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Abstract

A regime switching model consists of a set of Black-Scholes models (geometric Brownian

motions) coupled by a finite state Markov chain. This model is considered as one of the

effective mathematical frameworks to study the valuation of stocks and their derivatives.

Under this model the associated PDEs satisfied by the option price are quite involved. In

the European option case we have a linear system of PDEs; and in the American option case

the corresponding PDE is fully nonlinear. Both equations are difficult to solve, and they

may not have classical solutions. In this work, we use the framework of viscosity solution to

prove that in both cases the option price can be characterized as a unique viscosity solution

of those PDEs. This enables us to construct a numerical scheme to approximate the option

price. In addition, this framework is used to treat stock selling rule and search for an optimal

selling strategy in order to maximize the reward resulted from a selling transaction.
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Chapter 1

Valuation of the European option under regime switching

Introduction

There has been a tremendous interest in valuation of stock options since their introduction

in an organized exchange in seventies. Options as other derivative securities are typically used

as a hedging tool by traders in order to reduce their exposure and to protect their portfolio.

A derivative security is a financial contract whose value is derived from another security

such as a stock or a bond. Common derivative securities are call options, put options, forward

contracts and futures contracts etc.

A call option gives the holder the right to buy the underlying asset by a prespecified date for

a prespecified price. And a put option gives the holder the right to sell the underlying asset

by a prespecified date for a prespecified price. The prespecified price in the contract is also

known as strike price or exercise price and the prespecified date is also know as the expi-

ration date. American option can be exercised any time up to the expiration date, whereas

European option can only be exercised at expiration date.

There has been a great deal of interest in using mathematical models to study financial

derivatives. The major breakthrough occurred in 1973 when F. Black and M. Scholes pro-

posed a model based on geometric Brownian motion with deterministic coefficients such as

the rate of return and the volatility. Their model gives a reasonably good description of the

market, and also leads to a closed-form formula for evaluating the European option price.

Since then, the Black-Scholes model has been widely used in option pricing and portfolio

management. However, as noticed by many researchers, it has serious flaws and discrepancies

due to its insensibility to random parameter changes such as changes in market trends. In
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order to circumvent those limitations, various modifications of the model have been proposed

in the literature. Merton [30] proposed a model based on diffusions with pure jumps in order

to capture stock price discontinuity; Clark [5] studied time-changing Brownian motions;

Praetz [34] proposed a hyperbolic model in lieu of the traditional log-normal distribution.

Fouque, Papanicolaou, and Sircar [14], Hull [18], and Musiela and Rutkowski [31] studied

stochastic volatility models in order to capture random changes of the volatility.

With the constant need to build more realistic models that better reflect the random change

of the market environment and that are mathematically tractable, the geometric Brow-

nian motion with regime-switching has been introduced. The regime-switching model was

first introduced by Hamilton [17] in 1989 to describe time-series. Roughly speaking, in the

regime-switching model stock parameters depend on the trend of the market that switches

among a finite number of states. The market regime reflects the state of the economy, the

general mood of investor and other major economic factors. Due to the effectiveness of this

model, there have been an extensive literature on the regime switching. Di Masi et al. [7]

develop mean-variance hedging for regime-switching European option pricing. In order to

evaluate regime-switching American and European options, Bollen [3] uses lattice method

and simulation, whereas Buffington and Elliot [4] use risk neutral pricing and derive a set

of partial differential equations for option price. Duan et al. [8] establish a class of GARCH

option models under regime switching. Yao, Zhang and Zhou [40] establish that the regime

switching model captures the volatility smile and the term structure.

In the regime switching models, it is extremely difficult to obtain a closed-form solution

for option price. In addition, there is no guarantee that the associated PDEs have classical

(smooth) solutions. In order to study those PDEs we have used the concept of viscosity solu-

tion which is convenient for treating possible non differential solutions. The regime-switching

European option price can be characterized as the unique viscosity solution of a system of

linear partial differential equations with variable coefficients.
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We consider the regime switching model that consists of a set of geometrical Brownian

motions coupled by a finite-state Markov chain. Let X(t) be the stock price satisfying the

following equation:

dX(t) = X(t)[µ(α(t))dt+ σ(α(t))dW (t)], s ≤ t ≤ T, X(s) = x, (1.1)

where α(t) is a finite state Markov chain, α(t) ∈ M = {1, 2, 3, ..., n} with generator Q,

W (t) is the standard Wiener process defined on a probability space (Ω,F , P ) such that

W (·) and α(t) are independent. Given α(t) = i, µ(i) and σ(i) are known parameters. Let

Ft = σ{α(s),W (s); s ≤ t} and r > 0 be the risk-free rate. Under the given probability space

(Ω,F , P ) the discounted option price e−rtX(t) is not a martingale. This creates a possibility

of arbitrage. To circumvent this problem we define an equivalent probability measure P̃ the

risk neutral probability measure. Using the Girsanov Theorem one is able to prove that

under the new probability space the discounted price e−rtX(t) becomes a martingale. For

more about these results, one is referred to Fouque et al. [14] or Yao et al. [40]. The space

(Ω,F , {Ft}, P̃ ) defines the risk-neutral world. The price of the European option at time s

with the stock price X(s) = x, and the state of the Markov chain α(s) = i is defined as

follows:

p(s, x, i) = Ẽ[e−r(T−s)g(X(T ), α(T )) | X(s) = x, α(s) = i] (1.2)

where g is the payoff function. In fact g(x, i) = (x−K)+ = max(x−K, 0) for the call option

and g(x, i) = (K − x)+ = max(K − x, 0) for the put option, and K is the strike price, and

T is the expiration time.

Remark 1.0.1 In the sequel we will use the following notation,

Ẽs,x,i[ξ(X(t), α(t))] = Ẽ[ξ(X(t), α(t)) | X(s) = x, α(s) = i].

First of all, note that from equation (1.1) we deduce that

X(t) = X(s) exp

(∫ t

s

(
µ(α(ξ))− 1

2
σ(α(ξ))2

)
dξ +

∫ t

s

σ(α(ξ))dW (ξ)

)
. (1.3)
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This implies that (X(t), α(t)) is Markovian, i.e, for any bounded Borel function h we have

E[h(X(t), α(t)) | Fs] = E[h(X(t), α(t)) | X(s), α(s)] s < t.

Lemma 1.0.2 For any θ ∈ [s, T ], we have

p(s, x, αs) = Ẽs,xs,αs [e−r(θ−s)p(θ,X(θ), α(θ)]. (1.4)

Proof. Let θ ∈ [s, T ]. Note that

p(θ,X(θ), α(θ)) = Ẽθ,X(θ),α(θ)[e−r(T−θ)g(X(T ), α(T )]

= Ẽ[e−r(T−θ)g(X(T ), α(T )) | X(θ), α(θ)]

= Ẽ[e−r(T−θ)g(X(T ), α(T )) | Fθ]. (1.5)

In view of this, we have

Ẽs,xs,αs [e−r(θ−s)p(θ,X(θ), α(θ))]

= Ẽs,xs,αs [e−r(θ−s)Ẽ[e−r(T−θ)g(X(T ), α(T )) | Fθ]]

= Ẽ[e−r(θ−s)Ẽ[e−r(T−θ)g(X(T ), α(T )) | Fθ] | Fs]

= Ẽ[e−r(θ−s)−r(T−θ)g(X(T ), α(T )) | Fs]

= Ẽ[e−r(T−s)g(X(T ), α(T )) | Fs]

= Ẽ[e−r(T−s)g(X(T ), α(T )) | X(s) = xs, α(s) = αs]

= p(s, xs, αs). (1.6)

This proves the lemma. tu

Formally p(s, x, i) satisfies the following system of partial differential equations. r
(
p(s, x, i)− x

∂p(s, x, i)

∂x

)
− ∂p(s, x, i)

∂s
− 1

2
x2σ(i)2∂

2p(s, x, i)

∂x2
−Qp(s, x, ·)(i) = 0,

p(T, x, i) = g(x, i) for i = 1, ...,m.
(1.7)

Note that g is piecewise linear. Equation (1.7) may not have a smooth solution. To treat the

possible non-differentiability of the solution , we resort to a weak form of solution, viscosity

solution. For instance, we will prove that p is a viscosity solution of (1.7).
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Lemma 1.0.3 For each i ∈M, p(s,x,i) is continuous in (s, x) and has at most a polynomial

growth.

Proof. We only prove for the case of the European put option, the case of the European

call option is similar. In this case,

p(s, x, i) = Ẽ[e−r(T−s)(K −X(T ))+ | X(s) = x, α(s) = i].

Define g(s, x) = e−r(T−s)(x−K)+. We have

|g(s, x)− g(s′, x′)| = |e−r(T−s)(x−K)+ − e−r(T−s′)(x−K)+|

≤ |e−r(T−s)(x−K)+ − e−r(T−s)(x′ −K)+|

+|e−r(T−s)(x′ −K)+ − e−r(T−s′)(x′ −K)+|. (1.8)

Using the mean value theorem for the function h(s) = e−r(T−s) on the interval [0, T ], we

obtain the existence of a constant C ′ > 0 such that,

|g(s, x)− g(s′, x′)| ≤ |x− x′|+KC ′|s− s′|. (1.9)

Let C = KC ′, then we have

|g(s, x)− g(s′, x′)| ≤ |x− x′|+ C|s− s′|.

To show the continuity of p(s, x, i) in x, let X1 and X2 be two solutions of (1.1) with initial

values X1(s) = x1 and X2(s) = x2 respectively. We have

(X1(t)−X2(t))
2 =

(
(x1 − x2) +

∫ t

s

(X1(ξ)−X2(ξ))µ(α(ξ))dξ

+

∫ t

s

(X1(ξ)−X2(ξ))σ(α(ξ))dWξ

)2

.

For this first part of the proof we assume that all expectations are taken under the condition

that X1(s) = x1, X2(s) = x2, and α(s) = i. Thus for any random variable ζ we denote,

Ẽ[ζ] = Ẽ[ζ | X1(s) = x1, X2(s) = x2, α(s) = i].
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Consequently, we have

Ẽ (X1(t)−X2(t))
2 ≤ 3Ẽ | x1 − x2 |2 +3Ẽ

(∫ t

s

(X1(ξ)−X2(ξ))µ(α(ξ))dξ

)2

+3Ẽ

(∫ t

s

(X1(ξ)−X2(ξ))σ(α(ξ))dWξ

)2

.

Using the Ito isometry, we obtain

Ẽ (X1(t)−X2(t))
2 ≤ 3Ẽ | x1 − x2 |2 +3Ẽ(t− s)

∫ t

s

(
(X1(ξ)−X2(ξ))µ(α(ξ)

)2

dξ

+3Ẽ

∫ t

s

(
(X1(ξ)−X2(ξ))σ(α(ξ))

)2

dξ.

Since µ and σ are bounded, then there exists C such that,

Ẽ | X1(t)−X2(t) |2≤ 3 | x1 − x2 |2 +C(1 + t)

∫ t

s

Ẽ | X1(ξ)−X2(ξ) |2 dξ

Then for t = T , we have

Ẽ | X1(T )−X2(T ) |2≤ 3 | x1 − x2 |2 +C(1 + T )

∫ T

s

Ẽ | X1(ξ)−X2(ξ) |2 dξ.

We set D = C(1 + T ). By Gronwall’s inequality, we have

Ẽ | X1(T )−X2(T ) |2≤ 3 | x1 − x2 |2 eDT .

Note that,

Ẽ | X1(t)−X2(t) |≤
(
Ẽ | X1(t)−X2(t) |2

) 1
2

for all t ∈ [s, T ],

and it follows that

Ẽe−r(T−s) | X1(T )−X2(T ) |≤ 3 | x1 − x2 | eDT . (1.10)

Moreover, we have

p(s, x1, i)− p(s, x2, i) = Ẽ
[
e−r(T−s)

(
(K −X1(T ))+ − (K −X2(T ))+

)]
≤ Ẽ[|g(s,X1(T ))− g(s,X2(T ))|]

≤ Ẽ
[
|X1(T )−X2(T )|

]
≤ 3 | x1 − x2 | eDT . (1.11)
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Let ε > 0, for | x1 − x2 |≤ ε
3
e−DT we have,

| p(s, x1, i)− p(s, x2, i) |≤ ε.

This proves that p(s, x, i) is continuous with respect to x.

We now show the continuity of p(s, x, i) with respect to s. Let X(t) be the solution of (1.1)

that starts at t = s with X(s) = x with α(s) = i. Let T ≥ s′ ≥ s, we define X ′(t) = X(t− (s′ − s)),

α′(t) = α(t− (s′ − s)).
(1.12)

Let us consider the change of variables u = t − (s′ − s), thus we obtain dt = du and

dWt = dWu. Moreover,

X(t) = x+

∫ t

s

X(ξ)µ(α(ξ))dξ +

∫ t

s

X(ξ)σ(α(ξ))dWξ

and

X ′(t) = x+

∫ t

s′
X ′(ξ)µ(α′(ξ))dξ +

∫ t

s′
X ′(ξ)σ(α′(ξ))dWξ.

With this in mind, we obtain

(X(t)−X ′(t)) =

∫ t

s

X(ξ)µ(α(ξ))dξ +

∫ t

s

X(ξ)σ(α(ξ))dWξ

−
∫ t

s′
X ′(ξ)µ(α′(ξ))dξ −

∫ t

s′
X ′(ξ)σ(α′(ξ))dWξ

=

∫ t

s

X(ξ)µ(α(ξ))dξ +

∫ t

s

X(ξ)σ(α(ξ))dWξ

−
∫ t−(s′−s)

s

X(ξ)µ(α(ξ))dξ −
∫ t−(s′−s)

s

X(ξ)σ(α(ξ))dWξ

=

∫ t

t−(s′−s)

X(ξ)µ(α(ξ))dξ +

∫ t

t−(s′−s)

X(ξ)σ(α(ξ))dWξ. (1.13)

For this second part of the proof we assume that all expectations are taken under the

condition that X(s) = x, X ′(s′) = x, and α(s) = i = α′(s). Thus for any random variable ζ

we denote

Ẽ[ζ] = Ẽ[ζ | X(s) = x = X ′(s′), α(s) = i = α′(s′)].



8

Consequently, we have

Ẽ(X(t)−X ′(t))2 ≤ 2Ẽ
(∫ t

t−(s′−s)

X(ξ)µ(α(ξ))dξ
)2

+2Ẽ
(∫ t

t−(s′−s)

X(ξ)σ(α(ξ))dWξ

)2

.

Using Ito’s isometry and the fact that µ and σ are bounded, there exists a constant C > 0

such that,

Ẽ(X(t)−X ′(t))2 ≤ 2(s′ − s)CẼ

∫ t

t−(s′−s)

|X(ξ)|2dξ + 2CẼ

∫ t

t−(s′−s)

|X(ξ)|2dξ

In addition, by the existence and uniqueness theorem of solution of stochastic differential

equation, and using the Fubini-Tonelli theorem we have,

∫ T

0
Ẽ|X(ξ)|2dξ = Ẽ

∫ T

0
|X(ξ)|2dξ < +∞.

Thus, there exists M > 0 such that Ẽ|X(ξ)|2 < M almost everywhere in the interval [0, T ].

Therefore Ẽ
∫ t

t−(s′−s)
|X(ξ)|2dξ < (s′ − s)M , which implies that

Ẽ(X(t)−X ′(t))2 ≤ R(s′ − s), for some real number R > 0. (1.14)

Moreover, we have

|p(s, x, i)− p(s′, x, i)| ≤ Ẽ
[
|e−r(T−s)(K −X(T ))+ − e−r(T−s′)(K −X ′(T ))+|

]
≤ Ẽ[|g(s,X(T ))− g(s′, X ′(T ))|]

≤ Ẽ[|X(T )−X ′(T )|] + C|s− s′|

≤
√
R(|s′ − s)|+ C|s− s′|

≤
√
|s′ − s|(

√
R + C

√
s′ − s). (1.15)

The inequality (1.15) implies the continuity of p(s, x, i) with respect to s.

Now let us prove that p(s, x, i) has at most a polynomial growth. We note from the claim

(1.9) that

|p(s1, x1, i)− p(s2, x2, i)| ≤ Ẽ|g(s1, X1(T ))− g(s2, X2(T ))|,
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and there exist R1, R2 > 0, such that

|p(s1, x1, i)− p(s2, x2, i)| ≤ Ẽ|g(s1, X1(T ))− g(s2, X2(T ))|

≤ Ẽ|X1(T )−X2(T )|+R2|s1 − s2|

≤ R1|x1 − x2|+R2|s1 − s2| (1.16)

And setting x1 = x, s1 = s = s2 and x2 = 0 we have,

X2(t) = x2e
R t
0 (µ(α(s)− 1

2
σ(α(s))2)ds+

R t
0 σ(α(s))dWs = 0 for all t.

Thus we have a constant C > 0 such that p(s, 0, i) ≤ K ≤ C, consequently we obtain,

|p(s, x, i)| ≤ C|x|+ |p(s, 0, i)| ≤ C(1 + |x|).

This completes the proof of the lemma tu

1.1 Viscosity solution

In order to study the possibility of existence and uniqueness of a solution of (1.7), we use

a notion of weak solution, namely, the concept of viscosity solution introduced two decades

ago by Crandall and Lions [6]. In fact, equation (1.7) is a linear system of second order

partial differential equations with variable coefficients and a non-smooth boundary condition

boundary. There is no guarantee for existence of classical solution. The framework of viscosity

solution is more convenient for treating possible non-differential solutions of (1.7).

Definition 1.1.1 Given H : M× [0, T ]× R× R× R× R× R → R. We say that f(s, x, i)

is a viscosity solution of

H
(
i, s, x, f(s, x, i),

∂f(s, x, i)

∂s
,
∂f(s, x, i)

∂x
,
∂2f(s, x, i)

∂x2

)
= 0, (1.17)

for i ∈M, s ∈ [0, T ], x ∈ R.

If
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1. For each i ∈ M, f(s, x, i) is continuous in (s, x) and there exist constants C and n

such that

f(s, x, i) ≤ C(1+ | x |n).

2. For each i ∈M,

H
(
i, s0, x0, f(s0, x0, i),

∂φ(s0, x0)

∂s
,
∂φ

∂x
,
∂2φ(s0, x0)

∂x2

)
≤ 0 (1.18)

whenever φ(s, x) ∈ C2 such that f(s, x, i)− φ(s, x) has local maximum at

(s, x) = (s0, x0).

3. And for each i ∈M,

H
(
i, s0, x0, f(s0, x0, i),

∂ψ(s0, x0)

∂s
,
∂ψ(s0, x0)

∂x
,
∂2ψ(s0, x0)

∂x2

)
≥ 0 (1.19)

whenever ψ(s, x) ∈ C2 such that f(s, x, i)− ψ(s, x) has local minimum at

(s, x) = (s0, x0).

Let f be a function that satisfies (1.17). It is a viscosity subsolution (resp. supersolution) if

it satisfies (1.18) (resp.(1.19)).

Definition 1.1.2 Let f(s, x, i) : [0, T ]× R×M→ R be a function. We define

f ∗(s, x, i) : [0, T ]× R×M→ R by,

f ∗(i, x, α) = lim sup
r↓0

{f(t, y, i) : (t, y) ∈ B((s, x); r)}

f ∗(s, x, i) is called the upper semicontinuous envelop of f(s, x, i).

Similarly we define f∗(s, x, i) : [0, T ] × R ×M → R the lower semicontinuous envelop of

f(s, x, α) as follows

f∗(s, x, i) = lim inf
r↓0

{f(t, y, i) : (t, y) ∈ B((s, x); r)}

Remark 1.1.3 It is easy to show that, f ∗(s, x, i) is the smallest upper semicontinuous func-

tion such that f(s, x, i) ≤ f ∗(s, x, i).

And f∗(s, x, i) is the largest lower semicontinuous function such that f∗(s, x, i) ≤ f(s, x, i).
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Definition 1.1.4 Let f(s, x, i) : [0, T ]× R×M→ R. Define the parabolic superjet by

P2,+f(s, x, i) = {(p, q,M) ∈ R× R : f(t, y, i) ≤ f(s, x, i) + p(t− s)q(y − x)

+1
2
(y − x)2M + o(| y − x |2)

as (t, y) → (s, x)}

and its closure is

P̄2,+f(s, x, i) = {(p, q,M) = limn→∞(pn, qn,Mn)

with (pn, qn,Mn) ∈ P2,+f(sn, xn, i)

and limn→∞(sn, xn, f(sn, xn, i)) = (x, f(s, x, i))}.

Similarly, we define the parabolic subjet P2,−f(s, x, i) = −P2,+(−f)(s, x, i) and its closure

P̄2,−f(s, x, i) = −P̄2,+(−f)(s, x, i)

We have the following result.

Lemma 1.1.5 P2,+f(s, x, i) (resp. P2,−f(s, x, i)) consist of the set of (∂φ(s,x)
∂s

, ∂φ(s,x)
∂x

, ∂2φ(s,x)
∂x2 )

where φ ∈ C2([0, T ]× R) and f − φ has a global maximum (resp. minimum) at (s, x).

A proof can be found in Fleming and Soner [13].

With this in mind, we have this equivalent formulation of the notion of viscosity solution.

Definition 1.1.6 A function u(s, x, i) continuous in (s, x) satisfying the polynomial growth

condition is a viscosity solution of

H(i, s, x, u,
∂u(s, x, i)

∂s
,
∂u(s, x, i)

∂x
,
∂2u(s, x, i)

∂x2
) = 0,

if

1. for each i ∈M, for all (s, x) ∈ [0, T ]× R, and (a, p,M) ∈ P2,+u(s, x, i)

H(i, s, x, u, a, p,M) ≤ 0, in this case u is a viscosity subsolution,

and
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2. for each i ∈M, for all (s, x) ∈ [0, T ]× R, and (b, q,N) ∈ P2,−u(s, x, i)

H(i, s, x, u, b, q,N) ≥ 0, in this case u is a viscosity supersolution.

Theorem 1.1.7 The price of the European option is a viscosity solution to the system of

equations in (1.7).

Proof. Note that for t = T ,

p(T, x, i) = Ẽ[g(X(T ), α(T )) | X(T ) = x, α(T ) = i] = g(x, i).

In the sequel, we use the notation Ẽs,x,i[ζ(X)] to denote Ẽ[ζ(X) | X(s) = x, α(s) = i].

It suffices to show that p(s, x, i) is a viscosity subsolution and supersolution.

Let αs ∈M. We want to show that

r
(
p(s, xs, αs)− xs

∂ψ(s, xs, αs)

∂x

)
− 1

2
x2

sσ(αs)
2∂

2ψ(s, xs, αs)

∂x2

−∂ψ(s, xs, αs)

∂t
−Qp(s, xs, ·)(αs) ≥ 0 (1.20)

whenever ψ ∈ C1,2([s, T ]× R+) and p(t, x, αs)− ψ(t, x) has a local minimum at

(s, xs) ∈ [s, T ]× R+.

Let ψ ∈ C2([s, T ] × R+) and (s, x) ∈ [s, T ] × R+ such that p(t, x, αs) − ψ(t, x) has a local

minimum at (s, xs) in a neighborhood N(s, xs). We define a function ϕ as follows:

ϕ(t, x, i) =

 ψ(t, x) + p(s, xs, αs)− ψ(s, xs), if i = αs,

p(t, x, i), if i 6= αs.
(1.21)

Let γ be the first jump time of α(·) from the state αs, and let θ ∈ [s, γ] be such that (t,X(t))

starts at (s, xs) and stays in N(s, xs) for s ≤ t ≤ θ. Since θ ≤ γ we have α(t) = αs, for

s ≤ t ≤ θ. By Dynkin’s formula, we have

Ẽs,xs,αse−r(θ−s)ϕ(θ,X(θ), αs)− ϕ(s, xs, αs)

= Ẽs,xs,αs

∫ θ

s

e−r(t−s)

(
− rϕ(t,X(t), αs)

+
∂ϕ(t,X(t), αs))

∂t
+

1

2
X(t)2σ2(αs)

∂2ϕ(t,X(t), αs)

∂x2

+rX(t)
∂ϕ(t,X(t), αs)

∂x
+Qϕ(t,X(t), ·)(αs)

)
dt. (1.22)
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Recall that, (t,X(t)) ∈ N(s, xs) for s ≤ t ≤ θ and (s, xs) is the minimum of p(t, x, αs) −

ψ(t, x). Then, for s ≤ t ≤ θ, we have

p(t,X(t), αs) ≥ ψ(t,X(t)) + p(s, xs, αs)− ψ(s, xs) = ϕ(t,X(t), αs). (1.23)

Using equation (1.21) and (1.23), we have

Ẽs,xs,αse−r(θ−s)p(θ,X(θ), αs)− p(s, xs, αs)

≥ Ẽs,xs,αs

∫ θ

s

e−r(t−s)

(
− rp(t,X(t), αs)

+
∂ψ(t,X(t))

∂t
+

1

2
X(t)2σ2(αs)

∂2ψ(t,X(t))

∂x2

+rX(t)
∂ψ(t,X(t))

∂x
+Qϕ(t,X(t), ·)(αs)

)
dt (1.24)

the inequality (1.23) can also be written in the following form

ψ(t,X(t)) ≤ p(t,X(t), αs)− (p(s, xs, αs)− ψ(s, xs)). (1.25)

We recall that,

Qp(t, x, ·)(αs) =
∑
β 6=αs

qαsβ(p(t, x, β)− p(t, x, αs)).

Using equation (1.21), we have

Qϕ(t, x, ·)(αs) =
∑
β 6=αs

qαsβ(ϕ(t, x, β)− ϕ(t, x, αs))

=
∑
β 6=αs

qαsβ(p(t, x, β)− ϕ(t, x, αs))

=
∑
β 6=αs

qαsβ

(
p(t, x, β)− [p(s, xs, αs)

+ψ(t, x)− ψ(s, xs)]
)
. (1.26)

From equation (1.23), we obtain

Qϕ(t,X(t), ·)(αs) =
∑
β 6=αs

qαsβ

(
p(t,X(t), β)− [p(s, xs, αs)

+ψ(t,X(t))− ψ(s, xs)]

)
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≥
∑
β 6=αs

qαsβ

(
p(t,X(t), β)− [p(s, xs, αs) + p(t,X(t), αs)

−(p(s, xs, αs)− ψ(s, xs))− ψ(s, xs)]

)
≥

∑
β 6=αs

qαsβ (p(t,X(t), β)− p(t,X(t), αs))

≥ Qp(t,X(t), ·)(αs). (1.27)

In view of (1.27) and Lemma 1.0.2, we deduce

0 = Ẽs,xs,αse−r(θ−s)p(θ,X(θ), αs)− p(s, xs, αs)

≥ Ẽs,xs,αs

∫ θ

s

e−r(t−s)

(
− rp(t,X(t), αs)

+
∂ψ(t,X(t))

∂t
+

1

2
X(t)2σ2(αs)

∂2ψ(t,X(t))

∂x2

+µ(αs)X(t)
∂ψ(t,X(t))

∂x
+Qp(t,X(t), ·)(αs)

)
dt. (1.28)

therefore,

Ẽs,xs,αs

∫ θ

s

e−r(t−s)

(
− rp(t,X(t), αs)+

∂ψ(t,X(t))

∂t
+

1

2
X(t)2σ2(αs)

∂2ψ(t,X(t))

∂x2
+ rX(t)

∂ψ(t,X(t))

∂x

+Qp(t,X(t), ·)(αs)

)
dt ≤ 0.

Multiplying both sides by 1
θ
> 0 and sending θ → s gives

rp(s, xs, αs)−
∂ψ(s, xs)

∂t
− 1

2
x2

sσ
2(αs)

∂2ψ(s, xs)

∂x2

−rxs
∂ψ(s, xs)

∂x
−Qv(s, xs, ·)(αs) ≥ 0,

which is the desired supersolution solution inequality (1.20). Next, let us prove the subsolu-

tion inequality, namely, that

r
(
p(s, xs, αs)− xs

∂φ(s, xs)

∂x

)
− ∂φ(s, xs)

∂s

−1

2
x2

sσ
2(αs)

∂2φ(s, xs)

∂x2
−Qv(s, xs, ·)(αs) ≤ 0 (1.29)

whenever φ ∈ C1,2([s, T ]× R+) and v(t, x, αs)− φ(t, x) has a local maximum at

(s, xs) ∈ [s, T ]× R+.
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Let φ ∈ C1,2([s, T ]×R+) and p(t, x, αs)−φ(t, x) has a local maximum at (s, xs) ∈ [s, T ]×R+

we can assume without loss of generality that p(s, xs, αs)− φ(s, xs) = 0. We define

Φ(t, x, i) =

 φ(t, x), if i = αs,

p(t, x, i), if i 6= αs.
(1.30)

Let γ be the first jump time of α(·) from the state αs and let θ0 ∈ [s, γ] be such that (t,X(t))

starts at (s, xs) and stays in N(s, xs) for s ≤ t ≤ θ0. Note that α(t) = αs, for s ≤ t ≤ θ0.

Moreover, recall that p(s, xs, αs)−φ(s, xs) = 0 and attains its maximum at (s, xs) in N(s, xs).

It follows that

p(θ,X(θ), α(θ)) ≤ φ(θ,X(θ), ) for any θ ∈ [s, θ0].

Moreover, in view of the definition of Φ in (1.30), we have

p(θ,X(θ), α(θ)) ≤ Φ(θ,X(θ)), α(θ)) for any θ ∈ [s, θ0]. (1.31)

Using Dynkin’s formula, we have

Ẽs,xs,αse−r(θ−s)p(θ,X(θ), αs)

≤ Ẽs,xs,αse−r(θ−s)Φ(θ,X(θ), αs)

= Φ(s, xs, αs) + Ẽs,xs,αs

∫ θ

s

e−r(t−s)

[
∂φ(t,X(t))

∂t
− rΦ(t,X(t), α(t))

+rX(t)
∂φ(t,X(t))

∂x
+QΦ(t,X(t), ·)(αs)

+
1

2
X(t)2σ2(αs)

∂2φ(t,X(t))

∂x2

]
dt. (1.32)

Note that

QΦ(t,X(t), ·)(αs) =
∑
β 6=αs

qαsβ(p(t,X(t), β)− φ(t,X(t)))

≤
∑
β 6=αs

qαsβ(p(t,X(t), β)− p(t,X(t), αs))

≤ Qp(t,X(t), ·)(αs). (1.33)
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Using (1.30) and (1.33), we obtain

Ẽs,xs,αse−r(θ−s)p(θ,X(θ), αs)

≤ Ẽs,xs,αse−rθΦ(θ,X(θ), αs)

= φ(s, xs) + Ẽs,xs,αs

∫ θ

s

e−r(t−s)

[
∂φ(t,X(t))

∂t

+rX(t)
∂φ(t,X(t))

∂x
− rp(t,X(t), αs)

+
1

2
X(t)2σ2(αs)

∂2φ(t,X(t))

∂x2
+Qp(t,X(t), ·)(αs). (1.34)

In view of Lemma 1.0.2, we deduce

0 = Ẽs,xs,αse−r(θ−s)p(θ,X(θ), αs)− φ(s, xs)

≤ Ẽs,xs,αs

∫ θ

s

e−rt

[
− rp(t,X(t), αs)

+
∂φ(t,X(t))

∂t
+

1

2
X(t)2σ2(αs)

∂2φ(X(t), αs)

∂x2

+rX(t)
∂φ(X(t), αs)

∂x
+Qp(t,X(t), ·)(αs)

]
dt. (1.35)

Multiplying the right-hand side by 1
θ
> 0 and sending θ ↓ s gives

rp(s,X(s), αs)−
∂φ(s,X(s))

∂t
− 1

2
X(s)2σ2(αs)

∂2φ(X(s), αs)

∂x2

−rX(s)
∂φ(X(s), αs)

∂x
−Qp(s,X(s), ·)(αs) ≤ 0.

This inequality implies the subsolution inequality (1.29), thus p(t, x, α) is a viscosity solution

of (1.7). This ends the proof of the theorem. tu

1.2 Uniqueness

Uniqueness of viscosity solution property is crucial in various analysis of the underlying

system dynamics.In this section we prove a comparison principle for solutions of (1.7) and

this will lead to the uniqueness of the viscosity solution. Firstly we state the key result for

our uniqueness proof.
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Theorem 1.2.1 (Crandall, Lions and Ishii [6]) For i = 1, 2, let Ωi be locally compact

subsets of R, and Ω = Ω1×Ω2, let ui be upper semicontinuous in [0, T ]×Ωi, and J̄2,+
Ωi
ui(t, x)

the parabolic superjet of ui(t, x), and φ be twice continuously differentiable in a neighborhood

of [0, T ]× Ω.

Set

w(t, x1, x2) = u1(t, x1) + u2(t, x2)

for (t, x1, x2) ∈ [0, T ] × Ω, and suppose (t̂, x̂1, x̂2) ∈ [0, T ] × Ω is a local maximum of w − φ

relative to [0, T ] × Ω. Moreover let us assume that, there is an r > 0 such that for every

M > 0 there exists a C such that for i = 1, 2

bi ≤ C whenever (bi, qi, Xi) ∈ J̄2,+
Ωi
ui(t, xi),

| xi − x̂i | + | t− t̂ |≤ r and | ui(t, xi) | + | qi | +‖Xi‖ ≤M. (1.36)

Then for each ε > 0 there exists Xi ∈ S(1) = R such that

1.

(bi, Dxiφ(t̂, x̂), Xi) ∈ J̄2,+
Ωi
ui(t̂, x̂i) for i = 1, 2

2.

−
(

1

ε
+ ‖D2φ(x̂)‖

)
I ≤

 X1 0

0 X2

 ≤ D2φ(x̂) + ε(D2φ(x̂))2 (1.37)

3.

b1 + b2 =
∂φ(t̂, x̂, ŷ)

∂t
(1.38)

Theorem 1.2.2 (Comparison Principle ) If p1(t, x, i) and p2(t, x, i) are both continuous

with respect to the argument (t, x) and are respectively viscosity subsolution and supersolution

of (1.7) with at most a linear growth, in other terms, there exist C1, C2.

pk(t, x, i) ≤ Ck(1 + x), for (t, x, i) ∈ [s, T ]× R+ ×M, k = 1, 2.

Then

p1(t, x, i) ≤ p2(t, x, i) for all (t, x, i) ∈ [s, T ]× R+ ×M. (1.39)
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Proof. For any 0 < δ < 1 and 0 < γ < 1. Define

Φ(t, x, y, i) = p1(t, x, i)− p2(t, y, i)−
1

δ
| x− y |2 −γe(T−t)(x2 + y2),

and

φ(t, x, y) =
1

δ
| x− y |2 +γe(T−t)(x2 + y2).

In view of the linear growth condition for p1 and p2, we have for each

i ∈M

lim
|x|+|y|→∞

Φ(t, x, y, i) = −∞. (1.40)

Note that Φ(t, x, y, i) is continuous with respect to the arguments (t, x, y) for each i ∈ M.

Therefore, Φ(t, x, y, i) has a global maximum. Recall that M is a finite set. There exists a

point (tδ, xδ, yδ, α0) such that Φ(tδ, xδ, yδ, α0) is the global maximum of Φ. Observe that

Φ(tδ, xδ, xδ, α0) + Φ(tδ, yδ, yδ, α0) ≤ 2Φ(tδ, xδ, yδ, α0).

It implies

p1(tδ, xδ, α0)− p2(tδ, xδ, α0)− 2γe(T−tδ)(x2
δ) + p1(tδ, yδ, α0)

−p2(tδ, yδ, α0)− 2γe(T−tδ)(y2
δ ) ≤ 2p1(tδ, xδ, α0)− 2p2(tδ, yδ, α0)

−2

δ
| xδ − yδ |2 −2γe(T−tδ)(x2

δ + y2
δ )

and

−p2(tδ, yδ, α0)− 2e(T−tδ)γ(x2
δ) + p1(tδ, xδ, α0)− 2γe(T−tδ)(y2

δ )

≤ p1(tδ, xδ, α0)− p2(tδ, yδ, α0)−
2

δ
| xδ − yδ |2

−2γe(T−tδ)(x2
δ + y2

δ ).

This leads to

2

δ
| xδ − yδ |2≤ (p1(tδ, xδ, α0)− p1(tδ, yδ, α0))

+(p2(tδ, xδ, α0)− p2(tδ, yδ, α0)). (1.41)

By the linear growth condition, there exist K1, K2 such that

p1(t, x, i) ≤ K1(1+ | x |) and p2(t, x, i) ≤ K2(1+ | x |). Therefore there exists K such that

2

δ
| xδ − yδ |2≤ K(1+ | xδ | + | yδ |).
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So

| xδ − yδ |2≤ δK(1+ | xδ | + | yδ |). (1.42)

In addition, Φ(s, 0, 0, α0) ≤ Φ(tδ, xδ, yδ, α0) and | Φ(s, 0, 0, α0) |≤ K(1+ | xδ | + | yδ |).

Therefore,

γe(T−tδ)(x2
δ + y2

δ ) ≤ p1(tδ, xδ, α0)− p2(tδ, yδ, α0)

−1

δ
| xδ − yδ |2 −Φ(s, 0, 0, α0)

≤ 3K(1+ | xδ | + | yδ |). (1.43)

It follows that

γe(T−tδ)(x2
δ + y2

δ )

(1+ | xδ | + | yδ |)
≤ 3K.

Consequently, there exists Cγ such that

| xδ | + | yδ |≤ Cγ and tδ ∈ [s, T ]. (1.44)

This inequality implies that the sets {xδ, δ > 0}, and {yδ, δ > 0} are bounded by Cγ indepen-

dent of δ. We can extract convergent subsequences also denote (xδ)δ, (yδ)δ, (tδ)δ. Moreover,

from the inequality (1.42) we conclude that there exists x0 such that

lim
δ→0

xδ = x0 = lim
δ→0

yδ and lim
δ→0

tδ = t0. (1.45)

Using (1.41) and the previous limit, we obtain

lim
δ→0

2

δ
| xδ − yδ |2= 0. (1.46)

Recall that Φ achieves its maximum at (tδ, xδ, yδ, α0), so by Theorem 1.2.1 for each ε > 0

there exists b1δ, b2δ, Xδ, and Yδ such that

(b1δ,
2

δ
(xδ − yδ) + 2γe(T−t)xδ, Xδ) ∈ P̄2,+p1(tδ, xδ, α0) (1.47)

and

(−b2δ,−
2

δ
(xδ − yδ) + 2γe(T−t)yδ,−Yδ) ∈ P̄2,+(−p2(tδ, yδ, α0)).
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On the other hand, note that

P̄2,+(−p2(tδ, yδ, α0)) = −P̄2,−p2(tδ, yδ, α0).

We obtain

(b2δ,
2

δ
(xδ − yδ)− 2γe(T−t)yδ, Yδ) ∈ P̄2,−p2(tδ, yδ, α0). (1.48)

The equation (1.47) implies by the definition of the viscosity solution

rp1(tδ, xδ, α0)− b1δ −
1

2
(xδ)

2σ2(αs)Xδ − xδµ(α0)
(2

δ
(xδ − yδ)

+2γe(T−tδ)xδ

)
−Qp1(tδ, xδ, ·)(α0) ≤ 0.

Similarly, (1.48) implies by the definition of the viscosity solution that,

rp2(tδ, yδ, α0)− b2δ −
1

2
(yδ)

2σ2(α0)Yδ − yδµ(α0)
(2

δ
(xδ − yδ)

−2γe(T−tδ)yδ

)
−Qp2(tδ, yδ, ·)(α0) ≥ 0.

Combining the last two inequalities, we obtain

r(p1(tδ, xδ, α0)− p2(tδ, yδ, α0)) ≤
1

2
σ2(α0)

(
(xδ)

2Xδ − (yδ)
2Yδ

)
+

µ(α0)

(
2

δ
(xδ − yδ)

2 + 2γe(T−tδ)
[
(xδ)

2 + (yδ)
2
])

Qp1(tδ, xδ, ·)(α0)−Qp2(tδ, yδ, ·)(α0) + b1δ − b2δ.

In view of Theorem 1.2.1, we have

b1δ − b2δ =
∂φ(tδ, xδ, yδ)

∂t
= γe(T−tδ)((xδ)

2 + (yδ)
2).

Therefore, we obtain

r(p1(tδ, xδ, α0)− p2(tδ, yδ, α0)) ≤
1

2
σ2(α0)

(
(xδ)

2Xδ − (yδ)
2Yδ

)
+µ(α0)

(
2

δ
(xδ − yδ)

2 + 2γe(T−tδ)
[
(xδ)

2 + (yδ)
2
])

Qp1(tδ, xδ, ·)(α0)−Qp2(tδ, yδ, ·)(α0) + γe(T−tδ)((xδ)
2 + (yδ)

2). (1.49)

Using the Maximum principle, we have

−
(

1

ε
+ ‖D2

(x,y)φ(tδ, xδ, yδ)‖
)
I ≤

 Xδ 0

0 −Yδ

 ≤ D2
(x,y)φ(tδ, xδ, yδ)+

ε(D2
(x,y)φ(tδ, xδ, yδ))

2.
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Moreover,

D2
(x,y)φ(tδ, xδ, yδ) =

2

δ

 1 −1

−1 1

+ 2γe(T−tδ)

 1 0

0 1

 ,

and

(D2
(x,y)φ(tδ, xδ, yδ))

2 =
8

δ2

 1 −1

−1 1

+
8γe(T−tδ)

δ

 1 −1

−1 1


+4γ2e2(T−tδ)

 1 0

0 1


=

8 + 8γδe(T−tδ)

δ2

 1 −1

−1 1


+4γ2e2(T−tδ)

 1 0

0 1

 . (1.50)

Note that,

(xδ)
2Xδ − (yδ)

2Yδ = (xδ, yδ)

 Xδ 0

0 −Yδ

 xδ

yδ


≤ (xδ, yδ)

[
2

δ

 1 −1

−1 1


+
(
2γe(T−tδ) + 4εγ2e2(T−tδ)

) 1 0

0 1


+ε

8 + 8γδe(T−tδ)

δ2

 1 −1

−1 1

] xδ

yδ

 . (1.51)

Letting γ → 0, we obtain

(xδ)
2Xδ − (yδ)

2Yδ ≤ (xδ, yδ)

(
2

δ
+ ε

8

δ2
)

 1 −1

−1 1

 xδ

yδ

 .

Taking ε = δ
4
, leads to

(xδ)
2Xδ − (yδ)

2Yδ ≤ (xδ, yδ)

4

δ

 1 −1

−1 1

 xδ

yδ

 =
4

δ
(xδ − yδ)

2.
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Using (1.46), we have

lim sup
δ↓0

(xδ)
2Xδ − (yδ)

2Yδ ≤ lim sup
δ↓0

(xδ, yδ)

4

δ

 1 −1

−1 1

 xδ

yδ


= lim sup

δ↓0

4

δ
(xδ − yδ)

2 = 0. (1.52)

Letting γ → 0 in (1.49), we have

r(p1(tδ, xδ, α0)− p2(tδ, yδ, α0)) ≤
1

2
σ2(α0)

(
(xδ)

2Xδ − (yδ)
2Yδ

)
+µ(α0)

(
2

δ
(xδ − yδ)

2

)
+Qp1(tδ, xδ, ·)(α0)−Qp2(tδ, yδ, ·)(α0)

and taking the lim sup as δ goes to zero and using (1.52), we obtain

r(p1(t0, x0, α0)− p2(t0, x0, α0)) ≤ Qp1(t0, x0, ·)(α0)−Qp2(t0, x0, ·)(α0). (1.53)

Since (tδ, xδ, yδ, α0) is maximum of Φ then, for all x ∈ R and for all i ∈M we have

Φ(t, x, x, i) ≤ Φ(tδ, xδ, yδ, α0)

we have

p1(t, x, i)− p2(t, x, i)− 2γe(T−t)x2 ≤ p1(tδ, xδ, α0)

−p2(tδ, yδ, α0)− 2γe(T−tδ)(x2
δ + y2

δ ).

Letting δ → 0, we obtain

p1(t, x, i)− p2(t, x, i)− 2γe(T−t)x2 ≤ p1(t0, x0, α0)

−p2(t0, x0, α0)− 2γe(T−t)x2
0. (1.54)

Taking x = x0, and t = t0, we have

p1(t0, x0, i)− p2(t0, x0, i)− 2γe(T−t0)x2
0 ≤ p1(t0, x0, α0)

−p2(t0, x0, α0)− 2γe(T−t0)x2
0 ,

so

p1(t0, x0, i)− p2(t0, x0, i) ≤ p1(t0, x0, α0)− p2(t0, x0, α0).
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We recall

Qp1(t0, x0, ·)(α0)−Qp2(t0, x0, ·)(α0)

=
∑
i6=α0

qα0α[p1(t0, x0, i)− p1(t0, x0, α0)

−p2(t0, x0, i) + p2(t0, x0, α0)] ≤ 0, (1.55)

using (1.53) we have

p1(t0, x0, α0)− p2(t0, x0, α0) ≤ 0.

Therefore using (1.54) we conclude that

p1(t, x, i)− p2(t, x, i)− 2γe(T−t)x2 ≤

p1(t0, x0, α0)− p2(t0, x0, α0)− 2γe(T−t0)x2
0 ≤ 0. (1.56)

Finally, letting γ → 0, we have

p1(t, x, i) ≤ p2(t, x, i).

This completes the proof. tu

The uniqueness of the viscosity solution of (1.7) follows directly from this theorem because

any viscosity solution is both viscosity subsolution and supersolution. What remains is to

develop numerical schemes to approximate that solution since it is very difficult to obtain

closed form solution even in this case.



Chapter 2

Valuation of American option under regime switching

Introduction

In this chapter, we consider pricing of American options. Unlike European options where

the holder can only exercise his or her option at maturity, the holder of an American option

can exercise his or her option anytime up to maturity. This level flexibility of American

option increases the complexity in the study of its valuation. The holder has to time the best

date to exercise the option in order to maximize his or her profit. The valuation of American

option is related to optimal stopping. There has been a huge interest in the literature on

American option because, there is no analytic formula for American options even in the

simple non-switching model. In this connection, McKean [28] published in 1965 was the

first to study the relationship between the early exercise feature of American options and

optimal stopping problem. Van Moerbeke [38] further studied some properties of related free

boundary problems. More recently, Bensoussan [2], Karatzas [20, 21], Kim [25], Myneni [24]

and many others have studied various aspects of American options pricing problem.

Particularly, we study American option pricing with a regime switching model. We focus

on optimal stopping time of a switching diffusion. Existence result of optimal stopping was

studied by Dynkin [9] where he proved the existence of optimal stopping time for Markov

processes which are right-continuous and quasi-continuous from the left, and in a martingale

context by Snell [36]. Nevertheless, in our case the joint process (X(t), α(t)) is not quasi-

continuous in α(t).

24
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Moreover, we also study the associated dynamic programming equations that are essential

for characterizing American options pricing function as a unique viscosity solution of the

associated HJB equations.

This chapter is organized as follows. In Section 1 we use the optimal stopping theory to prove

the existence of an optimal stopping time, in Section 2 we prove that the value function is the

unique viscosity solution of the HJB equation associated with this optimal stopping problem

both in the infinite and finite time horizon cases.

2.1 Optimal stopping of a switching diffusion

We begin with the existence of optimal stopping for the joint process (X(t), α(t)) where α(t)

is a finite state Markov chain taking values in the set M = {1, 2, ...,m} and with generator

Q, and X(t) follows the dynamics

dX(t) = X(t)
(
µ(α(t))dt+ σ(α(t))dW (t)

)
, (2.1)

where W (t) the standard Weiner process. Both W (t) and α(t) are independent and defined

on the risk neutral probability space (Ω,F , P̃ ). Given α(t) = i, µ(i) and σ(i) are known

parameters.

Let g be a reward function. For example g(t, x, i) = e−rt(K − x)+ for put option and

g(t, x, i) = e−rt(x−K)+ for call option, where K being the strike price of the option and r

is the risk free rate. Let Ft = σ{α(s),W (s); s ≤ t}. The problem is to find an Ft-stopping

time τ ∗ that maximizes E [g(τ,X(τ), α(τ)) | X(0) = x, α(0) = i] over all Ft-stopping time,

in the infinite time horizon case and E [g(τ − s,X(τ), α(τ)) | X(s) = x, α(s) = i] over all

Ft-stopping time τ such that s ≤ τ ≤ T , in the finite time horizon case.

We define the value function v by

v(x, i) = sup
τ
E [g(τ,X(τ), α(τ)) | X(0) = x, α(0) = i]

= E [g(τ ∗, X(τ ∗), α(τ ∗) | X(0) = x, α(0) = i] (2.2)
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for the infinite time horizon case; and

v(s, x, i) = sup
τ∈Λs,T

E [g(τ − s,X(τ), α(τ)) | X(s) = x, α(s) = i]

= E [g(τ ∗ − s,X(τ ∗), α(τ ∗)) | X(s) = x, α(s) = i] (2.3)

where Λs,T = {τ, Ft − stopping time ; s ≤ τ ≤ T} for the finite time horizon case. The

stopping time τ ∗ is called the optimal stopping time.

Definition 2.1.1 The infinitesimal generator A of the process (X(t), α(t)) in the time-

homogeneous case is defined by

Af(x, i) = lim
h→0

Ex,i[f(X(h), α(h)]− f(x, i)

h
, for all x ∈ R+, i ∈M, (2.4)

for all functions f such that the limit exists.

Proposition 2.1.2 The infinitesimal generator of the process (X(s), α(s)) is given by

(Av)(x, i) =
1

2
x2σ2(i)

∂2v(x, i)

∂x2
+ xµ(i)

∂v(x, i)

∂x
+Qv(x, ·)(i),

for every function v in the domain of A, where Q is the generator of (α(t)).

Proof. The proof follows from the same argument as in Lemma 1 of Yao et al [40]. tu

We will prove the existence of the optimal stopping time in the time homogeneous case,

and the result for the time inhomogeneous case can easily be derived after a change of

variable is done.
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We already know that (X(t), α(t)) is a Markov process, we firstly prove that (X(t), α(t))

is a strong Markov process.

Lemma 2.1.3 Let τ be a discrete Ft-stopping time. Then (X(t), α(t)) is strong Markov at

τ .

Proof. First, note that the continuity of X(t) and the right continuity of α(t) imply that

(X(t), α(t)) is Ft-progressive. The strong Markov property at τ follows from the Markov

property of (X(t), α(t)) and Proposition 1.3 in Either and Kurtz [12, p159]. tu

Proposition 2.1.4 The process (X(t), α(t)) is a strong Markov process,i.e.,

Ex,α[f(X(τ + h), α(τ + h) | Fτ ] = EXτ ,ατ [f(X(h), α(h))] for all h ≥ 0, (2.5)

for all bounded Borel function f .

Proof. First, note that every stopping time can be approximated by a sequence of non

increasing discrete stopping times. Let τ be a stopping time and {τk} a sequence of discrete

stopping times such that τk+1 ≤ τk and τk → τ . Since the set of continuous functions is dense

in the set of Borel functions, thus it suffices to prove that the strong Markovian property

holds for any continuous function f . Let f be a continuous function, then we have

Ex,i[f(X(τk + h), α(τk + h) | Fτk
] = EXτk

,ατk [f(X(h), α(h))] for all h ≥ 0, k ≥ 0

since (α(t)) is right continuous and (X(t)) is continuous then passing to the limit using the

monotone convergence theorem we obtain 2.5

tu

Let Qx,i denote the probability measure of {X(t), α(t), t ≥ 0}, for x ∈ R and i ∈ M.

The following definition is just a generalization of the definition of supermeanvalued function

in Oksendal [32, p196].
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Definition 2.1.5 Let X(t) be a diffusion process and α(t) a finite state Markov Chain. A

measurable function f : R×M→ [0,∞] is called supermeanvalued with respect to (X(t), α(t))

if

f(x, i) ≥ E[f(X(τ), α(τ))|X(0) = x, α(0) = i] (2.6)

for all stopping time τ and all x ∈ R, i ∈M.

If, in addition, f is also lower semi-continuous with respect to its first variable, then f is

called superharmonic with respect to X(t).

Throughout the thesis, we adopt the following notation

Ex,i[ζ] = E[ζ | X(0) = x, α(0) = i]

where ζ is any random variable and Ex,i[ζ] is just the expectation of ζ under the condition

that X(0) = x and α(0) = i.

Remark 2.1.6 Note that if f is superharmonic w.r.t. X(t), then for any sequence {τn} of

stopping times such that for every n, α(τn) = i and τn → 0, using Fatou’s Lemma, we have

f(x, i) ≤ Ex,i[lim inf
k→∞

f(X(τk), α(τk))]

≤ lim inf
k→∞

Ex,i[f(X(τk), α(τk))]

≤ lim sup
k→∞

Ex,i[f(X(τk), α(τk))]

≤ f(x, i). (2.7)

Consequently,

f(x, i) = lim
k→∞

Ex,i[f(X(τk), α(τk))]. (2.8)
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Lemma 2.1.7

a) If f is superharmonic w.r.t X(t) (supermeanvalued w.r.t. (X(t), α(t))) and η > 0, then

ηf is superharmonic w.r.t X(t) (supermeanvalued w.r.t. (X(t), α(t)))

b) If f1, f2 are superharmonic w.r.t X(t) (supermeanvalued w.r.t. (X(t), α(t))), then f1 + f2

is superharmonic (supermeanvalued w.r.t. (X(t), α(t))).

c) If {fj}j∈J is a family of supermeanvalued functions w.r.t. (X(t), α(t)), then f :=

infj∈J{fj(x)} is supermeanvalued w.r.t. (X(t), α(t)) if it is measurable.

d) If f1,f2,... are superharmonic w.r.t (X(t), α(t)) (supermeanvalued w.r.t. (X(t), α(t)))

functions and fk ↑ f pointwise, then f is superharmonic w.r.t (X(t)) (supermeanvalued

w.r.t. (X(t), α(t))).

e) Let r > 0, if f is supermeanvalued w.r.t. (X(t), α(t)), and σ ≤ τ are Ft- stopping times,

then

Ex,i[e−rσf(X(σ), α(σ))] ≥ Ex,i[e−rτf(X(τ), α(τ))].

Proof. a) and b) are straightforward and just imply that the set of supermeanvaled (super-

harmonic) functions is a vector space.

c) Suppose fj is supermeanvalued for all j ∈ J . Then

fj(x, α) ≥ Ex,αfj(X(τ), α(τ)) ≥ Ex,α inf
j∈J

fj(X(τ), α(τ))

so f(x, α) = infj∈J fj(x, α) ≥ Ex,αf(X(τ), α(τ)).

d) Suppose fj are supermeanvalued w.r.t. (X(t), α(t)) and fj ↑ f , therefore

f(x, α) ≥ fj(x, α) ≥ Ex,α[fj(X(τ), α(τ))] for all j, then

f(x, α) ≥ lim
j→∞

Ex,α[fj(X(τ), α(τ))] = Ex,α[f(X(τ), α(τ))].

Consequently, f is supermeanvalued w.r.t. (X(t), α(t)).

Suppose that each fj is superharmonic w.r.t (X(t)) then fj is lower semicontinuous.
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Let (yk, αk)k a sequence such that yk → x0, and αk → α0 then for any α0 ∈M by the lower

semicontinuity of fj, we have

fj(x0, α0) ≤ lim inf
k→∞

fj(yk, αk)

≤ lim inf
k→∞

f(yk, αk). (2.9)

therefore, f is superharmonic.

e) Suppose f is supermeanvalued w.r.t. (X(t), α(t)), by the Markov property we have, for

t > s

Ex,α[e−rtf(X(t), α(t)) | Fs] = e−rtEX(s),α(s)[f(X(t− s), α(t− s))] ≤ e−rtf(X(s), α(s))

≤ e−stf(X(s), α(s)).

So the process ζt = e−rtf(X(t), α(t)) is a super-martingale w.r.t. Ft. By Doob’s optional

sampling theorem, we have

Ex,α[e−rτf(X(τ), α(τ)) | Fσ] ≤ e−rσf(X(σ), α(σ)).

In view of this, we obtain

Ex,α[e−rτf(X(τ), α(τ))] = Ex,αEx,α[e−rτf(X(τ), α(τ)) | Fσ]

≤ Ex,α[e−rσf(X(σ), α(σ))] (2.10)

for all stopping times σ, τ such that σ ≤ τ a.s.

tu

Definition 2.1.8 Let h be a real measurable function on R ×M. If f is a superharmonic

(supermeanvalued) function and f ≥ h then, f is called a superharmonic (supermeanvalued)

majorant of h. The function

h̄(x, α) = inf
f
f(x, α),

the inf taken over all supermeanvalued majorants f of h, is called the least supermeanvalued

majorant of h.

Likewise we define the least superharmonic majorant of h and we denote ĥ.
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Remark 2.1.9 Let g be a reward function and f be a supermeanvalued majorant of g, then

for any stopping time τ , we have

f(x, i) ≥ Ex,i[f(X(τ), α(τ))]

≥ Ex,i[g(X(τ), α(τ))]. (2.11)

Therefore, we have

f(x, i) ≥ sup
τ
Ex,i[g(X(τ), α(τ))] = sup

τ
Ex,i[e−rτg(X(τ), α(τ))] = v(x, i).

This implies that the least supermeanvalued majorant ḡ of g satisfies the inequality

ḡ(x, i) ≥ v(x, i).

Similarly, we can verify that the least superharmonic majorant of g satisfies

ĝ(x, i) ≥ v(x, i). (2.12)

The next result is a generalization of an existence theorem for optimal stopping proved

in Oksendal [32], we extent the result to the case of a joint process of a diffusion process and

a finite state Markov chain.

Theorem 2.1.10 (Existence of the optimal stopping time) Let v denote the optimal

reward and ĝ the least superharmonic majorant of a reward g(x, i) defined on R ×M such

that g(x, i) is continuous in x, g(x, i) = f(x) ≥ 0 for all x ∈ R, i ∈ M, and for a given

function f .

a) Then

v(x, i) = ĝ(x, i) for all (x, i) ∈ R×M. (2.13)

b) For ε > 0 let

D = {(x, i) ∈ R×M; g(x, i) < ĝ(x, i)} be the continuation region, and

Dε = {(x, i) ∈ R×M; g(x, i) < ĝ(x, i)− ε}. (2.14)
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We define

τD = inf{t > 0 : (X(t), α(t)) 6∈ D},

τε = inf{t > 0 : (X(t), α(t)) 6∈ Dε}. (2.15)

If we suppose that g is bounded then

| v(x, i)− Ex,i[g(X(τε), α(τε))] |≤ 2ε (2.16)

for all x ∈ R and i ∈M.

c) For arbitrary g, we define gN = min(g,N), DN = {(x, i) : gN(x, i) < ĝN(x, i)}, and τDN

the first exit time from DN , for all N .

Let us assume that 0 < τD <∞ almost surely, and if the sequence {gN(X(τDN
), α(τDN

))} is

uniformly integrable then,

τDN
↑ τD and v(x, i) = Ex,i[g(X(τD), α(τD))], (2.17)

and τD is an optimal stopping time.

Proof. To show (a) and (b), we first consider that g is bounded and we define

g̃ε(x, i) = Ex,i[ĝ(X(τε), α(τε))] for ε > 0.

We first show that g̃ε is supermeanvalued. Let β be a stopping time, by the strong Markov

property we have

Ex,i[g̃ε(X(β), α(β))] = Ex,iEX(β),α(β)[ĝ(X(τε), α(τε))]

= Ex,iEx,i[θβ ĝ(X(τε), α(τε)) | Fβ] (2.18)

where θβ is the shift operator, note that

θβ ĝ(X(τε), α(τε)) = ĝ(X(τβ
ε ), α(τβ

ε ))

with

τβ
ε = inf{t > β : (X(t), α(t)) 6∈ Dε} and τβ

ε ≥ τε.
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For more about the properties of θβ one can refer to Oksendal [32] page 114. Therefore,

equation (2.18) becomes

Ex,i[g̃ε(X(β), α(β))] = Ex,iEx,i[θβ ĝ(X(τε), α(τε)) | Fβ]

= Ex,i[θβ ĝ(X(τε), α(τε))]

= Ex,i[ĝ(X(τβ
ε ), α(τβ

ε ))] by Lemma 2.1.7, e) we have

≤ Ex,i[ĝ(X(τε), α(τε))]

= g̃ε(x, i) (2.19)

which implies that

g̃ε(x, i) ≥ Ex,i[g̃ε(X(β), α(β))].

Thus g̃ε is supermeanvalued. We claim that

g(x, i) ≤ g̃ε(x, i) + ε for all x, i. (2.20)

In order to prove the claim, let us suppose that,

λ = sup
(x,i)∈R×M

g(x, i)− g̃ε(x, i) > ε. (2.21)

For η > 0 such that

η < ε < λ, (2.22)

we can find (x0, α0) so that

g(x0, α0)− g̃ε(x0, α0) ≥ λ− η.

Moreover, we know that g̃ε + λ is a supermeanvalued majorant of g. So we have

ĝ(x0, α0) ≤ g̃ε(x0, α0) + λ. (2.23)

Combining (2.21) and (2.23), we obtain

g(x0, α0) + η ≥ ĝ(x0, α0).
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We consider two possible cases:

Case 1: τε > 0 almost surely. Then by the last inequality and the definition of Dε we deduce

g(x0, α0) + η ≥ ĝ(x0, α0) ≥ Ex,α[ĝ(X(t ∧ τε))] for all t > 0

≥ Ex0,α0 [[g(X(t), α(t)) + ε]It<τε ]. (2.24)

Using the lower semicontinuity of g with respect to its first argument, the fact that g is

constant in its second argument and Fatou’s lemma, we have

g(x0, α0) + η ≥ lim inf
t↓0

Ex0,α0 [[g(X(t), α(t)) + ε]It<τε ]

≥ Ex0,α0 [lim inf
t↓0

[g(X(t), α(t)) + ε]It<τε ]

≥ g(x0, α0) + ε. (2.25)

(2.25) implies that η ≥ ε which contradicts (2.22).

Case 2: τε = 0 almost surely. Then we have

g̃ε(x0, α0) = Ex0,α0 [ĝ(X(τε), α(τε))]

= ĝ(x0, α0)

≥ g(x0, α0). (2.26)

(2.26) implies that 0 ≥ g(x0, α0) − g̃ε(x0, α0) ≥ λ − η which contradicts (2.22). We then

observe that the assumption ε < λ leads to contradiction. Thus we must have λ ≤ ε. This

proves that g̃ε(x, i) + ε is a supermeanvalued majorant of g. So

ĝ(x, i) ≤ g̃ε(x, i) + ε

≤ Ex,i[ĝ(X(τε), α(τε))] + ε

≤ Ex,i[g(X(τε), α(τε)) + ε] + ε

≤ v(x, i) + 2ε. (2.27)

Since ε is arbitrary then ĝ ≤ v, combining this last inequality with (2.12), we have

v = ĝ.
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Moreover, from (2.27) we deduce that

ĝ(x, i)− Ex,i[g(X(τε), α(τε))] ≤ 2ε

v(x, i)− Ex,i[g(X(τε), α(τε))] ≤ 2ε

|v(x, i)− Ex,i[g(X(τε), α(τε))]| ≤ 2ε. (2.28)

Thus, we have (2.16) and (b) is proved.

Now we assume that g is not bounded. Define

gN = min(N, g), N = 1, 2, ...

ĝN is the least superharmonic majorant of gN and vN the optimal reward function associated

with gN . Then

v ≥ vN = ĝN

and the sequence {ĝN} is an increasing sequence. Let h = limN→∞ ĝN , thus h is superhar-

monic by Lemma 2.1.7 d) and h is a majorant of g. Therefore h ≥ ĝ. Moreover, note that

v ≥ ĝN for all N . Then v ≥ h ≥ ĝ, this implies that v = ĝ, since v ≤ ĝ. So

v = ĝ = lim
N→∞

ĝN .

And this proves a).

c) We know that 0 < τD <∞. Let first assume that g is bounded. We have

τε ↑ τD as ε ↓ 0

and

g(X(τε), α(τε)) → g(X(τD), α(τD)) as ε ↓ 0

because g is continuous in its first argument and constant in its second argument. Therefore,

by the bounded convergence theorem, we obtain

Ex,i[g(X(τε), α(τε)) → Ex,i[g(X(τD), α(τD))] as ε ↓ 0. (2.29)
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The equations (2.28) and (2.29) imply that

v(x, i) = Ex,i[g(X(τD), α(τD))]. (2.30)

In general, we consider gN which are bounded and we apply the formula (2.30) and we obtain

vN(x, i) = Ex,i[gN(X(τDN
, α(τDN

))].

Note that

gN(X(τDN
), α(τDN

)) → g(X(τD), α(τD)) as N →∞

and the family {gN(X(τD), α(τD))} is uniformly integrable. Therefore, we have

v(x, i) = ĝ(x, i) = lim
N→∞

ĝN(x, i)

= lim
N→∞

Ex,i[gN(X(τDN
), α(τDN

))]

= Ex,i lim
N→∞

[gN(X(τDN
), α(τDN

))]

= Ex,i[g(X(τD), α(τD))]. (2.31)

tu

Corollary 2.1.11 The optimal reward v is supermeanvalued, so for all (x, i) ∈ R×M and

Ft-stopping time θ we have:

v(x, i) ≥ Ex,i[v(X(θ), α(θ))] ≥ Ex,i[e−rθv(X(θ), α(θ))] with r ≥ 0. (2.32)

Proof. This comes directly from the fact that v = ĝ which is the superharmonic majorant

of g. tu

Remark 2.1.12 1. We can easily extend these results in the time inhomogeneous case.

Given g = g(t, x, i), we consider the new process Yt = (s+ t,X(t)) where s is the time

we start studying the joint process (X(t), α(t)) with X(t) solution of the stochastic

differential equation (2.1), and α(t) the Markov chain. The optimal stopping problem
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is to find v(s, x, i) and a stopping time τ such that

v(s, x, i) = sup
θ∈Λ

Es,x,i[g(θ,X(θ), α(θ))] = Es,x,i[g(τ,X(τ), α(τ))]

= sup
θ∈Λ

Es,x,i[g(Y (θ), α(θ))] = Es,x,i[g(Y (τ), α(τ))]. (2.33)

The result in Theorem 2.1.10 applies.

2. Let A be the generator of the joint process (X(t), α(t)). Assume g in the domain of A.

Define

U = {(x, i) ∈ R×M,Ag(x, i) > 0}.

Then,

U ⊂ D. (2.34)

In order to prove (2.34), let (x, i) ∈ U and let τ0 be the first exit time from a bounded

open set W containing (x, i), W ⊂ U . Then by Dynkin’s formula, for u > 0

Ex,i[g(X(τ0 ∧ u), α(τ0 ∧ u))] = g(x, i) + Ex,α
[ ∫ τ0∧u

0

Ag(X(s), α(s))ds
]

> g(x, i). (2.35)

If we assume that g(x, i) = ĝ(x, i) then (2.35) will contradicts the fact that ĝ is super-

meanvalued. Therefore, g(x, i) < ĝ(x, i) so (x, i) ∈ D. Thus U ⊂ D.

Corollary 2.1.13 Let ε ≥ 0, r ≥ 0, and θ be an Ft−stopping time, such that θ ≤ τε the

ε−optimal stopping time.

Then,

v(x, i) = Ex,i[e−rθv(X(θ), α(θ))] for all x, i. (2.36)

Moreover for s < θ < T where s and T are positive real numbers, we have

v(s, x, i) = Es,x,i[e−r(θ−s)v(θ,X(θ), α(θ))] for all x, i. (2.37)
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Proof. Consider the continuous reward function g(s, x, i) = e−rsg0(x, i) where g0(x, i) :

R ×M → [0,+∞) is continuous in x and bounded. Let w(s, x, i) be the optimal reward

function. Note that v(x, i) = w(0, x, i). Using (2.16), we have

|w(s, x, i)− Es,x,i[e−rτεg0(X(τε), α(τε))]| < 2ε for all s, x, i

|w(0, x, i)− E0,x,i[e−rτεg0(X(τε), α(τε))]| < 2ε, so we have,

|v(x, i)− Ex,i[e−rτεg0(X(τε), α(τε))]| < 2ε. (2.38)

Note that g0(x, i) ≤ v(x, i), then

Ex,i[e−rτεg0(X(τε), α(τε))] ≤ Ex,i[e−rτεv(X(τε), α(τε))].

Consequently, using Corollary 2.1.11, we have

0 ≤ v(x, i)− Ex,i[e−rτεv(X(τε), α(τε)) ≤ v(x, i)− Ex,i[e−rτεg0(X(τε), α(τε))] ≤ 2ε. (2.39)

Recall that θ ≤ τε and v(x, i) is supermeanvalued using Lemma 2.1.7 e), we have

Ex,i[e−rτεv(X(τε), α(τε))] ≤ Ex,i[e−rθv(X(θ), α(θ))].

Combining (2.39) and the last inequality we obtain

0 ≤ v(x, i)− Ex,i[e−rθv(X(θ), α(θ))] ≤ v(x, i)− Ex,i[e−rτεv(X(τε), α(τε)) ≤ 2ε.

Therefore, we have

0 ≤ v(x, i)− Ex,i[e−rθv(X(θ), α(θ))] ≤ 2ε. (2.40)

Sending ε to zero in (2.40), we have

v(x, i) = Ex,i[e−rθv(X(θ), α(θ))].

Now let us prove (2.37). We first apply inequality (2.40) for a time inhomogeneous optimal

reward v(s, x, i) and we obtain

0 ≤ v(s, x, i)− Es,x,i[e−rθv(θ,X(θ), α(θ))] ≤ 2ε. (2.41)
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Moreover, we know that

Es,x,i[e−rθv(θ,X(θ), α(θ))] ≤ Es,x,i[e−r(θ−s)v(θ,X(θ), α(θ))].

Consequently,

0 ≤ v(s, x, i)− Es,x,i[e−r(θ−s)v(θ,X(θ), α(θ))] ≤ v(s, x, i)− Es,x,i[e−rθv(θ,X(θ), α(θ))] ≤ 2ε.

Sending ε to zero in the last inequality we have

v(s, x, i) = Es,x,i[e−r(θ−s)v(θ,X(θ), α(θ))].

Now assume g0 is unbounded. Define

g0N = min(N, g0), gN(s, t, i) = e−rsg0N(x, i), N = 1, 2, ...

and vN optimal reward of gN . For each N, we have

vN(s, x, i) = Es,x,i[e−r(θ−s)vN(θ,X(θ), α(θ))].

Using the monotone convergence theorem, we obtain

v(s, x, i) = Es,x,i[e−r(θ−s)v(θ,X(θ), α(θ))]. (2.42)

This concludes the proof. tu

2.2 Valuation of American options

2.2.1 American Options with infinite time horizon

The infinite time horizon is known as perpetual American option. Most related results in

Guo and Zhang [16] who have obtained a closed form solution with a two state Markov

chain. It is difficult to find closed-form solution with general Markov chain, we prove that

the American perpetual option in the regime switching model can be characterized as a

unique viscosity solution of the associated HJB equations. This existence and uniqueness
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are crucial to develop numerical schemes to approximate the value of the option. In this

subsection we only consider perpetual put option. Similar analysis works for perpetual call

option.

Given a strike price K and a risk free rate r, the price of perpetual American option is given

by,

v(x, i) = sup
τ
Ex,i[e−rτ (K −X(τ))+]. (2.43)

The supremum is taken over all Ft-stopping time. Recall that A the generator of (X(t), α(t))

is defined as follows:

(Av)(x, i) =
1

2
x2σ2(i)

∂2v(x, i)

∂x2
+ xµ(i)

∂v(x, i)

∂x
+Qv(x, ·)(i),

where Qv(x, .)(i) =
∑

j 6=i qij(v(x, j)− v(x, i)).

Formally, v satisfies

H
(
i, x, v,

∂v

∂x
,
∂2v

∂x2

)
= min

[
rv(x, i)− 1

2
x2σ2(i)

∂2v(x, i)

∂x2

−xµ(i)
∂v(x, i)

∂x
−Qv(x, ·)(i), v(x, i)− (K − x)+

]
= 0. (2.44)

Lemma 2.2.1. v(x, i) is continuous in x and | v(x, i) |≤ K for some K.

Proof. From the definition of v, it follows that

E[e−rτ (K −X(τ))+;X(0) = x, α(0) = i] ≤ K for all stopping time τ.

So

v(x, i) = sup
τ
Ex,i

[
e−rτ (K −X(τ))+] ≤ K.

To show the continuity of v(x, i) in x, let X1 and X2 be solutions of (2.1) with initials

X1(0) = x1 and X2(0) = x2 respectively. We have

(X1(t)−X2(t))
2 =

(
(x1 − x2) +

∫ t

0

(X1(s)−X2(s))µ(α(s))ds+∫ t

0

(X1(s)−X2(s))σ(α(s))dWs

)2
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and therefore,

E (X1(t)−X2(t))
2 ≤ 3E | x1 − x2 |2 +3E

(∫ t

0

(X1(s)−X2(s))µ(α(s))ds

)2

+3E

(∫ t

0

(X1(s)−X2(s))σ(α(s))dWs

)2

.

Using the Ito isometry, we obtain

E (X1(t)−X2(t))
2 ≤ 3E | x1 − x2 |2 +3Et

∫ t

0

(
(X1(s)−X2(s))µ(α(s)

)2

ds

+3E

∫ t

0

(
(X1(s)−X2(s))σ(α(s))

)2

ds.

Since µ and σ are bounded, then there exists C such that

E | X1(t)−X2(t) |2≤ 3 | x1 − x2 |2 +C(1 + t)

∫ t

0

E | X1(s)−X2(s) |2 ds

Let ε > 0. We can find T large enough so that, Ke−rT < ε
2
. Then for t ≤ T , we have

E | X1(t)−X2(t) |2≤ 3 | x1 − x2 |2 +C(1 + T )

∫ t

0

E | X1(s)−X2(s) |2 ds.

We set D = C(1 + T ). By Gronwall’s inequality, we have

E | X1(t)−X2(t) |2≤ 3 | x1 − x2 |2 eDt.

Note that

E | X1(t)−X2(t) |≤
(
E | X1(t)−X2(t) |2

) 1
2 .

In view of this, it follows that

Ee−rt | X1(t)−X2(t) |≤ 3 | x1 − x2 | eDt. (2.45)

For all stopping time τ , we have

E
[
e−rτ

(
(K −X1(τ))

+ − (K −X2(τ))
+
)]

≤ E
[
e−rτ

(
(K −X1(τ))

+ − (K −X2(τ))
+
)
Iτ≤T

+e−rτ
(
(K −X1(τ))

+ − (K −X2(τ))
+
)
Iτ>T

]
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and

E
[
e−rτ

(
(K −X1(τ))

+ − (K −X2(τ))
+
)
Iτ≤T

]
≤ E

[
e−rs | X1(τ)−X2(τ) | Iτ≤T

]
.

Moreover, we have

E
[
e−rτ

(
(K −X1(τ))

+ − (K −X2(τ))
+
)
Iτ>T

]
≤ Ke−rT

<
ε

2
. (2.46)

Using equation (2.87), we obtain

E
[
e−rτ | (X1(τ)−X2(τ)) | Iτ≤T

]
≤ 3 | x1 − x2 | eDT .

For

| x1 − x2 |≤
ε

6
e−DT ,

we have

E
[
e−rτ | (X1(τ)−X2(τ)) | Iτ≤T

]
≤ 3 | x1 − x2 | eDT

≤ 3ε

6
e−DT eDT

=
ε

2
. (2.47)

Adding the two inequalities (2.46) and (2.47), for all τ ,we obtain

E [e−rτ ((K −X1(τ))
+ − (K −X2(τ))

+)Iτ>T ]

+E [e−rτ | (X1(τ)−X2(τ)) | Iτ≤T ] ≤ ε.

Therefore,

sup
τ
| E
[
e−rτ

(
(K −X1(τ))

+ − (K −X2(τ))
+
)]
|≤ ε

| v(x1, i)− v(x2, i) |≤ ε.

This proves that v(x, i) is continuous with respect to x. tu

Theorem 2.2.2 The value function

v(x, i) = sup
τ
Ex,i

[
e−rτ (K −X(τ))+

]
is a viscosity solution of equation (2.44).
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Proof. Let α0 ∈ M, we need to prove (1.18) and (1.19). First of all, let us prove the

inequality (1.19).

We have, for τ = 0, Ex0,α0 [e−rτ (K −X(τ))+] = (K − x0)
+. This implies that

v(x0, α0)− (K − x0)
+ ≥ 0. (2.48)

Let ψ(·) ∈ C2(R) and x0 ∈ R+ such that v(x, α0)− ψ(x) has local minimum at x = x0 in a

neighborhood N(x0). Define the function ϕ as follows:

ϕ(x, i) =

 ψ(x) + v(x0, α0)− ψ(x0), if i = α0,

v(x, i), if i 6= α0.
(2.49)

Let γ be the first jump time of α(·) and let θ ∈ (0, γ] be such that X(t) starts at x0 and stays

in N(x0) for 0 ≤ t ≤ θ. Note that θ ≤ γ. We have α(t) = α0, for 0 ≤ t ≤ θ. By Dynkin’s

formula, we have

Ex0,α0e−rθϕ(X(θ), α0)− ϕ(x0, α0) = Ex0,α0

∫ θ

0

e−rt

(
− rϕ(X(t), α0)

+
1

2
X(t)2σ2(α0)

∂2ϕ(X(t), α0)

∂x2
+X(t)µ(α0)

∂ϕ(X(t), α0)

∂x

+Qϕ(X(t), ·)(α0)

)
dt. (2.50)

Recall that, for 0 ≤ t ≤ θ, X(t) ∈ N(x0), and x0 is the minimum of v(x, α0) − ψ(x). Then

for 0 ≤ t ≤ θ, we have

v(X(t), α0) ≥ ψ(X(t)) + v(x0, α0)− ψ(x0) = ϕ(X(t), α0). (2.51)

Using equations (2.49) and (2.51), we have

Ex0,α0e−rθ
(
ψ(X(θ)) + v(x0, α0)− ψ(x0)

)
− v(x0, α0)

≥ Ex0,α0

∫ θ

0

e−rt

(
− rv(X(t), α0) +

1

2
X(t)2σ2(α0)

∂2ψ(X(t))

∂x2

+X(t)µ(α0)
∂ψ(X(t))

∂x
, α0) +Qϕ(X(t), ·)(α0)

)
dt. (2.52)

The inequality (2.51) can also be written in the following form

ψ(X(t)) ≤ v(X(t), α0)− (v(x0, α0)− ψ(x0)). (2.53)
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Recall that

Qv(x, ·)(α0) =
∑
β 6=α0

qα0β(v(x, β)− v(x, α0)).

Using equation (2.49), we have

Qϕ(x, ·)(α0) =
∑
β 6=α0

qα0β(ϕ(x, β)− ϕ(x, α0))

=
∑
β 6=α0

qα0β(v(x, β)− ϕ(x, α0))

=
∑
β 6=α0

qα0β

(
v(x, β)− [v(x0, α0) + ψ(x)− ψ(x0)]

)
. (2.54)

Combining with equation (2.51), we obtain

Qϕ(X(t), ·)(α0) =
∑
β 6=α0

qα0β

(
v(X(t), β)− [v(x0, α0) + ψ(X(t))− ψ(x0)]

)
≥

∑
β 6=α0

qα0β

(
v(X(t), β)− [v(x0, α0) + v(X(t), α0)

− (v(x0, α0)− ψ(x0))− ψ(x0)]

)
(2.55)

≥
∑
β 6=α0

qα0β (v(X(t), β)− v(X(t), α0))

≥ Qv(X(t), ·)(α0). (2.56)

Then, we obtain

Ex0,α0e−rθ
(
ψ(X(θ)) + v(x0, α0)− ψ(x0)

)
− v(x0, α0)

≥ Ex0,α0

∫ θ

0

e−rt

(
− rv(X(t), α0) +

1

2
X(t)2σ2(α0)

∂2ψ(X(t))

∂x2

+X(t)µ(α0)
∂ψ(X(t))

∂x
+Qv(X(t), ·)(α0)

)
dt.

Using equation(2.51), we have

Ex0,α0e−rθ
(
ψ(X(θ)) + v(X(θ), α0)− ψ(X(θ))

)
− v(x0, α0))

≥ Ex0,α0

∫ θ

0

e−rt
(
− rv(X(t), α0) +

1

2
X(t)2σ2(α0)

∂2ψ(X(t))

∂x2

+X(t)µ(α0)
∂ψ(X(t))

∂x
+Qv(X(t), ·)(α0)

)
dt.
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Which leads to,

Ex0,α0e−rθ(v(X(θ), α0))− v(x0, α0) ≥

Ex0,α0

∫ θ

0

e−rt
(1

2
X(t)2σ2(α0)

∂2ψ(X(t))

∂x2
− rv(X(t), α0)

+X(t)µ(α0)
∂ψ(X(t))

∂x
+Qv(X(t), ·)(α0)

)
dt.

Noticing that v is supermeanvalued by Corollary 2.1.11, we have

Ex0,α0e−rθv(X(θ), α0) ≤ v(x0, α0)

therefore,

0 ≥ Ex0,α0

∫ θ

0

e−rt

(
1

2
X(t)2σ2(α0)

∂2ψ(X(t))

∂x2
− rv(X(t), α0)

+X(t)µ(α0)
∂ψ(X(t))

∂x
+Qv(X(t), ·)(α0)

)
dt.

Dividing both sides by θ, we obtain

0 ≥ 1

θ
Ex0,α0

∫ θ

0

e−rt

(
1

2
X(t)2σ2(α0)

∂2ψ(X(t))

∂x2

+X(t)µ(α0)
∂ψ(X(t))

∂x
− rv(X(t), α0) +Qv(X(t), ·)(α0)

)
dt.

By letting θ → 0, we obtain

0 ≥ 1

2
x2

0σ
2(α0)

∂2ψ(x0)

∂x2
+ x0µ(α0)

∂ψ(x0)

∂x
− rv(x0, α0) +Qv(x0, ·)(α0).

So,

rv(x0, α0)−
1

2
x2

0σ
2(α0)

∂2ψ(x0)

∂x2
− x0µ(α0)

∂ψ(x0)

∂x
−Qv(x0, ·)(α0) ≥ 0. (2.57)

Combining (2.48) and (2.57), we obtain

H(α0, x0, v(x0, α0),
∂ψ(x0)

∂x
,
∂2ψ(x0)

∂x2
) ≥ 0

which gives (1.19). Therefore, v(x, α) is a viscosity supersolution.

Next, let us prove the inequality (1.18). Let φ(·) ∈ C2(R) and x0 ∈ R+ such that v(x, α0)−

φ(x) has local maximum at x = x0 in a neighborhood N(x0). Let θ0 be a stopping time less

than γ the first jump time of the process α(·) and such that X(t) starts at x0 and stays in
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N(x0) for 0 ≤ t ≤ θ0. We can assume without loss of generality that v(x0, α0)−φ(x0) = 0. Let

ε > 0 and τε be the ε−optimal stopping time, using Corollary 2.1.13 for 0 ≤ θ ≤ min(τε, θ0)

we have

v(x0, α0) ≤ Ex0,α0 [e−rθv(X(θ), α0))]. (2.58)

Note that v(x0, α0)− φ(x0) = 0 and attains its maximum at x0 in N(x0) therefore

v(X(θ), α0) ≤ φ(X(θ)).

Define

ϕ(x, i) =

 φ(x), if i = α0,

v(x, i), if i 6= α0.
(2.59)

Thus, we also have

v(X(θ), α0) ≤ ϕ(X(θ)), α0). (2.60)

Using Dynkin’s formula, we obtain

Ex0,α0e−rθv(X(θ), α0) ≤ Ex0,α0e−rθϕ(X(θ), α0)

= ϕ(x0, α0) + Ex0,α0

∫ θ

0

e−rt
[
Qϕ(X(t), ·)(α0)

+X(t)µ(α0)
∂φ(X(t))

∂x
− rϕ(X(t), α(t))

+
1

2
X(t)2σ2(α0)

∂2φ(X(t))

∂x2

]
dt. (2.61)

Moreover,

Qϕ(X(t), ·)(α0) =
∑
β 6=α0

qα0β(v(X(t), β)− φ(X(t)))

≤
∑
β 6=α0

qα0β(v(X(t), β)− v(X(t), α0)

≤
∑
β 6=α0

qα0β(v(X(t), β)− v(X(t), α0))

≤ Qv(X(t), ·)(α0). (2.62)
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Using (2.60) and (2.62), we obtain

Ex0,α0e−rθv(X(θ), α0) ≤ φ(x0) + Ex0,α0

∫ θ

0

e−rt
[1
2
X(t)2σ2(α0)

∂2φ(X(t), α0)

∂x2

+X(t)µ(α0)
∂φ(X(t), α0)

∂x
− rv(X(t), α(t)) +Qv(X(t), ·)(α0)

]
dt. (2.63)

From (2.58) we deduce

0 = v(x0, α0)− φ(x0) ≤ Ex0,α0

∫ θ

0

e−rt
[1
2
X(t)2σ2(α0)

∂2φ(X(t), α0)

∂x2

+X(t)µ(α0)
∂φ(X(t), α0)

∂x
− rv(X(t), α(t)) +Qv(X(t), ·)(α0)

]
dt.

Dividing the last inequality by θ > 0 and sending θ ↓ 0, we have

1

2
x2

0σ
2(α0)

∂2φ(x0)

∂x2
+ x0µ(α0)

∂φ(x0)

∂x
− rv(x0, α0)

+Qv(x0, ·)(α0) ≥ 0.

Thus

rv(x0, α0)−
1

2
x2

0σ
2(α0)

∂2φ(x0)

∂x2
− x0µ(α0)

∂φ(x0)

∂x
−Qv(x0, ·)(α0) ≤ 0.

The last inequality implies (1.18). Finally, v(x, i) is a viscosity subsolution of (2.44). This

concludes the proof. tu

In order to prove the uniqueness result of the viscosity solution we need the following

maximum principle for semicontinuous function, which is stated in a suitable form for our

application.

Theorem 2.2.3 (Crandall, Lions and Ishii [6]) For i = 1, 2, let Ωi be locally compact

subsets of R and ui be upper semicontinuous in Ωi, and J̄2,+
Ωi
ui(x) the parabolic superjet of

ui(x), and φ be twice continuously differentiable in a neighborhood of Ω.

Set

w(x) = u1(x1) + u2(x2)

for x = (x1, x2) ∈ Ω, and suppose x̂ = (x̂1, x̂2) ∈ Ω is a local maximum of w − φ relative to

Ω. Then for each ε > 0 there exists Xi ∈ S(1) = R such that

(Dxiφ(x̂), Xi) ∈ J̄2,+
Ωi
ui(x̂i)
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for i = 1, 2 and the block diagonal matrix with entries Xi satisfies

−
(

1

ε
+ ‖D2φ(x̂)‖

)
I ≤

 X1 0

0 X2

 ≤ D2φ(x̂) + ε(D2φ(x̂))2. (2.64)

Theorem 2.2.4 (Comparison Principle) If v1(x, i) and v2(x, i) are respectively viscosity

subsolution and supersolution of (2.44) and are continuous with respect to x and have at

most a linear growth. Then

v1(x, i) ≤ v2(x, i) for all (x, i) ∈ R+ ×M. (2.65)

Proof. For any 0 < δ < 1 and 0 < γ < 1, we define

Φ(x, y, i) = v1(x, i)− v2(y, i)−
1

δ
| x− y |2 −γ(x2 + y2),

and

φ(x, y) =
1

δ
| x− y |2 +γ(x2 + y2).

Since v1(x, i) and v2(x, i) satisfy the linear growth, we have for each i ∈M

lim
|x|+|y|→∞

Φ(x, y, i) = −∞.

Moreover the continuity of Φ in (x,y) implies that its has a global maximum at a point

(xδ, yδ, α0) because M is finite. Therefore,

Φ(xδ, xδ, α0) + Φ(yδ, yδ, α0) ≤ 2Φ(xδ, yδ, α0).

So,

v1(xδ, α0)− v2(xδ, α0)− 2γ(x2
δ) + v1(yδ, α0)− v2(yδ, α)− 2γ(y2

δ ) ≤ 2v1(xδ, α0)

−2v2(yδ, α)− 2

δ
| xδ − yδ |2 −2γ(x2

δ + y2
δ ).

It follows that

−v2(yδ, α0)− 2γ(x2
δ)) + v1(xδ, α0)− 2γ(x2

δ)) ≤ v1(xδ, α0)− v2(yδ, α0)

−2

δ
| xδ − yδ |2 −2γ(x2

δ + y2
δ ).
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Finally, we have

2

δ
| xδ − yδ |2≤ (v1(xδ, α0)− v1(yδ, α0)) + (v2(xδ, α0)− v2(yδ, α0)). (2.66)

By the linear growth condition, we know that there exist constants K1, K2 such that

v1(x, i) ≤ K1(1+ | x |) and v2(x, i) ≤ K2(1+ | x |). Therefore there exists C such that

2

δ
| xδ − yδ |2≤ C(1+ | xδ | + | yδ |),

which implies

| xδ − yδ |2≤ δC(1+ | xδ | + | yδ |). (2.67)

We also have, Φ(0, 0, α0) ≤ Φ(xδ, yδ, α0) and | Φ(0, 0, α0) |≤ C(1+ | xδ | + | yδ). Therefore,

γ(x2
δ + y2

δ ) ≤ v1(xδ, α0)− v2(yδ, α0)−
1

δ
| xδ − yδ |2 −Φ(0, 0, α0)

≤ 3C(1+ | xδ | + | yδ |) (2.68)

so

γ(x2
δ + y2

δ )

(1+ | xδ | + | yδ |)
≤ 3C.

Therefore, there exists Cγ such that

| xδ | + | yδ |≤ Cγ. (2.69)

The inequality (2.69) implies the sets {xδ, δ > 0}, and {yδ, δ > 0} are bounded by Cγ

independent of δ so we can extract convergent subsequences. Moreover, the inequality (2.67)

implies the existence x0 such that

lim
δ→0

xδ = x0 = lim
δ→0

yδ. (2.70)

Using (2.66) with the last result, we deduce that

lim
δ→0

2

δ
| xδ − yδ |2= 0. (2.71)
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The point (xδ, yδ, α0) is the maximum of Φ, so by the Crandall Ishii and Lions’s Maximum

principle for each ε > 0 there exist Xδ and Yδ such that

(
2

δ
(xδ − yδ) + 2γxδ, Xδ) ∈ P̄2,+v1(xδ, α0) (2.72)

and

(−2

δ
(xδ − yδ) + 2γyδ,−Yδ) ∈ P̄2,+(−v2(yδ, α0)) = −P̄2,−v2(yδ, α0).

So

(
2

δ
(xδ − yδ)− 2γyδ, Yδ) ∈ P̄2,−v2(yδ, α0). (2.73)

(2.72) implies by the definition of the viscosity solution that

min
[
rv1(xδ, α0)−

1

2
x2

δσ
2(α0)Xδ − xδµ(α0)

(
2

δ
(xδ − yδ) + 2γxδ

)
−Qv1(xδ, ·)(α0), v1(xδ, α0)− (K − xδ)

+
]
≤ 0.

In view of these, we have two cases: either

v1(xδ, α0)− (K − xδ)
+ ≤ 0

or

rv1(xδ, α0)− 1
2
x2

δσ
2(α0)Xδ − xδµ(α0)

(
2
δ
(xδ − yδ) + 2γxδ

)
−Qv1(xδ, ·)(α0) ≤ 0.

Next, we assume that v1(xδ, α0)− (K − xδ)
+ ≤ 0. Similarly, (2.73) implies by the definition

of the viscosity solution that,

min
[
rv2(yδ, α0)−

1

2
y2

δσ
2(α0)Yδ − yδµ(α0)

(
2

δ
(xδ − yδ)− 2γyδ

)
−Qv2(yδ, ·)(α0), v2(yδ, α0)− (K − yδ)

+
]
≥ 0.

Therefore, we have

(K − yδ)
+ − v2(yδ, α0) ≤ 0.

We obtain

v1(xδ, α0)− v2(yδ, α0)− (yδ − xδ)
+ ≤ 0.
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Letting δ → 0, we have

v1(x0, α0)− v2(x0, α0) ≤ 0. (2.74)

Recall that, the function Φ reaches its maximum at (xδ, yδ, α0). It follows that, for all x and

all i ∈M,

v1(x, i)− v2(x, i)− 2γx2 = Φ(x, x, i) ≤ Φ(xδ, yδ, α0)

≤ v1(xδ, α0)− v2(yδ, α0)− γ(x2
δ + y2

δ ).

Again letting δ → 0 and using (2.74), we obtain

v1(x, i)− v2(x, i)− 2γx2 ≤ v1(x0, α0)− v2(x0, α0)− 2γ(x0)
2 ≤ 0.

So, we have

v1(x, i)− v2(x, i) ≤ 2γ(x2). (2.75)

Now, let us assume that

1

2
x2

δσ
2(α0)Xδ + xδµ(α0)

(
2

δ
(xδ − yδ) + 2γxδ

)
+Qv1(xδ, ·)(α0)− rv1(xδ, α0) ≥ 0.

Then from (2.73), we have

1

2
y2

δσ
2(α0)Yδ + yδµ(α0)

(
2

δ
(xδ − yδ)− 2γyδ

)
+Qv2(yδ, ·)(α0)− rv2(yδ, α0) ≤ 0,

and

r(v1(xδ, α0)− v2(yδ, α0)) ≤
1

2
σ2(α0)

(
(xδ)

2Xδ − (yδ)
2Yδ

)
+µ(α0)

(
2

δ
(xδ − yδ)

2 + 2γ((xδ)
2 + (yδ)

2)

)
+Qv1(xδ, ·)(α0)−Qv2(yδ, ·)(α0). (2.76)

Moreover, from the Maximum Principle, we have

−
(

1

ε
+ ‖D2φ(xδ, yδ)‖

)
I ≤

 Xδ 0

0 −Yδ

 ≤ D2φ(xδ, yδ)

+ε(D2φ(xδ, yδ))
2. (2.77)
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Note that

D2φ(xδ, yδ) =
2

δ

 1 −1

−1 1

+ 2γ

 1 0

0 1


and

(D2φ(xδ, yδ))
2 =

8

δ2

 1 −1

−1 1

+
8γ

δ

 1 −1

−1 1


+ 4γ2

 1 0

0 1


=

8 + 8γδ

δ2

 1 −1

−1 1

+ 4γ2

 1 0

0 1

 . (2.78)

We remark that

(xδ)
2Xδ − (yδ)

2Yδ = (xδ, yδ)

 Xδ 0

0 −Yδ

 xδ

yδ


≤ (xδ, yδ)

[
2

δ

 1 −1

−1 1

+ ε
8 + 8γδ

δ2

 1 −1

−1 1


+ (2γ + 4εγ2)

 1 0

0 1

] xδ

yδ

 . (2.79)

Letting γ → 0 in the last expression, we obtain

(xδ)
2Xδ − (yδ)

2Yδ ≤ (xδ, yδ)

(
2

δ
+ ε

8

δ2
)

 1 −1

−1 1

 xδ

yδ

 .

Take ε = δ/4, this leads us to

(xδ)
2Xδ − (yδ)

2Yδ ≤ (xδ, yδ)

4

δ

 1 −1

−1 1

 xδ

yδ

 =
4

δ
(xδ − yδ)

2.

Sending δ → 0 and using (2.70), we obtain

(x0)
2X0 − (y0)

2Y0 ≤ 0. (2.80)



53

Moreover, using (2.70), (2.71) and letting δ, γ → 0 in (2.76) imply that

r(v1(x0, α0)− v2(x0, α0)) ≤ Qv1(x0, ·)(α0)−Qv2(x0, ·)(α0). (2.81)

Recall that (xδ, yδ, α0) is maximum of Φ then, for all x ∈ R and for all i ∈M we have

Φ(x, x, i) ≤ Φ(xδ, yδ, α0)

in order terms, we have

v1(x, i)− v2(x, i)− 2γx2 ≤ v1(xδ, α0)− v2(yδ, α0)− 2γ(x2
δ + y2

δ ).

Letting δ → 0, we obtain

v1(x, i)− v2(x, i)− 2γx2 ≤ v1(x0, α0)− v2(y0, α0)− 2γx2
0 (2.82)

taking x = x0, we have

v1(x0, i)− v2(x0, i)− 2γx2
0 ≤ v1(x0, α0)− v2(y0, α0)− 2γx2

0.

Consequently,

v1(x0, i)− v2(x0, i) ≤ v1(x0, α0)− v2(x0, α0).

We recall that

Qv1(x0, ·)(α0)−Qv2(x0, ·)(α0) =
∑
β 6=α0

qα0β[v1(x0, β)− v1(x0, α0)

−v2(x0, β) + v2(x0, α0)] ≤ 0,

using (2.81), we have

v1(x0, α0)− v2(x0, α0) ≤ 0.

Therefore using (2.82), we conclude that

v1(x, i)− v2(x, i)− 2γx2 ≤ v1(x0, α0)− v2(y0, α0)− 2γx2
0 ≤ 0. (2.83)

Letting γ → 0 in (2.75) and the previous inequality, we obtain

v1(x, i) ≤ v2(x, i).

This completes the proof of the theorem. tu

This result implies the uniqueness of the viscosity solution of (2.44) because any viscosity

solution is both viscosity supersolution and subsolution.



54

2.2.2 Finite Time Horizon American Option

In reality the perpetual America option is not tradable, only the finite time horizon American

option is traded on financial markets. As for the perpetual one, the valuation of the finite

time horizon American option is concerned with optimal stopping with finite time horizon.

As a result, the associated PDE is parabolic. There is substantial literature on American

option pricing. We refer to Bensoussan [2], Bollen [3], [4], Duan [8], Kim [25], among many

others for related results.

Recall that the value of the American option put is given by

v(s, x, i) = sup
τ∈Λs,T

E
[
e−r(τ−s)(K −X(τ))+ | X(s) = x, α(s) = i

]
, (2.84)

where Λs,T = {τ, Ft − stopping time ; s ≤ τ ≤ T} K is the strike price of the option, and

T <∞ the expiration date. The generator of the process (X(s), α(s)) is defined as follows,

(Af)(s, x, i) =
1

2
x2σ2(i)

∂2f(s, x, i)

∂x2
+ xµ(i)

∂f(s, x, i)

∂x
+Qf(s, x, ·)(i)

where

Qf(s, x, ·)(i) =
∑
j 6=i

qij(f(s, x, j)− f(s, x, i)).

We define the following Hamiltonian,

H(s, x, i, u,Dsu,Dxu,D
2
xu) = min

[
ru(s, x, i)− ∂u(s, x, i)

∂s

−(Au)(s, x, i), u(s, x, i)− (K − x)+
]

= 0. (2.85)

Formally, the value function v(s, x, i) satisfies H(s, x, i, v,Dsv,Dxv,D
2
xv) = 0 for (s, x, i) ∈ [s, T )× R+ ×M,

v(T, x, α(T )) = (K − x)+.
(2.86)

As for the infinite horizon case we will firstly prove that the value function is continuous in

terms of x, so we have the following lemma.

Lemma 2.2.5 The value function v(s, x, i) defined in (2.84) is continuous in (s,x) and sat-

isfies | v(s, x, i) |≤ K.
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Proof. Note that |v(s, x, i)| ≤ K. Given x1 and x2, let X1 and X2 be two solutions of (1.1)

with X1(s) = x1 and X2(s) = x2, respectively. Applying Gronwall’s inequality, we have

E | X1(t)−X2(t) |2≤ C | x1 − x2 |2 eDt, for some C > 0, D > 0.

This implies, in view of Cauchy-Schwarz inequality, that

E | X1(t)−X2(t) |≤ C | x1 − x2 | eDt. (2.87)

Using this inequality, we have

v(s, x1, i)− v(s, x2, i) ≤ sup
τ∈Λs,T

E
[
e−r(τ−s)

∣∣∣(K −X1(τ))
+ − (K −X2(τ))

+
∣∣∣]

≤ sup
τ∈Λs,T

E
[
|X1(τ)−X2(τ)|

]
≤ C | x1 − x2 | eDT . (2.88)

This implies the (uniform) continuity of v(s, x, i) with respect to x.

We next show the continuity of v(s, x, i) with respect to s. Let X(t) be the solution of

(1.1) that starts at t = s with X(s) = x and α(s) = i. Let 0 ≤ s ≤ s′ ≤ T , we define X ′(t) = X(t− (s′ − s)),

α′(t) = α(t− (s′ − s)).
(2.89)

It is easy to show that

E(X(t)−X ′(t))2 ≤ C(s′ − s).

Given τ ∈ Λs,T , let τ ′ = τ + (s′ − s). Then τ ′ ≥ s′ and P (τ ′ > T ) → 0 as s′ − s→ 0.

Let g(t, x) = e−rt(K − x)+. Then v(s, x, i) = ers supτ∈Λs,T
Es,x,ig(τ,X(τ)). It is easy to

show that

|g(s, x)− g(s′, x′)| ≤ |x− x′|+ C|x′ −K||s− s′|,

for some constant C.

We define

J(s, x, i, τ) = ersEs,x,ig(τ,X(τ)).
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We have

J(s, x, i, τ) = ersEg(τ ′ − (s′ − s), X ′(τ ′))

= ers′Eg(τ ′, X ′(τ ′)) + o(1)

= ers′Eg(τ ′, X ′(τ ′))I{τ ′≤T} + ers′Eg(τ ′, X ′(τ ′))I{τ ′>T} + o(1)

= J(s′, x, i, τ ′ ∧ T ) + o(1),

where o(1) → 0 as s′ − s→ 0. It follows that

|v(s′, x, i)− v(s, x, i)| ≤ sup
τ∈Λs,T

|J(s′, x, i, τ ′)− J(s, x, i, τ)| → 0.

Therefore, we have

lim
s′−s→0

|v(s′, x, i)− v(s, x, i)| = 0. (2.90)

This gives the continuity of v with respect to s.

The joint continuity of v follows from (2.88) and (2.90). This completes the proof. tu

Theorem 2.2.6 The value function v(s, x, i) defined in equation(2.84) is a viscosity solution

of equation (2.86).

Proof. We note that v(s, x, i) satisfies the boundary condition since

v(T, x, α(T )) = (K − x)+.

Using Corollary 2.1.13 we know that, for s ≤ θ ≤ τε where τε is the ε−optimal stopping for

some ε > 0, we have

v(s, x, i) = Es,x,i[e−r(θ−s)v(θ,X(θ), α(θ))]. (2.91)

And from Corollary 2.1.11, we have

v(s, x, i) ≥ Es,x,i[e−r(θ−s)v(θ,X(θ), α(θ))] (2.92)

for any stopping time θ ∈ Λs,T .
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First we want to prove that v(t, x, i) is a viscosity supersolution of (2.86), namely, for any

i ∈M we have

min
[
rv(s, xs, i)−

∂ψ(s, xs)

∂s
− 1

2
x2σ2(i)

∂2ψ(s, xs)

∂x2
−

xµ(i)
∂ψ(s, xs)

∂x
−Qv(s, xs, ·)(i), v(s, xs, i)− (K − xs)

+
]
≥ 0 (2.93)

whenever ψ ∈ C1,2([s, T ] × R+) and v(t, x, αs) − ψ(t, x) has a local minimum at (s, xs) ∈

[s, T ]× R+.

From the definition of v, we have

v(s, xs, αs) ≥ (K − xs)
+

v(s, xs, αs)− (K − xs)
+ ≥ 0. (2.94)

Let ψ ∈ C2([s, T ] × R+) and (s, x) ∈ [s, T ] × R+ such that v(t, x, i) − ψ(t, x) has local

minimum at (s, xs) in a neighborhood N(s, xs). We define a function ϕ as follows:

ϕ(t, x, i) =

 ψ(t, x) + v(s, xs, αs)− ψ(s, xs), if i = αs,

v(t, x, i), if i 6= αs.
(2.95)

Let γ be the first jump time of α(·) after the state αs, and let θ ∈ [s, γ] be such that (t,X(t))

starts at (s, xs) and stays in N(s, xs) for s ≤ t ≤ θ. Since θ ≤ γ we have α(t) = αs, for

s ≤ t ≤ θ, by Dynkin’s formula, we have

Es,xs,αse−r(θ−s)ϕ(θ,X(θ), αs)− ϕ(s, xs, αs)

= Es,xs,αs

∫ θ

s

e−r(t−s)

(
− rϕ(t,X(t), αs)

+
∂ϕ(t,X(t), αs))

∂t
+

1

2
X(t)2σ2(αs)

∂2ϕ(t,X(t), αs)

∂x2

+X(t)µ(αs)
∂ϕ(t,X(t), αs)

∂x
+Qϕ(t,X(t), ·)(αs)

)
dt (2.96)

Since for s ≤ t ≤ θ, (t,X(t)) ∈ N(s, xs), and (s, xs) is the minimum of v(t, x, αs) − ψ(t, x),

then for s ≤ t ≤ θ we have,

v(t,X(t), αs) ≥ ψ(t,X(t)) + v(s, xs, αs)− ψ(s, xs) = ϕ(t,X(t), αs) (2.97)
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Using equation (2.95) and (2.97), we have

Es,xs,αse−r(θ−s)v(t,X(t), αs)− v(s, xs, αs)

≥ Es,xs,αs

∫ θ

s

e−r(t−s)

(
− rv(t,X(t), αs)

+
∂ψ(t,X(t))

∂t
+

1

2
X(t)2σ2(αs)

∂2ψ(t,X(t))

∂x2

+X(t)µ(αs)
∂ψ(t,X(t))

∂x
+Qϕ(t,X(t), ·)(αs)

)
dt (2.98)

the inequality (2.97) can also be written in the following form

ψ(t,X(t)) ≤ v(t,X(t), αs)− (v(s, xs, αs)− ψ(s, xs)). (2.99)

Recall that

Qv(t, x, ·)(αs) =
∑
β 6=αs

qαsβ(v(t, x, β)− v(t, x, αs)).

Using equation (2.95), we have

Qϕ(t, x, ·)(αs) =
∑
β 6=αs

qαsβ(ϕ(t, x, β)− ϕ(t, x, αs))

=
∑
β 6=αs

qαsβ(v(t, x, β)− ϕ(t, x, αs))

=
∑
β 6=αs

qαsβ

(
v(t, x, β)− [v(s, xs, αs)

+ψ(t, x)− ψ(s, xs)]
)

(2.100)

and from equation (2.97), we obtain

Qϕ(t,X(t), ·)(αs) =
∑
β 6=αs

qαsβ

(
v(t,X(t), β)− [v(s, xs, αs)

+ψ(t,X(t))− ψ(s, xs)]

)
≥

∑
β 6=αs

qαsβ

(
v(t,X(t), β)− [v(s, xs, αs) + v(t,X(t), αs)

−(v(s, xs, αs)− ψ(s, xs))− ψ(s, xs)]

)
≥

∑
β 6=αs

qαsβ (v(t,X(t), β)− v(Xt,X(t), αs))

≥ Qv(t,X(t), ·)(αs). (2.101)
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Taking these into account, we deduce

Es,xs,αse−r(θ−s)v(t,X(t), αs)− v(s, xs, αs)

≥ Es,xs,αs

∫ θ

s

e−r(t−s)

(
− rv(t,X(t), αs)

+
∂ψ(t,X(t))

∂t
+

1

2
X(t)2σ2(αs)

∂2ψ(t,X(t))

∂x2

+X(t)µ(αs)
∂ψ(t,X(t))

∂x
+Qv(t,X(t), ·)(αs)

)
dt. (2.102)

Using equation (2.92), we obtain

Es,xs,αs

∫ θ

s

e−r(t−s)

(
− rv(t,X(t), αs)

+
∂ψ(t,X(t))

∂t
+

1

2
X(t)2σ2(αs)

∂2ψ(t,X(t))

∂x2
+X(t)µ(αs)

∂ψ(t,X(t))

∂x

+Qv(t,X(t), ·)(αs)

)
dt ≤ 0.

Multiply the last inequality by 1
θ
> 0 and send θ → s, gives

−rv(s, xs, αs) +
∂ψ(s, xs)

∂t
+

1

2
x2

sσ
2(αs)

∂2ψ(s, xs)

∂x2

+xsµ(αs)
∂ψ(s, xs)

∂x
+Qv(s, xs, ·)(αs) ≤ 0.

Therefore, we have

rv(s, xs, αs)−
∂ψ(s, xs)

∂t
− 1

2
x2

sσ
2(αs)

∂2ψ(s, xs)

∂x2

−xsµ(αs)
∂ψ(s, xs)

∂x
−Qv(s, xs, ·)(αs) ≥ 0. (2.103)

The supersolution inequality (2.93) is deduced just by combining (2.94) and (2.103).

Now, let us prove the subsolution inequality, namely, that:

min
[
rv(s, xs, αs)−

∂φ(s, xs)

∂s
− 1

2
x2σ2(αs)

∂2φ(s, xs)

∂x2

−xµ(αs)
∂φ(s, xs)

∂x
−Qv(s, xs, ·)(αs), v(s, xs, αs)− (K − xs)

+
]
≤ 0 (2.104)

whenever φ ∈ C1,2([s, T ] × R+) and v(t, x, αs) − φ(t, x) has a local maximum at (s, xs) ∈

[s, T ]× R+.
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Let φ ∈ C1,2([s, T ]×R+) and v(t, x, αs)−φ(t, x) has a local maximum at (s, xs) ∈ [s, T ]×R+

we can assume without loss of generality that v(s, xs, αs)− φ(s, xs) = 0. Define

Φ(t, x, i) =

 φ(t, x), if i = αs,

v(t, x, i), if i 6= αs.
(2.105)

Let γ be the first jump time of α(·) from the state αs, and let θ0 ∈ [s, γ] be such that (t,X(t))

starts at (s, xs) and stays in N(s, xs) for s ≤ t ≤ θ0. Since θ0 ≤ γ we have α(t) = αs, for

s ≤ t ≤ θ0, and let τD be the optimal stopping time, and for s ≤ θ ≤ min(τD, θ0) we have

from (2.91)

v(s, xs, αs) ≤ Es,xs,αs [e−r(θ−s)v(θ,X(θ), α(θ))]. (2.106)

Moreover, since v(s, xs, αs) − φ(s, xs) = 0 and attains its maximum at (s, xs) in N(s, xs)

then

v(θ,X(θ), α(θ)) ≤ φ(θ,X(θ)).

Thus, we also have

v(θ,X(θ), α(θ)) ≤ Φ(θ,X(θ)), α(θ)). (2.107)

This implies, using Dynkin’s formula, that

Es,xs,αse−r(θ−s)v(θ,X(θ), αs)

≤ Es,xs,αse−r(θ−s)Φ(θ,X(θ), αs)

= Φ(s, xs, αs) + Es,xs,αs

∫ θ

s

e−r(t−s)[
∂φ(t,X(t))

∂t
− rΦ(t,X(t), α(t))

+X(t)µ(αs)
∂φ(t,X(t))

∂x
+QΦ(t,X(t), ·)(αs)

+
1

2
X(t)2σ2(αs)

∂2φ(t,X(t))

∂x2

]
dt. (2.108)

Note that

QΦ(t,X(t), ·)(αs) =
∑
β 6=αs

qαsβ(v(t,X(t), β)− φ(t,X(t)))
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≤
∑
β 6=αs

qαsβ(v(t,X(t), β)− v(t,X(t), αs))

≤ Qv(t,X(t), ·)(αs). (2.109)

Using (2.105) and (2.109), we obtain

Es,xs,αse−r(θ−s)v(θ,X(θ), αs)

≤ Es,xs,αse−rθΦ(θ,X(θ), αs)

= φ(s, xs) + Es,xs,αs

∫ θ

s

e−r(t−s)

[
∂φ(t,X(t))

∂t

+X(t)µ(αs)
∂φ(t,X(t))

∂x
− rv(t,X(t), αs)

+
1

2
X(t)2σ2(αs)

∂2φ(t,X(t))

∂x2
+Qv(t,X(t), ·)(αs). (2.110)

Recall that, v(s, xs, αs) = φ(s, xs) by assumption. From (2.106), we deduce

0 ≤ Es,xs,αse−r(θ−s)v(θ,X(θ), αs)− φ(s, xs)

≤ Es,xs,αs

∫ θ

s

e−rt

[
− rv(t,X(t), αs)

+
∂φ(t,X(t))

∂t
+

1

2
X(t)2σ2(αs)

∂2φ(X(t), αs)

∂x2

+X(t)µ(αs)
∂φ(X(t), αs)

∂x
+Qv(t,X(t), ·)(αs)

]
dt. (2.111)

Multiplying the last inequality by 1
θ
> 0 and sending θ ↓ s, gives

rv(s, xs, αs)−
∂φ(s, xs)

∂t
− 1

2
x2

sσ
2(αs)

∂2φ(xs, αs)

∂x2

−xsµ(αs)
∂φ(xs, αs)

∂x
−Qv(s, xs, ·)(αs) ≤ 0.

This last inequality implies the subsolution inequality (2.104), thus v(t, x, α) is a viscosity

solution of (2.86). This ends the proof of the theorem. tu

In order to have the uniqueness of the viscosity solution we will follow almost the same

process as in the infinite horizon case. Let us first give the useful lemma which is proved in

P.L. Lions [27]

Lemma 2.2.7 Let v(t, x) defined in [0, T ]× Rn the parabolic superjet is

J̄2,+v(t, x) =
{(∂φ(t, x)

∂t
,Dxφ(t, x), D2

xφ(t, x)
)
, φ(t, x) ∈ C1,2([0, T ]× Rn)

and v − φ has a global maximum at (t, x)
}
,
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and the parabolic subjet is

J̄2,−v(t, x) =
{(∂φ(t, x)

∂t
,Dxφ(t, x), D2

xφ(t, x)
)
, φ(t, x) ∈ C1,2([0, T ]× Rn)

and v − φ has a global minimum at (t, x)
}
.

In order to prove the uniqueness result for the viscosity solution we need the following

maximum principle for semicontinuous function, which is stated in a suitable form for our

application.

Theorem 2.2.8 (Comparison Principle ) If v1(t, x, i) and v2(t, x, i) are continuous in

(t, x) and are respectively viscosity subsolution and supersolution of (2.86) with at most a

linear growth. Then

v1(t, x, i) ≤ v2(t, x, i) for all (t, x, i) ∈ [0, T ]× R+ ×M. (2.112)

Proof. For any 0 < δ < 1 and 0 < γ < 1, we define

Φ(t, x, y, i) = v1(t, x, i)− v2(t, y, i)−
1

δ
| x− y |2 −γe(T−t)(x2 + y2),

and

φ(t, x, y) =
1

δ
| x− y |2 +γe(T−t)(x2 + y2).

Note that v1(t, x, i) and v2(t, x, i) satisfy the linear growth. Then, we have for each i ∈M

lim
|x|+|y|→∞

Φ(t, x, y, i) = −∞

and since Φ is a continuous in (t,x,y), therefore its has a global maximum at a point

(tδ, xδ, yδ, α0). Observe that

Φ(tδ, xδ, xδ, α0) + Φ(tδ, yδ, yδ, α0) ≤ 2Φ(tδ, xδ, yδ, α0).

It implies

v1(tδ, xδ, α0)− v2(tδ, xδ, α0)− 2γe(T−tδ)(x2
δ) + v1(tδ, yδ, α0)

−v2(tδ, yδ, α0)− 2γe(T−tδ)(y2
δ ) ≤ 2v1(tδ, xδ, α0)− 2v2(tδ, yδ, α0)

−2

δ
| xδ − yδ |2 −2γe(T−tδ)(x2

δ + y2
δ ).
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Then

−v2(tδ, yδ, α0)− 2e(T−tδ)γ(x2
δ) + v1(tδ, xδ, α0)− 2γe(T−tδ)(y2

δ )

≤ v1(tδ, xδ, α0)− v2(tδ, yδ, α0)−
2

δ
| xδ − yδ |2

−2γe(T−tδ)(x2
δ + y2

δ ).

Consequently, we have

2

δ
| xδ − yδ |2≤ (v1(tδ, xδ, α0)− v1(tδ, yδ, α0))

+(v2(tδ, xδ, α0)− v2(tδ, yδ, α0)). (2.113)

By the linear growth condition, we know that there exist K1, K2 such that

v1(t, x, i) ≤ K1(1 + |x|) and v2(t, x, i) ≤ K2(1 + |x|). Therefore, there exists C such that we

have

2

δ
| xδ − yδ |2≤ C(1+ | xδ | + | yδ |).

So

| x0
δ1 − x0

δ2 |2≤ δC(1+ | x0
δ1 |κ1 + | x0

δ1 |κ2). (2.114)

We also have Φ(s, 0, 0, α0) ≤ Φ(tδ, xδ, yδ, α0) and | Φ(s, 0, 0, α0) |≤ K(1+ | xδ | + | yδ |).

This leads to

γe(T−tδ)(x2
δ + y2

δ ) ≤ v1(tδ, xδ, α0)− v2(tδ, yδ, α0)−
1

δ
| xδ − yδ |2 −Φ(s, 0, 0, α0)

≤ 3C(1+ | xδ | + | yδ |). (2.115)

It comes that

γe(T−tδ)(x2
δ + y2

δ )

(1+ | xδ | + | yδ |)
≤ 3C,

therefore there exists Cγ such that

| xδ | + | yδ |≤ Cγ and tδ ∈ [s, T ]. (2.116)

The inequality (2.116) implies the sets {xδ, δ > 0}, and {yδ, δ > 0} are bounded by Cγ

independent of δ, so we can extract convergent subsequences that we also denote (xδ)δ,
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(yδ)δ, (tδ)δ. Moreover, from the inequality (2.114), it comes that the exists x0 such that

lim
δ→0

xδ = x0 = lim
δ→0

yδ and lim
δ→0

tδ = t0. (2.117)

Using (2.113) and the previous limit, we obtain

lim
δ→0

2

δ
| xδ − yδ |2= 0. (2.118)

Φ achieves its maximum at (tδ, xδ, yδ, α0), so by the theorem 1.2.1 for each ε > 0 there exists

b1δ, b2δ, Xδ, and Yδ such that

(b1δ,
2

δ
(xδ − yδ) + 2γe(T−t)xδ, Xδ) ∈ P̄2,+v1(tδ, xδ, α0) (2.119)

and

(−b2δ,−2
δ
(xδ − yδ) + 2γe(T−t)yδ,−Yδ) ∈ P̄2,+(−v2(tδ, yδ, α0)).

But we know that

P̄2,+(−v2(tδ, yδ, α0)) = −P̄2,−v2(tδ, yδ, α0).

Therefore, we obtain

(b2δ,
2

δ
(xδ − yδ)− 2γe(T−t)yδ, Yδ) ∈ P̄2,−v2(tδ, yδ, α0). (2.120)

The equation (2.119) implies by the definition of the viscosity solution that

min
[
rv1(tδ, xδ, α0)− b1δ −

1

2
(xδ)

2σ2(αs)Xδ − xδµ(α0)
(2

δ
(xδ − yδ)

+2γe(T−tδ)xδ

)
−Qv1(tδ, xδ, ·)(α0), v1(tδ, xδ, α0)− (K − xδ)

+
]
≤ 0.

Consequently, we have two cases; either

v1(tδ, xδ, α0)− (K − xδ)
+ ≤ 0

or

rv1(tδ, xδ, α0)− b1δ − xδµ(α0)
(2

δ
(xδ − yδ) + 2γe(T−tδ)xδ

)
−1

2
(xδ)

2σ2(αs)Xδ −Qv1(tδ, xδ, ·)(α0) ≤ 0.
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First of all, we assume that v1(tδ, xδ, α0)− (K − xδ)
+ ≤ 0. And similarly, (2.120) implies by

the definition of the viscosity solution that,

min
[
rv2(tδ, yδ, α0)− b2δ −

1

2
(yδ)

2σ2(α0)Yδ − yδµ(α0)
(2

δ
(xδ − yδ)

−2γe(T−tδ)yδ

)
−Qv2(tδ, yδ, ·)(α0), v2(tδ, yδ, α0)− (K − yδ)

+
]
≥ 0.

Therefore, we have

v2(tδ, yδ, α0)− (K − yδ)
+ ≥ 0.

It comes that

v1(tδ, xδ, α0)− v2(tδ, yδ, α0)− (xδ − yδ)
+ ≤ 0.

Letting δ → 0, we obtain

v1(t0, x0, α0)− v2(t0, x0, α0) ≤ 0 (2.121)

Note that the function Φ reaches its maximum at (tδ, xδ, yδ, α0). It follows that for all

x ∈ R, t ∈ [s, T ], and i ∈M, we have

v1(t, x, i)− v2(t, x, i)− 2γe(T−t)x2 = Φ(x, x, i) ≤ Φ(tδ, xδ, yδ, α0)

≤ v1(tδ, xδ, α0)− v2(tδ, yδ, α0)− γe(T−tδ)(x2
δ + y2

δ ).

Again letting δ → 0 and using (2.121), we obtain

v1(t, x, i)− v2(t, x, i)− 2γe(T−t)x2

≤ v1(t0, x0, α0)− v2(t0, x0, α0)− 2γe(T−t0)(x0)
2 ≤ 0.

so, we have

v1(t, x, i)− v2(t, x, i) ≤ 2γe(T−t)x2. (2.122)

Second of all, let assume that

rv1(tδ, xδ, α0)− b1δ − xδµ(α0)
(2

δ
(xδ − yδ) + 2γe(T−tδ)xδ

)
−1

2
(xδ)

2σ2(αs)Xδ −Qv1(tδ, xδ, ·)(α0) ≤ 0
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and from (2.120), we have

rv2(tδ, yδ, α0)− b2δ −
1

2
(yδ)

2σ2(α0)Yδ − yδµ(α0)
(2

δ
(xδ − yδ)

−2γe(T−tδ)yδ

)
−Qv2(tδ, yδ, ·)(α0) ≥ 0.

Combining the last two inequalities, we obtain

r(v1(tδ, xδ, α0)− v2(tδ, yδ, α0)) ≤
1

2
σ2(α0)

(
(xδ)

2Xδ − (yδ)
2Yδ

)
+µ(α0)

(
2

δ
(xδ − yδ)

2 + 2γe(T−tδ)
[
(xδ)

2 + (yδ)
2
])

+Qv1(tδ, xδ, ·)(α0)−Qv2(tδ, yδ, ·)(α0) + b1δ − b2δ.

Note that from the equation (1.38), we have

b1δ − b2δ =
∂φ(tδ, xδ, yδ)

∂t
= γe(T−tδ)((xδ)

2 + (yδ)
2).

Therefore, we have

r(v1(tδ, xδ, α0)− v2(tδ, yδ, α0)) ≤
1

2
σ2(α0)

(
(xδ)

2Xδ − (yδ)
2Yδ

)
+µ(α0)

(
2

δ
(xδ − yδ)

2 + 2γe(T−tδ)
[
(xδ)

2 + (yδ)
2
])

+Qv1(tδ, xδ, ·)(α0)−Qv2(tδ, yδ, ·)(α0) + γe(T−tδ)((xδ)
2 + (yδ)

2). (2.123)

We know from the Maximum principle that

−
(

1

ε
+ ‖D2

(x,y)φ(tδ, xδ, yδ)‖
)
I ≤

 Xδ 0

0 −Yδ

 ≤ D2
(x,y)φ(tδ, xδ, yδ)

+ε(D2
(x,y)φ(tδ, xδ, yδ))

2.

Moreover,

D2
(x,y)φ(tδ, xδ, yδ) =

2

δ

 1 −1

−1 1

+ 2γe(T−tδ)

 1 0

0 1


and

(D2
(x,y)φ(tδ, xδ, yδ))

2 =
8

δ2

 1 −1

−1 1

+
8γe(T−tδ)

δ

 1 −1

−1 1


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+4γ2e2(T−tδ)

 1 0

0 1


=

8 + 8γδe(T−tδ)

δ2

 1 −1

−1 1


+4γ2e2(T−tδ)

 1 0

0 1

 . (2.124)

Note that

(xδ)
2Xδ − (yδ)

2Yδ = (xδ, yδ)

 Xδ 0

0 −Yδ

 xδ

yδ


≤ (xδ, yδ)

[
2

δ

 1 −1

−1 1


+
(
2γe(T−tδ) + 4εγ2e2(T−tδ)

) 1 0

0 1


+ε

8 + 8γδe(T−tδ)

δ2

 1 −1

−1 1

] xδ

yδ

 . (2.125)

Letting γ → 0, we obtain

(xδ)
2Xδ − (yδ)

2Yδ ≤ (xδ, yδ)

(
2

δ
+ ε

8

δ2
)

 1 −1

−1 1

 xδ

yδ

 .

Take ε = δ
4
, this leads to

(xδ)
2Xδ − (yδ)

2Yδ ≤ (xδ, yδ)

4
δ

 1 −1

−1 1

 xδ

yδ

 = 4
δ
(xδ − yδ)

2.

Using (2.118), we obtain

lim sup
δ↓0

(xδ)
2Xδ − (yδ)

2Yδ ≤ lim sup
δ↓0

(xδ, yδ)

4

δ

 1 −1

−1 1

 xδ

yδ


= lim sup

δ↓0

4

δ
(xδ − yδ)

2 = 0. (2.126)
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Letting γ → 0 in (2.123), we have

r(v1(tδ, xδ, α0)− v2(tδ, yδ, α0)) ≤
1

2
σ2(α0)

(
(xδ)

2Xδ − (yδ)
2Yδ

)
+µ(α0)

(
2

δ
(xδ − yδ)

2

)
+Qv1(tδ, xδ, ·)(α0)−Qv2(tδ, yδ, ·)(α0)

and taking the lim sup as δ goes to zero and using (2.126), we obtain

r(v1(t0, x0, α0)− v2(t0, x0, α0)) ≤ Qv1(t0, x0, ·)(α0)−Qv2(t0, x0, ·)(α0). (2.127)

Recall that (tδ, xδ, yδ, α0) is maximum of Φ. Then, for all x ∈ R, t ∈ [s, T ], and for all

i ∈M, we have

Φ(t, x, x, i) ≤ Φ(tδ, xδ, yδ, α0).

It comes that

v1(t, x, i)− v2(t, x, i)− 2γe(T−t)x2 ≤

v1(tδ, xδ, α0)− v2(tδ, yδ, α0)− 2γe(T−tδ)(x2
δ + y2

δ ).

Letting δ → 0, we obtain

v1(t, x, i)− v2(t, x, i)− 2γe(T−t)x2 ≤

v1(t0, x0, α0)− v2(t0, x0, α0)− 2γe(T−t)x2
0. (2.128)

Taking x = x0, and t = t0, we have

v1(t0, x0, i)− v2(t0, x0, i)− 2γe(T−t0)x2
0 ≤

v1(t0, x0, α0)− v2(t0, x0, α0)− 2γe(T−t0)x2
0.

Consequently,

v1(t0, x0, i)− v2(t0, x0, i) ≤ v1(t0, x0, α0)− v2(t0, x0, α0).

We recall

Qv1(t0, x0, ·)(α0)−Qv2(t0, x0, ·)(α0)

=
∑
β 6=α0

qα0α[v1(t0, x0, β)− v1(t0, x0, α0)

−v2(t0, x0, β) + v2(t0, x0, α0)] ≤ 0. (2.129)
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Using (2.127), we have

v1(t0, x0, α0)− v2(t0, x0, α0) ≤ 0.

Therefore using (2.128), we conclude that

v1(t, x, i)− v2(t, x, i)− 2γe(T−t)x2 ≤

v1(t0, x0, α0)− v2(t0, x0, α0)− 2γe(T−t0)x2
0 ≤ 0. (2.130)

Letting γ → 0 in (2.122) and the previous inequality, we have

v1(t, x, i) ≤ v2(t, x, i).

This completes the proof of the theorem. tu

The uniqueness of the viscosity solution follows from this theorem because any viscosity

solution is both supersolution and subsolution. It is difficult to find closed-form solutions

the associated PDEs. In the next chapter, we develop numerical schemes to approximate the

value of the American options.



Chapter 3

Numerical methods

In this chapter we consider numerical approximations to the solutions of the HJB equations

associated with the valuation of American option under switching regime. We use explicit

finite difference methods and establish the convergence of those schemes.

3.1 Infinite time horizon American option

In this section we construct a scheme to approximate the value of a perpetual American put

option. Similar analysis works for a perpetual call option.

We want to solve numerically the equation

H
(
i, x, v,

∂v

∂x
,
∂2v

∂x2

)
= min

[
rv(x, i)− 1

2
x2σ2(i)

∂2v(x, i)

∂x2

−xµ(i)
∂v(x, i)

∂x
−Qv(x, ·)(i), v(x, i)− (K − x)+

]
= 0. (3.1)

We use the method of Barles-Souganidis to construct our scheme. Let h ∈ (0, 1] denote

the length of the finite difference interval of variable x and let BK(R+×M) denote the space

of bounded functions u(x, i) defined on R+ ×M continuous in terms of the first variable x

such that sup |u(x, i)| ≤ K. We will approximate the value function v(x, i) by a sequence of

functions vh(x, i) and the partial derivatives
∂v(x, i)

∂x
and

∂2v(x, i)

∂x2
by

∆xv
h(x, i) =

vh(x+ h, i)− vh(x, i)

h

and

∆2
xv

h(x, i) =
vh(x+ h, i) + vh(x− h, i)− 2vh(x, i)

h2
.

70
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Using ∆x and ∆2
x,

(Avh)(x, i) =
1

2
x2σ2(i)∆2

xv
h(x, i) + xµ(i)∆xv

h(x, i) +Qvh(x, ·)(i)

=
1

2
x2σ2(i)

vh(x+ h, i) + vh(x− h, i)− 2vh(x, i)

h2

+ xµ(i)
vh(x+ h, i)− vh(x, i)

h
+Qvh(x, ·)(i). (3.2)

Recall that Qf(x, ·)(i) =
∑

j 6=i qij(f(x, j)− f(x, i)). Rearranging these terms, we have

(Avh)(x, i) =
1

h2

[(
1

2
x2σ2(i) + xµ(i)h

)
vh(x+ h, i)

+
1

2
x2σ2(i)vh(x− h, i)− vh(x, i)(x2σ2(i)

+xµ(i)h)

]
+Qvh(x, ·)(i).

Define

Ah(f, i)(x) =
1

h2

[(
1

2
x2σ2(i) + xµ(i)h

)
f(x+ h, i)

+
1

2
x2σ2(i)f(x− h, i)− f(x, i)(x2σ2(i)

+xµ(i)h)

]
+Qf(x, ·)(i).

In discrete form we have the equation

min
{
uh(x, i)

1

h2

(
rh2 + x2σ2(i) + xµ(i)h+ h2

∑
6=i

qij

)

−1

2
x2σ2(i)

(
uh(x+ h, i) + uh(x− h, i)

h2

)
− xµ(i)uh(x+ h, i)

1

h

−
∑
j 6=i

qiju
h(x, β), uh(x, i)− (K − x)+

}
= 0. (3.3)

In order to approximate the solution of (3.3), we define the following scheme.

S : R+ × Ω̄×M× R ×B(R+ ×M) → R such that,

S(h, x, i, t, u) = min
{ t
h

(
rh2 + x2σ2(i) + xµ(i)h+ h2

∑
j 6=i

qij

)

−1

2
x2σ2(i)

(
u(x+ h, i) + u(x− h, i)

h

)
− xµ(i)u(x+ h, i)

−h
∑
j 6=i

qiju(x, j), h
(
t− (K − x)+

)}
. (3.4)
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We want to prove that the solution of the following equation whenever it exists is an approx-

imation of the viscosity solution of (3.1)

S(h, x, i, uh(x, i), uh) = min
{uh(x, i)

h

(
rh2 + x2σ2(i) + xµ(i)h

+h2
∑
j 6=i

qij

)
− 1

2
x2σ2(i)

(
uh(x+ h, i) + uh(x− h, i)

h

)
− xµ(i)uh(x+ h, i)

−h
∑
j 6=i

qijuh(x, j), h
(
uh(x, i)− (K − x)+

)}
= 0. (3.5)

In order to use the Barles-Souganidis theorem to prove the convergence we need to check

the following hypotheses:

• Monotonicity

S(h, x, i, t, u) ≤ S(h, x, i, t, v) if v ≤ u for all h ≤ 0, x ∈ Σh,

i ∈M, t ∈ R and u, v ∈ B(R+ ×M).

Note that the coefficients of u in S(h, x, i, t, u) are negative, this implies the mono-

tonicity of our scheme S.

• Consistency

lim
y→x

ε→0 h→0

S(h, y, i, ω(y, i) + ε, ω + ε)

h
= F(D2ω(x, i),Dω(x, i), ω(x, i), x)

for every test function ω(·, i) ∈ C2(R), for every i ∈M.

We have the consistency because,

lim
y→x

ε→0 h→0

S(h, y, i, ω(y, i) + ε, ω + ε)

h
= lim

y→x
ε→0 h→0

min

{
ω(y, i) + ε

h2

(
rh2 + y2σ2(i)

+yµ(i)h+ h2
∑
j 6=i

qij

)
− 1

2
y2σ2(i)

(
ω(y + h, i) + ω(y − h, i) + 2ε

h2

)
−yµ
h

(i)(ω(y + h, i) + ε)−
∑
j 6=i

qij(ω(y, j) + ε), ω(y, i) + ε− (K − y)+
}

lim
y→x

ε→0 h→0

S(h, y, i, ω(y, i) + ε, ω + ε)

h
= min

{
rω(x, i)
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−1

2
x2σ2(i)D2ω(x, i)− xµ(i)Dω(x, i)

−Qω(x, i), ω(x, i)− (K − x)+
}

= F(D2ω(x, i),Dω(x, i), ω(x, i), x) (3.6)

• Stability

We want to show that for all h > 0 there exists a solution vh to (3.5) and a constant

C independent of h such that ‖vh‖ ≤ C.

We next construct a strict contraction mapping to show the existence and uniqueness of

solution to (3.5). Let

ah(x, i) =
1

h

(
1

2
x2σ2(i) + xµ(i)h

)
bh(x, i) =

1

2h
x2σ2(i)

ch(x, i) =

(
1

h

[
x2σ2(i) + xµ(i)h+ rh2 + h2

∑
j 6=i

qij

])
. (3.7)

Then equation (3.5) can be written as follows:

u(x, i) = max
{
ah(x, i)u(x+ h, i) + bh(x, i)u(x− h, i)

+h
∑
j 6=i

qiju(x, j), ch(x, i)(K − x)+
}
ch(x, i)

−1.

Let Th be the operator on BK(R+ ×M) defined by:

Thu(x, i) = max
{
ah(x, i)u(x+ h, i) + bh(x, i)u(x− h, i)

h
∑
j 6=i

qiju(x, j), ch(x, i)(K − x)+
}
ch(x, i)

−1.

Theorem 3.1.1. Th is a contraction mapping.

Proof. We want to show that there exists β ∈ (0, 1) such that

‖Thf − Thg‖ ≤ β‖f − g‖ for all f, g ∈ B(R+ ×M)
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where ‖ · ‖ is the sup norm. Note that,

Thf(x, i)− Thg(x, i) = ch(x, i)
−1 max

[
ah(x, i)f(x+ h, i)

+bh(x, i)f(x− h, i) +

h
∑
j 6=i

qijf(x, j), ch(x, i)(K − x)+
]

−ch(x, i)−1 max
[
ah(x, i)g(x+ h, i)

+bh(x, i)g(x− h, i)

+h
∑
j 6=i

qijg(x, j), ch(x, i)(K − x)+
]

≤ ch(x, i)
−1
[
ah(x, i)(f(x+ h, i)− g(x+ h, i))

+bh(x, i)(f(x− h, i)− g(x− h, i))

+h
∑
j 6=i

qij(f(x, j)− g(x, i))
]
. (3.8)

Recall that qij ≥ 0 for j 6= i and ah(x, i) ≥ 0 and bh(x, i) ≥ 0 for all (x, i) ∈ BK(R+ ×M).

Then, we have

Thf(x, i)− Thg(x, i) ≤
1

ch(x, i)

(
ah(x, i) + bh(x, i) + h

∑
j 6=i

qij

)
‖f − g‖.

Finally, note that (
ah(x, i) + bh(x, i) + h

∑
j 6=i qij

)
ch(x, i)

=
x2σ2(i) + xµ(i)h+ h2

∑
j 6=i qij

x2σ2(i) + xµ(i)h+ rh2 + h2
∑

j 6=i qij
< 1. (3.9)

Therefore, we have

‖Thf − Thg‖ ≤ ‖f − g‖.

This ends the proof. tu

Remark 3.1.2 Because of the contraction mapping principle, the fixed point uh of the

contraction Th is a solution of the equation (3.5) and ‖uh‖ ≤ K since Th is defined on

BK(R+ ×M). Therefore, we have the stability of our scheme. We can now prove the con-

vergence of our scheme.
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Theorem 3.1.3 As h→ 0, the solution vh of (3.5) converges locally uniformly to the unique

continuous viscosity solution of (3.1).

Proof. Define

v∗(x, i) = lim sup
y→x
h↓0

vh(y, i) and v∗(x, i) = lim inf
y→x
h↓0

vh(y, i). (3.10)

We first claim that v∗ and v∗ are respectively sub- and supersolutions of (2.44). To prove this

claim, we only consider the subsolution case, because the argument for the supersolution is

similar. Let x0 be a strict local maximum of v∗(x, i)−Φ(x) for some Φ ∈ C∞b (R+). Without

loss of generality, we may also assume that v∗(x0, i) = Φ(x0) and that Φ ≥ 2 suph ‖vh‖

outside the ball B(x0, r), where r > 0 is such that

v∗(x, i)− Φ(x) ≤ 0 = v∗(x0, i)− Φ(x0) inB(x0, r).

Then, there exist sequences hn > 0 and yn ∈ R+ such that: as n→∞

hn → 0, yn → x0, vhn(yn, α) → v∗(x0, i), and (3.11)

yn is a global maximum point of vhn(·, i)− Φ(·).

Denote εn = vhn(yn, i) − Φ(yn), we have obviously εn → 0 and vhn(x, i) ≤ Φ(x) + εn for all

x ∈ R+.

Recall that

S(hn, yn, vhn(x, i), vhn) = 0.

The monotonicity of S and (3.11) imply that

S(hn, yn,Φ(yn) + εn,Φ + εn) ≤ S(hn, yn, vhn(x, i), vhn) = 0. (3.12)

Therefore,

lim
n

S(hn, yn,Φ(yn) + εn,Φ + εn)

hn

≤ 0.
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It comes that,

F(D2Φ(x, i),DΦ(x, i),Φ(x, i), x) =

lim
y→x0

ε→0 h→0

S(h, y, i, ω(y, i) + ε, ω + ε)

h
≤ 0. (3.13)

This proves that v∗ is a viscosity subsolution. By Theorem 2.2.4, we see that our sequence

converges locally uniformly to the unique viscosity solution of (3.1). tu

3.1.1 Numerical examples

In our examples we use a two state Markov chain, and we use the expression first state for

the state when α(t) = 1 and second state for the state when α(t) = 2.

Example 1. Perpetual American call option

First we consider a perpetual American call option with exercise price

K = 70, discount rate r = 0.06, the return vector µ = (−0.8,−0.2), the volatility vector is

σ = (0.7, 0.5) and the generator

Q =

 −5 5

9 −9


In Figure 3.1 we have the corresponding graphs of value and reward functions. This example

corresponds to the case when the stock has negative returns. In the first state the return is

-0.8 and in the second state the return is -0.2. We see from the first picture of Figure 3.1 that

the value function and the reward function intersect when the stock price is approximatively

80 and this is the first time the two curves meet, then the optimal policy is to exercise the

option at that time for a payoff of 10. In the second picture, the two curves intersect when

the stock price is approximatively 84 and the payoff of exercising the option at that time is

14.
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Figure 3.1: Perpetual American call option
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Example 2. Perpetual American put

We study a perpetual American put option with exercise price K = 75.5 discount rate

r = 0.06, the return vector µ = (0.6, 0.2), the volatility vector is σ = (0.5, 0.7) and the

generator

Q =

 −5 5

9 −9


In Figure 3.2 we have the corresponding graphs of value functions and reward function. In

this case the stock has positive returns. In the first state, the return is 0.6 and the first time

the reward function is different from value function is when the stock price is 68, so the

optimal policy is to exercise the option at that time for a payoff of 7.5. In the second state,

the return is 0.2 and the first time the value function is different from the reward function

is when the stock price is 61, so the optimal policy is to exercise the option at that time for

a payoff of 14.5.
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3.2 Finite time horizon American options

In this section, we consider American options with finite time horizon.

3.2.1 Convergence

As we have done for infinite time horizon we will prove the convergence of finite difference

scheme to the unique viscosity solution of the equation

{ H(t, x, i, v,Dtv,Dxv,D
2
xv) = 0

v(T, x, α(T )) = (X(T )−K)+
, (3.14)

where H is defined as follows

H(t, x, i, u,Dtu,Dxu,D
2
xu) = min

[
ru(t, x, i)− ∂u(t, x, i)

∂t

−1

2
x2σ2(i)

∂2u(t, x, i)

∂x2
− xµ(i)

∂u(t, x, i)

∂x

−Qu(t, x, ·)(i), u(t, x, i)− (K − x)+
]

= 0. (3.15)

Given a positive integer N , let gN denote the truncated function gN(x, i) = min((x −

K)+, N) of g(x, i) = (x −K)+, where g is the payoff of American call option. We consider

the corresponding optimal stopping problem with the reward function gN in lieu of g for N

large enough. Let vN denote the corresponding value function, i.e.,

vN(s, x, i) = sup
τ∈Λs,T

E
[
e−r(τ−s)gN(α(X(τ), i) | X(s) = x, α(s) = i

]
.

We can show, as in the untruncated case, that vN is the unique viscosity solution of the

equation HN(i, s, x, v,Dsv,Dxv,D
2
xv) = 0, for (s, x, i) ∈ [0, T )× R+ ×M,

v(T, x, α(T )) = gN(x)
(3.16)

where HN is the following Hamiltonian

HN(i, s, x, u,Dsu,Dxu,D
2
xu) = min

[
ru(s, x, i)− ∂u(s, x, i)

∂s
(3.17)

−(Au)(s, x, i), u(s, x, i)− gN(x, i)
]

= 0. (3.18)
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Moreover, note that gN → g as N →∞. It follows that vN → v, for all (s, x, i). In view

of this, we only need to find a numerical solution for vN .

Let B([0, T ] × R+ × M) denote the space of bounded functions u(t, x, i) defined on

[0, T ] × R+ ×M and continuous in (t, x). Let h > 0 denote the spatial step and k > 0 the

time step. We consider the finite difference operators ∆t, ∆x and ∆2
x defined by

∆tu(t, x, i) =
u(t+ k, x, i)− u(t, x, i)

k
,

∆xu(t, x, i) =
u(t, x+ h, i)− u(t, x, i)

h
.

and

∆2
xu(t, x, i) =

u(t, x+ h, i) + u(t, x− h, i)− 2u(t, x, i)

h2
.

The corresponding discrete version of the Hamiltonian HN is given by

min
[
ru(t, x, i)−∆tu(t, x, i)−

1

2
x2σ2(i)∆2

xu(t, x, i)− xµ(i)∆xu(t, x, i)

−Qu(t, x, ·)(i), u(t, x, i)− gN(x, i)
]

= 0.
(3.19)

Rearranging these terms, we obtain

min
[
u(t, x, i)

(
r +

1

k
+
x2σ(i)

h2
+
xµ(i)

h

)
− u(t+ k, x, i)

k

−u(t, x+ h, i)
(x2σ2(i)

2h2
+
xµ(i)

h

)
− u(t, x− h, i)

x2σ2(i)

2h2

−Qu(t, x, ·)(i), u(t, x, i)− gN(x, i)
]

= 0.

Define a mapping SN : R+ × R+ × R+ ×M× R×BK([0, T ]× R+ ×M) → R

SN(k, h, x, i, y, u) = min

[
yh
(
r +

x2σ2(i)

h2
+

1

k
+
xµ(i)

h
+
∑
j 6=i

qij

)
−hu(t+ k, x, i)

k
− u(t, x+ h, i)

(x2σ2(i)

2h
+ xµ(i)

)
− u(t, x− h, i)

x2σ2(i)

2h

−h
∑
j 6=i

qiju(t, x, j), hy − hgN(x, i)
]
.

Then, (3.19) is equivalent to SN = 0.

Moreover, note that all coefficients of u in SN are negative. This implies that SN is

monotone, i.e., for all u, v ∈ BK([0, T ] × R+ ×M), k, h ∈ R∗, x ∈ R+, y ∈ R, and i ∈ M,

we have

SN(k, h, x, i, y, u) ≤ SN(k, h, x, i, y, v) whenever u ≥ v.
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Definition 3.2.1 The scheme SN is said to be consistent if, for every i ∈ M, x ∈ R+,

t ∈ [0, T ] and for every test function ω(·, ·, i) ∈ C1,2([0, T ]× R) we have

lim
z→x, k→0, ε→0, h→0

SN(k, h, z, i, ω(t, z, i) + ε, ω + ε)

h
= HN(t, x, i, ω,Dxω,D

2
xω).

Lemma 3.2.2 The scheme SN is consistent.

Proof. For i ∈M, let ω(·, ·, i) ∈ C1,2([0, T ]× R). We write

SN(k, h, z, i, ω(t, z, i), ω)

h
= min

{
rω(t, z, i)− ω(t+ k, z, i)− ω(t, z, i)

k

−1

2
z2σ2(i)

ω(t, z + h, i) + ω(t, z − h, i)− 2ω(t, z, i)

h2

−zµ(i)
ω(t, z + h, i)− ω(t, z, i)

h
−Qω(t, z, ·)(i), ω(t, z, i)− gN(z, i)

}
.

Sending z → x, k → 0, ε→ 0, and h→ 0, we can show that

SN(k, h, z, i, ω(t, z, i) + ε, ω + ε)

h
→ HN(t, x, ω,Dtω,Dxω,D

2
xω).

The consistence follows. tu

Note that the equation SN(k, h, z, i, ω(t, z, i), ω) = 0 is equivalent to the equation

ωN(t, z, i) = max

[
1

ch,k(z, i)

(
hω(t+ k, z, i)

k
+ ω(t, z + h, i)

(z2σ2(i)

2h
+ zµ(i)

)
+ω(t, z − h, i)

z2σ2(i)

2h
+ h

∑
j 6=i

qijω(t, z, j)

)
, gN(z, i)

]
where

ch,k(z, i) =
1

h

(
rh2 +

h2

k
+ z2σ2(i) + zµ(i)h+ h2

∑
j 6=i

qij

)
.

We define an operator T N
h,k on B([0, T ]× R+ ×M) as follows,

T N
h,kω(t, z, i) = max

[
1

ch,k(z, i)

(
hω(t+ k, z, i)

k
+ ω(t, z + h, i)

(z2σ2(i)

2h

+zµ(i)
)

+ ω(t, z − h, i)
z2σ2(i)

2h
+ h

∑
j 6=i

qijω(t, z, i)

)
, gN(z, i)

]
Lemma 3.2.3 For each N , k, and h, T N

k,h is a contraction map.
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Proof. To show that T N
k,h is a contraction, we need to show that there exists 0 < β < 1 such

that

‖T N
k,hf − T N

k,hg‖ ≤ β‖f − g‖ for all f, g ∈ B([0, T ]× R+ ×M)

where ‖ · ‖ is the sup norm. Note that

T N
k,hω(t, z, i)− T N

k,hu(t, z, i)

= max

[
ch,k(z, i)

−1

(
hω(t+ k, z, i)

k
+ ω(t, z + h, i)

(z2σ2(i)

2h
+ zµ(i)

)
+ω(t, z − h, i)

z2σ2(i)

2h
+ h

∑
j 6=i

qijω(t, z, j)

)
, gN(z, i)

]
−max

[
ch,k(z, i)

−1

(
hu(t+ k, z, i)

k

+u(t, z + h, i)
(z2σ2(i)

2h
+ zµ(i)

)
+ u(t, z − h, i)

z2σ2(i)

2h
+ h

∑
j 6=i

qiju(t, z, j)

)
, gN(z, i)

]
.

This implies that

T N
k,hω(t, z, i)− T N

k,hu(t, z, i)

≤
∣∣∣∣[ch,k(z, i)

−1

(
hω(t+ k, z, i)

k
+ ω(t, z + h, i)

(z2σ2(i)

2h
+ zµ(i)

)
+ω(t, z − h, i)

z2σ2(i)

2h
+ h

∑
j 6=i

qijω(t, z, j)

)]
−
[
ch,k(z, i)

−1

(
hu(t+ k, z, i)

k

+u(t, z + h, i)
(z2σ2(i)

2h
+ zµ(i)

)
+ u(t, z − h, i)

z2σ2(i)

2h
+ h

∑
j 6=i

qiju(t, z, j)

)]∣∣∣∣.
(3.20)

Moreover, we know that qij ≥ 0 for j 6= i and the other coefficients are also nonnegative,

then we have

T N
k,hω(t, z, i)− T N

k,hu(t, z, i) ≤ ch,k(x, i)
−1

[
h

k
+
z2σ2(i)

2h
+ zµ(i) +

z2σ2(i)

2h
+ h

∑
j 6=i

qij

]
‖ω − u‖.

In addition, note that

ch,k(z, i) =

[
h

k
+
z2σ2(i)

2h
+ zµ(i) +

z2σ2(i)

2h
+ h

∑
j 6=i

qij

]
+ rh,

which implies that,

β = ch(z, i)
−1

[
h

k
+
z2σ2(i)

2h
+ zµ(i) +

z2σ2(i)

2h
+ h

∑
j 6=i

qij

]
< 1.

Therefore,

‖T N
k,hω − T N

k,hu‖ < β‖ω − u‖.

tu
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Definition 3.2.4 The scheme SN is said to be stable if for every h, k ∈ R∗, there exists a

bounded solution uh,k ∈ B([0, T ]× R+ ×M) to the equation

SN(k, h, x, i, u(t, x, i), u) = 0. (3.21)

with the bound independent of k, and h.

Let us denote BN([0, T ] × R+ × M) subset BN([0, T ] × R+ × M), such that for every

u ∈ BN([0, T ]× R+ ×M) , ‖u‖ ≤ N .

Lemma 3.2.5 If ω ∈ BN([0, T ]× R+ ×M), Then ‖T N
k,hω‖ ≤ N .

Proof. Note that

T N
h,kω(t, z, i) = max

[
1

ch,k(z, i)

(
hω(t+ k, z, i)

k
+ ω(t, z + h, i)

(z2σ2(i)

2h
+ zµ(i)

)
+ω(t, z − h, i)

z2σ2(i)

2h
+ h

∑
j 6=i

qijω(t, z, j)

)
, gN(z, i)

]
,

which implies,

T N
k,hω(t, z, i) ≤ ch,k(z, i)

−1

[
h

k
+
z2σ2(i)

2h
+ zµ(i) +

z2σ2(i)

2h
+ h

∑
j 6=i

qij

]
max

[
‖ω‖, gN(z, i)

]
.

Therefore, we have

‖T N
k,hω(t, z, i)‖ ≤ max

[
‖ω‖, ‖gN‖

]
≤ N.

tu

Remark 3.2.6 The result of this last lemma shows that for any h, k ∈ R∗, T N
k,h is an operator

on BN([0, T ] × R+ ×M). And since T N
k,h is a strict contraction, it has a unique fixed point

in BN([0, T ]× R+ ×M) that we denote uN
k,h

Lemma 3.2.7 The scheme SN is stable.
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Proof. Note that the solution of the equation (3.21) is just a fixed point of the contrac-

tion T N
h,k and by the contraction mapping principle such a fixed point exists. And using

Lemma 3.2.5 we conclude that the equation (3.21) has a unique solution uN
k,h in the set

BN([0, T ]× R+ ×M) thus we have, ‖uk,h‖ ≤ N . tu

We are now in the position of proving the convergence of our scheme to the unique

viscosity solution. For all k, and h in R+, x ∈ R+, and i ∈M we define,

vN
k,h(t, x, i) =

{
uN

k,h(t, x, i), if t ∈ [0, T ),

gN(x, i), if t = T.

Theorem 3.2.8 As h → 0, and k → 0 the sequence vN
k,h converges locally uniformly on

[0, T ]× R+ ×M to the unique viscosity solution of (3.16).

Proof. Define

v∗N(t, x, i) = lim sup
y→x,k↓0,h↓0

vN
k,h(t, y, i) and v∗N(t, x, i) = lim inf

y→x,k↓0,h↓0
vN

k,h(t, y, i). (3.22)

We claim that v∗N and v∗N are respectively sub- and supersolutions of (3.16).

To prove this claim. We only consider the v∗N case, since the argument for v∗N is similar.

Namely we want to prove that for any i ∈M, we have

HN(t0, x0, i, v
∗
N ,DtΦ,DxΦ,D

2
xΦ) ≤ 0

for any test function Φ ∈ C1,2([0, T ] × R+) such that (t0, x0) is a strict local maximum of

v∗N(t, x, i) − Φ(t, x). Without loss of generality we may also assume that v∗N(t0, x0, i) =

Φ(t0, x0) and because of the stability of our scheme we can also assume that, Φ ≥

2 supk,h ‖vN
k,h‖ outside of the ball B((t0, x0), r) where r > 0 is such that

v∗N(t, x, i)− Φ(t, x) ≤ 0 = v∗N(t0, x0, i)− Φ(t0, x0) in B((t0, x0), r).

This implies that there exist sequences kn > 0, hn > 0 and (tn, yn) ∈ [0, T ]× [0, C] such that;

as n→∞ we have

kn → 0, hn → 0, yn → x0, tn → t0, v
N
kn,hn

(tn, yn, i) → v∗N(t0, x0, i), (3.23)
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and (tn, yn) is a global maximum point of vN
kn,hn

(·, ·, i)− Φ(·, ·).

We denote εn = vN
kn,hn

(tn, yn, i)− Φ(tn, yn), we have obviously εn → 0 and

vN
kn,hn

(t, x, i) ≤ Φ(t, x) + εn for all (t, x) ∈ [0, T ]× R+.

Recall that

SN(kn, hn, yn, α, v
N
kn,hn

(t, x, i), vN
kn,hn

) = 0.

The monotonicity of S and (3.23) imply that

SN(kn, hn, yn, i,Φ(tn, yn) + εn,Φ + εn) ≤ SN(kn, hn, yn, α, v
N
kn,hn

(t, x, i), vN
kn,hn

)

= 0 (3.24)

therefore

lim
n

SN(kn, hn, yn, i,Φ(tn, yn) + εn,Φ + εn)

hn

≤ 0

Consequently,

HN(t0, x0, i, v
∗
N ,DtΦ,DxΦ,D

2
xΦ) =

lim
y→x0,kn→0,ε→0,h→0

S(k, h, y, i,Φ(y, i) + ε,Φ + ε)

h
≤ 0. (3.25)

This proves that v∗N is a viscosity subsolution and, using the uniqueness of the viscosity solu-

tion, we see that vN = v∗N = v∗N . Therefore we conclude that the sequence (vN
h,k)N converges

locally uniformly to vN and we already know that (vN)N converges locally uniformly to v

the unique viscosity solution of (2.86), finally we have

lim
N→∞

lim
h→0,k→0

vN
h,k = v.

tu
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3.2.2 Numerical examples

In our examples we use two state Markov chains, and we use the expression first state for

the state when α(t) = 1 and second state for the state when α(t) = 2.

Example 1. American call option

For this example we study an American call option with expiration T = 0.25 (1 quarter

of a year), exercise price K = 70 discount rate r = 0.06, the return vector µ = (−.6, 0.4),

the volatility vector is σ = (0.3, 0.4) and the generator

Q =

 −.5 .5

.9 −.9

 .

The corresponding option prices are given in Figure 3.3. We see that when the market is

bad as it is in the first state the American call option price is relatively smaller than when

the market is good as we see on the second figure. Figure 3.4 describes the free boundary

for the two states. And Figure 3.5 gives the continuation domain when we fix t = 0 for both

the first and second states. We then deduce that, in the first state when the market is bad,

the first time the value function v(0, x, 1) and reward function g(x, 1) intersect is when the

stock price is x = 80 for and option price of 10 dollars. And when the market is good those

two curves intersect at the point (83, 13). So the optimal policy is to exercise the option as

soon as those curves intersect.
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Example 2. American put option

For second example we consider an American put option with expiration T = 0.25 years,

exercise price K = 80 discount rate r = 0.06, the return vector µ = (−0.6, 0.4), the volatility

vector is σ = (0.3, 0.4) and the generator

Q =

 −1.6 1.6

2 −2

 .

Figure 3.6 describes the put option price surface. We see that when the market is bad

as it is in the first state the American put option price, unlike what we have for the call

option, is relatively greater than when the market is good as we see on the second state’s

graph. Figure 3.7 describes the free boundary for the two states. And Figure 3.8 gives the

continuation domain when we fix t = 0 for both the first and second states. We then deduce

that, in the first state when the market is bad, the first time the value function v(0, x, 1) and

reward function g(x, 1) intersect is when the stock price is x = 65.50 for and option price of

14 dollars. And when the market is good those two curves intersect when the stock price is

68 and the option price is 12 dollars. So the optimal policy is to exercise the option as soon

as those curves intersect.
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Chapter 4

Optimal stock liquidation under regime switching model with finite time

horizon

Introduction

Decision making in stock liquidation is crucial in successful trading and portfolio manage-

ment. One of the main factors that affects decision making in a marketplace is the trend of

the stock market. It is necessary to incorporate such trends in modeling to capture detailed

stock price movements. In a recent paper of Zhang [42] the regime switching model is pro-

posed and developed. Such switching processes can be used to represent market trends or

the trends of an individual stock. In addition, various economic factors such as interest rates,

business cycles etc. can also be easily incorporated in the model. In [42], a selling rule deter-

mined by two threshold levels, a target price and a stop-loss limit is considered. One makes

a selling decision whenever the price reaches either the target price or the stop-loss limit.

The objective is to choose these threshold levels to maximize an expected return function.

In [42], such optimal threshold levels are obtained by solving a set of two-point boundary

value problems.

In this chapter, we consider an optimal selling rule among the class of almost all stopping

times under a regime switching model, this is a more general type of selling. We study the

case when the stock has to be sold within a pre-specified time limit. Given a fixed transaction

cost, the objective is to choose a stopping time so as to maximize an expected return. The

optimal stopping problem was studied by McKean [28] back to the 1960’s when there is

no switching, see also Samuelson [35] in connection with derivative pricing and Øksendal

[32] for optimal stopping in general. In models with regime switching, Guo and Zhang [15]

95
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considered the model with a two-state (m = 2) Markov chain. Using a smooth-fit technique,

they were able to convert the optimal stopping problem to a set of algebraic equations under

certain smoothness conditions. Closed-form solutions were obtained in these cases. However,

it can be shown with extensive numerical tests that the associated algebraic equations may

have no solutions in some cases. This suggests that the smoothness (C2) assumption may

not hold in these cases. Moreover, the results in [15] and [32] are established on an infinite

time horizon setup. However, in practice, an investor often has to sell his stock holdings by

a certain date due to various non-price related consideration such as year-end tax deduction

or the need for raising cash for major purchases. In these cases, it is necessary to consider

the corresponding optimal selling with a finite horizon. It is the purpose of this chapter

to treat the underlying finite horizon optimization problem with possible non-smoothness

of the solutions to the associated HJB equations. We resort to the concept of viscosity

solutions and show that the corresponding value is indeed the only viscosity solution to the

HJB equation. We also establish the convergence of a (explicit) finite-difference scheme for

solving the HJB equations. The main results of the chapter include treatment of an optimal

stopping in a general regime switching model and the corresponding numerical investigations

of these solutions. It is well known that the optimal stopping rule can be determined by the

corresponding value function; see, for example, Krylov [26] and ØKsendal [32] for diffusions,

Pham [33] for jump diffusions, and Guo and Zhang [15] for regime switching diffusions. A

main focus of this paper is to completely characterize the value function in terms of viscosity

solutions.

The chapter is organized as follows. In the next section, we formulate the problem under

consideration and then present the associate HJB equations and their viscosity solutions. In

Section 3, we obtain the continuity property of the value function and show that it is the only

viscosity solution to the HJB equations. In Section 4, we construct the corresponding finite

difference method for solving the HJB equation and establish its convergence. In Section 5,

we give a numerical example. Real market data is used to illustrate our results.
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Our main objective is to find the optimal reward function of a selling transaction when

movement of the market a driven by a hidden the Markov chain with n arbitrary states.

4.1 Problem formulation

Given an integer m ≥ 2, let α(t) ∈M = {1, 2, ...,m} denote a Markov chain with an m×m

matrix generator Q = (qij)m,m, i.e., qij ≥ 0 for i 6= j and Σm
j=1qij = 0 for i ∈ M. Let

X(t) denote the price of a non-dividend stock. It satisfies the following stochastic differential

equation  dX(t) = X(t) (µ(α(t))dt+ σ(α(t))dW (t)) ,

X(s) = x, s ≤ t ≤ T,
(4.1)

where x is the initial price, T is a finite time, µ(i) is the rate of return, σ(i) is the volatility,

and W (t) is the standard Wiener process. Both W (·) and α(·) are defined on a probability

space (Ω,F , P ) and W (·) is independent of α(·).

In this chapter, we consider the optimal selling rule with a finite horizon T . Given the

transaction cost a > 0, the objective of the problem is to sell the stock by time T so as to

maximize E[e−r(τ−s)(X(τ)− a)], where r > 0 is a discount rate.

Let Ft = σ{α(s),W (s); s ≤ t} and let Λs,T denote the set of Ft-stopping times such that

s ≤ τ ≤ T a.s. The value function can be written as follows

v(s, x, i) = sup
τ∈Λs,T

E
[
e−r(τ−s)(X(τ)− a) | X(s) = x, α(s) = i

]
. (4.2)

Given the value function v(s, x, i), it is typical that an optimal stopping time τ ∗ can be

determined by the following continuation region

D = {(t, x, i) ∈ [0, T )× R×M; v(t, x, i) > x− a},

as follows:

τ ∗ = inf{t > 0; (t,X(t), α(t)) 6∈ D}.
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We know from Corollary 2.1.13 that, if τ ∗ < +∞ then

v(s, x, i) = Es,x,i[e−r(τ∗−s)(X(τ ∗)− a)]. (4.3)

Thus τ ∗ is the optimal stopping time.

Let A denote the generator of (X(t), α(t)). Then, we have

(Af)(s, x, i) =
1

2
x2σ2(i)

∂2f(s, x, i)

∂x2
+ xµ(i)

∂f(s, x, i)

∂x
+Qf(s, x, ·)(i)

where

Qf(s, x, ·)(i) =
∑
j 6=i

qij(f(s, x, j)− f(s, x, i)).

The corresponding Hamiltonian has the following form

H(i, s, x, u,Dsu,Dxu,D
2
xu) = min

[
ru(s, x, i)− ∂u(s, x, i)

∂s
−

(Au)(s, x, i), u(s, x, i)− (x− a)
]

= 0. (4.4)

Note that X(t) > 0 for all t. Let R+ = (0,∞). Formally, the value function v(s, x, i) satisfies

the HJB equation H(i, s, x, v,Dsv,Dxv,D
2
xv) = 0, for (s, x, i) ∈ [0, T )× R+ ×M,

v(T, x, α(T )) = (x− a).
(4.5)

We will prove that in fact the value function is a viscosity solution of (4.5).

4.2 Properties of value functions

In this section, we study the continuity of the value function; show that it satisfies the

associated HJB equation as a viscosity solution; and establish the uniqueness. We first show

the continuity property.

Lemma 4.2.1 For each i ∈ M, the value function v(s, x, i) is continuous in (s, x). More-

over, it has at most linear growth rate, i.e., there exists a constant C such that | v(s, x, i) |≤

C(1 + |x|).
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Proof. for the continuity in (s, x) the argument is similar as in Lemma 2.2.5 and for the

linear growth the argument is similar as in Lemma 1.0.3.

tu

Theorem 4.2.2 The value function v(s, x, i) is the unique viscosity solution of equation

(4.5).

Proof. First we prove that v(s, x, i) is a viscosity supersolution of (4.5). Given (s, xs) ∈

[0, T ]×R+, let ψ ∈ C2([0, T ]×R+) such that v(t, x, α)−ψ(t, x) has local minimum at (s, xs)

in a neighborhood N(s, xs). We define a function

ϕ(t, x, i) =

 ψ(t, x) + v(s, xs, αs)− ψ(s, xs), if i = αs,

v(t, x, i), if i 6= αs.
(4.6)

Let γ ≥ s be the first jump time of α(·) from the initial state αs, and let θ ∈ [s, γ] be such

that (t,X(t)) starts at (s, xs) and stays in N(s, xs) for s ≤ t ≤ θ. Moreover, α(t) = αs, for

s ≤ t ≤ θ. Using Dynkin’s formula, we have,

Es,xs,αse−r(θ−s)ϕ(θ,X(θ), αs)− ϕ(s, xs, αs)

= Es,xs,αs

∫ θ

s

e−r(t−s)

(
− rϕ(t,X(t), αs)

+
∂ϕ(t,X(t), αs))

∂t
+

1

2
X(t)2σ2(αs)

∂2ϕ(t,X(t), αs)

∂x2

+X(t)µ(αs)
∂ϕ(t,X(t), αs)

∂x
+Qϕ(t,X(t), ·)(αs)

)
dt. (4.7)

Recall that (s, xs) is the minimum of v(t, x, αs)−ψ(t, x) in N(s, xs). For s ≤ t ≤ θ, we have

v(t,X(t), αs) ≥ ψ(t,X(t)) + v(s, xs, αs)− ψ(s, xs) = ϕ(t,X(t), αs). (4.8)

Using equation (4.6) and (4.8), we have

Es,xs,αse−r(θ−s)v(θ,X(θ), αs)− v(s, xs, αs)

≥ Es,xs,αs

∫ θ

s

e−r(t−s)

(
− rv(t,X(t), αs)

+
∂ψ(t,X(t))

∂t
+

1

2
X(t)2σ2(αs)

∂2ψ(t,X(t))

∂x2

+X(t)µ(αs)
∂ψ(t,X(t))

∂x
+Qϕ(t,X(t), ·)(αs)

)
dt. (4.9)
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Moreover, we have

Qϕ(t,X(t), ·)(αs) =
∑
β 6=αs

qαsβ

(
ϕ(t,X(t), β)− ϕ(t,X(t), αs)

)
≥

∑
β 6=αs

qαsβ

(
v(t,X(t), β)− v(t,X(t), αs)

)
≥ Qv(t,X(t), ·)(αs). (4.10)

Combining (4.9) and (4.10), we have

Es,xs,αse−r(θ−s)v(θ,X(θ), αs)− v(s, xs, αs)

≥ Es,xs,αs

∫ θ

s

e−r(t−s)

(
− rv(t,X(t), αs)

+
∂ψ(t,X(t))

∂t
+

1

2
X(t)2σ2(αs)

∂2ψ(t,X(t))

∂x2

+X(t)µ(αs)
∂ψ(t,X(t))

∂x
+Qv(t,X(t), ·)(αs)

)
dt.

(4.11)

It follows from Corollary 2.1.11 that

Es,xs,αs

∫ θ

s

e−r(t−s)

(
− rv(t,X(t), αs) +

∂ψ(t,X(t))

∂t
+

1

2
X2(t)σ2(αs)

∂2ψ(t,X(t))

∂x2

+X(t)µ(αs)
∂ψ(t,X(t))

∂x
+Qv(t,X(t), ·)(αs)

)
dt ≤ 0.

Dividing both sides by θ > 0 and sending θ → s lead to

−rv(s, xs, αs) +
∂ψ(s, xs)

∂t
+

1

2
x2

sσ
2(αs)

∂2ψ(s, xs)

∂x2

+xsµ(αs)
∂ψ(s, xs)

∂x
+Qv(s, xs, ·)(αs) ≤ 0.

(4.12)

By definition, v(s, x, i) ≥ x − a. The supersolution inequality follows from this inequality

and (Corollary 2.1.13).

The proof for the viscosity subsolution inequality is similar to the supersolution part

except that we need to treat points (t, x) such that v(t, x, i) > x− a, for i ∈M.

In this case, take ε = (v(t, x, i)− (x− a))/2 > 0 and let

τ ε = inf{s ≤ t ≤ T : v(t,X(t), α(t)) ≥ (X(t)− a) + ε} ∧ γ,

where γ is the first jump time of α(t) with α(s) = αs. It can be shown as in Pham [33] that

Eτ ε > 0. Following Corollary 2.1.11, Dynkin’s formula with τ = θ ∧ τ ε, and let θ → 0 in the
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resulting inequality, we have

rv(s,X(s), αs)−
∂φ(s,X(s))

∂t
− 1

2
X(s)2σ2(αs)

∂2φ(X(s), αs)

∂x2

−X(s)µ(αs)
∂φ(X(s), αs)

∂x
−Qv(s,X(s), ·)(αs) ≤ 0.

This gives the subsolution inequality. Therefore, v(t, x, i) is a viscosity solution of (4.5).

Finally, the uniqueness is just similar to the uniqueness of the finite time horizon Amer-

ican option obtain in chapter 2. tu

Remark 4.2.3 In the infinite time horizon case the optimal reward or value function is

defined as follows,

v(x, i) = sup
τ
E
[
e−rτ (X(τ)− a) | X(0) = x, α(0) = i

]
(4.13)

where the supremum taking over all possible stopping time τ . We can similarly prove that

v(x, i) is the unique viscosity solution of the nonlinear PDE

min

{
rv(x, i)− 1

2
x2σ2(i)

∂2v(x, i)

∂x2
− xµ(i)

∂v(x, i)

∂x
−Qv(x, ·)(i), v(x, i)− (x− a)

}
= 0.(4.14)

Remark 4.2.4 Due to the similarities of this problem and the finite time horizon American

option we can just use the scheme we developed in order to approximate the value of finite

time horizon American option to approximate the value of the viscosity solution of equation

(4.5).

4.3 A Numerical example

In this section, we present a numerical example using the IBM stock daily closing from

October 28, 2002 to August 28, 2004. We consider the switching process α(t) where α(t) ∈

M = {1, 2} represents the trends of IBM stock. In particular, α(t) = 1 stands for the

up-trend and α(t) = 2 the down-trend. The generator of α(t) is given by −λ λ

µ −µ

 . (4.15)
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The IBM daily closing prices during this period are plotted in Figure 1.

Based on these closing prices, we calibrate the model using the method introduced in [42]

and obtain

λ = 2.0367, µ = 1.9821.

The corresponding stationary distribution ν = (ν1, ν2) = (µ/(λ + µ), λ/(λ + µ)) =

(0.4932, 0.5068).

And for the volatility and return we have, we have the following vectors

σ = (σ(1), σ(2)) = (0.3478, 0.3385) r = (r(1), r(2)) = (0.2501,−0.3570),

where σ(1) represents the volatility when IBM is up and σ(2) represent the volatility when

IBM is down. The same holds for the return vector.

Then the averaged volatility σ =
√
ν1σ2(1) + ν2σ2(2) = 0.3431. and the average return

r = ν1r(1) + ν2r(2) = −0.0576.

We take the transaction fee a = 0.05 per share and the discount rate is r0 = 0.06.

In Figure 2, the first picture gives the continuation region with the dished line when the

averaged volatility and return rate is used in a model without switching. In this case, the

selling action should take place when t = 48 at 83 per share which corresponds to 9.2%

return in 48 days and normalized to 48% annual return.

The second and third pictures in Figure 2 give the continuation regions when the market

is in uptrend and downtrend, respectively. Suppose we can detect a trend change in two to

three days, which is typical with the help of Wonham filter. Then one should be able to

detect a trend change from up to down near t = 25. In this case, one should sell at t = 25

at 84.7 per share which amounts a 11.4% gain in 25 days and equals 114.9% annual return.
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This example shows that by differentiating different market modes (up or down trends),

a better selling decision can be made to achieve a higher return.
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4.4 Future research problems

1. Find a formula to evaluate European options under regime switching model.

2. Study the analytical properties of the free boundary problem associated to the optimal

stopping of a switching diffusion.

3. Develop numerical methods to approximate the free boundary of a switching diffusion.
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