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1

INTRODUCTION

Rapid technological advances and the increasing miniaturization of electronic compo-

nents have put in the hands of the average citizen electronic gadgets of exceptional quality.

In the medical field, imaging devices have revolutionized the medical practice. It is now

possible to carry high precision surgical procedures with minimal damage to the muscular

apparatus, resulting in reduced recovery time. We have also gained the ability to diagnose

most of our internal ailments using imaging technologies.

Unfortunately, the images that we capture are not always of good quality for various

reasons ranging from defects of the imaging sensors to the lack of dexterity by the user.

Some “noise” is introduced, and it is necessary to remove as much of it as possible prior to

using the image for its intended purpose, making image cleaning a necessary preprocessing

step to any imaging application. However, the notion of noise is vague, and its origin and

structure are very hard to model.

The image processing field is a multidisciplinary endeavor ranging from filtering the-

ory to partial differential equations (PDE), and remains an active area of research. Image

denoising models come in two broad classes: the PDE approach pioneered by J.-M. Morel

[5–7, 30], and the variational approach in which images are modeled as oscillatory spaces

and the cleaning process is reduced to functionals minimization over a suitable functional

space [39, 58, 71].

One of the most “efficient” models for image denoising is the total variation minimiza-

tion model of Rudin, Osher and Fatemi (ROF) [71]. These scholars proposed to recover

a cleaner image as the function with minimum total variation subject to constraints corre-

sponding to a priori knowledge of the statistics of the noise. The striking thing about the
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ROF model is its capability to remove noise while enhancing the edges in the image. The

study of the ROF model has generated a sizeable literature, the bulk of which deals with

algorithmic considerations.

In their seminal paper [71] introducing the total variation model, Rudin et al. enforced

the constraints using the Lagrange multipliers method, and used the gradient projection

method of Rosen [69, 70] with a Lagrange multiplier update to compute approximations

of the minimizer of the associated Lagrangian. A big drawback of the ROF Lagrangian is

its nondifferentiability; Acar and Vogel [1] circumvented this with a relaxation of the total

variation functional. Using a duality argument, they constructed a family of functionals

that approximate the total variation functional uniformly, and showed that the minimizers

of these functionals yielded an approximation of the clean image recovered with the ROF

model.

Chambolle and Lions [35] also used a functional relaxation technique to construct a

minimizing sequence of the ROF model in the Hilbert space H1(Ω), using Γ-convergence

arguments. Exploiting the functionals in [1], Dobson and Vogel [41] studied finite elements

approximation of the ROF functional and developed an algorithm for computing approx-

imations of the ROF minimizer. Hong [48] followed a similar line of reasoning to study

the so called minimal surface bivariate spline image enhancement approach. The Galerkin

method is used on spaces of smooth bivariate splines to construct a minimizing sequence

of the Acar-Vogel relaxation of the ROF model when its minimizer belongs to W1,1 (Ω).

The gradient descent algorithm studied by Rudin et al. [71] may be regarded as a fully

explicit numerical scheme for the total variation flow. Feng and Prohl [45] studied the

approximation of the total variation flow and established the optimal convergence rate of a

fully explicit finite elements approximation of the latter. Wang and Lucier [74] established

error rates of a piecewise constant approximation of the ROF model under the assumptions

that the image being denoised is L2-Hölder continuous and the domain of the image is

rectangular; their arguments do not extend to general polygonal domains. Their approach
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did not use the functional relaxation method, instead they exploited the stability property

of the ROF model to give a direct proof of convergence in L2(Ω).

Recently, the regularity property of the ROF model has been studied [29] and it was

shown that the model preserves the modulus of continuity of the data when the domain

is convex. The research carried in this dissertation is motivated by the latter regularity

property, and the need of a computational scheme that could be used to simulate the smooth

solutions of the ROF model.

This dissertation is the first time an interpolation argument is used in conjunction with a

finite difference scheme to construct a continuous approximation of the ROF model. It also

contains a substantial improvement on the approximation of the ROF model on arbitrary

polygonal domain. Unlike in most of the works mentioned above, relaxation methods

are not used in the construction of the minimizing sequence. This work also improves

Hong’s [48] work significantly by producing a direct approximation of the ROF model

with bivariate splines that converges in the space of functions of bounded variation. The

dissertation is organized as follows.

The second chapter is devoted to the mathematical preliminaries and the total variation

denoising model. We set up the mathematical framework in which the total variation model

of image denoising is posed, then introduce the ROF model and review its properties as

relevant to this work.

The third chapter contains the first contribution of this dissertation. In the specific

case where the image domain is rectangular, we construct a piecewise linear interpolation

function and prove its convergence to the ROF minimizer when the data are bounded and

Hölder continuous with respect to the L2-norm. Along the way, we also introduce a novel

discretization of the total variation functional, which enforces more of the desired Neumann

boundary conditions.

In chapter 4, we develop three algorithms for computing the minimizer of the new dis-

crete total variation model introduced in chapter 3. These are: the dual projected-gradient
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algorithm, the alternating dual projected-gradient algorithm, and the alternating dual fixed

point algorithm. The dual projected-gradient algorithm fits in the class of proximal gradient

algorithms so its convergence could be derived from the general theory of such algorithms,

however, we provide a direct proof. We also establish the convergence of the alternat-

ing fixed point algorithm, and conjecture the convergence of the alternating dual projected

gradient algorithm.

Chapter 5 deals with the approximation of the ROF model on arbitrary polygonal do-

mains. Unlike in chapter 3 where we used an interpolation scheme, here we use the

Galerkin method to construct a bivariate spline minimizing sequence. The convergence

to the minimizer is established for any data function in the space of square integrable func-

tions. For numerical simulation purposes, we study a relaxation of the ROF model from

which an algorithm is derived. A proof of the convergence of the algorithm is derived and

the details of its implementation provided.

A key tool in our analysis is the existence of an extension operator T from BV (Ω) into

BV (Rn) such that for all u ∈ BV (Ω), T (u) is compactly supported and the total variation

of T (u) on the boundary of Ω is zero. For the type of domains that we are concerned with,

the result already existed in the literature and we reviewed it in the appendix A.
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2

PRELIMINARIES AND THE IMAGE DENOISING PROBLEM

In this chapter, we present the total variation based image denoising model and give

an overview of the research efforts that have contributed significantly to the understanding

of the model. We also present a general framework on which the total variation model is

founded.

2.1 FUNCTIONAL MINIMIZATION OVER BANACH SPACES

In this section, we review sufficient conditions on the functional F that guarantee the

existence of a solution to (2.1), and discuss the functional framework in which the denoising

problem is posed to guarantee the existence of the solution. The image denoising model

that is the object of this dissertation falls in the category of problems of the form

Find u ∈ X such that F (u) = inf
x∈X

F (x), (2.1)

where X is a Banach space and F is a functional defined on X that takes values in

[−∞,+∞]. We remark that problem (2.1) is of interest only if F is not identically −∞ or

+∞; this leads us to the following definition.

DEFINITION 2.1. A function F : X → [−∞,∞] is said to be proper if for any x ∈ X ,

either F (x) > −∞ or F (x) is not defined, and there exists x0 ∈ X such that F (x0) <∞.

The domain of F , Dom(F ), is defined by

Dom(F ) = {x ∈ X : F (x) ∈ R}. (2.2)

Let us first describe a common strategy used in proving the existence of a solution of

(2.1). The argument is carried out in the following three steps.
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(1) We construct a minimizing sequence xn ∈ X such that

lim
n→∞

F (xn) = inf
x∈X

F (x).

(2) If F is coercive, i.e. lim
‖x‖↑∞

F (x) =∞, we deduce that the minimizing sequence xn is

bounded. Then using the topological properties of X , we may extract a subsequence

xnj of xn that converges to u in X , and show that u is a solution.

(3) To show that u is a solution, it suffices to argue that lim inf
j→∞

F (xnj) ≥ F (u) from

which it follows easily that F (u) = min
x∈X

F (x).

The strategy outlined above requires that both the Banach spaceX and the functional F

have some favorable properties. We now discuss properties of X and F that are sufficient

for the procedure to be carried successfully.

Let (X, ‖ · ‖) be a Banach space over R and X ′ its topological dual, i.e. the space of all

continuous linear functionals defined of X and taking values in R.

DEFINITION 2.2. Let (xn)n≥1 be a sequence of elements of X , and x ∈ X .

(a) We say that xn converges strongly to x if ‖xn − x‖ → 0 as n→∞.

(b) We say that xn converges weakly to x, and write xn ⇀ x, if

`(xn)→ `(x) for all ` ∈ X ′.

The dual X ′ of X is a Banach space when endowed with its natural dual norm

‖`‖∗ = sup
x∈X,x 6=0

`(x)

‖x‖

so that the concepts of strong and weak convergence are well defined on X ′. A third and

often more convenient (than the weak convergence) notion of convergence may be defined

on X ′.
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DEFINITION 2.3. We say that a sequence of linear functional (`n) converges weakly-* to

` in X ′, and write `n
∗
⇀ `, if `n(x)→ `(x) for all x ∈ X .

We note that for any x ∈ X , the mapping ` 7→ `(x) is a bounded linear functional on

X ′. Moreover the map E : X → (X ′)′ defined by the identity

〈Ex, `〉X′′,X′ = 〈`, x〉X′,X := `(x), ∀x ∈ X, ∀` ∈ X ′

is one-to-one, so that X is identified to a subspace of (X ′)′. E is often referred to as the

canonical embedding of X into (X ′)′.

DEFINITION 2.4. We say that the space X is reflexive if the canonical embedding E is

surjective, i.e E(X) = (X ′)′.

As a direct consequence of the Riesz representation theorem, every Hilbert space is

reflexive. The following result is very useful in the study of problems of the type (2.1).

THEOREM 2.5 (Brezis [27]). A Banach space X is reflexive if and only if every bounded

sequence in X has a weakly convergent subsequence.

Now, we turn to the properties of the functional F sufficient to the successful comple-

tion of the strategy for showing the existence of a solution of (2.1).

DEFINITION 2.6. Let (X, ‖ · ‖) be a Banach space and F : X → R be given.

(a) F is said to be strongly lower semicontinuous at the point x0 if for any sequence xn

such that ‖xn − x0‖ → 0, we have

lim inf
n→∞

F (xn) ≥ F (x0). (2.3)

(b) F is said to be weakly lower semicontinuous at x0 if for any sequence (xn) such that

xn ⇀ x0, we have

lim inf
n→∞

F (xn) ≥ F (x0). (2.4)
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(c) F is said to be strongly (resp. weakly) upper semicontinuous if −F is strongly(resp.

weakly) lower semicontinuous.

In general, it is very cumbersome to prove that a functional is weakly lower semicon-

tinuous. However, a simpler property of F , sufficient to achieving lower semicontinuity, is

convexity which we now define.

DEFINITION 2.7. Let F : X → R be a functional defined from X into R

(a) The functional F is said to be convex on X if F is said to be convex if

F (tx+ (1− t)y) ≤ tF (x) + (1− t)F (y) ∀x, y ∈ X and ∀ t ∈ [0, 1].

We say that F is strictly convex if for any pair of distinct elements x, y in X ,

F (tx+ (1− t)y) < tF (x) + (1− t)F (y) ∀ t ∈ (0, 1).

(b) F will be termed (strictly) concave if −F is (strictly) convex.

We now present a result that establishes the equivalence between strong and weak semi-

continuity in the class of convex functionals.

THEOREM 2.8. Suppose that F is convex on X . Then F is strongly lower semicontinuous

if and only if F is weakly lower semicontinuous.

The next result will be used later to prove the existence and uniqueness of the solution

of the model that we study in this dissertation.

PROPOSITION 2.9. Suppose that X is a reflexive Banach space and the functional F is

convex, lower semicontinuous, and proper, (A1)

and

coercive, i.e lim
‖x‖→∞

F (x) =∞. (A2)
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Then, the minimization problem (2.1) has at least one solution. The solution is unique if F

is strictly convex.

Finally, we would like to characterize the solution of problem (2.1) when F is the sum

of two functionals one of which is Gâteaux differentiable. Let us begin by clarifying what

is meant by Gâteaux differentiable.

DEFINITION 2.10. A functional F : X → R is said to be Gâteaux differentiable at a point

u ∈ X if there exists F ′(u) ∈ X ′ such that

lim
t→0+

F (u+ tv)− F (u)

t
= 〈F ′(u), v〉X′,X ∀v ∈ X. (2.5)

F is Gâteaux differentiable if it is Gâteaux differentiable at every point u in its domain.

The following result is a characterization of convexity for Gâteaux differentiable func-

tions.

PROPOSITION 2.11. Suppose that F : X → R is Gâteaux differentiable on a convex subset

C of X . Then the following are equivalent

F is convex on C, (2.6)

F (v) ≥ F (u) + 〈F ′(u), v − u〉 ∀u, v ∈ C. (2.7)

PROOF. Suppose that F is convex on C. Then

F (v) ≥ F (u) +
F (u+ t(v − u))− F (u)

t
, ∀ t ∈ (0, 1), ∀u, v ∈ C.

Since F is Gâteaux differentiable on C, letting t → 0+ in the latter inequality, we obtain

(2.7) outright.

Conversely, assume that (2.7) holds. Then for any pair u, v ∈ C

F (u) ≥ F ((1− t)u+ tv)− t〈F ′((1− t)u+ tv), v − u〉, ∀ t ∈ [0, 1], (2.8)

9



and

F (v) ≥ F ((1− t)u+ tv) + (1− t)〈F ′((1− t)u+ tv), v − u〉, ∀ t ∈ [0, 1]. (2.9)

Multiplying (2.8) by 1− t and (2.9) by t, and adding the resulting inequalities, we get

(1− t)F (u) + tF (v) ≥ F ((1− t)u+ tv), ∀ t ∈ [0, 1].

Since the pair u, v ∈ C was arbitrary, we infer that F is convex over C. �

PROPOSITION 2.12. Let C be a closed convex subset of X . Suppose that F1 and F2 are

convex lower semicontinuous, and F1 is Gâteaux differentiable. Then, an element u ∈ C is

a global minimizer of F1 + F2 over C if and only if

〈F ′1(u), v − u〉+ F2(v)− F2(u) ≥ 0 ∀ v ∈ C. (2.10)

PROOF. Suppose that u ∈ C is a minimizer of F1 + F2 over C. Then, we have

F1(u) + F2(u) ≤ F1(u+ t(v − u)) + F2(u+ t(v − u)), ∀ t ∈ [0, 1], ∀ v ∈ C

and by the convexity of F2

F1(u) + F2(u) ≤ F1(u+ t(v − u)) + (1− t)F2(u) + tF2(v), ∀ t ∈ [0, 1], ∀ v ∈ C,

so that

F1(u+ t(v − u))− F1(u)

t
+ F2(v)− F2(u) ≥ 0 ∀ t ∈ (0, 1), ∀ v ∈ C.

Since F1 is Gâteaux differentiable at u, taking the limit as t → 0+ in the latter inequality

yields precisely (2.10).

Conversely, suppose that u ∈ C satisfies (2.10). Then since F1 is differentiable and

convex, it follows from Proposition 2.11 that

F1(v)− F1(u)− 〈F ′1(u), v − u〉 ≥ 0, ∀ v ∈ C.
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Adding the latter inequality to (2.10) yields

F1(v) + F2(v) ≥ F1(u) + F2(u), ∀ v ∈ C;

hence u is a minimizer of F1(v) + F2(v) over C and the proof is complete. �

2.2 FUNCTIONS OF BOUNDED VARIATION

In this section, we collect relevant results on functions of bounded variation. Through-

out the section, Ω will stand for an open connected subset of RN (N ≥ 1), unless otherwise

noted. All the results given below are found in the two books [46] and [8].

2.2.1 TOTAL VARIATION

We begin with the definition and properties of the concept of total variation. Let u be a

locally integrable function on Ω, i.e, u is integrable on every compact subset of Ω.

DEFINITION 2.13. The total variation of u over Ω is given by

J(u) := sup

{
−
∫

Ω

u div(g)dx : g ∈ C1
c (Ω,RN) and |g(x)| ≤ 1 ∀x ∈ Ω

}
, (2.11)

where div(g) =
N∑
i=1

∂gi
∂xi

, and C1
c (Ω,RN) is the space of continuously differentiable func-

tions u : Ω→ RN with compact support in Ω.

EXAMPLE 2.14. We give two examples of functions with finite total variation.

(a) Let W 1,1(Ω) be the space of weakly differentiable functions u ∈ L1(Ω) such that
∂u

∂xi
∈ L1(Ω) for all 1 ≤ i ≤ N . Using Gauss-Green Theorem and a regularization

argument, one can show that if u ∈ W 1,1(Ω), then

J(u) =

∫
Ω

|∇u|dx.

However, W 1,1(Ω) is a proper subset of the set of functions of bounded variations as

will be illustrated by the next example.
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(b) Let E be a ball of radius ρ such that E ⊂ Ω, and ϕE the characteristic function of E.

Given g ∈ C1
c (Ω,RN), by Gauss-Green theorem we have

−
∫

Ω

ϕE div(g)dx = −
∫
E

ϕE div(g)dx =

∫
∂E∩Ω

g · νdHN−1,

where ν is the outer unit normal vector field to ∂E, andHN−1 is theN−1-Hausdorff

measure on Ω, see for example [8, section 2.8, p. 72] for a definition of Hausdorff

measures. Thus,

J(ϕE) ≤ HN−1(∂E ∩ Ω) ≤ HN−1(∂E) <∞.

We remark that ϕE does not belong to W 1,1(Ω).

DEFINITION 2.15. A function u ∈ L1(Ω) is said to be of bounded variation (BV) if J(u)

is finite. We shall denote by BV (Ω) the subset of L1(Ω) made of functions of bounded

variation.

We now highlight some properties of the total variation that make functions of bounded

variation a viable model for images.

PROPOSITION 2.16. The total variation functional J : L1(Ω) → [0,+∞] satisfies the

following properties:

(a) J(tu) = tJ(u) for any t ∈ [0,∞) and any u ∈ BV (Ω);

(b) J(tu+ (1− t)v) ≤ tJ(u) + (1− t)J(v) for any t ∈ [0, 1] and any u, v ∈ L1(Ω);

(c) if (un) is a sequence which converges in L1(Ω) to u, then

J(u) ≤ lim inf
n→∞

J(un). (2.12)

PROOF. Establishing properties (a) and (b) is a straightforward computational exercise.

Property (c) on the other hand follows from the Dominated Convergence Theorem and

the definition of J . In fact, let g ∈ C1
c (Ω,RN) be such that |g(x)| ≤ 1 for any x ∈ Ω.
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Then by the dominated convergence theorem, we have∫
Ω

u div(g)dx = lim
n→∞

∫
Ω

un div(g)dx ≤ lim inf
n→∞

J(un).

Now taking the supremum on the latter inequality over all such g, we obtain (2.12) and the

proof is complete. �

REMARK 2.17. The equality in (2.12) above need not be achieved as illustrated by the

sequence

un(x) =
1

n
sin(nx), x ∈ Ω = (0, 2π).

It is easily seen using the dominated convergence theorem that un
L1(Ω)−−−→ u = 0 as n→∞.

However, since the un are smooth, we have

J(un) =

∫ 2π

0

|u′n(x)|dx =

∫ 2π

0

| cos(nx)|dx = 4

∫ π/2

0

cos(u)du = 4.

So, lim inf
n

J(un) = 4 > 0 = J(u).

We now explain how one extends the total variation of a function u ∈ BV (Ω) into a

finite positive Borel measure over Ω. Let u ∈ BV (Ω) be fixed. The total variation of u

with respect to an open subset A ⊂ Ω is naturally given by

|Du|(A) = sup

{∫
Ω

u div (ϕ) dx : ϕ ∈ C1
c (A,Rn), |ϕ(x)| ≤ 1, ∀x ∈ A

}
. (2.13)

Furthermore, if B is a general Borel subset of Ω, then we define the total variation of u

over B by

|Du|(B) := inf{|Du|(O) : O ⊃ B and O open}. (2.14)

It can be shown that under the definition 2.14, |Du| is a positive Borel measure on Ω which

will be called the total variation measure of u. Consequently, by additivity of measures,

the following identity holds for all Borel subset K ⊆ Ω

|Du|(Ω) = |Du|(Ω rK) + |Du|(K). (2.15)
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Although, generally, we cannot expect equality in (2.12), we can provide it in some

cases as demonstrated by the following lemma. Let η be the radially symmetric function

defined by

η(x) =


c exp

(
1

|x|2 − 1

)
, |x| < 1,

0, otherwise,

(2.16)

where the constant c is chosen such that
∫
R2

η(x)dx = 1. Let
{
ηε(x) = ε−2η

(x
ε

)
: ε > 0

}
be the corresponding family of mollifiers. We observe that for each ε > 0 the function ηε is

supported on the {x ∈ R2 : |x| ≤ ε} and
∫
R2

ηε(x)dx = 1. Hereafter, we shall refer to the

family of mollifiers {ηε : ε > 0} as the standard family of mollifiers.

LEMMA 2.18. Suppose u ∈ BV (Ω). If A ⊂⊂ Ω is an open set such that∫
∂A

|Du| = 0, (2.17)

then ∫
A

|Du| = lim
ε→0

∫
A

|D(u ∗ ηε)|, (2.18)

PROOF. Since u ∗ ηε
L1(Ω)−−−→ u as ε ↘ 0, we already have by lower semicontinuity of the

total variation, the inequality∫
A

|Du| ≤ lim inf
ε→0

∫
A

|D(u ∗ ηε)|;

so it remains to show that

lim sup
ε→0

|D(u ∗ ηε)| ≤
∫
A

|Du|.

Let g ∈ C1
c (A;R2) be such that g(x)| ≤ 1 for all x ∈ A and 0 < ε < dist(A, ∂Ω).

Then, by Fubini Theorem, we have∫
Ω

(u ∗ ηε) div(g)dx =

∫
Ω

u(div(g) ∗ ηε)dx =

∫
Ω

u div(g ∗ ηε)dx.
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Now a simple computation verifies that

|g(x)| ≤ 1 ∀x ∈ A⇒ |g ∗ ηε(x)| ≤ 1 ∀x ∈ Aε = {x ∈ Ω: dist(x,A) ≤ ε},

and

spt(g) ⊂ A⇒ spt(g ∗ ηε) ⊂ Aε

so that ∫
Ω

(u ∗ ηε) div(g)dx ≤
∫
Aε

|Du|.

Taking the supremum with respect to g ∈ C1
c (A;R2) in the inequality above, we get∫

A

(u ∗ ηε) div(g)dx ≤
∫
Aε

|Du|.

Thus

lim sup
ε→0

|D(u ∗ ηε)| ≤ lim
ε→0

∫
Aε

|Du| =
∫
Ā

|Du| =
∫
A

|Du|+
∫
∂A

|Du|,

from which it follows under assumption (2.17) that

lim sup
ε→0

|D(u ∗ ηε)| ≤
∫
A

|Du|.

�

Finally, we recall an alternate formula for the total variation of u over Ω that shall be

instrumental in establishing a maximum principle like property for the minimizer of the

ROF functional.

THEOREM 2.19 (Coarea formula). Let a function u ∈ BV (Ω) be given and define the

sublevel set of u at level t ∈ R by

Ut := {x ∈ Ω: u(x) < t}. (2.19)

Then, the following identity holds

J(u) =

∫ ∞
−∞

J(1Ut)dt. (2.20)
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2.2.2 PROPERTIES OF FUNCTIONS OF BOUNDED VARIATION

We begin with a direct consequence of property (c) in Proposition 2.16. In fact is not

hard to show that the space of functions of bounded variation, BV (Ω), is Banach space

under the norm

‖u‖BV := ‖u‖L1 + J(u).

A property of functions of bounded variation that is central to our contributions in this

dissertation is the existence of an extension operator over BV (Ω) that does not turn the

boundary of Ω into a singular hypersurface under the total variation measure. The next

result may be used to construct such an extension for rectangular and polygonal domains.

THEOREM 2.20 (Trace on the boundary, [46, Theorem 2.10]). Let Ω ⊂ R2 be a bounded

Lipschitz domain. Then for any u ∈ BV (Ω) there exists a function γ0(u) ∈ L1(∂Ω) such

that forH1-almost all x ∈ ∂Ω,

lim
r→0

1

r2

∫
{z∈Ω: |z−x|<r}

|u(z)− γ0(u)(x)|dz = 0. (2.21)

Furthermore, for every g ∈ C1(Ω̄,R2)∫
Ω

u div(g)dx = −
∫

Ω

〈g, Du〉+

∫
∂Ω

γ0(u)〈g,ν〉dH1, (2.22)

where ν is the unit outer normal to ∂Ω, and H1 is the 1−dimensional Hausdorff measure

on R2.

The trace γ0(u) of a function u ∈ BV (Ω) is uniquely defined by the equation (2.21)

and forH1-almost every x ∈ ∂Ω

γ0(u)(x) = lim
r→0

1

|C(x, r)|

∫
C(x,r)

u(z)dz, (2.23)

where C(x, r) = {z ∈ Ω: |z − x| < r} and |C(x, r)| is the Lebesgue measure of C(x, r).
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The next result allows to define extensions beyond Ω of functions of bounded variation

on Ω. We will use it later in our work to define an extension via successive reflections of a

function of bounded variation without creating new oscillations at the boundary of Ω.

LEMMA 2.21 (Pasting Lemma [46, Proposition 2.8]). LetO be an open set such that Ω ⊂⊂

O. Let u1 ∈ BV (Ω), and u2 ∈ BV (Or Ω̄) be given. Then the function u : O → R defined

by

u(x) =

u1(x), x ∈ Ω

u2(x), x /∈ Ω̄

is an element of BV (O) and

|Du|(O) = |Du1|(Ω) + |Du2|(O r Ω̄) +

∫
∂Ω

|γ0(u1)− γ0(u2)|dH1. (2.24)

Moreover, the total variation of u over the boundary of Ω is given by

|Du|(∂Ω) =

∫
∂Ω

|γ0(u1)− γ0(u2)|dH1. (2.25)

We close this section with a result that shows that BV functions are well approximated

by smooth functions and the statement of the Sobolev inequality for BV functions.

THEOREM 2.22. Let u ∈ BV (Ω) be given. Then, there exists a sequence {un}n ∈

C∞(Ω) ∩W 1,1(Ω) such that un
L1(Ω)−−−→ u and J(un) =

∫
Ω
|∇un|dx→ J(u) =

∫
Ω
|Du|.

PROOF. When Ω = R2, the proof is simple and uses the standard smoothing through

convolution with mollifiers argument. For Ω 6= R2, the proof is classical and can be found

in the monographs [8, 46]. �

For u ∈ L1(Ω), we denote the average value of u over Ω by

uΩ =
1

|Ω|

∫
Ω

u(x) dx. (2.26)
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THEOREM 2.23 (Sobolev’s Inequality). Suppose that Ω is a bounded Lipschitz domain in

R2. Then there exists a constant C depending only on Ω such that

‖u− uΩ‖L2(Ω) ≤ C

∫
Ω

|Du|, ∀u ∈ BV (Ω). (2.27)

If Ω = R2, then there exists C > 0 such that

‖u‖L2(R2) ≤ C

∫
R2

|Du|, ∀u ∈ BV (R2). (2.28)

2.2.3 SETS OF FINITE PERIMETER

Let E ⊂ R2 be a Borel subset of R2, and Ω a domain of R2. We say that E is of finite

perimeter in Ω if its characteristic function

1E(x) =

1 x ∈ E,

0 x ∈ Ω r E,

is of bounded variation on Ω. The total variation J(1E) is the perimeter of E in Ω and shall

be denoted by Per(E,Ω). If Ω = R2, then we shall simply write Per(E).

Sets of finite perimeter play a crucial role in the analysis of the total variation based

model that we introduce in the next section. We highlight some of the properties of these

sets.

PROPOSITION 2.24. Suppose that Ω is an open domain in R2. The following are true:

(a) Per(E,Ω) = Per(F,Ω) whenever the set Ω ∩ (E∆F ) is Lebesgue negligible.

(b) Per(E,Ω) = Per(E,R2 r Ω).

(c) Per(E ∪ F,Ω) + Per(E ∩ F,Ω) ≤ Per(E,Ω) + Per(F,Ω).

PROOF. Properties (a) and (b) follow from the definition of the total variation. The

proof of property (c) is a consequence of the approximation theorem 2.22 and the lower

semicontinuity of the total variation. The details may be found in [8, 33, 46]. �
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The following result is a direct consequence of the Sobolev’s inequality for sets of finite

perimeter.

THEOREM 2.25 (Isoperimetric inequality [8]). If E is a set of finite perimeter in R2, then

either E or R2 r E has finite Lebesgue measure and

min(|E|, |R2 r E|) ≤ Per(E)2

4π
. (2.29)

2.3 THE IMAGE DENOISING PROBLEM

Any attempt to reconstruct an image from degraded measurements must first account

for the source of the degradation, and choose a model of the degradation that is as close to

reality as possible. A common model of image degradation is the following. Let u : Ω →

RN(N ≥ 1) be the perfect description – as sensed by a healthy human eye – of a natural

scene, and f the same scene as captured by an imaging device. It is generally assumed that

f = Au+ n, (2.30)

where n is a realization of the noise, and A is a deterministic acquisition procedure that

may also contribute to degrading the image.

In general, we do not have the exact model of the noise, and we do not have a complete

understanding of the deterministic degrading process A. Thus, the task of recovering u

exactly from f is a daunting one; we are only able to carry out an approximation of u,

conditioned on a-priori models for A and the noise n. The noise n is understood as a

perturbation causing spurious and unstructured oscillations in the measurements f .

The goal of the denoising problem is to remove as much of these oscillations as possible

while preserving key features of the available measurements f that are discernible to the

human eye. In the special case whereA is the identity operator, we get the “pure” denoising

problem; meaning that the only degradation contributed in f is the random noise and the

acquisition procedure is flawless.
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2.3.1 THE ROF DENOISING MODEL

Rudin, Osher and Fatemi [71] proposed to recover an approximation of the ideal image

u, from its corrupt measurements f , by solving the minimization problem

Find u ∈ L2(Ω) such that

u ∈ arg min
v∈L2(Ω)

{
Ef
λ(v) := λJ(v) +

1

2

∫
Ω

|v − f |2dx
}
,

(ROF)

where λ > 0 is the threshold of the preserved scale of oscillations, and J(v) := |Dv|(Ω),

the total variation of v on Ω, quantifies the oscillations in v on Ω .

We note that for any λ ∈ R+, the objective functional Ef
λ(u) is coercive, lower semi-

continuous, and strictly convex. Therefore, the existence and uniqueness of the solution to

(ROF) are guaranteed by Proposition 2.9. Moreover, since Ef
λ(u) is the sum of two con-

vex and lower semicontinuous functionals one of which is differentiable, it follows from

Proposition 2.12 that the solution ufλ of (ROF) is characterized by∫
Ω

(ufλ − f)(v − ufλ)dx+ λ(J(v)− J(ufλ)) ≥ 0, ∀ v ∈ L2(Ω). (2.31)

Furthermore, since J(u) is positively 1-homogeneous, we infer from the above characteri-

zation of ufλ that

J(ufλ) =
1

λ

∫
Ω

(f − ufλ)u
f
λ dx. (2.32)

Under the assumption that the variance, σ2, of the noise contributed in f is such that

|Ω|σ2 ≤
∫

Ω

|f − fΩ|2dx, where fΩ is the average value of f over Ω, Chambolle and Lions

[35] showed that there exists a Lagrange multiplier λ∗ for which the objective function in

(ROF) with scale
1

2λ∗
is the Lagrangian functional associated to the constrained minimiza-

tion problem

arg min
u∈L2(Ω)

J(u) subject to
∫

Ω

|u− f |2dx ≤ |Ω|σ2. (TVD)

Consequently, assuming that we can estimate the Lagrange multiplier λ∗, the ROF model

with parameter λ∗ achieves a cleanup of the image f by decomposing it into
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f = u + v such that the L2−energy of v is proportional to the variance of the additive

noise in the measurements f .

The question of estimating the Lagrange multiplier λ, i.e,

Find λ∗ such that ‖ufλ∗ − f‖
2
2 = |Ω|σ2,

requires a good understanding of the role of λ in the ROF model. For a fixed function

f ∈ L2(Ω), we define the function Σ : R+ → R+ by Σ(λ) := ‖ufλ − f‖2, where ufλ is

the solution of (ROF) with parameter λ. The following result giving an insight on the role

played by λ was first proved in [35, Lemma 2.3], and was completed by Chambolle in [31].

THEOREM 2.26 (Chambolle and Lions [35], Chambolle [31]). The function Σ maps R+

into [0, ‖f−fΩ‖2], is continuous, and monotone non-decreasing. Furthermore, the function

λ 7→ Σ(λ)/λ is monotone non-increasing.

Several scholars have studied the Lagrange multiplier estimation problem. For exam-

ple, Chambolle [31] exploited Theorem 2.26 above in designing an iterative method that

simultaneously solves the total variation denoising problem (TVD) and computes the La-

grange multiplier λ∗. Aujol and Gilboa [15] proposed a signal-to-noise-ratio (SNR) param-

eter selection method for approximating λ∗ as a value of λ that maximizes to SNR of the

image recovered with the ROF model.

The ROF model is very efficient on images dominated by geometric structures, while

its performance decays on images that contains significant oscillatory components such as

textures and fine structures. This fact was justified in theory by Nikolova, [64]. She proved

that total variation based models favor flat regions, that is, the image recovered by this

model will have patches where it looks like a piecewise constant function. This is known

in the image processing community as the staircasing effect.

While the ROF model is generally efficient at detecting the geometric structure of im-

ages, it uses limited amount of information about the noise (first and second moments only)
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itself. Moreover, even in the simplest case of piecewise constant images, we observe a re-

duction of contrast in the recovered image. As a consequence, it may not be suitable for

most noise priors. For example, Nikolova [65] showed that by replacing the L2−norm in

the model by the L1−norm,

arg min
u∈L1(Ω)

λJ(u) + |u− f |L1 (TVL1)

one obtains a new variational model that is superior to the ROF model for images corrupted

with impulse noise and outliers. A thorough analysis of the model (TVL1) is done by Chan

and Esedoḡlu, [37]; they prove among other things that this model is capable of recovering

the characteristic function of the disc unlike the ROF model (see section 2.3.3), without

loss of contrast.

REMARK 2.27. The fundamental assumption of the ROF model is that images are func-

tions of bounded variation. However, total variation based models perform poorly when

handed an image with textures and fine structures. The scholars in [47] showed experi-

mentally that natural images are overwhelmingly not of bounded variation. Nonetheless,

total variation image enhancement model are still popular in the community and remain

competitive with filtering methods.

2.3.2 SOME PROPERTIES OF THE ROF MODEL

In this section, we review some of the properties of the minimization problem (ROF).

We start with two important properties of this model that are the foundation of the conver-

gence analysis carried in this dissertation.

THEOREM 2.28. Let ufλ ∈ BV (Ω) be the minimizer of the ROF functional Ef
λ(u). Then,

for any v ∈ BV (Ω), there holds∥∥∥v − ufλ∥∥∥2

L2
≤ 2

(
Ef
λ(v)− Ef

λ(ufλ)
)
. (2.33)
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Moreover, if ugλ is the minimizer of Eg
λ(u), then

‖ufλ − u
g
λ‖L2 ≤ ‖f − g‖L2 . (2.34)

PROOF. Let v ∈ BV (Ω) be fixed and ufλ be the minimizer of Ef
λ(u). Then

Ef
λ(v)− Ef

λ(ufλ) = λ(J(v)− J(ufλ)) +
1

2

(
‖v − f‖2

L2 − ‖ufλ − f‖
2
L2

)
= λ(J(v)− J(ufλ)) +

∫
Ω

(v − ufλ)(u
f
λ − f) dx︸ ︷︷ ︸

≥0 by (2.31)

+
1

2
‖v − ufλ‖

2
L2

≥ 1

2
‖v − ufλ‖

2
L2 .

Since v was arbitrarily chosen, we obtain (2.33).

On the other hand, if ugλ is the minimizer of Eg
λ(u), then by the characterizing equation

(2.31), we have

λ(J(ufλ)− J(ugλ)) ≤
∫

Ω

(ufλ − f)(ugλ − u
f
λ) dx,

so that

2
(
Eg
λ(ufλ)− E

g
λ(ugλ)

)
≤ 2

∫
Ω

(ufλ − f)(ugλ − u
f
λ) dx+

∫
Ω

(ufλ − u
g
λ)(u

f
λ + ugλ − 2g) dx

= 2

∫
Ω

(ugλ − u
f
λ)(g − f) dx−

∫
Ω

(ugλ − u
f
λ)

2 dx

≤ ‖f − g‖2
L2 ,

where we have used the inequality 2ab ≤ a2 + b2. Hence, using (2.33), we obtain∥∥∥ufλ − ugλ∥∥∥
L2
≤ ‖f − g‖L2 and the proof is complete. �

We now prove a maximum principle result for the total variation based image denoising

model (ROF).

THEOREM 2.29 (Maximum principle). Suppose that f ∈ L∞(Ω) and let ufλ be the min-

imizer of Ef
λ(u) on BV (Ω). Then, u ∈ L∞(Ω) and ‖ufλ‖∞ ≤ ‖f‖∞. More precisely,

inf
x∈Ω

f(x) ≤ u(x) ≤ sup
x∈Ω

f(x) for a.e x ∈ Ω. (2.35)
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PROOF. Let u ∈ BV (Ω) be fixed. Let M = ‖f‖∞ and set

uM(x) =


u(x), |u(x)| ≤M

sign(u(x))M, |u(x)| > M.

The sub-level sets of the function uM are as follows

UM
t =


Ω t > M,

Ut |t| ≤M,

∅, t < −M,

where Ut is the sublevel set of u at level t.

On the one hand, since |D1Ω|(Ω) = 0 and |D1∅|(Ω) = 0, it follows from the coarea

formula that

|DuM |(Ω) =

∫ M

−M
|D1Ut |(Ω)dt ≤ |Du|(Ω).

On the other hand, it is easy to check that |u(x) − f(x)| ≥ |f(x) − uM(x)| for a.e.

x ∈ Ω. Thus, we have Ef
λ(u) ≥ Ef

λ(uM) for all u ∈ BV (Ω) and it follows by uniqueness

of the minimizer of Ef
λ(u) that ‖ufλ‖∞ ≤ M . A similar truncation argument shows that

(2.35) holds. �

2.3.3 AN EXPLICIT SOLUTION OF THE ROF MODEL

Sets of finite perimeter have been instrumental in the study of the ROF model, and have

led to explicit solutions of the ROF model [3] in some special cases. More precisely, the

solution of the ROF model has been characterized through its level sets as follows.

THEOREM 2.30 (Chambolle et al. [33]). A function u ∈ BV (Ω) solves (ROF) if and only

if for any s ∈ R, the set {x ∈ Ω: u(x) > s} solves the perimeter minimization problem

arg min
E

λPer(E,Ω) +

∫
E

s− f(x) dx. (ROFs)
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PROOF. A detailed proof of the above result is found in [33]. �

The level sets characterization theorem above is used to compute the solution of the

ROF model when f is the characteristic function of some convex sets [3, 4]. For example,

when f is the characteristic function of a ball of radius R, BR, the solution of (ROF) is

u = max (0, 1− 2λ/R)BR. (2.36)

2.3.4 REGULARITY OF THE SOLUTION OF THE ROF MODEL

Assuming that Ω is a convex domain in R2, the level sets characterization theorem

above allows for a delicate control of the curvature of the level sets of a solution. Thus, one

can establish some regularity of the solutions of (ROF). In fact, the following regularity

result was proved in [29]:

THEOREM 2.31 ([29]). If Ω is convex and f is uniformly continuous with modulus ω, then

the solution, u, of (ROF) is uniformly continuous with modulus of continuity ω as well.

This result is similar to the stability property established earlier in Theorem 2.28 and

suggest that the inequality (2.34) may hold in the L∞(Ω) norm as well. In fact, a much

stronger result was established in [29], where the authors proved that if the data f of the

ROF model is already a bounded function of bounded variation, then the discontinuity set

of the minimizer is a subset of that of f . Therefore, the ROF model does not produce new

edges in the recovered image.

2.3.5 ALGORITHMIC CONSIDERATIONS

Any algorithmic consideration for the ROF model start with a viable discretization of

the energy functional Ef
λ(u). When dealing with digital images, the most popular dis-

cretization of total variation is based on the following finite difference approximation of

the gradient. For a digital image u = (ui,j)1≤i,j≤N , the gradient of u is defined by
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(∇u)i,j :=

(∂+
x u)i,j

(∂+
y u)i,j

 =

ui+1,j − ui,j
hui,j+1 − ui,j
h

 , 1 ≤ i, j ≤ N, (2.37)

with (∂+
x u)i,j = 0 if i = N , and (∂+

y u)i,j = 0 if j = N . The corresponding discrete model,

obtained using quadrature approximations of the integrals, then reads

arg min
u∈RN×N

λ
∑

1≤i,j≤N

|(∇u)i,j|2 +
1

2

∑
1≤i,j≤N

|ui,j − fi,j|2, (2.38)

where |(∇u)i,j|2 is the Euclidean norm of the vector (∇u)i,j .

Over the last two decades, several efficient algorithms for approximating the solution

of (2.38) have been proposed and analyzed. The plethora of algorithms available in the

literature for computing a solution of (2.38) are based on three main methods.

The dual method

This approach is based on the observation that problem (2.38) is equivalent to the min-

imization problem

arg min
|p|2,∞≤1

‖λ div(p) + f‖2, (2.39)

where div : Y := RN×N × RN×N → X := RN×N is the negative adjoint of the discrete

gradient∇, and |p|2,∞ = max
1≤i,j≤N

|pi,j|2 with pi,j ∈ R2 and p = (pi,j) ∈ Y .

In this framework, the primal problem (2.38) is reduce to the computation of an or-

thogonal projection onto a closed convex subset which is a smooth quadratic program with

convex constraints. Several algorithms for computing a solution of (2.39) are found in the

literature. Carter [28] studied interior point and coordinate descent algorithms. Chambolle

computed the closed form of the Kuhn-Tucker vector associated to (2.39) to come up with

a very efficient fixed-point algorithm [31], and formulated a projected gradient algorithm

in [32]. Duval et al. [42] then followed with a direct proof of convergence of the pro-

jected gradient algorithm formulated by Chambolle [32]. An optimal first order algorithm
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is obtained by following Nesterov’s framework in [63] or its generalization to objective

functions that are sum of two functionals developed by Beck and Teboulle [19, 20].

The primal-dual method

The primal-dual method is based on the simple observation that the minimization prob-

lem (2.38) may also be written as the saddle point problem

arg min
u∈RN×N

max
|p|2,∞≤1

〈u,− div(p)〉+
1

2λ

∑
1≤i,j≤N

|ui,j − fi,j|2. (2.40)

In fact, this is the first step in deriving the dual approach above. Therefore, the minimizer

of (2.38) yield a saddle point of the above objective functional. Algorithms based on the

primal-dual approach aim at computing a solution of the above saddle point problem. A

typical algorithm in this category alternates between a gradient descent in the primal vari-

able u and a gradient ascent in the dual variable p. The first primal-dual algorithm for

computing the solution of (2.38), using the approach described above, was proposed by

Zhu et al. [76], and a variant of their algorithm has recently been studied by Chambolle

and Pock [36]. A general framework for primal-dual algorithms in image processing was

investigated by Esser et al. [44].

The augmented Lagrangian method

The basic idea of the augmented Lagrangian approach is that in lieu of the problem

(2.38), one solves the following constrained minimization problem

min
p=∇u

∑
1≤i,j≤N

|pi,j|2 +
1

2λ

∑
1≤i,j≤N

|ui,j − fi,j|2. (2.41)

The constraint is then enforced using the augmented Lagrangian method, which con-

sists in solving an unconstrained minimization problem with objective

Lβ(u, p;µ) =
∑

1≤i,j≤N

|pi,j|2 +
1

2λ
‖u− f‖2

2 + 〈µ, p−∇u〉+
β

2
‖p−∇u‖2

2, (2.42)

where β is a large positive number. The algorithm is then obtained by minimizingLβ(u, p, µ)
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with respect to (u, p) and updating the Lagrange multiplier µ in a gradient ascent scheme.

The corresponding algorithm and its convergence are studied by Wu and Tai [75]. More-

over, these authors showed that u is the solution of (2.38) if and only if there exists

(p, λ) ∈ Y 2 such that

∀ (v, q, µ) ∈ X × Y × Y, Lβ(u, p;µ) ≤ Lβ(u, p;λ) ≤ Lβ(v, q;λ). (2.43)

Since, we know that (2.38) has exactly one solution, it follows that Lβ has at leat one saddle

point on (X × Y )× Y .

REMARK 2.32. Chambolle et al. [34] have shown that one can improve the performance

of total variation based imaging model by choosing a discretization of the total variation

that is inherently capable of capturing the big jump in pixel values. They illustrate this by

studying an upwind finite difference approximation of the total variation and observe that

upwind schemes deliver sharper edges than the discrete model (2.38).
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3

PIECEWISE LINEAR APPROXIMATION OF THE ROF MODEL ON

RECTANGULAR DOMAINS

In this chapter, we study the approximation of the ROF model

uf = arg min
u∈L2(Ω)

{
Ef
λ(u) := λJ(u) +

1

2

∫
Ω

|u− f |2dx
}

(ROF)

when Ω is rectangular. As mentioned in the introduction, the approximation of the ROF

model in the continuous setting has received some attention over the last two decades,

with most of the effort [35, 41] using a relaxation technique on the total variation part of

the functional Ef
λ(u) to construct a minimizing sequence. In a departure with tradition,

Wang and Lucier [74] did not use a relaxation approach to construct their approximation,

instead they exploited the well posedness property (see Theorem 2.28) of the ROF model

and construct discretizations of Ef
λ(u) whose minimum values converge to the minimum

value of Ef
λ(u).

We construct a continuous piecewise linear approximation of uf as a linear interpolation

of the minimizer of a suitable discrete counterpart of Ef
λ(u), and obtain convergence when

the data function f is bounded and L2-Hölder continuous in a sense that will be specified

below. The interpolatory method used in this chapter fully exploits the geometry of Ω and

the arguments do not extend to general polygonal domains. The present chapter has been

submitted for publication [53], jointly with Ming-Jun Lai, in SIAM Journal of Numerical

Analysis.
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3.1 PRELIMINARIES AND NOTATIONS

In this section we give preliminary results and introduce the notations that we shall use

in this chapter. Throughout the chapter, Ω shall denote the open set (0, 1) × (0, 1) unless

otherwise noted, and Ωm the open set (−m,m)× (−m,m), where m is a natural number.

3.1.1 BASIC NOTATIONS

For any ν ∈ R2, we shall denote by τνΩ the image of the set Ω under the translation

with the vector η, i.e

τνΩ := {x+ ν : x ∈ Ω} .

For a function u : Ω → R, we denote by τνu the function whose domain is τ−νΩ and is

defined by

τνu(x) = u(x+ ν), x ∈ τ−νΩ.

It is well known that the translation operator τη is a bounded linear operator from Lp(Ω)

into Lp(τ−νΩ).

Let h > 0 be given. The p−modulus of continuity of order h, of a function u ∈ Lp(Ω),

is defined by

ω(u, h)p = sup
|ν|≤h
‖τνu− u‖Lp(Ω∩τ−νΩ), (3.1)

where |ν| stands for the Euclidean norm of ν.

Let u ∈ Lploc(R2) andA ⊂⊂ R2 a relatively compact open subset of R2. The p−modulus

of continuity of u of order h with respect to A, denoted ω(u, h)p,A, is defined by

ω(u, h)p,A = ω(u1A, h)p. (3.2)

Let 0 < α ≤ 1, we denote Lip(α,Lp(Ω)) the subspace of Lp(Ω) defined by

Lip(α,Lp(Ω)) :=

{
u ∈ Lp(Ω) : sup

0<h<1
h−αω(u, h)p <∞

}
.
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One easily checks that the space Lip(α,Lp(Ω)) is a Banach space when endowed with the

norm

‖u‖p,α = ‖u‖Lp + sup
0<h<1

ω(u, h)p
hα

.

3.1.2 AN EXTENSION OPERATOR FOR BV FUNCTIONS

We already know that a function of bounded variation, u, on a Lipschitz domain Ω

admits a compactly supported extension, Tu ∈ BV (R2), such that the total variation of

Tu over the boundary ∂Ω is zero. In this section, we detail the construction of such an

extension in the special case of rectangular domains.

Let u ∈ BV (Ω) be given. The extension of u to all of R2,X[u], is defined in two steps

as follows:

1) First, define X[u] on the open set Ω0 := {x ∈ R2 : −1 < x1, x2 < 3} using four

successive reflections of the function u across the four sides of Ω as illustrated in

Figure 3.1.

2) Finally, setX[u] = 0 outside the closed rectangle Ω̄0.

Clearly, for any u ∈ BV (Ω), the function X[u] is compactly supported on the open set

Ω4 := (−4, 4) × (−4, 4). We also note – thanks to Lemma A.4 – that each reflection in

step 1 above yields a function of bounded variation whose total variation is exactly twice

that of the function that was reflected. Thus, we have

|DX[u]|(Ω0) = 16J(u) and ‖X[u]‖L1(Ω0) = 16‖u‖L1(Ω). (3.3)

PROPOSITION 3.1. The operator X : BV (Ω) → BV (R2) defined above is a bounded

linear operator. Moreover, for any u ∈ BV (Ω)

∣∣DX[u]
∣∣(∂Ω) = 0, (3.4)

lim
ε→0
|D(X[u] ∗ ηε)|(Ω) = J(u). (3.5)
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1
2

3

4
Ω

FIGURE 3.1: Schematic of the extension of u by successive reflections across the sides of Ω.

PROOF. ThatX is a linear operator is obvious and the boundedness follows from (3.3). It

remains to show that |DX[u]|(∂Ω) = 0.

Let u ∈ BV (Ω) be given, and u0 the restriction of X[u] to O = R2 r Ω̄. Clearly

∂O = ∂Ω and it is easy to check that the trace of γ0(u0) = γ0(u). Since X[u] is obtained

by pasting u and u0, it follows from the pasting Lemma 2.21 that
∣∣DX[u]

∣∣(∂Ω) = 0.

Finally, we observe that Ω is relatively compact in Ω0 and since |DX[u]|(∂Ω) = 0, it

follows from Lemma 2.18 that |D(X[u] ∗ ηε)|(Ω)→ |Du|(Ω) as ε→ 0. �

PROPOSITION 3.2. Let f ∈ L2(Ω) be fixed. Then for any 0 < h� 1, we have

ω(X[f ], h)2,Ω1,2 ≤ 4
√

2ω(f, h)2, (3.6)

where Ω1,2 = (−1, 2)× (−1, 2).

PROOF. Let f ∈ L2(Ω) be given, and η ∈ R2 be fixed with |η| ≤ h.

‖τη(X[f ])−X[f ]‖2
L2(Ω1,2∩τ−ηΩ1,2) =

∫
Ω1,2∩τ−ηΩ1,2

|X[f ](x+ η)−X[f ](x)|2dx

≤
∑

−1≤m,n≤2
−1≤i,j≤2

∑
|m−i|=1
|n−j|=1

∫
τm,nΩ∩τ(i,j)−ηΩ

|X[f ](x+ η)−X[f ](x)|2dx

≤ 2
∑

−1≤i,j≤2

∫
τi,j(Ω∩τ−ηΩ)

|X[f ](x+ η)−X[f ](x)|2dx

32



≤ 32

∫
Ω∩τ−ηΩ

|f(x+ η)− f(x)|2dx = 32‖τηf − f‖2
2.

Thus, we have ω(X[f ], h)2,Ω1,2 ≤ 4
√

2ω(f, h)2. �

3.1.3 A DISCRETIZATION OF THE ROF FUNCTIONAL.

We assume that Ω is endowed with a triangulation ∆h constructed as follows: First, Ω is

subdivided intoN2 square sub-domains of side length h; each rectangle is then divided into

two triangles using the Northwest-Southeast diagonal as shown in Figure 3.2. We denote

the set of vertices of the triangulation ∆h by Vh := {ωi,j : 1 ≤ i, j ≤ N}, and associated

to each vertex ωi,j a rectangle Ωi,j := Ω ∩
(
ωi,j + (−h/2, h/2)2) .

ωi,j

ωi+1,j+1ωi,j+1

ωi+1,j

Ωi,j

T u

T d

FIGURE 3.2: A type I triangulation of Ω: T ui,j is the triangle with vertexes 〈ωi+1,j , ωi+1,j+1, ωi,j+1〉
and T di,j is the triangle with vertexes 〈ωi,j , ωi+1,j , ωi,j+1〉. Ωi,j is used to discretize functions in

L1(Ω).

We are interested in constructing a continuous piecewise linear function on ∆h that

approximates the minimizer uf . To this end, we first construct a discrete approximation of

the functional Ef
λ(u) on the space P1(∆h) of continuous piecewise linear functions on ∆h.

Let u be a continuous piecewise linear function on ∆h. It is well known that u is

an element of the Sobolev space W 1,1(Ω), and u is uniquely defined by its values at the
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vertices of ∆h. Therefore, the space P1(∆h) is a subspace of W 1,1(Ω) that is isomorphic

to RN×N . The total variation of an element u of P1(∆h) is given by

Jh(u) =
h2

2

∑
1≤i,j≤N

|(∇+u)i,j|+
h2

2

∑
1≤i,j≤N

|∇−(u)i,j)|, (3.7)

where | · | is the Euclidean norm in R2, and the operators ∇+ = (∇x
+,∇

y
+) and ∇− =

(∇x
−,∇

y
−) are defined by

(∇x
+u)i,j =


0, if i = N or j = N

ui+1,j − ui,j
h

otherwise;

(∇y
+u)i,j =


0, if i = N or j = N

ui,j+1 − ui,j
h

otherwise;

(3.8)

and

(∇x
−u)i,j =


0, if i = 1 or j = 1

ui,j − ui−1,j

h
otherwise;

(∇y
−u)i,j =


0, if i = 1 or j = 1

ui,j − ui,j−1

h
otherwise.

(3.9)

Finally, assuming that a suitable discrete approximation (fi,j)1≤i,j≤N of f with respect

to Vh is available, we approximate the energy functional Ef
λ(u) by

Ef
h(u) = λJh(u) +

h2

2

∑
1≤i,j≤N

|ui,j − fi,j|2 . (3.10)

REMARK 3.3. We note that since f ∈ L2(Ω) can be changed arbitrarily on any set of mea-

sure zero without changing the value of the energy Ef
λ(u), we would also want the discrete

model Ef
h(u) to have the same property and that will require a well defined discretization

operator from L2(Ω) into RN×N . Consequently, we cannot use the evaluation map on Vh

to obtain the discretization (fi,j)1≤i,j≤N .
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REMARK 3.4. In a departure with tradition, the discrete gradient operators∇+ and∇− are

set to zero at every grid point where the finite differences are not defined in both directions.

Also, we compute the discrete total variation as an average of the pointwise norm of the

forward (∇+) and backward (∇−) gradients. We note that although Wang and Lucier [74]

use an average to define a discrete total variation, their gradient operators are the classical

ones.

3.2 EMBEDDING AND PROJECTION OPERATORS

In the previous section, we proposed a discrete approximation of the ROF functional

that hinged on a hypothetical discretization of the data f . We now clarify how such a

discretization may be obtained.

Projection operators. Short of just using the function values on Vh and inspired by the

Lebesgue’s theorem, we propose to use the local-averaging discretization operator Qh as-

sociated to the quadrangulation {Ωi,j : 1 ≤ i, j ≤ N}. So Qh maps L2(Ω) into RN×N and

is defined by

(Qhf)i,j :=
1

|Ωi,j|

∫
Ωi,j

f(x)dx, 1 ≤ i, j ≤ N and f ∈ L2(Ω). (3.11)

With a slight abuse of notation, Qh shall also denote the projection of L2(Ω) onto the

space of piecewise constant function with respect to the partition {Ωi,j : 1 ≤ i, j ≤ N} of

Ω, in which case Qh is defined by

Qhf(x) =
1

|Ωi,j|

∫
Ωi,j

f(y)dy for all x ∈ Ωi,j. (3.12)

Embedding operators. One the other hand, an element u ∈ RN×N is extended into a

function Chu ∈ Lp(Ω), 1 ≤ p ≤ ∞, as a piecewise constant function with respect to

{Ωi,j : 1 ≤ i, j ≤ N} as follows:

Chu(x) = ui,j, if x ∈ Ωi,j. (3.13)
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We shall also need the continuous interpolation operator Ph : RN×N → Lp(Ω) defined by

Phu(y) =
∑

1≤i,j≤N

ui,jφi,j(y), (3.14)

where for any 1 ≤ i, j ≤ N , φi,j : Ω→ R is the continuous piecewise linear function such

that

φi,j(ωi,j) = 1, and φi,j(ω) = 0, ω ∈ Vh r {ωi,j}. (3.15)

We note that Ph is an isomorphism between RN×N and P1(∆h). We conclude the section

with a result that we will need later when studying the convergence of our approximations.

LEMMA 3.5. Suppose that Ω is endowed with the triangulation ∆h. Then for all u ∈

RN×N , there holds

‖Phu‖2
L2 ≤ ‖Chu‖2

L2 +
h2

12
(u2

1,N + u2
N,1). (3.16)

PROOF. Let u ∈ RN×N be fixed. We first observe that Phu is the continuous bivariate

spline of degree 1 over the triangulation ∆h whose coefficients in the Bernstein-Bézier

representation are {ui,j, 1 ≤ i, j ≤ N}. Therefore, using the closed form formula for the

inner product of splines in Bernstein-Bézier form [54, Theorem 2.34], we get∫
Tui,j

Phu(y)2dy =
h2

24

(
u2
i+1,j + u2

i+1,j+1 + u2
i,j+1 + (ui+1,j + ui+1,j+1 + ui,j+1)2

)
and ∫

T di,j

Phu(y)2dy =
h2

24

(
u2
i,j+1 + u2

i,j + u2
i+1,j + (ui,j+1 + ui,j + ui+1,j)

2
)
.

Consequently, by the multinomial theorem and the elementary inequality 2ab ≤ a2 + b2,

we have ∫
Tui,j

Phu(y)2dy ≤ h2

6

(
u2
i+1,j + u2

i+1,j+1 + u2
i,j+1

)
(3.17)

36



and ∫
T di,j

Phu(y)2dy ≤ h2

6

(
u2
i,j+1 + u2

i,j + u2
i+1,j

)
. (3.18)

Furthermore, a direct computation gives

‖Chu‖2
L2 = h2

N−1∑
i,j=2

u2
i,j +

h2

2

N−1∑
i=2

j∈{1,N}

(u2
j,i + u2

i,j) +
h2

4

∑
i,j∈{1,N}

u2
i,j. (3.19)

Thus, using (3.17) and (3.18) we obtain

‖Phu‖2
L2 =

∑
1≤i,j≤N−1

∫
Tui,j

Phu(y)2dy +

∫
T di,j

Phu(y)2dy

≤ h2

3

∑
1≤i,j<N

(
u2
i,j+1 + u2

i+1,j

)
+
h2

6

∑
1≤i,j<N

(
u2
i,j + u2

i+1,j+1

)
= h2

N−1∑
i,j=2

u2
i,j +

h2

2

N−1∑
i=2

j∈{1,N}

(u2
j,i + u2

i,j) +
h2

6

∑
i,j∈{1,N}

u2
i,j

≤ ‖Chu‖2
L2 +

h2

12
(u2

1,N + u2
N,1).

�

LEMMA 3.6. For any f ∈ L2(Ω) and 0 < h� 1, there holds

‖f − ChQhf‖2 ≤ K1 ω(f, h)2 (3.20)

and

‖PhQhf − ChQhf‖2 ≤ K2ω(f, h)2, (3.21)

where K1 and K2 are positive constants independent of h.

PROOF. By definition of the operators Qh (see (3.11)) and Ch (see (3.13)), we have

‖f − ChQhf‖2
2 =

∑
1≤i,j≤N

∫
Ωi,j

∣∣∣∣∣f(x)− 1∣∣Ωi,j

∣∣ ∫
Ωi,j

f(y)dy

∣∣∣∣∣
2

dx
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≤
∑

1≤i,j≤N

∫
Ωi,j

(
1∣∣Ωi,j

∣∣ ∫
Ωi,j

|f(x)− f(y)| dy

)2

dx

≤
∑

1≤i,j≤N

∫
Ωi,j

(
4

h2

∫
{z : |z|≤

√
2h}

|X[f ](x)−X[f ](x+ z)| dz
)2

dx

=

∫
Ω

(
4

h2

∫
{z : |z|≤

√
2h}

|X[f ](x)−X[f ](x+ z)| dz
)2

dx

≤ 4

h2

∫
{z : |z|≤

√
2h}

∫
Ω

|X[f ](x)−X[f ](x+ z)|2 dxdz,

where we have used Cauchy-Schwarz inequality, and Fubini Theorem to swap the order of

integration. Now, we observe that for h � 1, for any x ∈ Ω and any z ∈ R2 such that

|z| ≤
√

2h, we have {x, x+ z} ⊂ Ω1,2; so that∫
Ω

|X[f ](x)−X[f ](x+ z)|2 dx ≤ (ω(X[f ],
√

2h)2,Ω1,2)
2.

Therefore,

‖f − ChQhf‖2
2 ≤

4

h2

∫
{z : |z|≤

√
2h}

∫
Ω

|X[f ](x)−X[f ](x+ z)|2 dxdz

≤ (ω(X[f ], h)2,Ω1,2)
2 4

h2

∫
{z : |z|≤

√
2h}

dz

≤ 8π (ω(X[f ],
√

2h)2,Ω1,2)
2

≤ 32π (ω(X[f ], h)2,Ω1,2)
2 since ω(X[f ],

√
2h)2,Ω1,2 ≤ 2ω(X[f ], h)2,Ω1,2

≤ π (32ω(f, h)2)2 by (3.6);

hence the inequality (3.20) holds with K1 = 32
√
π.

We now prove the inequality (3.21). By definition of the operators Ph, Qh, and Ch, we

have

‖PhQhf−ChQhf‖2
2 =

∑
1≤i,j≤N

∫
Ωi,j

|PhQhf(x)− (Qhf)i,j|2dx

≤ 2
∑

1≤i,j≤N

∫
Ωi,j

∑
−1≤k,l≤1

∣∣ ((Qhf)i+l,j+k − (Qhf)i,j)φi+l,j+k(x)
∣∣2dx
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≤ 2
∑

−1≤l,k≤1

∑
1≤i+l≤N
1≤j+k≤N

h2
∣∣(Qhf)i+l,j+k − (Qhf)i,j

∣∣2
≤ 2

∑
−1≤l,k≤1

∑
1≤i+l≤N
1≤j+k≤N

∫
Ωi,j

|f(x+ (lh, kh))− f(x)|2dx

≤ 18(ω(f,
√

2h)2,Ω1,2)
2.

Thus,

‖PhQhf − ChQhf‖2 ≤ 3
√

2ω(f,
√

2h)2,Ω1,2

≤ 6
√

2ω(f, h)2,Ω1,2 since ω(f,
√

2h)2,Ω1,2 ≤ 2ω(f, h)2,Ω1,2

≤ 48ω(f, h)2 by (3.6).

Hence (3.21) holds with K2 = 48, and the proof is complete. �

3.3 A PIECEWISE LINEAR APPROXIMATION OF THE ROF MODEL

In this section, we construct continuous piecewise linear functions and prove their con-

vergence to the minimizer of the ROF model. Let f ∈ L2(Ω) be fixed and Qhf the dis-

cretization of f with respect to the quadrangulation {Ωi,j : 1 ≤ i, j ≤ N}. Let zf,h be the

minimizer of the functional

Ef
h(u) = λJh(u) +

h2

2

∑
1≤i,j≤N

|ui,j − (Qhf)i,j|2, (3.22)

over RN×N with Jh(u) defined in (3.7). We denote the minimizer of the ROF model in the

continuous setting by

uf = arg min
u∈BV (Ω)

Ef
λ(u), (3.23)

where Ef
λ(u) is defined in (ROF).

We now construct a continuous piecewise linear function by interpolating the discrete

minimizer zf,h and show that it converges to uf for a special class of functions f . Let

Phz
f,h be the continuous piecewise linear interpolation of the discrete minimizer zf,h over
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the triangulation ∆h. By the estimate (2.33), we have

∥∥Phzf,h − uf∥∥2

2
≤ 2

(
Ef
λ(Phz

f,h)− Ef
λ(uf )

)
.

Therefore, it suffices to show that
(
Ef
λ(Phz

f,h)− Ef
λ(uf )

)
→ 0 as h→ 0, to infer that the

continuous piecewise linear functions Phzf,h approximate the solution of the ROF model.

To this aim, we shall compare bothEf
λ(Phz

f,h) and Ef
λ(uf ) to the discrete energyEf

h(zf,h).

LEMMA 3.7. Let zf,h be the minimizer of the functionalEf
h(u) with respect to RN×N . Then

Ef
λ(Phz

f,h) ≤ Ef
h(zf,h) +

1

2
Cω(f, h)2 (Cω(f, h)2 + 4‖f‖2) (3.24)

where C is a positive constant depending on f .

PROOF. Since Jh(zf,h) = |DPhzf,h|(Ω), we have

2(Ef
λ(Phz

f,h)− Ef
h(zf,h)) = ‖Phzf,h − f‖2

2 −
∑

1≤i,j≤N

h2|zf,hi,j −Qhfi,j|2

≤ ‖PhQhf − f‖2(‖PhQhf − f‖2 + 2‖Ph(zf,h −Qhf)‖2)+

+ ‖Ph(zf,h −Qhf)‖2
2 −

∑
1≤i,j≤N

h2|zf,hi,j −Qhfi,j|2︸ ︷︷ ︸
≤0 by Lemma 3.5

≤ ‖PhQhf − f‖2(‖PhQhf − f‖2 + 2‖Ph(zf,h −Qhf)‖2), (3.25)

To finish the proof, it suffices to show that

‖PhQhf − f‖2 ≤ Cω(f, h)2 and ‖Ph(zf,h −Qhf)‖2 ≤ 2‖f‖2. (3.26)

First, as a byproduct of the proof of Lemma 3.5 we have

‖Ph(zf,h −Qhf)‖2
2 ≤

∑
1≤i,j≤N

h2|zf,hi,j − (Qhf)i,j|2 ≤ 2Ef
h(0)

=
∑

1≤i,j≤N

h2|(Qhf)i,j|2 ≤ 4‖f‖2
L2 .
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Next, by equation (3.20) in Lemma 3.6 we know that

‖PhQhf − f‖2 ≤ Kω(f, h)2.

Therefore the inequalities in (3.26) hold with C = K, and the proof is complete. �

LEMMA 3.8. Let zf,h be the solution of (3.22). For 0 < ε � 1, set ufε = X[uf ] ∗ ηε. If

f ∈ L∞(Ω), then

Ef
h(zf,h) ≤ Ef

λ(ufε ) + 16‖f‖2
∞h+O(h/ε). (3.27)

PROOF. With a slight abuse of notation, we let ufε be the element of RN×N obtained by

evaluating ufε at the grid points ωi,j . By definition of zf,h, we have

Ef
h(zf,h) ≤ Ef

h(ufε ) = λ Jh(Phu
f
ε ) +

1

2

N∑
i,j=1

h2|ufε (ωi,j)− (Qhf)i,j|2

≤ λ

∫
Ω

|∇(Phu
f
ε )|dx+

1

2

N∑
i,j=1

h2|ufε (ωi,j)− (Qhf)i,j|2

≤ λ

∫
Ω

|∇ufε |dx+ λ

∫
Ω

|∇(Phu
f
ε − ufε )|dx+

1

2

N∑
i,j=1

h2|ufε (ωi,j)− (Qhf)i,j|2.

(3.28)

Next, for each 1 ≤ i, j ≤ N , we have

|ufε (ωi,j)− (Qhf)i,j|2 = |ufε (ωi,j)− (Qhu
f
ε )i,j|2 + |(Qhu

f
ε −Qhf)i,j|2+

+ 2|ufε (ωi,j)− (Qhu
f
ε )i,j| · |(Qhu

f
ε −Qhf)i,j| (3.29)

and by the mean value theorem

|ufε (ωi,j)− (Qhu
f
ε )i,j|2 ≤

1

|Ωi,j|

∫
Ωi,j

|ufε (ωi,j)− ufε (x)|2dx

≤ 1

|Ωi,j|
sup
x∈Ω̄i,j

|∇ufε (x)|2
∫

Ωi,j

|x− ωi,j|2dx

≤ C

ε2
|Ωi,j|, (3.30)
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where C is a positive constant depending only on u through its L1- norm. Thus

N∑
i,j=1

h2|ufε (ωi,j)− (Qhf)i,j|2 ≤ C|Ω|h
2

ε2
+

N∑
i,j=1

h2|(Qhu
f
ε −Qhf)i,j|2 + C ′

h

ε
, (3.31)

where C, C ′ are positive constants depending on f, uf , and Ω. Now, we establish an upper

bound for the second term on the right in the inequality (3.31). By definition of the operator

Qh, the Cauchy-Schwarz inequality and Theorem 2.29, we have

N∑
i,j=1

h2|Qh(u
f
ε − f)i,j|2 ≤ ‖ufε − f‖2

L2(Ω) + 16‖f‖2
∞h. (3.32)

Taking into account (3.32) and (3.31) in the inequality (3.28), we obtain

Ef
h(zf,h) ≤ Ef

λ(ufε ) + 16‖f‖2
∞h+ C|Ω|h

2

ε2
+ C ′

h

ε
+ ‖Phufε − ufε‖W 1,1(Ω). (3.33)

Since the rectangular domain is endowed with a type I triangulation, we have [see 26,

Theorem 4.4.20, p. 108]

‖Phufε − ufε‖W 1,1(Ω) ≤ Ch
∑
|α|=2

‖Dαufε‖L1(Ω) ≤ C ′′
h

ε2
, (3.34)

where C ′′ is a constant that depends on ‖u‖L1(Ω). Thus, the estimate (3.33) becomes

Ef
h(zf,h) ≤ Ef

λ(ufε ) + 16‖f‖2
∞h+ C

h

ε2
,

where we have used the fact that x2 < x for any 0 < x < 1. �

We now state and prove the main result of this chapter.

THEOREM 3.9. Suppose that f ∈ Lip (α,L2(Ω))∩L∞(Ω) for some α ∈ (0, 1]. Let zf,h be

the minimizer of the functional Ef
h(u) in RN×N and uf be defined by (3.23). Then Phzf,h

converges in L2(Ω) to uf as h→ 0.

PROOF. For any 0 < h� 1 and any ε > 0, we have

‖Phzf,h − uf‖2
L2(Ω) ≤ 2

[
Ef
λ(Phz

f,h)− Ef
h(zf,h) + Ef

h(zf,h)− Ef
λ(uf )

]
.
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Next, by Lemma 3.7 we have

Ef
λ(Phz

f,h)− Ef
h(zf,h) ≤ 1

2
C1 ω(f, h)2 (C1 ω(f, h)2 + 4‖f‖2) ,

while Lemma 3.8 yields

Ef
h(zf,h)− Ef

λ(uf ) ≤ Ef
λ(ufε )− E

f
λ(uf ) + 16‖f‖2

∞h+ C2
h

ε2
.

Thus,

‖Phzf,h − uf‖2
L2(Ω) ≤ C1 ω(f, h)2 (C1 ω(f, h)2 + 4‖f‖2) +

+ 32‖f‖2
∞h+ 2C2

h

ε2
+ 2λ(Ef

λ(ufε )− E
f
λ(uf )). (3.35)

Now, since f ∈ Lip (α,Lα(Ω)) we have ω(f, h)2 ≤ O(hα). Letting ε = h1/2(α+1), we

infer from inequality (3.35) that

‖Phzf,h − uf‖2
L2(Ω) ≤ Chα/(α+1) + 2λ(Ef

λ(ufε )− E
f
λ(uf )), (3.36)

where we have used the fact that the function x 7→ ax is decreasing when 0 < a < 1.

Since ufε
ε→0−−→ uf in L2(Ω) and Dufε |(Ω)

ε→0−−→ Du|(Ω), it follows that for our choice of

ε = h1/2(α+1), Ef
λ(ufε )− E

f
λ(uf )→ 0 as h→ 0. Thus taking the limit as h → 0 in (3.36),

we conclude that ‖Phzf,h − uf‖L2(Ω) → 0 as h→ 0 and the proof is complete. �

COROLLARY 3.10. Under the assumptions of Theorem 3.9, we have

Jh(Phz
f,h)→ J(uf ), when h→ 0.

PROOF. This is a direct consequence of the convergence of Ef
h(Phz

f,h) to Ef
λ(uf ) as

h→ 0. �

REMARK 3.11. It transpires from the proof above that to establish a convergence rate of

the proposed piecewise linear approximation, one will need a convergence rate of Ef
λ(ufε )

toEf
λ(uf ) which we have not been able to establish at this point. Moreover the optimal con-
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vergence rate, if one could be derived, should be of the order of O(hβ) with 0 < β ≤ 1/2.

The convergence is slower for smaller values of β and one would need very small values

of h to get significant evidence of the convergence when doing numerical simulations.

3.4 A NUMERICAL EXPERIMENT

We report here the results of a numerical test carried to confirm our theoretical result.

We use the algorithms to be introduced in the next chapter to simulate our approximation

theory for the data function

f = 2551B

whereB is the disk centered at (1/2, 1/2) with radiusR = 1/4. Our choice of this function

is supported in the fact that it is one of the few functions for which an explicit formula of

the ROF minimizer is know. In fact, we have seen in section 2.3.3 that in this case the

minimizer uf is given by

uf = 255 max(1− 2λ/R, 0)1B, ∀λ > 0.

Note that the size of the discrete data Qhf grows as 1/h2 as h → 0, therefore we will

only show the result of moderate size data. The table below shows the distance between uf

and Phu100 where u100 is the approximation of zf,h computed using Algorithm 4.12. It is

already apparent that the distance is decreasing with h even though we are only using an

approximation of the discrete minimizer zf,h.
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λ/R

h 2−3 2−5 2−7 2−9

2−5 25.0682 18.4406 17.9938 17.9808

2−6 26.1967 13.8377 11.5935 11.3495

2−7 21.0148 14.1954 9.1324 8.5836

2−8 17.8916 14.1036 7.3424 6.0095

2−9 16.1267 10.2853 7.3082 4.5298

2−10 15.1462 7.6813 7.1739 3.6942

TABLE 3.1: The L2(Ω) distance between uf and Phu100 where u100 is the approximation of zf,h

computed using Algorithm 4.12.
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4

ALGORITHMS FOR COMPUTING THE PIECEWISE LINEAR

APPROXIMATION

In this chapter we present a fixed point and proximal gradient algorithms for computing

approximation of the discrete minimizer used in constructing the piecewise linear approx-

imation studied in the previous chapter. We recall that to compute the piecewise linear

approximation, it suffices to compute the discrete minimizer

zf,h := arg min
u∈RN×N

λJh(u) +
h2

2

∑
1≤i,j≤N

|uij − fij|2, (PM)

where Jh(u) is defined in (3.7). We note that the existence and uniqueness of zf,h follows

from Proposition 2.9. However, since the objective function is not differentiable, comput-

ing zf,h is hard and only iterative approximations are possible.

For the purpose of developing algorithms for computing zf,h, we will show that the

minimization problem (PM) is equivalent to a saddle point problem from which a more

tractable counterpart of (PM) will be derived. Zhu et al. [76] used a similar approach

for the standard discrete total variation based digital image denoising model. However,

since we are using an averaged discrete total variation, we will deal with a pair of dual

variables, paving the way for alternating dual algorithms. This work is the first time that

such algorithms are proposed for the total variation based image denoising problem.

4.1 SADDLE POINTS AND CONSTRAINED OPTIMIZATION

In this section, we recall some classical results in convex analysis and optimization that

we will use in formulating algorithms for the approximation of the solution of (PM). Our

exposition follows the monographs [40, 43].
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4.1.1 THE SADDLE POINT PROBLEM

We recall the relevant fact about saddle point problem that we will need to establish the

equivalence of (PM) to a saddle point problem from which the algorithms will be devel-

oped. All the results presented hereafter are taken for the textbook [43].

Let L(u, p) be a function defined on the product space Rn × Rm with values in R, A a

nonempty subset of Rn, and B a nonempty subset of Rm. We start with the definition of a

saddle point.

DEFINITION 4.1. We say that a pair (ū, p̄) ∈ A× B is a saddle point of L over A× B if

L(ū, p) ≤ L(ū, p̄) ≤ L(u, p̄), ∀(u, p) ∈ A× B. (4.1)

REMARK 4.2. We observe that if L : A× B → R, then

sup
p∈B

inf
u∈A

L(u, p) ≤ inf
u∈A

sup
p∈B

L(u, p) (4.2)

The next result gives a necessary and sufficient condition for the existence of a saddle

point. Though not very practical for showing the existence of a saddle point, it is very

instrumental in our characterization of zf,h.

PROPOSITION 4.3 ([43]). The functionL : A×B → R has a saddle point at (ū, p̄) ∈ A×B

if and only if

L(ū, p̄) = max
p∈B

inf
u∈A

L(u, p) = min
u∈A

sup
p∈B

L(u, p). (4.3)

We also have a characterization for the saddle points of a Gâteaux differentiable func-

tional L.

THEOREM 4.4 ([43]). Let L be a functional from A× B into R. Suppose that

A and B are convex and closed, (4.4)
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∀u ∈ A, p 7→ L(u, p) is concave and upper semicontinuous, (4.5)

∀ p ∈ B, u 7→ L(u, p) is convex and lower semicontinuous. (4.6)

Assume in addition that

∀u ∈ A, p 7→ L(u, p) is Gâteaux differentiable, (4.7)

and

∀ p ∈ B, u 7→ L(u, p) is Gâteaux differentiable. (4.8)

Then (ū, p̄) ∈ A× B is a saddle point of L if and only if

〈∂L
∂u

(ū, p̄), u− ū〉 ≥ 0, ∀u ∈ A, (4.9a)

〈∂L
∂p

(ū, p̄), p− p̄〉 ≤ 0, ∀ p ∈ B. (4.9b)

4.1.2 CONSTRAINED MINIMIZATION PROBLEMS

We now recall a fundamental result in constrained optimization and use it later to derive

a fixed-point iterative algorithm for computing zf,h. Let f and {gi}1≤i≤m be functions

defined from Rn into R. The problem of interest is the following:

Minimize f(x) over Rn

subject to: gi(x) ≤ 0, 1 ≤ i ≤ m.

(4.10)

Of course problem (4.10) is of interest only if the feasible set F :=
m⋂
i=1

{gi ≤ 0} is

nonempty. For our purposes in this chapter, we will assume that the constraints gi are

convex and introduce the following definition.

DEFINITION 4.5. We will say that the convex constraints gi, 1 ≤ i ≤ m, are qualified if

either all the functions gi are affine and F 6= ∅ or there exists a point v such that for any

1 ≤ i ≤ m, gi(v) ≤ 0 and gi(v) < 0 if gi is not affine.

48



We now state a classical result giving a necessary and sufficient condition for the exis-

tence and a solution of the solution to problem (4.10).

THEOREM 4.6 (Kuhn-Tucker conditions,[40]). Suppose that the functions f and gi, 1 ≤

i ≤ m are differentiable and convex. Assume further that the constraints are qualified.

Then a point u ∈ F is a solution of (4.10) if and only if there exists λ(u) ∈ Rm
+ such that

f ′(u) +
∑

1≤i≤m

λi(u)g′i(u) = 0,

∑
1≤i≤m

λi(u)gi(u) = 0.

(4.11)

The vector λ(u) is a Kuhn-Tucker vector associated to problem (4.10).

The theorem above states that under the assumptions of convexity and differentiability,

the constrained minimization problem (4.10) with qualified constraints has a solution if and

only if the Lagrangian

L(v, λ) = f(v) +
∑

1≤i≤m

λigi(v), (v, λ) ∈ Rn × Rm

has at least one saddle point (u, λ(u)) ∈ Rn × Rm
+ and L(u, λ(u)) = f(u).

4.2 CHARACTERIZATION OF THE DISCRETE MINIMIZER

In this section, we establish that the discrete minimization problem (PM) is equiva-

lent to a saddle point problem and derive a dual formulation of (PM) that we will use in

developing the algorithms.

We begin with some notations. Let X := RN×N and Y := X ×X . An element p ∈ Y

will be represented by

p = (pi,j)1≤i,j≤N = (p1
i,j, p

2
i,j)1≤i,j≤N .

The vector space Y is naturally endowed with an inner product inherited from X and de-
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fined by

〈p, q〉 =
∑

1≤i,j≤N

p1
ijq

1
i,j + p2

i,jq
2
i,j, p, q ∈ Y.

The norm associated to the above inner product will be denoted

‖p‖2 :=
√
〈p, p〉, p ∈ Y.

We also endow Y with the norm ‖ · ‖2,∞ defined by

‖p‖2,∞ := max
1≤i,j≤N

|pi,j|2,

where |pi,j|2 =
√

(p1
i,j)

2 + (p2
i,j)

2 is the Euclidean norm of pi,j in R2.

Next, we associate to the gradient operators ∇+ : X → Y and ∇− : X → Y de-

fined in (3.8) and (3.9), the discrete divergence operators div+ := −∇∗+ : Y → X and

div− := −∇∗− : Y → X , defined as the negative adjoint of∇+ and∇−, respectively:

div+(p)i,j =


0 if i = N or j = N

p1
i,j

h
otherwise

−


0 if i = 1 or j = N

p1
i−1,j

h
otherwise

+


0 if i = N or j = N

p2
i,j

h
otherwise

−


0 if i = N or j = 1

p2
i,j−1

h
otherwise,

(4.12)

and

div−(p)i,j =


0 if i = N or j = 1

p1
i+1,j

h
otherwise

−


0 if i = 1 or j = 1

p1
i,j

h
otherwise

+


0 if i = 1 or j = N

p2
i,j+1

h
otherwise

−


0 if i = 1 or j = 1

p2
i,j

h
otherwise.

(4.13)

Under our new notations, we have

Jh(u) =
h2

2
(‖∇+(u)‖2 + ‖∇−(u)‖2) .
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Furthermore, by the Riesz representation theorem and the definition of the divergence op-

erators, we also have

Jh(u) = h2 sup
p,q∈BY

−〈u, 1

2
div+(p) +

1

2
div−(q)〉X , (4.14)

where

BY := {p ∈ Y : ‖p‖2,∞ ≤ 1}

is be the closed unit ball of Y in the infinity norm ‖ · ‖2,∞. Therefore, the minimization

problem (PM) is equivalent to the saddle-point problem

arg min
u∈X

sup
p,q∈BY

−λh2〈u, 1

2
div+(p) +

1

2
div−(q)〉X +

h2

2

∑
1≤i,j≤N

|ui,j − fi,j|2. (PDM)

We will refer to (PDM) as the primal-dual total variation model.

We now show that (PDM) has a solution. Let L be the functional defined on X × Y 2

by

L(u; p, q) := −λh
2

2
〈u, div+(p) + div−(q)〉X +

h2

2
‖u− f‖2

X . (4.15)

We note that L is quadratic in the variable u and linear in the dual pair (p, q); thus we can

apply Theorem 4.4 to show the existence of a saddle point of L. We have the following

THEOREM 4.7. A point (ū; p̄, q̄) ∈ X × B2
Y is a saddle point of L over the set X × B2

Y if

and only if

(p̄, q̄) ∈ arg min
p,q∈BY

‖λ(div+(p) + div−(q)) + 2f‖2
X . (4.16)

and

ū = f +
λ

2
(div+(p̄) + div−(q̄)) (4.17)

Furthermore, if (ū; p̄, q̄) is a saddle point of L with respect to X ×B2
Y , then

ū = arg min
u∈RN×N

λJh(u) +
h2

2

∑
1≤i,j≤N

|uij − fij|2.
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PROOF. We note that L is Gâteaux differentiable with partial differentials

∇uL(u; p, q) = h2(u− f)− λh2

2
(div+(p) + div−(q)) ,

∇p,qL(u; p, q) =
λh2

2
[∇+(u),∇−(u)] .

Suppose that (ū; p̄, q̄) ∈ X × B2
Y is a saddle point of L over the set X × B2

Y . Then, by

Theorem 4.4 we have

〈∇uL(ū; p̄, q̄), u− ū〉 ≥ 0, ∀u ∈ X;

so that taking u = ū ± ∇uL(ū; p̄, q̄) in the inequality above yields ∇uL(ū; p̄, q̄) = 0.

Thus the point (ū; p̄, q̄) satisfies the equation (4.17). To show that (4.16) holds, we use the

characterization of saddle points in Proposition 4.3 to obtain

L(ū, p̄, q̄) = max
p,q∈BY

min
u∈X
L(u; p, q).

Now, since v 7→ L(v; p, q) is differentiable for any (p, q) ∈ Y 2, it follows that for each

point (p, q) ∈ B2
Y , the minimum of v 7→ L(v; p, q) over X is achieved at a point u such

that∇uL(u; p, q) = 0, i.e,

u = f +
λ

2
(div+(p) + div−(q)) .

So,

L(ū, p̄, q̄) = max
p,q∈BY

min
u∈X
L(u; p, q)

=
h2

2
max
p,q∈BY

−2〈f, λ
2

(div+(p) + div−(q))〉X −
λ2

4
‖ div+(p) + div−(q)‖2

X

= max
p,q∈BY

h2

2

(
‖f‖2

X −
1

4
‖λ(div+(p) + div−(q)) + 2f‖2

X

)
.

Thus,

(p̄, q̄) ∈ arg min
p,q∈BY

|λ(div+(p) + div−(q)) + 2f |2.

Conversely, if (ū; p̄, q̄) ∈ X ×B2
Y satisfies (4.17) and (4.16), then it is easy to see from

(4.16) that (4.9a) holds. Now, we notice that (4.17) means that div+(p̄) + div−(q̄) is the
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orthogonal projection of −2f/λ onto the closed convex subset of X given by

K = {div+(p) + div−(q) : p, q ∈ BY }. (4.18)

Thus, by the characterization of the orthogonal projection, we have

〈−2f/λ− div+(p̄)− div−(q̄), div+(p− p̄) + div−(q − q̄)〉X ≤ 0, ∀ p, q ∈ BY .

But by definition of the divergence operators, the latter inequality is equivalent to

〈∇p,qL(ū; p̄, q̄), (p− p̄, q − q̄〉Y×Y ≤ 0, ∀ p, q ∈ BY ,

where we have used (4.16) again. Hence (4.9b) holds, and by Theorem 4.4, (ū; p̄, q̄) is a

saddle point of L over X ×B2
Y .

Finally, if (ū; p̄, q̄) is a saddle-point of L with respect to X ×B2
Y , then

L(ū; p̄, q̄) = min
u∈X

max
p,q∈BY

L(u; p, q)

= min
u∈X

λJh(u) +
1

2λ
‖u− f‖2

X by (4.14).

Hence ū = arg min
u∈X

λJh(u) +
1

2λ
‖u− f‖2

X ; and the proof is complete. �

REMARK 4.8. Theorem 4.7 asserts that solving the primal total variation model (PM) is

equivalent to solving the dual total variation model

Find (p̄, q̄) ∈ arg min
p,q∈BY

‖λ(div+(p) + div−(q)) + 2f‖2
X . (DM)

Moreover, an element u ∈ X is the solution of (PM) if and only if 2 (u− f) /λ is the

orthogonal projection of −2f/λ onto the closed convex set K defined in 4.18.

4.3 THE ALGORITHMS

We have established a primal-dual and a dual formulation of the original minimization

(PM). In this section, we will develop three algorithms for computing a solution of (PM)

via the dual problem (DM) and the identity (4.17).
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4.3.1 PROJECTED-GRADIENT ALGORITHM

The dual problem (DM) is a constrained quadratic program with convex constraints.

Consequently, reasoning as [40, p. 323], we will develop a projected-gradient algorithm

for computing its solution. However, since the constraints contains an open set, and the

gradient of the objective is not coercive, we cannot use Theorem 8.6.2 of [40] to obtain

the convergence regime of the algorithm. A pointed analysis is required in this case. We

note that such an analysis has been done by Duval et al. [42] for the standard discrete ROF

model (2.38). In a more recent paper, Aujol [14] demonstrated that the projected-gradient

algorithm that they studied in [42], is a special class of the Bermùdez-Moreno algorithm

[23, 1981].

The next result gives a necessary and sufficient condition satisfied by any solution (p̄, q̄)

of the dual problem (DM), and is the motivation of the proposed projected-gradient algo-

rithm.

PROPOSITION 4.9. Let f ∈ X be given. The following are equivalent

(p̄, q̄) is a solution of (DM), (4.19)
p̄ = PBY (p̄+ τ∇+ [div+(p̄) + div−(q̄) + 2f/λ])

q̄ = PBY (q̄ + τ∇− [div+(p̄) + div−(q̄) + 2f/λ])

, ∀ τ > 0. (4.20)

PROOF. Let (p̄, q̄) ∈ B2
Y be such that (4.19) holds. It suffices to proof the first identity in

(4.20); the proof of the second is identical.

If (p̄, q̄) ∈ arg min
p,q∈BY

|λ(div+(p) + div−(q) + 2f)|2, then

p̄ ∈ arg min
p∈BY

| div+(p) + div−(q̄) + 2f/λ|2,

so that λ div+(p̄) is the orthogonal projection of −λ div−(q̄) − 2f onto the closed convex

set

λK+ := {λ div+(p) : p ∈ BY }.
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Therefore, we have

〈λ(div+(p̄) + div−(q̄)) + 2f, λ div+(p− p̄)〉 ≥ 0, ∀p ∈ BY ,

or equivalently

〈−∇+(div+(p̄) + div−(q̄) + 2f/λ), p− p̄〉 ≥ 0, ∀p ∈ BY ,

where we have used the definition of − div+ as the adjoint of ∇+. The latter inequality is

equivalent to

〈[p̄+ τ∇+(div+(p̄) + div−(q̄) + 2f/λ)]− p̄, p− p̄〉 ≤ 0, ∀ p ∈ BY , ∀τ > 0;

hence

p̄ = PBY (p̄+ τ∇+ [div+(p̄) + div−(q̄) + 2f/λ]) , ∀ τ > 0.

The proof of the second identity in (4.20) is identical to the one above, changing p to q,

and div+ to div−.

Conversely, suppose there is a point (p̄, q̄) ∈ B2
Y such that (4.20) holds. Then, by the

characterization of the orthogonal projection and for τ = 1, we have

〈−2f/λ− (div+(p̄) + div−(q̄)), div+(p− p̄)〉X ≤ 0 ∀ p ∈ BY ,

〈−2f/λ− (div−(p̄) + div−(q̄)), div−(q − q̄)〉X ≤ 0 ∀ q ∈ BY ,

where we have used the definition of the divergence operators as the negative adjoint of the

corresponding gradient operators. Adding the two inequalities above, we obtain

〈−2f/λ− (div+(p̄) + div−(q̄)), div+(p− p̄) + div−(q − q̄)〉X ≤ 0, ∀ p, q ∈ BY .

Thus div+(p̄) + div−(q̄) is the orthogonal projection of −2f/λ on to the subset K of X ,

or equivalently (p̄, q̄) satisfies (DM). �
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REMARK 4.10. Let p ∈ Y be fixed. Then, it can easily be shown that

PBY (p)i,j =

(
p1
i,j

max(1, |pi,j|)
,

p2
i,j

max(1, |pi,j|)

)
, 1 ≤ i, j ≤ N. (4.21)

In fact, since BY is the Cartesian product of closed unit disks of R2, and R2 is isometrically

embedded in Y , PBY (p)i,j is simply the orthogonal projection of

pi,j = (p1
i,j, p

2
i,j) onto the closed unit ball of R2, which is given by (4.21).

Proposition 4.9 defines the solutions of the dual problem (DM) as fixed points of a one

parameter families of Lipschitz continuous operators. Consequently, if we can show that

for some values of the parameter τ , these operators are contractions, then the corresponding

fixed point algorithm will certainly converge. Indeed, we have the following Lemma.

LEMMA 4.11. Let I be the identity operator on Y × Y , and A : Y × Y → Y × Y the

linear operator defined by

A :=

−∇+ div+ −∇+ div−

−∇− div+ −∇− div−

 . (4.22)

The following are true

The operator A is Hermitian and nonnegative definite. (4.23)

The norm of A is bounded above as follows: ‖A‖ ≤ 16/h2. (4.24)

The operator I − τ A is non expansive for any τ ∈ [0, h2/8]. (4.25)

The restriction of I − τ A to the range of A is a contraction, for any 0 < τ < h2/8.

(4.26)

PROOF. First, we show that A is nonnegative definite. Indeed, for any p, q ∈ Y

〈A

p
q

 ,

p
q

〉Y×Y = −〈∇+(div+(p) + div−(q)), p〉Y − 〈∇−(div+(p) + div−(q)), q〉Y

= 〈div+(p) + div−(q), div+(p) + div−(q)〉X

= ‖ div+(p) + div−(q)‖2
X ≥ 0;
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hence A is nonnegative definite. Now let s, r ∈ Y be given. Then,

〈A

p
q

 ,

s
r

〉Y×Y = 〈div+(p) + div−(q), div+(s) + div−(r)〉X

= 〈p,−∇+(div+(s) + div−(r))〉Y + 〈q,−∇−(div+(s) + div−(r))〉Y

= 〈

p
q

 , A

s
r

〉Y×Y ;

thus A is clearly Hermitian, and (4.23) is true.

We now show that (4.24) holds. For any p, q ∈ Y , we have∥∥∥∥∥∥A
p
q

∥∥∥∥∥∥
2

Y 2

:= ‖∇+(div+(p) + div−(q))‖2
X + ‖∇−(div+(p) + div−(q))‖2

X

≤ (‖∇+‖2 + ‖∇−‖2)‖‖(div+(p) + div−(q))‖2
Y

≤ 2(‖∇+‖2 + ‖∇−‖2) max(‖ div+ ‖2, ‖ div− ‖2)(‖p‖2
Y + ‖q‖2

Y )

Therefore,

‖A‖ ≤
√

2(‖∇+‖2 + ‖∇−‖2) max(‖ div+ ‖2, ‖ div− ‖2). (4.27)

It now suffices to established that ‖∇+‖ = ‖ div+ ‖ ≤ 8/h2; the proof of

‖∇−‖ = ‖ div− ‖ ≤ 8/h2 follows mutatis mutandis from that of ‖∇+‖ = ‖ div+ ‖ ≤ 8/h2.

By definition of div+ = −∇∗+, we have

〈∇+u,∇+u〉Y = 〈u,− div+(∇+u)〉X , ∀u ∈ X,

〈div+(p), div+(p)〉X = 〈p,−∇+(div+(p))〉Y , ∀p ∈ Y.

Consequently, by Cauchy-Schwarz inequality,

‖∇+(u)‖2
Y ≤ ‖ div+ ‖ · ‖∇+‖ · ‖u‖2

X , ∀u ∈ X,

‖ div+(p)‖2
X ≤ ‖∇+‖ · ‖ div+ ‖ · ‖p‖2

Y , ∀ p ∈ Y,

so that taking the supremum over all u ∈ X such that ‖u‖X = 1 and all p ∈ Y such

‖p‖Y = 1, we obtain that ‖∇+‖ = ‖ div+ ‖.
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Furthermore, for any u ∈ X ,

‖∇+u‖2
Y =

1

h2

∑
1≤i,j≤N−1

(ui+1,j − ui,j)2 + (ui,j+1 − ui,j)2

≤ 2

h2

∑
1≤i,j≤N−1

u2
i+1,j + 2u2

i,j + u2
i,j+1 ≤

8

h2
‖u‖2,

where we have used the estimate 2ab ≤ a2 + b2 to obtain the last inequality above. Hence,

‖∇+‖2 = ‖ div+ ‖2 ≤ 8/h2. Likewise, we show that ‖∇−‖2 = ‖ div− ‖2 ≤ 8/h2. Conse-

quently, it follows from (4.27) that ‖A‖ ≤ h2/16; thus (4.24) is true.

We now prove the last two properties of A. We note to begin that since A is Hermitian

and nonnegative definite, we have

Y × Y = ker(A)
⊥
⊕ F, (4.28)

where F = ker(A)⊥ = Range(A). Moreover, all the eigenvalues of A are nonnegative and

κ := ‖I − τ A‖ = max(1, |1− τ‖A‖|),

where ‖A‖ denotes the spectral norm of A (the largest eigenvalue of A). So, I− τ A is non

expansive if and only if 0 < τ ≤ 2/‖A‖. Since ‖A‖ ≤ h2/16, it follows that I − τ A is

indeed non expansive for τ ∈ [0, h2/8].

Finally, since F has an orthogonal basis made of the eigenvectors of A associated to

nonzero eigenvalues, it follows that the norm of the restriction of I − τ A to F is

κF = max(|1− τλ2(A)|, |1− τ‖A‖|),

where λ2(A), the smallest nonzero eigenvalue of A, satisfies 0 < λ2(A) ≤ ‖A‖ ≤ 16/h2.

Hence, if 0 < τ < h2/8, we get −1 < 1− τλ2(A) < 1 and − 1 < 1− τ‖A‖ < 1, so that

κF < 1. Thus I − τ A is a contraction on the range of A for all 0 < τ < h2/8. �
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ALGORITHM 4.12 (Dual Projected-Gradient). Choose τ > 0 and p0, q0 ∈ BY .

1. For any n ≥ 0, compute un

un = f +
λ

2
[div+(pn) + div−(qn)] . (4.29)

2. Update the dual variables p and q as follows

pn+1 = PBY (pn + 2τ/λ∇+(un)) (4.30a)

qn+1 = PBY (qn + 2τ/λ∇−(un)) . (4.30b)

3. Until stopping criterion, increment n← n+ 1 and return to 1.

A heuristic for the appellation of the above algorithm is as follows. The algorithm

updates the dual variables p and q in two stages: (1) we update the current state of p and q

with a gradient descent step of size τ ; (2) we project the resulting updates onto the feasible

set of the dual problem (DM).

We are now ready to prove the convergence of the dual projected gradient algorithm.

Our proof follows the argument in [42] and completes it by also showing the convergence

of the dual sequence (pn, qn).

PROPOSITION 4.13. If 0 < τ < h2/8, then Algorithm 4.12 converges. More precisely,

given p0, q0 ∈ BY , there exists (p̄0, q̄0) ∈ B2
Y satisfying (4.20) such that the sequence

(pn, qn) defined by (4.30) converges to (p̄0, q̄0) and the sequence un defined by (4.29) con-

verges to zf,h, the solution of (PM).

PROOF. Let (p̄, q̄) be any solution of (4.20), and τ ∈ (0, h2/8) be given. Since the

orthogonal projection onto BY × BY is equivalent to projecting each copy of Y in Y × Y

onto the corresponding copy of BY , it follows from (4.20) and (4.30) thatpn+1

qn+1

 = PBY ×BY

(I − τ A)

pn
qn

+

2f/λ

2f/λ

 ,
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and p̄
q̄

 = PBY ×BY

(I − τ A)

p̄
q̄

+

2f/λ

2f/λ

 ,

where A is the linear operator defined in (4.22). Since orthogonal projections are non

expansive, we infer from the latter identities that∥∥∥∥∥∥
pn+1 − p̄
qn+1 − q̄

∥∥∥∥∥∥
Y 2

≤ ‖I − τA‖

∥∥∥∥∥∥
pn − p̄
qn − q̄

∥∥∥∥∥∥
Y 2

As a consequence, by Lemma 4.11, we have for any τ ∈ [0, h2/8] and for all (p̄, q̄) satisfy-

ing (4.20) ∥∥∥∥∥∥
pn+1 − p̄
qn+1 − q̄

∥∥∥∥∥∥
Y 2

≤

∥∥∥∥∥∥
pn − p̄
qn − q̄

∥∥∥∥∥∥
Y 2

, ∀n ≥ 0. (4.31)

We now show that the sequence (pn, qn)n≥0 converges by showing that all of its con-

vergent subsequences have the same limit. Let (pnk , qnk)k≥0 be a convergent subsequence

with limit (p̃, q̃). Then by (4.29) and (4.30), the subsequence (pnk+1, qnk+1) converges to

(p̂, q̂) and by (4.31), for all (p̄, q̄) solution of (DM)∥∥∥∥∥∥
p̂− p̄
q̂ − q̄

∥∥∥∥∥∥
Y 2

=

∥∥∥∥∥∥
p̃− p̄
q̃ − q̄

∥∥∥∥∥∥
Y 2

, (4.32)

so that using the equations (4.20) and (4.28), we have∥∥∥∥∥∥
p̃− p̄
q̃ − q̄

∥∥∥∥∥∥
2

Y 2

≤

∣∣∣∣∣∣(I − τA)

p̃− p̄
q̃ − q̄

∥∥∥∥∥∥
2

Y 2

≤

∥∥∥∥∥∥∥
p̃− p̄
q̃ − q̄


ker(A)

∥∥∥∥∥∥∥
2

Y 2

+ κ2
F

∥∥∥∥∥∥
p̃− p̄
q̃ − q̄


F

∥∥∥∥∥∥
2

Y 2

, (4.33)

where κF is the norm of I − τA with respect to F . But we know from Lemma 4.11 that

κF < 1, thus (4.33) implies that we must have

p̃− p̄
q̃ − q̄

 ∈ ker(A); hence

div+(p̃) + div−(q̃) = div+(p̄) + div−(q̄). (4.34)
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Since div+(p̄) + div−(q̄) is the orthogonal projection of −2f/λ onto the closed convex set

K = {div+(p) + div−(q) : p, q ∈ BY }, so is div+(p̃) + div−(q̃) and it follows that (p̃, q̃) is

a solution of (DM).

Finally, rewriting (4.32) for the solution (p̃, q̃), we obtain that the subsequence (pnk+1, qnk+1)

converges to (p̃, q̃). Moreover, by continuity of the divergence operators, equation (4.34),

and Theorem 4.7, the subsequence unk defined by (4.29) converges to zf,h the solution of

(PM). To finish the proof, we show that any two convergent subsequences of (pn, qn) have

the same limit. Let (pnk , qnk)→ (p̃, q̃) and (pmk , qmk)→ (p̂, q̂) be two such subsequences.

We may assume without loss of generality that nk ≤ mk, otherwise we can always ex-

tract a further subsequence of (pnk , qnk) for which the property holds. By the monotonicity

property of (pn, qn) given in (4.31) and the fact that (p̂, q̂) solves (DM), we obtain∣∣∣∣∣∣
pnk − p̂
qnk − q̂

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
pmk − p̂
qmk − q̂

∣∣∣∣∣∣ . (4.35)

Passing to the limit in the latter inequality yields p̃ = p̂ and q̃ = q̂. Thus, the sequence

(pn, qn) converges to a point (p̄0, q̄0) solution of (DM). �

REMARK 4.14. Paralleling the argument in [14], we can show that Algorithm 4.12 is a

special case of Bermùdez-Moreno algorithm.

We obtain an alternating version of the above algorithm by using a Gauss-Seidel type

update on the dual variables p and q. The resulting algorithm reads as follows:

ALGORITHM 4.15 (Alternating Dual Projected-Gradient). Choose τ > 0 and p0, q0 ∈ BY .

1. For any n ≥ 0, compute un

un = f +
λ

2
[div+(pn) + div−(qn)] . (4.36)
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2. Update p, do a half step update of u, then update q

pn+1 = PBY (pn + 2τ/λ∇+(un)) , (4.37a)

un+ 1
2

= f +
λ

2
[div+(pn+1) + div−(qn)] , (4.37b)

qn+1 = PBY

(
qn + 2τ/λ∇−(un+ 1

2
)
)
. (4.37c)

3. Until stopping criterion, increment n← n+ 1 and go to 1.

While the proof of convergence of the alternating projected-gradient algorithm above

is still eluding us, the numerical experiments suggest that one should be able to prove the

following conjecture

CONJECTURE 1. If 0 < τ ≤ h2/4, then Algorithm 4.15 converges. More precisely, given

p0, q0 ∈ BY , there exists (p̄0, q̄0) ∈ B2
Y satisfying (4.20) such that the sequence (pn, qn)

defined by (4.30) converges to (p̄0, q̄0) and the sequence un defined by (4.29) converges to

zf,h, the solution of (PM).

4.3.2 A FIXED-POINT ITERATIVE ALGORITHM

Since the constraint of (DM) is qualified in the sense of definition 4.5, we use Theorem

4.6 to derive an alternate one parameter family of functionals for which the solutions of

the dual problem (DM) arise as fixed points. This approach was first used by Chambolle

[31] to construct a breakthrough algorithm for the standard discrete ROF model (2.38). The

peculiarity of the algorithm to follow is that we used and alternating scheme to update the

dual variables (p, q).

We observe that the dual problem is equivalent to the constrained minimization problem

with quadratic objective

F (p, q) = 〈A

p
q

 ,

p
q

〉X − 2〈

∇+(2f/λ)

∇−(2f/λ)

 ,

p
q

〉X + ‖2f/λ‖2
X (4.38)
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where A is the operator defined in (4.22), and convex quadratic constraints:

gi,j(p, q) := (p1
i,j)

2 + (p2
i,j)

2 − 1 ≤ 0, 1 ≤ i, j ≤ N, (4.39a)

hi,j(p, q) := (q1
i,j)

2 + (q2
i,j)

2 − 1 ≤ 0, 1 ≤ i, j ≤ N. (4.39b)

Clearly, the objective function F is differentiable with gradient field

grad(F )(p, q) = −2

∇+(div+(p) + div−(q) + 2f/λ)

∇+(div−(p) + div−(q) + 2f/λ)

 , (4.40)

and the constraints are also differentiable with gradient

grad(gi,j)(p, q) = 2

pi,j
0

 and grad(hi,j)(p, q) = 2

 0

qi,j

 , 1 ≤ i, j ≤ N. (4.41)

Moreover, the constraints are qualified in the sense of Definition 4.5 with p = q = 0.

Therefore, the solutions of (DM) are also characterized by the Kuhn-Tucker conditions in

Theorem 4.6.

The next result which follows directly from Theorem 4.6, gives another characterization

of a solution of the dual problem (DM). Let (p, q) ∈ Y 2 be fixed and define α ∈ Y and

β ∈ Y in terms of p and q as follows:

αi,j(p, q) =
∣∣∣∇+ (div+(p) + div−(q) + 2f/λ)i,j

∣∣∣ , 1 ≤ i, j ≤ N, (4.42a)

βi,j(p, q) =
∣∣∣∇− (div+(p) + div−(q) + 2f/λ)i,j

∣∣∣ 1 ≤ i, j ≤ N. (4.42b)

THEOREM 4.16. A point (p, q) ∈ BY × BY is a solution of the dual problem (DM) if and

only if for any τ > 0

pi,j =
pi,j + τ∇+ (div+(p) + div−(q) + 2f/λ)i,j

1 + ταi,j(p, q)
, 1 ≤ i, j ≤ N, (4.43a)

qi,j =
qi,j + τ∇− (div+(p) + div−(q) + 2f/λ)i,j

1 + τβi,j(p, q)
, 1 ≤ i, j ≤ N, (4.43b)

where α and β are given by (4.42).
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PROOF. First we observe that the equations (4.43) are equivalent to

grad(F )(p, q) +
∑

1≤i,j≤N

αi,j(p, q) grad(gi,j(p) + βi,j(p, q) grad(hi,j)(q) = 0, (4.44)

and it follows from the latter that

∑
1≤i,j≤N

αi,j(p, q)gi,j(p) + βi,j(p, q)hi,j(q) = 0; (4.45)

hence we obtain the sufficient condition for the existence of a solution.

Conversely, if (p, q) ∈ BY is a solution of (DM), then (p, q) is a solution of the con-

strained minimization problem

Minimize F (p, q),

subject to: gi,j(p) ≤ 0, 1 ≤ i, j ≤ N,

hi,j(q) ≤ 0, 1 ≤ i, j ≤ N.

(4.46)

Thus by Theorem 4.6, there exists α(p, q), β(p, q) ∈ RN×N
+ such that (4.45) and (4.44)

hold. But under the condition p, q ∈ BY , (4.45) is equivalent to

αi,j(p, q)gi,j(p) = 0 and βi,j(p, q)hi,j(q) = 0, 1 ≤ i, j ≤ N. (4.47)

Finally, combining the latter equation with (4.44), we obtain that α(p, q) and β(p, q) are

defined by the equations (4.42); and the proof is complete. �

The following fixed point algorithm is a direct consequence of the equations (4.44) and

uses a Gauss-Seidel update technique.

ALGORITHM 4.17. Choose τ > 0 and p0, q0 ∈ BY .

1. For any n ≥ 0, update the primal variable u:

un = f +
λ

2
(div+(pn) + div−(qn)) . (4.48)
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2. Update the variables p, u, and q as follows:

pn+1
i,j =

pni,j + 2τ/λ∇+(un)i,j

1 + 2τ/λ |∇+(un)i,j|
, 1 ≤ i, j ≤ N, (4.49a)

un+ 1
2 = f +

λ

2

(
div+(pn+1) + div−(qn)

)
, (4.49b)

qn+1
i,j =

qni,j + 2τ/λ∇−(un+ 1
2 )i,j

1 + 2τ/λ
∣∣∣∇−(un+ 1

2 )i,j

∣∣∣ , 1 ≤ i, j ≤ N. (4.49c)

3. Until stopping criterion, increment n← n+ 1 and return to 1.

REMARK 4.18. A similar algorithm was proposed in the literature [31] for the standard

discrete ROF model (2.38). In this case, the only dual variable is p, so the second step in

the above algorithm reduces to one update on the variable p.

LEMMA 4.19. Let 0 < τ ≤ h2/8 and p0, q0 ∈ BY be given. Let (pn, qn) be the sequence

defined in Algorithm 4.17. Then, the sequence {‖ div+(pn) + div−(qn) + 2f/λ‖X}n is

monotonic nonincreasing.

PROOF. Let p0, q0 ∈ BY be fixed. An easy induction shows that pn, qn ∈ BY for all

n ≥ 0. We now show that for τ ≤ h2/8, the sequence ‖ div+(pn) + div−(qn) + 2f/λ‖X is

monotonic nonincreasing. Let n be fixed and define

δn(p) =
pn+1 − pn

τ
and δn(q) =

qn+1 − qn

τ
.

Then, from (4.29) and (4.49), we have

‖div+(pn+1)+div−(qn+1)+
2f

λ
‖2
X =‖ div+(pn)+div−(qn)+

2f

λ
‖2
X+

4τ

λ
〈div+(δn(p)), un〉

+
4τ

λ
〈div−(δn(q)), un+ 1

2 〉X + τ 2(‖ div+(δn(p))‖2
X + ‖ div−(δn(q))‖2

X)

≤ ‖ div+(pn) + div−(qn) + 2f/λ‖2
X −

4τ

λ
〈δn(p),∇+(un)〉X + τ 2‖ div+ ‖2‖δn(p)‖2

X︸ ︷︷ ︸
(I)

−4τ

λ
〈δn(q),∇−(un+ 1

2 )〉X + ‖ div− ‖2‖δn(q)‖2
X︸ ︷︷ ︸

(II)

.
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Furthermore, we also have for all 1 ≤ i, j ≤ N ,

δn(p)i,j =
2

λ

(
∇+(un)i,j − |∇+(un)i,j|pn+1

i,j

)
, (4.50a)

δn(q)i,j =
2

λ

(
∇−(un+ 1

2 )i,j − |∇−(un+ 1
2 )i,j|qn+1

i,j

)
, (4.50b)

so that

(I) = −
∑

1≤i,j≤N

4τ

λ
δn(p)i,j∇+(un)i,j − τ 2‖ div+ ‖2|δn(p)i,j|2

= τ
∑

1≤i,j≤N

|δn(p)i,j−
2

λ
∇+(un)i,j|2 − |

2

λ
∇+(un)i,j|2−|δn(p)i,j|2+τ‖ div+ ‖2|δn(p)i,j|2

= τ
∑

1≤i,j≤N

(τ‖ div+ ‖2 − 1)|δn(p)i,j|2 + (|pn+1
i,j |2 − 1︸ ︷︷ ︸
≤0

)|2
λ
∇+(un)i,j|2.

Therefore, using the estimate ‖ div+ ‖2 ≤ 8/h2 obtained in the proof of Lemma 4.11, we

get

−4τ

λ
〈δn(p),∇+(un)〉X + τ 2‖ div+ ‖2‖δn(p)‖2

X ≤ 0 if τ ≤ h2/8.

Likewise, we show that

−4τ

λ
〈δn(q),∇−(un

1
2 )〉X + τ 2‖ div− ‖2‖δn(q)‖2

X ≤ 0 if τ ≤ h2/8.

Hence, assuming that τ ≤ h2/8, we get that for all n ∈ N

‖ div+(pn+1) + div−(qn+1) + 2f/λ‖X ≤ ‖ div+(pn) + div−(qn) + 2f/λ‖X . (4.51)

�

We are ready to prove the convergence of the proposed algorithm. More precisely, we

have the following result.

THEOREM 4.20. Let 0 < τ ≤ h2/8 and p0, q0 ∈ BY be given. Then, every cluster point

of the sequence {(pn, qn)}n≥1 is a solution of the dual problem (DM), and the sequence

{un}n≥1 converges to the solution zf,h of the primal problem (PM).
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PROOF. Let 0 < τ ≤ h2/8 be given. Let (pnk , qnk) be a subsequence of (pn, qn) that

converges to (p̄, q̄) Then, by the equations (4.49), the sequence (pnk+1, qnk+1) converges to

the point (p̃, q̃) defined as follows:

p̃i,j =
p̄i,j + τ∇+(div+(p̄) + div−(q̄) + 2f/λ)i,j
1 + τ |∇+(div+(p̄) + div−(q̄) + 2f/λ)i,j|

, 1 ≤ i, j ≤ N,

q̃i,j =
q̄i,j + τ∇−(div+(p̄) + div−(q̄) + 2f/λ)i,j
1 + τ |∇−(div+(p̄) + div−(q̄) + 2f/λ)i,j|

, 1 ≤ i, j ≤ N.

(4.52)

Furthermore, by Lemma 4.19, we know that

‖ div+(p̃) + div−(q̃) + 2f/λ‖X = ‖ div+(p̄) + div−(q̄) + 2f/λ‖X . (4.53)

Now, repeating the core computation in the proof of Lemma 4.19 with the pairs (p̃, q̃) and

(p̄, q̄), we get that for any τ < min(1/‖ div+ ‖2, 1/‖ div− ‖2)

p̃i,j = p̄i,j and q̃i,j = q̄i,j, ∀ 1 ≤ i, j ≤ N. (4.54)

The case τ = 1/‖ div+ ‖2 = 1/‖ div− ‖2 requires a more delicate analysis that we now

undertake. We have

|p̃i,j| = 1 or |∇+(div+(p̄) + div−(q̄) + 2f/λ)i,j| = 0, ∀ 1 ≤ i, j ≤ N,

|q̃i,j| = 1 or |∇−(div+(p̄) + div−(q̄) + 2f/λ)i,j| = 0, ∀ 1 ≤ i, j ≤ N.

(4.55)

Clearly, only the pairs (i, j) for which we have exclusively |p̃i,j| = 1 or |q̃i,j| = 1 are worth

pursuing further. If |p̃i,j| = 1, then by (4.52) and the Cauchy-Schwarz inequality, we have

1 + 2τ |∇+(div+(p̄)+div−(q̄)+
2f

λ
)i,j| = |p̄i,j|2 + 2τ〈p̄ij,∇+(div+(p̄)+div−(q̄)+

2f

λ
)i,j〉

≤ |p̄i,j|2 + 2τ |p̄ij||∇+(div+(p̄)+div−(q̄) + 2f/λ)i,j|,

Since we assumed that |∇+(div+(p̄) + div−(q̄) + 2f/λ)i,j| 6= 0, it now follows from the

latter inequality that |p̄ij| = 1, so that |p̃ij| = |p̄ij| = 1 and (4.52) imply

p̃i,j = ∇+(div+(p̄) + div−(q̄) + 2f/λ)i,j;
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thus by (4.52) again, we get

p̃i,j =
p̄ij(1 + τ)

1 + τ
= p̄ij.

In conclusion, we have shown that for 0 < τ ≤ 1/‖ div+ ‖, the sequence (pnk+1, qnk+1)

converges to (p̄, q̄) so that the equation (4.52) now reads

p̄i,j =
p̄i,j + τ∇+(div+(p̄) + div−(q̄) + 2f/λ)i,j
1 + τ |∇+(div+(p̄) + div−(q̄) + 2f/λ)i,j|

, 1 ≤ i, j ≤ N,

q̄i,j =
q̄i,j + τ∇−(div+(p̄) + div−(q̄) + 2f/λ)i,j
1 + τ |∇−(div+(p̄) + div−(q̄) + 2f/λ)i,j|

, 1 ≤ i, j ≤ N.

(4.56)

Therefore by Theorem 4.16, (p̄, q̄) is a solution of (DM); and by Theorem 4.7, the sequence

{un} converges to the solution zf,h of (PM). Since ‖ div+ ‖ ≤ 8/h2, the result remains true

for 0 < τ ≤ h2/8 and the proof is complete �

4.4 NUMERICAL EXPERIMENTS

In this section, we report the results of numerical experiments with the three algorithms

presented in the previous section. The test images that we used are found in Figure 4.1. We

use the following abbreviations to identify the three algorithms under consideration here.

ALG1: The projected-gradient algorithm 4.12

ALG2: The alternating projected-gradient algorithm 4.15.

ALG3: The fixed point algorithm 4.17.

It should be noted that in our tests, we did not attempt to choose the parameters τ and λ for

optimal performance of the algorithms. The algorithms are implemented in the MATLAB R©

[72] programming language.

Table 4.1 through Table 4.4 below show the capability of Algorithm 4.12 to remove

noise for various noise levels. The inputs for all four algorithms are obtained by adding

a zero mean Gaussian noise with standard deviation σ to the images in Figure 4.1. The

parameter τ is set to 1/8 in all three algorithms and the maximum number of iterations
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is set to 1000. Each algorithm is terminated when the change in mean square error at

consecutive steps is below 10−8. The numbers in each column identifying an algorithm are

the Peak-Signal-to-Noise-Ratios, measured relative to the ground truth images in Figure

4.1, with the number of iterations and the CPU time used to reach that value in parenthesis.

(A) Lena (B) Peppers

(C) Bank. (D) Boats

FIGURE 4.1: The images used in the numerical experiments. The images in the top row are of size

256× 256, while those in the bottom row have resolution 512× 512.
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λ σ ALG1 ALG2 ALG3

1

24
15 31.1832(1000, 31s) 31.1951(72, 2.5s) 31.1872(1000, 32s)

1

16
20 29.6665(1000, 31s) 29.6820(101, 3.5s) 29.6742(1000, 32s)

1

8
25 27.5282(1000, 30s) 27.5323(806, 27.5s) 27.5681(1000, 32s)

TABLE 4.1: Comparison of the algorithms using the image in Figure 4.1a. The numbers are

PSNR(number of iterations, CPU time in seconds).

λ σ ALG1 ALG2 ALG3

1

24
15 31.8105(1000, 31s) 31.8653(36, 1.5s) 31.8157(1000, 32s)

1

16
20 30.3494(1000, 34s) 30.3587(345, 12s) 30.3603(1000, 31s)

1

8
25 28.3146(1000, 30s) 28.3206(696, 24s) 28.3606(1000, 32s)

TABLE 4.2: Comparison of the algorithms using the image in Figure 4.1b. The numbers are

PSNR(number of iterations, CPU time in seconds).

λ σ ALG1 ALG2 ALG3
1

24
15 31.4563 (635, 103s) 31.4520(209, 43s) 31.4571(1000, 164s)

1

16
20 29.9481(620, 101s) 29.9446(292, 61s) 29.9496(1000, 166s)

1

8
25 27.8264(716, 115s) 27.8239(477, 95s) 27.8384(1000, 114s)

TABLE 4.3: Comparison of the algorithms using the image in Figure 4.1c. The numbers are

PSNR(number of iterations, CPU time in seconds).

λ σ ALG1 ALG2 ALG3

1

24
15 30.5134(1000, 158s) 30.5148(102, 22s) 30.5166(1000, 164s)

1

16
20 29.1286(1000, 169s) 29.1311(127, 27s) 29.1350(1000, 167s)

1

8
25 26.9855(1000, 158s) 26.9904(663, 122s) 27.0197(1000, 165s)

TABLE 4.4: Comparison of the algorithms using the image in Figure 4.1d. The numbers are

PSNR(number of iterations, CPU time in seconds).
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Our numerical experiments suggest that the alternating projected-gradient algorithm is

the most of efficient of the three algorithms. For moderate noise levels, the speed up is

a few order of magnitudes. To further confirm this observation, we compared ALG2 and

ALG3 to ALG1, see Figure 4.2. The comparison is done as follows: (1) First we generate

a ground truth by running 105 iterations of ALG1. (2) We find the number of iterations

that each of ALG2 and ALG3 is going to use to get to within 10−13 of the ground truth

computed using ALG1.

10
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FIGURE 4.2: The alternating projected gradient algorithm (ALG2) takes about 46000 iterations to

get to within 10−13 of the solution of ALG1 generated with 105 iterations. ALG2 is consistently

faster than ALG3 and ALG1.
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5

APPROXIMATION BY BIVARIATE SPLINES ON ARBITRARY

POLYGONAL DOMAINS

In this chapter, we investigate the approximation of the total variation based denoising

model on non rectangular polygonal domains. We assume that Ω is a polygonal domain

endowed with a quasi-regular family of triangulations {∆h}h>0 and construct a bivariate

spline approximation of the minimizer of the ROF functional.

Until now, the preferred approach in the approximation of the ROF model has been to

used relaxations [1, 35] of the functional Ef
λ(u). In a departure with that tradition, we use

the Galerkin method on a suitable lattice of bivariate spline spaces to directly generate a

minimizing sequence for Ef
λ(u).

Motivated by the work of Acar and Vogel [1], Hong [48] investigated the use of bivariate

spline spaces for image enhancement using the minimal surface functional

Efλ (u) :=

∫
Ω

√
1 + |∇u|2dx+

1

2λ

∫
Ω

|u− f |2dx. (5.1)

Although the latter functional is defined on BV (Ω), she only constructed a minimizing

spline sequence in the case where the minimizer of Efλ (u) belong to the Sobolev space

W1,1 (Ω). The main result of this chapter is a significant improvement of her work. We

apply the Galerkin method with continuous bivariate spline space, directly on the ROF

functional,

Ef
λ(u) := λJ(u) +

1

2

∫
Ω

|u− f |2dx,

to obtain a minimizing sequence of Ef
λ(u) for any f ∈ L2(Ω).
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5.1 SPLINE FUNCTIONS ON TRIANGULATIONS

In this section, we review the concept of bivariate spline function and cover the prop-

erties of spline functions that we will use in the chapter. Throughout the section and the

chapter, we assume that Ω is a polygonal domain, possibly non-rectangular, endowed with

a triangulation ∆h, 0 < h� 1 such that no triangle in ∆h has an edge with length greater

than h. The presentation follows the monograph [54].

DEFINITION 5.1. Suppose that ∆h is a triangulation on Ω and d is a fixed natural number.

(a) A spline function on the triangulation ∆h is a function s defined on Ω such that for

any triangle T ∈ ∆h, s|T is a polynomial.

(b) We say that a spline function s is of degree d, if s|T is a polynomial of degree less

than or equal to d for any T ∈ ∆h. We denote the set of spline functions of degree d

by

S−1
d (∆h) := {s : Ω→ R : s|T ∈ Pd ∀T ∈ ∆h},

where Pd is the vector space of bivariate polynomials of degree less than or equal to

d.

(c) The space of smooth spline functions of order r and degree d is defined by

Srd(∆h) = Cr(Ω) ∩ S−1
d (∆h) = {s ∈ Cr(Ω) : s|T ∈ Pd, ∀T ∈ ∆h}.

The space of bivariate spline functions S−1
d (∆h) is isomorphic to RN where N depends

on d and the number of triangles in ∆h. The space of smooth splines of order r is character-

ized as the solution set of a rectangular system of linear equations enforcing the smoothness

at the interior edges of the triangulation. A Convenient representation of spline spaces as

subspaces of an RN are obtained through the so called Bernstein-Bezier representation.
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P

T2 = 〈u1, P, u3〉

T 1
=

〈P
, u

2,
u 3〉

T
3 =

〈u
1 , u

2 , P 〉
u1

u2

u3

FIGURE 5.1: The i-th barycentric coordinates of P is the ratio of the area of the triangle Ti and that

of the triangle T = 〈u1, u2, u3〉.

5.1.1 BERNSTEIN-BEZIER REPRESENTATION

The Bernstein-Bezier representation of bivariate spline functions of degree d is built

upon the Bernstein-Bezier basis, hereafter B-basis, of Pd, the space of polynomials of de-

gree less than or equal to d. To define the B-basis, we need the concept of barycentric

coordinates. Suppose T = 〈u1(x1, y1), u2(x2, y2), u3(x3, y3)〉 is a triangle of the affine

plane R2. Let P (x, y) be an arbitrary point in the plane.

DEFINITION 5.2. The barycentric coordinates of P relative to T are the triplet (λ1, λ2, λ3)

solution of the linear system
λ1 + λ2 + λ3 = 1

λ1x1 + λ2x2 + λ3x3 = x

λ1y1 + λ2y2 + λ3y3 = y.

(5.2)

Let d ∈ N be fixed. The points {ξTijk : i+ j + k = d} ⊂ R2 defined by

ξTijk =
iu1 + ju2 + ku3

d
, i+ j + k = d

are called the domain points of T ; their barycentric coordinates with respect to T are given
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by {(i/d, j/d, k/d) : i+ j + k = d}.

DEFINITION 5.3. A Bernstein-Bezier bivariate polynomial of degree d relative to T is

defined by

BT,d
ijk (x, y) =

d!

i!j!k!
λi1λ

j
2λ

k
3 i+ j + k = d, (5.3)

where (λ1, λ1, λ3) are the barycentric coordinates of P (x, y) relative to T .

It is easy to show using the multinomial theorem and the equations (5.2) that the col-

lection of Bernstein-Bezier polynomials {BT,d
ijk : i+ j + k = d} form a basis of Pd and the

following partition of unity holds

∑
i+j+k=d

BT,d
ijk (x, y) = 1, ∀(x, y) ∈ R2. (5.4)

As a consequence, any bivariate spline function s ∈ S−1
d (∆h) is uniquely represented by a

tuple (cTijk : T ∈ ∆h, i+ j + k = d) such that

s|T=
∑

i+j+k=d

cTijkB
T,d
ijk , ∀T ∈ ∆h. (5.5)

Thus, the space of bivariate spline functions on Ω with respect to ∆h, S−1
d (∆h), is

identified to an RN where N = #(∆h)
(
d+2

2

)
and #(∆h) is the number of triangles in ∆h.

Moreover, the space of smooth bivariate splines, Srd(∆h), is a subspace of RN of the form

Srd(∆h) = {c ∈ RN : A(r)c = 0}, (5.6)

where A(r) is an (r + 1)(d + 1)E × N matrix encoding the smoothness condition across

the interior edges of the triangulation ∆h, and E is the number of interior edges of ∆h.

When solving variational equation on bivariate spline spaces, we often need to compute

the inner product between two bivariate spline functions. The next result gives a simple

formula for evaluating the inner product when the spline functions are expressed in B-form.
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THEOREM 5.4 ([54]). Let T be a triangle in R2, and d ∈ N be given. If p =
∑
i+j+k

cijkB
T,d
ijk

and p =
∑
i+j+k

c̃ijkB
T,d
ijk are bivariate polynomials of degree ≤ d written in B-form, then

∫
T

p(x, y)q(x, y) dxdy =
AT(

2d
d

)(
2d+2

2

) ∑
i+j+k=d
ν+µ+κ=q

cijkc̃νµκ

(
i+ ν

i

)(
j + µ

j

)(
k + κ

k

)
, (5.7)

where AT is the area of T and
(
a

b

)
is the number of combinations of a objects chosen b at

a time.

For computational purposes, the latter inner product may be written in condensed form

as ∫
T

p(x, y)q(x, y) dxdy =
AT(

2d
d

)(
2d+2

2

) c̃TG(d)c,

where c̃ and c as the coefficients of q and p in the Bernstein-Bezier basis and G is a
(
d+2

2

)
square matrix that may be preassembled in a computational library.

Later when we construct a spline minimizing sequence of the ROF model. we will need

a convenient family of triangulation that ensure the convergence of our sequence. We now

introduce a definition of such a convenient family.

DEFINITION 5.5. We say that a family of triangulations {∆h : h ∈ I ⊂ R+} of Ω is

quasi-regular if there exists β > 0 such that

diam(T )

ρT
< β, ∀T ∈ ∆h, ∀h ∈ I,

where diam(T ) is the longest edge of T and ρT is the radius of the incircle of T .

Constructing such families of triangulations is not too hard. It is sufficient to ensure

that the smallest angle in the triangulations remains bounded away form zero as the trian-

gulation size goes to zero.
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EXAMPLE 5.6. Let h0 > 0 fixed and ∆h0 a triangulation with mesh size h0 and smallest

angle θ0. We construct a family of triangulations ∆n with mesh size h0/2
n iteratively

as follows: Given ∆n, we obtain ∆n+1 by subdividing each triangle T ∈ ∆n into four

triangles by connecting the midpoints of the edges of T as illustrated in the figure below.

The resulting family of triangulations {∆n : n ∈ N} is quasi-regular with constant

β =
2

sin(θ0/2)
.

FIGURE 5.2: Midpoints refinement of a triangle into four smaller triangles.

5.1.2 RELEVANT PROPERTIES OF BIVARIATE SPLINES

Spline functions have been used with much success in the numerical computation of

partial differential equations [51, 52, 55–57] and more recently for the numerical simula-

tion of the Darcy-Stokes equation [16]. In general, splines function may be used under

Galerkin methods to approximate variational equations over function spaces that are well

approximated by spline functions. Their appeal to us in this work is twofold:

(a) Bivariate spline functions yield good approximation of Sobolev functions, i.e, func-

tions that are elements of the Sobolev spaces Wm,p (Ω), m ∈ N and p ≥ 1.

(b) The derivative operators Dα
1D

β
2 are bounded linear operators between the spaces

S−1
d (∆h) and S−1

d−α−β(∆h). We will refer to this property as Markov Inequality.
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THEOREM 5.7 (Markov inequality [54, Theorem 2.32]). Suppose a quasi-regular triangu-

lation, ∆h, of Ω is given, and p ∈ [1,∞) and d ∈ N be fixed. There exists a constant K

depending only on d such that for all nonnegative integers α and β with 0 ≤ α + β ≤ d,

we have

‖Dα
1D

β
2 s‖Lp ≤

K

ρα+β
‖s‖Lp , ∀s ∈ S−1

d (∆h), (5.8)

where ρ = min{ρT : T ∈ ∆h} and ρT is the radius of the incircle to the triangle T .

The next result gives the approximation power of the space of continuous spline func-

tions in Sobolev spaces; we use this result in our construction of a spline minimizing se-

quence for the ROF functional.

THEOREM 5.8 ([54, Theorem 10.2, p. 277]). Suppose that ∆h is a quasi-regular triangu-

lation of Ω, and let p ∈ [1,∞] and d ∈ N be given. Then for every u ∈ W d+1,p(Ω), there

exists a spline su ∈ S0
d(∆h) such that

‖Dα
1D

β
2 (u− su)‖Lp ≤ Khd+1−α−β|u|d+1,p ∀ 0 ≤ α + β ≤ d, (5.9)

where K depends only on d and the smallest angle in ∆h, and

|u|d+1,p =
∑

α+β=d+1

‖Dα
1D

β
2u‖Lp .

5.2 APPROXIMATION OF THE ROF MODEL BY CONTINUOUS SPLINES

In this section, we describe how we arrive at a family of continuous bivariate splines

that approximate the minimizer of the functional

Ef
λ(u) := λJ(u) +

1

2

∫
Ω

|u− f |2dx, u ∈ BV (Ω). (5.10)

The approximation of the minimizer of the above functional by continuous splines is

possible because the space S0
d(∆h) possesses very good approximation power in high or-

der Sobolev spaces as illustrated by Theorem 5.8. In using the approximation power of
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spline functions exhibited by Theorem 5.8, we will need to control the norm of high order

derivatives of the mollification of a BV function. This is done as in the lemma below.

LEMMA 5.9. Suppose that Ω is a bounded polygonal domain. Let u ∈ BV (Ω) be fixed.

Then for any integerm ≥ 0, any pair of nonnegative integer (α, β) such that α+β = m+1,

and any ε ∈ (0, 1), we have∥∥∥Dα
1D

β
2 (ηε ∗ Tu)

∥∥∥
L1(Ω)

≤ C

εm
|DTu|(R2), (5.11)

where C is a constant depending only on α, β and Ω, and T : BV (Ω) → BV (R2) is the

extension operator guaranteed by Theorem A.8.

PROOF. Let m a nonnegative integer be fixed, and ε ∈ (0, 1) be given. Let u ∈ BV (Ω) and

ϕ ∈ C1
c (Ω) be given. Let α and β be two nonnegative integers such that α + β = m + 1;

we may assume without loss of generality that α ≥ 1.Then, we have∫
Ω

Dα
1D

β
2 (ηε ∗ Tu)ϕdx = −

∫
R2

Dα−1
1 Dβ

2 (ηε ∗ Tu)
∂ϕ

∂x1

dx

= −
∫
R2

Dα−1
1 Dβ

2 ηε ∗ Tu
∂ϕ

∂x1

dx

= −
∫
R2

Tu η̌mε ∗
∂ϕ

∂x1

dx with η̌mε (x) = Dα−1
1 Dβ

2 ηε(−x)

= −
∫
R2

Tu
∂

∂x1

[η̌mε ∗ ϕ]dx.

Thus ∫
Ω

Dα
1D

β
2 (ηε ∗ Tu)ϕdx ≤ ‖η̌mε ∗ ϕ‖∞|DTu|(R2).

Now, by Young’s inequality, we have

‖η̌mε ∗ ϕ‖∞ ≤ ‖η̌mε ‖L2(R2)‖ϕ‖L2(Ω),

and a simple computation shows that

‖η̌mε ‖2
L2(R2) ≤

√
π

εm

∥∥∥Dα−1
1 Dβ

2 η
∥∥∥1/2

∞
and ‖ϕ‖L2(Ω) ≤

√
|Ω|‖ϕ‖∞,
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where |Ω| denotes the area of Ω. Consequently, we obtain∫
Ω

Dα
1D

β
2 (ηε ∗ Tu)ϕdx ≤ C(α, β, ρ)

εm
‖ϕ‖∞|DTu|(R2) (5.12)

where

C(α, β, η) =
√
π|Ω|

∥∥∥Dα−1
1 Dβ

2 η
∥∥∥1/2

∞
. (5.13)

On taking the supremum in (5.12) over all ϕ ∈ C1
c (Ω) such that ‖ϕ‖∞ ≤ 1, we obtain

by duality and a denseness argument that∥∥∥Dα
1D

β
2 (ηε ∗ Tu)

∥∥∥
L1(Ω)

≤ C(α, β, η)

εm
|DTu|(R2).

�

Suppose that Ω is endowed with a quasi-regular triangulation ∆h, and let d ∈ N be

given. As a finite dimensional space, S0
d(∆h) is a closed and convex subset of L2(Ω). Thus,

the ROF functional has a unique minimizer in S0
d(∆h). Let sdh(f) be the spline function

defined by

sdh(f) = arg min
u∈S0d(∆h)

λJ(u) +
1

2

∫
Ω

|u− f |2dx. (5.14)

We are ready to prove that our construction of minimum splines above yields a mini-

mizing sequence for the ROF functional. Let hn be a monotonically decreasing sequence

of real numbers such that hn ↘ 0. Let ∆n be a quasi-regular triangulation with mesh size

hn and smallest angle θn. We have the following result:

THEOREM 5.10. Suppose that the sequence of triangulations {∆n}n is such that

inf
n∈N

θn > θ > 0. (5.15)

Given d ∈ N, the sequence {sdn(f)}n defined by

sdn(f) = arg min
u∈S0d(∆n)

λJ(u) +
1

2

∫
Ω

|u− f |2dx (5.16)

is minimizing for the ROF functional Ef
λ(u).
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PROOF. To begin with, choose a finite rectangular covering, {Ri : i = 1, 2, . . . , N}, of the

boundary of Ω, and let T : BV (Ω) → BV (R2) be the corresponding extension operator,

the existence of which is guaranteed by Theorem A.8. We recall that T is also a bounded

linear operator from W 1,1(Ω) into W 1,1(R2), and for any u ∈ BV (Ω), Tu is supported on

the relatively compact open set Ω ∪
N⋃
i=1

Ri.

Let 0 < ε < 1 and d ∈ N be fixed. Let ufε = ηε ∗ Tuf and sfε ∈ S0
d(∆n) be as in

Theorem 5.8. Then by Lemma 5.9, we have

‖ufε − sfε ‖W 1,1(Ω) ≤ C(d, θ)

(
hn
ε

)d
, (5.17)

where C depends solely on d and θ. Moreover, since T : W 1,1(Ω) → W 1,1(R2) is linear

and bounded, and Tu is compactly supported for every u, it follows from the BV version

of the Sobolev’s inequality [see 46, Theorem 1.28, p.24] that

‖ufε − sfε ‖L2(Ω) ≤ ‖T (ufε − sfε )‖L2(R2) ≤ C

∫
R2

|∇(T (ufε − sfε ))|dx

≤ C‖T (ufε − sfε )‖W 1,1(R2) ≤ C‖T‖∗‖ufε − sfε ‖W 1,1(Ω), (5.18)

with C a universal constant depending only on Ω and the covering {Ri : i = 1, 2, . . . , N},

and ‖T‖∗ is the operator norm of T .

We now proceed to show that by choosing a suitable regularization scale ε, we achieve

the convergence of Ef
λ(sdn(f)) to Ef

λ(uf ) as n→∞. In fact, we have

Ef
λ(sdn(f))− Ef

λ(uf ) = Ef
λ(sdn(f))− Ef

λ(sfε )︸ ︷︷ ︸
≤0

+Ef
λ(sfε )− E

f
λ(ufε ) + Ef

λ(ufε )− E
f
λ(uf )

≤ Ef
λ(sfε )− E

f
λ(ufε ) + Ef

λ(ufε )− E
f
λ(uf ).

So to finish the proof, it suffices to show that Ef
λ(ufε )→ Ef

λ(uf ) and Ef
λ(sfε )→ Ef

λ(ufε ) as

n→∞. First, we observe that the convergence of Ef
λ(ufε ) to Ef

λ(uf ) follows from the fact

that ufε
L2(Ω)−−−→ uf as ε→ 0, and (by Lemma 2.18),

|Dufε |(Ω)→ |DTuf |(Ω̄) = J(u) as ε→ 0.
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We will be done if we can show that for our choice of ε, Ef
λ(sfε ) → Ef

λ(ufε ) as n → ∞.

Indeed, we have

|Ef
λ(sfε )− E

f
λ(ufε )| =

∣∣∣∣λ [∫
Ω

|∇sfε |dx−
∫

Ω

|∇ufε |dx
]

+
1

2

[
‖sfε − f‖2

L2 − ‖ufε − f‖2
L2

]∣∣∣∣
≤ λ

∫
Ω

|∇(sfε − ufε )|dx+
1

2

[
‖sfε − ufε ‖2

L2(Ω) + 2‖ufε − f‖L2(Ω)‖ufε − sfε ‖L2(Ω)

]
≤ λ

∫
Ω

∣∣∇(sfε − ufε )
∣∣ dx+

1

2
‖sfε − ufε ‖L2(Ω)(‖ufε − sfε ‖L2(Ω) + 2‖ufε − f‖L2(Ω))

≤
[
λ+

1

2
‖ufε − sfε ‖L2(Ω) + ‖ufε − f‖L2(Ω)

] [
‖ufε − sfε ‖W 1,1(Ω) + ‖ufε − sfε ‖L2(Ω)

]
≤ (1 + C‖T‖∗)

[
λ+

C‖T‖∗
2
‖ufε − sfε ‖W 1,1(Ω) + ‖ufε − f‖L2

]
‖ufε − sfε ‖W 1,1(Ω),

where we have used the estimate (5.18). Now, using the estimate (5.17) and letting

ε = h
1/4d
n , we infer from the latter inequality that

|Ef
λ(sfε )− E

f
λ(ufε )| ≤ (1 + C‖T‖∗)C(d, θ)

[
λ+ C(d, θ, T )hd−1/4

n + C(f, uf )
]
hd−1/4
n ,

where

C(f, uf ) = ‖f‖L2(Ω) sup
0<ε<1

‖ufε ‖L2(Ω) and C(d, θ, T ) :=
C‖T‖∗C(d, θ)

2
.

Thus, Ef
λ(sn(f))→ Ef

λ(uf ) as hn → 0, and the proof is complete. �

COROLLARY 5.11. Under the assumptions of Theorem 5.10, the sequence {sdn(f)}n satis-

fies the following two properties:

sdn(f)
Lp(Ω)−−−→ uf as n→∞, for any p ∈ [1, 2], (5.19)

and

J(sdn(f))→ J(u) as n→∞. (5.20)

PROOF. We recall that Ω is assumed to be a bounded domain; therefore it suffices to

establish (5.19) for p = 2. The result for 1 ≤ p < 2 follows from the fact that L2(Ω) is

canonically embedded into Lp(Ω). The case p = 2 follows easily from Theorem 2.28 and
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Theorem 5.10. In fact, by equation (2.33) we have

∀n ∈ N, ‖sn(f)− uf‖2
L2(Ω) ≤ 2

(
Ef
λ(sn(f))− Ef

λ(uf )
)

;

thus by Theorem 5.10 above, we have ‖sn(f)− uf‖2
L2(Ω) → 0 as n→∞.

Finally, we observe that

J(sn(f))− J(u) =
1

λ

[
Ef
λ(sn(f))− Ef

λ(uf ) +
1

2
‖uf − f‖2

L2 −
1

2
‖sn(f)− f‖2

L2

]
.

Thus, by Theorem 5.10 and Corollary 5.11, taking the limit of the latter identity as n→∞

yields (5.20) and the proof is complete. �

5.3 COMPUTATION OF THE SPLINE APPROXIMATION

Suppose that we have set a mesh-size h and chosen a corresponding triangulation ∆h of

Ω. Let sdh(f) be the minimizer ofEf
λ(f) with respect to S0

d(∆h). Although we have reduced

the problem to a very tractable function space, the computation of the spline minimizer

remains as challenging as the original minimization problem in the BV space. Nonetheless,

we are now able to derive the Euler-Lagrange equation. In fact, it is easy to show that sdh(f)

necessarily satisfies the nonlinear equation

λ

∫
Ω\F (u)

∇u · ∇s
|∇u|

dx+ λ

∫
F (u)

|∇s|dx+

∫
Ω

(u− f)s dx = 0 ∀ s ∈ S0
d(∆h), (5.21)

where F (u) := {x ∈ Ω: ∇u = 0} is made of the flat regions of u.

In particular, if F (sdh(f)) is negligible, the Euler-Lagrange equation (5.21) reduces to

λ

∫
Ω

∇u · ∇s
|∇u|

dx+

∫
Ω

(u− f)s dx = 0, ∀ s ∈ S0
d(∆h) (5.22)

which is now amenable to variational techniques.

REMARK 5.12. In practice, the mesh size of an admissible triangulation is dictated by the

structure of the image f . An image with a significant amount of textures will require a finer

triangulation to preserve textures in the recovered image. The choice of the parameter λ
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will also be influenced by the textures and the noise information contained in f .

For the purpose of this section and the necessity of a stable numerical scheme, we do

not solve the minimization problem (5.14) or its Euler-Lagrange equation (5.21) directly.

Instead, we solve a perturbation of this problem. We recall that the difficulty in dealing

with (5.21) is due to the fact that the associated Lagrangian

L(p, z, x) = λ|p|+ 1

2
(z − f)2, ∀(p, z, x) ∈ R2 × R× R2

is not differentiable with respect to p at p = 0. As mentioned above, one way to mitigate

this difficulty is to find a differentiable relaxation of the Lagrangian L such that the corre-

sponding energy is a perturbation of Ef
λ(u). This approach has been successfully used in

two occasions in the literature [1, 35].

We will use a similar technique to construct an algorithm for computing a numerical

approximation of the spline minimizer sdh(f). In fact the relaxation that we use has already

been used in the literature for the discrete ROF model under the appellation Huber-ROF

model [36], and was shown to produce smoother images than the original ROF model with

no staircase effect as is customary for the ROF model.

Let ε > 0 be fixed and Φε the continuously differentiable function defined by

Φε(x) =


1

2ε
x2 +

ε

2
if 0 ≤ |x| ≤ ε

|x| if |x| > ε

(5.23)

and consider the problem

arg min
u∈S0d(∆h)

{
Ef
λ,ε(u) := λ

∫
Ω

Φε(|∇u|)dx+
1

2

∫
Ω

|u− f |2dx
}
. (5.24)

We observe that the relaxation functional Ef
λ,ε is strictly convex and lower semicon-

tinuous on S0
d(∆h) with respect to the L2-norm. Consequently, the minimization problem

(5.24) has a unique minimizer that we denote by sdh(f, ε). We have the following charac-

terization of the minimizer sdh(f, ε).
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PROPOSITION 5.13. A function u ∈ S0
d(∆h) is a minimizer of the functional Ef

λ,ε in

S0
d(∆h) if and only if u satisfies the variational equation

λ

∫
Ω

1

ε ∨ |∇u|
∇u · ∇s dx+

∫
Ω

(u− f)s dx = 0 ∀ s ∈ S0
d(∆h), (5.25)

where

a ∨ b := max(a, b) =
1

2
(a+ b+ |a− b|). (5.26)

PROOF. First, we observe that Ef
λ,ε(u) is Gâteaux differentiable with directional deriva-

tives at any point u ∈ S0
d(∆h) given by

〈dEf
λ,ε(u), s〉 = λ

∫
Ω

1

ε ∨ |∇u|
∇u · ∇s dx+

∫
Ω

(u− f)s dx ∀s ∈ S0
d(∆h). (5.27)

Therefore, u is a minimizer of Ef
λ,ε(u) in S0

d(∆h) if and only if dEf
λ,ε(u) = 0, i.e (5.25)

holds. �

The following result holds and is at the core of the relaxation algorithm that we will

propose for computing a numerical approximation of sdh(f).

LEMMA 5.14. The family of functionals Ef
λ,ε(u) converges uniformly in S0

d(∆h) to Ef
λ(u)

as ε↘ 0. Moreover, we have sdh(f, ε)
L2(Ω)−−−→
ε→0

sdh(f).

PROOF. Let Φ be the continuous function defined by Φ(x) = |x|. It is easy to show that

sup
x∈R
|Φε(x)− Φ(x)| ≤ ε.

Therefore, for any u ∈ S0
d(∆h) we have the estimate

|Ef
λ,ε(u)− Ef

λ(u)| ≤ λ

∫
Ω

|Φε(|∇u|)− Φ(|∇u|)| dx ≤ λ|Ω|ε,

and it follows that Ef
λ,ε converges uniformly in S0

d(∆h) to Ef
λ .

Next, we note that Theorem 2.28 remains true on S0
d(∆h). Therefore, rewriting equa-

tion (2.33) in S0
d(∆h) for sdh(f), we obtain
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‖sdh(f, ε)− sdh(f)‖2
L2(Ω) ≤ 2(Ef

λ(sdh(f, ε))− E
f
λ(sdh(f)))

≤ 2(Ef
λ(sdh(f, ε))−E

f
λ,ε(s

d
h(f, ε)))+2(Ef

λ,ε(s
d
h(f, ε))−E

f
λ(sdh(f)))

≤ 2λ|Ω|ε+Ef
λ,ε(s

d
h(f, ε))− E

f
λ,ε(s

d
h(f))︸ ︷︷ ︸

≤0

+Ef
λ,ε(s

d
h(f))−Ef

λ(sdh(f))

≤ 4λε|Ω|.

Thus, ‖sdf (f, ε) − sdh(f)‖L2(Ω) ≤ 2
√
λ|Ω|ε, and it follows that sdh(f, ε) converges to sdh(f)

in L2(Ω) as ε goes to 0. �

We now develop an algorithm for computing approximations of the minimizer sdh(f, ε)

and study its convergence.

ALGORITHM 5.15. Start from any bounded nonnegative function v0 ∈ S0
d(∆h) and let

un+1 = arg min
u∈S0

d(∆h)

λ

∫
Ω

vn|∇u|2 dx+
1

2

∫
Ω

|u− f |2 dx ∀n ≥ 0, (5.28a)

vn+1 := arg min
0<v≤1/ε

∫
Ω

v|∇un+1|2 +
1

v
dx =

1

ε ∨ |∇un+1|
. (5.28b)

A standard argument using Lax-Milgram Theorem (see [27, Corollary 5.8 p. 140])

shows that un+1 is characterized by the variational equation

2λ

∫
Ω

vn∇un+1 · ∇s dx+

∫
Ω

(un+1 − f)s dx = 0, ∀ s ∈ S0
d(∆h). (5.29)

The existence and uniqueness of un+1 follows by observing that the bilinear form

an(u, v) :=

∫
Ω

2λvn∇u · ∇v + uv dx

is continuous – thanks to Theorem 5.7– and coercive on S0
d(∆h)× S0

d(∆h) with respect to

the L2-norm. Consequently, the equation (5.29) has a unique solution.

We fix ε > 0 and for the sake of notation conciseness, consider the functionalE defined

by

E(u, v) =

∫
Ω

λ(v|∇u|2 +
1

v
) dx+

1

2

∫
Ω

|u− f |2 dx. (5.30)
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It is easy to check that

un+1 = arg min
u∈S0d(∆h)

E(u, vn) and vn+1 = arg min
0<v≤1/ε

E(un+1, v). (5.31)

LEMMA 5.16. The sequence {un}n is bounded in H1(Ω) and satisfies

∀n ∈ N, ∀s ∈ S0
d(∆h), ‖s− un‖2

L2(Ω) ≤ 2(E(s, vn−1)− E(un, vn−1)). (5.32)

In particular, we have

∀n ∈ N, ‖un+1 − un‖2
L2(Ω) ≤ 2(E(un, vn)− E(un+1, vn+1)). (5.33)

PROOF. First, we observe that in view of Theorem 5.7, proving the boundedness of {un}

in H1(Ω) is equivalent to proving its boundedness in L2(Ω). Let n ∈ N be given. Then by

definition of un, we have

E(un, vn−1) ≤ E(0, vn−1) =
1

2
‖f‖2

L2 +

∫
Ω

1

vn−1
dx ≤ 1

2
‖f‖2

L2 +
|Ω|
ε
.

Consequently, we get ‖un − f‖2
L2(Ω) ≤ ‖f‖2

L2(Ω) +
2|Ω|
ε

, and deduce by the triangle in-

equality that

‖un‖L2(Ω) ≤ 2‖f‖L2(Ω) +

√
2|Ω|
ε
.

We now show that ‖un − s‖2
L2(Ω) ≤ 2(E(s, vn−1) − E(un, vn−1)). In fact, for any

s ∈ S0
d(∆h), we have

E(s, vn−1)− E(un, vn−1) =

∫
Ω

λvn−1(|∇s|2 − |∇un|2) +
1

2
(|s− f |2 − |un − f |2) dx

=

∫
Ω

λvn−1|∇(s− un)|2 +
1

2
|s− un|2 dx+∫

Ω

2λvn−1∇un · ∇(s− un) + (un − f)(s− un) dx︸ ︷︷ ︸
=0 by (5.29)

=

∫
Ω

λvn−1|∇(s− un)|2 +
1

2
|s− un|2 dx

≥ 1

2
‖s− un‖2

L2(Ω) since vn−1 ≥ 0.
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In particular, for any n ∈ N,

‖un+1 − un‖2
L2(Ω) ≤ 2(E(un, vn)− E(un+1, vn))

= 2(E(un, vn)− E(un+1, vn+1)) + 2 (E(un+1, vn+1)− E(un+1, vn))︸ ︷︷ ︸
≤0 by (5.31)

≤ 2(E(un, vn)− E(un+1, vn+1)).

Thus, the sequence {E(un, vn)}n is monotone nonincreasing and ‖un − un+1‖L2(Ω) → 0.

�

We are now ready to prove the convergence of the sequence {un}n to the minimizer

sdh(f, ε).

THEOREM 5.17. The sequence {un}n constructed in Algorithm 5.15 converges in L2(Ω)

to the minimizer sdh(f, ε) of Ef
λ,ε(u).

PROOF. In view of Proposition 5.13, it suffices to show that any cluster point u of the

sequence {un}n with respect to the L2-norm satisfies the Euler-Lagrange equation (5.25).

To begin, we note that the sequence {un}n has at least one cluster point as a bounded

sequence in a finite dimensional normed vector space.

Let u be any cluster point of {un}n in L2(Ω) and {unk}k a subsequence such that

unk
L2(Ω)−−−→ u. Since ‖unk+1 − unk‖L2(Ω) → 0, it follows that unk+1 L2(Ω)−−−→ u as well. By

Markov inequality – Theorem 5.7 – we also have

unk
H1(Ω)−−−→
k→∞

u and unk+1 H1(Ω)−−−→
k→∞

u.

Therefore, by Lebesgue dominated convergence theorem, we get

vnk =
1

|∇unk |
∧ 1

ε

L2(Ω)−−−→
k→∞

1

|∇u|
∧ 1

ε
=

1

ε ∨ |∇u|
.

Next, we establish that u satisfies the variational equation

2λ

∫
Ω

1

ε ∨ |∇u|
∇u · ∇s dx+

∫
Ω

(u− f)s dx = 0, ∀s ∈ S0
d(∆h). (5.34)
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Indeed by definition of unk+1, for any s ∈ S0
d(∆h), there holds

2λ

∫
Ω

vnk∇s · ∇unk+1 dx+

∫
Ω

(unk+1 − f)s dx = 0, ∀k ∈ N. (5.35)

Since ∇unk+1 converges strongly to ∇u in L2(Ω)× L2(Ω) and vnk∇s converges strongly

to
∇s

ε ∨ |∇u|
, it follows that

∫
Ω

vnk∇s · ∇unk+1 dx −→
∫

Ω

1

ε ∨ |∇u|
∇u · ∇s dx as k →∞. (5.36)

Similarly, as unk+1 converges strongly to u in L2(Ω), we infer that∫
Ω

(unk+1 − f)s dx −→
∫

Ω

(u− f)s dx as k →∞. (5.37)

On passing to the limit as k → ∞ in (5.35) and taking into account (5.36) and (5.37),

we obtain (5.34) and the proof is complete. �

REMARK 5.18. A similar relaxation functional was used in [35] to derive a minimizing se-

quence of the ROF functional in the Hilbert space H1(Ω). More specifically, these authors

used the following C1 function to obtain a relaxation of the ROF model

Ψε(x) =



x2

2ε
if |x| ≤ ε

|x| − ε

2
if ε ≤ |x| ≤ 1

ε
ε

2
x2 +

1

2

(
1

ε
− ε
)

if |x| ≥ 1

ε
.

The algorithm that we studied above is a minor modification of the one they proposed

for constructing a minimizing sequence of the ROF model in the Hilbert space H1(Ω). The

difference is the way we update vn. Their update is given by

vn+1 = arg min
ε≤v≤1/ε

E(un+1, v).

This choice is made so as to guarantee that E(u, vn) used in defining un+1 is the energy

functional associated to a continuous and coercive bilinear functional on H1(Ω).
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In our case, since we are working on a finite dimensional space, relaxing the lower

bound on v does not pause any problem and we get a continuous (thanks to Markov In-

equality) and coercive bilinear functional on the spline space S0
d(∆h) with respect to the

L2-norm.

5.4 IMPLEMENTATION OF THE ALGORITHM

In this section, we explain how to compute the sequence un in Algorithm 5.15. We

exploit the B-form representation of bivariate splines and solve the following constrained

variant of (5.29):

Find un+1 ∈ S0
d(∆h) such that for any v ∈ S−1

d (∆h)

2λ

∫
Ω

vn∇un+1 · ∇u dx+

∫
Ω

un+1v dx =

∫
Ω

fv dx.
(5.38)

Clearly, any solution of (5.38) is a solution of (5.29).

Let Qd be the orthogonal projection operator from L2(Ω) on the spline space S0
d(∆h).

Then, it is easy to see that the constrained variational system (5.38) is equivalent to

Find un+1 ∈ S0
d(∆h) such that for any T ∈ ∆h and any i+ j + k = d,

2λ

∫
T

Q2d−2(vn)∇un+1 · ∇BT,d
ijk dx+

∫
T

un+1BT,d
ijk dx =

∫
T

Qd(f)BT,d
ijk dx.

(5.39)

The latter variational problem is more amenable to computation on a computer as all the

data are now in spline spaces, and the integrals are easily computed using Theorem 5.4.

REMARK 5.19. Although, the computation of the operator Qd on a typical L2 function is

hard, in practice when we deal with digital images, we use a (penalized) least-square fit to

evaluate Qd(f) based on the pixel values of the image.

We now derive the linear system associated with the variational problem (5.39) and

discuss the existence of a solution as well as an iterative algorithm for computing it. Let

E be the number of interior edges of ∆h and N the number of triangles in ∆h. First, we
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recall that there exists a matrix A0 of dimension E(d+ 1)×
(
d+2

2

)
N such that

A0c
n+1 = 0, (5.40)

where cn+1 is a length
(
d+2

2

)
N vector representing the B-net of un+1.

Next, given a listing {T1, T2, . . . , TN} of the triangles in ∆h, we write cn+1 in block

form as follows

cn+1 =
(
cn+1,1, cn+1,2, . . . , cn+1,N

)
,

where for each i = 1, 2, . . . , N , cn+1,i are the coefficients of un+1|Ti in the B-basis of Pd,

i.e

un+1|Ti =
∑

j+k+`=d

cn+1,i
jk` BTi,d

jk` .

Furthermore, for the triangle Ti and using the lexicographical ordering of the index set

{j + k + ` = d, 0 ≤ j ≤ k ≤ ` ≤ d}, we define the local stiffness, Sn,i by

Sn,ip,q(λ) =

∫
Ti

Q2d−2(2λvn)∇BTi,d
p · ∇BTi,d

q dx, 1 ≤ p, q ≤
(
d+ 2

2

)
, (5.41)

the local mass matrix M i by

M i
pq =

∫
Ti

BT,d
q BT,d

q dx, 1 ≤ p, q ≤
(
d+ 2

2

)
, (5.42)

and the local load vector F i by

F i
p =

∫
Ti

Qd(f)BT,d
q dx, 1 ≤ p ≤

(
d+ 2

2

)
. (5.43)

LEMMA 5.20. For each i = 1, 2, . . . , N , the local stiffness matrix Sn,i(λ) is symmetric

nonnegative definite, while the local mass matrix M i is symmetric positive definite. Conse-

quently, the matrix Sn,i(λ) +M i is symmetric positive definite.

PROOF. Indeed, for any c ∈ RD with D =
(
d+2

2

)
, we have

cTSn,i(λ)c =

∫
Ti

2λvn|∇p|2dx and cTM ic =

∫
Ti

|p|2dx,
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where p is the polynomial with coefficients c in the Bernstein-Bezier basis of Pd with

respect to Ti. Thus, Sn,i(λ) is clearly nonnegative definite, and M i is positive definite.

Both matrices are symmetric by construction, and the matrix Sn,i(λ) inherits its properties

from Sn,i(λ) and M i. �

Consequently, the variational equation (5.39) is equivalent to the linear system

Sn,1(λ) +M1 0 . . 0

0 Sn,2(λ) +M2 0
...

... 0
. . . 0

0 · · · 0 Sn,N(λ) +MN

A1
0 A2

0 . . AN0




cn+1,1

cn+1,2

...

cn+1,N

 =



F 1

F 2

...

FN

0


, (5.44)

where we have written the continuity matrix A0 in block form according to the listing

{T1, T2, . . . , TN} of the triangles in ∆h. Since, we know that the variational equation (5.38)

has a unique solution, the system of equations (5.44) must be consistent. Also by Lemma

5.20, the coefficient matrix of the above overdetermined system has full rank. Therefore,

there is a unique solution which can be recovered using the best linear system solver that

may be found or developed. However, this approach poses some practical issues, such as

the supplementary storage required to assemble the system’s coefficient matrix.

Alternatively, we may use Lax-Milgram Theorem [27, Corollary 5.8, p. 140] to see that

the variational equation (5.38) is equivalent to the constrained minimization problem

Minimize
1

2
cT (Sn(λ) +M)c− F Tc

subject to: A0c = 0,

(5.45)

where Sn(λ) is the block diagonal matrix

Sn(λ) =



Sn,1(λ) 0 . . 0

0 Sn,2(λ) 0
...

... 0
. . . 0

0 · · · 0 Sn,N(λ)


,
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with M and F given by

M =


M1 0 . . 0

0 M2 0
...

... 0
. . . 0

0 · · · 0 MN

 , F =


F 1

F 2

...

FN

 ,

and A0 has full rank. The full rank assumption on A0 is equivalent to saying that A0

enforces a minimal set of conditions for continuity across the edges of the triangulation.

Let c∗ be a solution of the constrained minimization (5.45). Then, there exists a vector

of Lagrange multipliers µ∗ such that the pair (c∗,µ∗) solves the saddle point systemSn(λ) +M AT0

A0 0


c
µ

 =

F
0

 . (5.46)

Moreover, since Sn(λ) +M is positive definite and A0 has full row rank, the pair (c∗,µ∗)

is the unique solution of the saddle point system (5.46). We now summarize the spline

algorithm

ALGORITHM 5.21. Given a function f ∈ L2(Ω), choose a triangulation ∆h of Ω, the

degree d of the spline, and the flat region parameter ε > 0. Let c0 be the B-net of a

nonnegative constant function defined on Ω.

1. Assemble the smoothness matrix A0, the total variation matrix S0(λ) and the mass

matrix M , compute the orthogonal projection Qd(f), and the load vector F .

2. For any n ≥ 0, compute the B-net cn+1 by solving the saddle point system (5.46).

3. Compute the orthogonal projectionQ2d−2(1/ε∨|∇un+1|), where un+1 is the spline

with B-net cn+1, and update the total variation matrix Sn+1(λ).

4. Until a stopping criterion is met, increment n← n+ 1 and go to step 2.
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The storage cost for using a direct solver to solve the above saddle point system (5.46)

quickly become prohibitive as the degree of the spline function is increased, and an iterative

method with low storage cost is desirable. One such method is the method of multipliers

[24] which can be described as follows.

Let γ > 0 be fixed and consider the augmented Lagrangian functional

L(c,µ) :=
1

2
cT (Sn(λ) +M)c− F Tc+ µTA0c+

γ

2
‖A0c‖2 (5.47)

Given an approximation µk of the vector of multipliers µ∗, we compute an approximation

ck+1 of the solution c∗ as the minimizer of the functional Lk(c) = L(c,µk) and update

the multipliers’ estimate according to the rule µk+1 = µk + ρA0ck+1. Thus, we obtain the

following iterative algorithm.

ALGORITHM 5.22 (Method of Multipliers). Choose γ > 0 and ρ > 0. Pick an initial

vector of multipliers µ0. For each k = 0, 1, 2, . . .. Solve the linear system

(Sn(λ) +M + γAT0A0)ck+1 = F − AT0µk, (5.48)

and update the multiplier by the rule

µk+1 = µk + ρA0ck+1. (5.49)

The method of multipliers algorithm above is a special case of the augmented La-

grangian algorithm studied in [18]. Consequently, since Sn(λ) + M is symmetric positive

definite, the sequence ck converges to the solution c∗ provided that 2γ − ρ ≥ 0 [18, Theo-

rem 4, p.128]. Moreover, if A0 is of full rank, then under the same condition, the sequence

of Lagrange multipliers µk also converges to µ∗ [40, Theorem 9.4-1, p. 362]. In practice

when using the method of multipliers algorithm, care should be taken not to choose ρ so

large as to make the matrix Sn(λ) +M + γAT0A0 ill conditioned.
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5.5 NUMERICAL EXPERIMENTS

In this section, we report the results of some numerical experiments done using the

algorithm described above for denoising digital images. It is well known (some of these

observations have been confirmed by theory) that the ROF model : (1) is excellent on

piecewise constant images up to a reduction in contrast; (2) finite difference algorithms are

vulnerable to the staircase effect, whereby smooth regions are recovered decomposed into

piecewise constant subregions; (3) is ineffective at discriminating textures and noise. Two

examples illustrating the issues raised above are provided, using both the finite difference

and spline methods. However, we will see that the staircase effect is tamed by the spline

algorithm method.

The semidiscrete spline model and algorithm. The algorithm described in the previous

section assumes that the data f is a function on a continuum domain, however, digital

images are merely samples of such function, the size of which may not be sufficient to

estimate the orthogonal projection Qd(f). Therefore, we solve the following variant of the

model (5.45).

For a digital image f of size m × n, we identify f to the piecewise constant function,

f , defined on Ω = (1/2, m+ 1/2)× (1/2, n+ 1/2) by

f(x) = f i,j, x ∈ (j − 1/2, j + 1/2)× (i− 1/2, i+ 1/2),

for any 1 ≤ i ≤ n and 1 ≤ j ≤ m. Let a triangulation {T1, T2, . . . , TN} of Ω be fixed,

we compute the spline approximation using Algorithm 5.21 with a minor twist to step 2.

Instead of solving the saddle point system (5.46), we solve the following systemSn(λ) +OTO AT0

A0 0


c
µ

 =

OTf

0

 , (5.50)

where f is the column vector representing the image f , and O is a N ×N block diagonal

observation matrix. The i−th block of O, Oi with dimensions ni ×
(
d+2

2

)
, is such that
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each row is obtained by evaluating the B-basis functions, BT,d
ijk , at a pixel location that

falls within triangle T . Moreover, we must have
N∑
i=1

ni = nm, so that O has dimensions

nm×N
(
d+2

2

)
.

How do we obtain the triangulation? We compute a mesh of the domain Ω using the

mesh generating MATLAB function distmesh developed by Persson and Strang [66]. The

distmesh function aims at generating a triangulation with maximum smallest angle; thus,

produces meshes in which most triangles are close to being equilateral.

Example 1: piecewise constant image. In this test, we use the ROF model to clean up real-

ization of a Gaussian noise added to the a binary image made of five geometric shapes. For

comparison purposes, we ran the spline algorithm 5.21 and the finite difference alternating

projected gradient algorithm 4.15. We used τ = 1/8 for the finite difference algorithm. For

the spline algorithm, we computed a continuous cubic spline with ε = 1/4. In both cases,

we use λ = 1/8. The spline algorithm is less capable to accurately resolve the edges than

the finite difference alternating projected gradient algorithm, as seen by comparing panel

(D) and panel (F) in Figure 5.3. The performance of the spline algorithm may be improved

by choosing a triangulation that is adapted to the edges in the image. However, generating

such triangulations augment the computational cost of the algorithm as we would have to

identify the edges in a preprocessing step.

Example 2: Piecewise smooth image. We now show the performance of the spline algo-

rithm on a natural image with minor textures. The parameters for this test are λ = 1/8,

ε = 1/20, and τ = 1/8. Both the projected gradient algorithm and the spline method effec-

tively reduce the noise. The finite difference method produces shaper edges than the spline

method, see panel (D) and panel (F) in Figure 5.5. However, the finite difference method

results in an image with more blocky regions than the one recovered by the spline method,

see panel (B) and panel (C) in Figure 5.4.
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(F)(D)(B)

(E)(C)(A)

FIGURE 5.3: (A) The original cartoon image overlayed with a triangulation made of 562 triangles

and 316 vertices. (B) The noised image obtained by adding a white noise with σ = 25 to the cartoon

image. (C) The image recovered with the projected gradient algorithm. (D) The difference between

the noised and recovered images. (E) The image recovered by fitting a continuous cubic spline over

the triangulation in image (A). (F) The difference between the spline and noised images.

(C)(B)(A)

FIGURE 5.4: The spline method is less vulnerable to the staircase effect. (A) Portion of the noised

image in Figure 5.3(B). (B) The same portion from the image recovered using the projected gradient

algorithm. (C) The same portion form the image recovered with the spline method.
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(F)(D)(B)

(E)(C)(A)

FIGURE 5.5: (A) The clean portrait of a toddler. (B) The noised image obtained by adding a

white noise with σ = 25 to the image in (A). (C) The image recovered with the projected gradient

algorithm. (D) The difference between the noised and recovered images. (E) The image recovered

by fitting a continuous cubic spline over a mesh made of 1271 triangles and 688 vertices. (F) The

residual image of the spline fitting algorithm.
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A

EXTENSION OF BOUNDED VARIATION FUNCTIONS

In this chapter, we cover the construction of an extension operator over the space

BV (Ω). Our exposition follows the monographs [46] and [8]. In the sequel, Ω will de-

note a bounded domain of R2, unless otherwise noted. We define the sets

S = {x = (x1, x2) : − 1 < x1, x2 < 1},

S+ = {x = (x1, x2) ∈ S : 0 < x2 < 1},

S0 = {x = (x1, 0) : − 1 < x1 < 1}

Bρ(x) = {y ∈ R2 : |y − x| < ρ}.

An essential tool in the definition of the trace of a function of bounded variation is the

Lebesgue theorem.

THEOREM A.1 (Lebesgue). If u ∈ L1(R2), then for almost all x ∈ R2

lim
ρ→0

1

ρ2

∫
Bρ(x)

|f(z)− f(x)|dt = 0. (A.1)

The following special properties of finite Radon measure is central in the construction

of the trace operator; a proof is found in [46].

LEMMA A.2 ([46]). Suppose that Ω is an open domain on R2 that lies on one side of its

boundary. Suppose that µ is a finite Radon measure on Ω ⊂ R2. Then, forH1-almost every

x ∈ ∂Ω

lim
ρ→0

µ(Bρ(x) ∩ Ω)

ρ
= 0. (A.2)
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A.1 EXTENSION BY REFLECTION

We first study the case of a rectangular domain showing that we can define an extension

operator through reflection across the sides of the domain. We begin with an important

lemma defining the trace on one side of the rectangle and extending the extension of the

Gauss-Green Theorem to functions of bounded variation. We note that it is not always

possible to define the trace of a function of bounded variation on the boundary of Ω. In

fact, like with Sobolev spaces, the trace operator is closely linked to the geometry of the

domain Ω.

LEMMA A.3. Suppose that u ∈ BV (S+). Then there exists a function u+ ∈ L1(−1, 1)

such that forH1−almost every x ∈ (−1, 1)

lim
ρ→0

1

ρ2

∫
S+
ρ (x)

|u(z)− u+(x)|dz = 0, (A.3)

where S+
ρ (x) = (x− ρ, x+ ρ)× (0, ρ). Furthermore, for every g ∈ C1

c (S,R2)∫
S+

u div(g)dx = −
∫
S+

〈Du, g〉+

∫ 1

−1

u+g · νdH1, (A.4)

where ν = (0,−1), andH1 is the 1-dimensional Hausdorff measure on R.

PROOF. The proof is done in two steps. First suppose that u ∈ C∞(Ω) ∩ BV (Ω), and for

ε > 0 define uε : (−1, 1)→ R by

uε(y) = u(y, ε). (A.5)

We have for any ρ ∈ (0, 1] and for every 0 < ε′ < ε < ρ∫ ρ

−ρ
|uε − uε′ |dH1 ≤

∫ ρ

−ρ

∫ ε

−ε′

∣∣∣∣ ∂u∂x2

∣∣∣∣ dx ≤ ∫ ρ

−ρ

∫ ε

−ε′
|∇u| dx. (A.6)

Letting ε → 0 in the above inequality with ρ = 1 shows that uε is Cauchy in L1(−1, 1);

hence converges to u+ ∈ L1(−1, 1). On the other hand by Gauss-Green theorem, we have
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for any g ∈ C1
c (S,R2)∫ 1

−1

∫ 1

ε

u div(g)dx = −
∫ 1

−1

∫ 1

ε

∇u · gdx+

∫ 1

−1

uεgε · νdH1. (A.7)

Letting ε → 0 in the latter identity yields (A.4) at once for any smooth u. To obtain (A.3)

we notice that for any x ∈ (−1, 1) and any 0 < ρ < min(1− x, 1 + x), we have∫
S+
ρ(x)

|u(z)− u+(x)|dz =

∫ ρ

−ρ
dη

∫ ρ

0

|u(x+ η, t)− u+(x)|dt

≤
∫ ρ

−ρ
dη

∫ ρ

0

|u(x+ η, t)− u+(x+ η)|dt+

+ ρ

∫ ρ

−ρ
|u+(x+ η)− u+(x)|dη.

Now we infer from (A.6) and Fubini Theorem that∫ ρ

−ρ
dη

∫ ρ

0

|u(x+ η, t)− u+(x+ η)|dt ≤ ρ

∫
S+
ρ (x)

|∇u|dx.

Thus

1

ρ2

∫
S+
ρ(x)

|u(z)− u+(x)|dz ≤ 1

ρ

∫
S+
ρ (x)

|∇u|dx+
1

ρ

∫ ρ

−ρ
|u+(x+ η)− u+(x)|dη.

But by Lemma A.2, we have forH1-almost every x ∈ (−1, 1)

lim
ρ→0

1

ρ

∫
S+
ρ (x)

|∇u|dx = 0

and so by Lebesgue’s Theorem applied to u+ ∈ L1(−1, 1), we obtain inequality (A.3)

when u is smooth.

For u ∈ BV (Ω), let un ∈ C∞(Ω) ∩ BV (Ω) be such that un
L1(Ω)−−−→ u and∫

Ω

|∇un|dx→ |Du|(Ω). Then, from (A.3), we easily get that forH1-almost every x ∈ ∂Ω

lim
ρ→0

1

ρ2

∫
S+
ρ (x)

|u(z)− u+
n (x)|dz = 0, ∀n ∈ N.

So all the traces u+
n are equal and defining u+ = u+

n , we obtain (A.3) at once from the

above inequality. Finally, writing the Gauss-Green identity (A.4) for each un, then taking

the limit as n→∞ yields (A.4) for u and the proof is complete. �
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We have the following result showing that one can extend a BV function u over a

rectangular domain by reflection across one side of the domain without making that side

into a singular curve for u.

LEMMA A.4. The linear mapR : BV (S+)→ BV (S) defined byRu(x1, x2) = u(x1, |x2|)

is bounded and satisfies

|DRu| ((−1, 1)× (−r, r)) ≤ 2|Du| ((−1, 1)× (0, r)) ∀ r ∈ (0, 1]. (A.8)

In particular, we have

|DRu|(S0) = 0. (A.9)

PROOF. Let u ∈ BV (S+) be fixed. The restriction ofRu to S \ S̄+ belongs to BV (S \ S̄+)

and its trace on S0 is equal to the trace of u on S0. Consequently, by Gauss-Green theorem

we have ∫
S

Ru div(g)dx = −
∫
S+

〈Du, g〉 −
∫
S+

〈Du, g̃〉, ∀g ∈ C1
c (S,R2),

where

g̃(x1, x2) = (g1(x1,−x2),−g2(x1,−x2)).

On taking the supremum over all g such that |g(x)| ≤ 1,∀x ∈ S, we get thatRu ∈ BV (S)

and J(R(u)) ≤ 2J(u). In fact, we have

J(R(u)) = 2J(u), (A.10)

since it is easy to check that J(R(u)) ≥ 2J(u).

A similar argument with g ∈ C1
c ((−1, 1) × (−r, r),R2) yields (A.8) and the proof

is complete. On taking the limit as r goes to 0 in inequality (A.8) above, we see that

|DRu|(S0) = 0. �

102



A.2 GENERALIZATION TO LIPSCHITZ DOMAINS

In this section, we construct an extension operator of the space BV (Ω) into the space

BV (R2) when Ω is a Lipschitz domain. We begin with the definition of a Lipschitz domain.

DEFINITION A.5. We say that an open set Ω is Lipschitz continuous if for every x ∈ ∂Ω =:

Γ there exist a rectangular neighborhood R of x in R2 and a bijective map H : S → R such

that

(L1) H and H−1 are Lipschitz continuous, and H−1 maps negligible sets to negligible

sets;

(L2) H(S+) = Ω ∩R;

(L3) H(S0) = R ∩ Γ.

The map H is called a local chart.

We will need the following result on the right-composition of a BV function with an

invertible Lipschitz function satisfying property (L1) in Definition A.5.

LEMMA A.6. Let Ω be a bounded domain in R2 and ϕ : Ω→ Ω′ be a Lipschitz invertible

map satisfying property (L1). Then the mapping #ϕ : u 7→ u◦ϕ−1 is a bounded linear map

between the spaces BV (Ω) and BV (Ω′) and

J(#ϕu) ≤ Lip(ϕ)J(u), ∀u ∈ BV (Ω), (A.11)

where Lip(ϕ) is the Lipschitz constant of ϕ. Furthermore #ϕ maps W 1,1(Ω) in W 1,1(Ω′)

and

∇(#ϕu)(y) = ∇u(ϕ−1(y))
[
∇ϕ(ϕ−1(y))

]−1 for a.e. y ∈ Ω′. (A.12)

PROOF. See the proofs of Theorem 3.16 and Corollary 3.19 in [8, pp. 127–130]. �
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We will also need the following standard result.

LEMMA A.7 (Partittion of unity). Suppose Ω is bounded and let {Ui : i = 1, 2, . . . , n} be

an open cover on its boundary ∂Ω. Then there exist a family of smooth function {θi, i =

0, 1, . . . , n} ⊂ C∞(R2) such that

(a)
n∑
i=0

θi = 1 on R2 and 0 ≤ θi ≤ 1 ∀ i = 0, 1, . . . , n;

(b) θi ∈ C∞c (Ui) ∀ i = 1, 2, . . . , n and θ0 ∈ C∞c (Ω).

In our study of the approximation of the image denoising problem, we needed to extend

the solution in BV (Ω) to a function in BV (R2). We will see below that in the specific

case of Lipschitz domains, we can construct an extension operator that coincide with the

standard extension of W 1,p(Ω) to W 1,p(R2) for any p ∈ [1,∞].

THEOREM A.8. Suppose that Ω is bounded Lipschitz domain. Then there exists a linear

and continuous extension operator T : BV (Ω)→ BV (R2) such that

(a) |DTu|(Γ) = 0 for any u ∈ BV (Ω);

(b) the restriction of T to W 1,1(Ω) is a bounded linear operator into W 1,1(R2).

PROOF. Since Γ := ∂Ω is compact and Lipschitz continuous, there exists an rectangular

open cover {Ri, i = 1, 2 . . . , n} and bijective Lipschitz maps ϕi : S → Ri such that the

properties (L1), (L2) and (L3) hold for each 1 ≤ i ≤ n. Let {θi}1≤i≤n the a partition of

unity subordinate to the open cover {Ri}1≤i≤n. Given u ∈ BV (Ω), we write

u =
n∑
i=0

θiu =
n∑
i=0

ui, with ui = θiu.

We observe that for any i = 1, 2, . . . , n, ui ∈ BV (Ri∩Ω), and u0 ∈ BV (Ω) with compact

support. Now, we extend each ui to R2, distinguishing between u0 and ui, 1 ≤ i ≤ n.
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Extension of u0. Since u0 has compact support in Ω a natural extension is the zero exten-

sion defined by

ū0(x) =


u0(x) it x ∈ Ω,

0 if x /∈ Ω.

Given g ∈ C1
c (R2,R2), we have∫

R2

ū0 div(g)dx = −
∫

Ω

u div(θ0g)dx+

∫
Ω

u∇(θ0) · gdx

so that on taking the supremum on all g with ‖|g|‖∞ := supx∈R2 |g(x)| ≤ 1, we obtain

J(ū0) ≤ C(θ0)‖u‖BV with C(θ0) = ‖θ0‖∞ + ‖|∇(θ0)|‖∞,

and it follows that ‖u0‖BV ≤ C‖u‖BV . Moreover the support of ū0 is relatively compact

in Ω.

Extension of ui, i = 1, 2, . . . , k. Let vi be the restriction of u to Ri ∩ Ω transfered to S+

via the local chart ϕi, i.e. vi(y) = u ◦ ϕ(y) for y ∈ S+. By Lemma A.6 vi ∈ BV (S+), and

Lemma A.4 guarantees that Rvi ∈ BV (S) and |DRvi|(S0) = 0. We know from Lemma

A.6 that wi = #ϕiRvi belongs to BV (Ri) and ui = u on Ri ∩ Ω. Now, define

ūi =


θi(x)wi(x), if x ∈ Ri,

0 if x /∈ Ri,

so that ūi ∈ BV (R2) and ‖ūi‖BV ≤ Ci‖u‖BV where Ci depends only on θi and ϕi. More-

over, the support of ūi is relatively compact in Ri and we have

|Dūi|(∂Ω) = 0.

The operator T . The extension operator is then defined by Tu =
n∑
i=0

ūi and possesses all

the desired properties by construction. �
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