut down the run time of the algorithm from 310 hours to 2 hours, which enabled us to 

run multiple runs with various experimental settings.   

 

Figure 25: Identified solution by our method  

 

4.2 Comparison with Particle Swarm Optimization 

 To examine the performance of our Evolution Strategy, we compared it with the 

Particle Swarm Optimization [23] approach. The same population of 512 particles was 

generated and a ring topology was used to select the neighborhoods of the particles. We 

experimented with neighborhood sizes of 5, 10, 15 and 20 respectively. Each particle 

maintains its own velocity, though it also gets influenced by local and global best 

velocities and locations. Particles will move around the search space with their velocity to 

reach the optimal solution. The best solutions found with Particle Swarm Optimization 
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and Evolution Strategy in multiple runs are shown in Figure 26. Particle Swarm 

Optimization did reach promising solutions for two runs, but on the rest of the runs it was 

apparently trapped in local optima. It seems that the PSO evolutionary process finds 

relatively low error solutions in the early stages with no sustained improvement over time.  

 

 

Figure 26: Fitting Errors of Evolution Strategy and Particle Swarm Optimazation 

 

4.3 Island model and single population comparison 

 Of the 24 runs of ES with a single population performed, only 29% are successful 

in finding compatible solutions. Assuming this 29% to be the general success rate, 

running 4 independent islands would have only 74% probability of success, which is 

inferior to running 4 islands having 100% success rate with the reseeding approach. We 

have migrated 5 individuals every 150 generations. The migrations require the process-

to-process communication because each island runs on a different CPU core. This is a 
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huge bottle neck in computation speed when migration happens frequently. Limiting 

migration to once every 150 generations helped reduce the overall migration cost. Once 

every 150 generations was frequent enough to stimulate the evolutionary process.   

4.4 Experiments on Evolution strategy  

 As described in section 2.3.3, we have experimented with the (,) and (+) 

survivor selection strategies. The results are shown in Figure 27. Intuitively, the (,) 

strategy has a better chance to forget and leave the local optima because it does not 

include the parents in the survivor competition. In Figure 27 there are 3 runs where (+) 

errors are above 1,000,000. In those 3 runs, it seems that the (+) approach had the 

entire population fall into local optima and lost all diversity. Therefore, our choice of the 

(,) strategy is justified. 

 

 

Figure 27: Performance of (,) and (+) 
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 We described the recombination choices on section 2.3.1. Each object variable 

can chose either two parents (Local) to select the value for all gene positions or select any 

random parents (Global) for each and every gene position to inherit from them. As shown 

in Figure 28, Global recombination resulted in very poor performance. In 8 out of 12 runs 

it did not even converge to a fair solution. Therefore, our choice of local recombination is 

justified. 

 

 

Figure 28:Object variable recombination Strategy 

 

 With four islands, we can either set all islands to uniform parameters or set them 

to diverse parameters. One diverse approach setting the role of Progressive and 

Conservative islands with different recombination rates is described in section 2.5. In this 

experiment we compare the uniform island model and the diverse island (Progressive and 
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Conservative island) model. As shown in Figure 29, both approaches had similar 

performance with just one exceptional fail on the 5
th

 run for the uniform model. However, 

the evolutionary process and the diversity state of the islands on each model were quite 

different.  

 

 

Figure 29: Comparesion of uniform and diverse island models 

 

 Figure 30 shows the evolutionary process of a set of four islands from one 

experimental run with uniform settings. Although there are some varying delays on 

convergence, the islands generally follow similar water fall curves down to the 

convergence point. On the other hand, Figure 31 shows the evolutionary process of a set 

of progressive and conservative islands in an experimental run. In contrast to the uniform 

model, we can observe that the progressive island experiences a much slower fall, 

maintaining a more diverse population on the island until it converges to the best solution. 
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There is also a noticeable bouncing pattern on the curve climbing uphill trying to escape 

from a local optimum and maintain diversity.  

 

Figure 30: Evolution process of uniform islands 

 

Figure 31: Evolution process of progressive and conservative islands 



 

 

44 

 

 We measure the diversity of the population quantitatively by calculating the 

standard deviation of the error scores of the population. As shown in Figure 32, islands 1 

and 3 maintain diversity for a longer period than islands 2 and 4. However, we can 

observe a longer-lasting and greater diversity maintained on progressive islands 1 and 2 

in Figure 33. With 70% probability of recombination on the progressive island 1, it does 

not quickly converge to current optimal solutions from other islands. Instead, it maintains 

the diversity of the population while it explores uncovered search areas with the help of 

migrated promising solutions from other islands. Although both island models showed 

similar performance, having the Progressive Island provides more diversity in the 

population which is often preferred in evolutionary computation.  

      

 

Figure 32: Diversity of population on each islands through evolutinary process 
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Figure 33: Diversity of population on progressive and conservative islands through 

evolutinary process 

 

4.5 Speedup from utilizing the GPU architecture 

 Solving a massive population of ODE systems with the Runge-Kutta method is 

the core computational portion of our evolutionary algorithm. This fitness evaluation step 

has to run on each generation for thousands of generations to reach convergence. The 

speedup from using our GPU implementation compared to an optimized single threaded 

C code implementation (compiled with gcc having –O2 option) of the Runge-Kutta 

method is shown in Figure 34. We gained a speedup up to 81 times on evaluating 7,680 

individuals as shown in the figure.   
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Figure 34: x81 Speed up evaluating 7,680 ODE systems 

 

 The island model utilizing 2 GPUs + 4 CPU cores gained x155 speedup compared 

to using a single threaded CPU implementation. The entire work is implemented on a PC 

workstation with a GTX 480 GPU and an Intel(R) Core(TM) i5-2400@3.6 GHz CPU.  

 

 

 

 

 

 

 

 

 



 

 

47 

 

 

 

CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

 We have introduced a new fitness function which captures the shapes and 

magnitudes of the signals generated from a biological clock system. We have shown that 

a correlation measure with de-trending is effective for capturing the quantitative 

similarity of high level frequency features of the series. We have also demonstrated that 

the conventional approach based on chi square error [9, 19] is not sufficient to accurately 

measure the full similarity of the outputs of the ODE system especially for biological 

clock model. A massive population-based searching Evolution Strategy was applied to 

the circuit reconstruction problem, and the proposed fitness function shows a consistent 

ability to find very good solutions. We have utilized a GPU implementation of massively 

parallel evolutionary algorithms for the biological circuit reconstruction.  Our tests show 

that the GPU implementation is efficient and suitable for application in the investigation 

of the biological clock circuit system. The GPU serves a purpose, through the 

mathematical formalization of complex biological networks, of the understanding of the 

emergent and dynamic control of the biological system. The GPU based parallel 

implementation of the Evolution Strategy resulted in up to a 155 times speedup in our 

experiments.  The speedup gave us the opportunity to run multiple experiments with 

different settings, helping us to gain insight into the problem and the selected algorithm. 
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The GPU-powered Evolution Strategy clearly demonstrated that it is a powerful tool in 

building a genetic network model of the biological clock of Neurospora crassa. 

 

5.2 Future work 

 Working with real protein profiling data, there is another unknown variable we 

need to fit called the Scaling Factor. Often the data is generated from multiple different 

environments. The Scaling Factor is a scalar value used to modulate the different 

magnitude scale of the experimental data which varies by each environment. Our next 

step would be encoding this scaling factor into an additional gene so that we can run our 

circuit reconstruction targeting protein profiling data.  

  Furthermore, the typical protein profiling data measure is far sparser than the 

sampling rate we used on this work. Some robust interpolation method or down sampling 

should be implemented to fill the gaps introduced by this factor.  
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