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ABSTRACT 

Availability of high-density (HD) marker panels provides an opportunity to 

improve the accuracy of genomic selection (GS). Unfortunately, using HD panels 

resulted in no significant increase in the accuracy of GS. This lack of improvement in 

accuracy is more likely due to the limitations of current GS methods rather than the 

uselessness of HD data. Increasing variants in association models caused a reduction in 

statistical power. Increase in the number of genotyped animals complicated the inversion 

of the genomic relationship matrix. Thus, reducing the number of variants and 

eliminating the inversion of genomic relationship matrix are required for the full benefit 

from HD marker data. We proposed fixation index (FST) to prioritize SNPs for GS. To 

validate the usefulness of FST, a trait with heritability of 0.4 under different SNP densities 

was simulated. Prioritized top 2.5% markers were able to tag most significant QTL and to 

increase functional genomic similarity. The latter could be used as a decision-making or 

selection tool. In spite of being able to prioritize markers in linkage disequilibrium with 

relevant QTL, the latter explained only a portion of the genetic variance. This is the case 

because small effects QTL are often not tagged with the prioritized SNPs. These small 



 

effect QTL could be tracked, however, by a polygenic component. Thus, a hybrid model 

was proposed that included the prioritized SNPs and a polygenic component in the 

association model. The proposed approach was evaluated based on simulated data of a 

trait with heritability of 0.1 and 0.4 and a real data of weaning weight in beef cattle. 

Using only genotyped animals, the hybrid model outperformed BayesB, BayesC and 

GBLUP when the prioritized 2.5% SNPs were used in the association model. The hybrid 

model was extended to accommodate non-genotyped animals. It outperformed ssGBLUP 

method using simulated data under both heritability scenarios. Although the results of the 

evaluation are likely to depend on the data generating process including the genetic 

complexity of the trait, the hybrid model seemed to be competitive compared to current 

methods. Furthermore, its computational costs in terms of CPU time and peak memory 

are limited.  
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CHAPTER 1 

INTRODUCTION 

Availability of high-density (HD) SNP marker panels and sequence data was 

expected to substantially improve the power of genome wide association studies (GWAS) 

and the accuracy of genomic selection (GS). Unfortunately, that was not the case. 

Together with the significant increase in the number of genotyped animals, sequence and 

HD panel data have created major challenges for the implementation of GWAS and GS. 

Lack of power due to sample size, high collinearity between markers, small effects of 

most quantitative trait loci (QTL), complex LD structures, and low minor allele 

frequencies has led to a significant reduction of statistical power of linear regression 

based approaches for implementation of GWAS and GS. Bayesian variable selection 

methods (e.g. BayesB and BayesR) rely on the magnitude of the marker effects to 

prioritize variants. Consequently, their efficiency decays with the increase of the number 

of genotyped markers as the effects of linked QTL (often small) are distributed across an 

increasing number of markers. Using external biological information (e.g. BayesRC) is 

an attractive approach to prioritize markers. Unfortunately, such external complementary 

biological information is limited and often is tissue or/and time specific. Furthermore, 

such data (e.g., gene expression) have a high noise-to-signal ratio. As a result, these 

methods did not increase accuracy in the presence of HD or sequence data. In spite of the 

increase in the number of genotyped animals, the majority of animals included in any 

genetic evaluation are not genotyped. Accommodating these animals in a genomic 



2 

 

evaluation is practically impossible using linear regression methods. For mixed linear 

model based approaches, the increase in the number of variants does not present a major 

challenge at least from a computational perspective. However, the increase in the number 

of genotyped animals will make the direct inversion of genomic relationship matrix 

impossible. Approximating the inverse is a data driven process and, thus, its optimality or 

even adequacy is not guaranteed. A potential practical solution could be through the 

substantial reduction in the number of markers in the association model, eliminating the 

need to impute missing genotypes for non-genotyped animals, and the avoidance of the 

construction and inversion of the genomic relationship matrix. The purpose of this 

dissertation work is to tackle these major challenges with the following specific 

objectives 1) To evaluate the adequacy of FST, a measure of genetic differentiation, as an 

external and already available source of information to prioritize SNPs and to assess the 

genomic similarity between individuals based on the prioritized SNPs 2) to develop an 

alternative hybrid model to implement GS using prioritized SNPs and to evaluate its 

effectiveness compared to existing method using only genotyped animals 3) to extend the 

hybrid model to accommodate non-genotyped animals. To reach these objectives, several 

data sets were simulated under varying conditions and assumptions about the data 

generating process.   
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CHAPTER 2 

LITERATURE REVIEW 

Quantitative genetics, infinitesimal model and genomic selection  

Quantitative genetics, or the genetics of complex traits, is the study of traits in 

which multiple influential genes and non-genetic factors jointly contribute to determine 

their distribution (Hill, 2010). The machinery of quantitative genetics has been 

successfully applied in varied research areas ranging from human genetics, to animal and 

plant breeding. Although the broad purpose of these disciplines is to determine how 

genetic and environmental factors contribute to the variance of experimental trait in a 

population, their specific purposes are different. Human geneticists are interested in 

designing association models to identify influential loci that correlate with human 

diseases. The main interest of evolutionary geneticists is in the dissection of the genetic 

architecture of traits to decipher their past and future evolutionary changes. For animal 

and plant breeders, the main interest is the identification of genetically superior 

individuals to be used as parents of the next generation with the ultimate goal of steady 

increase in selection response (Walsh, 2001).   

The principles and theory of quantitative genetics were developed in the 1940s for 

plant and animal breeding (Hill, 2014). As quantitative genetics theory expanded, the 

genetic analysis of complex traits required sophisticated statistical and computing 

methods in terms of estimating quantities such as genetic variances, and heritability and 
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breeding values (Falconer and Mackay, 1995; Lynch and Walsh, 1998). The critical 

requirement for quantitative genetics analyses in animal and plant breeding applications 

is the availability of accurate information about the relatedness among individuals (i.e., 

pedigree relationships). Within the framework of the classical mixed linear model, the 

pedigree relationships are the major tool for predicting the genetic merit or breeding 

value of candidates for selection. In spite of the simple assumption about the genetic 

mechanisms underlying quantitative traits in the classical animal model (many loci of 

individually small effects), spectacular selection response was achieved (Hill, 2010; 

Nelson et al., 2013). 

With the rapid advances in genomics and the availability of high throughput data, 

the emphasis of quantitative genetics shifted towards mapping quantitative trait loci 

(QTL). Due to decreases in the cost of genotyping, mapping QTL was followed by 

genome-wide association studies (GWAS) aiming to identify markers associated with 

phenotypic variation (Hill, 2012; Gienapp et al., 2017; Visscher et al., 2017). The 

statistical power of GWAS to detect QTL has been a main concern for geneticists. This 

power is typically influenced by the effect of QTL as well as the sample size and the 

strength of the linkage disequilibrium (LD). Furthermore, errors in phenotyping and 

genotyping will also reduce the power of GWAS (Spencer et al., 2009; Wu and Zhao, 

2009; Hill, 2012; Manchia et al., 2013). Thus, GWAS will greatly benefit from the  

increase in the sample size, the increase in the number of SNPs in the panel, and the 

ability to replicate significant associations in independent samples of animals (Goddard 

and Hayes, 2009).  
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Although extensive GWAS studies to identify the contributing QTL were carried 

out for complex traits, most of the genetic variance was unexplained by the significant 

SNPs (genome-wide significance). The simplest explanation is that quantitative traits are 

under the influence of a large number of QTL with small effects (Yang et al., 2010; Yang 

et al., 2011). Using over a half million SNPs (580K), Yang et al. (2010) were able to 

explain only 45% of the genetic variation in human height. The inability to estimate the 

majority of the genetic variance is likely to be due to the absence of major QTL or the 

insufficient LD of QTL with the genotyped SNPs. Similar results were observed using 

body mass index (Yang et al., 2011) and schizophrenia (Purcell et al., 2009). Even 

though whole genome prediction methods are promising approaches for prediction of 

complex traits, the improvement of prediction accuracy of unrelated individuals is largely 

depending on the number of closely related individuals in the studied population.  

In spite of the different attempts in the field of animal breeding and genetics to 

use GWAS to identify QTLs and chromosomal segments influencing traits of economic 

interest in livestock, only limited success was achieved as identified variants explained 

only a minute portion of the total genetic variance (Hayes and Goddard, 2010; Sharma et 

al., 2015). Thus, using marker assisted selection (MAS) as a tool for genetic 

improvement will at best have only a limited success.  

A different approach also known as genomic selection (GS) was introduced by 

Meuwissen and Goddard (2001) and consisted in using all the markers simultaneously to 

predict the breeding values. GS has two main advantageous over MAS. First, the majority 

of the genetic variance can be tracked by the large number of markers in the panel 

regardless of statistical significance. Second, there is no need for estimating individual 
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QTL effects, a step that is often associated with large uncertainty and bias. Therefore, GS 

has quickly become the method of choice for genetic improvement of complex traits by 

passing decades of attempts of using MAS (Hayes and Goddard, 2010; Bhat et al., 2016). 

To implement GS, a reference population with both genotyped and phenotyped 

individuals is required. Based on the assumed model, prediction equations will be 

developed. Estimates of the prediction equation using the reference population will be 

used to calculate genomic breeding value (GEBV) for selection candidates.  

From the advent of GS in the field of animal breeding, two main statistical 

approaches formed the foundation of genomic prediction. These two models can be 

broadly categorized into multiple regression model and mixed linear models (Zhang et 

al., 2011; Garrick et al., 2014). In case of regression models for genomic prediction, two 

steps are required to estimate GEBV of a genotyped candidate to selection. In the first 

step, the SNP effects of SNPs in the panel are estimated based on the genotyped and 

phenotyped reference population. In the second step, the GEBV of genotyped individuals 

in the validation population are calculated as the sum of the product between the 

estimated SNP effects and their associated genotyped. Based on regression approach GS, 

different prediction models have been developed to estimate SNP effects. These methods 

include ridge regression BLUP, Bayesian variable selection (e.g., BayesA, B, C) and 

Bayesian LASSO (Meuwissen and Goddard, 2001; Friedman et al., 2010; Habier et al., 

2010; Li and Sillanpaa, 2012). The major difference between the different regression 

methods for GS resides on the assumption about the distribution of the marker effects. 

Besides regression model, an alternative approach routinely used for genomic prediction 
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is based on mixed linear model, which is also known as the BLUP procedure. The main 

advantage of the BLUP approach in genomic applications is the ability to make use all 

the relatives in the prediction of GEBVs through the genomic relationship matrix (GRM). 

The method of using GRM in BLUP procedure was introduced by Vanraden and Tooker 

(2007) and Habier et al. (2007) which was known as genomic-BLUP (GBLUP). 

Compared to regression models, GBLUP has several advantages: 1) computationally 

more efficient when the number of SNPs is much larger that the number of genotyped 

individuals reducing, thus, the dimensionality of the system of equations to be solved, 2) 

flexibility of adding non-genotyped animals in MME via pedigree relationships 3) 

predicting the GEBV of animals like traditional BLUP (VanRaden, 2008; Stranden and 

Garrick, 2009), 4) straightforward scaling for multivariate analyses. 

Misztal et al. (2009) introduced a unified approach for GS called single-step 

genomic selection which eliminated the need to estimate directly the SNP marker effects. 

The single-step approach is an extension of the classical mixed linear by replacing the 

average additive relationship matrix (A) with the realized relationship matrix (G) or a 

blend of both in presence of non-genotyped animals as described by Legarra et al. (2009). 

The single-step approach has several advantages including the use of observed 

phenotypes, a straightforward accommodation of non-genotyped animals and multiple 

traits. However, it faces the challenge of inverting a very dense matrix which dimensions 

increase with the number of genotyped animals. Although some approximations were 

presented for the inversion of the genomic relationship matrix, they are data driven 

approaches where the optimality of their performance is not guaranteed.  
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Accuracy of genomic selection 

Independently of the method used to implement GS, accuracy of estimated 

GEBVs seems to higher breeding values estimated based on genomic information. This is 

due to a better modelling of the Mendelian sampling, the removal of pedigree errors and 

the identification of unreported relationships. Additionally, the expected accuracy of 

genomic selection depends on the heritability of the trait and the effective size of the 

population. In fact, the expected prediction accuracy can be calculated using the 

following formula (Daetwyler et al., 2010) 

𝑟 = √
ℎ2

ℎ2 +
𝑀𝑒

𝑁𝑝

 

where ℎ2 is the heritability of the trait, 𝑁𝑝 is the number individuals in training 

population, and 𝑀𝑒 is the number of independent chromosomal segments. The latter is a 

function of the effective population size and genome length (Goddard, 2009).  

Accuracy of GEBVs is a crucial parameter for the successful implementation of 

GS and it is under the influence of several factors that could be clustered into “inflexible” 

and “flexible” factors. The former includes the length of genome, the effective size of the 

population, and the genetic architecture of trait (heritability, number of QTL). The latter 

includes the size and structure of training population, the density of marker panel, and 

prediction model used to estimate GEBV. 

Even though the factors influencing the accuracy of GEBV are intrinsically 

interrelated, the increase in the size of the training population has more influence on 
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accuracy of GEBVs than the other factors. The design and structure of the training 

population and its relatedness with validation set is crucial to maintain a high level of 

accuracy. Schulz-Streeck et al. (2012) shown that combining related individuals from 

different groups in the training population improved the predictive ability. Furthermore, 

studies in maize breeding population revealed including half-sibs from both parents in the 

training population rather than allocating large number of individuals arbitrarily increased 

the prediction accuracy (Riedelsheimer et al., 2013; Jacobson et al., 2014). The 

importance of increasing the size of the training population, especially for low-

heritability traits, could be found in Hayes et al. (2009). The density of the marker panel 

is another factor that could affect the accuracy of GEBVs. Increase in marker density 

often results in an increase in LD between the markers on QTL which likely to lead to 

higher accuracy. Although using denser marker panels in several studies led to increase in 

accuracy (Calus et al., 2008; Solberg et al., 2008; Meuwissen, 2009), such accuracy will 

not persist across generations of selection. Basically, increasing the distance (number of 

generations) between the training and validation populations appears to decrease the 

accuracy. The key reason of this reduction of GEBV accuracy is due to change of LD 

structure between the markers and QTLs which could be mainly related to recombination 

and selection across generations. However, the threshold for marker density to reach 

optimum accuracy is itself variable and depends of several factors. For example, using 

marker density of roughly 160K for human height rapidly increased the prediction 

accuracy; however accuracy reached a plateau at a density of around  400K SNP markers 

(Makowsky et al., 2011). In a simulation study, Meuwissen (2009) reported that the 

prediction accuracy of unrelated individuals depends on the number of SNPs and training 
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records. The minimum number of SNPs and training records required for unrelated 

individuals to obtain an accuracy of 0.88 – 0.93 are 10 × 𝑁𝑒 × 𝐿 and 2 × 𝑁𝑒 × 𝐿, 

respectively, where 𝑁𝑒 and 𝐿 are the effective population size and genome size in 

Morgan. However, for livestock populations, increasing the number of training records 

rather than increasing SNP density affected more on prediction accuracy, because of the 

relatedness structure in livestock compared to human populations. 

From inflexible factors affecting GEBV accuracy, the genetic architecture of the 

trait including the heritability and the number of QTLs critically affect the accuracy of 

GS. Based on several studies high and low heritability traits (Daetwyler et al., 2008; 

Ornella et al., 2012; Zhao et al., 2013; Howard et al., 2014; Xu et al., 2014) there is a 

clear and consistent relationship between heritability and accuracy indicating an improve 

in accuracy with the increase heritability. Only few studies have deviated from this trend 

(Heffner et al., 2011; Liu et al., 2017). Although different GS models were implemented 

with distinct algorithms, the prediction accuracies achieved by those models are 

depended on the number of QTL underlying the genetic basis of the trait. According to 

Zhong et al. (2009) and Wang et al. (2015), the GEBV accuracies provided through 

different GS models were inversely related to the number of QTL. For traits controlled by 

a small number of QTL, Bayesian regression models (e.g., BayesB, BayesC) 

outperformed mixed models (e.g, GBLUP). Contrary to Bayesian regression models, the 

accuracy of GEBV obtained using GBLUP is stable and constant regardless of the 

number of QTL.  
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High density marker panels and sequence data 

The availability of next generation sequences (NGS) data and high-density SNP 

panels and the substantial increase in the number of genotyped animals present great 

opportunities to further improve the accuracy of GS and the understanding of the genetic 

basis of complex traits. However, to achieve these goals, more creative implementation 

algorithms and modeling frameworks that reduce the noise in the estimates of the G 

matrix and make full use of NGS data in large scale GS should emerge. 

First, the inclusion of all or most of sequence variants in the association model 

used in GRM approaches is statistically counterproductive and computationally almost 

non-tractable. Unfortunately, current methods used to prioritize “relevant” SNPs or 

variants based on statistical (BayesB, BayesR) or external biological (BayesRC) 

information are at best only marginally better (Meuwissen and Goddard, 2001; Erbe et 

al., 2012; MacLeod et al., 2016). Trying to prioritize between hundreds or even thousands 

of variants that are in LD with a QTL that explain a fraction of 1% of the genetic 

variation is not a trivial task and seldom will there be enough statistical power. Even in 

the best-case scenario of using the current number of sequence variants identified in the 

bovine genome (Daetwyler et al., 2014; Hayes et al., 2014), assuming that it is possible to 

prioritize variants based on statistical criteria, 300k to 1.5 Million variants will be 

selected at pi values of 0.99 and 0.95, respectively. In humans, the number of selected 

variants will range between 800k and 4 Million variants. Prioritization of variants based 

on biological information (i.e, BayesRC) is limited by the amount and quality of 

available prior information. Classifying variants based on their location in differentially 
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expressed genes, for example, makes strong assumptions with much more consequential 

implications on the final results. Microarray gene expression experiments are snapshot 

measurements of mRNA abundance that are both time and tissue specific and are 

characterized by a high noise-to-signal ratio. Conditioning on the results of the 

association study to this prior information, when we are not even sure about which tissue 

to use and measure gene expression for a given trait, seems like a risky proposition.  

Second, over 75% of identified polymorphisms are rare variants (MAF<1%). Any 

two random individuals in the population will differ at a maximum of 2% – 8% of these 

rare variants (Auton et al., 2015). This reality creates at least two problems: 1) Using all 

or the majority of these variants to compute G will likely lead to inaccurate estimates of 

the realized additive relationships because of the large overlap in variant genotypes (92 to 

98%); 2) Even when a subset of variants is used to compute G, it is not likely to lead to a 

significant increase of GS accuracy, as when high density panels were used (Su et al., 

2012), or a reduction of accuracy. This is true because using information provided by 

NGS will have small or even negative effects in the estimation of the realized additive 

relationships. 

Although theoretically statistical or biological criteria are attractive to 

discriminate and prioritize SNPs and rare variants in GWAS, they suffer from several 

limitations as indicated in the previous section and highlighted by the little to no increase 

in accuracy of GS. Filtering variants based on their effects (BayesB, BayesR) is bounded 

by the limited statistical power and is unlikely to be useful in the presence of NGS data. 

Prior biological information could be very useful for prioritizing sequence variants, but 
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unfortunately its abundance and quality are far from being acceptable for meaningful 

practical use.   

The promise of population genomics  

Broadly speaking, population genomics typically aims at studying simultaneous 

several loci to track their patterns of evolutionary processes such as mutation, genetic 

draft, and selection that may impact the frequency of those loci through the genome and 

the whole population. In the field of animal improvement, artificial selection for 

economic traits is expected to create a non-uniform pressure on specific regions of the 

genome. Furthermore, selection, as an evolutionary force, may cause different patterns of 

genetic variation among populations and even across genomes. The action of selection 

creates variation where some loci frequency (outlier loci) diverge from the rest of loci 

(neutral loci) on the genome. Traditionally, it was not possible to accurately identify 

those loci or genome segments that are under heavy selection pressure. However, the 

availability of high density marker panels allows for the tracking of the footprint of the 

outlying loci through the identification of selection signatures in regions of the genome 

that are under selective pressure (Luikart et al., 2003; Gholami et al., 2014; Gouveia et 

al., 2014).  

These selection signatures are the result of either positive or balancing selection. 

The former occurs when favorable alleles increase in frequency and surrounding alleles 

tend to loss their diversity leading to the so called hitch-hiking effect or selective sweep. 

This phenomenon reduced the heterozygosity of the regions neighboring selected loci and 

introduces a deviation of frequency spectrum which results in an increase of rare variants 
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in the regions of positive selection (Smith and Haigh, 1974; Kim and Stephan, 2002; 

Charlesworth, 2007). However, the balancing selection tries to maintain the 

polymorphism level in the region of selected loci. Contrary to positive selection, 

balancing selection increases the diversity of closely linked loci surrounding the selected 

variants, thereby deviating the frequency of the polymorphism to the intermediate level 

(Charlesworth, 2006; Oleksyk et al., 2010).  

The footprint of selection is often blurred by several other factors acting on the 

genome; resulting in different patterns of selection signatures. These factors include the 

type and strength of selection operating on genome, the extent of the recombination rate, 

the history of the effective population size and the population demography and structure 

(Kim and Stephan, 2002; Cutter and Payseur, 2013; Gouveia et al., 2014).  

Different statistical approaches have been proposed to identify and characterize 

signatures of selection. These approaches could categorize into three main groups based 

on the statistical test used for identification consisting of frequency spectrum (Tajima, 

1989; Fay and Wu, 2000), linkage disequilibrium and haplotype structure (Sabeti et al., 

2002; Voight et al., 2006), and index of population differentiation (Wright, 1951; 

Lewontin and Krakauer, 1973). The frequency spectrum method was introduced by 

Tajima (1989) and consists of computing the Tajima’s D (Tajima, 1989) or the Fay and 

Wu’s H-test (Fay and Wu, 2000) statistics. The second approach to detect selection 

signature relies on the concept of linkage disequilibrium, a measure of non-random 

association between alleles of two or more loci. Loci under positive selection and through 

the hitch-hiking effect (Smith and Haigh, 1974) tend to increase the extent of LD in the 
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genomic region resulting in large haplotypes indicative of lower rate of decay in LD. This 

process in the basis of the extended haplotype homozygosity (EHH) statistic proposed by 

Sabeti et al. (2002) to detect signature of recent selection. The EHH statistic access the 

probability of two random chromosomes carrying a specific haplotype are identical by 

descent (IBD) based on homozygosity. To avoid the impact of different recombination 

rates across the genome, Voight et al. (2006) extended the EHH method to the integrated 

Haplotype Score (iHS) through the adjustment for the ancestral alleles within a 

population. The iHS approach shows that EHH areas for alleles under selection pressure 

are larger than for neutral alleles. Several studies used derivative of EHH statistic to 

investigate selection signature in different species such as cattle (Qanbari et al., 2011), 

poultry (Li et al., 2012; Zhang et al., 2012), swine (Ai et al., 2013) and humans (Sabeti et 

al., 2007). The third approach for detecting signal of selection on a genome is based on 

the measure of genetic differentiation between populations. Such differentiation results in 

variation in allele frequency of non-neutral loci between the different populations or sub-

populations. One of the well-known index of genetic differentiation introduced was the 

FST introduced by Wright (1951) as a tool to quantify the genetic diversity due to the 

difference of allele frequency between populations. This statistic is the most widely used 

method to detect favorable loci under selection among populations (Gianola et al., 2010; 

Qanbari et al., 2012). Thus, genome scan for loci-specific FST scores provides evidence of 

selection and it can be used to identify genome regions under positive or neutral selection 

simply by the inspection of the distribution of the FST
 scores (Kullo and Ding, 2007). 

Various measurements were proposed to calculate the FST statistic (Akey et al., 2002; 

Amaral et al., 2011); however the results could be affected by several factors including 
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genotyping errors, population stratification, and the effects of demography shaping 

genome-wide levels of polymorphism (Stinchcombe and Hoekstra, 2008; Narum and 

Hess, 2011). Regardless of the challenges facing FST estimators, geneticists developed 

well-accepted tools to identify loci and populations differentiation scores using the 

evolutionary history of population under study (Weir and Hill, 2002; Beaumont and 

Balding, 2004; Weir et al., 2005; Guo et al., 2009).  

GS faces the challenge of accommodating a dramatic increase in the number of 

typed variants and a substantial increase in the number of genotyped animals. The former 

creates major problems for regression based methods for GS. The latter has and will 

further complicate the implementation of mixed linear based approaches. SNP 

prioritization has become a necessity. Including all the markers in a panel in the 

association model not only will not increase accuracy, it could lead to its reduction. 

Similarly, increase in the number of genotyped animals has substantially complicated the 

inversion of the genomic relationship matrix. Consequently, current methods using for 

GS did not benefit from the increase of the density of marker panels. Within this 

landscape, new approaches for the implementation of GS in presence of high density or 

sequence data and large number of genotyped animals are needed. In this study, 

population genomics and quantitative genetics approaches were combined to provide a 

powerful practical alternative. This has been accomplished through 1) Testing and 

validation of FST, a measure of population differentiation, as an effective tool for marker 

prioritization; 2) Development of a hybrid model that combined prioritized SNP and 
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polygenic components, and 3) the extension of the hybrid model to accommodate non-

genotyped animals. 
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CHAPTER 3 

GENOMIC DIFFERENTIATION AS A TOOL FOR SINGLE NUCLEOTIDE 

POLYMORPHISM PRIORITIZATION FOR GENOME WIDE ASSOCIATION AND 

PHENOTYPE PREDICTION IN LIVESTOCK 1  
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Abstract 

Genome-wide association studies (GWAS) have been successful in detecting 

associations between single nucleotide polymorphisms (SNPs) and phenotypic variation 

and in identifying several causative mutations. However, SNPs with significant association 

identified using GWAS tend to explain only small fraction of the phenotypic variations. 

GWAS are affected by lack of power due to small sample size, large numbers of highly 

correlated markers, and the moderate to small effects of most quantitative trait loci (QTLs). 

This situation is further complicated by the continuous increase in marker density, 

especially with the availability of next-generation sequencing (NGS) data. The latter 

generates an unprecedented number of marker variants, with a complex linkage 

disequilibrium (LD) structure limiting the advantage and adequacy of existing methods 

that internally try to prioritize (filter) SNPs (e.g. BayesB, and BayesR). Consequently, it is 

becoming necessary to either filter SNPs before conducting the association analysis or to 

enlist additional sources of information. Methods that include biological prior information 

(e.g. BayesRC) are limited by the amount and quality of available prior information. 

Knowledge of genetic diversity based on evolutionary forces is beneficial for tracking loci 

influenced by selection. The fixation index (FST), as a measure of allele frequency variation 

among sub-populations, provides a tool to reveal genomic regions under selection pressure. 

In order to evaluate its usefulness as an additional source of information, a simulation was 

carried out. A trait with heritability of 0.4 was simulated and three subpopulations were 

created based on the empirical phenotypic distribution (< 5% quantile; > 95% quantile; and 

between 5 and 95% quantiles). Marker data was simulated to mimic a bovine chip of 600K, 

1 million, and 3 million SNP marker panels. Genetic complexity of the trait was modelled 
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by the number of QTLs, their distribution, and the magnitude of their effects. Using 

different empirical cut off values for FST, most QTLs were correctly detected using as few 

as 2.5% of SNP markers in the panels. Furthermore, the genomic similarity, calculated 

based on the selected SNPs, was very high (>0.80) for individuals with similar genetic and 

phenotypic values despite having limited to no pedigree relationship. These results indicate 

that filtering SNPs using FST could be beneficial for use in GWAS by focusing on genome 

regions under selection pressure. High functional genomic similarity based on selected 

markers indicates similarity in SNP signatures, regardless of relatedness, and translates into 

high phenotypic correlation that could be used in decision making. 
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Introduction 

Advances in high-throughput technologies allow for genotyping with high-density 

single nucleotide polymorphic (SNP) marker panels. These high-density panels provide an 

opportunity to identify SNP markers in linkage disequilibrium (LD) with quantitative trait 

loci (QTLs). The SNP marker(s) effect can be estimated and used to discover functional 

variants and/or causal mutations. Such discovery could be of great importance for the 

understanding of the genetic mechanisms underlying complex traits (Hirschhorn et al., 

2002). Several thousand genetic loci in association with human diseases have been already 

identified (Ohnishi et al., 2001; Barrett and Cardon, 2006; Eberle et al., 2007; Li et al., 

2008). Unfortunately, these common variants identified through genome wide association 

studies (GWAS) have explained only a small portion of the observed variation in several 

complex traits. The “lost heritability” in the case of human height  (Maher, 2008) highlights 

the complexity of the endeavor. Over time, it has become clear that this “lost heritability” 

problem is mainly due to the lack of power in identifying variants with small effects which 

jointly explain a large portion of the total variation (Manolio et al., 2009). 

In addition to revealing SNP-trait associations, GWAS can be used to predict 

phenotypes and to estimate breeding values in animal and plant applications via so-called 

genomic selection (GS). Estimation of the breeding values requires the direct or indirect 

estimation of the SNP effects. Accuracy of genomic prediction depends, among others, on 

the density of the SNP panel and the LD between the SNPs and causative variants affecting 

the trait (Druet et al., 2014).  
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Classical GWAS suffers from the high dimensionality of the parameter space 

leading to high false discovery rate (Balding, 2006; Pe'er et al., 2008). Also, high LD 

between a given QTL and several markers, sometimes within the same gene, leads to small 

effects for each one of these markers and ultimately a lack of statistical power to declare 

any of them as being significant. Although an increase in sample size will improve the 

statistical power and help alleviate the problem (Cichon et al., 2009), this alternative is 

costly, time consuming and often not possible due to several reasons, such as the 

unavailability of biological samples. GWAS using common variants benefits from the 

strong LD between variants within a gene or genome segment where the latter is assumed 

to carry one or very few causal variants that could easily be tracked by the high LD with 

tag-SNPs. However, in the presence of rare variants, extensive allelic heterogeneity is 

expected within genes associated with complex traits. Furthermore, LD between rare 

variants, measured as the square of the correlation (r2), within a gene is often weak due to 

large discrepancies in minor allele frequencies between variants.  

Within this landscape of continuous increase in the density of markers maps, 

filtering (prioritization) of variants to be included in the association models is becoming a 

necessity. Traditionally, SNP filtering is conducted based on certain statistical criteria such 

as p-values for single marker analyses or quality of fit and model determination for 

Bayesian procedures such as BayesB (Meuwissen et al., 2001) and BayesR (Erbe et al., 

2012). The latter showed some superiority for certain traits in the presence of low- and 

moderate-density marker panels compared to models that include all markers. However, 

they still suffer, although to a lesser degree, from high false positives, multiple testing 

problems, high LD and small SNP effects which have hampered at different degrees of 
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their efficiency. Trying to prioritize between hundreds or even thousands of variants that 

are in LD with a QTL that explains a fraction of 1% of the genetic variation is not a trivial 

task and seldom will there be enough statistical power. Even in the best- case scenario, 

assuming that it is possible to prioritize variants based on statistical criteria, 300K to 1.5 

million variants will be selected at pi values of 0.99 and 0.95, respectively, using the current 

number of sequence variants identified in the bovine genome (Daetwyler et al., 2014; 

Hayes et al., 2014). Thus, enlistment of additional sources of information seems to be an 

attractive alternative. BayesRC (MacLeod et al., 2016), an extension of BayesR through 

the inclusion of biological prior information (variant type, location in differentially 

expressed genes), did not lead to any meaningful increase in accuracy compared to BayesR 

(Erbe et al., 2012). This is not due to the inadequacy of the approach, but rather to the 

limitations of the prior biological information. Classifying variants based on their location 

in differentially expressed genes, for example, makes strong assumptions with very 

consequential implications on the final results. Microarray gene expression experiments 

are snapshot measurements of mRNA abundance that are both time- and tissue-specific 

and are characterized by a high noise-to-signal ratio. Conditioning the results of the 

association study to this prior information could be risky given the uncertainty of gene 

expression data. Consequently, with the continuous increase in SNP marker densities, 

including the availability of millions of sequence variants, and considering the limited 

quantity and quality of prior biological information, it is clear that statistical discriminatory 

criteria alone will not be enough to prioritize influential variants and that enlistment of 

using index of fixation (FST) as additional sources of information has become a necessity. 
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Modern livestock species (e.g., Dairy cattle) are highly selected for on several traits 

of economic interest and the history of such artificial selection is stored in the genomes of 

these animals. Such signatures of selection could be traced and used as external information 

to prioritize SNPs. As an example, FST, a measure of allele frequency variation among sub-

populations resulting from genetic differentiation provides a tool to reveal selection sweeps 

(Lewontin and Krakauer, 1973) and can be used to identify SNPs under selection pressure 

due to their LD with QTLs. Small FST values indicate a similar allelic composition between 

populations, while high FST values are the results of lack of shared alleles between 

populations and represent a signature of positive directional selection. One of the main 

applications of FST is pinpointing genome regions which are under selection. Several 

studies have shown that locus-specific estimates of FST could detect SNPs showing 

divergent patterns of variation (Akey et al., 2002; Beaumont and Balding, 2004; Storz et 

al., 2004; Weir et al., 2005). Thus, it is reasonable to postulate that FST as a measure of 

population differentiation, can be used as screening feature to prioritize SNPs for GWAS 

and GS studies. In this study, a simulation was carried out under different marker densities 

and complexity of the genetic model (number and size of QTL effects) to: 1) evaluate the 

adequacy of FST as an external source of information to prioritize SNPs, and 2) to assess 

the genomic similarity between individuals based on the prioritized SNPs and to evaluate 

its adequacy as a genetic decision tool. 
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Materials and Methods 

Simulated population structure  

Simulating genomic data via QMSim software (Sargolzaei and Schenkel, 2009) 

consists of a two-step process. In the first step of the process, a historical population is 

generated. During this step, a population of 8,000 individuals was kept under random 

mating for 300 generations, followed by an additional 305, 310 and 320 generations with 

population size of 15,000, 12,000 and 17,000 individuals, respectively. The first step is 

carried out to initialize LD and to establish mutation-drift equilibrium in the historical 

generations. The mating system of historical generations was maintained based on random 

unions of gametes, which were randomly sampled from both the male and female gamete 

pools. In the second step of simulating the population structure, the founder population was 

generated and labelled as generation zero (G0). In our simulation scenario, the G0 

population was generated from the last historical generation, based on 1500 males and 

15,000 females. The mating of these individuals was random, and no selection was 

considered at this step. After G0, three generations were simulated and the last one (G3) 

was used to detect selection signatures and to evaluate the proposed approach. 

From G0 to G3, animals were selected based on their estimated breeding values 

(EBVs) with a replacement rate of 50 and 20% for males and females, respectively. Sex 

ratio in the progeny was maintained at 50% and one progeny per dam was assumed 

throughout. One trait with either a moderate (0.4) or low (0.1) heritability was simulated 

where all the genetic variation was assumed explained by the simulated QTLs. Phenotypic 

variance was set equal to one and the residual variance was adjusted in each scenario to 

maintain the heritability constant at 0.4 or 0.1. The true breeding value of an individual 
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was equal to the sum of the QTL additive effects. Phenotypes were generated by adding 

random errors, sampled from a normal distribution with zero mean and dispersion equal to 

the residual variance. To investigate the effects of the sample size on the performance of 

the proposed method, either all individual in the third generation (n=15,000) or a small 

random subset (n=5,000) were used. 

Genome structure 

In order to mimic high-density marker panels, a 10-chromosome genome was 

simulated with uniformly distributed 200K, 300K and 1 million SNP markers, resulting in 

a density similar to a bovine chip of 600K, 1 million, 3 million SNPs, respectively. In the 

three cases, 100 QTLs were simulated with effects either generated from a gamma 

distribution with shape parameter set equal to 0.4 or predefined as a fraction of the total 

genetic variance. In the later scenario, QTL effects were set to explain at least 0.5% of the 

genetic variance. Variation in QTL effects was used as an indicator of the complexity of 

the genetic model. Both SNP markers and QTLs in all simulated scenarios were assumed 

to be bi-allelic, and no marker loci overlapped with the QTLs. Further, it was assumed that 

both SNP markers and QTLs have the same allele frequency in the historical population. 

Complete LD was simulated between markers, between QTL and between markers and 

QTL in the first historical population for all simulated genome scenarios. A detailed 

description of the simulated genome structure of the different scenarios is presented in 

Figure 3.1. 
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Detection of signature loci  

In addition to the ratio of variances for FST calculation introduced initially by 

Wright (1951), there are many different approaches in the literature to estimate FST (Nei, 

1973; Weir and Cockerham, 1984; Hudson et al., 1992; Weir and Hill, 2002). In this study 

and in order to evaluate the genomic differentiation in generation G3, the population was 

divided into three sub-populations based on the distribution of the trait phenotype (below 

the 5% quantile [S1], between 5 and 95% quantiles [S0], and above the 95% quantile [S2]). 

Subpopulations S1 and S2 were used to estimate the differentiation values using the global 

FST estimator method proposed by Nei (1973). For a given locus, k, the global FST value is 

calculated as: 

𝐹𝑆𝑇𝑘
=

𝐻𝑇𝑘
− 𝐻𝑆𝑊𝑘

𝐻𝑇𝑘

 

with 𝐻𝑆𝑊𝑘
=

𝐻𝑆1𝑘
∗𝑛𝑠1+𝐻𝑆2𝑘

∗𝑛𝑠2

𝑛𝑠1+𝑛𝑠2

 , 𝐻𝑇𝑘
= 2 ∗ 𝑝𝑘 ∗ 𝑞𝑘 and 𝐻𝑆𝑖𝑘

= 2 ∗ 𝑝𝑆𝑖𝑘
∗ 𝑞𝑆𝑖𝑘

 

where, 𝑝𝑆𝑖𝑘
 and 𝑞𝑆𝑖𝑘

 are the allele frequencies for locus k in subpopulation i of locus k, 𝑛𝑠1 

and 𝑛𝑠2 are the number of individuals per first and second subpopulation, 𝐻𝑆𝑊𝑘
 is the 

weighted mean heterozygosity across the first and second subpopulations and 𝐻𝑇𝑘
 is the 

heterozygosity of the pooled subpopulations for locus k.  

Although theoretical approaches exist to determine loci under selection pressure 

based on the estimated FST values, they tend to be somewhat conservative, which could 

limit the predictive power of the selected set of SNPs. In this study, heuristically 

determined FST threshold values were used to select SNPs under selection pressure. For 

that purpose, the 97.5, and 99.5% quantiles of the FST distribution were used.      
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Functional genomic similarity  

It is reasonable to expect that individuals with similar genetic values or even 

phenotypes (given the lack of systematic effects in our simulation model) will have high 

genomic similarity based on the selected SNPs. This similarity will likely be substantially 

higher than the expected additive relationships, and even the realized relationships, 

calculated using all SNPs in the panel. Conversely, individuals with different genetic 

values or phenotypes are likely to have much lower genomic similarity than the expected 

or observed additive relationships. Identity by state (IBS) analysis, which identifies the 

number of shared alleles between two individuals across a set of given loci, was used to 

calculate the genetic similarity between individuals based on the selected SNPs.  In this 

study, similarity between individuals i and j was computed as: 

𝑠𝑖𝑚(𝑖, 𝑗) =
1

2𝑛
∑ 𝑠𝑘

𝑛

𝑘=1

(𝑖, 𝑗) 

where 𝑠𝑘(𝑖, 𝑗) is the number of shared alleles between individuals i and j at locus k. 

In order to evaluate the effectiveness of this functional similarity as a potential 

genetic or decision-making tool, individuals with similarity scores greater than a certain 

threshold (i.e. 0.90) were compared based on their true breeding values (TBVs), EBVs, 

and phenotypes. 

Results and Discussion 

Detection of loci under selection pressure  

Figures 3.2 and 3.3 present the effects and distribution along the genome of the 

simulated 100 QTLs either from a gamma (Fig 3.2) or a uniform (Fig 3.3) distribution. In 
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the latter scenario, the lower and upper bounds were set equal to 0.5 and 1.5% of genetic 

variance. Thus, each QTL will explain at least 0.5% and at maximum 1.5% of genetic 

variance. The gamma and uniform distributions were used to investigate the effects of the 

genetic complexity of the trait on the proposed method. When effects were simulated from 

a gamma distribution to reflect a complex genetic model, 69, 82, and 73% of QTLs 

explained individually less than 0.5% of genetic variance for the 200K, 300K and 1 million 

SNP scenarios, respectively. Obviously, all QTLs had an effect exceeding 0.5% of the 

genetic variance when the uniform distribution was used, reflecting, thus, a less complex 

genetic model. The percentage of QTLs explaining more than 1% of the genetic variance 

was 19, 17, and 16% when the effects were generated from a gamma distribution for 200K, 

300K, and 1 million SNPs, respectively. Their corresponding percentage values were 54, 

41, and 47% when QTL effects were simulated from a uniform distribution.   

Figures 3.4 and 3.5 present the distribution of global FST values across the genome 

when the population size was equal 15,000 for the gamma distribution and the predefined 

QTL effect scenarios, respectively. When the QTL effects were simulated from a gamma 

distribution (Fig 3.2) there was a high coincidence between the distribution of QTLs along 

the genome (Fig 3.4) and the distribution of estimated FST across the three SNP densities. 

In fact, Figures 3.3 and 3.5 are almost indistinguishable, especially for the QTLs with large 

effects (QTL effects greater than 0.2). This is expected because SNPs linked to large effect 

QTLs will be under higher selection pressure and consequently a more noticeable change 

in their minor allele frequencies between the two extreme sub-populations S1 and S2. 

Although large effect QTLs were tracked with high precision, small effect QTLs were hard 

to detect. In fact, for the gamma distribution scenario and using the 99.5% quantile of the 
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FST distribution, only 14, 12 and 22% of the QTLs were tagged (LD > 0.7) by the selected 

SNPs for the 200K, 300K and 1 million SNP scenarios, respectively (Table 3.1). Similar 

percentages were observed for the predefined QTL effects scenario (Table 3.1). The 

distribution of these tagged QTLs along the chromosomes under the 300K SNP scenario 

for the 99.5% quantile cut-off point is presented in Figure 3.6. It is clear that only large 

QTLs were identified. However, some very small effect QTLs that are in close proximity 

to large QTLs were indirectly tagged. In fact, the minimum percentage of genetic variance 

explained by these tagged QTLs was 0.013 and 0.56% for the gamma distribution and 

predefined effects scenarios, respectively (Table 3.1). Collectively, these tagged QTLs 

explained between 48.7 to 67.9% of the total genetic variance for the gamma distribution 

scenario and only between 12.44 to 24.71% for the predefined QTL effects scenario across 

the three simulated SNP densities (Table 3.1). The striking parallel between the percentage 

of identified QTLs and the percentage of the total genetic variance they explain are largely 

due to the small range used to simulate the QTL effects in the predefined scenario. 

However, for the gamma distribution scenario, the top 15% of QTLs explained over 48% 

of the total genetic variation. Using a more relaxed cut-off point, the 97.5% quantile of the 

FST distribution, more SNPs were selected, as expected, leading to more QTLs being 

identified and a larger portion of the genetic variance explained (Table 3.1). For the 

predefined scenario, 80 to 83% of the QTLs were identified and between 81 to 88% of 

genetic variance explained across the three SNP densities. Although an even higher 

percentage of the genetic variance was explained for the gamma distribution scenario (82 

to 94%), only 40 to 54% to the QTLs were identified (Table 3.1). Obviously, this is due to 

the fact that 20 to 24% simulated QTLs in this scenario have very small effect that 
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precluded their tracking by the selected SNPs, but they had almost no effect on the 

explained portion of the genetic variance. Figure 3.7 presents the distribution of the 

simulated 100 QTLs across the different chromosomes and the selected SNPs for the 97.5% 

quantile scenario and 300K SNP density (similar results for the other SNP density 

scenarios).  

Although it seems somehow contradictory, it is actually expected because, as all 

QTLs have effects significantly different from zero and limited range of variation for the 

predefined scenario, divergence in the phenotypic values of the trait between the two 

subpopulations could be due to selection pressure on different combinations of the QTLs 

or a limited pressure in all of them leading thus to only a moderate change in minor allele 

frequencies of linked SNP markers. These results clearly show the non-trivial relationship 

between genetic complexity of the trait and the ability to track markers under selection 

pressure and ultimately to identify QTLs. It seems that even for very complex traits, few 

QTLs with large relative effects (compared to the majority of other QTLs) will be easily 

identified, which is not always the case with less complex traits. However, these identified 

QTLs will likely explain only a small portion of the genetic variance. As the cut-off 

threshold for significant FST values is relaxed, the number of tracked QTLs will increase in 

both scenarios but with a much faster pace for the less complex traits. This result 

corroborates the well-known reports of “lost heritability” of complex traits (Maher, 2008; 

McCarthy and Hirschhorn, 2008; Manolio et al., 2009) when only highly-significant 

markers were used and that much of the genetic variance was recovered when all markers 

in the panel were considered. Although no formal comparison with already existing 

methods for marker prioritization (e.g. BayesB, BayesR) was carried out in this study, some 
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preliminary results of our ongoing research have shown that filtering of SNPs base of FST 

was slightly superior to BayesB in the prediction of genomic breeding values (Chang et al., 

2016).  

 Table 3.2 presents the results of the proposed method for the scenarios of low 

heritability (0.1) and small sample size (n=5,000) when QTL effects where generated from 

a Gamma distribution and marker density set equal at 300k SNPs. As expected, smaller 

sample size and low heritability reduced the number of tagged QTLs compared to the 

scenario when a larger population and higher heritability were used. In fact, less than half 

of the QTL were tagged when the heritability was reduced to 0.1 compared to the scenario 

when the heritability was reduced to 0.1 for both cut-off points of the FST distribution. 

Similar results were observed when the population size was reduced 5,000 animals. The 

percentage of genetic variance explained by the tagged SNPs was reduced due to lower 

heritability for smaller sample size. However, such reduction was smaller compared to the 

reduction in the number of tagged SNPs. This is in part due to the presence of some QTLs 

with relatively large effects under the Gamma distribution scenario. In presence of low 

heritability or small sample size, only QTLs with relatively large effects will be tagged 

under conservative FST quantile cut-off points (Table 3.2). Results in table 3.2 indicate that 

the proposed method performed as expected under low heritability or reduced sample size 

scenarios.       

Functional genomic similarity 

Functional genomic similarity calculated based on SNP markers identified to be 

under selection pressure was used to evaluate their usefulness for phenotype prediction, 
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genetic selection and as a decision-making tool. Using all SNP markers, the functional 

similarity will be an estimator of the observed additive relationships (Vinkhuyzen et al., 

2013; Da et al., 2014). However, in this study, the similarity is computed based only on 

SNP markers identified to be under selection pressure. Thus, this similarity does not reflect 

necessarily additive relationships, but rather the level of similarity at these selected SNPs. 

As these SNP markers are selected based on their level of selection pressure due to their 

LD with QTLs, animals with similar genetic merit, and to lesser degree similar phenotypes, 

are expected to have high functional genetic similarity. Across all simulation scenarios, 

genomic similarity increased with the increase in the FST threshold used to identify SNPs 

under selection pressure. In fact, when the threshold was set equal to the 99.5% quantile of 

the FST distribution, 7.38 to 19.92% and 15.66 to 16.66% of the genomic similarities 

between the 750 animals with the highest phenotypes were greater than 0.8 for the gamma 

distribution and predefined QTL effects scenarios, respectively (Table 3.3). When the cut-

off point was relaxed (97.5% quantile), very few genomic similarities were greater than 

0.8. However, in all cases the genomic similarity was at least 0.60 and greater and 0.70 in 

over 60% of the relationships (Table 3.3). Similar results in trend and magnitude were 

observed between the 750 animals with the lowest phenotypes (Table not shown). When 

low heritability or small sample size were used, similar trend and magnitude of genetic 

similarities were observed (Table 3.4). 

Collectively, these results indicate that computing genomic similarity based on 

SNPs under selection pressure will at minimum help cluster individuals based on the 

magnitude of their phenotypes. Furthermore, the results from the gamma distribution 

scenario at the 99.5 quantile cut-off threshold seem to indicate the possibility of using this 



44 

 

functional genomic similarity as a selection and decision-making tool. This is the case 

because around 20% of all genomic similarities were greater or equal to 0.80 (Table 3.3) 

and the tagged QTLs explained 37.84 to 52.78% of the total genetic variance (Table 3.1). 

To test the viability of this option, we randomly selected an individual with high true 

breeding value (2.51) and then we identified all animals that had high (> 0.9) and low (< 

0.55) genomic similarity with such individual. The average true breeding value of the 80 

animals with the high genomic similarity with the selected individual was 1.66 and a 

standard deviation of 0.45 (Figure 3.8a). For the 142 animals with the low genomic 

similarity with the selected individual, the average was -0.243 with a standard deviation of 

0.43 (Figure 3.8a). The same trend was observed when estimated breeding values (EBVs) 

were used. In fact, the EBV of the selected individual was 1.67, whereas the average of the 

EBVs of the 80 and 142 animals with the high and low genomic similarity was 1.45 and -

0.091, respectively (Figure 3.8b). It is clear that the genomic similarity computed based on 

SNPs under selection pressure could be used at least as a decision-making tool given its 

ability to discriminate between animals with low and high breeding values and can be used 

as a low-cost selection tool in some specific breeding programs. 

Conclusions 

The availability of high-density SNP panels and sequence variant genotypes was 

expected to significantly increase the accuracy of genome-wide association studies and 

genomic selection. Unfortunately, little to no improvement in accuracy has been observed. 

This lack of significant improvement of accuracy is not the result of the limited usefulness 

of this data, but rather due to the limitations of current methods used to implement GWAS 

and GS. The dramatic increase in the dimensionality of the association models has reduced 
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the effectiveness of statistical criteria-based variant (SNP) prioritization methods and 

mandated the need to enlist additional sources of information. Using available biological 

information as a prior is an attractive idea. Unfortunately, the quantity and quality of such 

information have limited its usefulness. Genome segments under selection pressure could 

be determined based on the available genotype data. In this study, FST, as a measure of 

genetic differentiation, was used as an additional source of information in the analysis of 

high-density marker data. Prioritized markers based on FST under different scenarios were 

able to tag the majority of significant QTLs and were successfully used to compute 

genomic similarity. The latter could be used as a decision-making or selection tool. Marker 

prioritization using FST is currently being evaluated and compared with existing methods 

based on the effects on the accuracy of genomic selection. In this study FST values are not 

technically an external information as they were computed based on available data. This 

does not seem to be a major issue because only a portion of the data (extremes of the 

distribution) was used for their calculation, and no validation records were included.       
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Table 3.1. Number of selected SNPs1, number of tagged QTLs2, percentage of genetic 

variance explained, and the minimum QTL effect (% of genetic variance) captured by the 

selected SNPs under different marker densities, sampling distribution for the QTL effects, 

and cut-off point for the FST values. 
 

1 SNPs = Single Nucleotide Polymorphisms, 2 QTLs = Quantitative Trait Loci, 3 cutoff point for 

the fixation index (FST) distribution, 4 QTL effects sampled from a Gamma distribution, 5 QTL 

effects pre-defined to explain at least 0.5% of genetic variance, 6 QTLs with linkage disequilibrium 

>0.70 with at least one selected SNP, 7 GV= Genetic Variance, and 8 minimum percentages of GV 

explained by a tagged QTL. 

 

 

 

 

 

 

 

 

 

 

 

 

97.5% quantile3 99.5% quantile 

Gamma4 Predefined5 Gamma Predefined 

200K 300K 1M 200K 300K 1M 200K 300K 1M 200K 300K 1M 

Selected SNP 4579 6257 22794 6026 10021 34035 650 464 2109 244 557 1033 

Tagged QTLs6 
40 50 54 83 81 80 14 12 22 11 13 21 

% GV7 
94.38 82.48 92.06 87.85 81.08 80.92 63.73 48.7 67.9 12.44 13.13 24.71 

Min. QTL8 

effect 
0.013 0.017 0.086  0.62 0.57 0.56 1.52 1.09  0.086  0.93 0.62 0.76 
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Table 3.2. Number of selected SNPs1, number of tagged QTLs2, percentage of genetic 

variance explained, and the minimum QTL effect (% of genetic variance) captured by the 

selected SNPs under different cut-off points of the FST distribution, heritabilities, and 

sample size for the Gamma3 and 300K marker density panel scenario.   

 

 
97.5% quantile4 99.5% quantile 

 h2=0.4 

n5=15,000 

h2=0.4 

n=5,000 

h2=0.1 

n=15,000 

h2=0.4 

 n=15,000 

h2=0.4 

 n=5,000 

h2=0.1 

n=15,000 

Selected SNP 6257 6257 6257 464 464 464 

Tagged 

QTL6 
50 37 23 12 6 6 

%GV7 82.48 78 72.2 48.7 40.33 43.99 

Min. QTL8 

effect 
0.017 0.37 0.089 1.09 3.21 4.54 

1 SNPs = Single Nucleotide Polymorphisms, 2 QTLs = Quantitative Trait Loci, 3 QTL effects 

sampled from a Gamma distribution, 4 cutoff point for the fixation index (FST) distribution, 5 sample 

size, 6 QTLs with linkage disequilibrium >0.70 with at least one selected SNP, 7 GV= Genetic 

Variance, and 8 minimum percentages of GV explained by a tagged QTL. 
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Table 3.3. Distribution of genomic similarity (GS) between the 750 animals with the 

highest phenotypes under different marker densities, sampling distribution for the 

quantitative trait loci (QTL) effects, and cut-off point for the FST values.  
 

97.5% quantile1 99.5% quantile 

Gamma2 Predefined3 Gamma Predefined 

200K 300K 1M 200K 300K 1M 200K 300K 1M 200K 300K 1M 

GS4 > 0.90 0 0 0 0 0 0 0.036 2.11 0.37 1.31 1.06 0.07 

0.80< GS < 0.90 0.007 0.041 0 0 0.001 0 7.38 19.92 14.29 15.66 16.66 10.55 

0.70 <GS < 0.80 67.28 71.49 67.7 70.7 71.62 71.7 52.78 37.84 46.05 37.11 35.74 46.55 

0.60< GS < 0.70 32.71 28.46 32.3 29.3 28.38 28.3 38.27 32.58 35.04 35.68 36.84 39.82 

GS <0.60 0 0 0 0 0 0 1.527 7.543 3.97 10.23 9.71 3.00 

1 cutoff point for the fixation index (FST) distribution, 2 QTL effects sampled from a Gamma distribution, 
3QTL effects pre-defined to explain at least 0.5% of genetic variance, 4 GS= genomic similarity 
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Table 3.4. Distribution of genomic similarity (GS) between the 5% animals with the 

highest phenotypes under different cut-off points of the FST distribution, heritabilities, and 

sample size for the Gamma1 and 300K marker density panel scenario densities. 

 

 
97.5% quantile2 99.5% quantile 

 h2=0.4 

n3=15,000 

h2=0.4 

 n=5,000 

h2=0.1 

 n=15,000 

h2=0.4 

 n=15,000 

h2=0.4 

 n=5,000 

h2=0.1 

n=15,000 

GS4 >0.90 0 0 0 2.11 1.58 1.38 
0.80 < GS< 0.90 0.041 0.0289 0.0078 19.95 20.08 17.73 
0.70 < GS< 0.80 71.49 76.69 66.28 37.84 39.13 36.46 
0.60 < GS< 0.70 28.46 23.28 33.71 32.58 32.94 35.48 

0.60 < GS 0 0 0 7.54 6.26 8.95 
1 QTL effects sampled from a Gamma distribution, 2 cutoff point for the fixation index (FST) distribution, 

 3 sample size, 4 GS= genomic similarity 
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Figure 3.1. Simulation parameters for the different scenarios. 

 

 

Simulated genome structure 
• 10 chromosomes (100 cM each) 

• 100 quantitative trait loci (QTLs) 

• Single nucleotide polymorphism (SNP) markers 

distribution (Evenly Spaced) 

QTL effects 

• Gamma distribution with shape 

parameter = 0.4 

 

QTL effects 

• Predefined to explain at least 0.5% 

genetic variance (GV) 

 

SNP densities 

• 200K, 300K, and 1M SNP marker panels 
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     (a)                                                                         (b)                                                                    (c) 

 

Figure 3.2. Distribution and effects of the 100 quantitative trait loci (QTLs) simulated from gamma distribution for the 200K (a), 300K 

(b), and 1 million single nucleotide polymorphism (SNP) marker (c) scenarios. QTL effects are expressed as percentage of genetic 

variance. 
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      (a)                                                                       (b)                                                                      (c) 

 

Figure 3.3. Distribution and effects of the 100 quantitative trait loci (QTLs) with predefined effects for the 200K (a), 300K (b), and 1 

million single nucleotide polymorphism (SNP) marker (c) scenarios. QTL effects are expressed as percentage of genetic variance. 
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      (a)                                                                          (b)                                                                  (c) 

 

Figure 3.4. Distribution of estimated fixation index (FST) scores for the 200K (a), 300K (b), and 1 million single nucleotide 

polymorphism (SNP) markers (c) under the gamma distribution scenario. 
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      (a)                                                                        (b)                                                                     (c) 

 

Figure 3.5. Distribution of estimated fixation index (FST) scores for the 200K (a), 300K (b), and 1 million single nucleotide 

polymorphism (SNP) markers (c) under the predefined effect scenario. 
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Figure 3.6. Map of simulated QTLs (in Blue) and selected SNPs (in Red) across the 10 

chromosomes under the 300K SNP marker density, gamma distribution for QTL effects, and 99.5 

quantile as cut-off point for FST scores. 
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Figure 3.7. Map of simulated QTLs (in Blue) and selected SNPs (in Red) across the 10 

chromosomes under the 300K SNP marker density, gamma distribution for QTL effects, and 97.5 

quantile as cut-off point for FST scores. 
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(a)         (b) 

Figure 3.8. Distribution of true (a) and estimated (b) breeding values of animals with high (>0.9; 

Green) and low (< 0.55; Red) genomic similarity with selected individual (in Blue) under Gamma 

distribution, 300K SNPs, and 99.5% quantile of FST distribution simulation scenario. 
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CHAPTER 4 

IMPLEMENTING A HYBRID MODEL FOR GENOMIC SELECTION USING 

PRIORITIZED SNPs AND POLYGENIC EFFECTS2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
2 Toghiani, S., L.Y. Chang, S.E. Aggrey, and R. Rekaya. To be submitted to Livestock Science. 
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Abstract 

The vast majority of SNP markers in a given panel are not in high linkage 

disequilibrium (LD) with quantitative trait loci (QTL). Continuous increase in the density 

of marker panels has further reduced the statistical power in association analyses, 

resulting in limited to no improvement in the accuracy of genomic selection (GS). 

Similarly, increase in the number of genotyped animals has made the direct inversion of 

the genomic relationship matrix (G) impossible in some applications and before too long 

it will be the case for the majority of livestock and poultry populations. Although some 

data driven approximations of the inverse of G have been proposed, their optimality is 

not guaranteed. Furthermore, constructing the matrix G using all the available markers, 

on top of being computationally costly, will not improve accuracy and could even lead to 

lower performance. To overcome these challenges, a hybrid approach that uses only a 

limited number of prioritized variants and a polygenic component in the association 

model was proposed. The Fixation index (FST) scores were used to prioritize relevant 

markers that are potentially under selection pressure. Because the prioritized markers are 

unlikely to account for all the genetic variance, a polygenic component was added to the 

model. The effectiveness of the hybrid model was assessed by comparing its performance 

to BayesB, BayesC and GBLUP using simulated and real data sets. A trait with 

heritability equal to 0.1 or 0.4 was simulated. Two hundred QTL sampled from 

predefined uniform distributions were generated. The real dataset consisted of weaning 

weight in a composite beef cattle population. In both simulated and real datasets, 1 and 

2.5% of total SNPs were prioritized based on the quantile distribution of the FST scores. 

When the heritability was equal to 0.4 in simulated situation, the proposed hybrid model 
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increased accuracy by 10.1 to 11.5%, 9.2 to 10.1%, and 26.1 to 29% compared to 

BayesB, BayesC and GBLUP models, respectively. When the heritability was equal to 

0.1 in simulated situation and only 1% of the markers were prioritized, GBLUP was 

superior to BayesB, BayesC, and the hybrid method. However, when 2.5% of markers 

were prioritized, the hybrid model outperformed all the other methods with a superiority 

ranging from 3.3 to 7.7%.  
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Introduction 

The paper by Meuwissen et al. (2001) presented the general idea for the potential 

use of high marker maps to estimate breeding values through so-called genomic selection 

(GS). Such idea became a reality when the BovineSNP50k chip panel (Illumina Inc, San 

Diego, USA) became available in 2007. Today, genomic information is being 

systematically used to estimate genomically enhance breeding values (GEBV) for several 

livestock and poultry species. In fact, GS is becoming the standard tool for genetic 

evaluation due to the increase in accuracy and the substantial reduction in generation 

interval (VanRaden et al., 2009; Su et al., 2010; Schefers and Weigel, 2012; Su et al., 

2012). Several methods based on multiple regression or mixed linear models have been 

developed to implement GS. Although these methods have different statistical and 

biological assumptions regarding the data generating process, they tend to yield similar 

results in most cases, at least when low to moderate density panels are used, and 

differences are largely due to the genetic architecture of the trait, the genetic relationships 

between individuals in the data, and the chosen prior information. 

Continuous improvement in high throughput technologies and the dramatic 

decrease in genotyping and sequencing costs have substantially increased the number of 

genotyped animals for several livestock species, especially dairy cattle. In fact, more than 

a million dairy cattle animals were genotyped by 2016 (García-Ruiz et al., 2016) and it is 

anticipated that over 3 million Holsteins will be genotyped by 2021 (Decker, 2015). This 

increase in the number of genotyped animals will create major computational challenges 

for the different methods used to implement GS. More importantly, it will further 

complicate the already formidable task of inverting large genomic relationship matrices 
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(Faux et al., 2012; Aguilar et al., 2014; Misztal, 2016).  A more immediate and pressing 

issue in GS is the explosion in the number of genotyped variants (rare and common) due 

to the major advances in next generation sequencing. Currently, an increasing number of 

animals are being genotyped with high density panels (> 250K SNP markers) or have 

their genome fully sequenced, resulting in tens of millions of genotyped variants. This 

dramatic increase in the number of genotyped markers represents a major challenge, 

especially for multiple regression based approaches for GS implementation. This is the 

case due to loss of statistical power, the high shrinkage of variant effect estimates, and 

the increase in computational costs. Collectively, these challenges have limited the 

benefits of high density and sequence data on the accuracy of genomic selection. In fact, 

little to no improvement was achieved using HD compared to low or moderate panels 

(Harris and Johnson, 2010; VanRaden et al., 2013). Additionally, most of the animals in 

genetic evaluations are still non-genotyped. Accommodating non-genotyped animals 

could be achieved as proposed by Fernando et al. (2014) where the genotypes and non-

typed animals could be imputed based on the observed genotypes, and the average 

additive relationships matrix. Thus, the computational cost of imputing the missing 

genotypes will dramatically increase with the number of markers in the panels.  

Consequently, including all or the majority of high density or sequence variants in 

the association model used in multiple regression approaches is statistically 

counterproductive and computationally almost non-tractable. Unfortunately, current 

methods used to prioritize “relevant” SNPs or variants based on statistical (BayesB, 

BayesR) or external biological (BayesRC) information are at best only marginally better. 

Filtering variants based on their effects (BayesB, BayesR) is bounded by the limited 
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statistical power and is unlikely to be useful in the presence of sequence data. Prior 

biological information could be very useful for prioritizing variants, but unfortunately its 

abundance and quality are far from being acceptable for meaningful practical use.  

Toghiani et al. (2017) showed that prioritizing SNPs using FST score, a measure of 

genetic differentiation, had the ability to track the majority of influential quantitative trait 

loci (QTL). Chang et al. (2018) reported that using SNPs prioritized based on their FST 

scores resulted in higher accuracy than when all SNP were used. Compared to BayesB 

and BayesC, the proposed prioritization was superior. Furthermore, Chang et al. (2018; 

unpublished results) showed that FST prioritized SNPs could increase accuracy when used 

(weighted or unweighted) in the computation of the genomic relationship matrix (G) with 

a mixed linear framework. Independently of the prioritization methods, the subset of 

selected SNPs will not explain the totality of the genetic variance (GV). In fact, the 

fraction of GV explained by the prioritized SNPs will depend on the heritability, number 

of QTL, and the genetic complexity of the trait. Additionally, accommodating non-

genotyped animals in a multi-step procedure is non-trivial and could limit the utility of 

these prioritization methods. Accounting for the portion of GV that is not explained by 

the prioritized SNPs could be achieved by accommodating a “polygenic” component 

using either pedigree or genomic information. In other words, the breeding value will be 

decomposed into two components: 1) the part explained by the prioritized SNPs and 2) 

the “polygenic” components.  

In this study, a hybrid (multiple regression and variance component) approach 

using FST prioritized SNPs was implemented and compared to GBLUP and Bayesian 

models. Simulated and real data were used for the assessment.  
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Material and Methods 

Simulated Data 

Population structure: Simulation was carried out using QMsim software 

(Sargolzaei and Schenkel, 2009). The simulation process consisted of two steps. In the 

first step, a historical population was generated. This population was initiated with 

10,000 individuals and steadily decreased to 5,000 individuals after 1,000 generations. 

Then, the population size gradually increased for 250 generations to 17,000 individuals. 

The first step is carried out to initialize LD and to establish mutation-drift equilibrium in 

the historical generations. The mating was at random in the historical generations. In the 

second step of simulating the population structure, the founder population was generated 

and labelled as generation zero (G0). In this study, the G0 population was generated from 

the last historical generation based on 1,500 males and 15,000 females. The mating of 

these individuals was random, and no selection was considered at this step. After G0, 

three generations were simulated and the last one (G3) was used to evaluate the proposed 

approach. From G0 to G3, animals were selected based on their estimated breeding 

values (EBVs). Sex ratio in the progeny was maintained at 50% and one progeny per dam 

was assumed throughout. Two quantitative traits, one with low (0.1) and the other with 

moderate (0.4) heritability, were simulated. The true breeding value (TBV) of an 

individual was equal to the sum of the QTL additive effects. Because the inability of the 

QMsim to simulate systematic effects, two fixed effects with 100 and 4 levels were 

simulate separately. Phenotypes were generated by adding fixed effects to the TBVs and 

the random residual terms. The simulation process was replicated five times.  
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Genome structure: A 30-chromosome genome, each with 100 centimorgans (cM) 

in length, was simulated with uniformly distributed 50K SNP markers to mimic a 

medium density marker panel for bovine. Two hundred QTL were simulated with their 

effects generated from uniform distributions to explain a predefined fraction of the total 

genetic variance. Specifically, 40 QTL were assumed to explain 1% to 1.5% of the 

genetic variance each 𝑈~[1, 1.5] and the remaining 160 QTL were simulated from 

𝑈~[0.2, 0.5] so that each of them will explain between 0.2 to 0.5% of the genetic 

variance. Both SNP markers and QTL in all simulated scenarios were assumed to be bi-

allelic, and no marker loci overlapped with the QTLs. Further, it was assumed that both 

SNP markers and QTLs have the same allele frequency in the historical population. The 

desired level of LD between markers was created based on the simulated historical 

population.  

Real Data 

The real data used in this study consisted of weaning weight (WW) records of 

3,012 animals from a Composite Gene Combination breed (CGC; 50% Red Angus, 25% 

Charolais, 25% Tarentaise) born between 2002 and 2011 at USDA-ARS, Fort Keogh 

Livestock and Range Research Laboratory, Miles City, MT (Newman et al. (1993a, 

1993b) The pedigree file consisted of 5,374 animals including 128 sires and 1,723 dams. 

The range of WW records was between 110.22 and 303.91 kg. Moreover, the mean and 

standard deviation of WW records were 209.58 and 30.73 kg, respectively. The 

systematic effects associated with this data consisted of sex (2 classes), feeding treatment 

(2 classes), year of birth (10 classes) and three covariates: age of dam, age at weaning 

weight, and birth weight.  



70 
 

A total of 4,457 CGC animals born between 2001 and 2015 were genotyped with 

a mixture of different density SNP arrays (Table 4.1). Across the different arrays, SNPs 

with call rate smaller than 0.90, minor allele frequency (MAF) less than 0.05, and 

heterozygous deviation greater than 15% from Hardy-Weinberg Equilibrium (HWE) 

were removed. In addition, animals with call rate less than 0.90 were also discarded. 

Number of animals and SNPs remaining after quality control (QC) edits are presented in 

Table 4.1. Animals genotyped with low-density panels were imputed to the 50K SNP 

array using FImpute software (Sargolzaei et al., 2011) where population and pedigree 

information were used in the imputation process. FImpute was implemented using default 

parameters in all imputation analyses. Each group of animals genotyped with a specific 

array was imputed separately. In all cases, animals genotyped with the 50K SNP panel 

were used as reference. Furthermore, SNP markers present in low density arrays but not 

in the 50K SNP array were removed. After imputation, the same QC process indicated 

before was reapplied, resulting in a dataset of 3,902 animals (1,387 males and 2,516 

females) with genotype information on 41,694 SNPs. The total number of animals with 

marker genotypes and WW records was 2,193. 

SNP prioritization via Fst scores 

FST scores (Wright, 1951), a measure of population differentiation, were used to 

prioritize SNPs following Toghiani et al. (2017) and Chang et al. (2018). Briefly, the 

genotyped population was divided into three sub-populations based on the distribution of 

the trait phenotype (below the 10% quantile [S1], between 10 and 90% quantiles [S0], 

and above the 90% quantile [S2]). Subpopulations S1 and S2 were used to estimate the 
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differentiation values using the global FST estimator method proposed by Nei (1973). For 

a given locus, k, the global FST value is calculated as: 

𝐹𝑆𝑇𝑘
=

𝐻𝑇𝑘
− 𝐻𝑆𝑊𝑘

𝐻𝑇𝑘

 

with 𝐻𝑆𝑊𝑘
=

𝐻𝑆1𝑘∗𝑛𝑠1+𝐻𝑆2𝑘∗𝑛𝑠2

𝑛𝑠1+𝑛𝑠2
 , 𝐻𝑇𝑘

= 2 ∗ 𝑝𝑘 ∗ 𝑞𝑘 and 𝐻𝑆𝑖𝑘
= 2 ∗ 𝑝𝑆𝑖𝑘

∗ 𝑞𝑆𝑖𝑘
 

where, 𝑝𝑆𝑖𝑘
 and 𝑞𝑆𝑖𝑘

 are the allele frequencies for locus k in subpopulation i of locus k, 

𝑛𝑠1 and 𝑛𝑠2 are the number of individuals per first and second subpopulation, 𝐻𝑆𝑊𝑘
 is the 

weighted mean heterozygosity across the first and second sub-populations and 𝐻𝑇𝑘
 is the 

heterozygosity of the pooled subpopulations for locus k. In this study, FST threshold 

values were heuristically determined to select SNPs under selection pressure. For that 

purpose, only top 97.5% and 99% quantiles of the FST distribution were used in the 

association model for the hybrid method in both simulated and real data sets.  

Data analysis 

The following mixed linear model that includes the prioritized SNPs and the 

polygenic components was used:  

𝒚𝒊 = 𝒘𝒊𝜶 + 𝒙𝑖𝜷 + 𝒖𝒊 + 𝒆𝒊  [1] 

where 𝒚𝒊 is the phenotype for animals i, 𝜶 is the vector of systematic effects, 𝜷 is the 

vector of the effects of the prioritized SNPs, 𝒖𝒊 and 𝒆𝒊 is the polygenic and random 

residual effects for animal i, respectively. 𝒙𝑖 is the vector of genotypes of the prioritized 

SNPs for animal i and 𝒘𝒊 is a known incidence vector relating the phenotype to the 

systematic effects.  
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Hierarchical Bayesian implementation 

Let 𝑣𝑖 = 𝒙𝑖𝜷, the model in equation [1] can be implemented using a two-stage 

hierarchical Bayesian model. In the first stage, the conditional distribution of data (𝒚) 

adjusted for the genomic contributions, 𝒗̂ = (𝑣1, 𝑣2, … , 𝑣𝑛), is given by: 

(𝒚 − 𝒗̂)|𝜶, 𝒖, 𝜎𝑒
2~𝑁(𝑾𝜶 + 𝒁𝒖, 𝑰𝜎𝑒

2) [2] 

where (𝒚 − 𝒗̂) is the vector of adjusted phenotypes, 𝜶 is the vector of systematic effects,  

𝒖 is the vector to polygenic effects distributed as 𝒖~𝑁(𝟎, 𝑨𝜎𝑢
2). 𝜎𝑢

2 and 𝜎𝑒
2 are the is the 

polygenic and residual variances, respectively. W and Z are known incidence matrices 

with the appropriate dimensions.   

In the second stage, the conditional distribution of data adjusted for the systematic 

and polygenic effects follows a multivariate normal given by: 

 

𝒚∗|𝑿, 𝜷, 𝜎𝑒
2~𝑁(𝑯𝒗, 𝑰𝜎𝑒

2)  [3] 

 

where 𝒚∗ = (𝒚 − 𝑾𝜶̂ − 𝒁𝒖̂), 𝒗 = (𝑣1, 𝑣2, … 𝑣𝑛)′, X is the matrix of genotypes of the 

prioritized SNPs, and H is a known incidence matrix. 

The estimated breeding value base on the hybrid model is given by: 

𝐸𝐵𝑉𝑖 = 𝒙𝒊𝜷̂ + 𝑢̂𝑖 

where  𝛽̂ is the vector of estimated effects for the prioritized SNPs and 𝑥𝑖 is the 

associated vector of genotypes for animal i, and 𝑢̂𝑖 is the polygenic effect for animal i.  

The Bayesian implementation of the model presented in equations [1-3] is 

straightforward, as all conditional distributions were in closed forms. To evaluate the 

performance of the hybrid model, the real and simulated data sets were analyzed BayesB 
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and BayesC (with π set equal to 0.99 and 0.975) using Gensel software (Fernando and 

Garrick, 2009) and GBLUP using BLUPf90 program (Misztal et al., 2016) were 

compared. For the simulated data, 10K and 5K animals were randomly assigned to the 

training and validation sets, respectively. For the real data, a five-fold cross validation 

was implemented where each time 80% of the data was used for training and the 

remaining 20% of the data was used for validation. Accuracy was calculated as the 

correlation between true and estimated breeding values for the simulated data. For the 

real data, accuracy was calculated as the correlation between the adjusted phenotypes (for 

the systematic effects) and the estimated breeding values.   

Results and Discussions 

Tables 4.2 and 4.3 present the estimates of the variance components and 

heritabilities using the different approaches. When the true heritability in the base 

population was equal to 0.4, the highest estimates of genetic variance and heritability 

were obtained using the GBLUP method where all 50K SNPs were included in the 

calculation of the genomic relationship matrix. For the hybrid method, BayesB, and 

BayesC, the portion of genetic variance explained by genomic contribution increased 

with the increase in the number of selected SNPs (Table 4.2). The estimates of the 

genetic variance explained by the selected SNPs ranged from 0.21 to 0.23 when only 1% 

of the SNPs were included in the association model and 0.27 to 0.28 when 2.5% of the 

SNPs were prioritized. However, for the hybrid method the estimates of the polygenetic 

variance were 0.10 and 0.03 when 1 and 5% of SNPs were prioritized, respectively. Thus, 

the estimated genetic variance using the hybrid method ranged between 0.30 and 0.31 

which is very similar to the estimate obtained using GBLUP. When π was equal to 0.99, 



74 
 

the hybrid method estimate of genetic variance was substantially higher than estimates 

obtained using BayesB (0.23) and BayesC (0.22). In all cases, there was an 

overestimation of the residual variance due to the underestimation of the genetic 

variance. This overestimation ranged between 0.07 for GBLUP to 0.16 for BayesB (π = 

0.99). For the hybrid method, the estimate of residual variance was equal to 0.69 (Table 

4.2). Due to the underestimation of the genetic variance and the overestimation of the 

residual variance, the heritability was severely underestimated, especially when only 1% 

of the SNPs were prioritized. 

For the scenario where the heritability was equal to 0.1, a similar trend was 

observed. The genetic variance and heritability were underestimated, and the residual 

variance tended to be overestimated, except when the hybrid model was used (Table 4.3). 

Across two different heritability scenarios, the proposed hybrid model with 1 and 2.5% of 

prioritized SNPs captured a larger portion of the genetic variance compared to their 

Bayesian model counterparts (Tables 4.2 and 4.3). Several studies using livestock 

genomic data (Tsuruta et al., 2011; Jensen et al., 2012; Haile-Mariam et al., 2013) have 

noted that the fraction of the genetic variance explained by the markers in the panel 

ranged from 35 to 96%. Obviously, the variation depends on the complexity of the trait, 

the heritability, and the number of SNP markers in the panel. In human, the percentage of 

the genetic variance explained by the SNP markers tends to be smaller than in livestock 

and plant applications. In fact, Yang et al. (2010) showed that at best only 45% of 

additive genetic variance in human height was explained by approximately 300K SNP 

markers. These differences are mainly due to the smaller effective population size in 

selected livestock populations compared to humans. Additionally, selected livestock 
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populations, especially in dairy cattle, are well structured and stratified. In this study, 

80% of the QTL were assumed to explain between 0.2 and 0.5% of the genetic variance 

each. It is very likely that a large portion of these QTL were not effectively tagged by the 

selected SNPs which explain the underestimation of the genetic variance.  

Accuracy, defined as the correlation between true and predicted breeding values, 

when the heritability was equal to 0.4 and 0.1 is presented in Figures 4.1 and 4.2, 

respectively. When the heritability was equal to 0.4, the proposed hybrid model increased 

accuracy by 11.1 to 11.3%, 9.7 to 10.4%, and 25.6 to 30.4% compared to BayesB, 

BayesC and GBLUP models, respectively (Figure 4.1). When the heritability was equal 

to 0.1, GBLUP was superior to BayesB, BayesC, and the hybrid method for π equal to 

0.99 (Figure 4.2). However, when π was equal 0.975, the prediction hybrid model 

outperformed all the other methods with a superiority ranging from 7 (compared 

GBLUP) to 11.2% (compared to GBLUP).  

Several factors were reported to affect the accuracy of GS (Hayes et al., 2009; 

Zhong et al., 2009; Daetwyler et al., 2012). These factors include the genetic architecture 

of the trait, the relatedness between training and validation populations, the marker 

density, the size of training population, the LD between SNPs and QTL, and the 

heritability of the trait. Some of these factors correlate directly with the fraction of the 

genetic variance to be explained by the SNP markers. Thus, the superiority of the hybrid 

method, at least compared to BayesB and BayesC, could be due to the fact that a larger 

number of QTL were tracked using the FST scores. This argument does not seem to be 

valid when comparing the results between the hybrid and GBLUP methods. However, 

Chang et al. (2018) showed that accuracy depends on a balance between the percentage 
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of genetic variance explained by the prioritized SNPs and the genetic similarity. Thus, 

although GBLUP explained a slightly larger portion of the genetic variance, it is likely 

that the hybrid method resulted in a much higher genetic similarity. Additionally, the 

GBLUP method assumes that all the genetic variance is captured by the SNPs. A 

violation of such assumption will result in lower prediction accuracy (Kemper and 

Goddard, 2012). BayesB and BayesC are variable selection approaches that work well for 

traits with a genetic architecture that includes large or moderate effect SNPs (Wimmer et 

al., 2013). However, in presence of small QTL effect, identifying relevant linked SNPs 

(based on magnitude of their effects) becomes more challenging. On the other hand, the 

hybrid method does not select markers based on their effects but rather based on the 

change of their allele frequencies due to selection pressure. This difference in the 

prioritization is extremely important in presence of small QTL effect.  

Table 4.4 presents the estimates of the variance components and heritability using 

the real data. Estimates of WW heritability ranged between 0.25 and 0.27 using Bayesian 

methods. As with the simulated data, the estimated genetic variance and heritability 

increased with the increase in the number of prioritized SNPs. Similar pattern was 

observed using the hybrid method, although estimates of the total genetic variance and 

heritability were higher compared to the Bayesian methods. Using GBLUP, the estimate 

of heritability was higher compared to the Bayesian methods but slightly smaller 

compared to the hybrid approach (Table 4.4). Across the different methods, estimates of 

heritability were within the range of estimates reported in the literature (de Mattos et al., 

2000; Vargas et al., 2000; Pico et al., 2004; Gutiérrez et al., 2007; Dezfuli and 

Mashayekhi, 2009; Vergara et al., 2009; Chud et al., 2014). Accuracy, defined as the 
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correlation between adjusted phenotypes and predicted breeding values based on a five-

fold cross validation, is presented in Figure 4.3. The proposed hybrid approach 

outperformed all competing methods with an accuracy of 0.36. Bayesian methods and 

GBLUP had an accuracy of around 0.27.  

Table 4.5 presents the CPU time and peak memory required by the different 

methods. The hybrid model has significantly lower computational costs. In fact, when 

2.5% of the SNPs were prioritized, it required only 120 minutes of CPU time compared 

to 745, 1011, 954 minutes for GBLUP, BayesB and BayesC, respectively. Comparisons 

were based on a single chain of 100K rounds for the Bayesian and hybrid methods. 

Compared to the Bayesian methods, the hybrid approach reduced the CPU time by 6 to 

15 folds and this superiority could further increase in presence of higher density panels 

or/and larger number of genotyped animals. Compared to GBLUP, the hybrid model 

reduced the computational cost by 6 to 11 folds. It is expected that the computational 

advantage of the hybrid method is increased with the increase of the number of 

genotyped animals due the significant increase in the costs of inverting (or approximating 

the inverse) of the G matrix for the GBLUP method. Regarding the peak memory 

required to implement, the hybrid method required an insignificant amount of memory 

compared to the Bayesian and GBLUP methods. In fact, it only required 5-10% and 0.5-

1% of the peak memory needed by the Bayesian methods and GBLUP, respectively 

(Table 4.5).  
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Conclusions 

The substantial increase in the number of genomic variants or/and genotyped 

individuals is creating serious challenges for the implementation of genomic selections. 

The lack of improvement in prediction accuracy using high density or sequence data 

clearly highlights the need to prioritize markers to be included in the association model or 

to compute the genomic relationship matrix. Continuous increase in the genotyped 

animals is further complicating the inversion of G. Variable selection models are 

computationally intensive. Furthermore, they prioritize SNPs based on their relative 

effects, which is inefficient in presence of high density marker panels or/and when large 

and moderate effect QTL explain only a small fraction of the total genetic variance. SNP 

prioritization based on changes in allele frequencies due to selection is an attractive 

alternative. However, in presence of large number of small effect QTL, a hybrid method 

that makes use of the prioritized SNPs and a polygenic component could be 

advantageous. Using simulated and real data, the hybrid model was superior to the 

competing methods in terms of accuracy of prediction. Furthermore, the proposed hybrid 

model has low computational costs compares to BayesB, BayesC and GBLUP. It requires 

no inversion of any matrix other than the average relationship matrix.  
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Table 4.1. Distribution of typed animals across the different genotyping platforms before 

and after quality control (QC) 

 Raw Data1 QC Data2 

 # Animals # SNP # Animals # SNP 

50K SNP array  
64 54,166 

88 42,264 
24 54,209 

27K SNP array 

380 25,856 

790 8,126 
14 25,948 

96 25,890 

326 25,887 

20K SNP array 396 19,642 379 7,945 

9K SNP array 

391 8,727 

909 6,754 185 8,781 

344 8,777 

3K SNP array 

1,944 2,866 

1,739 2,727 197 2,877 

96 2,882 
1 4,457 genotyped animals before the QC  
2 3,902 genotyped animals remained after the QC  
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Table 4.2. Estimates of variance components and heritability (averages over 5 replicates) 

using different methods for a simulated trait with ℎ2 = 0.4 

 

𝝈𝒈
𝟐  𝝈𝒑𝒐𝒍𝒚

𝟐  𝝈𝒆
𝟐 h2 

hybrid.fst(0.99) 0.21 0.10 0.69 0.31 

hybrid.fst(0.975) 0.27 0.03 0.69 0.30 

BayesB(0.99) 0.23 -- 0.76 0.23 

BayesB(0.975) 0.28 -- 0.70 0.29 

BayesC(0.99) 0.22 -- 0.76 0.22 

BayesC(0.975) 0.28 -- 0.70 0.29 

GBLUP 0.31 --  0.67 0.32 

𝝈𝒈
𝟐= genomic variance;𝝈𝒑𝒐𝒍𝒚

𝟐 = polygenic variance; 𝝈𝒆
𝟐= residual variance; h2= heritability. 
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Table 4.3. Estimates of variance components and heritability (averages over 5 replicates) 

using different methods for a simulated trait with ℎ2 = 0.1 

 

𝝈𝒈
𝟐  𝝈𝒑𝒐𝒍𝒚

𝟐  𝝈𝒆
𝟐 h2 

hybrid.fst(0.99) 0.077 0.025 0.865 0.105 

hybrid.fst(0.975) 0.080 0.009 0.851 0.095 

BayesB(0.99) 0.074 -- 0.926 0.074 

BayesB(0.975) 0.087 -- 0.912 0.087 

BayesC(0.99) 0.065 -- 0.931 0.065 

BayesC(0.975) 0.076 -- 0.920 0.076 

GBLUP 0.077 -- 0.912 0.078 

𝝈𝒈
𝟐= genomic variance;𝝈𝒑𝒐𝒍𝒚

𝟐 = polygenic variance; 𝝈𝒆
𝟐= residual variance; h2= heritability. 
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Table 4.4. Estimates of variance components and heritability for weaning weight using 

different methods 

 

𝝈𝒈
𝟐  𝝈𝒑𝒐𝒍𝒚

𝟐  𝝈𝒆
𝟐 h2 

hybrid.fst(0.99) 76.35 71.35 306.12 0.325 

hybrid.fst(0.975) 80.13 66.56 299.87 0.328 

BayesB(0.99) 105.80 -- 326.27 0.245 

BayesB(0.975) 112.44 -- 319.24 0.260 

BayesC(0.99) 115.01 -- 325.23 0.261 

BayesC(0.975) 119.17 -- 320.99 0.271 

GBLUP 128.08 -- 306.69 0.295 

𝝈𝒈
𝟐= genomic variance;𝝈𝒑𝒐𝒍𝒚

𝟐 = polygenic variance; 𝝈𝒆
𝟐= residual variance; h2= heritability. 
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Table 4.5. CPU time and peak memory of the different methods used to implement 

genomic selection (simulated data; ℎ2 = 0.4) 

 

CPU (min)1 Peak memory 

BayesB(0.99) 964.03 2.39 

BayesB(0.975) 1011.48 2.39  

BayesC(0.99) 756.22 2.39  

BayesC(0.975) 954.47 2.39  

GBLUP 745.52 26.65  

hybrid.fst(0.99) 65.02 0.125  

hybrid.fst(0.975) 119.37 0.24  
1 Bayesian and hybrid method were implemented based on a single chain of 100,000 

rounds 

 

 

 

 

 

 

 

 

 

 

 



89 
 

 

 

Figure 4.1. Accuracy of estimated breeding values (average over 5 replicates) using 

different methods for a simulated trait with ℎ2 = 0.4 
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Figure 4.2. Accuracy of estimated breeding values (average over 5 replicates) using 

different methods for a simulated trait with ℎ2 = 0.1 
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Figure 4.3. Accuracy of estimated breeding values for weaning weight in a composite 

beef breed using different methods 
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CHAPTER 5 

EXTENSION OF THE HYBRID MODEL TO ACCOMMODATE NON-GENOTYPED 

ANIMALS 3

                                                           
3 Toghiani, S., L.Y. Chang, S.E. Aggrey, and R. Rekaya. To be submitted to Livestock Science. 
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Abstract 

The dramatic advance in genotyping and sequencing technology has greatly 

reduced the complexity and cost of genotyping. This has led to a significant increase in 

the number of genotyped variants and typed individuals, resulting in major complications 

for the implementation of genomic selection (GS). Furthermore, continuous increase in 

the number of variants did not improve the accuracy of GS. Increase in the number of 

genotyped animals severely impacted the cost of inverting the genomic relationship 

matrix (G). In spite of the substantial increase in the number of genotyped animals, the 

majority of animals included in any genetic evaluation are not genotyped. Including these 

animals in a genomic evaluation requires the imputation of their missing genotype using 

linear regression methods. To overcome these issues, the hybrid approach was extended 

to accommodate non-genotyped animals. Only markers prioritized using the fixation 

index (FST) scores were included in the association model. Because the prioritize markers 

are unlikely to account for all the genetic variance, a polygenic component was added. 

An asymmetric prior was used to account for the genomic contribution of the prioritized 

marker for non-genotyped animals with the need to impute their missing genotypes. The 

effectiveness of the hybrid model with the extension to non-genotyped animals was 

assessed by comparing its performance to ssGBLUP using simulated data sets. A trait 

with heritability equal to 0.1 or 0.4 was simulated. Two hundred QTL sampled from 

predefined uniform distributions were generated. Either 1 or 2.5% of total SNPs were 

prioritized based on the quantile distribution of the FST scores. When the heritability was 

equal to 0.4, the proposed hybrid model resulted in an accuracy of 0.46-0.48 compared to 

0.29 for the ssGBLUP model. When the heritability was equal to 0.1, the hybrid model 
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outperformed ssGBLUP with a superiority ranging from 15 to 27%. The hybrid method 

required only a small fraction of the computation needed to implement ssGBLUP.  
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Introduction 

The theoretical basis of genomic selection (GS) was represented by Meuwissen et 

al. (2001). However, practical implementation of GS was not possible until 2008 when 

the BovineSNP50k chip panel became available for dairy cattle (Matukumalli et al., 

2009). The use of SNP information allows for the prediction of genomically enhanced 

breeding values (GEBV) through the use of marker information, pedigree and phenotypic 

records. The rapid decrease in genotyping and whole genome sequencing costs led to a 

spectacular increase in the number of genotyped variants and animals. In fact, García-

Ruiz et al. (2016) analyzed a dairy data set consisting of more than one million genotyped 

animals. Decker (2015) anticipated that around 3 million genotyped Holstein by 2021. 

These simultaneous increases in the number of variants and genotyped individuals 

created a major computational challenge for GS implementation. This challenge affects 

both the mixed linear (ML) and the linear regression (LR) implementation approaches. 

When the number of genotyped animals is in the order of the millions, the direct 

inversion of the genomic relationship matrix, needed for the implementation of the ML 

approach, becomes impossible. Although some approximations for the inverse have been 

presented (Misztal et al., 2014), their optimality is data driven. Increase in the number of 

genotyped variants, especially those with low minor allele frequency, could negatively 

impact the quality of the genomic relationship matrix and ultimately the GS 

implementation using ML. In fact, using high-density panels showed no improvement in 

prediction accuracy compared to medium-density chips (Harris and Johnson, 2010; 

VanRaden et al., 2013). These problems are not limited to the ML approach. In fact, they 

are even more extreme for LR methods, especially as a result of the increase in the 
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number of genotyped variants. Including all variants of high-density panels or sequence 

data in the association model using LR approaches is statistically impractical and 

computationally cumbersome. Variable selection models (e.g., BayesB and BayesC), 

which use the magnitude of the marker effect to prioritize relevant SNPs, did not reduce 

the computational cost or improve accuracy significantly. In fact, in presence of high 

density marker data, these methods suffer from severe lack of statistical power. Using 

external information to prioritize SNP markers is an attractive alternative as it will 

improve the statistical power of LR methods. Unfortunately, the availability and quality 

of such data is at best limited. Furthermore, results by (MacLeod et al., 2016; Fang et al., 

2017) showed an insignificant increase of accuracy using gene expression data as 

external information to prioritize SNPs.  

Despite the significant increase in the number of genotyped animals, the vast 

majority of animals included in any genetic evaluation are non-genotyped animals. 

Although the ML approach can accommodate non-typed animals in a straightforward 

manner, that it is not the case for LR methods.  Fernando et al. (2014) proposed a way to 

accommodate non-genotyped animals for GS procedure using LR approaches. Their 

study proposed predicting the GEBV of non-genotyped animals through the imputation 

of their missing genotypes using the information available of the typed animals. Although 

the idea is sound, it is computationally very demanding, making its implementation in 

real applications almost impossible.  

Toghiani et al. (2017) showed that using FST, a measure of population 

differentiation, the majority of significant QTL could be tracked using the prioritized 

SNPs. Chang et al. (2018) reported higher prediction accuracy using only the FST 
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prioritized in the association model instead of including all SNPs. Furthermore, Toghiani 

et al. (2018; unpublished results) reported that using the hybrid model resulted in higher 

prediction accuracy compared to LM and LR approached using only genotyped animals. 

Due to the excess of non-genotyped over genotyped animals in commercial farms, 

extending the hybrid model to accommodate non-genotyped animals becomes more 

applicable for genetic evaluation.  

The objective of this study is to extend the hybrid model to accommodate non-

genotyped animals for implementation of GS using a two-stage hierarchical model. 

Furthermore, the effectiveness of this proposed method will be evaluated using 

simulation data and compared to single-step GBLUP.  

Material and Methods 

Simulated Data 

Population structure: Simulation was carried out using QMsim software 

(Sargolzaei and Schenkel, 2009). The simulation process consisted of two steps. In the 

first step, a historical population was generated. This population was initiated with 

10,000 individuals and steadily decreased to 5,000 individuals after 1,000 generations. 

Then, the population size gradually increased for 250 generations to reach 17,000 

individuals. The first step is carried out to initialize LD and to establish mutation-drift 

equilibrium in the historical generations. The mating was at random in the historical 

generations. In the second step of the simulation of the population structure, the founder 

population was generated and labelled as generation zero (G0). In this study, the G0 

population was generated from the last historical generation based on 1,500 males and 
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15,000 females. The mating of these individuals was at random and no selection was 

considered at this step. After G0, three generations were simulated and the last one (G3) 

was used to evaluate the proposed approach. From G0 to G3, animals were selected based 

on their estimated breeding values (EBVs). Sex ratio in the progeny was maintained at 

50% and one progeny per dam was assumed throughout. Two quantitative traits, one with 

low (0.1) and the other with moderate (0.4) heritability, were simulated. The true 

breeding value (TBV) of an individual was set equal to the sum of the QTL additive 

effects. Because the inability of the QMsim to simulate systematic effects, two fixed 

effects with 100 and 4 levels were simulate separately. Phenotypes were generated by 

adding fixed effects to the TBVs and the random residual terms. The simulation process 

was replicated five times.  

Genome structure: A 30-chromosome genome, each with 100 centimorgans (cM) 

in length, was simulated with uniformly distributed 50K SNP markers to mimic a 

medium density marker panel for bovine. Two hundred QTL were simulated with their 

effects generated from uniform distributions to explain a predefined fraction of the total 

genetic variance. Specifically, 40 QTL were assumed to explain 1% to 1.5% of the 

genetic variance, each 𝑈~[1, 1.5], and the remaining 160 QTL were simulated from 

𝑈~[0.2, 0.5] so that each of them will explain between 0.2 to 0.5% of the genetic 

variance. Both SNP markers and QTL in all simulated scenarios were assumed to be bi-

allelic, and no marker loci overlapped with the QTL. Further, it was assumed that both 

SNP markers and QTL have the same allele frequency in the historical population. The 

desired level of LD between markers was created based on the simulated historical 

population.  
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SNP prioritization via Fst scores 

FST scores (Wright, 1951), a measure of population differentiation, were used to 

prioritize SNPs following Toghiani et al. (2017) and Chang et al. (2018). Briefly, the 

genotyped population was divided into three sub-populations based on the distribution of 

the trait phenotype (below the 10% quantile [S1], between 10 and 90% quantiles [S0], 

and above the 90% quantile [S2]). Subpopulations S1 and S2 were used to estimate the 

differentiation values using the global FST estimator method proposed by Nei (1973). For 

a given locus, k, the global FST value is calculated as: 

𝐹𝑆𝑇𝑘
=

𝐻𝑇𝑘
− 𝐻𝑆𝑊𝑘

𝐻𝑇𝑘

 

with 𝐻𝑆𝑊𝑘
=

𝐻𝑆1𝑘∗𝑛𝑠1+𝐻𝑆2𝑘∗𝑛𝑠2

𝑛𝑠1+𝑛𝑠2
 , 𝐻𝑇𝑘

= 2 ∗ 𝑝𝑘 ∗ 𝑞𝑘 and 𝐻𝑆𝑖𝑘
= 2 ∗ 𝑝𝑆𝑖𝑘

∗ 𝑞𝑆𝑖𝑘
 

where, 𝑝𝑆𝑖𝑘
 and 𝑞𝑆𝑖𝑘

 are the allele frequencies for locus k in subpopulation i of locus k, 

𝑛𝑠1 and 𝑛𝑠2 are the number of individuals per first and second subpopulation, 𝐻𝑆𝑊𝑘
 is the 

weighted mean heterozygosity across the first and second sub-populations and 𝐻𝑇𝑘
 is the 

heterozygosity of the pooled subpopulations for locus k. In this study, FST threshold 

values were heuristically determined to select SNPs under selection pressure. For that 

purpose, only top 97.5% and 99% quantiles of the FST distribution were used in the 

association model for the hybrid method in simulated data sets.  

Data analysis 

The following mixed linear model that includes the prioritized SNPs and the 

polygenic components was used to accommodate non-genotyped animals:  
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𝒚𝒊 = 𝒘𝒊𝜶 + 𝒗𝒊 + 𝒖𝒊 + 𝒆𝒊       [1] 

where 𝒚𝒊 is the phenotype for animal i, 𝜶 is the vector of systematic effects, 𝒘𝒊 is a 

known incidence vector relating the phenotype to systematic effects of genotyped and 

non-genotyped animals, 𝒖𝒊 and 𝒆𝒊 is the polygenic and random residual term, 

respectively. The term 𝒗𝒊 = 𝒙𝒊𝜷 is the genomic contribution of the prioritized SNPs, 

where 𝒙𝒊 is the vector of genotypes of the prioritized SNPs for animal i and 𝜷 is the 

vector of prioritized SNP effects. 

The mixed linear model presented in equation [1] was extensively used in the 

field of animal breeding and it presents no major implementational challenges when all 

incidence vectors and matrices are completely known. In our case, the genotypes of the 

prioritized SNPs for the non-typed animals are unknown. Thus, the genomic contribution 

for non-genotyped animals cannot be computed. 

Hierarchical Bayesian implementation 

The model in equation [1] can be implemented using a two-stage hierarchical 

Bayesian model. In the first stage, the conditional distribution of data (𝒚) adjusted for the 

genomic contributions, 𝒗̂ = (𝑣1, 𝑣2, … , 𝑣𝑛), is given by: 

(𝒚 − 𝒗̂)|𝜶, 𝒖, 𝜎𝑒
2~𝑁(𝑾𝜶 + 𝒁𝒖, 𝑰𝜎𝑒

2)   [2] 

where (𝒚 − 𝒗̂) is the vector of adjusted phenotypes, 𝜶 is the vector of systematic effects,  

𝒖 is the vector to polygenic effects distributed as 𝒖~𝑁(𝟎, 𝑨𝜎𝑢
2). 𝜎𝑢

2 and 𝜎𝑒
2 are the is the 

polygenic and residual variances, respectively. 𝑾 and 𝒁 are known incidence matrices 

with the appropriate dimensions.   
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In the second stage, the conditional distribution of data adjusted for the systematic 

and polygenic effects follows a multivariate normal given by: 

𝒚∗|𝑿, 𝜷, 𝜎𝑒
2~𝑁(𝑯𝒗, 𝑰𝜎𝑒

2)        [3] 

where 𝒚∗ = (𝒚 − 𝑾𝜶̂ − 𝒁𝒖̂), 𝒗 = (𝑣1, 𝑣2, … 𝑣𝑛)′, 𝑿 is the matrix of genotypes of the 

prioritized SNPs, and 𝑯 is a known incidence matrix. 

Let 𝒚∗ = (𝒚1
∗ , 𝒚2

∗ ) be the vector of adjusted (for the systematic effects) phenotypes 

for the genotyped and non-genotyped animals and 𝒗 = (𝒗𝟏, 𝒗𝟐) be the corresponding 

vectors of the genomic contribution of genotyped and non-genotyped animals 

respectively, where 𝒗𝟏 = (𝑣1, 𝑣2, … 𝑣𝑛1) and 𝒗𝟐 = (𝑣𝑛1+1, 𝑣𝑛1+2, … 𝑣𝑛). The adjusted 

phenotypes for the genotyped and non-genotyped animals could be written as: 

𝒚𝟏
∗ = 𝑯𝟏𝒗𝟏 + 𝒆𝟏 

𝒚𝟐
∗ = 𝑯𝟐𝒗𝟐 + 𝒆𝟐      

The model for 𝒚𝟏
∗  is straightforward. However, the model for the non-genotyped 

animals (𝒚𝟐
∗ ) is not identifiable.  

 Let 𝒗1 = 𝑿𝟏𝜷 be the vector of genomic contributions of the prioritized SNPs for 

the genotyped animals where 𝑿𝟏 is the matrix of genotypes. To make the model for 𝑦2
∗ 

identifiable, the following multivariate normal prior was assumed for 𝒗𝟏 and 𝒗𝟐  

𝑝(𝒗𝟏, 𝒗𝟐|𝑨)~𝑵(𝟎, (𝑨. 𝑫)𝝈𝒂
𝟐)  [4] 

where 𝑨 = [
𝑨𝟏𝟏 𝑨𝟏𝟐

𝑨𝟐𝟏 𝑨𝟐𝟐
] is the average additive relationship matrix, 𝑫 = [

𝛾𝑰𝒏𝟏 𝟎
𝟎 𝑰𝒏𝟐

] is a 

diagonal matrix, and 𝝈𝒂
𝟐 is the part of the genetic variance explained by the prioritized 

SNPs. 𝑰𝒏𝟏 and 𝑰𝒏𝟐 are the identity matrix with dimension 𝑛1 (number of genotyped 
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animals) and 𝑛2 (number of non-genotyped animals). Using the joint prior in equation 

[4], the resulting system of equations at the second stage of the model is given by: 

               [𝑯′𝑹−𝟏𝑯 + 𝑫−𝟏𝑨−𝟏𝜎𝑎
−2] [

𝒗1

𝒗2
] = [𝑯′𝑹−𝟏𝒚∗]    [5] 

Replacing 𝑫−𝟏 in equation [5] and multiplying it with the inverse of the matrix 𝑨 leads 
to: 

(𝑯′𝑹−𝟏𝑯 + [
𝟏

𝛾⁄ 𝑨𝟏𝟏 𝟏
𝛾⁄ 𝑨𝟏𝟐

𝑨𝟐𝟏 𝑨𝟐𝟐
] 𝜎𝑎

−2) [
𝒗1

𝒗𝟐
] = [𝑯′𝑹−𝟏𝒚∗]  [6] 

 

In general, to make the system of equations in [6] identifiable, it suffices by 

assigning a value to 𝛾. In our specific case, it is preferable that the effects of the 

prioritized SNPs (𝜷) be estimated using only the genotyped animals. That could be 

achieved by letting 𝛾 tend toward infinity (𝛾 → ∞). The genomic contribution of the 

prioritized SNPs for the non-genotyped animal could be obtained as: 

𝝂̂2 = (𝑯𝟐
′𝑹𝟐

−𝟏𝑯𝟐 + 𝑨𝟐𝟐𝜎𝑎
−2)−1[𝑯𝟐

′𝑹𝟐
−𝟏𝒚𝟐

∗ − 𝑨𝟐𝟏𝝂̂1𝜎𝑎
−2]   [7] 

where 𝑹𝟐 = 𝑰𝒏𝟐𝝈𝒆
𝟐 

It is worth mentioning that the proposed hybrid approach requires only the inverse 

of the average additive relationship matrix. Furthermore, the approach could be 

expending by allowing a more general model for the genomic contributions such that 

𝒗1 = 𝑿𝟏𝜷 + 𝜺 with 𝜺 a vector of error term following a specified distribution.  

The Bayesian implementation of the model presented in equations [1-7] is 

straightforward, as all conditional distributions were in closed forms. The simulated data 

was used to evaluate the extended hybrid model for non-genotyped animals and to 
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compare its performance with ssGBLUP using BLUPf90 program (Misztal et al., 2016). 

The simulated data for the third generation was partitioned into 3 groups: 1) 5K animals 

with phenotypes and genotypes (training), 2) 8K animals with phenotypes only and 3) 2K 

animals with genotypes only (validation). Accuracy was calculated as the correlation 

between true and estimated breeding values.  

Results and Discussion 

Tables 5.1 and 5.2 present the estimates of the variance components and 

heritabilities using the different approaches. When the true genetic variance in the base 

population was equal to 0.4, the highest estimates of genetic variance due to genomic 

contribution was obtained using ssGBLUP, where all 50K SNPs were included in the 

calculation of G. For the hybrid method, the portion of genetic variance explained by 

prioritized SNP increased, as expected, with the increase in the number of selected SNPs 

(Table 5.1). For the hybrid method, the estimates of the polygenetic variance decreased 

with the number of selected SNPs due to the increase in the fraction of the total genetic 

variance explained by the prioritized SNPs. The misalignment between the decrease of 

the polygenic and the increase of the genomic variance with the increase of the number of 

prioritized SNPs could indicate that the selected SNPs reflect more the phenotypic 

similarity between individuals rather than the additive relationships. The estimated 

genetic variance using the hybrid method ranged between 0.36 and 0.38, which is slightly 

larger than the estimate obtained using ssGBLUP. Across the different models, there was 

a slight tendency of overestimation of the residual variance, likely due to the 

underestimation of the genetic variance. This overestimation ranged between 0.01-0.02 

for hybrid models to 0.04 for ssGBLUP (Table 5.1). Similar trend in the estimates of 
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variance components and heritabilities was observed for the scenario when the simulated 

heritability was equal to 0.1 (Table 5.2). The estimated genetic variance using the hybrid 

method ranged between 0.091 and 0.095, which is similar to the estimate obtained using 

ssGBLUP (0.091). However, the portion of genetic variance explained by the genomic 

contribution decreased slightly with the increase in the number of prioritized SNPs. 

Across two different heritability scenarios, the proposed hybrid model with 1 and 2.5% of 

prioritized SNPs captured a larger portion of the genetic variance compared to the 

ssGBLUP model (Tables 5.1 and 5.2). Several genomic studies explained that the 

proportions of genetic variance detained by SNP markers varied from 35-80% depending 

on the trait and study population (Tsuruta et al., 2011; Jensen et al., 2012; Haile-Mariam 

et al., 2013). The number of SNP markers on the panels more likely explain the amount 

of genetic variance. For instance, Jensen et al. (2012) indicated that using SNP panels 

less than 5K will explain an expected portion of <85% additive genetic variance. 

However, increasing the density of SNPs to 44K rapidly increased the proportion of 

expected genetic variance explained to 96%. In contrast, Yang et al. (2010) demonstrated 

that around 45% of additive genetic variance in human height explained using 300K SNP 

panels. The reason denser SNP marker panels in human captured smaller percentage of 

genetic variance compared to livestock is due to larger effective population size in human 

compared to livestock population.  

Prediction accuracy, defined as correlation between true and estimated breeding 

values, when heritability was equal to 0.4 and 0.1, is presented in Figures 5.1 and 5.2, 

respectively. When the heritability was equal to 0.4, accuracy using ssGBLUP was 0.29 

compared to 0.46 and 0.48 using the proposed hybrid model with 1 and 2.5% of 
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prioritized SNPs, respectively (Figure 5.1). Similarly, when the heritability was equal to 

0.1, accuracy using the proposed method was 15 to 27% higher compared to the 

ssGBLUP model (Figure 5.2). Based on numerous studies, it has been shown that several 

factors affect the accuracy of GS. These factors include the genetic architecture of the 

trait, relatedness between training and validation populations, marker density, size of 

training population, LD between SNPs and QTL and heritability of the trait (Hayes et al., 

2009; Zhong et al., 2009; Daetwyler et al., 2012). In this case, the clear superiority of the 

hybrid method compared to ssGBLUP could be in part due to the relatively large effect of 

the simulated QTL that are easily tagged using FST scores. Toghiani et al. (2017) 

indicated that the functional genomic similarity based on SNP markers identified by FST 

scores reflects the similarity at the selected SNPs. As these SNP markers are prioritized 

based on the intensity of selection pressure they receive, animals with similar genetic 

merit are expected to have higher functional genomic similarity. Thus, although 

ssGBLUP explained similar portion of the genetic variance compared to the hybrid 

model, it is likely that the latter resulted in a much higher genetic similarity. In addition, 

ssGBLUP assumes that the total genetic variance can be expressed by the SNP markers. 

If that is not the case, the accuracy of prediction will be smaller than the expected 

(Kemper and Goddard, 2012). In this study, around half of the genetic variance was 

explained by 80% of the QTL with effects ranging between 0.2 and 0.5% of the genetic 

variance. Therefore, in the presence of small QTL effect, identifying relevant linked 

SNPs based on the magnitude of their effects becomes more challenging. Prioritized SNP 

markers using the hybrid method are based on change in allele frequency, due to 

selection pressure, but not directly of the effect of the SNP. This difference in the 
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prioritization for the hybrid model is extremely important in the presence of small QTL 

effect and could explain, in part, the higher accuracy against ssGBLUP (Fig 5.1 and 5.2). 

Conclusions 

The substantial increase in the density of marker panels and the number of 

genotyped animals is creating significant challenges implementing genomic selection. 

Accommodating non-genotyped animals is essential in order to eliminate potential 

selection bias. All these factors create challenges of different magnitude for the different 

approaches used to implement genomic selection. High-density marker panels or 

sequence data will greatly increase the computational costs of LR models and limit the 

utility of Bayesian variable selection methods such as BayesB and BayesC due to lack of 

statistical power. Accommodating non-genotyped animals will become practically 

impossible. For linear mixed model based approach, the increase in the number of 

variants does not present a major challenge, at least from a computational perspective. 

However, the increase in the number of genotyped animals will make the direct inversion 

of genomic relationship matrix impossible. Approximating the inverse is a data driven 

process and, thus, its optimality or even adequacy is not guaranteed. A potential practical 

solution could be through the substantial reduction in the number of markers in the 

association model, eliminating the need to impute missing genotypes for non-typed 

animals, and the avoidance of the construction and inversion of the genomic relationship 

matrix. The hybrid method presented in this study seems to have successfully tackled all 

these challenges. At a fraction of the computational costs, the hybrid method resulted in 

higher accuracy compared to ssGBLUP. The results of this study are based on simulated 

data with predefined distributions for the QTL effects and need to be validated in more 
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diverse simulation scenarios. However, the results of these studies and those of Chang et 

al. (2018) seem to indicate the competitiveness of the hybrid method. 
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Table 5.1. Estimates of variance components and heritability (averages over 5 replicates) 

using different methods for a simulated trait with ℎ2 = 0.4 

 

𝝈𝒈
𝟐  𝝈𝒑𝒐𝒍𝒚

𝟐  𝝈𝒆
𝟐 h2 

hybrid.fst(0.99) 0.22 0.16 0.62 0.38 

hybrid.fst(0.975) 0.26 0.10 0.61 0.37 

ssGBLUP 0.34 --  0.64 0.34 

𝝈𝒈
𝟐= genomic variance;𝝈𝒑𝒐𝒍𝒚

𝟐 = polygenic variance; 𝝈𝒆
𝟐= residual variance; h2= heritability. 
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Table 5.2. Estimates of variance components and heritability (averages over 5 replicates) 

using different methods for a simulated trait with ℎ2 = 0.1 

 

𝝈𝒈
𝟐  𝝈𝒑𝒐𝒍𝒚

𝟐  𝝈𝒆
𝟐 h2 

hybrid.fst(0.99) 0.062 0.033 0.882 0.097 

hybrid.fst(0.975) 0.060 0.031 0.876 0.094 

ssGBLUP 0.091 --  0.897 0.092 

𝝈𝒈
𝟐= genomic variance;𝝈𝒑𝒐𝒍𝒚

𝟐 = polygenic variance; 𝝈𝒆
𝟐= residual variance; h2= heritability. 
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Figure 5.1. Accuracy of estimated breeding values (average over 5 replicates) using 

different methods for a simulated trait with ℎ2 = 0.4 
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Figure 5.2. Accuracy of estimated breeding values (average over 5 replicates) using 

different methods for a simulated trait with ℎ2 = 0.1 
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CHAPTER 6 

CONCLUSIONS 

  Using either high-density (HD) marker panels or next generation sequence (NGS) 

data resulted in no significant improvement in the accuracy of genomic selection (GS). 

This lack of improvement of the accuracy of GS is not due to the uselessness of HD and 

NGS data rather than the limitation of currently used methods for implementation of GS. 

Including all variants of HD and NGS simultaneously in the association model will lead 

to a dramatic increase in the number of unknown parameters and a substantial reduction 

in statistical power. Increase in the number of genotyped animals has substantially 

complicated the inversion of the genomic relationship matrix (G). Thus, reducing the 

number of variants to include in the association model and the elimination of the need to 

invert the G are needed to harness the full benefits of HD and NGS data. 

SNP prioritization using fixation index (FST) is an attractive tool to identify 

marker under selection pressure based on the change of their allele frequencies. In this 

study, using the 97.5% quantile of the FST distribution to prioritize SNPs captured 

between 40 to 80% of the significant QTL under different simulation scenarios. 

Furthermore, the genomic similarity calculated based on prioritized SNP markers proved 

to be a useful tool for decision-making, phenotype prediction, and genetic selection.  

Increase in the number of genotyped animals has made the direct inversion of the 

genomic relationship matrix (G) impossible. Although some data driven approximations 

of the inverse of G have been proposed, their optimality is not guaranteed. Furthermore, 
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constructing the matrix G using all the available markers is on top of being 

computationally costly it will not improve accuracy and it could even lead to lower 

performance. To overcome these limitations, a hybrid approach that uses only a limited 

number of prioritized variants and a polygenic component in the association model was 

proposed. Because the prioritized markers will unlikely account for all the genetic 

variance, a polygenic component was added to model. The effectiveness of the hybrid 

model was assessed by comparing its performance to BayesB, BayesC and GBLUP using 

simulated and real data sets for a trait with heritability equal to 0.1 or 0.4. In both 

simulated and real datasets, 1 and 2.5% of total SNPs were prioritized based on the 

quantile distribution of the FST scores. When the heritability was equal to 0.4, the 

proposed hybrid model increased accuracy by 10.1 to 11.5%, 9.2 to 10.1%, and 26.1 to 

29% compared to BayesB, BayesC and GBLUP models, respectively. When the 

heritability was equal to 0.1 and only 1% of the markers were prioritized, GBLUP was 

superior to BayesB, BayesC, and the hybrid method. However, when 2.5 of markers were 

prioritized, the hybrid model outperformed all the other methods with a superiority 

ranging from 3.3 to 7.7%. The hybrid model was extended to accommodate non-

genotyped animals and its performance was assessed compared to ssGBLUP. When the 

heritability was equal to 0.4, the proposed hybrid model resulted in an accuracy of 0.46-

0.48 compared to 0.29 for ssGBLUP model. When the heritability was equal to 0.1, the 

hybrid model was outperformed ssGBLUP with a superiority ranging from 15 to 27%. 

The hybrid method required only a small fraction of the computational needed to 

implement ssGBLUP.  
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Based on these results, the hybrid method seems to have successfully tackling some 

of the challenges facing genomic selection. The results of this study are based on 

simulated data with predefined distributions for the QTL effects and need to be validated 

in more diverse simulation scenarios. However, the results of these studies seem to 

support the competitiveness of the hybrid method. 

  


