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Modeling international commodity markets is a complicated issue in economics. 

Contemporary models suggest a variety of strategies to solve for optimal policies. Although they 

have proved to be efficient in many aspects of theoretical analysis, certain limitations always 

exist in applications to the real world problems. In this study we developed a multiple region 

dynamic rational expectation commodity model that is in general more flexible than 

conventional ones. The essential proposition on separability of solutions for given policy 

functions was made. A successive approximation algorithm was used to obtain an approximate 

solution to a model designed. The results support main assumptions of the model. However, the 

algorithm is characterized by a slow convergence, which limits the results obtained so far. 
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CHAPTER 1 

INTRODUCTION 

 

1.1. Background 

Commodity markets are complex systems. They are characterized by highly volatile 

commodity prices behavior, seasonal demand and supply schemes, complicated government 

market intervention programs, and policy regulations. The contemporary theory of commodity 

markets tries to model the behavior of commodity prices to explain the factors that generates the 

price fluctuations and thus to be able to make predictions of future prices. The commodity prices 

are the conventional indicator of the state of a market, both current and future. They are also the 

most useful tool for the market regulation.  

There are a variety of approaches that are currently used to find empirical support for 

the theoretical foundations of commodity market processes. Most of them utilize complicated 

econometric techniques and generate results that with a certain confidence could provide 

explanations of specific characteristics of real markets. However, these approaches are based 

solely on past information and thus generally the results obtained are backward looking. This 

means that the success of forecasts or policies designed from econometric analysis will be 

conditional on the confined relevance of conditions observed in the past. At this point it seems to 

be really important to employ a forward looking methodology that can explain the behavior of 

the market itself, and reveal the most important linkages between the commodity market 

elements. In other words one needs to understand the underlying process of the market activity to 

make a consistent analysis of the real world problem.
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Recent literature on commodity market models introduces a variety of methodologies 

for solving the problems by numerical methods. Although many problems associated with the 

solution of large scale commodity models can be solved relatively easily now, most studies are 

still oriented on one region policy optimization that requires solving for the quite limited number 

of state variables and correspondent strategies. Complicated market structures that include public 

and speculative storage, seasonality and non-stationarity are brought in for analysis, but, they are 

often inapplicable to international markets. Any economic process clearly specified and modeled 

locally generates a net of interactions in multiple region environments. Providing that the model 

should be solved for all regions simultaneously, the optimization task then is formulated as a 

huge system of nonlinear equations, the solution to which transforms the optimal planner’s 

problem into an unstable and burdensome procedure. 

Multiple region models currently developed have proved to be efficient in general. 

However, often they assume certain trade offs that make them limited to specific cases. Hence it 

is vitally important to find a way to develop a more general framework that can use conventional 

optimality principles, but at the same time can be flexible enough to utilize only a limited 

number of model restrictions.
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1.2. Objectives 

The current study has three main objectives:  

• develop a generalized theoretical framework for the multiple region dynamic 

rational expectations model and its solutions, that allows the relaxation of 

conventional limiting assumptions; 

• discuss the main issues that arise in the process of application of the solution 

procedure to models of real world markets; 

• obtain an approximate solution to the selected market model, check the 

assumptions that were utilized in theoretical developments, and analyze the 

implications of results. 

 

1.3. Organization  

The organization of this thesis is as follows. In the first chapter a short statement on the 

background of a problem that is the subject of our study is provided. Chapter 1 also defines the 

general idea and the specific objectives of this research. The literature review in Chapter 2 

summarizes the main developments made in modeling the problem of commodity market policy 

optimization, and recent advances in the field of stochastic dynamic modeling. The general 

theoretical model framework and numerical solution strategy are presented in Chapter 3. This is 

the most essential part of the study that reveals the opportunity to improve contemporary 

international commodity models. The next Chapter discusses the step by step approach in design 

and implementation of the solution algorithm proposed in Chapter 3. Chapter 5 is oriented to the 

analysis of the results found from the empirical application of the model. The last part of the 

thesis also includes the possible implications and limitations of the developed model framework.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1. One region models 

A variety of commodity models that studied the price storage relationship can be found 

in economic literature before 1950s. Most utilize a simplified market framework and thus return 

quite a generalized result.   

Gustafson (1958) first introduced dynamic programming methods in the field of 

modeling commodity markets. Gustafson suggests deriving the optimal policy rules as the 

instrument of optimal control, rather then finding equilibrium quantities. This work proves an 

equivalence of social value function maximization as an optimal planner’s strategy to profit 

maximization as a competitive market approach in an undistorted environment. This is the first 

research that provides the fundamental mathematical model for the optimal decision process in 

commodity markets. The type of model introduced emphasizes nonlinearity in the storage – 

expected price relationship as the result of the condition that aggregate storage cannot be 

negative. Although Gustafson (1958) obtain the results for a certain environment and stationary 

consumption, which makes the empirical part produce quite an approximate solution, this work 

is classical in a sense of the approach introduced. Many later researchers benefited from it by 

utilizing the main principles and optimality conditions derived almost fifty years ago.
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The subject of Gardner (1979) is a strategy of optimal stockpiling of grains. Gardner 

studies an uncertain environment, with extensions to the Gustafson model such as non-

stationarity of model parameters, stochastic demand, deviations in production and elastic supply 

response. This work provides a good idea of solution strategy, however it utilizes a linear 

quadratic specification and thus the results are not accurate. 

Newbery and Stiglitz (1981, 1982) provided a comprehensive theoretical work on 

commodity price stabilization. This research employs algebraic methods to study all possible 

aspects of different price stabilization schemes under uncertainty. The authors use both partial 

and general equilibrium analysis. They also represent a dynamic analysis of buffer stock schemes 

and application of theory to the theoretical framework for the problems of stabilizing agricultural 

commodity markets. 

Williams and Wright (1991) presents the synthesis of the modern theory of competitive 

storage and the classical model by Gustafson. They combine spatial market clearing conditions 

with the intertemporal arbitrage equation of the classic model and rational expectations 

hypothesis.  

The recent literature on commodity markets theory often utilize numerical solution 

methods based on a functional approximation method to replace the original functional equation 

problem with a finite dimensional problem in the form of a system of nonlinear equations. 

Williams and Wright (1991) introduce a successive approximation algorithm based on 

a curve fitting technique. Miranda and Glauber (1995) presented an advanced version of it based 

on a Chebychev orthogonal collocation method. 

Deaton and Laroque (1992, 1995, 1996) use maximum likelihood estimation of a 

nonlinear dynamic rational expectations commodity model.   
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Some of the latest applications of the rational expectations storage models to 

commodity-specific markets have focused on simulating policy scenarios (Miranda and 

Helmberger (1988), Miranda and Glauber (1993), Ng (1996), Ng and Ruge-Murcia (2000), 

Michaelides and Ng (2000)).  

Although most of studies utilize annual models, other models also exist (Peterson and 

Tomek (2000), Lowry et al (1987)). 

Carter and Revoredo (2000) study interactions between working and speculative stocks. 

Many other researches introduce public storage (Gardner (1979), Williams and Wright (1991), 

Miranda and Glauber (1993)). 

 

2.2. Multiple region models. 

Gustafson (1958) derives modifications of his approach in application to the several 

regions international grain market. Although results of his works are considered to be classical, 

they mainly elaborate on the deterministic type model.  

Gardner (1979) provides an application of his model to the study of the world wheat 

market. An important advance made in his work is introduction of international market policy 

optimization from the point of view of a single country, taken the policy environment in the rest 

of the world as given. Gardner points out that the regions (countries) should not necessary adopt 

a worldwide consistent set of policies. 

Williams and Wright (1991) presents a comprehensive section on trade storage 

relations, where the two region model framework is discussed. Their version of extension of the 

one country algorithm utilizes the conventional optimality conditions. The authors also 

introduced an additional spatial condition for future prices.   
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The latest versions of multiple region models are basically presented by Miranda, who 

efficiently combined space, time and uncertainty in one model. The approach presented in 

Miranda and Glauber (1995) is demonstrated to be extremely effective, however their empirical 

example is based on artificial data.  

Makki, Tweeten and Miranda (1996) present probably the only study that with enough 

confidence is successful in explanation of the behavior of a real market. Still, it also has certain 

limitations, as the authors utilize an assumption on specified export or import orientation of 

countries, which is not always the case.   
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CHAPTER 3 

GENERAL FRAMEWORK 

 

3.1. Theoretical framework 

This section presents a three-region dynamic world cotton market model. In each 

period any region can be either a net exporter or net importer.  The trade flows are assumed to 

occur from the exporters to the importers, with no trade between homogenous types of agents.  In 

any period t, the supply  initially available in any region i is composed of a carryover from the 

preceding period  and new production, which is determined by an exogenous random yield 

on the acreage , planted the preceding period: 
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The region must allocate total supply available  among consumption , future 

storage and amount traded : 
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where ij denotes a trade flow from region i to region j. 

If , one observes an excess supply in the region i, which is then a net 

exporter ( ).  Otherwise, in case of , region i is a net importer ( ). 
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The resulting spatial equilibrium is summarized in the following material balance 

equation: 

∑∑∑∑∑ ++=
i j

ij
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i
t xscq , i∀ , ij ≠∀     (3) 

Clearly, at least one net exporting and one net importing region should exist at any 

given period t (neglecting the situation when all three agents are closed economies), for the 

world market to be balanced. Hence, the model has to satisfy the following condition: 

0=∑ ∑i j
ij
tx , , i∀ ij ≠∀        (4) 

Then, necessary conditions for the spatial equilibrium to hold are those described by 

equations (2) and (5): 
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Following Makki, Tweeten and Miranda (2001), we define this specification as one that 

assumes no losses in storage and no qualitative differences between the stored commodity and 

the freshly harvested commodity. 

Current consumption (use) level  of commodity in region i is a strictly decreasing 

function of the market clearing price : 

i
tc

i
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ii
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where  is a constant term of region i demand equation,  is the price elasticity of 

demand in region i. 

0>iα 0<iβ

Consumption in any region i is assumed to be nonstochastic and consumer’s income is 

assumed to be constant. 
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The acreage  planted by rational producers in region i is a strictly increasing function 

of the price expected at harvest time ( ): 
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where   is a constant term of region i acreage response equation,  is the price 

elasticity of acreage response in region i. 

0>iγ 0>iη

We generalize the perfect foresight assumption of the model by assuming that the 

expectations are formed in the sense of Muth (1961). The rationality assumption implies that the 

price expectations formed by storers and producers in the model are consistent with the 

stochastic price distributions implied by the model. 

To solve the optimization problem, we construct the welfare measure which will reflect 

the corresponding social value of the commodity available to the different types of agents — 

consumers and suppliers. The current social welfare is a sum of consumer and producer 

surpluses induced by their decisions on the action variables in period t: 
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The current consumer surplus  in any region i is measured by the area under the 

demand curve minus the revenue, generated by the commodity consumed at the current 

equilibrium price : 
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Alternatively, the current consumer surplus may be interpreted as the present social 

value of the commodity consumed to the consumer type of agents. 

The model assumes that the consumers do not differentiate commodity on the basis of 

quality, political considerations, historical trading patterns and the country or origin. We use 
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homogeneity of commodity purchased to imply the homogeneity of commodity consumed. Then 

we can treat the consumer surplus as unique, rather then sum of consumer value of commodity 

produced in the region i and imported.        

Under the assumption of zero income elasticity the Marshallian surplus is equivalent to 

the Hicksian compensating and equivalent variation each period t. The model is thus not affected 

by the intertemporal change in consumer income and its structure does not need to elaborate on 

the various income effects. The assumption of zero income elasticity is made solely for the 

simplicity purposes and may be relaxed relatively easily. 

The general model structure implies that supply side of the market is represented by the 

three types of agents: producers, storers and traders (importers/exporters). Each group of agents 

gains a specific surplus corresponding to the activity it conducts. 

The current producer surplus  in any region i is measured by the profit from the 

production activity of farmers. Producer receives revenue generated by the commodity produced 

at the current equilibrium price , discounted for the production cost: 
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where  is a fixed per acre production cost. i
tω

Each period t storer pays the total cost of commodity purchased to carry into the next 

period plus the total cost of storage of the amount to store. These costs compose the negative side 

of the storer balance. Each period the storer’s gain is equal to the revenue generated from selling 

the commodity stored the preceding period at the current equilibrium price . Then, the 

present storer surplus  in any region i is measured by the profit from the competitive storage: 
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where  is the region i storage cost function or the current value of commodity stored. )( i
t

i
t sK

According to the theory of price of storage, the total cost of storage consists of three 

components (Brennan 1958): the total physical cost of storage , the total risk-aversion 

factor  and the total convenience yield on stocks , so that the storage cost 

function has the following form: 
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The total physical cost of storage includes rent for storage space, handling charges, 

interest, insurance, etc. The planner can meet an unexpected raise in consumption. This generates 

the convenience yield which can be considered to be the opportunity cost of holding some 

working stocks of commodity and, alternatively, mobilizing the resources to meet the unexpected 

demand shock. Once the stock rises above the certain high level convenience yield goes to zero. 

This level of commodity storage amount may be naturally interpreted as the maximum level of 

working stocks to have. Brennan (1958) suggests expecting total risk aversion to be an 

increasing function of stocks. If planner holds a comparatively small amount of stocks than the 

risk involved in storage decisions, namely investment in stocks, is also small. This implies that 

the third component of storage cost function — marginal risk aversion factor — is expected to 

small as well. Respectively, holding high level of storage increases the possible economic losses 

if unexpected fall in future prices take place. In this case, the marginal risk aversion factor 

increases as the stock goes over the certain level. 

Both marginal physical costs  and marginal risk-aversion factor  are either 

constant or increasing functions of , , , , . The 
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marginal convenience yield is decreasing function of , , . The net 

marginal cost of storage may be written as: 
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The net carrying charge of storage  is specified as the difference between current 

and expected prices.  
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Figure 3.1. General form of storage cost function. 

Source: Brennan (1958). 

 

Finally, the present trader (exporter/importer) surplus  in any region i is 

measured by the profit from the competitive trade activity:  
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i∀ ,   ij ≠∀

where  is per unit of commodity traded fixed cost of transportation from region i to region j. ij
tτ

We use the assumption of symmetry of the transportation cost and export flows which 

implies that  and .  ji
t

ij
t ττ = ji

t
ij
t xx =

The equation of a trader surplus assumes two situations. The first, when the agent is a 

pure exporter and  is positive, defines the current surplus as the difference between the total 

cost of commodity purchased at the home equilibrium price  from the home producer for 

export plus the total cost of transportation and the revenue generated by the amount of 

commodity traded at the foreign equilibrium price . The second case, when the agent is a pure 

importer and  is negative, defines the current surplus as the difference between the total cost 

of commodity purchased at the price  from the foreign importer and the revenue 

generated by the amount of commodity purchased at the home equilibrium price , when is 

sold to the home consumer.  
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Now assume, for simplicity, that we have only one representative supplier, who 

simultaneously conducts production, storing and trade. Then, the current supplier surplus  

is simply the sum of surpluses generated by the activities stated above: 
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Combining (9) and (15.2) we obtain the equation for the current social surplus 

(welfare): 
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Planner observes the state of market , takes actions  and i
tq i

ts 0= ∑ j
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tx  from which 

society earns a reward . The planner optimization problem is to select the storage 

 and amount traded ∑  (decision variables), such that they will maximize the discounted 

stream of expected future surplus (welfare)  in the infinite time horizon, given the initial 

supply .  
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where   is the region i discount factor. i
tδ

We use the stationarity assumption, specified by Gustafson (1958), as the situation 

when the value function, storage cost function, discount rate and frequency distribution of yield 

are expected to remain unchanged in future.  The model is constructed to have no growth or 

seasonality. 

In its general form, the equilibrium payoff function ( ) for each region i should 

satisfy Bellman’s principle of optimality (Bellman 1959): 
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where )~,( iii ysg  is the state variable transition function. The state of market is a controlled 

Markov process. Our model implies that the state of market — initial supply of commodity  

available in the next period  — depends on the storage decision  made in period t and an 

exogenous random yield 
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Here, as the planner’s decision problem has an infinite horizon, the payoff functions do 

not depend on time t and the Bellman equations has the form of functional fixed-point equation. 

The equilibrium conditions for discrete time, continuous state, continuous choice 

Markov decision problems are derived by applying the Karush-Kuhn-Tucker and Envelope 

Theorem to the optimization problem embedded in the Bellman equation; for more details on 

continuous state dynamic programming see Miranda (2002, Chapter 8).  

We assume that actions are unconstrained. More specifically, decisions on the amount 

of commodity traded may be positive, negative, or equal to zero, which correspond to export, 

import and no-trade situation; storage decisions may be non-negative only, by definition. 

However, by including a convenience yield and risk payment into the storage cost function, we 

design the model to perform no-stock out and no-overstock scenarios, which implies optimal 

storage decisions to be bounded indirectly.  

The Karush-Kuhn-Tucker condition for the presented unconstrained optimization 

problem imply that the optimal actions  and , given state of market , satisfy the following 

equimarginality conditions:  

is ijx iq
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i∀ ,  , ij ≠∀

where λ  is the marginal value of initial supply available to the planner or, using the terminology 

of optimal control, “shadow” price of initial supply : iq

i

i
i

q
Wq
∂
∂

≡)(λ          (21) 

Applying the Envelope Theorem to the same optimization problem results in: 
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In our application, the state transition depends only on the action taking by the planner, 

so that: 

0)~,(
=

∂
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q
ysg ,  i∀        (23) 

In this case we may substitute the expression derived using the Envelope Theorem (22) 

into the expressions derived using the Karush-Kuhn-Tucker conditions (20). This procedure 

eliminates the shadow price function as an unknown and simplifies the Euler conditions into two 

functional equations in two unknowns, the optimal trade  and storage  policies: ijx is
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Applying the Euler equations (24.1) and (24.2) to the planner optimization problem 

(18) results in: 

0][)()( ~ =+−−−− i
y

iiiiiii pEskxsqp δ ,  i∀ ,   (25.1) 0≥∀ is

and 

0)()( =−−+−−−− jjjjijiiii xsqpxsqp τ ,     (25.2) 

i∀ ,  , 0≥∀ is ij ≠∀  

The first equation is the intertemporal arbitrage condition of the social planner i that 

may be represented as: 

][)()()( iiiiiii pEskcps δµ +−−= , i∀ ,    (26) 0≥∀ is

where  is the marginal profit from storage.  )( isµ

The optimal choice for the amount to store corresponds to the zero marginal profit, 

which satisfies Pareto optimality criterion. Discounted future price cannot exceed the current 

price by more than marginal cost of commodity stored. Otherwise, the expected profit 

opportunities from storing the commodity will exist in the economy, lowering the expected 

future price and raising the current price. The negative expected marginal profit will prevent 

agents from storing the commodity above the certain optimal level as it will cause economic 

losses. This results in the following optimality condition:   

)()(][ iiiiii skcppE +=δ ,  i∀ ,     (27) 0≥∀ is
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The second equation is the spatial arbitrage condition of the social planner i that may be 

represented as: 

)()()( jjijiiij cpcpx +−−= τχ ,  i∀ ,  ij ≠∀    (28) 

For the decision on the amount of commodity traded to be optimal the marginal profit 

from trade activity should be equal to zero, i.e. the higher price cannot exceed the lower price by 

more than marginal cost of transportation. Otherwise, the spread between the low price of export 

and the high import price  will create additional profit opportunities and 

generate extra commodity flows from low-price region to a high-price region, until the difference 

between prices evolves.  The negative marginal profit will prevent traders from negotiating on 

the amount over the equilibrium quantity, as it will cause economic loses for them. This results 

in the following spatial arbitrage complementarity slackness conditions for exporter (29.1) and 

importer (29.2):   

ijii cp τ+)( )( jj cp

0)()( ≥⊥≤+ ijjjijii xcpcp τ ,  i∀ , ij ≠∀     (29.1) 

0)()( ≥⊥≤+ jiiijijj xcpcp τ ,  i∀ , ij ≠∀     (29.2) 

The formulation as a planner’s problem defines the storage and trade amount as control 

variables. In a stochastic environment, the planner cannot foresee the yield shock and thus cannot 

predict the exact size of future harvests.  He must instead anticipate his strategy for future 

storage and trade decisions conditional on future supply. Employing the terminology of dynamic 

programming, the planner needs an optimal decision rule — an optimal relationship between the 

current storage, amount traded and availability of commodity at the beginning of period. Those 

relationships are defined in Williams and Wright (1991) as storage and trade rule.  
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 Define the functions  and  that return equilibrium storage level  and amount 

traded  as a function of supply currently available in region i: 

i
sf i

xf is

ijx iq
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i syaqfs −+== ,  i∀       (30.1) 
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i
t

iiii
x

ij syaqfx −+== ,  i∀       (30.2) 

For the infinite planning horizon, the storage rule is stationary; for more details on 

stationarity of optimal rules in infinite horizon dynamic problems see Bertsekas (1987, Chapter 

5). As a result, the relation between the average price the next period and future availability 
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If private storers believe this relationship to be a particular function, through their 

collective actions )~,~,~( 22
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tt syasyasyapE +++ ++++  should in fact be that function. In 

other words, their expectations should be self-fulfilling, that is, “rational” by definition.    

To capture the rationality assumption about the acreage allocation decision process 

algebraically let us define the  function that gives the expected equilibrium price in any region 

i in terms of the initial supplies ,  and  available in region i, j1 and j2, at the beginning 

of period  respectively. Knowing the equilibrium price functions for all three regions, , 

 and , the expected prices implied by the model could be computed by integrating over 

the yield distributions (Miranda and Glauber): 

iλ

iq 1jq 2jq

1+t iλ

1jλ 2jλ
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i∀    ij ≠∀

Combining the necessary conditions derived above, namely equations (2), (6), (7), (27), 

(29), (31), results in the system of nonlinear equations that describes nonlinear rational 

expectation commodity model designed in this study. Now we have six unknown variables , i
tc
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i
ts , , ,  and , one predetermined endogenous variable  for each region i and six 

corresponding conditions that determine the values of those unknowns. In dynamic environment, 

four of all unknowns — , , ,  — are formally the subject to planner’s decision, in other 

words, they should be considered as the planner’s “control” variables. Two other unknowns — 

the current  and expected  prices — characterize the state of market and are the 

response of a system to the planner’s actions. This fact implies that the values of control 

variables chosen optimally will result in optimal response of a market through the establishment 

of the equilibrium prices best possible. In mathematical sense it means the sufficiency of finding 

solutions for the values of , , and to solve the nonlinear rational expectation 

commodity model in our case. Applying this logic by a simple direct substitution technique 

results in reduced system of nonlinear equations of the following form: 
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Williams and Wright (1991) suggest using  as a function of current storage 

decisions  rather then function of the future supply  available in all regions i at the 

beginning of each period t. One can justify this suggestion by considering  being, by 

assumption proposed, the function of : 
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This implies further that: 
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 ,   ,        (34.1) i∀ ij ≠∀

which in turn, can be represented as 
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Equation (33) has its own application to the problem discussed. Under assumption 

(34.2)  as unknown appears only in one equation of the system, namely (32.1). Moreover, it is 

a function of only one control variable — amount to store . Hence, optimal solution for the 

value of  directly determines the optimal solution for the acreage to plant . By employing 

this simple idea we may reduce the model equations to the system of three conditions and three 

unknowns per region to solve for.  

i
ta

i
ts

i
ts i

ta

As  is predetermined each period, i.e. known for us, the conditions (2) and (3) imply 

the same logic as before — optimal solution for consumption  and storage  gives the optimal 

value of the amount traded . This can be interpreted as the direct application of Walras law, 

i.e. equilibrium in consumption and storage market requires equilibrium in market of commodity 

traded to hold. 
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i
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The balance equation (4) makes possible the application of Walras law to the market of 

commodity consumed. Now, the resulting conditions may be defined as equations (5) and (32.3).  

Direct substitution for consumption variable  generates the final equation of form: i
tc

∑∑∑ +−=
i
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ti
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iii
i

i
t ssksssq

iβλδα ))(),,(( 21 , i∀ , ij ≠∀   (35)  

Initial formulation of a problem required simultaneous solution of eighteen equations 

for eighteen unknowns. Provided derivations allows the planner to solve only one equation, 

namely (35), for three unknowns ,  and  initially. To obtain the equilibrium values for 

fifteen other variables the optimizer need to apply the conditions to the found optimal values of 

storage variables. This process is expected to require less effort as one will solve only a few if 

not one equation per unknown at a time. 

is 1js 2js

 

3.2 Numerical solution strategy 

 Still, the nonlinear rational expectations commodity model cannot be solved using 

conventional algebraic techniques. The reason for that, as described in Miranda (1998) and 

Miranda and Glauber (1995), is that the expected price functions ,  and  are not known 

initially. To solve the dynamic commodity market model one need first to derive them.  

iλ 1jλ 2jλ

At this point, solution of equation (35) becomes a functional equation problem. The 

equilibrium expected price functions ,  and  must simultaneously satisfy an infinite 

number of conditions — for every realizable combination of current storage levels ,  and 

, relations  should solve the equation (35) and then the system of 

equations (32.1) – (32.5) for equilibrium values of unknown model variables.  
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Although we cannot employ conventional algebra or mathematical programming, the 

commodity market model can be solved numerically. To do this, one must approximate the 

infinite-dimensional functional equation problem posed by the equation (35) with a finite-

dimensional problem. The process of forming such an approximation is called discretization. A 

variety of discretization techniques can be used. We will benefit from the comprehensive 

comparative survey on numerical strategies for solving the nonlinear rational expectations 

commodity market model presented in Miranda (1998) by using the polynomial collocation 

method as the most effective discretization approach suggested for such type of models.  

Technically, collocation method replaces the infinite-dimensional functional equation 

problem with a finite-dimensional nonlinear equation problem (Judd 1998, Miranda 2003). By 

collocation method the unknown function  is approximated using a linear combination of 

known functions 

f̂

nφφφφ ,...,,, 210 , called the basis functions: 
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n

j jj sbf
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)(ˆ φ  ,         (36) 

n coefficients  are fixed by requiring the approximant to satisfy the functional 

equation, not at all possible points of the domain, but rather at n specially chosen in  

interval points , called collocation nodes.  

nbbbb ,...,,, 210

[ ]ba,

nssss ,...,,, 210

Application of polynomial collocation to a specific functional equation problem of this 

study calls for each expected price function  to be approximated using 3-dimensional  

degree polynomial. The approximating polynomials are expressed as linear combinations of the 

tensor product of 1-dimensional basis polynomial functions  of order j: 
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The  unknown coefficients  are fixed by imposing 

 conditions that the polynomial approximants ,  and  exactly fit 

expected prices implied by model equations (2), (6), (7), (27), (29) and (31) at a specified grid of 

collocation nodes ( ), where . For more details on 

using polynomial approximation in multiregional nonlinear rational expectation commodity 

market model see Miranda and Glauber (1995) and Rui and Miranda (1996). 

)1)(1)(1(3 321 +++ nnn 321 jjijb

)1)(1)(1(3 321 +++ nnn 1λ 2λ 3λ

)1)(1)(1( 321 +++ nnn 3
3

2
2

1
1 ,, kkk sss i

i nk ,...,3,2,1=

Collocation schemes differ in how the collocation nodes and basis functions are 

selected. In this particular study we are going to use Chebychev collocation method. This method 

is proven to be highly accurate and efficient technique for solving the functional equation 

problems in economic applications (see e.g. Judd 1988, Chapter 11). Miranda and Glauber 

(1995) and Makki, Tweeten and Miranda (1996, 2001) presents more specific example of 

employing of Chebychev collocation for solving the nonlinear rational expectations commodity 

market model.  

In collocation scheme named above the collocation nodes are the Chebychev 

collocation nodes selected so as to minimize the maximum approximation error which, in this 

case, is guaranteed to go to zero as the number of nodes increases by the property of Chebychev 

nodes (for more details on Chebychev nodes see Atkinson 1978, Chapter 4): 
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where  and  are the lower and upper bounds on the storage decisions in region i.  ismin
ismax

The second step of polynomial collocation method requires the basis functions to be 

selected so as to minimize the rounding error and computational cost associated with computing 

the coefficients  of the polynomial approximants. If Chebychev nodes are chosen at the 321 jjijb
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previous step of collocation scheme, then the Chebychev basis functions are the best choice for 

the second step. Othogonality of  Chebychev polynomials as basis functions in combinations 

with useful properties of Chebychev nodes produces stable interpolation matrix, the fact that is 

very important in case of using multidimensional approximation schemes (see Miranda 2003, 

Chapter 6 and Atkinson 1978, Chapter 4 for more details). The Chebychev polynomials are 

defined by employing the triple recursive relation: 

 ,  )()(2)( 11111
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To solve for the expected price function approximants one can use various approaches. 

Our choice is for the successive approximation algorithm suggested in Williams and Wright 

(1991) and Miranda and Glauber (1995). Both versions of its application to solution of rational 

expectations commodity market models are equivalent in general. But the design of the model 

this particular study is focused on requires the combination of certain features of those 

approaches. More specifically, we need to combine the three-period solution step described in 

Williams and Wright (1991) with the Chebychev orthogonal collocation strategy introduced in 

Miranda and Glauber (1995). 

The current form of equation (35) suggest the solution based formally on simultaneous 

computing values of parameters in two periods t and t+1: the current equilibrium storage levels 

,  and , and the current expectations on equilibrium price of future period 

. Williams and Wright (1991) suggest to use collocation nodes chosen 

for period t-1 such that the supply available initially in period t is no longer predetermined itself, 

but rather a function of predetermined variables – collocation nodes. Applying the state transition 

function (19) to the equation (35) we receive new three-period equilibrium condition to solve: 
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i∀ ,    ij ≠∀

We use Gaussian quadrature rules to replace the continuous yield distribution with an 

approximating m-point discrete distribution. The values  are assumed to the 

discrete yield variables with the associated probability weights , that are fixed 

by requiring the discrete yield distribution to possess the same first  moments as the 

original yield distribution (see Atkinson (1978, Chapter 5) and Miranda (2003, Chapter 5) for 

more details on Gaussian quadrature). 
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Below we present a pseudo code for the successive approximation algorithm (premier 

code written for Matlab presented in Appendices A and B): 

0. Initial Step: Select the degrees of approximation in each dimension ; for 

, select the storage bounds  and  and compute the Chebychev 

collocation nodes  for ; for 

in

3,2,1=i ismin
ismax

i
kis ii nk ,...,2,1,0= 3,2,1=i  and  make 

initial guess for the coefficients of the approximating polynomial ; for 

, compute the values of discrete yield distribution  and 

corresponding probability weights . 
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Procedure A: For  compute  where . 3,2,1=i i
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For  and , solve the problem 3,2,1=i ii ml ,...,3,2,1=

   i
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k wsksssp ×−=∑ ))(),,(( 321λδ

2. Update Step: Find the coefficient 321 jjijb′ , 3,2,1=i , , that solve the 

linear equation system 
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3. Convergence Step: Convergence Check: If ε<−′ 321321 jjijjjij bb  for , 

 and some convergence tolerance 

3,2,1=i

ii nj ,...,2,1,0= ε , update the coefficients by 

setting  and stop; otherwise update the coefficients and return to 

Step 1. 

321321 jjijjjij bb ←′

The successive approximation algorithm suggested above should return the function 

that optimally relates equilibrium expected prices and amounts of commodity to store. 

Calculation of storage rule is only one step ahead because the system of model equations has 

now a close form solution. To obtain this relationship, the optimizer needs to solve the equation 

(41) for  given the function  and predetermined levels of storage ,  and , defined as 

Chebychev nodes. 

i
tq iλ is 1js 2js

iiiii yaq λλ arg)(arg += ,  i∀ ,       (41) 

where . )(),,( 211 iijjiii sksss −= λδλ

 Computation of equilibrium trade decisions requires substituting the equilibrium levels 

of consumption, storage and initial supply into equation (32.2). 
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CHAPTER 4 

ISSUES ON SUCCESSIVE APPROXIMATION ALGORITHM 

 

The Step 1 of the algorithm is oriented on the solution to the system of model 

equations. In case of one region model the optimization problem at this point is characterized by 

one equation based on the intertemporal arbitrage condition. Providing that the functional 

relation between the current storage decision and the expected price is known the optimal storage 

decision can be found by solving the fixed point equation problem: 
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using fixed point function iteration or by solving the root-finding problem: 
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using the Newton or quasi-Newton methods. Both approaches are guaranteed to converge under 

quite mild assumptions on values of equation parameters. The problem solution is relatively easy 

in a technical sense. 

A multiregional case makes the problem more complicated as the planner solution has 

to satisfy the set of , where n is the number of regions, nonlinear equations rather then one 

intertemporal arbitrary condition. The optimization task can be solved by the Newton method as 

it suggested in Miranda and Glauber (1995). 

n×6

Although this approach is proved to be efficient for a two-country model, increasing the 

number of regions will inevitably cause problems in computations.
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Applying the Newton type methods in this case requires the calculation of the inverse 

of the matrix of first derivatives to get the value of iteration step. The Jacobian for this kind of 

problem should have a size of )6()6( nn ×××  elements. Assuming that the equilibrium 

conditions for the given region i typically have zero derivatives with respect to most decision 

variables of the planner from any region j, the matrix we are interested in tends to be sparse. In 

numerical sense, it means that the constructed Jacobian has zero determinant and its inverse 

results in Newton iteration step to be equal to infinity for each unknown. Computational methods 

suggest using the alternative methods with the iteration step adjusted to be bound, such as 

damped Newton iterations (Miranda and Glauber 1995). Applying those methods should solve 

the problem in most cases; however, increasing number of regions for  will cause the 

growth in total number of zero elements of Jacobian matrix, and this may result in slowing the 

speed of convergence to the solution.  

2>n

 The computational methods are very sensitive to the parameters and data they are 

working with. Inappropriate scaling of inputs will make the Jacobian singular to the working 

precision of machine computation. Even if the number of zero elements is small enough, the 

derivatives based on the value of the specified parameters of the system may happen to be too 

low due to the choice of units of data. In this case the difference between their values and zero 

are often not feasible to the machine. Although this problem has the different nature than the one 

stated above, the result is basically the same. As a possible remedy, the theory of numerical 

computations provides singular value decomposition technique that allows finding one of the 

possible solutions to the singular value problem.  

Taking into account the possible difficulties discussed above, we have chosen to utilize 

the approach described in the Chapter 3 of this study, as the most efficient combination of time 
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and efforts spent on the solution to the Step 1 available given the structure of the model of our 

particular interest. 

  According to the strategy chosen, the optimization task formulated in Step 1 of the 

current version of the algorithm requires finding the solution to the following root-finding 

problem: 
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  Apparently, the problem stated cannot be solved by Newton type methods: the 

equilibrium condition of one equation has to be solved for three unknowns. We suggest using 

derivative-free methods, such as Nelder-Mead upward simplex method (Miranda 2002), or direct 

search methods, based on the evolutionary, genetic or reinforced learning principle (Spall 2003). 

The former strategy option is preferred for its simplicity in case of a low number of regions 

included in the model and a simple form of demand function which guarantees the left-hand side 

of the equation to be a smooth and continuous function of unknown variables in each dimension. 

The latter approach is expected to be more efficient in case of highly dimensional optimization 

problem, in other words when number of regions is large. It also makes it theoretically possible 

to introduce the demand function of a flexible form.    

According to the criteria discussed above, the structure of the studied model implies 

higher comparative efficiency of following the first strategy — Nelder-Mead method. The 

version of the algorithm used in our research was designed for univariate and multivariate 

maximization problem. Since the current representation of optimization task does not guarantee 

the global maximum of the left-hand side function to be equal zero, the root-finding and 

maximization problem formulation are not equivalent in this case. Hence, to make the procedure 

utilized by Nelder-Mead algorithm appropriate for optimization problem embedded in (44), we 
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need to construct a merit function that will evaluate the model trade balance associated with the 

values of storage decisions chosen. The transformation applied to equilibrium condition of a 

form (44) results in the following maximization problem formulation: 
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It is clear, that the absolute value of the expression for material balance cannot be 

negative. Thus, the expression in brackets defined on the interval  in each dimension 

can have values in range . Apparently, the maximum of the whole function is zero, 

providing the realistic values of model parameters that guarantee the sustainability of material 

balance. In other words, some combinations of demand and supply elasticities may cause the 

system to perform an extreme behavior. In economic sense, it means that the model was 

designed not to support an assumption of closed market and thus the planner might observe a 

predetermined material misbalance. In mathematical sense, the function in brackets of (45) 

simply has a negative maximum by its specification. 

),( maxmin
ii ss
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The convergence tolerance for Nelder-Mead algorithm is by default equal to maximum 

machine precision possible. Since the algorithm computes the merit function at each step, it may 

be reasonable to use its value to set up our own convergence tolerance appropriate for the 

problem. Recall that by chosen scale of data input one unit of physical production, consumption 

or trade is equal to one billion metric tons in real terms. Hence it may be enough to have the total 

trade balance discrepancy for less than 100 tons. This amount is arbitrary, of course, and chosen 

only for example purpose. For computer accuracy it means that the algorithm should be stopped 

once the change in value of a merit function is less than . The default precision criterion is 

somewhere close to — , which corresponds to the level of misbalance measured in 

kilos or even grams. In many cases the optimizer does not need to be that precise. In the current 

710−

1210− 1410−
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study we use a tolerance level set at . It has lowered the iteration time required by Nelder-

Mead by 1/3 according to our observations. Following this logic, one may consider that this level 

of accuracy is too high for practical purposes. Indeed, it might seem to be rational to use 

810−

ε  equal 

to (hundreds of tons) or even (thousands). The achieved time decrease will be 610− 410− 2/1≈ . In 

a large dimensional or many nodes problems that require thousands of iterations any time cost 

reduction is extremely important. But one needs to be careful with these methods. Decrease in 

accuracy of results to the desired level, obtained in this manner, may turn in false convergence, 

when the optimal solution is not really a maximum we are interested in. In mathematical sense, 

the higher is the residual of (45) the wider is the interval for choice variables that in combination 

may result in the same value of merit function. In other words, the less is the discrepancy in 

material balance the more confidence we have on optimal choice.  

 Step 3 of the algorithm is oriented solely on update of collocation coefficients. It 

requires finding the solution to the system of linear equations. The seminal literature discussed in 

Chapter 2 suggests using of L-U factorization (Miranda 2002) as the most efficient method.  

Combination of all steps of the algorithm in practice reveals the main problem of 

multiple stage methods like successive approximation associated with the low speed of 

convergence and, thus, the long time required for the whole optimization problem to evolve. Let 

us denote the time cost of one iteration of the Nelder-Mead algorithm by t (time required for Step 

0 and 2 is neglected for the purpose of exposition), the number of Chebychev nodes in one 

dimension by , where i is the index of dimension, the number of Gaussian quadrature nodes  

in each dimension and the number of iterations to solve for collocation coefficients by it.  

in m

In full information models the planner need to solve only one step for the unique 

equilibrium to obtain optimal rules.  
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Found optimal levels of initial supply  and the optimal levels of storage decisions 

associated with them are then used to obtain the optimal storage rule of form: 

iq

)( ii
s

i qfs = ,          (46) i∀

As one can see time cost TFI (time required for solution for full information 

specification) for this problem is mainly induced by the procedure based on the one used in Step 

1 of the algorithm, that is: 

 )          (47) ( 321 nnntTFI =

In case of incomplete information, when the true functional relationships between the 

storage decisions and the expected prices defined by (37) are known a priori, the planner needs 

to employ multiple stage algorithms, that utilize simple idea of sequential update of equilibrium 

solution obtained by running Step 1 and collocation coefficients, that specify , found in Step 2. 

This procedure assumes time cost TII (time required for solution for incomplete information 

specification) of total: 

iλ

)())(( 321321 nnntitnnntTII +=        (48) 

 In case of stochastic problem this also requires computed expectations of prices. This 

raises time cost by the number of nodes defined in Gaussian quadrature. Then the approximate 

time TII required by the successive approximation is: 

)())(( 321321 nnntitnnnmtT +=        (49) 

One can see that under the incomplete information specification the computation will 

take approximately  times longer than if the complete information is available when the 

problem has deterministic nature. Respectively, it will take 

1+it

1)( +itm  times longer than in case of 

stochastic optimization.  
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Apparently, unlike m, n and t that are directly defined by the optimizer it is a product of 

model specification and thus is relative. Williams and Wright (1991) discuss the algorithm 

versions for two kinds of models. The first one assumes inelastic supply response. It basically 

utilizes fixed acreage levels that do not depend on storage decisions. In this case equilibrium 

obtained in Step 1 should be updated with respect to the new values of collocation coefficients 

that define new corrected function for expected prices. The algorithm is expected to perform 

steady convergence to the equilibrium form of  in the direction specified by the initial guess 

(in other words in the direction specified by whether the initial guess on collocation coefficients 

was higher or lover than their resulting values). In this case the total number of iterations it on 

equilibrium function of expected prices may be reasonably low. Our model is of the second kind, 

which assumes the reaction of supply based on the expectation of future prices. Now, 

equilibrium obtained in Step 1 should be updated to take into account not only the new 

collocation coefficients, but also the corresponding new production levels calculated in 

accordance with new prices expectation generated by the corrected . In this case, as we 

observed, the algorithm may often perform an oscillating type of convergence that in general 

requires relatively higher number of iterations it to solve the problem. As it was discussed above, 

time costs of computation grow by factor it as the problem formulation becomes more 

complicated. This means that reduction in total number of iterations is very important policy to 

optimizer. Moreover, besides the clear fact that outer cycle of the successive approximation 

algorithm indirectly generates additional massive computations by multiplication time required 

by the inner cycle and thus lowering it will lead to the extreme reduction in time consumed by 

the solution process, one may notice another valuable opportunity in this policy. The strategy of 

decreasing the number of Gaussian-Chebychev nodes, regardless of its attractiveness, always has 

iλ

iλ
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a payoff that appears in loss of accuracy. Accelerating convergence of collocation coefficients is 

not associated with accuracy of computations and can be naturally obtained by an accurate initial 

guess. In case of more complicated type of problem the theory suggests to apply the series 

convergence accelerating methods, e.g. Aitken acceleration (Small and Wang 2003). 

Solution to the successive approximation algorithm returns i expected price functions 

 of storage decision made in i regions. At this point the planner has the full information set of 

model parameters, thus the further optimization procedures concerning the solution for the 

optimal storage rule is similar to one described above in this chapter under the assumption of full 

information available a priori (recall the corresponding equations 45 – 46). The proposition on 

the separability of the policy solutions is also useful if one is only interesting in determining the 

optimal storage policy. In this case the solution to the equation 45 is sufficient and an optimizer 

does not need to conduct additional computations on optimal consumption, acreage and trade 

decision, which is an inevitable procedure in case of simultaneous solution of the whole set of 

optimal spatial and intertemporal conditions. Although for the small scale models that include 

one, two or three regions the total time required for the last step of solution that follows the 

successive approximation algorithm is not high, increasing dimensions of an optimization 

problem or some specific assumption may be associated with the far more complex 

computations. 

iλ

Given the simple Cobb-Douglas type consumer demand function (6), one can find the 

corresponding equilibrium consumption level by rearranging terms in (27): 

 ,  
iiiiii sksssc βλα ))(),,(( 321 −= i∀      (50) 

An optimal amount of commodity traded can be obtained in a straight way by 

substituting found optimal levels for ,  and  into the material balance equation for region i 

ix

is iq ic
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(2). Many applications in international commodity markets require to know the specified flows 

of commodity that is to define , which will be optimal given the structure of a model and 

constraints set to keep the system balanced. One may notice that the procedure designed to 

obtained optimal values for trade flows and thus to solve for an optimal trade policy is related to 

the dimensionality of a model in a more complex way, rather then  the other steps in solution to 

the optimization problem. Apparently, if any region i is allowed to export or to import in or from 

any number  of regions j, the total number of trade flows that may possible simultaneously 

exist in the market in any period t growth explosively as the number of regions included in the 

model increases. This is the matter of counting for all possible different combinations of trade 

schemes that theoretically can be established in the particular model as the equilibrium ones 

given the optimal set of other choice variables. Solution to the spatial optimization problem in a 

discussed type of models is basically a solution to the system of linear. The whole system must 

satisfy a general market trade balance (4). This is the necessary condition for the equilibrium to 

exist. Of course, if the model refers to an open regional market and does not include all the 

regions of a world market than the condition specified in (4) can be relaxed in variety of ways, 

e.g. introducing an external trade shocks in an “islands model” style. Each equation specifies the 

region i trade balance and is described by the following simple condition: 

ijx

1−n

∑= j
iji xx  ,  ,  i∀ ij ≠∀       (51) 

It means that the total amount traded by the region i must be equal exactly to the sum of 

the commodity trade flows exported in or imported from 1−n  possible regions j. In a 

mathematical sense regional trade balance equations create a set of  necessary conditions that 

should be solved for  unknowns that are the values of each possible trade flow. One can 

easily see that the system can be solved in theory for only the cases where . 

n

)1( −nn

2≤n
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Applying the assumption of the symmetry of trade flows decreases the number of 

unknowns in two times so that the optimizer seems to be able to solve the model, which includes 

 regions. This specification of spatial conditions assumes that there is no trade between the 

agents of homogenous types. Our version of a model does not count for transit trade.  We may 

see that in case of  regions the system of spatial conditions contains  equations for 

3≤n

n n2 )1( −nn  

unknowns. If the solution procedure utilizes only the symmetry assumption, then the actual 

system is a set of n  equations for 2/)1( −nn  unknowns. At this point the problem seems to be 

specified for  regions, so that in the matrix representation it has a full rank and thus can 

theoretically be solved.  

3≤n

The model of international commodity model presented here is designed such that no 

assumptions about trade flows rather then conventional were made. It means that the 

optimization problem can be solved in theory for any number of regions. However, it is sill not 

possible to solve for the optimal trade flows  in most cases. By the same logic as employed 

above for any number of regions  one will have more unknowns then the corresponding 

equations that describe the model. Apparently, because the trade between two exporters or two 

importers is prohibited, the only situation that assumes an existence of possible solution to this 

kind of problem is when there is either only a single exporter or a single importer. Then the 

optimal amount traded  obtained for each given region i should be counted directly as a single 

optimal trade flow from this specific region to the only one region of an opposite trading type 

acting in the market. In any other case when the model includes more then one region of each 

type, representative exporter or importer of any region i is actually indifferent in his choice of a 

counterpart, because the only criterion, which should be met is a resulting difference in prices. 

For this type of model to have a specific solution one will need to employ a certain definition of 

ijx

3>n
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consumer preferences such as Armington assumptions. Then the optimal choice of planner’s 

decisions on trade will be based on additional parameters specifying the system of model 

equations.  
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CHAPTER 5 

RESULTS, SUMMARY AND CONCLUSIONS 

 

In accordance with the third objective and as the logical step to complete the research 

we have performed an experiment to obtain an approximate solution to a multiple region model 

using the framework developed in Chapters 3 and 4 of this study. Since the current thesis is not 

concentrated on a study of the specific effects of economic policies, our main objective was to 

test the whole concept discussed above in general, that is to find a possible solution given real 

world data and check if the results can provide us with information in favor or against the 

assumptions made in the theoretical developments for this research.  

 

5.1. Data 

As an application for the experiment the world cotton market was chosen.  We have 

used annual data from 1972 to 2003. All data were obtained from the USDA Economic Research 

Service and Foreign Agricultural Service Database.  

The main source was the statistical data from Cotton and Wool Yearbook 

<http://www.ers.usda.gov/publications/so/view.asp?f=field/cws-bby/>.  

We also used miscellaneous issues of Cotton and Wool outlook published by USDA 

ERS. The latest report is available at USDA 

<http://www.ers.usda.gov/publications/so/view.asp?f=field/cws-bb/2004>.
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Additional information on missing quantities and prices were found in 1996 to 2004 

Cotton: World Markets and Trade reports <http://www.fas.usda.gov/cotton_arc.html>.    

 

5.2. Market outlook and model calibration 

We have chosen three regions to be United States (US), Republic of China (CH), and 

all other countries are aggregated in the Rest of the World (ROW).  

The data were scaled so that one unit of physical values corresponds to one billion 

metric tons of cotton and one unit of monetary value is equivalent to one dollar per metric ton of 

cotton. 

Since we require only an approximate solution, the parameters of supply and demand 

equations were calibrated to fit the historically observed data and are represented in Table (5.1). 

 

Table 5.1. Calibrated model parameters of supply and demand equations 

Parameter US CH ROW 

Constant term of demand function (α ) 62.16271 113.73892 1004.69964

Price elasticity of demand ( β ) -0.48 -0.53 -0.59

Constant term of supply function (γ ) 1.17924 0.46485 1.62920

Price elasticity of supply (η ) 0.20 0.30 0.35

   

For simplicity the discount rate is specified to be conventional 0.95 for all three 

regions. To create more precise measure for the agents’ time preferences one may discount the 

conventional rate for the taxation level as suggested in Makki, Tweeten and Miranda (1996).    

 41



We set the following minimum and maximum values for storage decisions based on the 

historically observed levels of carryover (Table 5.2). 

 

Table 5.2. The minimum and maximum levels of carryover 

Bounds US CH ROW 

 --------------Billion metric tons-------------- 

mins  0.5 1.0 2.9 

maxs  2.1 5.5 6.2 

 

 

Providing the established bounds we have chosen six Chebychev nodes in each 

dimension as a reasonable combination of time required for computation and solution accuracy.  

The stochastic component of the problem is modeled by selecting four Gaussian 

quadrature nodes in each dimension. We have assumed that the cotton yields follow the 

lognormal distributions that are characterized by the first two moments shown below: 

  

Table 5.3. Mean and variance of cotton yield distributions  

Parameter US CH ROW 

Mean 6.5947 6.8332 6.3704

Variance 0.00025 0.00025 0.00025
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The initial guess for the collocation coefficients were found in the following manner. 

First, we utilized the simple curve fitting technique to estimate the relationship between the 

current price level and the beginning stocks observed. Obtained coefficients for the 4-th degree 

polynomial regression were used to fit the specified Chebychev nodes and generate approximate 

corresponding prices. Pre-multiplying the vector of estimated prices by the inverse of collocation 

matrix of Chebychev basis functions evaluated at the specified levels of carryover resulted in a 

vector of coefficients that we are interested in. This vector was basically used as an initial guess. 

In other words, we perform Step 3 of the algorithm, using an estimated price level. A similar 

approach is suggested in Williams and Wright (1991). Although this approach is not best in 

terms of the quality of approximation due to the simplicity of the regression technique chosen, 

the experiment does not require an optimal performance of the algorithm.  

 

5.3. Results 

Using the successive approximation algorithm presented in the Chapter 3, the three 

region model designed in this study was solved on 2.80 GHz Pentium® 4 Dell Personal 

computer using the Mathworks Matlab 6.5 programming environment. To implement the Nelder-

Mead algorithm and Gaussian and Chebychev nodes, and Chebychev basis functions we utilize 

routines written by Miranda and Fackler (1999). Solving the model took approximately 5 hours.  

 The successive approximation algorithm was actually stopped after performing twelve 

iterations. Although the convergence criteria was not meet in general the difference between the 

results of iterations decreased to a reasonably low level. The analysis of collocation coefficients 

obtained for the last three iterations has shown that most of them stabilized. However, we 
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observed several extreme values that may be explained by the algorithm hitting the lower bound 

set as a constraint on the storage decisions set in the experiment: 

 

Figure 5.1. Computed collocation coefficients for the equilibrium expected price function (US) 

for six ROW stock scenarios* 

*Horizontal axes represent US and CH storage levels. ROW stocks are fixed at the six possible 

levels starting from lower bound to the upper bound level.  

 

 The theory of numerical analysis relates this effect to the special property of 

Chebychev polynomials to produce relatively higher errors in the ends of the interval of 

interpolation, as discussed before. The simplified version of the algorithm used to conduct the 
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experiment utilizes linear cost functions, hence the certain disturbances in the computed vector 

of coefficients are predetermined. One can observe that with the increase in ROW stock level the 

variation of coefficients decreases starting from about 100 in the first and second cases 

(coefficient with a 1000 level in the first case corresponds to the intercept and thus not taken into 

account) to 0.5 in the latter case. As approaching the upper bound of storage decisions the 

collocation coefficients stabilize.  

The model assumes elastic supply response for all three regions. As it was expected the 

algorithm performs a kind of oscillating convergence — at each iteration, the resulting function 

of expected prices updates both general level of future price response on carryover and the 

curvature of the function itself to count for the acreage decisions in all three regions. 
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Figure 5.2. Iterated equilibrium expected price function for US* 

*Carryover level is fixed at 2.6677 billion metric tons for China and 6.1438 billion metric tons 

for the Rest of the World  
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Nevertheless, the last seven iterations of the expected price function for US described 

by Figure 5.2 tend to stabilize the search for the equilibrium in an interval from $900 to $1100 

per metric ton. Hence, both effects of disturbances in values of collocation coefficients and 

oscillating convergence may theoretically evolve if the constraints are set properly and the 

number of iterations run is relatively high.  
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Figure 5.3. Equilibrium expected price function for US* 

*Carryover of cotton for China is fixed at the levels specified in legend to the diagram (in billion 

metric tons). 

 

The resulting function of expected prices and stock levels describes the stable negative 

relationship predicted by the theory. However, it can be observed that the low levels of stocks 

correspond to a higher nonlinear relationship between the carryover of cotton and future prices. 

Despite this fact, Figure 5.3 represents the monotonic negative response of the US price 

expectations to the increase in storage levels in the third region. This important observation 

justifies the general statement the regional models should count for international effects to 

produce unbiased results.   
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One of the most essential developments of our approach was decreasing number of 

conditions that should be solved for simultaneously. According to the theory discussed in 

Chapter 3, the solution for the equilibrium storage, trade and consumption decisions may be 

obtained separately. The results presented above do not prove this to be fact by themselves. To 

check whether our assumptions are supported by the experiment we have computed the 

difference between the vectors of equilibrium expected prices obtained from the last twelve 

iterations. It was found that this difference is never more than a few cents per unit traded (except 

for some extreme case associated with the disturbances in collocation coefficients values 

discussed before). The steady difference was equal to 67.55 – 67.58 dollars per one billion metric 

tons of cotton that is traded between the US and China, and 72.42 – 72.43 dollars per one billion 

metric tons of cotton that is traded between the China and the Rest of the world. The marginal 

transportation costs between US and the Rest of the World were 139 – 140 dollars. Taking into 

account that the computation of each specific combination of expected prices is independent of 

any other, obtained results on differences in prices may be concluded to support the main 

assumption on separability of optimal conditions.   

  

5.4. Summary and Conclusions 

The theory underlying the model developed in this research suggests that the agents 

acting in the market are rational in their decisions and thus the future price behavior may be 

explained as a reaction to the aggregate current activity of the consumers and suppliers. 

Economics of commodity markets argues that the optimal planner’s decision is equivalent to the 

one that is an equilibrium result of competitive market activity of the agents. Based on the 

planner optimization problem as a maximizing of the social welfare of agents active in the 
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international market, the theoretical model generates the set of optimal conditions required to be 

satisfied. A combination of these conditions and the material balances arising in the international 

environment allowed the author to modify the solution strategy suggested earlier in the works of 

Williams and Wright (1991) and Miranda and Glauber (1995). The resulting algorithm does not 

require the direct specification of the trade orientation of regions and thus may be theoretically 

applied for solution of a model designed for any number of regions. 

An empirical part of the study was oriented to a three region international cotton market 

model. An approximate solution obtained in the experiment supports in general the main 

statements made in theoretical developments. The resulting expected price functions describe a 

negative nonlinear relationship between the price expectations and the storage decisions made. 

As expected, the model assumes the monotonic negative response of home price expectations to 

the current storage levels available in foreign regions. This finding makes clear that it is 

important for models that study local markets to account for international effects. In context of 

the current research this suggests more emphasis be placed on the commodity traded. In a 

broader sense there may be the need to introduce exchange rates, international trade regulations, 

etc. This model also supports the suggested separability of the solution for optimal policies, as 

the differences in international prices were observed to be stable for all the possible 

combinations of storage decisions. The theory of international commodity markets predicts that 

price stabilization may be obtained for less cost if the international trade is allowed. The results 

of experiment also support the idea of an existence of a direct constraint for international price 

variation — generated spatial conditions assume that the difference between the prices observed 

in different regions should not exceed the unit transportation cost of commodity.  
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Although the current study does not include advanced policy analysis, the developed 

approach to a solution of this type of model is very flexible and leaves a lot of space for 

extensions such as government support to farmers, export subsidies, endogenous market 

protections, multilateral trade agreements, etc. However the nature of the algorithm makes it a 

subject of the “curse of dimensionality” and the linear convergence that is the typical feature of 

the multiple stage procedures. Both factors increase time required for computation. As a result, 

despite that the whole strategy is expected to generate growth in efficiency in general, this 

computational procedure will fail to be of benefit in large scale problems. This seems to be the 

main limitation of this approach. The other problem that arises in application is an extreme 

sensitivity to the changes of parameters. It makes the algorithm extremely difficult to implement 

when dealing with incomplete information. Our study has achieved the current objective, but the 

experience of empirical experiment requires for cardinal improvement in solution procedures to 

make them work at the maximum potential in a complicated model environment. That is an 

important goal for the future research.  

  

 49



REFERENCES 
 
 

Atkinson, K.E. “An Introduction to Numerical Analysis.” First Edition, John Wiley & Sons, Inc., 
1978. 
 

Bellman, R.E. “Dynamic Programming.” Princeton University Press, 1957. 
 

Bertsekas, Dimitri P. “Dynamic programming.” Prentice-Hall, Inc., 1987. 
 
Brennan, M.J. “The Supply of Storage” American Economic Review 47 (1958): 50-72 
 
Carter, C.C. and C.L.Revoredo. “The Interaction of Commodity Working Stocks and Speculative 

Stocks.” Mimeo, Department of Agricultural and Resource Economics, University of 
California, Davis, 2000. 

 
Deaton, A. and G.Laroque. “Competitive Storage and Commodity Price Dynamics.” The Journal 

of Political Economy 104(5) (1996): 896-923. 
 
Deaton, A. and G.Laroque. “Estimating a Nonlinear Rational Expectations Commodity Price 

Model with Unobservable State Variables.” Journal of Applied Econometrics 10 
(1995), S9-S40. 

 
Deaton, A. and G.Laroque. “On the Behavior of Commodity Prices.” The Review of Economic 

Studies 59(1) (1992): 1-23. 
 
Gardner, B.L. “Optimal Stockpilling of Grain.” Lexington Books, 1979. 
 
Gustafson R.L. “Carryover Levels For Grains. A Method for Determining Amounts that Are 

Optimal under Specified Conditions.” US Department of Agriculture Technical Bulletin 
1178, 1958.Judd, K.L. “Numerical Methods in Economics.” The MIT Press, 1998. 

 
Lowry, M., J.Glauber, M.Miranda and P.Helmberger. “Pricing and Storage of Field Crops: A 

Quarterly Model Applied to Soybeans.” American Journal of Agricultural Economics 
69 (1987): 740-749. 

 
Makki, S.S., L.G.Tweeten and M.J.Miranda. “Wheat Storage and Trade in an Efficient Global 

Market.” American Journal of Agricultural Economics 78(4) (1996): 879-890.

 50



 
Michaelides, A. and S. Ng. “Estimating the Rational Expectations Model of Speculative Storage: 

A Monte Carlo comparison of Three Simulation Estimators.” Journal of Econometrics 
96 (2000): 231-266. 

 
Miranda, M.J. “Numerical Strategies for Solving the Nonlinear Rational Expectations 

Commodity Market Model.” Computational Economics 11 (1998): 71-87. 
 
Miranda, M.J. and J.W.Glauber. “Solving Stochastic Models of Competitive Storage and Trade 

by Chebychev Collocation Method.” Agricultural and Resource Economics Review 
24(1) (1995): 70-77 

 
Miranda, M.J. and J.W.Glauber. “Estimation of dynamic nonlinear rational expectations models 

of primary commodity markets with private and government stockholding.” Review of 
Economics and Statistics 75 (1993): 463-470. 

 
Miranda, M.J. and P.G.Helmberger. “The effects of commodity price stabilization programs. 

American Economic Review 78 (1988): 46-58. 
 
Miranda, M.J. and P.L.Fackler. “Applied Computational Economics and Finance.” The MIT 

Press, 2002. 
 
Miranda, M.J. and P.L.Fackler. “Applied Computational Methods—MATLAB Toolbox.” 

MATLAB programs. Online. The Ohio State University and North Carolina State 
University. Available at http://www-agecon.ag.ohio-state.edu/ae802/matlab.htm. 
February 1999. 

 
Muth, J.F. “Rational Expectations and the Theory of Price Movements.” Econometrica 29 

(1961): 315-35. 
 
Newbery, D.M.G. and J.E.Stiglitz. “Optimal Commodity Stock-Pilling Rules.” Oxford Economic 

Papers, New Series 84(3) (1982): 403-427. 
 
Newbery, D.M.G. and J.E.Stiglitz. “The Theory of Commodity Price Stabilization.” Oxford 

University Press, 1981 
 
Ng, S. “Looking for Evidence of Speculative Stockholding in Commodity Markets.” Journal of 

Economic Dynamics and Control 20 (1996): 123-143. 
 
Ng, S. and F.J.Ruge-Murcia. “Explaining the Persistence of Commodity Prices.” Computational 

Economics 16 (2000): 149-171. 
 
Peterson, H.H. and W.G.Tomek. “Commodity Price Behavior: A Rational Expectations Storage 

Model of Corn.” Working Paper No.2000-17, Department of Agricultural, Resource, 
and Managerial Economics, Cornell University. 

 

 51



Peterson, H.H. and W.G.Tomek. “How Much of Commodity Price Behavior Can a Rational 
Expectations Storage Model Explain?” Staff Paper No. 04-04, Department of 
Agricultural Economics, Kansas State University. 

 
Rui, X. and M.J.Miranda. “Solving Nonlinear Dynamic Games via Orthogonal Collocation: an 

Application to International Commodity Markets.” Annals of Operations Research 68 
(1996): 89-108. 

 
Small, C. G. and J.Wang. ”Numerical Methods for Nonlinear Estimating Equations.” Oxford 

University Press, Inc., 2003. 
 
Spall, J.C. “Intoduction to Stochastic Search and Optimization: Estimation, Simulation and 

Control.” John Wiley & Sons, Inc., 2003. 
 
U.S. Department of Agriculture (USDA). “Cotton and Wool Outlook”, Economic Research 

Service, various months. 
 
U.S. Department of Agriculture (USDA). “Cotton and Wool Yearbook”, Economic Research 

Service, various years. 
 
U.S. Department of Agriculture (USDA). “Cotton: World Markets and Trade”, Foreign 

Agricultural Service, various months. 
 
Williams, J.C. and B.D.Wright, “Storage and Commodity Markets.” Cambridge University 

Press, 1991. 
 
 

 52



APPENDICES 

 

A. Main module (themodel6) 

% The model 
 
clc; 
clear;  
close all; 
 
load Data; 
 
n = 6; 
fspace = fundefn('cheb',[n n n],[0 0 0],[3000 6000 7000]); 
G = funnode(fspace); 
S = gridmake(G); 
F = funbas(fspace,S); 
 
[e1,w1] = qnwlogn(4,6.5947,0.00025); 
[e2,w2] = qnwlogn(4,6.8332,0.00025); 
[e3,w3] = qnwlogn(4,6.3704,0.00025); 
 
load prices; 
 
P = Xp; 
 
c = F\Xp; 
 
delta  = [0.95   0.95  0.95];     % time preference parameter (discount rate) 
 
input = [1000,1300,3000]';   
for it = 1:7; 
     
    a(:,1) = 0.08*P(:,1).^0.55; 
    a(:,2) = 0.15*P(:,2).^0.50; 
    a(:,3) = 2.55*P(:,3).^0.30; 
     
    in = [1;2;3]; 
        
    for i = 1:16; 
         
        optset('syseq6','c',c); 
     
        Y1 = a(i,1)*e1; 
        Y2 = a(i,2)*e2; 
        Y3 = a(i,3)*e3; 
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        A1 = Y1 + S(i,1); 
        A2 = Y2 + S(i,2); 
        A3 = Y3 + S(i,3); 
     
        optset('syseq6','fspace',fspace); 
        optset('syseq6','n',n); 
         
            P1 = zeros(1,4); 
            P2 = zeros(1,4); 
            P3 = zeros(1,4); 
     
        for j = 1:4; 
            T1 = A1(j)/1000; 
            T2 = A2(j)/1000; 
            T3 = A3(j)/1000; 
            optset('syseq6','c',c); 
            optset('syseq6','fspace',fspace); 
            optset('syseq6','T1',T1); 
            optset('syseq6','T2',T2); 
            optset('syseq6','T3',T3); 
            optset('syseq6','i',i); 
            optset('syseq6','j',j); 
            optset('neldmead','tol',0.0001); 
            es = neldmead('syseq6',in); 
            in = es; 
            E(i,1:3)=es'; 
            S1(j) = es(1); 
            S2(j) = es(2); 
            S3(j) = es(3); 
            p = funeval(c,fspace,[S1(j)*1000 S2(j)*1000 S3(j)*1000]); 
            P1(j) = p(1); 
            P2(j) = p(2); 
            P3(j) = p(3); 
            K1(j) = 50; 
            K2(j) = 50; 
            K3(j) = 50; 
        end; 
        P1 = delta(1)*P1'-K1'; 
        P2 = delta(2)*P2'-K2'; 
        P3 = delta(3)*P3'-K3'; 
        EP(i,1) = P1'*w1; 
        EP(i,2) = P2'*w2; 
        EP(i,3) = P3'*w3; 
    end; 
    cold = c; 
    P = EP; 
    c = F\P; 
    if norm(c-cold)<0.001,break,end; 
end; 
disp('Final iteration'); 
disp(it); 
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B. Sub-routine (syseq6) 
 
function [y] = syseq6(in); 
 
delta  = [0.95   0.95  0.95];     % time preference parameter (discount rate) 
tau    = [40   100  140];         % transportation cost per unit 
beta   = [-2.1 -1.9 -1.7]; 
alpha  = [6000 8000 90000]; 
k      = [100    95   93];        % cost of storage per unit  
 
clc; 
 
           c = optget('syseq6','c',1); 
           fspace = optget('syseq6','fspace',1); 
           T1= optget('syseq6','T1',1); 
           T2= optget('syseq6','T2',1); 
           T3= optget('syseq6','T3',1); 
           i = optget('syseq6','i',1); 
           j = optget('syseq6','j',1); 
            
k(1) = 100; 
k(2) = 100; 
k(3) = 100; 
 
p = funeval(c,fspace,[in(1)*1000 in(2)*1000 in(3)*1000]); 
d1 = ((delta(1)*p(1)-k(1))/alpha(1)).^(1/beta(1)); 
d2 = ((delta(2)*p(2)-k(2))/alpha(2)).^(1/beta(2)); 
d3 = ((delta(3)*p(3)-k(3))/alpha(3)).^(1/beta(3)); 
 
fprintf(1,'Iteration %2.0f.%2.0f\n',i,j); 
 
fprintf(1,'US consumption is          %6.4f mln tonns\n',d1); 
fprintf(1,'China consumption is       %6.4f mln tonns\n',d2); 
fprintf(1,'ROW consumption is         %6.4f mln tonns\n',d3); 
 
fprintf(1,'US    exports - imports is %6.4f mln tonns\n',T1-d1-in(1)); 
fprintf(1,'China exports - imports is %6.4f mln tonns\n',T2-d2-in(2)); 
fprintf(1,'ROW   exports - imports is %6.4f mln tonns\n',T3-d3-in(3)); 
 
y = -abs(T1+T2+T3-in(1)-in(2)-in(3)-d1-d2-d3); 
if abs(y)<0.000000001 
    y=0; 
end; 
 
fprintf(1,'The merit function is %16.14f \n',y); 
 
disp('Equilibrium storage'); 
disp(in); 
 
 
return; 
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