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This study consisted of two parts. The first study sought to explore the relationship between bullying 

and depression/suicide using the most frequently used survey given to American youths, the Youth 

Risk Behavior Survey (YRBS), and to employ one of the least used statistical tools for this survey, 

Structural Equation Modeling.  Using a mediated structural model with two possible mediators, 

school violence and teen alcohol abuse and use, school violence was shown to mediate the 

relationship between the dichotomous bullying variable and the depression/suicidality factor, while 

teen alcohol abuse and use was not a mediator.  The second part of the study analyzed sample size 

requirements for a multilevel structural equation model when non-normality was present. This study 

had two subparts: non-normal continuous and non-normal non-continuous/categorical sample size 

requirement. Robust Maximum Likelihood estimator (MLR) was the only estimator to perform well 

at both the between and within level on non-normal continuous data. Weighted Least Square 

estimators did not perform well on categorical data when the sample size was 100 or less.  
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SECTION ONE 

 

 

 

UNDERSTANDING THE BULLYING 

STRUCTURE ON A COMPLEX NATIONAL 

DATA SET 

 



1 

 

 

STUDY ONE INTRODUCTION 

 

Bullying has attracted national media attention as a result of its links to teen suicides and 

episodes of school violence, such as the student-lead massacre at Columbine High-School in 

April 1999. Society’s increased concern for school safety has attracted the attention of 

lawmakers and educators (Larkin, 2007). Prior to the Columbine shooting, the National 

Educational Goals Panel of 1993 had already recognized the problem of school violence, and 

stated as one of its goals that "by the year 2000, every school in America will be free of drugs 

and violence and will offer a disciplined environment that is conducive to learning" (as cited in 

Batche, 1994).  President Clinton included these goals in the Guns Free Schools Act of 1994 

(Skiba, 2000), which created a federal law to expel students for up to a year for bringing 

weapons to schools. After the school shooting at Columbine High-School, state lawmakers 

expanded the Guns-Free School Act to include various infractions such as fighting, swearing, 

and disrupting class (Skiba, 2010).  

To enact President Clinton’s amendment, America’s war on drugs policy, from the 

1980s, was adapted for the school environment as a way to control students (Skiba & Peterson, 

1999). Security measures including metal detectors, maintaining locked school doors at all times, 

having a detail of security staff, as well as automatic expulsion of students for violations of 

school safety rules, created what some call a prison-like environment (Skiba & Peterson, 1999). 

This approach to dealing with school violence backfired. Mayer and Leone (1999) found that a 

policed school environment, which involved the use of metal detectors and on-site police 
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officers, led to more disruption and violence at schools. Conversely, Skiba & Peterson (1999, 

p.8) found that “schools with no reported crime were less likely to have a zero tolerance policy 

(74%) than schools that reported incidents of serious crime (85%).” Just as the war on drugs 

failed to solve society’s ills, the Guns Free School Act did little to solve the problem of school 

violence or create a positive school climate (Gray, 2001).  

The failure of the American school system is contrasted with a successful program in 

Norway. In 1983, Norway faced a similar challenge of teen bullying when three students who 

were targets of violent bullying committed suicide. Enlisting the help of Norwegian researcher 

and professor, Dan Olweus, the Norwegian Ministry of Education initiated a nation-wide 

campaign against bullying that later became known as the Olweus Bullying Prevention Program 

(OBPP). Olweus’ scientific inquiry into bullying provided the academic world a refined 

definition of bullying and strategies on how to effectively reduce bullying. 

 Schools employing Olweus’ methodology were able to reduce bullying by up to 50% 

within a two year period; his procedure became the world’s most widely emulated model 

(Kalman, 2011). The impact of the program depended on the grade level with lower grades, such 

as middle or elementary, taking less than a year to achieve a significant reduction.  High schools 

took longer to show the impact of the program. The OBPP program takes a holistic multilevel 

multidimensional approach. Olweus (1994) concluded that there was a need to restructure the 

entire social environment at the school, class, and individual levels. Specifically, Olweus 

changed the school climate to build a sense of community among students and adults (Olweus, 

2012).  

School climate defines the quality and character of the school by focusing on four 

essential concepts: safety (school norms and rules, physical and emotional safety); relationships 
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(respect for diversity, school connectedness/engagement, social support for adults/teachers, 

social support for students, leadership); teaching and learning (social, emotional, and ethical 

learning, support for learning, professional relationships); and institutional environment 

(physical surrounding) (School Climate Research Summary, 2010). Focusing on these four basic 

concepts allows for a safe school environment; which in turn fosters school attachment and 

support learning (Center for Social and Emotional Education, 2010).  Setting school rules against 

bullying that are known and modeled by all the key stakeholders (e.g. teachers, staff, and 

students) is the glue of a positive school environment. Osterman (2000) noted that conditions in 

the classroom and school influence students' feelings about themselves, which are reflected in 

student engagement and achievement. Blum, McNeely, & Rinehart (2002) concluded that when 

adolescents who felt cared for by their school and considered themselves to be  a part of their 

school were less likely to use substances, engage in violence, or initiate sexual activity at an 

early age. By taking a more comprehensive evidenced based approach to bullying, Olweus’ 

blueprint program reduced both bullying and anti-social behaviors such as vandalism 

(Clemson.edu/Olweus, 2012).  This work showed the importance of school climate for bullying.  

Suicide and Bullying 

There have been only two comprehensive published literature reviews on the research 

connecting bullying and suicide within the past five years. Kim and Leventhal (2008) did a 

systematic literature review of studies on bullying and suicide using six databases: Web of 

Science, SCOPUS, EMBASE, PubMed, PsychInfo, and Ovid Medline.  Of the 867 papers found 

to contain some bullying reference, only 103 addressed the relationship between bullying and 

suicide. Of the 103 papers found, only 37 specifically targeted teens, employed a quantitative 

component, and provided clear descriptions of measures for bullying or suicidal behavior. In the 
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summary of their findings, 92% used self-reported bullying while only 5% (two studies) used 

peer nomination to identify bullying; nearly all the of the studies used odds ratios (OR) as their 

statistical method; all 37 were cross-sectional surveys; 73% ignored special populations such as 

homosexuals, bisexuals, or populations with developmental disorders; only about half of the 

studies were conducted in the U.S. (one third was conducted in Europe); and of the 17 US 

studies, over half (nine) used data from the Youth Risk Behavior Survey (YRBS; Kim & 

Leventhal, 2008) 

Kim and Leventhal (2008) reported that most of the studies reported positive associations 

between suicidality (thoughts, plans, and attempts) and bullying. However, there are many 

methodological short comings in the research. Most of the studies failed to control for known 

suicide risk factors such as depression, history of suicide, substance abuse, or emotional distress, 

and most studies relied heavily on self-reports of bullying. Consequently, there might be some 

misinterpretation based on underlying issues. Lastly, each study was cross sectional which makes 

causal inferences impossible. 

In response to these shortcomings, Kim and Leventhal (2008) suggested that future 

studies should address the issue of a causal relationship between bullying and suicidality (such a 

study would be impossible), have multiple informants for identifying the victims of bullying, 

include more known confounding effects, and should be more inclusive of special populations. 

They noted only one study controlled for gender, past suicide attempts, and depression. 

Relatedly, Klomek et al. (2011) noted that cross-sectional studies have a problem with 

generalizability. Specifically, most suffer from shared method variance caused by having the 

same person identify both who is bullied and if he or she has any suicidal risks. Furthermore, 

most assessments use only brief screening instruments (few items) to assess suicide related 
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thoughts or behavior, and not all studies include a definition of bullying. Lastly, most only 

assessed the association between bullying and suicidal ideation, with a few assessing the 

relationship between bullying and suicidal behavior. These associations are unable to provide 

adequate evidence that bullying does more than merely correlate with suicide behavior. The 

current study will try to provide more understanding between bullying and suicide by seeing if 

alcohol is a  contributing force and if the structure is the same or different depending on gender.  

The Current Study 

The current study examines the relationship between bullying, suicidal thoughts, school 

climate (violence), and alcohol abuse from a new perspective. Although SEM is still 

correlational, this study tested various structural models regarding what relationship might be 

present, which one is stronger, and whether gender differences existed.  

Kim and Leventhal (2008) found over half of the studies on bullying in the U.S. were 

done using the Youth Risk Behavioral Survey (YRBS). YRBS is a national survey given every 

two years to monitor risk behavior in teens which provides longitudinal data on bullying, alcohol 

and substance abuse, suicidal thoughts, and violence in schools. The YRBS is a self-report 

survey that covers six broad risk behaviors: injury and violence, alcohol and drug use, tobacco 

use, nutrition, physical activity, and sexual behavior. The YRBS survey does change from year 

to year, but 2009 marked the first time a direct yes or no question was asked about bullying; the 

2011 survey included a question on cyber bullying. Prior to 2009, all the questions primarily 

inquired about school safety or violence. The surveys dealt with more general school violence 

but included a few questions on bullying such as not going to school because the student felt 

unsafe at school or being threatened or injured with a weapon at school (Kim, 2008).  
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The current study used structural equation modeling to analyze data of interest from the 

YRBS data set. The Center for Disease Control (CDC) recommends the use of logistic regression 

when analyzing the YRBS data set. Structural equation modeling (SEM) is better in that you can 

model multiple questions at one-time instead of separate equations. This accommodates cases 

where variables are both outcomes and covariates, allows for the inclusion of variables that are 

closely related, and allows for unobserved variables to be incorporated in your model.  Kupek’s 

(2006) study found SEM classification was similar to logistic regression but with more 

flexibility.  

One of the most important advantages of SEM is the correction of measurement error in 

the model. This is done by defining more than one item or survey question to describe a latent or 

unobserved construct (Bedelian et al., 1997).  Another advantage is the ability to test various 

causal assumptions by comparing competing models that are all plausible based on theory. 

Rather than advocating a causal claim, SEM is more probabilistic in that the various plausible 

models can be compared and ruled out. Lastly, SEM is very well suited for doing mediated 

analysis. Using a regression based approach on mediation analysis leads to inflated direct effects 

and attenuated mediated effects (Baron & Kenny, 1986; as cited in Fabrigar et al., 

2010).Therefore, although SEM is a correlational technique and is not inherently better than any 

other technique when it comes to non- experimental data, it is useful when measurement error is 

present and for mediation analysis. Because measurement error is frequently involved in survey 

data, I decided SEM would be a great tool to do my current research. It might help me detect 

relationships that might not show up using standard statistical tools.  

YRBS is one of the most common surveys used on US children but no one has studied 

the risk of suicide in relationship to bullying using the national data set.  My study seeks to 
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analyze the relationship between bullying and depression/suicidality using mediation analysis 

within the context of SEM.  Specifically, does school violence mediate the relationship between 

the two variables, or is alcohol a mediator (or both)? The specific research questions to be 

addressed in this study are as follows: 

1)  Is there a relationship between bullying and depression/suicidality? 

2) Is that relationship mediated by school violence? 

3) Is teen alcohol abuse and use another possible mediator in the model? 

I hypothesize that there will be a relationship between bullying and 

depression/suicidality; that this relationship will be mediated by school violence; and that alcohol 

abuse and use will be a competing mediator that explains the relationship between bullying and 

depression/suicidality. Teen alcohol abuse and use was included as a possible competing 

mediator because alcohol interacts with depression and life stressors to contribute to suicide, 

which is the third leading cause of death for people ages 14 to 25 according to the Center for 

Disease Control (CDC).    

 

 



8 

CHAPTER TWO 

STUDY ONE LITERATURE REVIEW 

 

This chapter includes a literature review of the YRBS instrument and some of the 

variables measured by YRBS that will be examined in this study including, bullying, alcohol use 

and abuse, and teen suicide. Several definitions for alcohol use and abuse and teen suicide are 

mentioned but no one definition is chosen so as to maximize the amount of construct related 

questions included in the present analysis. After the introduction to the variables included in this 

study, a brief introduction to SEM is presented followed by an introduction to Mediation 

Modeling; additional details are provided about the benefits and short comings of SEM.   

The YRBS instrument 

The Youth Risk Behavior Survey (YRBS), first administered in October 1989, is a 

multifaceted survey that was designed to meet the need of national health initiatives and state 

and local governments to monitor health-risk behaviors that contribute to the “leading causes of 

death, disability, and social problems among youth” (CDC, 2004, p.1). Developed by the Center 

of Disease Control (CDC), the YRBS does this by monitoring risk behavior over time and 

looking at trends.  The information gathered by YRBS allows state and local partnerships to 

evaluate the effectiveness of their initiatives, and assess if the national health initiatives are being 

met. Prior to its development in the late 80s, there were two health surveys that had been used to 

gather health information about teens: Monitoring the Future: A Continuing Study of the 

Lifestyles and Values of Youth, which measured drug use in 12
th

 graders, and the National 

Adolescent Student Health Survey, 1987, which was a one-time survey of teen risk behaviors 

from grades 8
th

-10
th

 (CDC, 2004).  Both surveys were either limited in scope or were not 
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administered on an on-going basis. Because these limitations did not serve the needs of state and 

local governments, the CDC designed the YRBS survey. YRBS allows state and local 

governments the flexibility to modify the questions on YRBS for a different target population or 

purpose. Geared primarily for 9th-12
th

 graders, some state and local governments have modified 

YRBS, to address risk behavior for alternative school children, middle school children, and 

“special populations” such as American Indian youth (CDC, 2004).  This partnership between 

federal and state agencies is facilitated by grants or cooperative agreements.  

The Youth Risk Behavior Surveillance System (YRBSS) monitors six categories of youth 

health-risks: “behaviors that contribute to unintentional injuries and violence; tobacco use; 

alcohol and other drug use; sexual behaviors that contribute to unintended pregnancy and 

sexually transmitted diseases (STDs); unhealthy dietary behaviors; and physical inactivity”  

(CDC, 2004, p.3).  YRBSS does this monitoring through the use of the YRBS Instrument.  For 

example, in 1993, the National Educational Goal was for a safe and drug-free school, so, 

questions were added to reflect those national goals (CDC, 2004).  In 1999, due to the obesity 

epidemic, questions about the body mass index (BMI) were added to the survey. Recently, the 

2011 YRBS added another question on bullying because of the link between bullying and 

depression in teens. Since 1991, the YRBS has been given every odd numbered year on a 

biennial basis. Participation is voluntary and parental permission must be obtained prior to 

participation. Students’ identifying information is not attached to a particular survey, ensuring 

anonymity. The school response rate was 81%, the student response rate was 88%, with an 

overall response rate of (.81) *(.88)= 71%. 

The national version of YRBS uses a three stage complex sampling design. During the 

first stage of the design, about 1200 large-sized counties or groups of “smaller adjacent” counties 
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are selected (CDC, 2009, p.2). From these, counties are subdivided into 16 non-overlapping 

groups or strata based on their density and ratio of minorities. Roughly 57 counties are then 

selected with school enrollment size as the criterion of selection.  During the second stage, 

almost 200 schools, public and private having grades 9
th

-12
th

, are selected from the 57 counties 

based on their school enrollment size. Schools with a higher enrollment of minorities are 

sampled at a higher rate. The third stage consists of a random sample of one or two required 

classes from grade 9
th

-12
th

 within the selected school. The entire class is selected to be in the 

study, students have the option to not participate.   

To adjust for oversampling minorities, non-responses, and the unequal probability of 

selection, YRBS employs a weighting of each student to keep the sample more representative of 

the target population, 9
th

 to 12
th

 grade students.  

Every biannual survey does vary slightly in regards to the number of questions being 

asked and content in accordance with the current national objectives. Most questions are ordinal 

in scale, however, there are a small number of dichotomous variables. Most of the ordinal 

variables have at least five progressive categories. Along with the health-risk questions, 

demographic background information is collected such as gender, age, grade level, race, and 

geographic region. 

Validity and Reliability of the YRBS 

In general, if we are measuring someone’s weight, the scale is reliable if the same 

number appears again and again, but it might not be valid. For a test to be valid it must be 

reliable, but there is more to validity than reliability. Validity involves inferences drawn about 

the test, more accurately, is the inferences drawn supported by the test scores. For example, the 

weight-scale might reliably give you a measure of a person’s weight but can someone now 
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conclude that this is someone’s true weight? For example, a non-calibrated scale might actually 

produce weight measurement above or below a person’s actual weight. Without the calibration, 

the scale might be consistent but not accurate. Validity measures the degree of accuracy and 

reliability measures consistency.  

Test-retest reliability tests for YRBS were done on the national level data in 1992 and in 

2000.  On both occasions, a convenience sample of 7
th

 to 12
th

 grade students were administered 

the test as scheduled (i.e., 1991 and 1999) and approximately a fortnight later a second 

administration occurred. The 1991 test-retest reliability evaluation, showed the overall level of 

agreement was “substantial or high” for seventy-five percent of the items (CDC’04). The 

reliability or level of agreement did not fare as well for younger, 7
th

 grade students.  Using 

Cohen’s kappa, as a measure of agreement between categorical items, the 2000 test-retest 

reliability evaluation deleted ten items with low reliability, namely, items about personal injury 

during physical activities (CDC’04). Items related to school climate, such as, carried weapons to 

school, felt unsafe while at school, and fighting on school property, had a moderate degree of 

reliability – the kappa was between .41 and .60 (Brener, 2002). Items relating to substance abuse, 

such as alcohol use and marijuana use, had a high level of agreement—kappa was between .61 

and .80 (Brener, 2002). Items relating to depressed mood or depression also had a high level of 

agreement between both administrations (Brener, 2002). The national 2009 YRBS survey does 

not include younger students. 

No formal validity study has been conducted on the YRBS but individual questions have 

been selected and studied. In 2000, after completing the second round of YRBS, students were 

physically measured for weight, height, and BMI. The results of the physical measure were 

compared with their self-reported questions on their height and weight. The students reliably 
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gave the same answers to repeated administrations of the questionnaire, but they actually over-

reported their height and under-reported their weight.  Inferences drawn about their height and 

weight would have been inaccurate.  Brener (2003) found that cognitive and situational 

influences especially hurt the validity of self-reported health-risk surveys. Cognitive factors are 

internal features that entail the mental capacity to recall, make decisions, or comprehend.  

Situational factors are factors that cause response bias, such as, fear of judgment and anxiety 

about anonymity. Furthermore, Brener (2003) found that substance abusers had a difficult time 

recalling their use of substances, especially after an extended amount of time, and substance 

abuse during the administration of the survey compounded the inaccuracies. Better recall was 

found for short question stems and short test duration. Lastly, the type of administration and 

gender affected whether or not adolescents were truthful about substance abuse. Specifically, 

pencil and pen self-administered surveys were more accurate and some researchers found that 

validity on these surveys depends on gender (Brener, 2003). 

 A small state level validity study on suicidal ideation items on the YRBS was conducted 

in 2010 to measure the convergent and discriminant validity. Convergent validity means that two 

theoretically closely related constructs are found to be highly correlated; discriminant validity 

means two theoretically dissimilar ideas are shown to have a low correlation, such as happiness 

and hypochondria. Klonsky (2010) compared the Patient Health Questionnaire for Adolescents 

(PHQ-A), the McLean Screening Instrument for Borderline Personality Disorder (MSI-BPD), 

and the UCLA Loneliness Scale (UCLA) to analyze the middle-school and high-school YRBS 

suicide items. There were three questions relating to suicide on YRBS:  1) Have you ever 

thought about killing yourself? 2) Have you ever made a plan about how you would kill 

yourself? 3) How many times have you actually tried to kill yourself?  Klonsky (2010) defined 
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lifetime suicidal ideation as the thought or planning of suicide, excluding attempts. Both suicidal 

ideation and attempts were found to be related to items on depression, anxiety, and loneliness. 

YRBS ideation items tended to be more strongly associated to other items on ideation than 

attempts. Items on attempts were strongly correlated with items on MSI-BPD corresponding to 

self-harm, whereas ideation items were not as strongly correlated (Klonsky & May, 2010).  This 

demonstrates some validity for the items on suicide ideation and attempt.  

 

Empirical Studies using YRBS 

During an online search, using Google Scholar, a literature review of research using 

YRBS data found logistic regression was the primary statistical analysis employed. For example, 

Mays (2009), using six logistic regression models on the YRBS 2005 data, found male athletes 

were more likely to be involved in heavy drinking and drunk driving than females. Miller (2007), 

using logistic regression on the 2003 National YRBS, found  that binge drinking increased with 

age and grade, and that it was associated with other risk-factors such as smoking, attempting 

suicide, and using illicit drugs. Cavazos-Rehg (2010), using multinomial logistic regression, 

found the more risk factors a teen had the greater chance of that teen having multiple teen 

pregnancies.  Martins (2008) demonstrated a relationship between drug and alcohol use (i.e., 

ecstasy, marijuana, alcohol and tobacco use) and moderate to low academic achievement, using 

multinomial logistic regression. Using logistic regression on YRBS 2005 data, Epstein (2009) 

was able to show alcohol/drug use, aggression, risky sexual behaviors, and health problems were 

all associated with suicide. Jiang (2010), using multivariate logistic regression, found that feeling 

safe at school, sexual orientation, and immigration status had a high association with adolescent 

suicide. Behnken (2009) found, using logistic regression and mediational analysis, binge 
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drinking explains the relationship between suicide and sexual victimization.   Using cluster and 

multivariate logistic regression, Paxton (2007) found that those that engaged in health risk 

behaviors such as binge drinking, drug use, and sexual risk behavior were more likely to report 

having depressed moods.   

In regards to SEM, Fabrigar and colleagues (2010), saw causal inferences as a 

continuum, from a single casual interpretation to an all causal assumption. They viewed SEM as 

having no more of a basis to infer causal conclusion than any other statistical technique (i.e., 

SEM cannot make up for a non-experimental study).  However, SEM can be used to evaluate 

competing causal claims.  

 

Bullying literature review  

What is bullying? When does bantering turn into something more serious? Is bullying 

something that can be observed? Bullying has been described as a form of violence and 

aggression; however, many people still have a hazy concept of what constitutes bullying because 

bullying manifests in various observable and non-observable forms (Orpinas & Horne, 2006). 

Horne (2003) describes bullying as being on a continuum between playful behavior and 

delinquent criminal acts. According to Newman (2000), bullying is a form of aggression that 

involves intent, imbalance of power, and repeated acts of aggression (Neman & Horne, 2000).   

Usual observers, such as teachers, cannot see intent so they have a hard time 

distinguishing when behavior has crossed from playfulness to something a little more serious 

(Orpinas & Horne, 2006). Orpinas (2006) believes most people have experienced some form of 

aggression in their life but bullying is repeated aggression (Orpinas & Horne, 2006).  “Repeated 

acts of aggression generate a deeper level of fear and intimidation than an isolated event” 
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(Orpinas & Horne, 2006, p.15). Spreading rumors, sexual harassment, or physical assaults are a 

few of some of the myriad forms of bullying.  Since bullying involves imbalance in power, the 

various imbalance categories can serve as an indicator of who might be the bully and who might 

be the victim. Imbalances can take the form of inequities in physical attributes such as weight or 

height, inequities in intellectual abilities, or inequities in social skills (Orpinas &Horne, 2006). 

One way aggression is based on the type of act such as physical, verbal, relational, and sexual 

acts that cause psychological or physical harm to others (Orpinas & Horne, 2006, p.24). The 

various types of aggression can be determined by the harm caused.  

 Consequences of bullying. According to Hazler (1992), almost 76% of students 

have experienced incidents of bullying while 14% are frequent victims of bullying (as cited in 

Newman & Horne, 2000). Studies have shown constant victimization from bullying results in 

psychological or psychosomatic disorders such as bedwetting, headaches, or depression (Orpinas 

& Horne, 2006). Research has found some forms of these disorders continue into adulthood in 

the form of anxiety, adult intimacy issues, or depression (Gilmartin, 1987; Gladstone et al., 2006, 

Olweus, 1997). Since bullied school children are more likely have anxiety and fear about school, 

they often avoid school and can become withdrawn (Batsche & Knoff, 1994; Berthold 

 & Hoover, 2000). Research shows these children are very likely to drop out of school, have poor 

grades, and show an increase in aggressive behavior such as bringing weapons to school, and 

possibly becoming a bully themselves (Baker et al., 2008; Batsche & Knoff, 1994). 

 Those who bully are more likely than non-bullies to smoke, drink, or bring weapons to 

school (Berthold & Hoover, 2000; Nansel et al., 2003). Bullying behavior as a child serves as 

precursor to future delinquency. Child bullies were likely to demonstrate antisocial behavior in 

the form of alcohol use, property crimes, skipping school, and bringing weapons to school 
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(Berthold & Hoover, 2000; Liang et al., 2007). According to a longitudinal study done by 

Olweus and Alsaker (1991), as bullies transitioned to adulthood, criminality and law 

enforcement issues were prevalent (as cited in Berthold & Hoover, 2000). “Approximately 60% 

of boys who were characterized as bullies in grades 6-9 had been convicted of at least one 

officially registered crime by the age of 24. Even more dramatically, as much as 35-40% of the 

former bullies had three or more convictions by this age…”  (Olweus, 1997, p. 501).    

Bullies can also be victims of bullying. The intersection of bully and victim creates a 

third category called bully-victims. Studies have shown that both bullies and victims are more 

likely to suffer from depression than those who have never been involved in any bullying 

incident (Seals & Young, 2003).  Just like the line between bully and victim is not necessarily 

independent in terms of mental outcomes, the line between bully and victim is not necessarily 

independent in definition.  Bully-Victims are sometimes bullies and sometimes victims. Bully-

Victims are three times more likely to report being a victim of bullying; have more depressive 

symptoms; and have more behavioral problems (Haynie et al., 2001). Stein’s (2006) research on 

male bullies, victims, and bully-victims, also found that bully-victims suffered more 

psychologically and had more delinquency issues than did those who were solely bully or solely 

victims. Although bully-victims are rare, more research has to be done on bully-victims. 

 School climate and bullying. Because the environment where bully and victims 

often cross paths is the school or classroom, school becomes a critical juncture or crossroad, and 

school climate moderates the path taken for both the victim and bully. Since bullied school 

children are more likely to have anxiety and fear about school, they often avoid school and can 

become withdrawn (Batsche & Knoff,1994; Berthold & Hoover, 2000). Research shows these 

children are very likely to drop out of school, have poor grades, and according to some research, 
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show an increase in aggressive behavior such as bringing weapons to school, and possibly 

becoming a bully themselves (Baker et al., 2008; Batsche & Knoff,1994). Bullying behavior as a 

child not only serves as precursor to future delinquency but research has found that child bullies 

were likely to demonstrate antisocial behaviors as children in the form of alcohol use, property 

crimes, skipping school, and bringing weapons to school (Berthold & Hoover, 2000; Liang et al., 

2007) 

 As a way of addressing a growing threat to public health, many schools adopted a zero 

tolerance policy to improve school safety, but research has shown those policies were too 

premature and did not have the intended effect. In fact, the policies lead to blanket punitive 

actions, such as suspensions, which lead to an increase in punitive actions rather than an increase 

in understanding about the nature or structure of bullying (Orpinas &Horne, 2006; Sampson, 

2002). Mayer and Leone (1999) found that a policed school environment, such as the use of 

metal detectors and on-site police officers, led to more school disruption and violence at schools. 

Thus, zero-tolerance policies and policed schools do not decrease bullying. Peer mediation, 

group therapy, and advocating assertiveness were also failed strategies that were deemed 

ineffective in addressing bullying (Sampson, 2002). Each of those strategies cast the victim as an 

equal participant who has control over what was happening to them. For example, these 

interventions often require the victim to stand up for him or herself or confront the bully through 

peer mediation. They may also focus on improving the victim’s self-esteem with group therapy. 

These strategies have been proven to be ineffective. 

Orpinas (2006) describes a climate as an environment that can either bring out the best or 

worst qualities. A positive school climate is a multidimensional construct that encompasses the 

physical aesthetics of the school, interpersonal interactions between teachers and students, 
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interpersonal interactions between students, and the school policies (Orpinas & Horne, 2006, 

p.80). Orpinas and Horne (2006) believe that there are eight factors that contribute to a positive 

school climate, namely, excellence in teaching, school values, awareness of strengths and 

problems, policies and accountability, caring and respect, positive expectations, teacher support, 

and physical environment.    

Excellence in teaching encompasses teaching ability, classroom management skills, and 

motivational skills (Orpinas & Horne, 2006).  Hein (2004) found that good teaching and 

appropriate methods to motivate students reduces behavior problems (as cited in Orpinas & 

Horne, 2006). Because bullies often have academic problems, a positive school environment is 

one where the teacher is aware of the students’ abilities and needs, and can address them 

(Orpinas & Horne, 2006). Classroom management skills are also critical because the teacher 

must address disrespectful behavior and bullying (Orpinas & Horne, 2006). Teachers and 

administrators are instrumental in setting the tone for expected or acceptable behavior. In fact, 

since bullying can occur in various school locations (e.g. restrooms or hallways), having all the 

stakeholders understand what is acceptable behavior leads to a positive school environment 

(Orpinas & Horne, 2006). Having clear and structured set of acceptable behavior rules, which are 

implemented with consequences, has been found more effective than a restrictive, zero tolerance, 

prison-like school environment (Mayer & Leone, 1999). Self-protection, such as bringing guns 

to school, is seen less frequently in environments that focus more on internal controls than 

external behavioral controls (Mayer & Leone, 1999). Even when after controlling for the lack of 

involvement of a critical stakeholder, the parents, or other risk factors (e.g. poor peer relations), 

Espelage and Swearer (2009) found an effective anti-bullying school environment serves as a 

buffer (as cited in Swearer et al., 2010). 
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 YRBS and bullying. The YRBS has mainly focused on questions about weapons 

carrying, fighting or violence, suicide, substance abuse, weight and weight maintenance issues, 

and sexual behavior. The 2009 national version of YRBS was the first time students were asked 

directly about being bullied at school. In the 2011 version, a second question on bullying was 

added that asked about electronic bullying through social network sites and email. The YRBS 

has some indirect questions about the school environment that can be considered indicators of 

bullying or a hostile school climate.  Specifically, the YRBS asks about the number of days a 

student has felt unsafe at school and whether he/she has been threatened or injured at school.  

Comparatively, little research has been done with the YRBS instrument where the focus 

was bullying. When YRBS was used in bullying research, it was often modified and used on the 

local level so there are very few studies using the national version of the YRBS for bulling 

research.  

Studying bullying among middle school children, using a modified YRBS, Pintado 

(2007) found that verbal bullying such as teasing and name calling, or physical threats was more 

prevalent than actual physical assaults or spreading rumors. Using the national 2003 YRBS data, 

Paxton (2007) found that engaging in risk behaviors increased the odds of depression. Although 

depression was reported more among females and Hispanics, controlling for demographics, 

adolescents who engaged in risk behaviors such as carrying weapons, physical fighting, 

substance use, and sexual intercourse had higher odds for depression (Paxton, 2007). In looking 

at the YRBS state level data, Peskin’s (2007) found that bullied victims tend to internalize the 

problem (anxiety, depression) during middle and high-school years but bully-victims’ 

internalization stopped after middle school. Race and gender also lead to more of a feeling of 

victimization.  According to Fitzpatrick (2010), using variables similar to YRBS, they found 
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African-American youths had higher levels of depression, no matter the label (e.g., bully, victim, 

or bully-victim), and had a higher risk of exposure to violence. 

 

Teen Alcohol abuse and use 

 The American Psychological Association’s (APA) manual of mental health disorders, 

Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-IV), has two definitions used to 

describe people who have Alcohol Use Disorder (AUD): Alcohol Abuse and Alcohol 

Dependence. You are categorized as an alcohol abuser if one of four criteria is met:1) alcohol 

interferes with fulfilling life responsibilities; 2) alcohol use causes engagement in hazardous 

behavior such as drinking and driving; 3) alcohol use has caused legal issues; 4) use of alcohol 

has contributed to social and relationship problems.  In contrast to alcohol abuse, alcohol 

dependence has more of an internal component that causes physiological symptoms.  Someone is 

alcohol dependent if they have built a tolerance to alcohol. To be tolerant to alcohol means in 

order to achieve the same level of intoxication one must increase the amount of alcohol 

consumption; the existence of withdrawal symptoms, such as shaking, that usually take place 

four to twelve hours after the absence of alcohol; the experience of physical and psychological 

problems; frequent unsuccessful attempts to quit; planning life around alcohol usage; or drinks 

longer and in greater quantities (APA, 2000; Chung, 2006).   

 Teen alcohol usage. There are problems with the definition of the alcohol use 

disorders when applied to adolescents. Winters (1999) found that many adolescents were more 

often classified as alcohol abusers than dependents. Ellickson et al. (1996) found that only less 

than 4% of the high school seniors who wanted to stop drinking could not, whereas, 24% were 

more likely to have passed out because of drinking. An explanation of the problem of 
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generalizing this definition for every population can be explained by the sample used to define 

alcohol use disorder. Cottler et al. (1995) found that only one of the 17 DSM-IV field trials 

contained adolescents (as cited in Deas, 2000).  Because of this problem, DSM-IV does not 

describe general alcohol involvement for adolescents (Chung, 2006). Researching the difference 

between alcohol use between adults and adolescents, Deas et al., (2000) found that adolescents 

drank less frequently than adults, were less prone to blackouts, and that there were no differences 

in the quantity of alcohol consumed per occasion. In general, teenagers are still developing into 

adulthood, so the physiological and psychological differences that exist are compounded when 

alcohol is interjected. So, the definition of alcohol use needs to be altered to account for teen 

behavior. 

During adolescents, children are still developing. Adolescents experience a change in sex 

hormones, estrogen, testosterone, and an increase in growth hormone, as well as, the stresses of 

novel life stressors, such as adult/life choices (USDHHS, 2006). Consuming alcohol during this 

period upsets the hormonal balance needed for normal growth development for organs, muscles, 

and bones (USDHHS, 2006). Excessive drinking by teens causes problems with short-term and 

long-term memory. Research has found that teens consuming over 21(males) or 14 (females) 

units of alcohol per week had flaws in long-term and short-term memories (Heffernan, 2005). A 

unit was described as a half of pint of beer or a small glass of wine (Heffernan, 2005). The 

reason for the difference is that alcohol is water soluble, since females are have more fat and less 

water, females tend to feel the effects more readily ( IBC Cutting edge, 2002; Lopez & Kelly, 

2002). In general, the effects of alcohol depend on several variables including the gender, age, 

emptiness of the stomach, weight, and concentration of alcohol consumed (Lopez, 2002). 

Overweight teens, even with moderate use of alcohol, showed an increase of liver enzyme that 
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was an indication of liver damage (USDHHS, 2006).  Impaired cognitive abilities, such as, 

problem solving and concentration, is another known effect of alcohol use in teens (Biddulp, 

2005; Evashwick et al.,1998). Also, adolescents who drank frequently or had multiple drinks per 

occasion also had an increased dropout rate between 9 to 11 percent (Chatterji & DeSimone, 

2005).   

 Using the definition of an alcohol user by the United States Department of Human and 

Health Services (USDHHS) (i.e., an alcohol user is someone who drinks at least one drink per 

month) Maney (2002) studied the interaction of risk behaviors and teen alcohol users. Defining a 

high-risk alcohol user as someone who binge drinks once or twice a year, low-risk alcohol users 

as someone who does not binge drink, and binge drinking as four or more drinks at one occasion 

in the past 30 days, Maney (2002) found that high-risk drinkers were more likely to be report 

regret after drinking; combine drinking with sexual encounters; fighting; and report problems 

with friends, family, and in school (Maney et al., 2002). Maney (2002) used the USDHHS’s 

1996 National Household Survey on Drug and Health (NSDUH) to define binge drinkers and 

alcohol users. According to the NSDUH (2009), there are three categories of drinkers: (a) current 

users are those who had at least one drink in the past thirty days; (b) binge drinker are those who 

had five or more on the same occasion at least one day within the past thirty days; and (c) heavy 

users as those who have had five or more drinks on the same occasion on each of the five or 

more days in the past thirty days. According to their statistics, the 2009 survey, only 15% of 

youths between age 12 and 17 were current drinkers, 9% binge and 2% heavy drinkers. Whites 

were more likely to currently use alcohol than any other group; they were followed by Blacks, 

Hispanics, Asians, and lastly, Native Americans. Compared to YRBS, NSDUH surveys a larger 

populous, twelve years or older versus 9
th

 to 12
th

 graders. The YRBS (2009) showed that 41.8% 
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of students had at least one drink during the past 30 days, 72.5% of all students have had at least 

one drink of alcohol in their life time, and 24.2% have had five or more drinks in a row on one 

day during the 30 days before the survey. The slight differences in the numbers could be because 

the age range and the fact that, according to Muthén and Muthén (2000), alcohol use tends to 

increase with age (as cited in Mason et al., 2010). Age of first use predicted progression to 

alcohol related disorders with adolescents between 11-14 years old showing an increased risk 

(DeWitt et al., 2000). Nevertheless, both surveys show adolescents are consuming alcohol, and 

because there are health and social effects of alcohol use, it is imperative to know how to 

describe and better define alcohol use during adolescent.  

 Ellickson and Hays (1991) described problems with alcohol in middle schoolers, and 

seventh and eighth graders in terms of frequency of drinking and heavy drinking. Heavy or binge 

drinking was defined by the number of days the student consumed three or more drinks at one 

setting. Expounding, Hays and Ellickson’s (1996) research defined alcohol misuse in teens as the 

following three dimensional construct: 1) frequency and quantity as one dimension; 2) high-risk 

drinking; 3) negative consequences. Frequency was defined as number of drinks in the past 

month or year. Quantity was the average number of drinks per day. High-risk drinking measures 

how alcohol affects behavior or judgment such as drinking and driving, binge drinking, public 

intoxication, intoxication at school, and use of other drugs. Negative consequences consist of 

internal and external consequences for those who use alcohol such as feeling sick, getting into 

fights,  missing school, being arrested, and having accidents while driving (Hays & Ellickson, 

2006). Reboussin and colleagues (2006) researching the types of underage drinkers, found that 

there were three classes of underage drinkers: non-problem related drinkers (i.e., drinkers with 

no alcohol-related problems); risky problem drinkers (i.e., drinkers who experience physical 
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problems from drinking or have alcohol-related social consequences); and regular problem 

drinkers who have greater severity of alcohol-related social consequences (Reboussin et al, 

2006). Reboussin et al. (2006) used latent class analysis, which categorized based on percentage 

of severity, to identify students with alcohol problems while Ellickson and Hays (1996) used cut-

off scores based on the grade-level to identify teens who misused alcohol.  

According to Nansel et al. (2004), bullies, victims, and bully-victims all had emotional, 

social, and health problems, but bully and bully-victims were more likely to use alcohol and to 

carry weapons. Like other research, victims had more emotional and social difficulties and 

bullies reported more school difficulties. Bully-victims were a cross between the two in terms of 

outcomes. Bully-victims had similar emotional and relationship issues as victims, whereas they 

shared school difficulties and alcohol use issues with bullies. Health issues were relatively equal 

in all groups.  

  

Suicide literature review 

 How can killing oneself be complex? Scenario A: Susie had a habit of cutting herself. 

One day, she cut an artery and died. Her family said she was known to suffer from depression 

from time to time. Scenario B: Robert loved to work hard and play even harder. While copying 

his friends’ jumping moves, Robert tried to outperform his friends by jumping a large hill; he fell 

head first on the cement and died.  Scenario C: John used to tell people he wanted to die but he 

had recently received psychotherapy which helped him recover. All three scenarios could be 

attributed to suicide or suicide attempt. The answer to which one of these people committed 

suicide is challenging to answer.  
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Prior to the mid 1980’s, there was no formal agreed upon definition of suicide. Without 

any kind of a rubric, coroners and medical examiners had to determine the cause of death 

(O’Carroll, 1996).  During the mid-1980’s, the Center for Disease Control (CDC) assembled 

researchers, medical professionals, and statisticians to define suicide. According to Rosenberg et 

al. (1988), the outcome of their collaboration was a definition of suicide, the Operational Criteria 

for the Determination of Suicide (OCDS), which stated suicide was “death from injury, 

poisoning, or suffocation where there is evidence (either explicit or implicit) that the injury was 

self-inflicted and that the deceased intended to kill himself or herself” (as cited in O’Carroll, 

1996, p. 246).  Despite this, there was still no consensus on the definition of suicide.   

Ivanoff (1999) defined suicide as self-initiated and intentional death. Mayo (1992) 

definition stated that suicide had four components: “[S]uicide has taken place if death occurs, it 

must be of one’s own doing, agency of suicide can be active or passive, and it implies 

intentionally ending one’s own life” (p. 92).  Silverman and Marris’ (1995) definition on suicide 

stated, “Suicide is, by definition, not a disease, but a death that is caused by self-inflicted 

intentional action or behavior” (p. 522). Lastly, the World Health Organization (WHO) (1998) 

defined suicide as “[t]he act of killing oneself deliberately initiated and performed by the person 

concerned in the full knowledge or expectation of its fatal outcome” (as cited in De Leo, 2006, 

p.8).  

These definitions define suicide not suicide attempts. O’Carroll (1996) argued that 

Rosenberg did not operationalize suicide but merely gave a definition. He wanted to 

operationalize the term suicide by proposing a nomenclature; he defines a nomenclature for 

suicide as a clear, unambiguous, and basic terms associated with suicide (O’Carroll, 1996).  

Using a topology, he defined a suicidal act as “potentially self-injurious behavior for which there 
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is evidence that the person intended to kill himself/herself” (O’Carroll, 1996, p. 247). O’Carroll 

(1996) included cases where death did not occur, considered evidence of intent which resulted in 

a more comprehensive definition of the term suicide.  However, some people took issue with the 

word intent being in the definition of suicide. How can a dead person tell you they intended to 

kill themselves? Was John intending to kill himself? If someone survives the suicide attempt, do 

they themselves know their own intent?  De Leo (2006) noted that some people have no intention 

of harming themselves but seek attention; intention is a construct has not been defined and only 

inferences can be made on intent, and even if the person survives the suicide attempt, you are 

assuming the person is aware of their actions and will have memory of what occurred. Based on 

WHO (1998) definition of suicide, De Leo (2006) proposed a definition of suicidal behavior that 

describes suicide as “non-fatal” and “fatal” behavior with or without injuries.  

Silverman et al (2007), revisited O’Carroll’s (1996) definition of suicidal related behavior 

by renaming some categories and adding an additional category, undetermined. According to De 

Leo (2006), the problem with most definitions of suicide is that some definitions have cultural 

judgments. Does cutting oneself mean you’re suicidal in Africa, especially when marking or 

cutting is a cultural tradition?  De Leo (2006) noted that there needs to be universal definition of 

suicide. To address these issues, the WHO said suicide should be defined as an act with fatal 

outcome for which the deceased knowing or expecting a fatal outcome initiated and carried out 

for that purpose (De Leo, 2006).  

Studying commonalities of those who purposely commit suicide, Shneidman (1996) 

found that those who commit suicide see suicide as a solution, use suicide as a way to end the 

consciousness of pain, have an unmet psychological need or want, express feelings of 

hopelessness, are usually cognitively ambivalent about the value of living, commonly perceive 

lack of options, see suicide as an escape, usually leave clues or communication of their intentions 

or distress, and have a tendency to have a limited view on how to cope in life (Shneidman, 

1996). Hosansky (2004) describes some common warning signs for those who are about to 

commit suicide as: committing self-harm; obsessing about death; writing about death; change in 

personality, behavior, eating or sleeping patterns; feelings of guilt; and decreased academic or 

work performances (as cited in Rudd et al., 2006). According to Rudd et al. (2006), warning 

signs have an underlining proximity attached that suggest the risk of suicide is immediate. 

Conversely, simply looking at factors that contribute to suicide such as, history of mental illness, 

past history of suicide, and stressful life events are only long range assessors of risk (Rudd et al, 
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2006). Baldessarini (1988) noted that in general it is difficult to predict who will commit suicide 

because of the low rate of suicides, but despite the false positives, it better to error on the side of 

caution (as cited in Rudd et al., 2006). For teens, the most common factors were previous suicide 

attempts, using substances, worrying about depression, and failing in school (Hacker et al., 

2006). Hendin (2001) found only a small percentage, of the small number of suicide cases, had 

actual intent to kill themselves; so focus should be on immediate signs of risk, which he 

identified as someone having a life event; depression mixed with a current state of desperation, 

guilt, or rage; and a observable risk behavior (e.g., talking about suicide, social deterioration, 

increase substance abuse).  

King and Apter (2006) noted that surveys designed to measure the prevalence of suicidal 

ideation (suicidal thoughts) and behaviors are notably hard to interpret because they generally 

ask only if they have attempted suicide, but there is a lack of consensus on the definition of 

suicide attempt because some believe it implies intent. To judge severity of the attempt, King 

and Apter (2006) believes the question should be rephrased as “have you tried to take your own 

life, which implies intent”. In general, it is a good rule of thumb to apply more than one  

definition when asking about suicide attempt, and to specify the “outcome of the attempted 

suicide through a serious of increasing specific questions”(p.64), such as asking first about 

injury, then hospitalization, and lastly, medical attention (King & Apter, 2006). YRBS is one of 

the few surveys to associate medical outcomes to suicide attempts (King & Apter, 2006). 

  Alcohol use is a risk factor for teens (Hacker, 2006). Schilling et al. (2009) found that 

alcohol use was a key factor between those who planned and those who did not plan to commit 

suicide. Planned suicide attempts were associated to high levels of hopelessness and depression, 

whereas, unplanned suicide attempts were associated with high levels of aggression, alcohol 

intoxication, increased aggressive and negative emotions, and decreased mental capacity to think 

of alternative coping strategies (Schilling et al., 2009). Unplanned suicide attempts were more 

prevalent in early adolescence and among  males (Schilling et al., 2009). During stressful life 

events, adolescents are more likely to be impulsive (Schilling et al., 2009). The combination of 

stressful life events, age, and alcohol use exhibits two major warning signs. Hinduja (2010) 

found that bullied adolescents had an increased risk of suicidal thought. Ivarssoon (2005) found 

47% of Bully-Victims, and 39% of victims reported having suicidal thoughts, compared to 12% 

of bullies. Only 12% of the bully-victims and 11% of the victims had seriously thought about 

suicide as a viable option (Ivarssoon, 2005).  

 

Structural equation modeling (SEM) 

 Structural equation modeling is a multivariate statistical technique that encompasses 

ordinary linear regression, non-linear regression, and factor analysis (confirmatory). SEM has the 

ability to model observed, as well as, unobserved/latent variables. Observed variables are 
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variables that are measureable such as weight. We can ask someone their weight or physically 

have him/her step on a scale. Happiness or Depression or Bullying is something that is difficult 

to define and is not directly measureable. With SEM we are able use theory to define those latent 

variables and perform statistical analysis on them, as well as, on their observed analog. When 

SEM is performed on observed variables it is called Path Analysis. Path Analysis suffers the 

same constraints as does Regression; it assumes variables have no measurement error. However, 

this assumption is a fallacy, because the assumption of no measurement error has rarely been 

found to be true (Duncan, 1975; as cited in Bedelian et al., 1997).  When measurement error is 

present there is extra variability in the regression model not explained by independent 

variable(s). For example, the ordinary least square (OLS) regression modeling weight and hours 

of physical activity might seem like a simple model but it might not be that straightforward 

depending on how one measures the variable weight. One would expect a weight decrease when 

physical activity increases; so physical activity explains most of the decrease seen in weight. 

However, if there is indeed extra variability between weight and physical activity due to the 

measurement error then there is extra variability about the regression line. The unexplained 

variance that is not explained by weight goes into the calculation of the coefficient of 

determination as unexplained variance, hence, lowering the real impact that one expects weight 

to have on hours of physical activity.  In essence it lowers the correlation between weight and 

physical activity, and attenuates or lowers the beta (parameter estimate; DeShon, 1998). 

Spearman (1904) formula for true correlation is the Pearson correlation corrected by the 

square root of the reliability. 
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 Once we correct for reliability, the true correlation between the two measures are apparent. For 

example, if the uncorrected correlation between weight and physical activity is .50 and the 

reliability of physical activity is .70, then the corrected reliability .60.  The presence of 

measurement error underestimates the reliability between the two measures, and since 

correlations are a function of the beta coefficient it attenuates the beta coefficient. In classical 

test theory (CTT) there are many ways to obtain the reliability such as test-retest, internal 

consistency, or alternate forms. The most popular one is coefficient alpha which can be 

conveniently done in one test setting and with one form (Bedeian et al., 1997).  By including 

more than one variable as a definition of a construct, SEM has the ability to calculate reliability, 

and include it in the statistical analysis by correcting the Pearson correlation, and thereby 

parameter estimates.   

 

 

Figure 1.1  

SEM Model  

  

 

 

Figure 1.2 

SEM Model 2 



30 

 

 

 

Instead of using one indicator such as weight, as in Figure 1.1, SEM incorporates several 

correlated variables that might cause problems with multi-colinearity in multiple linear 

regression Figure 1.2 shows an alternative model where these three indicators can be used for a 

fuller picture of general health. By making assumptions about the loadings, the error (tau or 

parallel equivalency), and unidimensionality, Cronbach alpha can be calculated from the 

confirmatory factor model presented. According to Deshon (1998), reliability for a composite 

variable was presented by Werts, Linn, and Jöreskog in 1974: 
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Besides correcting for reliability, SEM is useful for mediation analysis. Mediation 

analysis can be done in regression or SEM. Aside from being able to incorporate latent variables, 

correcting for measurement error, and test competing models, mediation analysis in SEM is 
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another big advantage of SEM because it allows one to run simultaneous equations in one single 

analysis. 

 

Mediation Analysis   

Mediation analysis is a causal model that seeks to explain why there is a relationship 

between the independent and dependent variables. If X causes M and M causes Y, then M is a 

mediator. A more formal definition was given by Barron & Kenny (1986), “a variable may be 

said to function as a mediator to the extent that it accounts for the relation between the predictor 

and the criterion” (as cited in MacKinnon, 2008, p.8).  Mediators speak to how or why such 

effects between the independent and dependent variables occur just like a confounding variable. 

However, although a confounding variable might sound similar in definition, it is not the same as 

a mediator. A confounder explains the relationship between X and Y because it is related to both 

X and Y. A mediator explains the relationship between X and Y because it transmits the effect of 

X on Y (have to go through the mediator) (Mackinnon, 2008). 

 

Figure 1.3 

Confounding Model vs. Full Mediation Model 
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Figure 1.3 illustrates the path analysis of regular multiple regression and mediation 

analysis. In the confounding model the relationship between X and Y is explained by controlling 

for the confounding variable (C).  In the fully mediated model, there is no direct relationship 

between X and Y, their relationship is a byproduct of their relationship with mediator (M). In the 

classic example of shoe size and intelligence, age mediates the relationship between these two 

variables. Note there may still be a relationship between shoe size and intelligence, so in this 

case age partially mediates the relationship between shoe size and intelligence (the correlation 

seen between shoe size and intelligence share a common cause). Partial mediation is found when 

there is a direct relationship between the independent and dependent variable as well as a 

mediator (figure 1.4).  

 

Figure 1.4 

Partial Mediation Analysis  

                    

 

Figure 1.5 

Direct Effect of X on Y 
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Baron and Kenny (1986) outlined a series of tests to perform in order to test for mediation. The 

three tests coincide with the regression equations formed when doing a mediation analysis.  

 1 1M i aX e     (3) 

2 2Y i c X e      (4) 

3 3Y i cX bM e      (5) 

Each of these regression equations must be run separately since in regression no variable 

can serve as independent and dependent variable at the same time. In order to prove that X 

affects Y through a mediating variable M, according to Baron and Kenny (1986):  

 A variable functions as a mediator when it meets the following conditions: (a) variations  

 in levels of the independent variable X significantly account for variations in the  

 presumed mediator (i.e., Path a), (b) variations in the mediator significantly account for  

variations in the dependent variable (i.e., Path b), and  (c) when Paths a and b are  

controlled, a  previously significant relation between the independent and dependent  

 variables is no longer significant, with the strongest demonstration of mediation  

occurring when Path c is zero…..When Path c is reduced to zero, we have strong  

evidence for a single, dominant mediator. If Path c is not zero, this indicates the operation  

of multiple mediating factors (p.1176).  

 

In practice, researchers first determine if a significant relationship between the 

independent variable and the dependent variable exists (Path c, which is called the total effect).  

Once that initial relationship is confirmed, the research then confirms if paths a and b are 
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significant. Path a represents the parameter relating the mediator to the independent variable. 

Path b is part of the multiple regression equation so it represents the relationship between the 

mediator and the dependent variable controlling for the effect for the independent variable in the 

model. The product of a and b, a*b, represents the mediated effect or indirect effect. Path  ’ 

represents the partial affect for the mediator or the relationship between the independent and 

dependent variables controlling for the effects of the mediator in the model. This path is also 

referred to as the direct effect (Mackinnon, 2008). Establishing significance of the direct effect 

differentiates between a full or partial mediation. If the direct effect is not significantly different 

from zero then we have full mediation. The mediated effect, a*b, is also equal to the difference 

between  c and c’, c-c’. The total effect, c, is equal to the direct effect, c’, plus the mediated 

effect, a*b= c-c’. 

 Baron and Kenny recommended an alternate single test to establish the significance of 

mediation effects, the Sobel (1982) z-test (Baron & Kenny, 1986). 

 

2 2 2 2

*
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


   (6) 

One can look to see if the z value is signicant using the standard normal table or see if the 

confidence interval contains zero. Since a*b is equal to c-c’, the Sobel test tests if the difference 

between the total effect and the direct effect is significant ( Note, sa
2 is the square standard error 

of a, sb
2 is the square standard error of b). The assumptions are the same assumptions for 

regression, namely, linearity, no ommitted influences, no measurment error in (X, Y, nor M), 
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normality, and the residual is uncorrelated with the predictor in each equation (MacKinnon,2008, 

p. 55).  Note, logistic regression is applied when the independent variable is categorical.   

 

Figure 1.6 

Mediated Model Examplar  

 

 

Figure 1.6 shows a typical example of a mediated model where we first establish that 

washing one’s skin on regular bases reduces acne, but the reason for this reduction is the 

reduction of bacteria on the skin. The signs in the mediated model are similar to regression 

parameters signs. For one a unit increase in bacteria there is an increase in acne. For a one unit 

increase in skin washing or cleansing then there is a decrease in bacteria. Overall, the mediated 

effect, a*b or negative * positive, shows an overall negative effect on Acne through reduction of 

bacteria.  

 Recent Research.  Recent research on mediation analysis has found that 

establishing an initial total effect, c, is not necessary. Rather, only a significant indirect effect is 

needed, a*b (Rucker, Preacher, Tormala, and Petty, 2011). Causing researchers to rely on this 

initial step has historically caused researchers to prematurely terminate viable research projects 

(Zhou, Lynch, and Chen, 2010). According to Rucker et al. (2011) there are many other outside 
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influences that can explain the presence or absence of the initial direct effect, specifically, 

measurement precision, strength of relation, sample size, size of total effect, and suppressor 

variable. 

 When X and Y are moderately reliable, but M is highly reliable, then the power 

for any regression weight associated with a and b is increased. Therefore, due to this 

measurement imprecision one is more likely to detect an indirect effect, a*b, than a direct or total 

effect, c or c’. If the strength of the relationship between M and X is stronger than X and Y then 

a*b might have a stronger indirect effect even if c is not as strong. Mediation is dependent on 

sample size. As sample size increase you are more likely to final a total effect is present. In fact, 

given a small sample size you are more likely to label a mediation as a full than partial effect. 

The smaller the total effect, c, the more likely one is to detect a full mediation.  Lastly, the 

absence of suppressor variables (i.e., variables that undermine the total effect, or the relationship 

between X and Y, by omitting it), when included in the model, is said to be controlled for and to 

strengthen the relationship between the independent variable X and dependent variable Y. The 

absence weakens the effect of X on Y. The omission of suppressor variables is another case 

when the total or direct effect can be non-significant. The hallmark of a possible suppressor 

variable is when the direct effect, c’, is the opposite sign of the mediated effect, a*b. This 

scenario is called inconsistent mediation.   

 Zhao et al. (2010) outlined new decision criteria for determining mediation and 

mediation type. The new decision rules looks solely at the mediation effect and the sign of the 

mediation. They concluded that there are four possibilities when doing mediation analysis: no 

effect, indirect only effect, competitive mediation, and complementary mediation. The total 

mediation equation is given by c= a*b +c’. If the mediation effect, a*b, is significant, then 
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mediation is established but there are now different types that are possible. If the mediation 

effect, a*b, is not significant, then depending on if there is a total effect, c, of X on Y, then one 

either has missing mediators or problems with the theoretical framework (hypothesized mediator 

not identified) or both. If the mediation effect is significant then the sign of direct effect and 

indirect effects becomes important, as well as, the significance of the total effect.  

 If the total effect, c, is not significant but the mediation effect, a*b, is significant 

then we have an indirect-only mediation present. The hypothesized mediator is identified and 

there is low possibility of any other omitted mediators. If the total effect, c, is significant, then 

the sign of total effect equation signifies the type of mediation present, complementary or 

competitive. The significance of total mediation, c, specifies the presence of other possible 

mediators. Complementary mediation is when the mediated effect, a*b, and direct effect, c’, both 

exist and are the same sign. Competitive mediation occurs when the mediated effect, a*b, and 

direct effect, c’, exist and are opposite signs. The presence of these two types of mediators means 

an incomplete theoretical framework or the presence of other mediators in the model that has 

been omitted from the model (Zhao, Lynch, and Chen, 2010, p. 201).   

In addition to changing the order of the significance testing, an alternative test to the 

Sobel z test was also suggested.  Although rarely used in mediation analysis, the Sobel test 

requires a large sample size and an assumption of normality about the indirect effect, a*b, and 

sampling distribution (Preacher, and Hayes, 2004, p. 719).  Preacher and Hayes (2004) 

bootstrapping test for mediation effect is a non-parametric test that is based on resampling with 

replacement of the variables involved in the mediation model. Unlike the Sobel test, it does not 

require normality of the sampling distribution of the indirect effect in the mediation model. 
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MacKinnon, Lockwood, and Williams (2004) found this bootstrap test for mediation affect to 

have more accurate confidence limits and better type I error rates than the Sobel test.  

 SEM versus Regression mediation analysis.  The question about whether to do 

mediation analysis as a linear/non-linear regression model or SEM module might still remain. 

There are a number of reasons to do mediation analysis in SEM over doing it as a regression 

model. Namely, SEM can handle the issue of inaccurate measurement or measurement error. 

According to Hoyle and Kenny (1999) when measurement error is present in the mediator then 

this can lead to an attenuated relationship between the mediator, M, and the independent 

variable, Y (as cited in MacKinnon, 2008). The most notable benefit of using SEM over 

regression for mediation analysis is the reduced standard error. When running a standard 

mediation analysis (i.e,. mediation analysis with one mediator), you have a minimum of three 

equations that have to be run as three separate regression equations. SEM runs all equations 

simultaneously which reduces standard error because all the parameters are in the model. 

Missing parameters by fitting individual equations means more unexplained influences in each 

model are let out (Iacobucci, 2008, p. 22). 
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CHAPTER THREE 

STUDY ONE METHODS 

 

Youth Risk Behavior Survey (YRBS), the survey most commonly administered to 

American teens, employs a complex sampling design which is both time and cost efficient for the 

Center for Disease control (CDC) who created the survey. This chapter describes the design and 

research methodology that was implemented to study the relationship between bullying and 

suicide using data obtained from the 2009 YRBS. Described in this section is the YRBS data set, 

variables used in the study, descriptive statistics on the variables involved in the study, the 

statistical model, rationale for the model, and software used to run the model. There are three 

basic research questions I want to answer using the mediated multilevel SEM framework:  

1)  Is there a relationship between bullying and depression/suicidality? 

2) Is that relationship mediated by school violence? 

3) Is teen alcohol abuse and use another possible mediator in the model? 

YRBS 2009 Data 

Overview.  YRBS is the most common survey used to collect health related data for 

teens in schools. The survey’s main focus has been questions related to violence, suicide, 

substance abuse, weight issues, and sexual behavior. The 2009 national version of YRBS was the 

first time that a question on bullying was included on the survey. The recent 2011 YRBS 

included a second question on bullying, namely, online bullying. Because of this, the few 

researchers who have studied bullying using YRBS had to modify the YRBS and reissue a 
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smaller state level version of the survey (Pintado, 2007).  According to my research, no one has 

used the YRBS national data set in relation to bullying and suicide nor has anyone thought to use 

SEM. This could be because CDC YRBS literature advises researchers how to perform logistic 

regression on YRBS. Indeed, most of the research done on YRBS has been done using logistic 

regression. Kupek (2006) noted that it is rare for SEM to be used on medical related data, logistic 

regression is quite common.  However, bullying is a construct that is not perfectly measured by 

one question. This unnecessary inclusion of a variable that is assumed to be perfectly reliable 

attenuates the beta relationship, if found, and also adds more variability in the unexplained 

variation between bullying and suicide. Although I am faced with this same limitation without 

information on the reliability of bullying, I can study the other variables as constructs which 

helps reduce some of the unexplained variance.  

Subjects and instrument. The 2009 YRBS questionnaire sample consisted of 16,410 

students, grades 9 through 12, from 158 participating public and private schools. Using the 

software program, Mplus 6.1, I found there were 16,409 subjects and 55 clusters instead of the 

57 primary sampling units or counties given in the YRBS documentation. The average cluster 

size was 298.345 (55 times 298.345 gives you 16,408.975 or 16,409 subjects). The PSU 

consisted of counties or groups of counties not schools.  

The national version of YRBS used a three stage complex sampling design. During first 

stage of the design, about 1200 large-sized counties or groups of “smaller adjacent” counties are 

selected (CDC, 2009, p.2).  From these, counties are subdivided into 16 non-overlapping groups 

or strata based on their density and ratio of minorities. Roughly 57 counties are then selected 

with school enrollment size as the probability of selection.  During the second stage, almost 200 

public and private schools having grades 9
th

-12
th

, are selected from the 57 counties based on their 
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school enrollment size. Schools with a higher enrollment of minorities are sampled at a higher 

rate. The third stage consists of a random sample of one or two required 9
th

-12
th

 classes within 

the selected school. The entire class is selected to be in the study, students have the option to not 

participate.   

To adjust for oversampling minorities, non-responses, and the unequal probability of 

selection, YRBS employs a weighting of each student to keep the sample more representative of 

the target population (i.e., 9
th

 to 12
th

 grade students). After which, an overall weight is then 

applied so that the total number of students in the sample adds to the sample size. 

From year to year, the YRBS survey does vary slightly in the number of questions being 

asked and content, depending on the national objectives at the time. Most questions are ordinal in 

scale; however, there are a small number of dichotomous variables. Most of the ordinal variables 

have at least five progressive categories. Along with the health-risk questions, demographic 

background information is collected such as gender, age, grade level, race, and geographic 

region. 

Variables. Although the 2009 YRBS data set consisted of 87 standard questions, of 

which 11 questions were added, only nineteen variables related to my research (CDC, 2009). Of 

the 19 variables, 16 observed variables were used to conduct the analysis. The additional 

variables added in the data files (i.e., weight, stratum, and psu) were not included in this count.  

As appendix Table A.1 indicates, most of the observed variables are ordered categorical with a 

few being dichotomous. Each ordered categorical variable has at least five categories, but most, 

if not all, are on different scales.   

Alcohol abuse in teens can be described by increased risky behavior, frequency of use, 

and quantity of use. The 2009 YRBS data set had six direct questions concerning alcohol and 



42 

teens that the CDC labeled as alcohol usage. I selected five of the six questions from the usage 

category, ignoring the questions about the age one began drinking and where one purchases 

alcohol. I then added another question from the safety category that was related to alcohol and 

safety as well as drinking and driving. I labeled this unobserved variable as teen alcohol abuse 

and use that has a total of five indicators: 1) number of times student drove drunk in the past 30 

days, 2) average number of days student had at least one drink of alcohol, 3) during the past 

30days, number of days student had at least one alcoholic drink, 4) during the past thirty days, 

number of days student drank five or more drinks on one occasion, 5)  in the past 30 days, 

number of days the student had at least one drink on school property. Drinking at school and 

drinking while driving are indicators of risk behavior, average number of days for drinking at 

least one glass of alcohol measures the frequency, and the number of days having at least thirty 

glasses of alcohol measures the quantity. Most of the questions, except the driving drunk 

question, are on a seven point ordinal scale but not the same seven point scale. For example, 

question 42, number of days you drank five plus glasses of alcohol at one occasion, allowed the 

choice of zero, one, two, three to five, six to nine, 10 to 19, and 20 or more days; while question 

41’s, number of days had at least one glass of alcohol, choices were zero, one to two, three to 

five, six to nine, 10 to 19, 20 to 29, and all 30 days.   

Bullying involves repetition, intent to harm, and exhibits an imbalance of power. 

Bullying can be either direct or indirect. It takes the form of physical aggression, verbal abuse, 

and social/relational harm (willful intent to harm peer relationship such as gossip).  YRBS has no 

school level variables, and only one question asking directly about bullying. YRBS had ten 

questions labeled violence related questions.  Violence is one dimension of bullying that takes 

the form of physical aggression. Because YRBS did not have the full dimensionality of bullying, 
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I decided not to create a latent variable called bullying; instead I used school violence as a latent 

variable to explain the relationship between bullying and suicidality. Of the ten possible 

questions on violence, only four related to school and violence: number of days you brought a 

weapon on school property, number of days felt threatened or injured with a weapon on school 

property, number days missed school because you felt unsafe, and the number of times you were 

in a physical fight on school property. All the questions have at least five scale points and the 

one question of bullying is a dichotomous yes or no question. 

Teen suicidality is thoughts, plans, and attempts of suicide (Klomek, A., Marrocco, F., 

Kleinman, M., Schonfeld, I., & Gould, M. S., 2007). The 2009 YRBS asked five questions that 

they categorized as feeling sad and attempted suicide.  Leaving out the question on medical 

attention after suicide attempt, four questions were used to define a latent variable 

depression/suicidality. These four questions were: 1) have you felt hopeless or sad for more than 

two weeks in a row within this past year? 2) have you considered suicide? 3) have you planned 

suicide? 4) and have you attempted suicide?  Most of these questions were dichotomous.  

Distributionally most of the data are positively skewed. Skew, mean, and standard 

deviation are all descriptors of ratio or interval data. With categorical data one usually uses 

median or percentiles to describe the data. Using Lisrel 8.80, I was able to obtain data 

frequencies. Looking at the percentages on categorical data, you see that most of the ordinal data 

are positively skewed (see Table A.2).  Also, it should be noted for the polytomous responses the 

response categories went from negative to positive, meaning no alcohol abuse or no violence to 

increase frequency. The dichotomous questions, bullying and most of the suicide questions, were 

dichotomized as yes or no.  These dichotomous variables were negatively skewed, assuming 

continuous data, with a high preponderance answering no.  
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Further analyzing the variables, we can look at the correlations between the variables. 

Instead of using a Pearson correlation matrix because our variables are categorical or polytomous 

indicators, the computer software running the analysis, Mplus, uses a polychoric correlation 

matrix (Brown, T. , 2006).  The correlations were between .060 to .926, with the lowest 

correlations being between questions on teen alcohol use and either abuse and bullying at school 

or depression/sucidiality. All other correlations between the different variable types were low to 

moderate, see Appendix Table A.3.  

 

Figure 1.7 

The Mediated Model 

  

 

The Model 

Figure 1.7 outlines the mediated model that will be ran. School violence, Depression, and 

Suicidality, and Teen Alcohol Abuse and Use are all latent variables. The one dichotomous 

question on bullying will serve as an observed predictor variable that is mediated by school 

violence. Another competing mediator is included in the model, Teen Alcohol Abuse and Usage, 

to possibly explain the relationship between School Violence and Depression/Suicidality. Based 
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on the rationale for testing the model (i.e., bullied adolescents have an increased risk of suicidal 

thoughts and adolescents spend most of their time in school), school violence may explain some 

of the reason we see this connection. Also because alcohol abuse and use is one of the key 

factors in teen suicide it was included as a possible mediator as well (Schilling et al., 2009).  

When we say a variable M (school violence) mediates the relationship between X (bullying) and 

Y (depression/sucidality), one goes from a simple correlation between X and Y to a partial 

correlation between X and, Y controlling for the effects of M. Due to controlling for the mediator 

or explaining some of correlations between X and Y by holding M constant, the relationship 

between X and Y will be reduced. 

Software. Mplus 7 will be used to analyze the mediated SEM model. Mplus is a 

statistical software program specifically designed to analyze causal models involving observed 

and latent variables. The YRBS data are nested or multilevel by design.  Because students within 

a school or class behave similarly this violates the requirement of independence. Non-

independence is brought about due to the non-equal probability of selection. By design YRBS 

was created not as a random sample of students across America but as a complex three stage 

sample design to save time and money--this convenience for the designers leads to complexities 

for researchers.  A Hierarchical or Multilevel model was designed to address these complexities. 

Mplus allows researchers to conduct multilevel modeling in two ways: modeling the between 

level structure and correcting for the standard error, or just correcting for the standard errors. 

Standard errors are underestimated in nested data because students in groups such as classrooms 

tend to behave similarly. Analysis on this type of data makes it looks like the scores are have less 

variance than is truly there. One of the benefits of doing a multilevel SEM model is that the 

between correlational structure can be modeled. However, there has to be enough variance to 
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model the between level structure. When not enough variance between the clusters is present, 

Mplus allows one to run the model as a single level and corrects for underestimation of the errors 

by using the key word COMPLEX in Mplus code.  The interclass correlation (ICC) is used to 

described the between level variance. Depending on the value of the ICC, modeling the between 

level structure is deemed possible or not possible.  The ICC for the variables chosen in this 

analysis varied ranged from .008 to .04.   This indicated that there was not enough variance on 

the second level to consider modeling the second level. Therefore a standard SEM will be 

performed with the correction for the standard errors. When dependent variables are not 

continuous, they are defined in Mplus with the key words CATEGORICAL ARE, and the 

weighted least square with mean and variance (WLSMV) estimation method is used by default 

when running the analysis.  

Missing data. There are three types of missingness referred to in literature: missing 

completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR). 

Missing completely at random is missingness that has no rhyme or reason. Missing at random 

occurs when missingness can be explained by other variables, and thus missing values may be 

filled in via multiple imputation.. Missing not at random refers to the situation when neither 

MCAR nor MAR occur, meaning multiple imputation would not provide correct estimates of 

missing values. For example, a study about IQ and job performance is said to have missing at 

random pattern when only the low IQ workers have job performance scores missing, whereas, if 

workers with  low job performance IQ scores are the ones with scores missing then we call this 

missing not at random (Enders, 2011).  

There are four approaches to dealing with missing data: available case method (includes 

listwise and pairwise), single imputation method, model based imputation, and full informal 
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maximum likelihood estimation (FIML; Kline, 2011). The available case approaches are where 

you delete incomplete cases. With listwise you delete cases where there is missingness in all the 

variables or complete missingness. Pairwise is less restrictive in that it looks at the covariance 

matrix and missing bivariate pairs are discarded (Enders & Bandalos, 2001).  Single imputation 

replaces one missing score with an estimated score usually based on regression or group mean 

substitution. Model-based imputation method uses the model to generate more than one viable 

replacement for the missing scores (Kline, 2011). The FIML estimation approach does not delete 

data nor impute the missing data. Similar to a regression imputation, it uses an estimation 

method and also estimates the parameters and standard errors in one step. FIML uses the raw 

data (missing and all), means, and covariances to estimate these parameter estimates by 

maximizing a casewise function that incorporates all the information gathered. FIML estimation 

was specifically written for SEM applications (Graham, Olchowski, & Gilreath, 2007).  

Each approach has their positive and negative attributes. Listwise and Pairwise deletion 

require MCAR assumption and yield biased parameter estimates under MAR, FIML yields more 

efficient estimates than listwise and pairwise under MCAR, and FIML parameter estimates are 

unbiased under both MCAR and MAR  (Enders & Bandalos, 2001).  Direct ML assumes data are 

MCAR or MAR and multivariate normal.  It is assumed that FIML estimates can be biased 

MNAR. When data are non-normal, the robust maximum likelihood (MLR) estimator is used 

instead (Brown, 2006). According to the Mplus user guide, Mplus provides maximum likelihood 

estimation under MCAR, MAR, and MNAR for continuous and noncontinuous data (Muthén, & 

Muthén,2008- 2010, P. 7). For categorical outcomes, missingness is allowed for covariates but 

not outcomes when the weight least square (WLS) based estimator method is used. WLS based 

estimators are generally used when the number of categories are less than five. When WLS based 
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estimators are used, a Bayesian analysis or multiple imputation method serves as an alternative 

to FIML (Muthén, 2008-2010). Bayesian analysis modeling of missing data gives asymptotically 

the same results as ML estimation under MAR (Muthén, 2008-2010, p.338). However, where 

there are large data sets this leads to large models with a large number of parameters which add a 

level of complexity that leads to non-convergence of the model (Asparouhou, & Muthén, 2010).   

For my data set, the number of missing data range from 39 to almost 2000 with the 

questions related to attempted suicide having almost 2000 missing responses. According to 

initial analysis, using Lisrel 8.8 doing listwise deletion would drop the sample size down to 

roughly 12000.  However, when you tell Mplus to correct for missing data by typing Missing in 

the analysis line and use WLSMV estimator, you no longer are using direct ML but pairwise 

deletion. If you have missing data and don’t specify missing in the analysis line, listwise deletion 

is used. Pairwise deletion deletes fewer cases than the listwise. In fact, using pairwise in Mplus, 

the sample size used was at least 15633 depending on the model.  When data are missing 

completely at random, pairwise deletion is better (Brown, 2006). For samples with a large N, 

pairwise deletion can lead to negatively biased standard errors, and if the data are MAR, the 

parameter estimates and standard errors are severely biased (Brown, 2006). MLR, robust ML, 

will treat the categorical variable as continuous, which is fine if the number of scale points is 

over five and the distribution is roughly normal, which does not apply here.  There were two 

questions that have a high number of missing cases: 1) in the past twelve months how many 

times you have attempted suicide, 1801 missing 2)  how many days  has the student had at least 

one glass of alcohol in the past thirty days, 1546 missing. The rest of the missing is in the 

thousands. This could be a measure of response bias due to the nature of the question, According 

to Scafer and Graham (2002), in general, there is no way to test for MAR holds in a data set 
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without follow-up data from the non-respondents or by imposing an unverifiable model. Because 

of the limitation of my data I am using WLSMV with pairwise elimination.  

Limitations.  The first notable limitation is the dearth of questions on bullying. Asking 

someone if they have or have not been bullied on school property does not capture the totality of 

the measure. Everyone has experienced some type of bullying at one time or another but without 

questions that measure frequency or intensity it is not known if the question is really measuring 

bullying. This relies on the person's memory and definition of bullying. No matter what analysis 

one chooses to do this would be a limitation. Second, I could not test to see if the same model 

holds for the between level because of the lack of variance or low ICC at the between level. 

Lastly, due the complexity of using data imputation on a large data set, pairwise deletion had to 

be implemented on data that could possibly be MNAR.  
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CHAPTER FOUR 

STUDY ONE RESULTS 

 

This section presents the results of the study about the mediated relationship between 

bullying and depression/suicidality using the Youth Risk Behavior Survey (YRBS).  There are 

three questions that this section will answer:  Is there a relationship between bullying and 

depression/suicidality? Is that relationship mediated by school violence? Is teen alcohol abuse 

and use another possible mediator in the mode? Each question is presented with the model and 

the interpretation of Mplus results. Following the results section, a discussion section delves 

deeper into the meaning of the outcomes and how it relates to previous empirical studies.  

 The first model ran was the core mediation model, figure 8, which tests if the 

relationship between bullying and depression/suicidality is mediated by school violence. The 

first step was to test the fit of the model. The most reported fit index is Chi-square which assess 

overall model fit. However, Chi-square is sensitive to sample size and will always report good 

model fit when the sample size is large; also, it assumes multivariate normality. The second most 

popular fit index is the root mean square error of approximation (RMSEA). RMSEA is a fit 

index that measure how close the implied matrix (model matrix) is from the observed variance 

covariance model. RMSEA is beneficial because it takes into account the complexity of the 

model by adjusting for the number of parameters. For RMSEA a zero means the model has 

perfect fit—with good fit being less than or equal to .05 (Hu and Bentler, 1999). There are 
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numerous fit indices to choose from in SEM but each of them has their own positives and 

negatives. In general, when the WLSMV estimator is selected the comparative fit index (CFI), 

RMSEA, Tucker-Lewis non-normed fit index (TLI), and weighted root mean square  (WRMR) 

should be used (Bowen & Guo, 2012). TLI and CFI recommend values of .95 or higher. WRMR 

requires values less than .90 for normal data and less than1 for non-normal data (Yu & Muthén, 

2002;  Bowen, & Guo, 2012,). The RMSEA=.023 (90% CI: .020, .026), CFI= .983, TLI=.976, 

and WRMR =1.625. Although WRMR showed the model was not an adequate fit, the other 

indexes show model fit well. The modification indexes recommendations did not agree with 

theory.  

 The factor loading represents the strength of the relationship between the 

variable/indicator and the common factor. The square of the standardized factor loading 

represents the percentage of variance in the indicator explained by the common factor. The error 

variance is the unexplained variance in the indicator not explained by the factor.  For this model, 

the standardized factor loadings were all significant and ranged from -.533 to a high of .962.   

 

Table 1.1 

Measurement Model 
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According to Table 1.1, there seems to be evidence that the construct depression and 

suicidality explains very little of the variance in the attempted suicide variable or indicator 

(ASUI) and should possibly be dropped from the model. Although not referenced in the 

modification index, the fact that 71.40% of the variance is left unexplained by the construct and 

that a number of missing responses makes response bias seem likely, dropping ASUI might be a 

good choice. 

Figure 1.8 

Core Mediated Model (standardized)

 

 

 

 

 

 

Table 1.2 
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Direct/Indirect Effects  

  

 

The unstandardized model parameters assume all variables are on the same scale, which 

is not the case here. Therefore, we have to use standardized parameters to describe the 

relationship between the variables. Mplus provides three types of standardization options: 

STDYX, STDY, and STD. All the direct and indirect effects were significant..  STDYX says 

both the dependent and independent variables are standardized, while STD only standardizes the 

dependent variable. In general, StdYX and Std are the same when the parameter estimates only 

involve relationships between latent variables. However, when a factor is regressed on a binary 

observed variable then STDY or STD is used.  

From the Mplus output, there is a significant direct effect (=.239, SE=.023, p < .001) 

and indirect effect (=.256, SE=.018, p < .001) from the bullying variable to the variable on 

depression and suicidality. Looking at the standardized direct effect those who experience no 

bullying had a .345 standard deviation increase on the depression/suicidality scale than those 

who had experienced bullying, controlling for the effect of school violence. The latent 



54 

depression/suicidality scale goes in the direction of the first three indicators from yes, or 

affirmative depression/suicidality, to negative depression suicidality. Therefore, those who have 

not experienced bullying have experience less depression/suicidality while those who have 

experienced bullying have a .345 standard deviation decrease (experience more) 

depression/suicidality.  The indirect effect operates through school violence, so according to the 

standardized (STD) estimates, those who say they have not been bullied have a decreased of .755 

standard deviation on school violence scale compared to those who have been bullied.  Since the 

school violence scale goes from no school violence to extreme amount of school violence, this 

means those who have been bullied experience more school violence. In turn, the one standard 

deviation increase on the school violence scale leads to .490 standard deviation decrease on the 

depression and suicidality scale. Since this scale goes from more depression/suicidality to less, 

this decrease indicates higher levels of depression/suicidality. The total mediated effect, c= c' 

+a*b, is significant (=.495, SE=.025, p<.001). Using unstandardized parameters, we see that 

.495=.239 + .256 (where .256= -.476*-.538). So, if we were not controlling for the mediated 

variable we would see for those who said they have been not bullied saw a .495 increase in 

depression and suicidality compared to those who said they had been bullied (recall, the 

parameters are not standardized), or rather those who haven't experience any bullying experience 

less depression/suicidality.  

 

 

 

 

Figure 1.9 
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Teen Alcohol Abuse and Usage Mediation Model 

 

 

 The second model modeled the relationship between school violence and 

depression/suicidality mediated by teen alcohol abuse and usage. The weighted least square 

mean and variance (WLSMV) estimator was used and 16409 observations were used in the 

analysis using pairwise deletion methodology. The RMSEA=.030 (90% CI: .028 .032), CFI= 

.987, TLI=.982, and WRMR =2.731. The weighted root mean square residual (WRMR) indicates 

poor fit but all the other indices suggest good fit. The Modification indices (MI) indicate 

parameters that can be added to the model to improve fit by reducing 
2
.  The biggest reduction 

of chi-square was the suggested cross loading of drinking at school onto school violence 

(440.312). Next was the cross loading of drinking at school (DRKSCH) onto depression and 

suicidality (236.045). The third largest was loading weapons at school (WSCH) onto teen 

alcohol abuse and usage (106.261). Although these sound interesting, they have no theoretical 

basis so I could not incorporate the suggested modifications. Another concern was the high, 

almost perfect loadings. According to Kline (2005), when a correlation is greater than .90, we 

have redundant information.  Drinking at least one serving of alcohol in the past 30 days was the 
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second most missed variable and it had a high correlation with drinking at least one alcohol in 

one's life. They are basically saying the same thing so the model was refitted without this 

variable. After removing this variable, the new model fit indices are as follows: RMSEA=.031 

(90% CI: .029 .033), CFI= .968, TLI=.959, and WRMR =2.695. This was a modest improvement 

but still necessary based on the high correlation. Figure 1.10 outlines the new model with the 

new parameter estimates. Table 1.3 features the parameter estimates for the mediation model. 

The loadings were all significant. The explained variance ranged from .292 to .908. 

 

Figure 1.10 

Corrected Teen Alcohol Abuse and Usage Mediation Model 

 

 

 

 

Table 1.3 
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Measurement Model Alcohol Mediation 

  

 

Table 1.4 

Direct/Indirect Effects Alcohol Mediated Model 

  

According to Table 1.4, school violence has a significant direct effect on 

depression/suicidality (
StdXY

 = -.537, SE=.026, p < .001). Each standard deviation increase on 

the school violence scale leads to a .537 standard deviation decrease on the depression/suicidality 
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scale.  Since the depression/suicidality scale go from very depressed and suicidal to zero, a 

decrease means the more violent the school the more students experienced depression and 

suicidality. Although there is a significant relationship between school violence and alcohol use 

and abuse (
StdXY

 = -.619, SE=.012, p < .001), there is not a significant relationship between 

depression/suicidality and alcohol abuse and use (
StdXY

 = -.015, SE=.022, p =.508). Thus, the 

alcohol abuse and use is not a mediator between school violence and depression/suicidality.  

 Model 3 has dual or competing mediators, school violence and teen alcohol abuse 

and abuse, see figure 1.11. Examination of model fit reveals that RMSEA=.030 (90% CI: .028 

.032), CFI= .965, TLI=.955, and WRMR =2.748. There is evidence of model fit using RMSEA, 

CFI, and TLI. WRMR does not show that the model fit.  

 

Figure 1.11 

Dual Mediator model  
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Looking at the direct and indirect effects for the dual mediation model (see table 1.5) I 

found that all paths were significant. The direct effect of school violence on 

depression/suicidality is significant and negative (= -.364, SE=.023, p < .001). According to the 

standardized (STDXY) estimates, for each standard deviation increase on the school violence 

scale there is .364 standard deviation decreases on the depression/suicidality scale. In addition, 

school violence had a significant indirect effect that was mediated by teen alcohol abuse & use, 

 = -.038, SE=.012, p = .001.  Each standard deviation increase in school violence leads to a .044 

(.621*-.072) standard deviation decrease in depression/suicidality because school violence 

operates through teen alcohol abuse and use. 

 

Table 1.5 

Direct/Indirect Effects Dual Mediated Model 
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Bullying has a significant direct effect on depression/suicidality as well, = .308, 

SE=.021, p < .001. According to the standardized (STD) estimates, the absence of bullying leads 

to a .445 standard deviation increase on the depression/suicidality scale compared to those who 

said they had been bullied, controlling for effects of school violence, and alcohol abuse and use 

in the model. There are two indirect paths through which bullying can influence 

depression/suicidality. The first is through school violence (Bullying --> School violence --> 

Depression/Suicidality), which is significant (= -.364, SE=.023, p < .001). Using the 

standardized parameters (STD) to interpret the relationship, those who have not been bullied will 

see an increase by .242 (-.565*-.427) standard deviations through this path compared to those 

who have been bullied. The second path is through school violence and then through teen alcohol 

abuse and use (Bullying --> School Violence -->Teen Alcohol Abuse & Use --> 

Depression/Suicidality); this path is also significant (= -.017, SE=.005, p = .001).  Those who 

were not bullied will see an increase of .025 (-.565* .621*-.072) standard deviations on the 

depression/suicidality scale mediated through school violence and teen alcohol abuse use. The 

total effect of bullying through all three pathways (one direct and two indirect) is an increase on 

the depression/suicidality scale by .712 (.445 + .241+.025) standard deviations for those who 

experienced no bullying versus those who experienced bullying. Explicitly, those who 

experience bullying experience a great deal more depression/sucidality. 

 The test for indirect or mediated effect, (i.e., a*b is significantly different from zero) is by 

default the Sobel test in Mplus (Geiser, 2013). The problem with using the Sobel test to test for 

indirect effect is that it assumes the mediation paths, a*b, is normally distributed, which is rarely 

the case. Instead, it is better to look at an asymmetric confidence interval based on bootstrap 

methodology to test for indirect effects. However, bootstrapping can't be run on multilevel or 
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complex data in Mplus. One possible good note, the problem of the distribution of a*b not being 

normal comes when the sample size is small; for moderate to large sample sizes the distribution 

may approach normality (Bollen & Stine, 1990). Although bootstrapping, a non-parametric 

technique, is recommended when non-normality is present, Monte Carlo confidence intervals 

(MCCI) for indirect effects is another approach that is just as effective and not as time 

consuming as bootstrapping (Preacher & Selig, 2012). This approach generates asymmetric 

confidence intervals as well and can be used in placed of bootstrapping.  Preacher and Selig 

(2012) provided a general R script to run MCCI for indirect effect but the code has to be adapted 

for your particular model. Using his starter code written in R, I was able to transfer information 

provided under tech1 and tech3 in Mplus (location of covariance matrix for the paths used in the 

calculation for the indirect effect) and implement their code (see Appendix B). 

Figure 1.12 

MCCI for Indirect effect Model 1 
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  The monte carlo confidence interval for the total indirect effect of model one, 

where school violence mediated the relationship between bullying and depression/suicidality, 

was shown (or confirmed) to be significant with the confidence interval of (.2171, .297). The 

unstandardized total mediation effect was .256. Note, the unstandardized values were used in the 

R code.   

 

Figure 1.13 

MCCI for Indirect effect Model 2 

 

 The MCCI for the second mediation model where teen alcohol abuse and use was 

tested to mediate the relationship between school violence and depression/suicidality was 

confirmed to not be significantly different from zero (MCCI = -.04217, .02374). 
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 The MCCI for the full dual mediation model, model3, see figure 14, was shown to 

be significant with a 95% CI bounded away [.1522, .2158]. The unstandardized total indirect 

effect of this model was .182.  

 Using Preacher and Selig’s (2012) algorithm for measuring if there is an indirect 

effect for asymmetric distributions, I was able to confirm the same results seen using Sobel 

significance test.  

 

 

Figure 1.14 

MCCI for Indirect effect Model 3 
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CHAPTER FIVE 

STUDY ONE DISCUSSION 

  

 This section discusses the findings in the results section.  There were three 

questions I wanted to answer in this research: Is there a relationship between bullying and 

depression/suicidality? Is that relationship mediated by school violence?  Is teen alcohol abuse 

and use another possible mediator in the model? In addition, I want to know if there possible 

other mediators for this model?  I hypothesized that there would be a relationship between 

bullying and depression/suicidality and it would be mediated by school violence. I hypothesized 

that teen alcohol abuse and use would mediate the relationship between school violence and 

bullying.  

 The empirical data reveal that there is a relationship between bullying and 

depression/suicidality. Recall, the bullying scale went from one to two where one was the 

affirmative answer to having not experienced bulling during the past 12 months. So being bullied 

was the baseline or reference group.  The depression/suicidality scale had a reverse order with 

those having a positive standard deviation increase on the scale was actually experiencing less 

depression/suicidality.   

The relationship between bullying and depression/sucidality was mediated by school 

violence. As a standalone model, teen alcohol abuse and use did not mediate the relationship 

between school violence and depression/suicidality. However, when added as a second mediator 

to the first model, teen alcohol abuse and use was a mediator between school violence and 
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depression/suicidality, and it was a secondary mediator between bullying and 

depression/suicidality. The total indirect mediation was significant probably because the  

Are there possible other mediators in this model? Yes! According to Zhao et al. (2010), 

when there is a significant indirect effect, significant total direct effect, and a*b*c is positive 

then this provides evidence of an omitted potential mediator and the model has an incomplete 

framework.  

Another question that could reasonably be asked, Is SEM the model to use for this data 

set? The CDC advises researchers to use the logistic regression model and correct for the 

standard errors. I looked at a particular logistic regression model, and I regressed the observed 

variable considering suicide on the observed bullying variable using Mplus 7.0.   Considered 

suicide is a dichotomous variable with one for yes and two for no. The results showed that there 

was a significant relationship between bullying and depression/suicidality (= 1.078, SE=.073, p 

< .001), Figure 1.15.  Those who have not experienced bullying add an increased odd of 1.078 of 

not considering suicide (my reference variable is yes considering suicide).   

 

Figure 1.15 

Logistic Regression Model 
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When  threatened at school is added to the model as a mediator, figure 1.16, we see all 

paths are significant (=0.538, SE=.040, p < .001). There is a .538 increase in odds of not 

considering suicide for those who have not experience bullying. There was a significant indirect 

effect as well (=0.063, SE=.006, p < .001). 

Figure 1.16 

Indirect effect for observed model 

 

 

Looking at the R-square, or percentage of variation explained by independent variables in the 

model with the observed mediated model (figure 1.16), only 7.4% of the variance in considered 

suicide  was explained by threated at school and bullying. However, for model one, 30% of the 

variance in depression/suicidality was explained by the model. Although, more variance was 

explained by the SEM model, both models still have the same handicap, it requires students to 

define what is bullying to them and require them to remember.   

 The YRBS is a useful tool and great data set but is limited in that the full bullying 

construct has not been explored as well as other constructs in the model. 
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APPENDIX A 

TABLE A.1 SCALE 

         

Variables/Indicators Scale 
Bully 

 During the past 12 months, 
have you ever been bullied 
on school property? (BSch) 

A.Yes                                            
B. No 

School Violence Scale 
During the past 30 days, on 
how many days did you 
carry a weapon such as a 
gun, knife, or club on 
school property? (WSch) 

A. 0 days                                  
B. 1 day                                    
C. 2 or 3 days                         
D. 4 or 5 days                          
E. 6 or more days 

During the past 12 months, 
how many times were you 
in a physical fight on a 
school property? (FSch) 

A. 0 times                                   
B. 1 time                                     
C. 2 or 3 times                           
D. 4 or  5 times                         
E. 6 or 7 times                          
F. 8 or 9 times                          
G. 10 or 11 times                     
H. 12 or more times 

During the past 30 days, on 
how many days did you not 
go to school because you 
felt you would be unsafe at 
school or on your way to or 
from school? (UnSSch) 

A. 0 days                                  
B. 1 day                                    
C. 2 or 3 days                         
D. 4 or 5 days                          
E. 6 or more days 

During the past 12 months, 
how many times has 
someone threatened or 
injured you with a weapon 
such as a gun, knife, or club 
on school property? (TtSch) 

A. 0 times                                  
B. 1 time                                    
C. 2 or 3 times                          
D. 4 or  5 times                         
E. 6 or 7 times                          
F. 8 or 9 times                          
G. 10 or 11 times                     
H. 12 or more times 
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Suicidality  Scale 
During the past 12 months, 
did you ever feel so sad or 
hopeless almost every day 
for two weeks or more in a 
row that you stopped 
doing some usual 
activities? (Sad) 

A.Yes                                            
B. No 

During the past 12 months, 
did you ever seriously 
consider attempting 
suicide?(CSui) 

A.Yes                                            
B. No 

During the past 12 months, 
did you make a plan about 
how you would attempt 
suicide?(Sui) 

A.Yes                                            
B. No 

During the past 12 months, 
how many times did you 
actually attempt 
suicide?(Asui) 

A. 0 times                                  
B. 1 time                                    
C. 2 or 3 times                           
D. 4 or 5 times                           
E. 6 or more times 

Teen Alcohol Abuse and 
Use  Scale 

During the past 30 days, 
how many times did you 
drive a car or other vehicle 
when you had been 
drinking alcohol?(DrkNDri) 

A. 0 days                                  
B. 1 day                                    
C. 2 or 3 days                         
D. 4 or 5 days                          
E. 6 or more days 

During your life, on how 
many days have you had at 
least one drink of 
alcohol?(DAlco) 

A. 0 days                                    
B. 1 or 2 days                            
C. 3 to 9 days                           
D. 10 to 19 days                        
E. 20 to 39 days                         
F. 40 to 99 days                       
G. 100 or more days 

During the past 30 days, on 
how many days did you 
have at least one drink of 
alcohol? (DL1Alco) 

A. 0 days                                  
B.1 to 2 days                             
C. 3 to 5 days                            
D. 6 to 9 days                            
E. 10 to 19 days                          
F. 20 to 29 days                       
G. All 30 days 

During the past 30 days, on 
how many days did you 
have 5 or more drinks of 
alcohol in a row, that is, 
within a couple of 
hours?(D5PAlco) 

A. 0 days                                    
B. 1 day                                      
C. 2 days                                    
D. 3 to 5 days                            
E. 6 to 9 days                            
F. 10 to 19 days                       
G. 20 or more days 
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During the past 30 days, on 
how many days did you 
have at least one drink of 
alcohol on school 
property?(DrkSch) 

A. 0 days                                  
B.1 to 2 days                             
C. 3 to 5 days                            
D. 6 to 9 days                            
E. 10 to 19 days                          
F. 20 to 29 days                       
G. All 30 days 
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TABLE A.2 

DISTRIBUTION 

Variables/Indicators Distribution 

Bully   

During the past 12 months, have you ever 
been bullied on school property? (BSch) 

A. 18.9                                    
B. 81.1 

School Violence   

During the past 30 days, on how many days 
did you carry a weapon such as a gun, knife, 
or club on school property? (WSch) 

A. 94.5                                       
B. 1.5                                         
C. 1.1                                   
D..3%                                          
E. 2.5% 

During the past 12 months, how many times 
were you in a physical fight on a school 
property? (FSch) 

A. 89.3                                       
B. 6.9                                          
C. 2.5                                         
D. .4                                            
E. .3%                                         
F. .1                                                       
G. 0                                                
H. .6% 

During the past 30 days, on how many days 
did you not go to school because you felt 
you would be unsafe at school or on your 
way to or from school? (UnSSch) 

A. 95.8                                        
B. 2.1                                          
C. 1.1                                          
D. 0.3                                         
E. .7 

During the past 12 months, how many times 
has someone threatened or injured you with 
a weaspon such as a gun, knife, or club on 
school property? (TtSch) 

A. 93.2                                        
B. 3.1                                          
C. 1.7                                          
D. .6                                            
E. .3                                            
F. .2                                            
G. .1                                           
H. .9 

Suicidality   

During the past 12 months, did you ever feel 
so sad or hopeless almost every day for two 
weeks or more in a row that you stopped 
doing some usual activities? (Sad) 

A. 27.1                                     
B. 72.9 

During the past 12 months, did you ever 
seriously consider attempting suicide?(CSui) 

A. 14.1                                     
B. 85.9 
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During the past 12 months, did you make a 
plan about how you would attempt 
suicide?(Sui) 

A. 11.2%                                 
B. 88.8% 

During the past 12 months, how many times 
did you actually attempt suicide?(Asui) 

A. 93.5                                       
B. 3.5                                          
C. 1.9%                                      
D. .4%                                        
E. .7% 

Teen Alcohol Abuse and Use   

During the past 30 days, how many times 
did you drive a car or other vehicle when 
you had been drinking alcohol?(DrkNDri) 

A. 89.7%                                       
B. 4.6%                                     
C. 3.4%                                     
D. .8%                                        
E. 1.5% 

During your life, on how many days have 
you had at least one drink of alcohol?(DAlco) 

A. 26.3%                                    
B. 16.5%                               
C.17.1                                        
D. 11.6%                                    
E. 10.1%                                      
F. 8.6%                                      
G. 9.7% 

During the past 30 days, on how many days 
did you have at least one drink of alcohol? 
(DL1Alco) 

A. 57.2%                                     
B. 21.3%                                    
C. 10.6%                                    
D. 5.6%                                      
E. 3.8%                                       
F. .6%                                         
G. .9% 

Druing the past 30 days, on how many days 
did you have 5 or more drinks of alcohol in a 
row, that is, within a couple of 
hours?(D5PAlco) 

A. 74.2%                                    
B. 9.0%                                     
C. 6.3%                                       
D. 5.8%                                     
E. 2.7%                                      
F. 1.3%                                     
G. .8%  

During the past 30 days, on how many days 
did you have at least one drink of alcohol on 
school property?(DrkSch) 

A. 95.1%                           
B.3.2%                                       
C. .9%                                       
D. .2%                                        
E. .1%                                          
F. 0%                                          
G. .4% 
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TABLE A.3 

CORRELATION 
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TABLE A.4 MISSINGNESS 

Variables/Indicators Missingness 

Bully   

During the past 12 months, have you ever 
been bullied on school property? (BSch) 777 

School Violence   

During the past 30 days, on how many days 
did you carry a weapon such as a gun, knife, 
or club on school property? (WSch) 154 

During the past 12 months, how many times 
were you in a physical fight on a school 
property? (FSch) 321 

During the past 30 days, on how many days 
did you not go to school because you felt 
you would be unsafe at school or on your 
way to or from school? (UnSSch) 39 

During the past 12 months, how many times 
has someone threatened or injured you with 
a weapon such as a gun, knife, or club on 
school property? (TrSch) 43 

Suicidality   

During the past 12 months, did you ever feel 
so sad or hopeless almost every day for two 
weeks or more in a row that you stopped 
doing some usual activities? (Sad) 178 

During the past 12 months, did you ever 
seriously consider attempting suicide?(CSui) 190 

During the past 12 months, did you make a 
plan about how you would attempt 
suicide?(Sui) 197 

During the past 12 months, how many times 
did you actually attempt suicide?(Asui) 1801 
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Teen Alcohol Abuse and Use   

During the past 30 days, how many times 
did you drive a car or other vehicle when 
you had been drinking alcohol?(DrkNDri) 289 

During your life, on how many days have 
you had at least one drink of alcohol?(DAlco) 457 

During the past 30 days, on how many days 
did you have at least one drink of alcohol? 
(DL1Alco) 1546 

During the past 30 days, on how many days 
did you have 5 or more drinks of alcohol in a 
row, that is, within a couple of 
hours?(D5PAlco) 401 

During the past 30 days, on how many days 
did you have at least one drink of alcohol on 
school property?(DrkSch) 386 
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APPENDIX B 

Preacher & Selig (2012) Monte Carlo Indirect effect intervals code 

Model3 

 

require(MASS) 

a1 <- -.458 

a2 <- 0.639 

b1 <- -.364 

b2 <- -0.059 

rep=100000 

conf=95 

pest <- c(a1,a2,b1,b2) 

acov <- matrix(c( 

  

  .0014165726, 0.00023418028, -0.000011796112, -0.000099516474, 

  0, 0.00031608746, -0.0000029708807, -0.000064930249, 

  0, 0, 0.00052616222, -0.00030901698, 

  0, 0, 0, 0.00033035410 

 

),4,4) 

mcmc <- mvrnorm(rep,pest,acov,empirical=FALSE) 
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ie <- mcmc[,1]*mcmc[,3]+mcmc[,1]*mcmc[,2]*mcmc[,4] 

low=(1-conf/100)/2 

upp=((1-conf/100)/2)+(conf/100) 

LL=quantile(ie,low) 

UL=quantile(ie,upp) 

LL4=format(LL,digits=4) 

UL4=format(UL,digits=4) 

print(c(a1*b1+a1*a2*b2,LL,UL)) 

hist(ie,breaks='FD',col='skyblue',xlab=paste(conf,'% Confidence Interval ','LL',LL4,'  

UL',UL4),main='Distribution of Indirect Effect')   
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SECTION TWO 

 

 

SAMPLE SIZE REQUIREMENT FOR 

NON-NORMAL COMPLEX MULTILEVEL 

DATA FOR THE MULTILEVEL STRUCTURAL EQUATION MODEL 
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CHAPTE ONE 

STUDIES TWO AND THREE INTRODUCTION 

 

Data in real life are rarely perfect. When learning statistics, you often learn the four basic 

assumptions that underlie the general linear model: the assumptions of linearity, independence, 

constant variance, and normality. When the relationship between the dependent and independent 

variable is non-linear or there is non-constant variance about the regression line, then there are 

often tools one can use to remedy this situation, such as transformations. The assumption 

violated and the severity of the violation dictates which tool or statistical technique to use.  Some 

violations are often tied to disciplines/subjects.  

In educational and psychological research, data are often non-experimental data, such as 

survey data. These types of data disallow experiments where one can manipulate the variables to 

test cause and effect.  For this type of data (non-experimental), Structural Equation Modeling 

(SEM) is often advocated and used to adjust for the nature of this limitation (Bryne, 2012). 

Although pervasive in educational and psychological research, SEM is rarely used in other 

disciplines such as medical research (Kupek, 2006).  Another known problem with educational 

and psychological data are that the data are rarely normal. Micceri (1989) examined 440 data sets 

from educational and psychological research where half of those data sets were used in published 

journal articles, and found normality was non-existent. In fact, non-normality was the rule rather 

than the exception. Structural equation modeling can accommodate non-normality and non-

experimental data. However, one of the main assumptions that underlie SEM and general (or 
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generalized) linear models is independence. Violation of independence is a very serious violation 

of statistical design. When observations are not independent, then there is an increased risk of 

type I error which can lead to incorrect conclusions due to the underestimation of the true 

variability (Keppel, 2004; Heck & Thomas, 2000). The data from complex samples are often 

dependent due to cost saving techniques employed during data collection. Multilevel modeling 

(or hierarchical modeling) was introduced to address the issue of dependent data. Multilevel 

modeling (MLM) has many synonyms that are discipline specific, it is called mixed modeling by 

the department of statistics, hierarchical linear modeling (HLM) by educational researchers, and 

also random effects modeling. When combined with SEM, we have multilevel structural 

equation modeling (MSEM). Performing HLM or MSEM one can correct the negative standard 

error bias inherit when analysis is run ignoring the hierarchical in nature of the data. MSEM has 

an added benefit in that it allows for the modeling of the structure of the relationship at various 

levels of the model. In general, being able to test several plausible models and including 

measurement error in the model, which leads to less bias parameter estimates when variables are 

assumed to be measured without error, are some of the benefits that make using SEM on non-

experimental data popular. MSEM adopts these same benefits, as well as the ability for the 

dependent variable to not strictly be at the lower level.  

  

Purpose & Significance 

 The idea for this study surfaced from complication of running MSEM on a 

national data set where the use of SEM was seldom used or advised to be used.  In researching 

the reason for the computer convergence problems, I found that very little research has been 

done on non-normal multilevel SEM in regards to sample size requirement which is one of the 
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reasons for non-convergence. Hox and Maas (2010) found that sample size recommendations 

depended on the estimation method. However, their recommendations and studies were done for 

continuous multivariate normal data. They stated that no one had studied sample size 

recommendations for non-normal data within a multilevel SEM context (Hox & Maas, 2010). 

Also, Preacher (2011) stated that sample size recommendations for non-normal data have not 

been studied.  Since data in educational research is often non-normal, and data within schools 

have inherent dependencies, studying sample size requirement under non-normality was needed. 

This study combines two studies: 1) studying sample size requirements when data are non-

normal continuous, 2) studying sample size when data are categorical. The purpose is to shed 

light on a much needed area of research, and to give guidelines to future researches on the 

minimum requirement needed to run MSEM on non-normal complex data. This study is 

significant because it has not been done before.  

 

Research Questions 

Study two is a Monte Carlo study that looks at the sample size requirement when the data 

are non-normal continuous. There are three research questions that I seek to answer: 

Does sample size requirement for non-normal continuous data depend on the 

estimation method? 

Is the sample size requirement greater for normal or non-normal continuous data 

for the respective estimation method?  

Does the presence or absence of unbalanced clusters affect the sample size 

requirement for non-normal continuous data? 
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Study three is a Monte Carlo study that looks at sample the size requirement when the 

data are categorical. There are four research questions that I would like to answer in this study: 

Does sample size requirement for categorical independent variable data depend on 

estimation method? 

Is the sample size requirement the same or different compared to the normal 

multilevel data for the respective estimation method?  

Does the presence or absence of unbalanced clusters affect the sample size 

requirement for categorical data? 

Does the presence of sparse tables affect the sample size requirement? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



82 

CHAPTER TWO 

STUDIES TWO AND THREE REVIEW OF LITERATURE 

 

 Studies two and three arose from the need to model multilevel structural equation 

modeling on non-normal non-experimental data from a national data set. Because there wasn't 

any guideline in the literature detailing what sample size was needed under non-normal 

multilevel SEM data, studies two and three sought to address this gap in the literature. Study two 

seeks to find the sample size requirement when we have continuous non-normal multi-level data, 

while study three seeks to find the sample size requirement when data are categorical multi-level 

data. This literature review for the two studies is divided into seven distinct sections. The first 

section explores the utility of SEM when non-experimental data are present. A careful 

presentation of the advantages and limitations of using SEM is presented when we have non-

experimental data.  Non-experimental data consist of observational, survey, and data from an 

existing data set (such as a national data set). It is very common in educational research to have 

non-experimental data and for SEM to be used in modeling this non-experimental data (Muijs, 

2011; Bryne, 2012).Then we have a brief introduction to structural equation modeling, and a 

brief introduction to multi-group structural equation modeling. Lastly,  an introduction to Multi-

indicator Multi-independent causes Models (MIMIC), multilevel SEM (MSEM), mixture 

models, and estimations in SEM is included. Within these topics a deeper understanding of the 

limitations of SEM, the relationship between MSEM and multi-group SEM and MIMIC, and 

how heterogeneity is introduced into a distribution is sought.  
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Problem with non-experimental data and advantages of SEM 

 The strongest study is a study that can make statements about cause and effect 

(Berg & Latin, 2004). There are three conditions for establishing a causal relationship: temporal 

precedence (i.e., independent variable precedes the dependent variable in time), co-variation (i.e., 

the independent variable and dependent variable co-vary, meaning when one changes the other 

changes), and all other possible explanations/variables have been ruled out (i.e., no confounding 

variables; Johnson & Kruse, 2009). Research design can be experimental or non-experimental. 

Experimental studies are considered the gold standard of research because cause and effect can 

be ascertained. Experimental studies establish relationships by manipulating the independent 

variables and then observing the outcome, thus keeping the time order requirement. By utilizing 

the randomization process, other possible explanations are ruled out. Not all variables can be 

manipulated such as income, GPA, or self-esteem. You can't force someone to make less income 

and see what happens to the dependent variable.  With non-experimental studies the temporal 

order is out of order; data are collected for the dependent and independent variable at the same 

time. The dependent and independent variables co-vary but other possible explanations cannot be 

ruled out. With non-experimental research designs it is impractical, if not impossible, to 

manipulate some independent variables. So instead of an experiment other research designs are 

used such as surveys, observational studies, or correlational studies.  

 The problem with linear regression is that the independent variable is assumed to 

be measured without error. However, when measurement error is present the regression 

equations changes. Instead of there being of relation between the true independent variable and 

dependent variable, the relationship is between a surrogate (what was measured) variable and the 

independent variable.  
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*X X E                                                                                            (7) 

The true independent variable is X but we are measuring X*. The linear regression 

equation becomes  

 *Y X      (8) 

    

instead of the true model (intercept ignored) Y X   . This new equation adds extra 

components (error) to the model.  Rewriting the equation in terms of X*, X=X*-E,  

( * )

* ( *)

Y X E

Y X X

 

  

  

  
   (9) 

We can see a new error term has been included introduced in the model. So when Y is 

regressed on X* the error term is, *X  . This means that the independent variable and the 

error term are not independent, which is an assumption in linear regression (Graddy & Wang, 

2008). Also according to Carroll, Ruppert, and Stefanski (2006), the beta coefficient is affected 

by the presence of measurement error. The reliability ratio, λ, gives the measure of how much 

attenuation occurs in the explanatory variable.  

2

2 2

x

x 




 



   (10) 

When we are modeling Y on X, the actual equal is not beta but a function of beta, *= 

λ. If X is perfectly reliable (lambda equals one) then the new beta and true beta are equal. So 

for our model with measurement error the model equation becomes 
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* * ( * *)

( ) * ( *)

Y X X

Y X X

  

  

  

      (11) 

2 22 2( ) ( *) ( ( ) ( *))Var Y Var X Var Var X         (12) 

The addition of measurement error causes additional error variance in the model. If you 

look at the scatter plot with the regression line, you will see more error about the line. This error 

according to Carroll et. al. (2006) attenuates the slope. If the measurement error is small and 

random then one can ignore it, otherwise, an alternative estimation strategy needs to be explored 

(Graddy & Wang, 2008).  

 Researchers are told that when you have non-experimental data (that has 

measurement error) that the best tool to use is structural equation modeling (SEM). Fabrigar, 

Porter, Norris (2010) noted that modeling causal relations was not the same as providing a causal 

relationship or conclusion.  It is not the statistical tool used that causes the inability to make 

causal conclusions but the data.  For example, ANOVA, which is usually used with experimental 

data, is no stronger than SEM or regression in the presence of non-experimental data (Fabrigar 

et. al.,2010).  However, SEM has advantages when non-experimental data are present. One 

advantage is the ability to model different competing plausible models. Each model is compared 

using various statistical tools to find the best model for the data. If one model is better than the 

other, then the researcher can claim one causal assumption is better than the other. A second 

advantage is the ability to handle the threat of other alternative variables being left out of the 

model. When known, multiple regression can control for the effect of these type variables. In 

SEM however, a measurement error term is used to account for random measurement error and 

also for systematic error. In fact, SEM often provides a more accurate effect of a hypothesized 

causal variable controlling for the effects of other causal variables (Bollen, 1989, as cited in 
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Fabrigar et.al.,2010). Another advantage is SEM's ability to allow for the  simultaneous 

estimation of all the effects in the model. Instead of modeling a series of multiple regression 

equations, a single model is modeled and ran simultaneously which increases explanatory power 

in model testing. SEM allows for these simultaneous regression equations by allowing one 

variable to be both a dependent and independent variable in the same model (Bowen & Gau, 

2012).  Nusair and Hua (2010) found SEM had a greater number of statistical relationships than 

ordinary least square analysis (OLS) (as cited in Dwyer, Gill, & Seetaram, 2012). SEM has the 

ability to handle multiple types of data such as censored, count, non-normal, categorical, and 

time series (Recker, 2011). Also, SEM allows you to work with latent variables (non-observable 

variables). When used in measurement model, these latent variables (i.e., factors) are allowed to 

correlate. The correlation of independent variables in the regression model complicates the 

interpretation of the regression coefficients (Bowen & Guo, 2012). Lastly, mediation analysis 

done with regression based analysis leads to inflated estimates of direct effects and attenuation of 

the mediated effects (Baron & Kenny, 1996, as cited in Fabrigar et. al. 2010). Mediation with 

SEM allows all types of variables (latent or observed) to be included in the mediation analysis. 

Iacobucci, Saldanha, and  Dang (2007) noted that SEM’s ability to detect mediation structures 

that exists in the data are an advantage over regression. SEM does have one major drawback, 

many models are plausible. Therefore, models have to be based on sound theory. Also, SEM 

requires larger sample size than do regression based models (Kline, 2010). 

Structural Equation Modeling (SEM) 

 Behavior patterns or emotions are unobserved variables that can't be directly 

measured nor accurately measured with only one questionnaire item. Researchers who want to 

study the relationship between observed and unobserved variables are left with few options in 
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ordinary statistics. SEM is a broad collection of statistical techniques. One can use it to test the 

relational structure between a latent construct and observed variables (i.e., factor analysis), the 

relationship between observed variables (Path Analysis/Regression), or the causal relationship 

between latent variables (full structural model). All these models (and more) are under one 

umbrella, structural equation modeling.   

 One of the earliest forms of SEM was Path analysis.  Path analysis is a multiple 

regression technique that was founded by geneticist Sewell Wright (1918) as a way of testing 

propositions on non-experimental data (Wright, 1932). By studying the relationship between 

gestation period and weights of guinea pigs at birth, he utilized correlations and hypothesized 

regressed relationships between observed variables to produce an acceptable model.  

Psychologist Charles Spearman (1927) was able to show mathematically that several different 

intellectual abilities had one common cause (i.e., factor). He was able to use correlations between 

the observed variables to mathematically discover relationships that existed between the 

observed variable and their underlying cause (latent variable or factor).   Building on the work of 

Spearman and others, Joreskog (1973), was another prominent contributor to SEM. Joreskog 

(1973) developed a general model, the LISREL model, for a system of structural equations 

(Joreskog & Sorbom, 1982). 

Full structural models are a combination of path models and confirmatory factor analysis.  

Confirmatory factor analysis models the relationship between the observed variables (indicators) 

and the factor. If more than one factor is a part of the model, they are allowed to correlate. This 

is generally called the measurement part of the model. The full structural model is concerned 

with the structural part of the model (i.e., the causal relationships) between the latent variables.  

No longer modeled as a correlation, the factors incorporate path analysis via regression like 
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relations with the factor in the model. In SEM, the observed variables are assumed to be 

multivariate normal; the residual is assumed to be is assumed to be normal with mean zero and 

variance  , N(0, ). The latent factor in a CFA model is assumed to be normal with mean zero 

and variance  , N(0, ). The correlation between the errors is assumed to be zero and the 

correlation between the errors and factors are assumed to be zero, which is similar to regression 

where the residuals and independent variables are assumed not to correlate. The model is 

assumed to be correctly specified, and the relationship between the predictor and dependent 

variable is assumed to be linear. Note, in SEM, the latent variables and indicators vary between 

subjects and are assumed independent across subjects. However, in SEM, this is violated since 

subjects are nested within groups (Skrondel & Zheng, 2007).  In path models, variables in 

models where the regression relationship is modeled on observed variables are assumed to be 

measured without error. 

The goal of each of these techniques is to reproduce the variance-covariance matrix. The 

closer the model implied matrix is to the original variance-covariance matrix, the better the 

model. The model implied matrix is composed of the variances and covariances of the observed 

variables that model a particular relationship. The null hypothesis tests if the population matrix, 

∑, is equal to the implied matrix,∑(θ). Often we have to contend with the sample matrix, so the 

null equation becomes 0 : ( )H S   . The sample matrix and the model implied matrix, based on 

the estimated parameters in the model, are compared using an estimator to minimize differences 

between the two matrices. A fit function is then is used to quantify which models are best 

(Bowen & Guo, 2012).  

A visual representation of a CFA model is as follows --notice circles represent latent 

component and squares observed components of the model. 
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Figure 2.1 

 CFA model 

  

 

This SEM model can be represented by six regression like equations for the measurement 

part of the model. Each observed variable is paired with their respective indicators.  The double 

arrows represent correlation (most times this is represented with a curved arrow). Also note, the 

observed variable is represented with the letter Y which is not technically accurate. The letter X 

is used when the observed variable is endogenous, meaning, has an arrow pointing to it. The 

variable Y is used when at least one arrow is pointed from the variable (i.e., an exogenous 

variable). The arrow goes from the independent variable to the dependent variable.  The symbols 

used in SEM are Greek or Latin depending on if the variable is exogenous or endogenous, 

respectively. The system of equations created by the model is as follows, 

  

1 1 1(1)Y F E     (13) 

2 2 2(1)Y F E     (14) 

3 3 3(1)Y F E     (15) 
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4 4 2 4(1)Y F E     (16) 

5 5 2 5(1)Y F E     (17) 

6 6 2 6(1)Y F E     (18) 

 

The relationship between a latent factor, F, and one of its' respective indicator is similar 

to the regression relationship.  The latent factor is said to have caused the correlation between the 

observed variables. The difference between a CFA model and regression model is the lack of 

intercept and the independent variable is latent. There is no intercept because for a CFA model, 

the observed variables are entered into the analysis (performed by the program) as deviations 

from the means. The software centers the variables thereby making the mean of variables zero 

with no need for an intercept (Bowen & Guo, 2012).  Other models, such as those where means 

are used as inputs, the intercept is modeled.  

The loadings are represented by lambda, λ. The loadings represent the strength of 

relationship between the factor and the indicator. In fact, the product of two standardized path 

coefficient (lambdas) is equal to the observed variable between the two variables. The correlation 

1Y and 2Y is calculated as 1 * 2 . For example, if the loading were .50 and .60 respectively then 

the reproduced correlation would be .30. Also, the standardized loading square represents the 

explained variance in the variable Y explained by the factor X, which is synonymous to 2R in 

regression. So for our example, the first loading explains 25% of the variance in the first 

indicator but 75% of the variance is unique to the variable and is unexplained by the factor. The 

measurement error, E, represents unique unexplained variance in the observed variable.  
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Figure 2.2 

 Structural part of the model 

 

 

The structural part of the model no longer has the double arrows but a causal arrow.  The 

structural model is represented as follows, 

2F F      (19) 

The structural part of the model is similar to a regression equal but only with factors as 

independent and dependent variables. Note, like with anything in SEM there are no hard and fast 

rules; an observed covariate could be added to the structural equation for an entirely different 

model.  The zeta,  , represents the disturbance or factor error.  

A good example of a structural equation model is the model for the latent variable social 

economic status (SES). If our observed variables were income interval, education level, and 

family’s wealth, then all these variables are indicators of a person’s social economic status 

(SES). One of these variables alone would not explain the multi-dimensional construct of SES. 

The correlation between these variables is explained by SES. If a person has a high level of SES, 

then they are also most likely to have a high level of income, high level of education, and also a 

great amount of family wealth.  

When dealing with SEM models, there are a number of things one must contend with.  

For example, when there are more parameters than information.  Another issue is scaling. A 

latent construct or factor has no scale (meters, feet, inches, etc.) in order for the values to make 
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sense of the factor we must attribute a scale to it.  There are two scaling options for the latent 

variable in a CFA model, the reference indicator method and factor standardization.  The 

reference indicator method allows the first loading on each factor to be set to one. The factor 

standardization method assumes the factor is standardized with a mean of zero and variance one. 

If the data were continuous, then one of these methods for scaling would be the only requirement 

for identification of our model. However when the variables are categorical not only do we have 

to scale the latent factor but we also have to scale the latent response variable, y*. The response 

variable, y, is categorical but is assumed to be a continuous response variable, y*, divided by 

thresholds that determine the category. There are two conventions for scaling the latent response 

variable: marginal parameterization and conditional parameterization (Kamata & Bauer, 2008). 

The marginal or total parameterization sets the variance of y* to one so now when we estimate 

the variance of the errors, the equation is    2 1  i iV E Var F   (Kamata & Bauer, 2008). The 

second method of scaling the latent response variable assumes the variance of errors is one, 

V(yi*)= 2

i Var(F) + 1. This type of scaling is similar to the cumulative probit model and is 

called the conditional parameterization method since the conditional distribution, (y*|F), is 

assumed to be standardized (Kamata & Bauer, 2008). The cumulative probit model assumes the 

conditional distribution of y* follows a normal curve with mean zero and variance one, the 

values for a standard normal. There is another normative technique used to scale the latent 

continuous response variable, namely, logit. The logit model normalizes the conditional 

distribution of y* by assuming it follows a logistic curve and is a logistic random variable with 

variance of π2/3.  Combining the two scalings for the latent factor with those of the scaling 

techniques for the latent variable, four possible combinations of parameterization emerge 
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(Kamata & Bauer, 2008).   For the two possible conditional parameterizations, the conditional 

reference indicator approach assumes the variance of the measurement errors is one, the mean or 

threshold of the first observed value on each latent factor is zero, and the factor loading for the 

first observed variable on each latent factor is set to one. Conditional standardized factor 

assumes the factor is standard normal and variance of the error as well as the variance of the 

measurement error is one. 

 

Multi-group SEM 

Rarely in statistics do data come from a homogeneous population--most times data come 

from different groups of people.  For example, in most classroom settings we have a mixture of 

different races and gender.  Various aspects of a factor model might hold for one gender or race 

but not necessarily for another. The purpose of multi-group SEM is to address issues with 

heterogeneity in the population where the groups are known (e.g. you know that the data consists 

of 60% Females and 40% Males). Multi-group SEM tests the equality of the model parameters or 

components over the several groups. In this model, the intercept is included since means of the 

observed variables, along with the variances and covariance, are submitted for analysis. The 

measurement part of the model is comprised of factor loadings, measurement error, and observed 

means/intercepts. The structural model is comprised of factor means, factor variances, and 

covariances (as well as structural paths). The test for group differences can be tested over the 

various parts of the SEM model. However, the measurement part is tested before the structure 

part. More specifically, factor loading, factor covariances, structural paths, and latent factor 

means are the things commonly tested (Bryne, 2012). 

The multi-group equation is given by, 
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 
   (20) 

where 
g  is the latent group mean that can vary across groups, vg is the observed group 

mean that varies across groups,  and 
ig  is the disturbance or factor error. 

When studying group difference (in SEM), the word invariance is pervasive. Invariance 

simply means equivalent or equivalence. The steps to test for multigroup invariance was the 

result of research by Jöreskog (1971) (as cited in Byne, 2008). His recommendation was similar 

to a global F test. He recommended the performance an omnibus test of the variance/covariance 

matrices (
1 2 g    ) over g groups to see if there are group differences. This was 

followed by more restrictive tests to find where those differences exist (Byrne, 2012).  However, 

Bryne (1988a) found cases where the global null hypothesis may be rejected, yet tests for 

equivalence of measurement and structural invariance still held. (as cited in Bryne, 2012).   

According to Bryne(2012), the reason for such inconsistencies was no baseline model present for 

the variance/covariance structure.  In order to establish a baseline model, we first test if the factor 

structure holds across groups then perform subsequent more restrictive tests. Testing for factorial 

invariance requires testing invariance in the measurement and the structural model. Measurement 

invariance holds if we have equivalent factor structure, factor loadings, item intercepts, and 

measurement error variance. Structural invariance is equivalence of the factor means, factor 

variances, and covariances. Measurement invariance is tested before, and must hold, before 

structural invariance is tested. If measurement invariance holds, we are saying difference among 

observed scores is due to scores on the factor not the respective groups. Essentially, if two people 

have the same score on a factor, measurement invariance holds if they have the same observed 
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scores. If for the same level of the factor two people have different observed scores, we can 

reason this is a function of them being different and then measurement invariance does not hold.  

The first step in testing measurement invariance is testing configural invariance. 

Configural invariance or pattern invariance asks if the items that define the factor are the same 

across groups. Since a factor explains the correlation among the variables or indicators, 

configural invariance asks if the factor explains the same relationship across groups. For 

example, if someone decided to define self-esteem in women as being measured by degree of 

body image issues (primarily weight issues), independence, posture, and eye contact, then the 

goal in testing configural invariance is to see if the same pattern of loading is consistent across 

groups and the if the same number of indicators (observed variables) are consistent across 

groups. Specifically, we are looking to establish a baseline model by looking for the same pattern 

of free and fixed loading hold across groups and if the same number of indicators exist across 

groups. Free parameters are parameters to be estimated in the model. Fixed parameters are 

parameters designated to equal a constant are therefore not estimated in the model.  

To test for confgural invariance models are fitted for each group separately. Note, that 

each model does not have to be identical. The structures do not have to be the same. Partial 

measurement invariance can still be tested when you have different baseline models in the 

respective groups (Bryne, 2012).  Partial measurement invariance occurs when not all 

measurement parameters are equal in the various groups. Configural invariance is a multigroup 

test where both established group baseline models are measured as one group over the common 

indicators. After testing the baseline models for each group via fit tests and also via the 

modification indexes (MI), I can then proceed to test for other equivalences. MI suggests how 

much the Chi-square value would be lowered if the stated and/or unstated relationships in the 
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model were removed or added. Weak factorial invariance holds if factor loadings are equal 

across groups. Strong factorial invariance builds off the requirement for weak factorial 

invariance, it holds if the loadings and the intercepts are equal across groups.  Strict factorial 

invariance is even more restrictive, it holds if loading, intercepts, and measurement error 

variances are equal across groups. Comparing the ever increasing levels of invariance is done by 

using the chi-square diff test.  

The question answered by Multi-group SEM:  Does the latent factor have the same 

relationship with the observed variables across groups?  For example, are the variables correlated 

with the self-esteem factor the same across nationalities? 

 

 

Multi-indicator Multi-independent Causes Model (MIMIC) 

MIMIC are another way to compare group differences on the factor (and/or on a 

particular indicator). This approach usually uses a dummy variable that can take on the value 0 

or 1 to represent the presence or absence of a covariate as the differences in factor means or in 

intercept value. The number of coded variables is the number of groups minus one. This is 

similar to multiple regression where the number of dummy variables included in the analysis are 

G-1.  It looks like a CFA with an observed covariate pointing to the factor and/or a particular 

indicator Note the covariate can be continuous or categorical. 

The standard model for the MIMIC model is  

(1)g ig ig

ig g ig ig

ig g F E

X

Y v

F



 



 


   (21) 
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ig D is the disturbance term or error for the factor, 
igX is for the dummy variable (a 

dichotomous indicator),  
g is the regression coefficient representing the strength of relationship 

between dummy co-variate, and the factor 
gv  is the intercept.   

Multi-group SEM and MIMIC are similar and different at the same time, both have their 

positives and negatives. MIMIC allows the use of a smaller sample size since you are working 

with the total covariance matrix. ,In multi-group SEM, you have covariances and variances as 

well as means for each group. Therefore, each group has to have enough people to run the 

particular model (dividing the covariance matrix can make this difficult). Also, MIMIC has less 

parameters to estimate, MIMIC uses the total variance covariance matrix and instead of means 

adds an additional variable (i.e., the covariate; Brown, 2006).  The correlation matrix used by 

MIMIC involves the covariance between the indicators and the correlation between indicators. 

The covariate is used as input in the model. A significant beta represents population 

heterogeneity.  Factor means are different at different levels of the covariate. This is similar to 

testing for factor mean differences for the multi-group SEM model. MIMIC is limited in that it 

only tests for invariance of intercepts and factor means. The other types of invariances can’t be 

tested using the MIMIC model. Multi-group SEM allows for partial measurement invariance 

across groups whereas MIMIC does not allow such flexibility (Thompson, Green, 2006). 

The question answered by MIMIC: On average do the covariate variable (race), 

blacks and whites, differ on the level of the factor (self-esteem)? This is a question on latent 

differences for the covariate. However, another question can be asked when the co-variate points 

to the indicator, DIF (differential item testing). On average for blacks and whites, do they have 

different average scores on the indicator (average test scores)? 
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Multilevel Structural Equation Modeling 

Difference between MIMIC, Multi-group CFA, and Multilevel CFA. Because 

multilevel CFA models encompass CFA models, multi-group models, and MIMIC models, 

explaining the various nuances between the various models was necessary.  There are inherent 

limitations of both the MIMIC and SMM models that make multilevel modeling necessary. In 

general, MIMIC models assume strict invariance across groups while being more parsimonious 

and requiring less sample size. Multi-group CFA is more flexible, needing only partial 

measurement invariance (which allows you have invariance on a partial set of indicators), but it 

requires a larger sample size and can only estimate a small number of between group differences 

or have a small number of groups (Selig, Card, & Little, 2008).  Both MIMIC and SMM are used 

when there are known heterogeneous populations (unknown heterogeneous populations fall 

under latent class models). However, like most SEM models, there is an assumption of 

independence. When data are clustered within groups, those within the group tend to behave 

alike, which causes incorrect inferences (i.e., bias parameter estimates, inflated chi-squares  and 

negatively biased standard errors; Julian, 2001; Bryne, 2012).   

Multilevel CFA or SEM is recommended when you have a large number of groups and 

when data are clustered (Selig, Card, & Little, 2008).  Instead of having a fixed number of 

groups in the model (like Multi-groups CFA), the groups are randomly chosen from the general 

population.  Because the groups are random, the people are randomly chosen. Therefore the 

factor means vary across groups and are considered random.  Having a random selection of 

groups allows one to generalize about the inferences that are made (Selig, Card, & Little, 2008). 

Also, one can think of random as meaning each time you draw you might get a different group.   
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So, instead of having to make your conclusions limited to the groups in your model, a general 

conclusion could be made for all such groups. Unlike conventional single level SEM in which 

independence is assumed over all observations, in multilevel SEM, independence is only 

assumed over the groups or clusters (Heck & Thomas, 2009). When independence is assumed 

over people, then knowing something about one person’s scores tells me nothing about another 

person’s score.  Independence over groups or clusters says something similar, for example, 

knowing the average score from one school tells me nothing about the average score of another 

school. Note that the grouping variable has many groups and are called clusters for the multilevel 

model. 

To make a somewhat concise overview, the multilevel model is similar to having a CFA 

model at the within level and a Multi-group CFA model at the between level. In the standard 

CFA, there is neither mean structure nor are means included as input, the within level means are 

not modeled. The between level group means are used as input value and modeled so it is similar 

to what we think of as the mean structure.  Just like there are multiple models in Structural 

equation models, there are multiple models in multilevel CFA models. The unrestricted ML CFA 

model is the beginning model used to ascertain if there is between group variability, if the 

between group should be modeled, and what that model looks like (Heck & Thomas, 2009,).  As 

mentioned before, the unrestricted model looks like a regular CFA model at the within level and 

mean structure model at the between level.  

The fact that ML CFA assumes a weak measurement invariance at the between level for 

the clusters or groups and with multi-group CFA this must be proven is a major difference 

between multi-group CFA and ML CFA (Selig, Card, & Little, 2008),  The reason for this is 

because there was no straight forward way to test for measurement invariance at the between 
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level because thirty plus groups or clusters yielded unwieldy results and lead to an increase in 

type I error (Selig et. al, 2008).  Thus multilevel CFA models have only one group at the within 

level since means are not modeled at that level. The grouping variable at between level is 

random and not fixed like multi-group CFA. That is with this means model a baseline group is 

selected and all other groups are compared to the baseline group. Weak measurement invariance 

is assumed. This is not the only multilevel model that SEM has available. Invariance can be 

tested across the two levels, at the within level, and at the between level (Selig et. al., 2008).   

For the unrestricted ML SEM model, the goal is to confirm that multilevel should be 

modeled and to decided what the model structure at the between and at the within levels should 

look like. These models need not look identical at the respective levels. To confirm that 

multilevel modeling is needed, Muthén's ICC is calculated for each observed variable in the 

model. Shrout and Fleiss (1979) provided the classical definition of ICC as the ratio of the 

between group variance to the total variance (as cited in Wang, Xei, & Fisher, 2011). 

2

2 2

b

b w

ICC


 



               (22) 

Muthén defined ICC as the correlation of two individuals in the same group. His 

definition was based off the classical definition of item reliability. Item reliability is the extent to 

which the variance of the observed variable is explained by the factor (Wang & Wang, 2012). 

Reliability is the ratio of explained variable to total variance,  
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If we are looking at completely standardized data, then y and F are N(0,1) and therefore 

the variance of the factor, var(F) is one and variance of y is one. The reliability ratio then 
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becomes the square of the loadings, 2 . The loading square is equivalent to R-square or the 

square multiple correlation, and measures the percent of variance in the observed variable 

explained by factors for which it loads. Therefore, if the standardized loading is .29 then the 

factor explains (29%)
2
 or 8.41% .of the variance in y (the observed variable; Wang & Wang, 

2012). For a given variable y, its' variance can be decomposed into a between and within level 

(assuming we are talking about a one factor multilevel CFA).  

b wY Y Y      (24) 

ci bc bc bc bc w wci wciY v              (25) 

b bc bc bc bcY v         (26) 

w w wci wciY        (27) 

bc b bc       (28) 

wci wci     (29) 

bcv  is a vector of intercepts at the between level and varies by cluster (groups are not 

referred to as clusters, c, for cluster), bc is the vector of between level factor loading for y, bc

is the random between level factor that capture the organization/school level effect, bc  is the 

between level residual, w is the vector of within or individual level loading, and wci   is the 

within level factor scores that vary across individual. wci is the within individual measurement 

error which is the error unexplained by the within level factor. bc is for random variance in the 

between group factor. wci  is for random variance in the within group factor, and b  is the 
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grand mean for the between group factor (mean of means, since we have means at the between 

level).  

Muthén (1991) defines within and between reliability in terms of item reliability. The 

within reliability and between reliability are represented as  
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Using this new nomenclature, he then formally defined ICC for a variable y and 

individual i and i* in cluster c as, 
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Muthén's ICC describes the correlation of individuals in the same group (Muthén, 1991). 

If families or schools or groups are highly correlated that means they then have to answer or 

behave in the same way so their individual scores are not independent, meaning a multilevel 

model was necessary. Independence between groups is assumed. According to Dyer, Hanges, 

and Hall (2005), if Muth  n's ICC is less than .05 then multilevel modeling should not be used. 

Julian (2001) stated that even if the ICC is less than .10 the hierarchical structure should not be 

ignored (as cited in Byrne,2011). 

Another way of thinking about Muth  n's ICC is that we are testing if the difference 

between variance/covariance matrix is zero. With multilevel modeling the total 

variance/covariance matrix is decomposed into the between cluster variance/covariance matrix 

and the within group variance/covariance matrix. If the between cluster variance/covariance 

matrix is zero then the within variance/covariance matrix is essentially the same as the total 
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variance/covariance matrix, and it means that there are no between cluster differences ( bcy y ). 

So for example, if the between cluster variance/covariance matrix is zero and we collected data 

on BMI as an indicator of self-esteem then this would mean there is no difference on the BMI 

measure across ethnicities. Suppose we obtain an ICC of .10 that would be interpreted as 10% of 

the variance in y is at the between level. Muth  n's ICC is an estimate of the observed ICC since 

it is using components of the model (lambda, variance of factor, variance of error) which does 

not completely replicate or match the variance of y but is an estimate for the given model. 

Obtaining the ICC is one of many steps in the establishment of the unrestricted model. 

Originally Muth  n has a four step procedure for fitting multilevel SEM model. Step one fits the 

total covariance matrix which is the same as doing a regular CFA model to test for general model 

fit or the approximation of what the model should look like. During this phase you look at the 

output's model fit parameters like Chi square, such as CFI (comparative fit index) and 

SRMR(root mean square residual) for model fit. You look to see if the loadings are significant. If 

the factor loading is not significantly different from zero this signifies that the indicator and the 

factor are not related.  The modification indexes are checked to see if a relationship needs to 

dropped or considered in the model. The SEM model should be based on theory but sometimes 

the model does not fit the data so the model might be mis-specified. Modication Indices (MI) 

gives you suggested ways to improve model fit by freeing model parameters. A MI indicates the 

decrease in Chi square with 1 df if a particular parameter is freed from a constraint in the model 

(Wang, 2012) One starts by looking at which MI are very large. The MI indicates the amount the 

Chi square would drop if we add that particular indicator relationship on that particular factor. If 

the literature backs up the recommendation then one can make the modification and refit the 

model.  After achieving an acceptable model, the subsequent steps were to estimate the ICC, 
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confirm the within group structure, confirm the between cluster structure, and lastly, the 

multilevel structure (Dyer et. al., 2005). This process has since been streamlined into a three step 

process (Bryne, 2011).  The new process still involves modeling a CFA model on the total 

covariance matrix, however, the next step calls for estimating the between and within level 

simultaneously (originally step five). During this time the structure of the model at the between 

level and within level are looked at to confirm the number of loading and factors at each level. 

The model does not have to be the same at each level. One can have two factors at the within 

level and one at the between level. Once the structure and dimensionality is determined, then the 

ICC is checked as the final step (Byrne, 2011).  The interpretation at both the between and within 

level model is similar to a CFA model. For a CFA model we are looking to see if the correlation 

of the variables is explained by the factor or factors. For the within level CFA model, we are 

looking to see if the correlation between the variables that we see within the groups is explained 

by the factor. For the between level CFA model, we are looking to see if the correlation on the 

variables that we see between the groups is example by the factor.  For example, using a one 

dimensional factor model, where we’re given general questions on school violence as items, the 

within level might seek to see if the correlation between the variables within the school is 

explained by a general bullying factor but the between level would seek to ascertain if the 

correlation between schools on these (or a subset of these) variables is explained by a general 

school climate factor.  

The question answered by unrestricted Multilevel CFA model: (Within Level) Does 

the within level factor(s) explain the correlation of the variables/items within cluster/group? 

(Between Level) Does the between level factor (rarely factors) explain the correlation found 

between clusters? 
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Figure 2.3 

Multilevel CFA  

    Within Level    Between Level  

 

The circles at level two represent the absence of raw scores but observed group means 

given at level two.  

A hypothetical data example would be a vector of observed scores on icy , where we have 

three clusters and two people per cluster. For this example every two numbers are a cluster, so, 5 

and 6 are in cluster one, and 7 and 8 are in cluster two. The second matrix represents the between 

level vector where the group means vary across clusters. We use this matrix in the calculation of 

between group variance/covariance matrix.  
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 After testing the unrestricted model, the next model that can be tested is the model that 

measures measurement invariance across levels. In this model, the between level is treated as one 

group and the within level is treated as one group (Bryne, 2001; Heck & Thomas, 2009). By 
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testing this restricted model we can find out more about the latent variance at the between level 

vs. the within level, latent ICC. The previously discussed model helped us ascertain the Muthén's 

estimation of the observed ICC. In general, for a multigroup CFA model, we try to establish 

measurement invariance to ascertain if a construct is measured the same way across groups. 

Similarly, we are trying to establish if the latent factor is measured the same way across levels.  

Since each level is considered a group, we are doing a two group test for invariance. If 

measurement invariance fails, then the meaning of the construct is not the same across group 

(i.e., the factor has different meaning across levels). To test for measurement invariance across 

levels we must establish a common factor that has a between and within level (Heck & Thomas, 

2009; Selig, Card, & Little, 2006).  According to Mehta and Neale (2005), "Invariant factor 

loading makes the common variance attributed to the latent factor directly comparable across 

levels"(as cited in Heck & Thomas, 2009, p. 124).  

ic bc wci         (34) 

ic  represents our common factor that has a grand mean,  , and a between cluster and 

within cluster factor. Just like each observed indicator, Y,  was split into a between and within 

level, the factor is now split into a between and within level. 

The common factor model is one where the between and within factor represent one 

factor, 
ic . To develop a common factor model loading, λ , are assumed to be equal across levels.  

Note, if there are problems with estimation, the between level error variance can be constrained 

to zero for some of the problem indicators. This is okay because the between level error is 

usually small (Heck & Thomas, 2009, p. 119). "In the between-group level model, residual 

variances are typically very small, which reflects high reliability" (Heck & Thomas, 2009, 

p.119). Thomas and Heck (2009) did say that this should be based on theory and should not be 
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changed for the sake of changing models, "We emphasize that model modifications should be 

made sparingly and with regard to theory and statistical power" (Thomas & Heck, 2009, p. 126).  

The original multilevel model looks like
ci bc bc bc bc wci wci wciY v           . After 

restricting the loadings to be equal at the between and within level you can observer the grouping 

of the factors,  

ci bc bc bc wci wciY v            (35) 

( )ci bc bc wci bc wciY v             (36) 

The key advantage to modeling the common factor model is that we can now ascertain 

the between cluster variance,
bc , the true or latent ICC. 

BF
LatentICC

BF WF



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Looking at the restricted model, Thomas and Heck (2009, p.123-124), set the loading to 

equal at the within and between levels, and only set one between level residual error to zero (to 

help the model converge).   After doing so, he found the model converged and the between factor 

had 20.8% of the variance. In other words, 20.8% of the variance in the common factor is at the 

between level.  

The question answered by the restricted Multilevel CFA model: Is the relationship 

with the factor the same at the within and between level? 

There are many more models that can be added, such as a multilevel MIMIC model that 

can add a co-variate to the within or between level. These are still new, forthcoming research 

areas.  

Thus far, we have talked about the latent variable and the observed variable being broken 

into the within and between group estimates. Variance/co-variance matrix is an integral part of 



108 

SEM so focusing on this aspect is critical.  The total population covariance matrix is written as a 

function of the population between cluster covariance matrix and the within cluster covariance 

matrix.  The within correlation matrix represents covariation at the individual level, individual 

difference while controlling for cluster. The between correlation matrix represents covariation at 

the cluster level (i.e. differences across cultures on the factor). 

T W B      (38) 

If there is no between level variance/covariance, then the within level covariance matrix 

would equal the total covariance matrix and we would only need to do single level CFA.  

Muthén (1989) showed that the sample pooled within group covariance matrix, 
pwS , is an 

unbiased estimate of the population within group covariance matrix. We can estimate the within 

group by constructing this matrix: 
1

1 1

( ) ( )( )
cnC

T

pw ci ci

c i

S N C y y y y

 

    . 

He showed that the scaled sample between group covariance matrix, 
bS , is not an 

estimate of the population between group matrix, 
B  , but  a consistent and unbiased estimator 

of  *W Bc   . 
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b c c c
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S C n y y y y



       (39) 

where c* reflects common group size, if balanced, common group size.  C is the total 

number of clusters.  For unbalanced data and large number of groups, c * is close to the mean of 

the cluster sizes.      

 
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* ( 1)
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c N N N C




 
   
 

     (40) 
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The maximum likelihood (ML) estimate of 
W  is 

pwS , while the ML estimate of 
B  is 

1( )B PWc S S  .  Muthén (1990) used a full information maximum likelihood (FIML) function to 

fit the parameters for an ML CFA model. Using w and b , to represent the model implied or 

estimated by the between and within cluster covariance matrix. The fit function for balanced 

design model is  

   1 1* ( * ) ( ) ( )w b w b w wb b pw pwF C In c trace c S In S p N G In trace S In S p                    
   

      (41) 

N is the total number of observations, C the total number of groups and p is the number 

of variables or indicators in the model. 

 

Mixture Models 

When a set of data comes from a mixture of multiple populations that have differing 

univariate distributions (means and/or variances), this is referred to as mixture modeling. As you 

see from the figure below two normal populations were mixed to obtain a new bimodal 

distribution (Gagne, 2006).  

Figure 2.4 

Mixture of two Normals 
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With the models we have seen thus far, multi-group and MIMIC, the number of groups 

was known.  This is not always the case in SEM. In SEM, when the number of groups that make 

up this mixture is unknown, we use either a parametric mixture model (factor mixture model) or 

non-parametric mixture model (latent class model) to find the number of groups causing the 

heterogeneity in the data. The factor mixture model assumes the factor is continuous while the 

latent class model (LCM) assumes the factor is categorical. Population heterogeneity represents 

the presence of two or more latent or unobserved groups in the population that have different 

distributions (Lubke & Muthén, 2005).  Muthén (2002) was able to create data using a CFA 

model that was a mixture of two distribution on the continuous factor by manipulating the 

proportion of people in each group and  by creating a different mean and variance (or 

distribution) for each group. In essence, what he did was reverse factor mixture modeling. His 

objective was not to run a factor mixture model to find the number of groups causing the 

heterogeneity, but to create the heterogeneity while using only two groups with different 

distributions.  

In the above picture, we could see that we had bimodal distribution but the number of 

groups is unknown. Therefore if we were just given the bimodal distribution that we suspect is 

formed by k normal classes, we could use log likehood functions to estimate the number of 

classes, as well as the parameters for the each of the normal populations, namely, mean and 

variance.  

  

Log likelihood estimation is a tool used to estimate the parameter values for the 

population when you are given a sample. For a normal distribution, the parameters are the mean 

and variance.  So for a given set of data points or sample, I can use the probability density 
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function for the distribution with various estimates of the unknown population parameters.  The 

best estimation of the population parameters (i.e., mean and variance) are the ones that yield the 

highest probability value or rather maximize the probability of seeing the sample drawn.  

Figure 2.5  

Factor Mixture Model 

 

Lubke and Muthén(2005) describes a one factor mixture model as follows: 

 

ik k ik ikY        (42) 

ik k i ikC       (43) 

1,

0,
ik

if i class k
C

if i class k


 


 

C is an indicator or dummy variable that is 1 when you are in class k and 0 when you are 

not in class k and there are k=1,.....,K classes. Lambda, 
k , is the factor loadings that are 

assumed invariant across classes so differences on the mean factor scores can be explored. 
k is a 

vector of factor means.  

The normal probability density function is 
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where the indexed x variable represents a single sample observation on the variable X, μ 

is the mean of the X in the population and is the population variance. The density function is the 

probability of observing a value of 
ix from a normal distribution with those parameters chosen. 

For a sample size of N, assuming independent observations, the joint likelihood is the likelihood 

for the entire sample and is calculated as a product of all the likelihood functions,
1

N

i

i

L


  (Gagne, 

2006).  Using the fact that the log of a product is equal to the sum of the log,

11

( )
N N

i i

ii

L In L


    , the derivative of the new form likelihood function is then taken and set 

to zero in  the final step of finding  the parameter values.  

For the mixture model, each normal distribution has a likelihood function. If we knew a 

priori that that the observed distribution was from the mixture of two normal populations, then a 

new joint likelihood function would emerge that is a weighted sum of the two likelihood 

functions 

1 2(1 )i i iL L L       (45) 

where  is the mixing proportion of the number of people thought to be in the respective 

populations. Once the new likelihood function is estimated, not only is the parameters estimated 

for each of the respective likelihood functions but also the mixing proportions (Gagne, 2006). 

Information criteria, such as the AIC (Akaike information criterion) and BIC (Bayesian 

information criterion, that measure fit, are used to determine the number of normal populations 
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present. The model with smallest AIC or BIC value is chosen and therefore indicates the correct 

number of normal populations present. 

1 2

1 1

( ) ( (1 ) )
N N

i i i

i i

In L In L L 
 

         (46) 

2 2

2 ( )

AIC q

BIC In N q

   

  
   (47) 

So for a mixed population,  is maximized, and q represents the number of parameters 

to be estimated (if the distribution is made up of two populations then you have to estimate two 

means, two variances, and one proportion; the other proportion is the complement which 

therefore sums to five parameters; Gagne, 2006, p. 204).   

Modeling mixture models in a common factor model (CFM) is different because we have 

to change the parameters to fit the specifics of our model.   

( )

( )

i i i

x

X

E x

Var X

  

  

  

  

    

   (48) 

The standard equation for the CFM, for a particular variable X, includes the vector of the 

grand mean of X,  ; the matrix for the factor loading, ; the vector of the latent factor values 

which vary over individuals, ; and also the vector of the measurement error value which also 

varies over individuals,  .  The first moment is the mean, given by
x , and the second moment 

is the variance.  

For a single population, the maximum likelihood function, is assuming multivariate 

normality, is 
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and for a multisample distribution, the likelihood function becomes, 
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where j is the number of multivariate normal distributions, and p is the number of 

observed variables for a indicator variable X.   The model implied variance matrix is given by

j . For a sample common factor model, the maximum likelihood fit function is given by,  

1 1

( ) ( ) ( )x xF In tr S In S p m m 
             

  
  (51) 

where m is the observed means and     is the model implied mean vector 

For a multisample model, the maximum likelihood fit function becomes  

 1 1

( ) ( ) ( )j
j j j jxj xjj j j j

n
G In tr S In S p m m
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 

                     
  (52) 

Note jn

N
is the proportion; so the multisample is the sum of the proportional likelihood 

over j populations. Also, maximizing the log likelihood function is equivalent to minimizing the 

fit function in SEM. 

For my study, skewness and kurtosis play more of a role when trying to understand a 

mixture distribution. For a mixed distribution model, Mplus (Tech 12, 2004), theoretical skew 

and kurtosis is given by  
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where the kurtosis is centered at zero. The sample skew and kurtosis is given by  
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   (55) 

 

  

SEM estimators  

The goal of SEM is to obtain parameter estimates based on minimizing the distance 

between the sample covariance matrix and model covariance matrix (the model matrix is the one 

you postulate based on theory). The fit function, F, represents the distance between the sample 

co-variance matrix and matrix based on your model. Estimation methods minimize the fit 

function.   

There are numerous ways to write the fit function, however, each representation involves 

W, a weight matrix, which is used to “correct for bias in the standard errors and fit statistics,” S 

(the sample covariance matrix based on the observed data), and the covariance matrix based on 

your model (Schumacker & Lomax, 2004, p. 31). There are various estimation methods that are 

differentiated by how they define the weight matrix. Maximum likelihood (ML) is the best 

known estimation method employed; it uses the inverse of the model matrix, ∑-1, as its weight 

matrix. The maximum likelihood estimation method is an iterative approach to finding parameter 

estimates. The parameter estimates are estimated by maximizing the probability of observing the 

sample under an assumed normal distribution. One of the disadvantages in using maximum 

likelihood to estimate your parameters is that it assumes multivariate normality, no missing 
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values, a correctly specified model, and independent observations (Kline, 2005).  Studies have 

shown Browne’s asymptotically distribution free (ADF) estimation methods correct for non-

normality by using methods of moments to accommodate kurtosis (measure of flatness) in the 

weight matrix. The Satorra-Bentler (SB) chi-square statistic and SB Robust Standard Errors are 

alternative ways of adjusting for non-normal continuous indicators by adjusting the standard 

errors and chi-square values. ADF estimator works best for very large non-normal data. All the 

above estimators and/or adjusters assume continuous data. In real life, data are rarely normal, 

rarely independent, and rarely continuous. When the data are non-continuous, categorical 

Weighted Least Squares (WLS) is often recommended as an estimator (Brown, 2006). WLS is 

class of estimation that takes on various implementations depending on the software. For 

example, SEM software Mplus, uses WLSM and WLSMV (which are a mean and variance 

adjusted WLS estimators).  

Like many general linear models, SEM assumes normality and continuous observed data; 

however, Micceri (1989) found that non-normality is rarely the case in psychological and 

educational data. Unlike many general linear models, SEM allows you to choose your estimators. 

Estimators are generally evaluated on three criteria: bias, consistency, and efficiency. An 

unbiased estimator correctly estimates the population parameter without error; it does not 

underestimate or overestimate (Finney & DiStefano, 2006). A consistent estimator is an 

estimator that converges to the population values as the sample size increase; it is asymptotically 

equivalent. An efficient estimator has the smallest variance; “variability of the parameter 

estimate is at minimum in large samples” (Finney & DiStefano, 2006, p.271). In statistical 

theory, these properties make up the criteria we use to choose the best estimator for a population 
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value. The estimator with these properties is said to be BUE (best unbiased estimator) or BLUE 

(best linear unbiased estimator).   

Kurtosis and skewness are measures of normality. A normal distribution or bell shape 

curve has its highest peak at the mean and it is symmetric about that point. Kurtosis is a measure 

of peakedness or flatness of the distribution relative to the normal curve whose kurtosis is zero. 

Skewness is a measure of symmetry relative to the normal curve whose skewness is zero. 

According to Finney and DiStefano (2006), there is no guideline for what is acceptable kurtosis 

or skewness, but normal theory  based estimators such as ML start to break down when 

univariate kurtosis or univariate skewness is between two and seven. This break down can affect 

parameter estimates, standard errors, fit indices, and chi-square statistics. The chi-square statistic 

becomes inflated under conditions of moderate non-normality and increases as non-normality 

increases. Parameter estimates are not affected, and standard errors are underestimated thereby 

inflating the test statistic (Finney & DiStefano, 2006).   

According to Bollen (1989), coarse categorization of continuous variables is common in 

social science.  For example researchers, for convenience, may shorten a variable such as years 

of education into three or four categories such as high-school, college, and graduate-school. The 

loss of variability can affect the precision of an estimate under certain distributional conditions. 

In general, if the number of categories is at least five for normal data then we can treat the 

categorical variable as continuous. Green et al.(1997) noted that as the number of categorization 

increased for normally distributed distributions, the chi-square values approached those of 

continuous data (Green et al., 1997). As stated before, normality is unlikely in social science. 

When non-normality is coupled with non-continuous data, we have more challenges. Under these 

two conditions, the ML based chi-square value is inflated.  The non-normed fit indices (such as 
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NNFI, CFI, etc.) are underestimated and underestimation of parameter estimates and standard 

errors become more apparent as univariate kurtosis and skewness increase (Babakus et al.,1987, 

as cited in Finney & DiStefano, 2006). ADF estimators, robust WLS methods, SB scaled chi-

square and standard errors are some of the techniques we use to correct the bias and inflation 

caused by categorical data. Which strategy you use to correct for non-normality or non-

continuous data depends on the limitation of the software program. Mplus, a popular statistical 

software that is often used in modeling SEM models; Mplus implements SB adjusted WLS by 

using WLSMV and WLSM (Finney & DiStefano, 2006).  

Model misspecification can also affect estimates depending on which estimator is used.  

Bandalos (2011) studied the performance of estimators under model misspecification, non-

normality, various sample sizes, and course categorization. She found that under the optimal 

conditions of larger sample sizes, more categories, and more normally distributed data 

convergence was not a problem, but those models with large numbers of parameters, small 

numbers of categories, and low sample size had convergence issues. WLSMV parameter 

estimates and standard errors were least affected by model misspecification. Maximum 

likelihood SB adjusted Mplus estimator (MLMV) and WLSMV underestimated standard error as 

non-normality increased but performed better than their non SB adjusted counterparts.  

Most of the studies have estimated the effect of non-normality or categorical data in the 

context of single level SEM data.  Multilevel SEM is advocated when the independence 

assumption is violated. Although heterogeneity is thought be controlled by modeling the data as 

a multilevel model, the effect of non-normality, sample size, and continuity still affect the 

estimates, even in the case of multilevel data. The question is how?  In multilevel data, the effect 

of sample size and un-balanced group sizes at the higher levels can affect conversion, the 
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parameter estimates, and standard errors of between level estimates. Hox et al. (2010) studied 

multilevel SEM under the assumption of multivariate normality and no un-modeled 

heterogeneity by using various estimators (such as robust ML-MLR and WLSMV) under various 

conditions such as sample size, various ICC conditions, and balanced and unbalanced group size. 

They found that at least 50 groups were needed for ML, WLSM, and WLSMV; 200 groups was 

needed for robust ML-MLR; and cluster size had no effect on the accuracy of statistical tests. 

Meuleman et al. (2009) noted that in many international surveys of countries, many smaller 

countries are not included in the survey. At most 30 countries are included, so studying 

multilevel SEM would prove to be difficult even if the nesting of the data call for its use. In their 

research, they found that the researcher should consider not just the group size at the upper levels 

in MSEM but also the expected effect sizes and complexity of the model. If the researcher wants 

to detect small effects, they recommend at least 100 groups. If the researcher has a simple 

structural model at the between level (i.e., very few parameters to estimate), then 40 groups can 

be sufficient. In general, when the number of groups is low, say 20, the factor loadings and error 

variances are underestimated, and the structural effect of the between level is overestimated 

(Meuleman et al., 2009). Both of these studies assumed normality. According to Hox and Maas 

(2010) and Preacher (2011), no one has studied the effect of non-normality on MSEM.  Since 

non-normality is known to affect the parameters and standard errors of single level SEM analysis 

and most of the data for behavior research do not follow a univariate or multivariate normal 

distribution (Micceri, 1989), this is very timely and much needed research. 
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CHAPTER THREE 

STUDIES TWO AND THREE METHODS 

 

Multilevel SEM is a great tool that allows one to separate the model into between and 

within level components and control for clustering.  Despite the benefits, knowing the right 

sample size needed to run a multilevel SEM model is critical. Hox et al. (2010) found that the 

number of clusters needed for multilevel structural equation modeling (MSEM) depends on the 

estimation method used.  They also noted that no one has studied the effects of violating 

multivariate normality within the framework of sample size requirement for MSEM. This study 

seeks to become the first study to understand and shed light on this much needed research area of 

multilevel SEM; and this section gives an overview of how the study was designed and why.  

The studies are two simulation studies that  seeks to ascertain sample size requirement for 

various estimators in which the data are non-normal continuous and non-normal categorical, 

studies two and three respectively. In order to begin studies two and three, a decision on the 

sample size (i.e., number of clusters or groups), estimation method, average group size/cluster 

size, and factor structure are just some of the few decisions that had to be made, including the 

amount of sparseness in the data for non-normal categorical data. Study two seeks to answer 

three research questions: does sample size requirement for non-normal continuous data depend 

on estimation method; Is the sample size requirement greater for normal or non-normal 

continuous data for the respective estimation method; and does the presence or absence of 

unbalanced clusters affect the sample size requirement for non-normal continuous data. Study 



121 

three seeks to answer four research questions: does sample size requirement for categorical 

independent variable data depend on estimation method; Is the sample size requirement the same 

or different compared to the normal multilevel data for the respective estimation method; does 

the presence or absence of unbalanced clusters affect the sample size requirement for categorical 

data; and does the presence of sparse tables affect the sample size requirement?   

 

Using Mplus 6.1 for Linux, Monte Carlo (MC) simulations for these two studies were 

created by using a Unix script to run multiple conditions at one time. With Monte Carlo studies, 

samples are repeatedly drawn based on the user defined  population values for the model, then 

the calculation of the  parameter estimates and standard errors are based on the average across 

those samples (Muthén & Muthén, 2002). These averages can be used to determine precision 

(Muthén & Muthén, 2002). We look at precision in term bias and coverage.  Bias describes how 

far the average statistic is from the population parameter by looking to see if the estimate 

consistently overestimates or underestimates the parameter. Coverage is the percentage of 

replications/samples for which a 95% confidence interval covers the population parameter.  

Muthén and Muthén (2002) outlined three criteria for determining the correct sample size: 1) the 

parameter and standard error bias should not exceed 10% for any parameter in the model; 2) 

when the parameter estimate is the focus of power analysis, the standard error bias should not 

exceed 5%;  3) the coverage should be between .91 and .98%.  The coverage describes how 

accurate the confidence intervals are; we want at least 91% of the 95% confidence intervals to 

contain the population parameter value. Using these criteria, we can select the best sample size 

(Muthén & Muthén, 2002).   



122 

In a power analysis, we are testing in the null hypothesis if the parameters are 

significantly different from zero (e.g.  if a beta parameter, a path, or latent correlation are 

significantly different from zero). In general, power is the probability of rejecting the null when 

the null is indeed false.  In a Monte Carlo study, power is the proportion of these replications for 

which the null hypothesis is rejected (where H
0
: =0). When the population values are different 

from zero, power is the probability of reject the null hypothesis when it is false. The percentage 

of significant coefficients is the proportion of replications in which the parameter is significantly 

different from zero at a .05 alpha level; it represents power when the population value is different 

from zero. When the parameter has a population value equal to zero, then power is the 

probability of rejecting the null when it is true. Therefore, the significant coefficient is an 

estimate of type I error (i.e., probability of rejecting the null when the null is true).  Since we are 

not doing a power analysis, we will look at the first and third criteria as my primary way of 

assessing sample size. Note, there are other recommended ways of assessing sample size that 

require different criteria. Later in this section some of those methods will be discussed. 

Bias. Parameter bias and standard error bias of the parameter are calculated in the same 

way. They are calculated by subtracting the population parameter value from the average 

parameter value over all replications, dividing this difference by the population value, and then 

multiplying by 100. The formula is as follows:  

Bias
 




    (56) 

where   equals the mean of the parameter estimates across all the replications, and  is 

the true value of the parameter in the population model. This number was multiplied by 100 to 

get the percentage bias.  
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Sample size (number of clusters). In standard SEM, the sample size requirement 

depends on a number of factors including the type of variable, the strength of relationship 

between the variables, the amount of missing data, the reliability of the variables, and the size of 

the model. These sample size recommendations are determined during Monte Carlo studies 

which look at accuracy, precision, and power to determine sample sizes. Precision, or percentage 

error, is determined by holding the parameter and standard error bias, and seeing if it is below a 

certain criteria. The precision is assessed by looking at the spread or confidence interval. We 

want to have a certain percentage of the 95% confidence intervals capture the parameter 

estimate. The assessment for power of certain parameters determine sample size when power is 

.80 or better (Muthén ,2002; Raykov, 2006; Brown,2006). Despite numerous possible 

determinants dictating the best sample size, Raykov (2006) noted that a general rule of thumb is 

ten times the number of free model parameters because your sample size for traditional SEM is 

often given. He noted that no rule of thumb can be applied to all situations. 

 There have been only a few studies that dealt with sample size requirements for 

multilevel SEM.  Hox & Maas (2001) found that the number of groups was more important than 

the number of people in the group. The estimation method he used was the full maximum 

likelihood estimation method (FIML), which is the same as MLR today.   Hox et al. (2001) used 

a variety of sample sizes (i.e., 50, 100, and 200), two factors with three indicators each at the 

within level, and one factor with six indicators at the between level to amass a total of 31 

parameter estimates (13 within level and 18 between level). They found that the number of 

clusters primarily depends on the interclass correlation (ICC) and number of groups. The within 

part of the model posed no problem, but the imbalanced data posed a problem with model fit.  

The recommendation from the study was to have a sample size of 100 (i.e., a minimum of 100 
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clusters) for balanced and unbalanced data with a low ICC: " Given our result, we caution 

against using multilevel SEM when the number of groups is smaller than 100, especially if the 

ICC turns out to be low, that is, under .25" (Hox and Mass, 2001, p. 171).  Also, if the number of 

groups is limited by nature, they recommend increasing group size and avoiding extreme, 

unbalanced data. These recommendations were refuted by both Hox, Maas, and Brinkhuis 

(2010); and Mueleman and Billiet (2009).  Hox et al. (2010) found that the ICC was not an 

important feature for determining sample size "contrary to the result in Hox and Maas(2001) 

who found that lower ICCs lead to convergence problems" ( p. 166).  

Mueleman and Billiet (2009), while studying normal multilevel structural SEM model, 

also noted that obtaining a sample size (or number of clusters) of 50 is quite impossible, stating 

that countries on surveys rarely exceed 20 (mostly due to budgeting constraints).  Using several 

variations of their model that had one observed variable regressed on a factor with four 

indicators, they varied the effect size, model complexity (by constraining some free parameters) , 

ICC ( .08 to .50),  sample size or number of clusters (20-100), and  average cluster size of 1755 

(varied from 1100 to 2800). From this, they concluded that, aside from the impossibility of 

obtaining a sample size of 50, required group sizes depends on the specific interest of the 

researcher, expected effect sizes, and complexity of the model. When the number of clusters was 

20, there was a very high number of inadmissible conditions; the factor loadings and error 

variance were underestimated while the structural effect was overestimated. If the between level 

was relatively simple (meaning a small number of indicators, a max of one structural effect, and 

no interactions), then a sample size of 40 is sufficient. To detect a large structural effect (>.50) a 

sample size of at least 60 is required, and more than 100  is required for small effects. These are 

general guidelines since his study could not cover all SEM conditions.  
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Hox et al. (2010) reaffirmed that the within-group component for all the models were 

accurate. The most important factor was the between level sample size.  However, imbalance did 

affect the fit indices, and a minimum sample size of 50 for non-robust estimation methods was 

still recommended.  All of these studies assumed multivariate normality. One of the few studies 

that researched sample size and multilevel non-normality was Moineddin (2007), who studied 

multilevel logistic regression models. He found an interaction between prevalence of the 

outcome, sample size, and group size. His recommendation was a minimum group size of 50 

with at least 50 groups to produces valid estimates for multilevel logistic regression models. 

However, for low prevalent events or events with low probability of occurring, a minimum of 

100 groups and 50 individuals per groups were recommended. In all of Hox's studies on 

multilevel SEM, he consistently used three sample sizes of 50, 100, and 200 for the number of 

clusters. I intend to follow similar pattern but I will also include a smaller sample size of 30.  My 

chosen sample sizes or numbers of clusters are 30, 50, and 100.  

Group size. Hox et al. (2010) after studying the effect of group size, within the context 

of MSEM, found that group size was not a factor. In this study they equally divided the groups 

proportionally.  Half of the groups would have a small number of people and the other half 

would have a much larger number of people. The ratio of the number of people in the larger to 

smaller group was held to around three (e.g., 25 groups of size 3 and 25 of size 7, the average 

group size was 5 and 7/3 ratio was roughly 3). Their research found that group size only had an 

effect when the estimation method was the Muthén’s psuedobalanced estimation method. In 

contrast, Moineddin’s (2007) study about multilevel logistic regression found that group size or 

cluster size was an important factor, recommending a minimum group size of 50 for events with 

a low probability of occurring in the population (.10 was the lowest prevalence rate considered).  
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Hox et al. (2010) average group sizes varied from 5 to 25. Since group sizes might be a factor in 

non-multivariate normal data, I believe it is critical that my study has cluster sizes beyond what 

has been studied previously. Three group sizes n=10, 26, and 50 will be included in this study 

(even numbers were adopted for ease of coding). The final sample sizes, N= nG, will go from 

30(10) to 100(50) or 300 to 5000, where n is the number of clusters or sample size and G is the 

cluster or group size.   

   

Balanced-Unbalanced. My study will consider unbalanced cluster size as part of the 

independent variables, as well as, balanced cluster sizes. For my balanced clusters, the group 

sizes were 10, 26, and 50; and the sample size (number of clusters) was 30, 50, and 100.  For my 

unbalanced clusters, I am using the same sample sizes but the group sizes become average group 

sizes. There will be three average group sizes (i.e., 10, 26, and 50). For the average group size of 

ten, 50% of the clusters will have size seven, 50% will have size 13, and each will have a 1.85 

multiplicative difference.  For the average sample size of 26, half of the clusters will have size 18 

and the other half size 34, a 1.88 multiplicative difference. For the average sample size of size 

50, half of the clusters will be of size 35, the other half of size 65, and each will have a a 1.85 

multiplicative difference. The difference was chosen to be roughly similar just in case the ratio of 

state of unbalance was another uncontrolled variable.  

 

Replications. Before data are generated, the choice of seed and replication are two 

important decisions that have to be made (Bandalos, 2011). Harwell (1996) noted that the 

number of replications depends on the purpose of the study. Studying the effect of sample size 

on parameter estimates versus standard errors might need different replications because more 



127 

sampling variance would be needed to study the behavior of standard errors (as cited in 

Bandalos, 2011). For standard SEM, Bandalos (2011) recommends a minimum of 500 reps per 

cell, deeming 500 reps fairly large for SEM studies and acceptable to obtain stable estimates for 

standard errors.  Meuleman’s (2009) study of multilevel SEM models included 25 conditions (5 

groups sizes and 5 effect sizes) with 10,000 replications. Hox et al. (2010) had 90 conditions (3 

sample sizes, 3 group sizes, 5 estimation methods, and  2 ICC values) with 1000 replications 

assuming normal distributed latent variables and multivariate normal observed data. Muthén's 

(2002) study of sample size and power for non-normal and normal indicators for CFA models 

used 10,000 replications for stable parameter estimates. Moineddin (2007) generated 1000 reps 

for his study on multilevel logistic regression. To ensure stability of the parameter estimates, I 

used 1000 reps for both studies two and three.  

Seed. A seed is a number that serves as a starting point for random draws used to create 

the sample generated. A seed can be static or dynamic. A dynamic random seed depends on the 

computer’s internal clock, whereas a static seed is user supplied (Bandalos & Leite, 2011). The 

advantage of using a static seed is that it is constant, and it serves as a way of controlling for the 

randomness of the random number generator (Paxton et al., 2001).  Bandalos & Leite (2011) do 

not recommend using the same seed because doing so  introduces dependencies; therefore, a 

repeated measures or some dependent sample design might be needed to test for these 

dependencies. I used a different seed for each replication for each condition in study two. 

However, the same seeds were replicated in study three. Using a generic random number 

generator table, I systematically chose every other number to be the seed within each section of 

the table.  
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Factor structure and ICC. Meuleman and Billiet (2009) also studied the conditions of 

model complexity on sample size requirement. In his multilevel SEM study that included four 

model sizes or model parameters (namely, sizes 7, 14, 24, 34) crossed with the five sample sizes 

(creating twenty conditions), they found model complexity was an important factor in 

determining estimation accuracy, and that reducing model complexity to 7 substantially reduced 

bias in the parameter estimates. A sample size of 60 was required when there were 7 to 14 

between level parameters.  To illustrate how he counted model size, the 14 between level 

parameters included four indicators, one covariate, and one factor. Therefore, four factor 

loadings, four error variances, four intercepts for the factors, one structural effect, and the mean 

of the between level independent variable had to be estimated. Hox et al. (2010) used a 

multilevel CFA model, which did not contain any structural effects. His between level structure 

consisted of one factor and six variables, and the within level structure consisted of two factors 

with three variables on each factor (a total of 18 between level free parameters). In multilevel 

SEM or CFA, the consensus is that a simple between level structure is recommended (Bryne, 

2012 ). In standard SEM, Bandalos (2011) noted that CFA models resulted in less standard error 

bias than full latent models due to fewer variables, and this effect was attributed to model size 

not type. She recommended that, for generalization purposes, it might be better to have more 

than one type of model but when there is little research in an area, as there is in the area of 

multilevel SEM, it is better to choose one representative model and vary the independent 

variables (number of groups, group size, ICC, etc.). My model for study two has one factor with 

four indicators at both between and within-levels, making it somewhat similar to Hox et al. 

(2010). Study two has the same structure at the between and within levels; there are four 

indicator variables on one factor at both levels. I avoided model complexity issues by having a 
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maximum of four observed variables, and having one factor at the between level, will keep the 

number of parameters to estimate between 7 and 14 (3 loading, 4 error variances, 4 thresholds, 

and 1 factor variance). Also, the scale of the observed categorical data will consist of four 

response categories, not exactly like YRBS, but I want the variables to be treated as categorical 

not continuous. 

Figure 2.6 

Study Two/Three Model 

 

Along with deciding which SEM model type or complexity, parameters must be given 

population values for which the sample is generated, which means deciding on the population 

values for the factor loadings, correlations, and variances. Muthén (2002) generated data with 

factor loadings of .8 (which is high), a factor variance of 1, correlation of .25, and residual 

variances of .36 in his two factor CFA model. These numbers were chosen because the reliability 

for each factor indicator would be .64 or roughly sixty-four percent. Reliability describes 

consistency of the measurement. For a CFA, it describes the internal consistency of the 

indicators used to measure a factor. Bollen (1989) describes reliability as part of the measure that 

is free of random error. Muthén and Muthén (2002) define reliability as the ratio of variance of 
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factor indicator to total variance. The percentage of variance explained by the factor for the 

particular indicator/ indicator reliability is given by  

  Reliability=
2

2



 



 
                                                            (57) 

where is the factor loading,  is the factor variance, and  is the residual variance 

(Muthén & Muthén, 2002). Fornell and Larcker (1981) states when reliability is less than .50, 

variance due to measurement error (i.e., the unreliable part) is larger than the variance captured 

by the construct. Muthén (2002) used a reliability measure of .64 when generating data for 

normal and non-normal SEM models for sample size recommendations. For the multilevel 

model, Muthén (1991) describes reliability as having a within and between measure, namely, 

Within Reliability (yg) = 
WF

WF WE
                                                                                         (58)  

Between Reliability (yg)=
BF

BF BE
                                                                                         (59) 

 

   

where BF and WF are within and between factor variances, and BE and WE are the 

measurement errors for the between factor and within factor, respectively. For a random effects 

CFA model, the correlation between two individuals within a group g for a variable y, is called 

the ICC (Muthén, 1991).  

ICC= 
( , )

( ) ( )
g

gi gk

y

Cov y y BF BE

BF BE WF WE




  
   (60) 

True ICC or Latent variable ICC=
BF

BF WF
   (61) 
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The true ICC assumes error free variance. This essentially says the ICC can be 

approximated by expressing it as function of model parameters (Julian, 2001). 

2

2 2( )

b b b

b b b w w w

ICC
  

     




  
   (62) 

The symbol stands for the factor loading,  for factor variance, and  is the residual 

variance for the between and within factors. In order to calculate the latent ICC for the latent 

variable, we assume cross level invariance (i.e., the two constructs are being measured in the 

same way at the between or within level, and the factor loadings must be equated across levels; 

Selig et al., 2008). It should also be noted that the latent factor or one of the factor loadings has 

to be fixed since factors have no scale. Also, it should be noted that measurement error attenuates 

the factor ICC. Therefore, the approximated observed ICC will always be less than the factor 

ICC. The reliability used for this study will be similar to Muthén’s (2002) study, roughly .64. 

Using Muthén's (2002) formula for estimation of the observed ICC ( which similar to Julian's 

(2001) study for the effect of ignoring clustering), I wanted to use three ICC conditions (low, 

medium, and high). However, once I generated the data, the original values changed due to the 

creation of data for two class populations and analyses of it for one class non-normal population. 

There were too many variables to control. Because this is the first study of its kind, a simpler 

route is preferred; as such the ICC will not vary. The estimated ICC for the moderate skew case 

was .20 and .09 for the severely skewed data.             

2 2

2 2 2 2

(.80) (1) (.36)
.20

( ) ((.80) (1) (.36)) ((1.58) 1.404
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  

     

 
  

     
  (63) 

Estimation method.  Hox et al. (2010) compared five estimation methods along with 

several other dependent variables for determining sample size requirements, namely MUML, 

Muthén’s psuedobalanced method, which assumes all groups are balanced, ignores unbalance, 
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Full Maximum Likelihood (ML), Robust Maximum likelihood (MLR), weighted least square 

mean adjusted (WLSM), and weighted least square mean and variance adjusted (WLSMV). He 

found that for model fit the MLR and WLSM Chi squared value was better than the MUML, but 

not as good as ML and WLSMV. He found that for standard error bias of the parameter, 

maximum likelihood (ML), WLSM, and WLSMV all had good coverage. However, MLR did 

not perform well for a small number of groups, and variance for all methods did not perform well 

with ML, giving acceptable CI for groups of sample size of 200. He noted the pseudo-balanced 

method had a negative effect (downward bias) on both standard errors and on the chi-squares, 

leading Hox not to recommend this method. MUML is a limited maximum likelihood method 

implemented in Mplus that ignores balanced groups and only works with random intercept 

models. ML and MLR are full maximum likelihood estimators that allow for random slopes and 

do not require groups to be balanced. MLR is the robust ML estimation that performs better than 

ML under conditions of moderate non-normality but requires a large sample size (Hox et al., 

2010). WLSM and WLSMV are the limited information, diagonal weighted, least square 

estimated in Mplus. They are robust methods and do not perform as well as ML under 

multivariate normality (Hox et al., 2010).  Mplus does not implement MUML for multilevel 

(type = twolevel) data that is has at least one observed data that is categorical. After excluding 

MUML, seven estimators are available in Mplus that could be used in my studies. Because of the 

limited scope of this study and known properties of these estimates, I am limiting the estimators 

in this study to four estimators: ML, MLR, WLSMV, and WLSM. The excluded estimators will 

not be included due to the research pointing to their shortcomings. For example, weighted least 

square estimator (WLS) is available for multilevel Mplus models. However, for small sample 

sizes, it is known that WLS is not as efficient as WLSM and WLSMV, which are robust WLS 
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estimators that use the diagonal matrix instead of the full matrix. Therefore, four estimators will 

be used to estimate required sample size for non-normal continuous and non-normal categorical 

multilevel SEM data. Finnery & DiStefano (2006) recommended ML for moderate continuous 

non-normal data, and WLSMV for moderate or severe categorical non-normal data.  

Software. What has been proposed to be varied so far has been the state of balance, 

sample size, group size, and estimation method. Since this study is also studying the impact of 

non-normality and impact of having empty cells, another variable emerges, degree of non-

normality. In the previous proposal that started this investigation, the data from the national 

survey were ordinal (with ceiling/floor effect), and the data were highly skewed (with most 

students answering affirmative to one category). Nothing that educational data almost always 

have dependencies and survey data are rarely continuous, this study wants to investigate how 

those conditions impact sample size requirements for the various estimation methods in 

multilevel SEM. 

For study two, continuous non-normal data has to be generated. There were two methods 

I found that could possibly assist in generating this type of data. I could create and combine the 

within and between matrix in Mplus, export the data into SAS, and then generate mixed normal 

continuous data in SAS using Fleishman’s power transformation method. The Fleishman method 

is a method for generating sample data to the desired skewness and kurtosis from normal 

variables (Fan et al., 2001). The Fleishman (1978) polynomial transformation formula is given 

by:  

2 3      Y a bZ cZ dZ       (64) 

Where Y is the transformed non-normal variable, and a, b, c, d are coefficients needed to 

transform the normal variable to a non-normal variable. The transformation of the normal data 
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using Fleishman (1978) formula will result in a positively skewed distribution. Manipulation of 

the formula can allow for negative skew (as cited in Fan et al., 2001). This is a great method, but 

it is a brute force method that created too many possibilities for human error and was time 

consuming. A rarely used method where two distributions were created and combined to create 

one non-normal distribution was developed by Muthén in Mplus. This method was found in 

Muthén’s (2002) paper on sample size and power requirement. This method has not been used on 

multilevel data, and there was less guidance on how to utilize it to create the non-normal data as 

opposed to the SAS method. However, this method, if implemented correctly, is less messy. 

Therefore, I decided to use Mplus 6.1 to generate data for both of my studies.  However, since I 

was doing so for many conditions and only had one computer, I had to use Mplus on Linux and 

write a script to use multiple nodes (multithreading techniques) to run multiple simulations at 

one time.  

Non-Normality/Sparseness.  When deciding the degree of non-normality, one has to 

start with the definition. There are two definition of normal using skew and kurtosis. Tukey 

(1960) defined normality based on using lambda ( ) as a distribution with skewness and kurtosis 

that were both zero (as cited in Fan et al., 2001). However, Ramberg et al. (1979) expounded on 

the work of Tukey, defining skewness as the third moment about the mean and kurtosis as the 

fourth moment (Fan, 2001, p. 64): 
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However, there is more than one definition of kurtosis. Excess kurtosis is defined as  
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Using this definition of kurtosis, the second definition of normality states that a 

distribution is normal if it has skewness of zero and kurtosis of three. Finnery and DiStefano 

(2006) defines moderate non-normality as having a skew less than 2, kurtosis less than 7, and 

severe non-normality as having a skew more than 2 and kurtosis greater than 7. My moderate 

non-normality values was estimated from the population had skew and kurtosis of 1.21 and 

3.29(respectively). My severe non-normal skew and kurtosis was 2.29 and 7.465 (respectively). 

The data section has more detail in this section and has more detail of the data generation.  

The third study of non-normal categorical data will also be generated and analyzed in 

Mplus 6.1. Mplus has several methods for generating non-normal categorical data. I used the 

threshold method that uses cut points to define the percentage of data that falls in each of the 

categories (four response categories). Thresholds depend on the estimator used. ML based 

estimators are based on the logit link function or logistic curve. In order to obtain the cut points, I 

have to obtain the logistic quartiles for the cumulative areas. WLSM and WLSMV estimators 

uses a  probit as its’ link function that is based on a cumulative Z distribution to define each 

category. Because my goal is to simulate the national data set that had floor and ceiling effects 

(very little variability), I will have some categories with very little data or sparse data. For four  

point scale (k), there is k-1 or three thresholds that have to be defined. Study 3 will have two 

conditions measuring sparseness. Sparseness 1: 90% of the data will fall into Category 1, 5% 

Category 2, 3% in Category 3, and 2% in the subsequent category. If we are using the cumulative 

Z distribution (standard normal distribution) when 90% of the data are in the first category, the 

threshold or z value is 1.28. If 5% of the data are in the next category (which means 95% 

cumulatively), the threshold or z value is 1.645. Sparseness condition two will mimic 50% of the 
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data in the first category, 30% in the second, and the subsequent categories will have 10% of the 

data.  The goal in Study 3 was to examine how sparseness affects the sample size requirement for 

the various estimators when there is 2%, 3%, and 5% degree of sparseness.  

Data. The code to come up with study 2 was very difficult. As I stated before, I originally 

considered creating mixed non-normal continuous data in SAS using the Fan and Fan (2005) 

article as a framework to build a multilevel CFA. After finding it difficult to model the between 

structure and create dependencies in the SEM multilevel in SAS, I came across the Muthén & 

Muthén (2002) article that was the only article showing how to create a mixture distribution in 

Mplus using a mixture of two normal distributions. This method of making non-normal data was 

rarely used in Mplus according to my research. I combined the Muthén and Muthén (2002) code 

with the Hox and Maas (2010) code that showed how one could make a multilevel model in 

Mplus. The combined codes create a non-normal continuous distribution that is multilevel.  

 The mixture distribution is created by generating two classes and analyzing it as 

though it was one class. Muthén (2002) starts doing this by specifying the number of people in 

each class. Class one is referred to as the minority or outlier class in the paper, and [c#1@-2] 

tells how many people are associated in the class by translating the logit of -2 to a probability,  
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This probability indicates that 12% are in the minority class and 88% are in the majority 

class. The mixture of two normal distributions with different means and standard deviations is 

then used to create one mixed normal distribution. After defining the number of people in the 

class, the different factor means and standard deviations were defined for each class in the model 

generation portion of the Monte Carlo code. In Muthén's (2002) example the minority class, 

class one, had a factor mean of 15 and variance of 5 while the majority class was standard 
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normal. The result was a population with skew of 1.2 and kurtosis from 1.5 to 1.6 for indicators 

y6 to y10 (or for the factor in which a mixture distribution was comprised). The choice of 

proportions, different means, and variances all affect the skewness and kurtosis. Once you decide 

on the proportions, one can simply manipulate the mean and variances to obtain the skew and 

kurtosis wanted.  

 To approximate the population values for my model, skew, and kurtosis (after 

deciding the means and standard deviations) step two is to run one replication with a large 

sample size (one million for mine) for the model you have chosen. You run this model to obtain 

the actual population values for the one class model. After running your proposed model on a 

large sample (by looking at the estimate average) you obtain the correct intercepts, and the 

within factor loading for the non-normal or mixed normal population. The third and last step, 

according to Muthén (2002), is to then use the new parameter estimates for the factor loadings to 

solve for the residual variances using the factor indicator reliabilities set by the user.  

 Using .8 as my loadings for the between and within levels, one as my factor 

variances and .36 as my error variances, I was able to obtain item reliabilities of .64 for both 

levels, see figure 23.  
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I ran a large sample one replication model with varying different mean and standard 

deviation pairings until I got the skew and standard deviation desired. Using Muthén’s (2002) 

code as a guideline, my portions were also 12% for the minority class and 88% for the majority. I 

also allowed one class to be standard normal and manipulated the mean and kurtosis for the 

minority class.  
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Figure 2.7 

Initial model for large sample run 

  

 I used Lei and Lomax (2005) and the Finney and Distefano (2006) as guidelines 

on where to set my distributional values for moderate and severely non-normal conditions.  Lei 

and Lomax (2005), using the definition of normality of zero skew and zero kurtosis, defined 

slight non-noramlity as skewness between .3 and .4, with kurtosis around 1.0. Severe non-

normality was skewness above .7 and kurtosis above 3.5. Finney and Distefano (2006) defined 

moderate non-normality as having skew below 2 and kurtosis below 7, with sever non-normality 

being above those numbers respectively for both measures. Finney and Distefano (2006) used the 

second definition of normality based on skew of zero and kurtosis of three (i.e., excess kurtosis).   

 The population values for moderate non-normality were based on the minority 

class having mean 4 and variance 11, and on severe non-normality having mean 7.2 and variance 

30. The majority class was held at standard normal. As table 2.1 shows, when the minority class 

was N(4,11), the loadings went from .8 to an average of 1.58 for the moderate non-normal CFA 

model. The data generated had a univariate skew of 1.21 and kurtosis 3.29. The skew and 

kurtosis values were found using excel, which define normality as N(0,3) and uses excess 

kurtosis for the definition of kurtosis. Severe non-normality was generated when the minority 
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class was N(7.2,30). The within loading increased from .8 to 2.53, on average, and the intercept 

was .63. The severe non-normality had univariate skew of 2.29 and kurtosis of 7.465. 

 

Table 2.1 

 

Muthén's (2002) mixed two normal classes N(0,1) and N(15,5) to obtain a mixture 

distribution. The original loading went from originally being .8 with .36 error variance and a 

reliability of .64, to having a loading of 4 and means of 1.42 for the one class non-normal 

distribution. He then used this information about the loading, and for a set reliability of .64, he 

solved for the error variance of 9. Similarly, after obtaining a loading of 1.58, I decided to use 

1.404 as my error variance to keep the reliability to .64 for the moderate non-normal case. For 

the severe non-normal case, I decided to use 3.6005 as my error variance which gave me an item 

reliability of .64. 

Assessing Sample Size.    Muthén and Muthén (2002), which outlines how to determine 

sample size and power, is one of a number of methods to determine sample size. Hoogland and 

Boosma (1998) outlined three criteria for what they assess to be sufficient sample size: relative 

parameter bias of no more than 5%, relative bias of the standard errors of no more than 10%, and 

the chi-square statistic rejection rate at 5%. Starting with version 3.0, Mplus began summarizing 

fit statistics that allowed researchers to compare at the critical chi-square for the given degrees of 

freedom at various alpha levels (via the expected percentiles or critical value and expected 
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proportion column or alpha) to the observed chi-square test statistic and observed alpha from the 

monte carlo replication (via observed percentile and observed proportion, respectively).  If the 

observed percentile or proportion is bigger than the expected or theoretical chi-square values, 

then the chi-square distribution is said to not to be well approximated. Note, assessing chi-square 

statistics solely at the .05 rate is unreliable (Hoogland and Boosma, 1998). The chi-square 

relative bias (Bandalos, 2006; Brown, 2006), is another method of determining if the chi-square 

distribution and is well approximated: 
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                             (70) 

where 
2

  is the average chi-square statistic across all replications, and df is the degrees 

of freedom. Instead of looking at the percentage of sample chi-square values that fall in the 

rejection region as being equal to the nominal alpha rate, .05, Bradley (1978) suggests comparing 

the criterion for the type one area rate lying  in the range .1  or .5  which are between 

(.045,.055) or (.025, .075) to an alpha of .05 (as cited in Bandalos, 2006). The mean of the chi-

square distribution is its degrees of freedom. The percentage of chi-square that fall in the 

rejection region is the percentage of time the null was rejected (where the null is :oH df  and 

the alternative is :aH df  ).  The percentage of time the null is rejected when it is true is 

known as the proportion of time one makes a type one error. For some estimators (e.g. WLS 

based estimators and MLR) the chi-square df is not the true chi square value. Because of this 

fact, the proportion of rejections for which the critical value is exceeded will be used to judge if 

the chi-square distribution was well approximated.  The first Bradley (1978) confidence interval 

is very conservative, whereas, the second one is liberal. In this study the liberal confidence 

interval will be utilized.   
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Summary. Study 2 will have 2 balanced/unbalanced dichotomous conditions, 3 cluster 

sizes, 4 estimation methods, 3 sample sizes, 2 non-normality conditions with 1000 reps per 

condition. Therefore 2x 3 x 4 x 3 x 2 yields 144 total conditions. Study 3 will have 4 estimation 

methods, 3 sample sizes, 3 balanced and 3 unbalanced group sizes, and 2 non-normality 

conditions, with 1000 reps per condition and a total of 144 conditions.  

  

Limitations. As with most simulations, you can’t include every possibility. The scope of 

the study is limited in that no missing data are assumed, there are not structural relationships 

taken into account, and the ICC is not varied. My model is a very simple model. Future studies 

need to explore missing data or if the pattern of missing data has an effect on the sample size 

recommendation or even if model misspecification has an effect on sample the size 

recommendation for between level MSEM. The most important test analyze if  varying the ICC 

has an impact on the sample size recommendation. 
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CHAPTER FOUR 

STUDIES TWO AND THREE RESULTS 

 

This section presents the results of the study of sample the size requirement for a 

multilevel structural equation model (SEM) under non-normality (namely, studies 2 and 3).  

Study two studies the performance of estimators for non-normal continuous data, while study 

three analyzes the performance of estimators for categorical data to determine sample the size 

requirement for a multilevel SEM model.  The subsequent chapter, chapter five, provides a 

deeper discussion of the results presented here and the formal conclusion drawn. The results are 

presented in linear numerical order ( i.e. study two's results will be followed by study three's 

results).  

There are a number of methods to assess the appropriate sample size requirement for a 

given estimator.  Muthén and Muthén (2002) gave three requirements for determining the best 

samples size: parameter bias does not exceed 10%, standard error bias does not exceed 10%, and 

coverage range between .91 and .98 (Brown, 2006).  Hoogland and Boosma (1998) outline the 

criteria for sufficient sample size when assessing the performance of estimators. Their criteria 

were a relative parameter bias of no more than 5%, a relative bias of the standard errors of no 

more than 10%, and a rejection rate for the chi-square statistic at the 5% nominal alpha level. 

Meuleman and Billet (2009) augmented the Hoogland and Boosma (1998) criteria by also 

requiring coverage of .95 or better, and expecting researchers to look at the number of 

inadmissible solutions. Muthén and Muthén’s (2002) recommendations are the primary guideline 
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for assessing sample size. The secondary guideline for assessing sample size will be the rejection 

rate for the chi-square statistic and the number of inadmissible solutions.   

 

Results of Study Two 

Parameter Bias. The average parameter bias should not exceed 10% for any of our four 

estimators, namely, maximum likelihood (ML), robust ML (MLR), weighted least square mean 

adjusted (WLSM), and weighted least square mean and variance adjusted (WLSMV). Recall, 

two conditions were moderately non-normal and severely non-normal for balanced and non-

balanced data.  

Table 2.2 

Moderate Non-Normality Parameter Bias for Sample Size=30 

 

For a sample size or the number of clusters equaling 30, there was no large parameter 

bias. On average, the biases were all less than 5% for each of the estimators used in the study 

under the condition of moderate non-normality and balanced sample size.  

When the sample size is 30 and we look at parameter bias under the condition of severe 

non-normality with balanced sample size there is large parameter bias at the between level for 

ML based estimators when the number of subjects within the clusters or cluster size is ten (see 
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Table 2.3). In order to better understand the pattern of behavior across conditions, the average of 

the parameter biases for all the indicators, y1-y4, was also tabulated and compared. 

 

 

Table 2.3 

Severe Non-Normality Parameter Bias for Sample Size=30 

 

 

Table 2.4 

Average Parameter Bias: Moderate Non-Normality 

 

The average parameter bias across the parameters, y1-y4, shows that the bias tended to 

decrease as sample size (number of clusters at the between level) increased. This pattern was 

observed only at the between level (for example, table  IX, WLSMV -4.216, -2.769, -1.397 for 
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cluster size 10, and sample size 30, 50 and ,100, respectively). Sometimes this trend was 

observed at the within level but due to sampling variation it is difficult to judge.  

Table 2.5 

Average Parameter Bias: Severe Non-Normality 

 

As seen in Table 2.5 for balanced severe non-normality, when the cluster size and sample 

size is low for the ML based estimators, the average between level parameter bias is very high 

with the ML condition surpassing the 10% bias mark (see Table 2.5, between level ML number 

of clusters 30 and cluster size is 10, 13.122% bias).  

Table 2.6 

Average Parameter Bias: Unbalanced Moderate Non-normality  

 

Table 2.6 displays parameter bias for moderate normality when the clusters are 

unbalanced. Looking at the averages, there seems to be no difference between unbalanced and 

balanced conditions for parameter bias in moderate non-normal data. Again, as sample size 
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increases (number of clusters increased at the between level) the bias decrease (Table 2.6, 

WLSMV between  -3.663 to -2.438 to -1.366 decreased as sample size increased from 30 to 50 

to 100). The parameter bias at the within level seems to not really be affected by sample size (see 

Table 2.6, WLSMV). The within level values of -.658 to -.698 to -.681 decreased as sample size 

increased from 30 to 50 to 100.  This could be due to sampling variance so statistical tests have 

to verify what we are seeing.   

Table 2.7 

Average Parameter Bias: Unbalanced Severe Non-Normality 

 

Similarly, to balance severe non-normality the ML based estimators had problems with 

small cluster size. Here, Table 2.7, both ML and MLR has a large positive between level 

parameter bias. Their bias is larger than what was seen for the balanced severe non-normality 

case (Table 2.5), 13.122 vs. 14.647 ML and 7.525 vs. 10.172 MLR (balanced vs. non-balanced, 

respectively). Again, other than the case where both the cluster size and sample size is small, 

there does not appear to be a difference between the balanced and the unbalanced case for 

parameter bias.  

 

Standard Error Bias.  According to Muthén and Muthén (2002) the standard error bias 

should not exceed 10%. Standard error bias is the difference between the average standard error 
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and standard deviation divided by the standard deviation—multiplied by 100. Again, our four 

estimators are maximum likelihood (ML), robust ML (MLR), weighted least square mean 

adjusted (WLSM), and weighted least square mean and variance adjusted (WLSMV). Each of 

these are studied under the condition of moderate non-normality, and severe non-normality with 

balanced and non-balanced data.  

Table 2.8 

Average Standard Error Bias: Moderate Non-Normality 

 

For balanced, moderate, non-normal multilevel data, all estimators (except MLR) had 

large within level bias did not change or show a trend as cluster size or sample size (i.e. number 

of clusters) increased. However, the weighted least square (WLS) based estimators tended to 

have larger within level standard error bias (Table XIII). The standard error bias for MLR on 

moderately non-normal, continuous data seems to work well at the between and within levels, 

even for small sample size and cluster size (Table XIII). For ML, WLSM, and WLSMV, the 

within level standard error was larger than the 10% criterion, and there is a high standard error 

bias at the between level that coincides with a low sample size of thirty (WLSMV, 30/10, 

45.785; 30/26, 17.709; and 30/50, 21.053). 
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Table 2.9 

Average Standard Error Bias: Severe Non-normality 

 

There was little standard error bias at the between or within levels, for MLR under 

moderate non-normality. However, under severe non-normality, the between level standard bias 

is very negative when the cluster size is low or when the sample size is low (Table 2.9, MLR 

30/26,     -57.780; 30/50, -25.976).  When severe non-normality is present, for WLS based 

estimators, the within level standard error bias is large and similar to the results under moderate 

non-normality. However, at the between level, there are huge positive between level biases that 

decrease as the sample size increases and as the cluster size increases (Table 2.9, WLSM 30/10, 

284.830; 50/10, 111.791; and 30/26, 15.456).  As sample size increased, for the ML estimator, 

the standard error bias at the between level decreases (30/10 -50.068 to 50/10 -27.917). That 

pattern did not hold as cluster size increased for a couple of these conditions for ML, but this 

could be due to sampling variance ( ML 30/10, -50.068 to 30/26, -65.845).  It is apparent that 

severe non-normality has an effect on standard error bias for all estimators, especially at the 

between level.  

In Tables 2.10 and 2.11, below, the averaged standard error biases for the moderate and 

severe unbalanced non-normal data are shown. The data follows similar pattern as the balanced 
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data; for low sample size there is generally high between level standard error bias. There does 

not seem to be a difference between standard error biases at the within level, but there is a slight 

difference at the between level (e.g. MLR balanced = 30/10 is -.472 & unbalanced = 30/10 is -

20.154). This supports evidence that that the standard errors might be affected by unbalanced 

data.  

Table 2.10 

Average Standard Error Bias: Unbalanced Moderate Non-Normality 

 

Table 2.11  

Average Standard Error Bias: Unbalanced Severe Non-Normality 
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 Coverage. Muthén and Muthén’s (2002) last requirement specified that coverage 

be between .91 and .98 for assessing sample size requirements in structural equation modeling. 

Using this guide, I averaged the coverage across all indicators and obtained the average 

coverage.  

Table 2.12 

Average Coverage: Moderate Non-Normality 

 

 

From Table 2.12, the within level coverage was poor for all estimators except MLR, and 

the between level was fine for all estimators in the moderate and severe non-normality case.  

Table 2.13 

Average Coverage: Severe Non-Normality 

 

The unbalanced average coverage follows the same pattern as the balanced. MLR has 

superior coverage both at the between and within levels under both conditions of normality. The 
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other estimators between levels are well below the recommended range and the between levels 

are sufficient.  There doesn't seem to be a real difference in coverage between the balanced and 

unbalanced conditions. 

 Table 2.14 

Average Coverage: Unbalanced Moderate Non-Normality

 

Table 2.15 

Average Coverage: Unbalanced Severe Non-Normality 

 

 

 

Because we are dealing with numerous conditions and data points, a summary table by 

estimator is helpful to have a clearer picture of what is occurring (especially since a 

recommendation of sample size is by estimator).  
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Table 2.16  

ML Estimator- Balanced 

 

Table 2.16 provides a clearer picture for the evaluation of the sample size requirement by 

Muthén and Muthén (2002). If we were solely looking at the three conditions outlined, then ML 

could not be used at the within level, and one must have at least a sample size of 50 with a small 

cluster size (ten) at the between level for moderate non-normality. For severe non-normality ML 

balanced condition, the within level is not recommended with this estimator and a sample size of 

at least 100 is needed for the small cluster size.  At the between level, the required sample size 

gets smaller as the cluster size gets bigger. Using 10% standard error (SE) bias as a guide, when 

cluster size is 10, only a sample size of 100 is less than 10% for the severe ML estimator, but 

once the cluster size increases to 26 then the sample size of 50 is less than the 10% standard error 

bias.  
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Table 2.17 

MLR Estimator-Balanced 

 

Table 2.17 encapsulates the MLR balanced results for the three Muthén and Muthén 

(2002) criteria (i.e. that the parameter and standard error bias be less than 10% and the coverage 

be between .91 and .98). For moderate non-normality, a sample size of 30 seems to be okay. 

However, a sample size of 50 is needed with at least a cluster size of 26 for severe non-

normality. If one want to look at between and within SEM data, MLR is the best possible 

estimator depending on the severity of non-normality. 

Consult Table 2.18 for the WLSM estimator. Like the ML estimator, the within level is 

not recommended. At the between level (i.e. balanced, moderate non-normality) a sample size of 

at least 50 is recommended and cluster size seems not to matter. For severe non-normality, a 

sample size of more than 100 is needed for small cluster size. A sample size of 50 will suffice 

when cluster size is at least 26.  
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Table 2.18 

WLSM Estimator-Balanced 

 

Table 2.19 

WLSMV Estimator-Balanced 

 

The WLSMV estimator seems to perform well on moderately non-normal data at the 

between level when the sample size was at least 50. For severe non-normality, the WLSMV 
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sample size recommendation seems to depend on cluster size. When cluster size is low (ten in 

our case) then a sample of size of 100 is needed. Otherwise, it should be at least 50.  

Table 2.20 

ML-Unbalanced 

 

Similar to the ML-Balanced case (Table 2.16), ML could not be used at the within level. 

At the between level for moderate normality one must have at least a sample size of 50 with 

small cluster size (in this case ten). The standard error at the between level is similar for the 

balanced and non-balanced, moderate non-normality conditions.  For the severe non-normality 

ML unbalanced condition, the within level is not recommended. A sample size of at least 100 is 

recommended for balanced conditions for the between level. Even when the number of clusters 

is 100, there is still a large standard error bias.  This may or may not be due to sampling 

variance. Therefore, looking at every piece of information is necessary to get a full picture of 

what is going on with these estimators.  The standard error bias does seems to be different at the 

between level for the unbalanced versus the balanced non-normal conditions, but again that 

could be due to sampling variations. 
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Table 2.21 

MLR Unbalanced 

 

The MLR balanced results were presented in Table 2.17.  For unbalanced, moderate non-

normality, a sample size of 30 with a corresponding low cluster size has a high standard error 

bias, unlike the balanced case.  Similarly the between level cannot handle low cluster size and 

low sample size when severe non- normality is present.. Low sample size (30) yielded consistent 

large negative standard errors under severe non-normality (Table 2.21).  Solely looking at the 

three Muthén and Muthén (2002) criteria, a sample size of more than 100 is recommended under 

severely unbalanced non-normality when the cluster size is low (10 in our case) and 50 for a 

moderate cluster size of 26 or more. Although the numbers are somewhat different between the 

balanced vs. unbalanced case, the conclusions are the same.  

For the WLS based estimators, the within level for the unbalanced conditions is not 

recommended for moderate or severe non-normality. For the between level, the SE bias was high 

for low cluster size and low sample size for the WLSM estimator under moderate non-normality. 
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Therefore, a sample size of 100 is needed when cluster size is 10 , and a sample size of 50 is 

needed when the cluster size is at least 50 ( 30/26, 15.770 and 50/26,  6.670, Table 2.22). 

Similarly, under severe non-normality, these sample sizes are within the guideline set by Muthén 

and Muthén (2002).  

Table 2.22 

WLSM Unbalanced 

 

There is very little difference between the balanced and unbalanced cases for the 

WLSMV estimator.  The conclusions are similar, the between level sample size needs at least 

100 when cluster size is low and at least 50 when cluster size is 26 or more (Table 2.23). 

 

Table 2.23 

WLSMV Unbalanced 
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Thus far we have simply looked at the pattern of biases across the various conditions and 

compared them to the three criteria outlined by Muthén and Muthén (2002). To get a full picture, 

another criteria was added, the rejection rate for the chi square statistic, which should be no more 

than 5% (Hoogland and Boosma, 1998).  Bradley (1978) suggests this rate could have a more 

liberal interval of (.025, .075) for chi square being well approximated (as cited in Bandalos, 

2006, p. 404). The number of inadmissible solutions and types of errors will also be evaluated 

for each study, estimator, and condition. 

 Note, chi-square is a function of the sample size and the Fit function value, so 

when the sample size is large the chi square will be large and not equal its’ approximate degrees 

of freedom. In addition, chi-square is affected by the degree of non-normality.  So for large 

sample size or non-normality, we expect a fairly large rejection rate.  

 

For study two ML based estimators, there were four types of errors observed after 

running the Monte Carlo analysis.  

Error 1(Miterations):  
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     THE MODEL ESTIMATION DID NOT TERMINATE NORMALLY DUE TO A NON-ZERO

     DERIVATIVE OF THE OBSERVED-DATA LOGLIKELIHOOD.

     THE MCONVERGENCE CRITERION OF THE EM ALGORITHM IS NOT FULFILLED.

     CHECK YOUR STARTING VALUES OR INCREASE THE NUMBER OF MITERATIONS.

     ESTIMATES CANNOT BE TRUSTED.  THE LOGLIKELIHOOD DERIVATIVE

     FOR PARAMETER 18 IS -0.10579199D-01.

 

  Error 2 (Residual):   

      

     WARNING:  THE RESIDUAL COVARIANCE MATRIX (THETA) IS NOT POSITIVE DEFINITE.

     THIS COULD INDICATE A NEGATIVE VARIANCE/RESIDUAL VARIANCE FOR AN OBSERVED

     VARIABLE, A CORRELATION GREATER OR EQUAL TO ONE BETWEEN TWO OBSERVED

     VARIABLES, OR A LINEAR DEPENDENCY AMONG MORE THAN TWO OBSERVED VARIABLES.

     CHECK THE RESULTS SECTION FOR MORE INFORMATION.

 

 Error 3 (Start Values/Fisher): 

        

    THE MODEL ESTIMATION DID NOT TERMINATE NORMALLY DUE TO AN ILL-CONDITIONED

     FISHER INFORMATION MATRIX.  CHANGE YOUR MODEL AND/OR STARTING VALUES.

     THE MODEL ESTIMATION DID NOT TERMINATE NORMALLY DUE TO A NON-POSITIVE

     DEFINITE FISHER INFORMATION MATRIX.  THIS MAY BE DUE TO THE STARTING VALUES

     BUT MAY ALSO BE AN INDICATION OF MODEL NONIDENTIFICATION.  THE CONDITION

     NUMBER IS       0.212D-10.

 

 Error 4 (Trustworthy Standard Errors): 

  

 

     THE STANDARD ERRORS OF THE MODEL PARAMETER ESTIMATES MAY NOT BE

     TRUSTWORTHY FOR SOME PARAMETERS DUE TO A NON-POSITIVE DEFINITE

     FIRST-ORDER DERIVATIVE PRODUCT MATRIX.  THIS MAY BE DUE TO THE STARTING

     VALUES BUT MAY ALSO BE AN INDICATION OF MODEL NONIDENTIFICATION.  THE

     CONDITION NUMBER IS       0.918D-12.  PROBLEM INVOLVING PARAMETER 19.
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The first type of error talks about increasing the number of Miterations allowed in the 

Expectation Maximization (EM) algorithm. The default number for Mplus is 500 iterations. The 

EM algorithm is an iterative two step algorithm that reverberates between the expectation step 

and the maximization step to find the best ML estimates. When presented with a similar message 

on the statistical model discussion board the advice was to increase the number of Miterations. 

The error message also mentions Mconvergence which sets the convergence criterion for the EM 

algorithm. The default Mconvergence value depends on the type of model you run, for type a 

two level model, .001.  I decreased to .00001 due to an error message about saddle points and 

instructing to decrease its’ value. When you increase the number of iterations it takes the 

program longer to run. By increasing the number of iterations and decreasing the convergence 

criteria, I did eliminated the saddle point messages and decreased the overall number of 

Mconvergence errors but I still had a some present and the processing to run the condition 

increased. It essentially warns you not to trust the estimates given for this particular replication. 

The second type of error talks about the Theta matrix. Theta matrix represents the matrix 

of the residual values. This error says even though the model converged, we have negative 

residual variance in the replication. Variances should always be positive.  

The third type of error suggests changing the starting values. It says the solution you 

found was not the proper maximum likelihood solution, the solution is unacceptable. Changing 

the starting value is done in Mplus by changing STARTS. The default starting value is ten 

random starting values and two optimizations carried out in the final stage. The solution this 

error would be to increase the number of starts and optimizations.  After increasing these values 

the error message does disappear but one left having to insure the number you received is not a 
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local maximum which is a multistep process that involves rerunning the entire process with the 

seed generated by the program and the processing time was multifold.  

The last or fourth type of error said that the standard errors are not trustworthy for that 

particular replication. It then instructs you to look at a particular parameter. Parameters 17-20 are 

from the Theta matrix or Residual matrix.  We already know from the second error message that 

there were problems with the residuals being negative. This particular message occurs when the 

particular parameter is near its boundary value.  

So for this part of the analysis I looked at the percentage of each type of errors and what 

happens as I increase sample size and/or cluster size. There are no guidelines on what percentage 

errors are acceptable, so I will use a .05 or less criterion. 

Table 2.24 

ML Estimator-Balanced Error Analysis 

 

For the ML based estimator, according to Table 2.24, the overall observed portion of chi 

square that exceeded the critical value was roughly .05, some were as high as .066 (sample size 

30 50 100 30 50 100 30 50 100

Degrees of Freedom DF 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

Expected Proportion Expected 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Chi Square Moderate 4.08 4.14 3.95 4.15 4.17 4.18 4.26 4.09 4.06

Severe 3.75 3.74 3.80 4.07 4.02 4.13 4.22 4.21 4.05

Observed Proportion Moderate 0.05 0.05 0.04 0.06 0.07 0.06 0.06 0.06 0.06

Severe 0.04 0.04 0.04 0.05 0.05 0.06 0.06 0.06 0.05

Successful Reps Moderate 99.8% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Severe 96.8% 98.6% 100.0% 99.0% 99.9% 100.0% 99.7% 100.0% 100.0%

% Overall Errors Moderate 17.6% 3.6% 0.1% 3.6% 0.4% 0.0% 2.7% 0.3% 0.0%

Severe 63.0% 33.4% 5.8% 19.3% 3.1% 1.0% 6.3% 3.0% 0.0%

Miterations Moderate 0.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Severe 33.9% 7.7% 0.0% 1.1% 0.0% 0.0% 0.3% 0.0% 0.0%

Residuals Moderate 14.7% 3.2% 0.1% 3.6% 0.4% 0.0% 2.7% 0.3% 0.0%

Severe 24.9% 23.7% 5.3% 15.5% 2.9% 0.1% 5.7% 0.3% 0.0%

Starting Values Moderate 1.9% 0.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Severe 3.0% 1.5% 0.5% 2.2% 0.2% 0.0% 0.0% 0.0% 0.0%

Standard Errors Moderate 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Severe 1.2% 0.5% 0.0% 0.5% 0.0% 0.0% 0.3% 0.0% 0.0%

ML Estimator-Balanced Error Analysis

Cluster Size=10                          

No.  of Clusters

Cluster Size=26                          

No.  of Clusters

Cluster Size=50                          

No.  of Clusters
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50/cluster size 26). The proportions of overall errors decreased as sample size increased and as 

the number of clusters increased. Under moderate non-normality, for the ML estimator, there 

were large numbers, 14.7 %, of negative residual variances when the cluster size and sample size 

was low (30/10); so it seems a sample size of 50 and/or cluster size of 26 or more is needed 

under this condition. When severe non-normality is present a sample size of 100 is need when 

cluster size is low and at least 50 in general. When the sample size is low, under severe non-

normality, 5.3% of the residuals are negative which is close to five percent (30/10). 

 

Table 2.25 

ML Estimator-Unbalanced Error Analysis 

 

Table 2.25, shows the error analysis for the unbalanced ML based estimator. The numbers for the 

unbalanced ML based error analysis are very similar to the balanced ML based error analysis; 

however, when the sample size is large and cluster size is small under severe non-normality 

5.5% of the replications had issues with negative residuals (100/10). My cut off was 5% and this 

is slightly higher by .2% than the balanced case. A sample size of more than 100 might be 

30 50 100 30 50 100 30 50 100

Degrees of Freedom DF 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

Expected Proportion Expected 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Chi Square Moderate 4.15 4.08 4.03 4.30 4.11 4.06 4.21 4.02 4.15

Severe 3.76 3.88 4.00 4.01 4.12 4.01 4.00 3.91 4.15

Observed Proportion Moderate 0.05 0.05 0.05 0.07 0.05 0.05 0.05 0.06 0.04

Severe 0.04 0.04 0.05 0.05 0.05 0.06 0.05 0.05 0.07

Successful Reps Moderate 99.9% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Severe 97.2% 98.1% 99.6% 98.9% 99.8% 100.0% 99.9% 100.0% 100.0%

% Overall Errors Moderate 18.6% 4.3% 0.2% 4.2% 0.5% 0.0% 2.5% 0.0% 0.0%

Severe 69.8% 37.9% 6.3% 20.6% 4.2% 0.3% 6.0% 0.6% 0.0%

Miterations Moderate 1.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Severe 39.6% 8.5% 0.1% 1.4% 0.0% 0.0% 0.0% 0.0% 0.0%

Residuals Moderate 15.9% 41.0% 2.0% 4.2% 0.5% 0.0% 2.5% 0.0% 0.0%

Severe 23.7% 23.8% 5.5% 16.8% 3.8% 0.3% 5.7% 0.6% 0.0%

Starting Values Moderate 1.4% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Severe 5.0% 5.2% 0.6% 2.2% 0.2% 0.0% 0.2% 0.0% 0.0%

Standard Errors Moderate 1.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Severe 1.5% 0.4% 0.1% 0.2% 0.2% 0.0% 0.1% 0.0% 0.0%

ML Estimator-Unbalanced Error Analysis

Cluster Size=10                          Cluster Size=26                          Cluster Size=50                          
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needed for both conditions when the cluster size is more than 100. Other than that, the same 

pattern of errors, expected proportions, and chi square values exist.  

Table 2.26 

MLR Estimate-Balanced Error Analysis 

 

When there is moderate non-normality, for the MLR estimator, a sample size of 50 seems 

to be needed, when the cluster size is low. A sample size of 30 is needed when there is moderate 

or large cluster size.   Under severe non-normality, when the cluster size is low, a sample size of 

at least 100 seems to be needed and a sample size of 50 for moderate to large cluster sizes.  One 

should notice that overall there were a large proportions of replications that exceeded the critical 

chi square value—nowhere close to .05 for most cases, especially, under the severe-normality 

condition. However, Bradley’s liberal criterion test said that the empirical type one error rate can 

fall within an acceptable range to be acceptable. It falls between .025 and .075 meeting the 

Bradley’s liberal criterion (Bradley, 1978) when the nominal alpha is .05 (Hoyle, 2012). This 

does not quite confirm the theory that chi-square distribution is not well approximated for MLR 

estimator.  

30 50 100 30 50 100 30 50 100

Degrees of Freedom DF 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

Expected Proportion Expected 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Chi Square Moderate 5.29 4.80 4.33 4.87 4.34 4.22 5.50 4.33 4.30

Severe 12.03 6.52 4.93 6.23 5.44 4.45 4.84 4.54 4.08

Observed Proportion Moderate 0.10 0.10 0.07 0.11 0.07 0.06 0.11 0.07 0.07

Severe 0.21 0.13 0.12 0.12 0.10 0.07 0.10 0.05 0.05

Successful Reps Moderate 99.70% 99.80% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Severe 96.80% 98.50% 99.80% 98.60% 99.90% 100.00% 100.00% 100.00% 100.00%

% Overall Errors Moderate 19.20% 2.70% 0.40% 3.70% 0.10% 0.00% 1.50% 0.00% 0.00%

Severe 65.20% 37.80% 5.40% 19.20% 2.90% 0.00% 5.80% 0.10% 0.00%

Miterations Moderate 1.10% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Severe 34.20% 10.10% 0.10% 1.00% 0.10% 0.00% 0.00% 0.00% 0.00%

Residuals Moderate 14.90% 2.10% 0.40% 3.50% 0.10% 0.00% 1.50% 0.00% 0.00%

Severe 23.40% 23.40% 4.50% 15.10% 2.40% 0.00% 5.70% 0.10% 0.00%

Starting Values Moderate 3.10% 0.60% 0.00% 0.20% 0.00% 0.00% 0.00% 0.00% 0.00%

Severe 6.80% 3.80% 0.60% 2.60% 0.40% 0.00% 0.00% 0.00% 0.00%

Standard Errors Moderate 0.10% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Severe 0.80% 0.50% 0.20% 0.50% 0.00% 0.00% 0.10% 0.00% 0.00%

Cluster Size=26                          Cluster Size=50                          

MLR Estimator-Balanced Error Analysis

Cluster Size=10                          
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Table 2.27 

MLR Estimate-Unbalanced Error Analysis 

 

When there is moderate non-normality, for the MLR estimator given unbalanced condition, a 

sample size of 50 seems to be needed for small cluster size and a sample size of 30 for moderate 

to large cluster sizes.  Similarly to the non-balanced case, under severe non-normality, when the 

cluster size is low, the number of clusters needed seems to be and 50 clusters for moderate to 

large cluster sizes. 

The weighted least squares (WLS) based estimators number of errors were lower than the 

ML based estimators, and the types of errors found were different from the maximum likelihood 

(ML) based estimators. There were three errors found when using the WLS based estimators:  

Error 5 (Slow Convergence): 

30 50 100 30 50 100 30 50 100

Degrees of Freedom DF 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

Expected Proportion Expected 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Chi Square Moderate 4.85 4.76 4.19 4.95 4.69 4.17 5.20 4.42 4.09

Severe 11.541 7.102 5.371 5.328 4.757 4.213 4.797 4.513 4.181

Observed Proportion Moderate 0.09 0.08 0.07 0.10 0.10 0.06 0.11 0.09 0.05

Severe 0.22 0.13 0.11 0.13 0.10 0.07 0.11 0.09 0.07

Successful Reps Moderate 99.90% 100.00% 100.00% 99.90% 100.00% 100.00% 100.00% 100.00% 100.00%

Severe 63.40% 97.80% 99.80% 99.50% 99.90% 100.00% 99.90% 100.00% 100.00%

% Overall Errors Moderate 21.70% 3.30% 0.30% 4.40% 0.30% 0.10% 1.80% 0.30% 0.00%

Severe 63.00% 36.00% 8.20% 18.50% 3.40% 0.00% 5.90% 0.40% 0.00%

Miterations Moderate 1.40% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Severe 36.70% 8.90% 0.20% 1.30% 0.00% 0.00% 0.00% 0.00% 0.00%

Residuals Moderate 16.60% 3.30% 0.30% 4.00% 0.30% 0.10% 1.80% 0.30% 0.00%

Severe 22.50% 21.90% 7.40% 15.30% 3.20% 0.00% 5.80% 0.40% 0.00%

Starting Values Moderate 3.40% 0.00% 0.00% 0.40% 0.00% 0.00% 0.00% 0.00% 0.00%

Severe 3.20% 4.70% 0.60% 1.40% 0.20% 0.00% 0.00% 0.00% 0.00%

Standard Errors Moderate 0.30% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Severe 0.60% 0.50% 0.00% 0.50% 0.00% 0.00% 0.10% 0.00% 0.00%

MLR Estimator-Unbalanced Error Analysis

Cluster Size=10                          Cluster Size=26                          Cluster Size=50                          
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 Error 6 (Estimation of Variable): 

   

 Error 7 (Standard Errors): 

   

Parameters 14 and 15 referred to the Lambda matrix, which is the loading matrix. All these 

errors referenced difficulty estimating the loadings either it was slow to converge, did not 

converge for a subset of the indicators (y1-y4), or the standard errors could not be estimated 

because the loadings were zero. 

Table 2.28 

WLSM Estimate-Balanced Error Analysis 
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Under moderate non-normality, a sample size of 30 seems reasonable, and at least 50 for 

severe non-normality. Also, proportion of replications that exceeded the chi square value 

increased with sample size for the chi-square distribution. Table 2.29, for the unbalanced case, 

had similar conclusions. Tables 2.30 and 2.31 for the balanced and non-balanced WLSMV 

estimators, respectively, have similar conclusions for sample size recommendation; however, the 

observed proportions seem to be slightly less.  

Table 2.29 

WLSM Estimate-Unbalanced Error Analysis 

 

30 50 100 30 50 100 30 50 100

Degrees of Freedom DF 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

Expected Proportion Expected 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Chi Square Moderate 3.80 4.12 4.22 3.94 4.24 4.40 4.05 4.20 4.33

Severe 3.58 4.05 4.30 4.07 4.31 4.48 4.18 4.42 4.70

Observed Proportion Moderate 0.05 0.07 0.07 0.06 0.07 0.08 0.07 0.07 0.07

Severe 0.05 0.07 0.08 0.07 0.08 0.09 0.08 0.08 0.10

Successful Reps Moderate 99.70% 100.00% 100.00% 100.00% 100.00% 100.00% 99.90% 100.00% 100.00%

Severe 91.34% 98.09% 99.90% 99.62% 99..95% 99..95% 99.90% 99.98% 100.00%

% Overall Errors Moderate 0.28% 0.00% 0.00% 0.02% 0.00% 0.00% 0.07% 0.01% 0.02%

Severe 9.23% 1.97% 0.10% 0.38% 0.04% 0.06% 0.10% 0.01% 0.00%

Slow Convergence Moderate 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01%

Severe 0.86% 0.23% 0.00% 0.06% 0.01% 0.00% 0.00% 0.00% 0.00%

Estimation of Variable Moderate 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.01%

Severe 6.70% 0.76% 0.03% 0.03% 0.00% 0.03% 0.00% 0.00% 0.00%

Standard Errors Moderate 0.20% 0.00% 0.00% 0.02% 0.00% 0.00% 0.07% 0.00% 0.00%

Severe 1.67% 0.98% 0.07% 0.29% 0.03% 0.03% 0.10% 0.01% 0.00%

Cluster Size=26                          Cluster Size=50                          

WLSM Estimator-Balanced Error Analysis

Cluster Size=10                          

30 50 100 30 50 100 30 50 100

Degrees of Freedom DF 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

Expected Proportion Expected 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Chi Square Moderate 3.718 4.064 4.236 3.905 4.172 4.388 3.977 4.083 4.293

Severe 3.50 3.95 4.37 4.03 4.33 4.45 4.15 4.47 4.63

Observed Proportion Moderate 0.05 0.065 0.069 0.057 0.071 0.08 0.061 0.064 0.073

Severe 0.05 0.06 0.08 0.07 0.08 0.08 0.08 0.09 0.10

Successful Reps Moderate 99.54% 99.98% 100.00% 100.00% 100.00% 100.00% 99.94% 99.97% 99.90%

Severe 91.17% 98.27% 99.94% 99.50% 99.93% 99.97% 99.86% 99.99% 99.99%

% Overall Errors Moderate 0.44% 0.01% 0.00% 0.00% 0.00% 0.00% 0.05% 0.01% 0.10%

Severe 7.98% 1.73% 0.06% 0.05% 0.07% 0.01% 0.04% 0.02% 0.01%

Slow Convergence Moderate 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03%

Severe 0.09% 0.13% 0.00% 0.08% 0.00% 0.00% 0.00% 0.00% 0.00%

Estimation of Variable Moderate 0.07% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.01% 0.01%

Severe 6.20% 0.93% 0.00% 0.03% 0.00% 0.00% 0.03% 0.00% 0.00%

Standard Errors Moderate 0.34% 0.01% 0.00% 0.00% 0.00% 0.00% 0.04% 0.01% 0.06%

Severe 1.69% 0.67% 0.06% 0.39% 0.07% 0.01% 0.01% 0.01% 0.01%

WLSM Estimator-Unbalanced Error Analysis

Cluster Size=10                          Cluster Size=26                          Cluster Size=50                          
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Table 2.30 

WLSMV Estimate-Balanced Error Analysis 

 

 

Table 2.31 

WLSMV Estimate-Unbalanced Error Analysis 

 

Results of Study Three 

 Again, for study three I examined sample size requirement for categorical data. With both 

studies two and three I did briefly include a very low sample size of size 20. In study two, the 

30 50 100 30 50 100 30 50 100

Degrees of Freedom DF 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

Expected Proportion Expected 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Chi Square Moderate 3.764 4.009 4.241 3.949 4.139 4.34 3.948 4.187 4.27

Severe 3.60 4.04 4.34 4.03 4.25 4.38 4.07 4.45 4.59

Observed Proportion Moderate 0.043 0.051 0.062 0.047 0.056 0.065 0.047 0.061 0.062

Severe 0.04 0.06 0.07 0.05 0.06 0.08 0.06 0.08 0.09

Successful Reps Moderate 99.56% 99.98% 100.00% 100.00% 100.00% 100.00% 99.94% 99.94% 99.90%

Severe 91.31% 98.24% 99.90% 99.70% 99.93% 99.92% 99.91% 100.00% 100.00%

% Overall Errors Moderate 0.49% 0.01% 0.00% 0.00% 0.00% 0.00% 0.05% 0.05% 0.09%

Severe 9.71% 0.89% 0.10% 0.28% 0.08% 0.09% 0.10% 0.00% 0.00%

Slow Convergence Moderate 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01%

Severe 0.86% 0.11% 0.03% 0.06% 0.00% 0.00% 0.01% 0.00% 0.00%

Estimation of Variable Moderate 0.06% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.01% 0.01%

Severe 7.02% 0.09% 0.01% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00%

Standard Errors Moderate 0.40% 0.01% 0.00% 0.00% 0.00% 0.00% 0.04% 0.04% 0.07%

Severe 1.83% 0.77% 0.06% 0.20% 0.08% 0.09% 0.09% 0.00% 0.00%

Cluster Size=50                          

WLSMV Estimator-Balanced Error Analysis

Cluster Size=10                          Cluster Size=26                          

30 50 100 30 50 100 30 50 100

Degrees of Freedom DF 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

Expected Proportion Expected 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Chi Square Moderate 3.76 4.02 4.26 3.95 4.22 4.39 3.93 4.16 4.26

Severe 3.61 4.00 4.33 4.01 4.27 4.48 4.14 4.35 4.57

Observed Proportion Moderate 0.04 0.50 0.06 0.05 0.06 0.07 0.05 0.06 0.07

Severe 0.04 0.05 0.07 0.06 0.06 0.08 0.06 0.07 0.08

Successful Reps Moderate 99.47% 100.00% 100.00% 99.99% 100.00% 100.00% 99.94% 99.90 99.90%

Severe 90.59% 98.19% 99.92% 99.73% 99.93% 99.87% 99.96% 99.99% 99.99%

% Overall Errors Moderate 0.53% 0.00% 0.00% 0.01% 0.00% 0.00% 0.06% 0.08% 0.06%

Severe 10.55% 2.00% 0.08% 0.25% 0.06% 0.13% 0.04% 0.01% 0.01%

Slow Convergence Moderate 0.06% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Severe 0.76% 0.24% 0.01% 0.02% 0.01% 0.01% 0.00% 0.00% 0.00%

Estimation of Variable Moderate 0.06% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00%

Severe 8.09% 1.07% 0.03% 0.00% 0.01% 0.03% 0.00% 0.00% 0.00%

Standard Errors Moderate 0.41% 0.00% 0.00% 0.01% 0.00% 0.00% 0.06% 0.07% 0.06%

Severe 1.70% 0.69% 0.04% 0.23% 0.04% 0.09% 0.04% 0.01% 0.01%

Cluster Size=10                          

WLSMV Estimator-Unbalanced Error Analysis

Cluster Size=26                          Cluster Size=50                          
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very low sample size had similar results as sample size 30 but for study three that was not the 

case. There was very pronounced differences in sample size 20 versus 30 for study three.  

Parameter Bias. Using Muthén and Muthén’s (2002) guideline, the average parameter 

bias should not exceed 10% for the four estimators, maximum likelihood (ML), robust ML 

(MLR), weighted least square mean adjusted (WLSM), and weighted least square mean and 

variance adjusted (WLSMV). There were two sparseness conditions, sparseness I and sparseness 

II. The data for sparseness I were divided so that 90% of the data was in the first category, then 

the subsequent categories had 5%, 3%, and 2% of the data. For sparseness II, 50% of the data 

occurred before the first cutpoint, 30%, and then 10%.  

 

Table 2.32 

Average Parameter Bias: Sparseness I  

 

There were no large average parameter bias at the within level except for the MLR, 

WLSM, WLSMV estimators. The asterisk symbols (*) represent conditions that did not 

converge. When the sample size was 20 it took so long for the program to run that I halted the 

program. Because the program ran in a linear line by line order, which ones that did not return a 

value was arbitrary and due to me halting the program. The Mplus program for those conditions 

20 30 50 100 20 30 50 100 20 30 50 100

ML Within 7.955 4.873 2.393 1.343 2.445 1.548 1.078 0.360 * 0.635 0.538 0.250

Between 2.850 1.365 0.530 0.340 -0.955 -0.677 -0.063 -0.280 * -2.003 -0.675 -0.740

MLR Within 13.635 4.603 2.410 1.250 2.400 1.250 0.878 0.555 * 0.687 0.542 0.243

Between 7.417 1.833 0.475 0.212 -0.700 -0.530 -0.290 0.083 * -1.555 -1.225 -0.225

WLSM Within 10.963 7.078 4.280 2.573 * 2.825 1.445 0.782 * 1.355 0.890 0.355

Between 2.593 1.307 0.803 0.643 * -0.553 -0.155 -0.137 * -1.198 -0.783 0.072

WLSMV Within 12.090 7.255 4.485 2.670 * 2.178 1.383 0.900 * 1.160 0.910 0.503

Between 3.388 1.415 1.580 1.138 * -0.785 -0.530 -0.545 * -0.818 -0.773 -0.453
*The Mplus program could not converge for this condition

Average Parameter Bias: Sparseness I

Cluster Size=10 Cluster Size=26 Cluster Size=50

No. of Clusters No. of Clusters No. of Clusters
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ran for several days and the software did not terminate normally. Based solely on this chart, a 

sample size of at least 30 is recommended at the between level.  

 

Table 2.33 

Average Parameter Bias: Sparseness II 

 

There were no large parameter biases for the sparseness II condition. Based solely on this 

chart and the Muthén and Muthén (2002) criterion, a sample size of at least 30 is recommended.  

Table 2.34 

Average Parameter Bias: Unbalanced Sparseness I 

 

Sample size 20 was not included for the unbalanced conditions because of the length of 

time and lack of convergence. As we see from table 2.34, there was no large parameter bias. 

Although when the cluster size and sample size is low the within level bias is somewhat large but 

20 30 50 100 20 30 50 100 20 30 50 100

ML Within 4.975 3.473 1.770 1.023 1.717 1.095 0.633 0.338 * 0.512 0.265 0.153

Between 0.508 0.397 0.080 -0.200 -2.453 -2.050 -0.803 -0.733 * -2.410 -1.205 -0.425

MLR Within 4.808 3.232 1.633 0.785 1.693 1.220 0.622 0.333 * 0.482 0.370 0.133

Between 0.447 0.290 -0.255 0.373 -1.793 -1.080 -1.140 -0.665 * -2.713 -1.143 -0.610

WLSM Within * 4.365 2.873 1.928 * 1.773 0.908 0.525 * 0.810 0.688 0.260

Between * 0.535 0.080 0.527 * -0.623 -1.258 -0.588 * -2.348 -1.258 -0.683

WLSMV Within * 4.660 2.730 1.995 * 1.588 1.075 0.420 * 0.837 0.743 0.338

Between * 0.618 0.165 0.513 * -0.855 -0.468 -0.150 * -1.635 -1.383 -0.465
*The Mplus program could not converge for this condition

Average Parameter Bias: Sparseness II

Cluster Size=10 Cluster Size=26 Cluster Size=50

No. of Clusters No. of Clusters No. of Clusters
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not over the criterion establish by Muthén and Muthén (2002).  A sample size of at least 30 is 

recommended.  

 

Table 2.35 

Average Parameter Bias: Unbalanced Sparseness II 

 

Similarly, the unbalanced sparseness II condition did not have problems with large 

parameter biases. A sample size of at least 30 is recommended.  

Standard Error Bias.  The next bias consideration is the standard error bias.  As a 

reminder, Muthén and Muthén (2002) set a criterion that states the standard error bias should not 

exceed 10%.  Included in this study are four estimators are maximum likelihood (ML), robust 

ML (MLR), weighted least square mean adjusted (WLSM), and weighted least square mean and 

variance adjusted (WLSMV); and two sparseness conditions I and II (with condition I being 

more sparse).  

 

Table 2.36 

30 50 100 30 50 100 30 50 100

ML Within 2.793 1.360 0.772 1.250 0.538 0.210 0.407 0.307 0.172

Between 0.500 0.068 0.073 -1.948 -1.648 -0.140 -1.960 -0.963 -0.610

MLR Within 2.643 1.870 0.907 1.058 0.573 0.320 0.523 0.353 0.167

Between -0.503 -0.383 -0.090 -1.590 -1.400 -0.193 -2.533 -1.078 -0.728

WLSM Within 4.310 2.635 1.603 1.773 1.035 0.647 1.035 0.555 0.303

Between 1.620 -0.150 0.015 -1.423 -0.340 -0.428 -1.675 -0.695 -0.300

WLSMV Within 4.508 3.165 1.505 2.003 0.912 0.570 0.815 0.547 0.293

Between 0.253 0.635 0.712 -0.998 -1.205 -0.138 -2.530 -1.003 -0.433

Average Parameter Bias: Unbalanced Sparseness II

Cluster Size=10 Cluster Size=26 Cluster Size=50

No. of Clusters No. of Clusters No. of Clusters
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Average Standard Error Bias: Sparseness I

 

There were large between standard errors when the sample size 20 and cluster size was 

low.  The within level standard error (SE) bias for sample size 20 and cluster size 10 was 

extremely low  possibly because there were a lot of non-convergent conditions. Also, just as off 

putting, the SE bias  seem to be get worse as cluster size  increase for the WLS estimators. This 

pattern emerged that was not expected. For example, on table 2.36, 30(10) between SE bias was 

5.232 for the WLSM estimator but for condition 30(26) 15.018.  It seems that for WLSM based 

estimators that no sample sized can be recommended.  

Table 2.37 

Average Standard Error Bias: Sparseness II 

 

Similar to sparseness I, it appears for the WLS based estimators the SE bias increases 

with cluster size so WLS based estimators are not recommended. There is no abnormally large 

standard error bias for Sparseness I when the sample size is twenty but because of the difficult 

20.000 30.000 50.000 100.000 20.000 30.000 50.000 100.000 20.000 30.000 50.000 100.000

ML Within 41.309 -4.086 -3.797 -0.912 -2.625 -1.338 -2.320 -0.493 * 1.254 -0.544 0.770

Between 38.527 -1.956 -0.201 -1.206 1.052 3.661 2.560 -1.271 * 2.643 3.365 -2.383

MLR Within -51.928 -4.847 -3.175 1.297 -8.243 -4.930 -4.038 -0.186 * -4.417 -4.031 -1.371

Between -51.101 -4.504 1.022 -0.295 -6.297 -2.028 0.216 -2.155 * 2.889 -2.455 -3.738

WLSM Within 0.434 -5.017 -2.656 -3.071 * 16.528 9.584 4.730 * 56.353 35.191 20.722

Between 30.486 5.232 2.856 1.377 * 15.018 6.654 3.370 * 22.870 12.362 2.752

WLSMV Within 26.926 -4.977 -2.912 1.432 * 17.689 8.151 3.864 * 58.707 38.155 21.566

Between 36.538 6.495 3.923 0.736 * 15.366 5.962 3.308 * 17.426 15.215 3.300

*The Mplus program could not converge for this condition

Average Standard Error Bias: Sparseness I

Cluster Size=10 Cluster Size=26 Cluster Size=50

No. of Clusters No. of Clusters No. of Clusters

20 30 50 100 20 30 50 100 20 30 50 100

ML Within -5.259 -5.346 -4.189 0.069 -1.326 -0.298 -0.871 -1.913 * -1.774 0.296 -0.384

Between -3.624 -1.204 0.106 -3.269 1.803 3.334 1.513 -1.245 * 3.957 2.450 -3.861

MLR Within -8.701 -4.630 -2.857 -2.834 -5.324 -4.043 0.031 -3.291 * -1.543 -0.468 -0.466

Between -6.710 -3.727 -0.957 -1.702 -2.941 -2.029 -0.720 -1.520 * -1.611 -0.669 1.096

WLSM Within * -0.088 -1.695 -0.497 * 18.887 10.607 5.196 * 61.887 35.292 23.021

Between * 3.656 1.365 0.173 * 11.055 3.468 -0.065 * 23.556 11.073 7.045

WLSMV Within * -1.015 -0.230 -0.161 * 20.445 11.150 4.849 * 62.230 38.262 24.923

Between * 0.176 3.597 1.726 * 10.040 6.901 3.392 * 15.604 12.015 6.695

*The Mplus program could not converge for this condition

Average Standard Error Bias: Sparseness II

Cluster Size=10 Cluster Size=26 Cluster Size=50

No. of Clusters No. of Clusters No. of Clusters



172 

converging for sample size 20 (cluster size 50) I would recommend a sample size of at least 30 if 

we are solely looking at this output.  

Table 2.38 

Average Standard Error Bias: Unbalanced Sparseness I 

    

The WLS based estimators should be avoided. The ML based estimators are fine except 

for the within cluster size 10 and sample size 30. A recommended sample size at the between 

level is 30. 

Table 2.39 

Average Standard Error Bias: Unbalanced Sparseness II 

 

It appears for ML based estimators a sample size of 30 is fine, for unbalanced with sparseness II.  

The WLS based estimators are not recommended for this analysis.  

30 50 100 30 50 100 30 50 100

ML Within -1.217 -2.680 0.608 -0.893 0.121 0.257 -1.053 -0.662 1.040

Between -0.257 -1.053 -2.458 -0.053 2.585 0.691 1.604 4.211 -0.307

MLR Within -3.129 -2.895 -1.249 -5.109 -3.364 -0.116 -2.195 -1.950 -1.821

Between 0.155 -0.596 -4.430 -3.357 -2.538 -4.174 -0.293 2.194 -3.318

WLSM Within 3.968 -1.600 -0.573 30.825 15.049 7.137 70.078 48.198 27.163

Between 4.163 3.229 -1.070 12.206 4.534 3.998 25.840 16.513 11.731

WLSMV Within -3.777 -0.155 -0.828 28.462 17.448 8.826 64.175 47.566 28.193

Between 4.684 4.934 0.581 12.713 7.335 3.779 24.555 17.693 5.631

Average Standard Error Bias: Unbalanced Sparseness II

Cluster Size=10 Cluster Size=26 Cluster Size=50

No. of Clusters No. of Clusters No. of Clusters
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Coverage. Muthén and Muthén (2002) had for their last requirement that coverage be 

within the interval (.91, .98) for assessing sample size requirements in structural equation 

modeling.  

 

Table 2.40 

Average Coverage: Sparseness I 

 

Like study two, coverage does not appear to be problematic at the between level or at the  

between level.  

Table 2.41 

Average Coverage: Sparseness II 

 

For those conditions that converged, the average coverage was at or above .91. 

 

 

20 30 50 100 20 30 50 100 20 30 50 100

ML Within 0.960 0.962 0.951 0.956 0.958 0.956 0.954 0.952 * 0.957 0.952 0.955

Between 0.935 0.939 0.946 0.945 0.930 0.939 0.952 0.945 * 0.927 0.948 0.935

MLR Within 0.947 0.955 0.949 0.954 0.930 0.936 0.937 0.952 * 0.931 0.937 0.946

Between 0.912 0.932 0.942 0.946 0.907 0.919 0.935 0.932 * 0.924 0.926 0.934

WLSM Within 0.960 0.962 0.961 0.951 * 0.971 0.961 0.956 * 0.979 0.977 0.969

Between 0.950 0.947 0.951 0.949 * 0.949 0.951 0.948 * 0.951 0.951 0.945

WLSMV Within 0.956 0.957 0.958 0.961 * 0.969 0.959 0.957 * 0.983 0.976 0.973

Between 0.945 0.949 0.954 0.953 * 0.947 0.942 0.945 * 0.941 0.959 0.944

*The Mplus program could not converge for this condition

Average Coverage: Sparseness I

Cluster Size=10 Cluster Size=26 Cluster Size=50

No. of Clusters No. of Clusters No. of Clusters

20 30 50 100 20 30 50 100 20 30 50 100

ML Within 0.962 0.954 0.947 0.955 0.951 0.957 0.951 0.948 * 0.945 0.951 0.952

Between 0.929 0.941 0.949 0.935 0.939 0.935 0.938 0.936 * 0.922 0.938 0.938

MLR Within 0.941 0.942 0.946 0.944 0.934 0.935 0.948 0.941 * 0.940 0.945 0.949

Between 0.915 0.925 0.931 0.939 0.906 0.916 0.925 0.936 * 0.905 0.925 0.941

WLSM Within * 0.961 0.954 0.954 * 0.969 0.964 0.955 * 0.982 0.973 0.969

Between * 0.947 0.947 0.947 * 0.949 0.936 0.942 * 0.949 0.949 0.953

WLSMV Within * 0.958 0.961 0.955 * 0.970 0.966 0.956 * 0.985 0.980 0.973

Between * 0.946 0.953 0.958 * 0.940 0.951 0.943 * 0.951 0.949 0.944

*The Mplus program could not converge for this condition

Cluster Size=10 Cluster Size=26 Cluster Size=50

No. of Clusters No. of Clusters No. of Clusters

Average Coverage: Sparseness II
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Table 2.42 

Average Coverage: Unbalanced Sparseness I 

 

Coverage was at or above .91 for all conditions.  

Table 2.43 

Average Coverage: Unbalanced Sparseness II 

 

The average coverage was fine for all conditions except one MLR 30(50) was .902 

(Table 2.40-2.43).  Coverage was always usually lower when sample size was lowest. 

Putting all the information together there seems to be a general recommendation of a 

sample size of 30 and cluster size of 10 for ML based estimators but to ensure the absolute best 

coverage a sample size of 50 with at least 10 clusters should be fine for MLR. There were no 

sample size recommendations for WLS based estimators.  

30 50 100 30 50 100 30 50 100

ML Within 0.962 0.954 0.950 0.957 0.952 0.950 0.951 0.949 0.953

Between 0.942 0.942 0.944 0.927 0.935 0.944 0.928 0.944 0.948

MLR Within 0.947 0.947 0.951 0.936 0.938 0.954 0.940 0.941 0.943

Between 0.924 0.941 0.933 0.913 0.916 0.936 0.902 0.931 0.935

WLSM Within 0.960 0.953 0.953 0.973 0.965 0.963 0.981 0.973 0.970

Between 0.953 0.950 0.943 0.944 0.944 0.955 0.956 0.961 0.959

WLSMV Within 0.954 0.958 0.949 0.973 0.971 0.965 0.981 0.979 0.976

Between 0.957 0.954 0.951 0.946 0.944 0.948 0.943 0.958 0.952

No. of Clusters No. of Clusters No. of Clusters

Cluster Size=10 Cluster Size=26 Cluster Size=50

Average Coverage: Unbalanced Sparseness II
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The next step of the process was to analyze the errors and look at the chi-square. 

However, for categorical variables and maximum likelihood estimators, the chi square fit 

statistics is not available (Mplus Discussion Board, 2013).   Therefore, for study three we cannot 

include the chi square fit statistics. Analyzing only the errors for study three was a simple 

process. Mplus did not print any errors and ran all replications when the sample size was at least 

30 for all estimators. The only time errors were printed or encountered was when sample size 

was 20. Note, at that low sample size, as I may have stated before, not only did the program take 

over a month to run it was difficult to converge as sample size and cluster sized increased for all 

estimators.  

 

There were two errors displayed:  

 

 

 

The primary error message was a warning about the standard errors of the model not 

being trustworthy. Only one estimator, WLSM, had a slow convergence error and this error was 

specified only once.   

The standard errors not being estimated pointed to problem with the tau matrix at the 

between level which were the intercepts. Upon further investigation the intercepts seemed to be 

identified but there was not enough information in the output pointing to what was causing the 
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error. It could be that the matrix was not positive definite.   What should be noted is that this 

error, all errors, went away as soon as the sample size increased. Also, errors decreased as cluster 

size increased and for less sparse data, see Table 2.44 below. For the WLS based estimated very 

limited to no errors were reported.  

 

Based on the error analysis, one should not use sample size twenty because it fully studied and 

implemented in this study and the very few conditions converged. 
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Table 2.44 

Sample Size 20 Error Analysis 
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CHAPTER FIVE 

STUDY TWO CONCLUSION 

 

 For Monte Carlo study two, I had three questions I wanted to answer when I began my 

study:  (a) Does sample size requirement for non-normal continuous data depend on the 

estimation method?; (b) Is the sample size requirement greater for normal or non-normal 

continuous data for the respective estimation method?; and (c) Does the presence or absence of 

unbalanced clusters affect the sample size requirement for non-normal continuous data? 

 In chapter four, I looked at numerous conditions, used Muthén and Muthén (2002) 

criteria, and looked at the error rate to determine the best sample size. Not all the conclusions 

were the same, so putting all the information together in a simplified way to obtain a more 

accurate picture was necessary. Table 2.45 shows all the recommendations given in chapter four 

by sample size (cluster size) and for each estimator.  

 

Table 2.45 

Between level Minimum Sample (Cluster Size)-Balanced 

 

ML Moderate

Severe

MLR Moderate

Severe

WLSM Moderate

Severe

WLSMV Moderate

Severe

*

*

50(10);50(26);50(50)

100(10);50(26);50(50)

*

*

30(10)

50(10)

* No large bias in all conditions. 

*

*

*

50(26);50(50)

*

*

50(10)

100(10)?;50(26);50(50)

*

50(10);50(26);50(50)

100(10);100(26);50(50)

*

*

30(10)

50(10)

*

50(10)

50(10)

100(10); 50(26);50(50)

*

*

50(10)

100(10)?;50(26);50(50)

*

Between Level Minimum Sample Size (Cluster Size) Recommendation

Parameter Error 

Bias

Standard Error

Bias

95%

Coverage

Error

Analysis
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There was no large parameter bias present for the ML moderate  non-normality condition but 

under severe non-normality there was a large parameter bias present when for the sample size 

lower than 50 (so sample size 30 and cluster size 10; 30(10) had large parameter bias), according 

to the Table 2.45.  Looking at the ML estimator, under moderate non-normality, a sample size of 

50 and cluster size of 10 is all that is needed (if you want a lower sample size then a larger 

cluster size is needed 30 (26) was also acceptable). Note, this is the between level sample size 

requirement.  The within level does not perform very well with these estimators unless you are 

using the MLR based estimator (as seen from this study).  This sample size requirement for the 

between and within using MLR depends on the severity of the non-normality.  Although 

researchers might want to study the between and within levels, for this study I am simply looking 

at the between level as previous researcher such as Hox and others have done.  Under severe 

non-normality, the ML based estimator requires a large sample size, at least 100 when the cluster 

size is small, but in general a sample size of 50 will suffice if you have a moderate cluster size of 

26 or more.  The robust Maximum Likelihood (MLR) estimator between-level had similar 

finding with a sample size of 50 and cluster size of 10 being the minimum needed under 

moderate non-normality and for severe non-normality a sample size of 50 with cluster size of 26 

or more is needed (with a large sample size of 100 or more being needed for a small cluster size 

of 10).  

 The WLS estimators had similar recommendations under moderate non-normality, 50 

(10), sample size (cluster size); however, under severe non-normality these recommendations 

diverge from the ML based estimations. For WLSM, if the cluster size is small or moderate, a 

sample size of 100 is needed, but when the cluster is as large as 50 a lower sample size of 50 is 
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needed. For WLSMV, a sample size of 100 is needed only for small cluster sizes and a sample 

size of 50 is needed for moderate cluster sizes.  

 The severity of the non-normality seems to affect the sample sizes and also the estimator 

seems to affect the sample size recommendation when severe non-normality is present. Table 

2.46, below, shows the same recommendation but only for the unbalanced condition.  

Table 2.46 

Between level Minimum Sample (Cluster Size)-Unbalanced 

 

Under unbalanced moderate non-normality, the ML based estimators still have the same 

sample size and cluster size recommendation of 50 (10). When severe non-normality is present 

the ML estimator requires a sample size of 100 for moderate cluster size and sample size of 50 

for large cluster size; MLR requires a sample size of 50 with a moderate cluster size of 26. The 

WLS based estimators have an increased sample size requirement when the clusters are 

unbalanced; for moderate and severe non-normality it is 100 for small clusters and 50 for 

medium to large clusters. Table 2.47, below, summarizes the final recommendation. This 

recommendation gave the sample size recommendation for the lowest cluster size since there 

seems to be a cluster effect (meaning as cluster size increase, the sample size needed decrease).  

The balanced versus unbalanced conditions seems to be the same for ML based estimators under 

moderate non-normality and slightly different under severe non-normality. For the WLS based 

ML Moderate

Severe

MLR Moderate

Severe

WLSM Moderate

Severe

WLSMV Moderate

Severe

* 100(10);50(26);50(50) * 30(10)

* 100(10);50(26);50(50) * 50(10)

*No no large bias in all conditions. 

50(10) 50(26);50(50) * 50(26);50(50)

* 100(10);50(26);50(50) * 30(10)

* 100(10);50(26);50(50) * 50(10)

* 50(10) * 50(10)

50(10) 100(26);50(50) * 100(10)?;50(26);50(50)

* 50(10) * 50(10)

Unbalanced Between Level Minimum Sample Size (Cluster Size) Recommendation

Parameter Error Standard Error 95% Error

Bias Bias Coverage Analysis
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estimators, the unbalanced moderate normal condition seems to have a bigger sample size 

requirement and for severe non-normality the sample sizes are roughly the same. Further 

discussion on this will be discussed within the limitation section.  

 

Table 2.47 

Final Sample Size Recommendation 

 

In order to see if there was an interaction marginal means were looked at using SPSS 21.  

The first question I asked was whether the sample size requirement depends on 

estimation method. The answer to the question is YES. For the balance moderate normal 

condition the sample size recommendation was the same but for the unbalanced condition the 

WLSM estimators required more sample size when the cluster size was low. For severe non-

normality, the sample size requirement was the roughly the same for all balanced and unbalanced 

condition, save for MLR which can needs at least a moderate cluster size.  To help me visual 

what is happening I looked at the marginal means chart to get a clearer picture.  

.  

 

Moderate Severe

ML Balanced 50(10) 100(10);50(26)

Unbalanced 50(10) 100(26);50(50)

MLR Balanced 50(10) 100(10); 50(26)

Unbalanced 50(10) 50(26)

WLSM Balanced 50(10) 100(10);50(50)

Unbalanced 100(10);50(26) 100(10);50(26)

WLSMV Balanced 50(10) 100(10);50(26)

Unbalanced 100(10);50(26) 100(10);50(26)

Final Sample Size Recommendation
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Figure 2.8 

Marginal Mean Graph Estimators by Sample Size (Cluster Ten) 

 

 

The graph of the marginal or cell means for each group helps determine if there is an 

interaction.  Looking at graph of marginal means for cluster size ten, figure 2.8, there seems to 

an interaction for the between level SE biases for the ML based vs. WLS based estimators. When 

the cluster size is low (number of people in the groups is ten), the WLS returns a large positive 

SE bias. MLR based estimator is fine. ML returns a large negative SE bias. When the sample 

size is 50 or more the ML based estimators behave very similarly and the WLS based estimators 

behave very similarly. This means start shows a clear interaction.  The mean SE bias for each 

estimator depends on if the sample size is 30 or 50. There also seems to be a trend the average 

SE bias seems to get smaller as sample size increase. This is what we want and expect.  
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Figure 2.9 

Marginal Mean Graph Estimators by Sample Size (Cluster Ten)-Severe Non-Normality 

 

For severe non-normality, figure 2.9, there is an interaction between sample size and 

estimators. The WLS based estimators seem to behave similarly and so too does the ML based 

estimators. The MLR estimator was not recommended when the cluster size was low (ten), it 

constantly returns large SE biases. The ML based estimator has less of a SE bias when the 

sample size increases. According to Muthén and Muthén (2002) guidelines a sample size of 100 

was needed for ML, WLSM, and WLSMV estimators. There seems to be very little difference in 

the SE biases for these estimators once the sample sizes reach 100 ( under severe non-normality 

conditions).  

Figure 2.10 

Marginal Mean Graph Severe Normality Estimator by Multiple Sample and Cluster Size  
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Putting it all together, figure 2.10, for severely non-normal balanced data, we see that for 

the ML estimator and WLS based estimators there is stability (no interaction) between sample 

size 50 cluster size 26 and sample size 100 cluster size 26. Not only are there no interaction the 

SE bias is very small. For the MLR based estimator it seems a cluster size of at least 26 is needed 

to establish the same level of stability.  

The marginal mean graphs show that there are differences in SE bias based on sample 

size for the estimators. Although the charts were helpful in seeing what happens as the sample 

size increase it is not a substitute for the guidelines provided by Muthén and Muthén (2002). My 

conclusion again is YES the sample size depend on estimator. It also depends on if the estimator 

is balanced not balanced and severity.  

My second research question asked if the sample size requirement greater for normal or 

non-normal continuous data for the respective estimation method. The primary source for sample 

size recommendation was based on the research work by Hox et al (2010) that stated that a 

sample size of 50 was fine for all estimators except MLR which needed a sample size 200 under 
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normal normality conditions.   They found that increasing cluster size or group size had no effect 

for most estimators except for the pseudobalanced estimation method (MUML). For the MUML 

estimator, used in their research (not mine), they found increasing group size had a negative 

effect on the accuracy of the test. In addition,  they found whether or not the groups were 

balanced had no effect and ICC had no effect. Meuleman and Billiet (2009) found an interaction 

between model complexity and sample size requirement. When the model is simple a sample 

size of 40 was recommended. My recommendation did somewhat match Hox et al. (2010) 

sample size recommendation for balanced moderate non-normality. For balanced moderate non-

normality, a sample size of 50 was fine when the cluster size was low. A lower number of cluster 

(or sample size) was sufficient the cluster size increased for the WLS based estimators and ML 

estimator. For balanced moderate non-normality conditions, MLR required a sample size of 30 

minimally. Where Hox (2010) and I disagree: my research found that the within level for all 

except the MLR estimator had large SE biases, so the between level mattered; being balanced or 

unbalanced mattered when there was moderate non-normality for the WLS based estimators but 

under severe non-normality, the recommendations were similar for the balanced and unbalanced 

groups, balance vs. unbalanced matters; and instead of MLR requiring 200 sample size the 

sample size was much lower for the MLR based estimator (sample size 30 for moderate non-

normal balanced).  Since they did not study non-normality, severity was not variable in their 

research. However, I found severity an important factor.  

 Note, for unbalanced moderate non-normality, the cluster size requirement for WLS 

based estimators is important. In order to have a sample size of 50, a moderate cluster size of 26 

is needed for unbalanced moderate non-normal WLS based estimators. When severe non-

normality is present, for balanced small clusters sizes, a sample size of 100 is required.  
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However, most estimators required a moderate cluster size of 26 with sample size of 50 (WLSM 

required a large cluster size of 50). When unbalanced severe non-normality was present the WLS 

based estimators required a sample size of 100 for small cluster size and sample size of 50 for 

moderate (CS =26) cluster size. For ML based estimators unbalanced severe non-normality, 

when the cluster size is small, a sample size of well over 100 is required. For MLR sample size 

of 50 will require a moderate cluster size and for ML a sample size of 50 would require a large 

cluster size. Again, sample size recommendation seems to depend on severity, estimator, and 

whether balanced or unbalanced.  

My last question was to determine if the presence or absence of unbalanced clusters 

affected the sample size requirement. The previous paragraph says yes the presence of balanced 

or unbalanced clusters did affect what was the sample size requirement.  Moderate non-normal 

WLS based estimators required a larger sample size for when small cluster size was present (the 

ML based estimators were not affected). Under severe non-normality, the ML based estimators 

unbalanced condition generally required either greater sample size or cluster size. The WLSM 

cluster size recommendation of 50 for its balanced severe non-normality condition might be 

because of small number of replications done to stabilize the standard errors (see limitations). I 

suspect the sample size requirement under severe-non normality is unaffected by whether or 

whether not my conditions are balanced.  

 

Conclusion 

I will attempt to explain why we are seeing what we are seeing in my final thoughts. 

According to Brown (2006), ML is sensitive to excessive kurtosis and tend to underestimate SE 

of the parameter (increase type I error). He recommends MLR and WLS based estimators when 
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non-normality exist but WLS based estimators require a large sample size and MLR based is 

good but only when floor and ceiling effect is not present. Here we saw that when the overall 

data are slightly non-normal, that that slight non-normality still extended to the between level. 

MLR performed very well but ML and WLS based estimators required a higher sample size with 

WLSM based estimators generally requiring greater sample size requirement. The ML estimator 

did tend to underestimate the SE bias while the WLS estimator tended to overestimate the bias 

when the sample size (or the number of clusters) was low. Over all the conditions of non-

normality, MLR tended to perform best both at the between and within levels and most times had 

a lower sample size requirement. The sample size requirement for MLR estimator, although low, 

was affected by non-normality severity and whether or not the clusters were balanced for 

moderate non-normality conditions. Future research would need to explore why some 

researchers have found no problems at the within level and other have found problems.  

Limitations  

 A drawback of Monte Carlo results is that they are conditional on the design, and 

generalizations are therefore only justified when there is a clear trend (Hoogland and Boosma, 

1998, p. 330).   My design was a simple design and I could not cover the gamut of all sample 

sizes, cluster sizes, and structures in this multilevel model. This study attempted to give some 

basic insight on sample requirement when non-normality is present and variables that could be 

interwoven. Another limitation was the number of replications and its' affect on the standard 

errors. Although Hox et al. (2010) used 1000 reps to do their simulation, 1000 reps might not 

have been too low.  According to Bandalos (2006) when non-normality is present the standard 

errors tend to bounce. Although no guideline was given, at least 10,000 (or as high as 100,000 or 

more) might be needed to stabilize the standard errors. In this study, the standard errors on 
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average tended to be corrected (so I was confident in the decision drawn) but the individual 

indicators standard errors varied more than necessary, and the subsequent rerunning of the 

conditions sometimes yield different numbers but with the same conclusions. Because of the 

increase computer time (and the FORT 16 out of memory errors), it was difficult to run 

numerous conditions with a large number of replications, 100k. Each attempt to try resulted in 

Unix server errors and my personal computer crashing. However, I did run one condition for 

100,000 reps, namely, severely non-normal ML balanced sample (cluster) size 30 (10) and 

obtained average relative standard error bias of -46.13 vs. at 1000 reps the average relative 

standard error bias for this condition was -50.07. Not only were the biases smaller, but the MSE 

(mean square error) descended from 2.85 to 2.612. The conclusion remained the same.  
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CHAPTER SIX 

STUDY THREE CONCLUSION 

Study three we studied the sample size requirement when the data are categorical and 

when sparse conditions are present. Condition I had more sparseness in the cells (Sparseness I) 

while condition II had less sparse cells (Sparseness II).   Table 2.48, below, shows one of the 

overall sample size recommendation for study three. For the ML based recommendation, 

sparseness I condition, the sample size recommendation based on the Muthén and Muthén (2010) 

requirement was 30(10) --if we look at the standard error bias and/or error analysis bias. It seems 

that for sparseness II the sample size (cluster size) recommendation would be 20 (10). However, 

it took such a long time to run --much more than 30 (10) --that for practicality a sample size of 

20 might still be too low even for sparseness I.  For the WLS based estimators  because the 

standard errors tended to increase as the sample size increased it is not recommended that one 

use WLS based estimators at the between level when the data are considered categorical.  

Table 2.48, also below, shows the sample size recommendation for the unbalanced 

condition.  Although I used a Unix server to run multiple conditions each account is only 

allowed a few number of processors at one time, so because the first set of conditions (balanced) 

took so long to converge (almost a month) the second batch (unbalanced) started late and did not 

have a chance to converge. The results are the balanced and unbalanced conditions seemed to be 

very similar, so I doubt there would have been a difference in the recommendation. For the 
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unbalanced condition the sample size (cluster size) recommendation is 30 (10) for the ML based 

estimators and there are no sample size recommendations for the WLS based estimators.  

 

Table 2.48 

Study 3 Balanced Between Level Minimum Sample Size Recommendations 

 

 

 

Table 2.49 

Study 3 Unbalanced Between Level Minimum Sample Size Recommendations 

 

Like study two my analysis was based on Muthén and Muthén (2002) list of requirements 

for determining sample size. The four research questions were as follows:  
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(1) Does sample size requirement for categorical independent variable data depend on 

estimation method? 

(2) Is the sample size requirement the same or different compared to the normal 

multilevel data for the respective estimation method?  

(3) Does the presence or absence of unbalanced clusters affect the sample size 

requirement for categorical data? 

(4) Does the presence of sparse tables affect the sample size requirement? 

 

Does the sample size requirement depend on estimation method? Or Does sample size 

requirement for categorical independent variable data depend on estimation method?  This 

question seeks to ascertain if the sample size requirement is the same for all estimation methods.   

I looked at Muthén and Muthén (2002) guideline to help answer this question; also, like in study 

two, I looked at the marginal means chart. Doing standard statistical analysis was a moot point 

since sample was not one of variables in the data set (specifically, not the dependent variable), I 

had to answer this question in terms of the between level standard error bias as it measures up to 

the Muthén and Muthén (2002) guidelines.  Again, sample size twenty was only a test case and 

not included in the analysis portion since this sample size did not fully run and there were a good 

number of non-convergent conditions. The sample size starts at thirty.  Again, using SPSS 21, I 

was able to look at the marginal means.  

 

Figure 2.11 

Means Plots Sample Size 30 (Cluster Size 10) 
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Figure 2.11 is a general graph of the marginal means across all estimators when the 

sample size is thirty and cluster size is ten. We looked at the 30(10) sample size (cluster size) 

condition because the sample size recommendation was 30 for the ML based estimators and not 

recommended for the WLS based estimators. As you can see the SE bias for the ML estimators 

were not that different from one another, but the WLS estimators the between level SE bias were 

larger (more positive) than the ML based estimators and exceeded our 10% guideline. So the 

answer to the question is an emphatic YES it does. The ML based estimators require a sample 

size of 30 and there was no sample size recommendation for the WLS based estimators.  

Further exploration was needed due to the behavior of WLS based estimators. If you 

recall from the experiment as cluster size increase the standard errors for the WLS based 

estimators increased; in fact,  the  sample size of thirty was sufficient as long as the cluster size 

was low but not so when the cluster size increased for the WLS based estimators. Here, at 

sample size thirty and cluster size ten, the ML based estimators are not significantly different 

from each other and the SE bias is under the Muthén and Muthén (2002) criterion but with WLS 
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based estimators as the clusters size  increase at sample size thirty so did the bias.  There may be 

an interaction between cluster size and sample size for the WLS based estimators.  

Figure 2.12 

Further Exploration 
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The various figures under figure 28 show that regardless of balance or sparseness the 

WLS base estimators' SE bias seem to increase as cluster size increase. As sample size increase 

the SE bias decrease for all estimators regardless of cluster size. The last chart shows without 
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loss of generality, without loss of generality (WLOG), that there is an interaction between cluster 

size and sample size.  

 

Figure 2.13 

Three way Marginal Means Plot, Sample Size*Cluster*Estimator for Balanced Sparse I 

Data 
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There seem to be an interaction between sample size and cluster size for each of the 

estimators, and they all seem to be different. For the WLS based estimators, an appropriate SE 

bias occurs the sample size is 100 for all three cluster sizes. A sample size of 100 might be 

needed for WLS estimators; however, this is only for balanced very sparse data. Investigation 
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will have to be done to see if this pattern holds for all four conditions. A sample size of 30 is still 

sufficient for ML based estimators.  

Figure 2.14 

Three way Marginal Means Plot, Sample Size*Cluster*Estimator for Balanced Sparse I 

Data 
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When the sample size and cluster size 100(10) there was the difference between 

estimators’ SE biases is very slight but as the cluster size became bigger there was a bigger 

difference between estimators’ SE biases. Note, in for all four estimators they were within an 

acceptable range to recommend the sample size at all cluster levels.  At 100(50), the WLS based 

estimators seemed to level off, as far as the bias was concerned.  The upward trend seemed to 

dissipate. It appears a 100 sample size would be recommended for the WLS based estimators, 

but this is only for the balanced very sparse case. Despite the trend seen, the sample size 

recommendation, again, does depend on estimation method used, and as we see it also depends 

on the cluster size.  

The second condition was sparseness level two (not very sparse) and balanced condition.  

Figure 2.15 demonstrates a three way interaction between estimator, cluster size, and sample 

size. As with the previous condition, as sample size increased to 100 for the WLS based 

estimators, the bias decreased in general but the standard error bias increased as cluster size 

increased. The average standard error bias was definitely under the 10% Muthén and Muthén 

threshold at sample size 100(10) and still under at 100 (50). It should be noted that the standard 

error bias seem to still increase even at cluster size 50 so it the cluster size increased beyond 50 

then sample size 100 might not be sufficient.   

Figure 2.15 

Three way Marginal Means Plot, Sample Size*Cluster*Estimator for Balanced Sparse II 

Data 
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Figure 2.15 shows the marginal means plot for very sparse and unbalanced data. Looking 

at Figure 2.15 the usual sample size recommendation of 100 barely works for the WLSM 

estimator because the SE bias is over the 10% bias guideline; WLSMV is within the guideline. 



201 

Also, the ML based estimator had a large (although within guidelines) increase in SE bias as 

sample size increased. The ML based estimators pattern of behavior was less obvious than WLS 

based estimators. However, it is clear that all estimators show an interaction between cluster size 

and sample size.  What should be noted is that in this study I only went up to a cluster size of 50, 

but if the cluster size was 100 would a sample size of 100 be recommended for the WLS 

estimators?  Would that larger cluster size also affect the ML based estimators as well? This 

study is not all encompassing but meant to start a much needed conversation. There may need to 

be a ratio of sample size to cluster size needed because of the interaction that seem to exist using 

the marginal means charts. 

Figure 2.16 

Three way Marginal Means Plot, Sample Size*Cluster*Estimator, Unbalanced Sparse I 

Data 
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Looking at the obvious patterns within the marginal means charts, we see despite the 

clearly elevated SE bias for the ML and WLSMV estimators at the recommended sample size 

(cluster size),  the recommended sample size of 30 (10)  is okay for the ML based estimators and 

100(10) for the WLS based estimators (well, if the cluster size is small).  

The last condition was the unbalanced with only slightly sparse data, sparse two. One can 

look Figure 2.17 and see that each of the interactions look differently across estimators and 

within each estimator there are several non-parallel lines indicating a two way interaction exist as 

well at each level of the estimator variable. Across all estimators there when the sample size was 

100 the SE bias was within the Muthén and Muthén (2002) guidelines but the WLSM estimator 

SE bias seems to borderline and increasing. Again, if my study included larger cluster sizes then 

the 100 sample size recommendation might not actually hold.  

 

Figure 2.17 
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Three way Marginal Means Plot, Sample Size*Cluster*Estimator, Unbalanced Sparse II 

Data 
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 For lightly sparse unbalanced data, WLSM was over the SE bias guideline and for very 

sparse unbalanced data WLSMV was large but slightly under the SE bias guideline. For balanced 

data there was no difference between the two estimators when the sample and cluster size were 
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high. For this condition a sample size cluster size of 30 (10) seem to be sufficient for ML based 

estimators and 100 for WLS based estimators (there were still reservations about this 

recommendation).  

So, my answer to the question is the sample size recommendation different depending on 

estimation method, as I said before, yes! In general the ML based estimation method requires a 

sample size of 30 and the WLS estimation method for this experiment needed a sample size of at 

least 100. However, because there seems to be a clear interaction between sample size and 

cluster size especially when for WLS estimator, it appears that there may be a need for a golden 

ratio that could state the sample size relative to cluster size since there is an increasing pattern for 

the most part.  

The second question asked if the sample size requirement the same for normal continuous 

multilevel data. The answer is, NO. When the data are normal Hox et. al (2010) found a sample 

size of 50 was sufficient for WLS based estimators and ML estimator while MLR needed at least 

200 groups/sample size to have adequate coverage. The sample size requirement for the WLS 

based estimators depends on the cluster size. The ML based estimators were sufficient at sample 

size 30.   Also, the sample size recommendation was lower than the recommendation non-normal 

continuous data.  

The third question asked if the presence of balanced or unbalanced data affected the 

sample size. For WLS based data the presence of unbalanced data did affect the sample size. 

Looking at Figures 2.18-2.20, I saw a clear three way interaction and a two way interaction. The 

graphs were slightly different for each sample size (cluster size). What was clear in the figures 

was that for the WLS based estimators the unbalanced SE bias was almost always higher. What 

was even clearer was when the cluster size was 50 (large), there was a main effect between 
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unbalanced data and balanced data especially for the WLS based estimators. When the cluster 

size was 50 (large) for the WLS based estimators the SE bias was always larger for the 

unbalanced data, Figure 2.21. Although it was difficult to recommend a sample size for WLS 

based estimators, having the extra complication of unbalanced data seemed to cause even more 

SE bias.  

 

Figure 2.18 

Interaction between Balanced and Estimation for Sample Size 30, Study3 data 

 
 



208 

 
 

 
 

Figure 2.19 

Interaction between Balanced and Estimation for Sample Size 50, Study3 data 
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Figure 2.20 

Interaction between Balanced and Estimation for Sample Size 100, Study3 data 
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Figure 2.21 

Interaction between Balance and Sample size for the WLS estimators, Study3 data 
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To answer the question, since I am not giving a recommendation for the WLS based 

sample size, and there were no really clear pattern observed for the ML based estimators, then 

there was no a difference between sample size recommendations when the group was balanced 

versus unbalanced.  
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Lastly, did the presence of sparse tables affect the sample size requirement? No or nil, 

from what I saw. Figure 2.22 show that there is a main effect for WLS based data and no main 

effect and very little of an interaction present for ML based data.   

Figure 2.22 

Interaction of estimation and sparseness, study3 

  
 

In conclusion, for ML based estimators a sample size of 30 is fine except for WLS based 

estimators even though in most cases a sample size of 100 was okay. There did seem to be a 

trend due the interaction seen between sample size and cluster size for the WLS based estimators 

(which may exist for the ML based estimators but to a smaller extent). The larger the cluster size, 

the larger the sample size must be for the WLS based estimators. For most conditions in my 

study except under unbalanced case I was able recommend a sample size of 100.  There may be a 

golden ratio but that is outside the scope of this study. Based on theory I expected the WLS 

based estimator to perform extremely well on categorical data but according to Brown (2006) the 

sample requirement is large and is a function of the model size. For a moderate size CFA model 
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of 10 to 15 indicators, a sample size of 150 to 200 was needed for the WLSMV estimator 

(Brown, 2006, p.389). The ML estimator generally is not recommended for categorical data. 

There are two possible reasons we saw what we saw in this experiment: since each indicator had 

at least four categories, the  distributions was roughly normal but skewed because of the floor 

and ceiling effects; and since the sample sizes (or number of clusters) were less than 100 the 

WLS based estimators did not perform well. In fact, the performance did not began to get better 

until the sample size got to 100 provoking the question what would happen if the sample size 

was more.  Research states you have to have at least five categories to threat the variable as 

normal but having at least four categories might have been the reason the ML based estimator 

performed well. The WLS based estimators require large sample sizes for continuous and 

categorical data according to Brown (2006), this could be the reason why we show the trend seen 

in all the charts. So, a sample size under 100 is not recommended when for WLS based 

estimators.  

 

Limitations 

The limitation of the study was threefold: sample size, categories, and replications. 

Although the number of replications was fine and the numbers were stable, higher number of 

reps is always good to ensure confidence. There were three sample sizes but there needs to be 

larger number sample sizes (and cluster sizes) so one can explore what happens when the cluster 

and/or sample size is very large.  One can do this with a trend analysis so the selection of the 

cluster size and sample size is much more important if you want to test for a linear trend analysis 

(equal distance).  Lastly, the number of categories does matter. It is known when there are five or 

more categories that you can treat the data as continuous. In this experiment, 3 thresholds were 
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use to create 4 categories. Percentage of data I wanted for each category was dictated to Mplus. 

Mplus then tried to replicate the threshold for each indicator variable by making sure if I asked 

for 5% of the data to be from category 4 for a particular variable that I would obtain that amount 

within sampling variance (try to reproduce the threshold). Using three categories instead of four 

might produce different results.  The reason ML based estimators performed better could have 

been because as the number of categories increase we began to treat the variable indicator as 

continuous.  

 

Conclusion 

As I said previously, WLS based estimators would have performed better if the sample 

size would have exceeded 100. However, there might be a golden ratio going on and as noted 

previously by Brown (2006) the sample size recommendation for WLSMV depended on the 

complexity of the model, so there are a number variable at play. For now, WLS based estimators 

are not recommended when the sample size is less than 100. For the ML based estimators a 

sample size of 30 is fine. Even though there were ceiling and floor effect, it seems there wasn’t 

enough excessive kurtosis to cause the sample size recommendation to increase.  
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APPENDIX C 

Muthén's (2002) Code for CFA Model With Non-Normal Continuous Factor 

IndicatorsWithout Missing Data (Generate two classes and analyze as one class) 

 
TITLE: cfa3.inp non-normal, no missing   

MONTECARLO:          *Describes the monte carlo study                      

NAMES ARE y1-y10;    *Names variables in data set 

NOBSERVATIONS = 265; *Specifies the total sample size 

NREPS = 10000;       *Specifies the number of replications 

SEED = 53487;        *User specified seed 

NCLASSES = 1;        *Now called classes, number of latent classes to 

analyze 

GCLASSES = 2;        *Now genclasses, number of latent classes generate 

SAVE = cfa3.sav;   

ANALYSIS: TYPE = MIXTURE;   *Describes type of data mixture model 

ESTIMATOR = MLR;            *Describes Estimator used (Robust ML) 

 

MODEL MONTECARLO:           *Provide true model values use for 

generation 

%OVERALL% 

f1 BY y1-y5*.8;             *gives the true model values for the 

loadings 

f2 BY y6-y10*.8; 

f1@1 f2@1;                  *gives the factor variances  

y1-y5*.36 y6-y10*9;         *gives the error variances 

f1 WITH f2*.95;             *gives the covariances for factors one and 

two 

[C#1@-2];                   *proportion of people in class one 

(logit)12% 

%C#1%                       *class one [mean] and standard deviation 

[f1@0 f2@15];      *class one means, f1 mean and f2 mean 

f1@1 f2@5;                  *class one STD deviation 

%C#2%                       *class two mean and standard deviation 

[f1@0 f2@0]; 

f1@1 f2@1; 

 

MODEL:                      *model to be estimated along with starting 

values 

%OVERALL% 

f1 BY y1-y5*.8;              

f2 BY y6-y10*4; 

f1@1 f2@1; 

y1-y5*.36 y6-y10*9; 

f1 WITH f2*.20; 

[y6-y10*1.42]; 

OUTPUT: TECH9;              *says to output the various error messages 
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APPENDIX D 

Hox (2010) code for multilevel data (25 groups of size 10) 
 

Table A1. TITLE Simulation run for ML, ICC low, NG=25, GS=10; 

MONTECARLO: 

NAMES ARE y1-y6; 

NOBSERVATIONS = 250;    *total sample size, 25*10=250 

NREPS = 1000; 

SEED = 0;  

NCSIZES = 2;            *number of unique clusters 

CSIZES = 25 (3) 25 (7); *for unbalanced data; number of clusters and 

sizes 

RESULTS = results01.sav;      *saves monte carlo results inan ASCII 

file 

 

MODEL POPULATION:             *generates the model, true population 

value 

%within%                      *the within level model values 

fw1 BY y1-y3@1;                

fw2 BY y4-y6@1; 

y1-y6@.10; 

fw1@.43;  

fw2@.43; 

fw1 WITH fw2@.172; 

%between%                     *the between level model values 

fb1 BY y1-y6@1; 

y1-y6@.25; 

fb1@1 

 

MODEL:                        *estimated model with starting values 

%within% 

fw1 BY y1-y3*1; 

fw2 BY y4-y6*1; 

y1-y6*.10; 

fw1@.43; 

fw2@.43; 

fw1 WITH fw2*.172; 

%between% 

fb1 BY y1-y6*1; 

y1-y6*.25; 

fb1@1; 

ANALYSIS: 

TYPE = TWOLEVEL;               *running a two level model  

ESTIMATOR = ML;  

TECH9;   
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