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ABSTRACT 

Over half of all cellular proteins are modified by post translational addition of 

oligosaccharides.  Proper glycosylation plays a critical role in cell-cell communication 

and changes in pH, nutrient availability, and cell status results in altered cellular 

glycosylation profiles which have been reported in a broad range of diseases including 

cancer, autoimmune diseases, and type II diabetes.  Vaccination development relies 

heavily on differential recognition of glycan variability by the immune system and they 

are potential biomarkers for early detection of cancer.  In addition, glycans play 

important roles in therapeutic applications, including both treatments and diagnostics.   

Comprehensive characterization of the glycans on glycoproteins has become an 

essential element for drug development, quality control, and basic biomedical research.  

Manual interpretation of mass spectrometry datasets constitutes the core of most 

glycomics technology currently in use. However, interpretation of up to 2000 mass 

spectra per biological sample consumes significant expert personnel time and reduces the 

number of samples that can be analyzed. This bottleneck is a major impediment blocking 

the expansion of glycomic analysis to a broad range of basic biomedical investigations.  

Progress in the field has been severely restricted by the absence of appropriate 



 

computational software tools that facilitate automated structural assignment and high 

throughput data analysis. 

We have combined efforts of computer scientists, experimentalists, and mass 

spectrometrists in an effort to provide a semi-automated high throughput workflow aimed 

to fulfill this critical need. 
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CHAPTER 1 

INTRODUCTION 

Along with nucleic acids, proteins, and lipids, complex polymeric sugar 

molecules known as glycans are one of the four major classes of macromolecules 

fundamental to all living systems.  1.  Glycosylation is the most abundant and structurally 

diverse class of protein post-translational modifications (PTM) and the complete set of 

glycan modifications present in a cell, tissue, or organism is referred to as the “glycome.”  

The information content afforded by the addition of glycans to proteins exceeds that of 

any other class of molecules and substantially increases the diversity of phenotypes that 

are possible from a limited genotype.  Compared to the study of proteins and nucleic 

acids, relatively little attention has been paid to glycans despite the critical roles they play 

in most biochemical processes which are fundamental to life on Earth.   

All cells are coated with a dense layer of glycans, and all cellular interactions take 

place in the context of this layer including microbial attachment and entry, cell-cell 

adhesion, ligand receptor binding, and metastasis.  The glycome is not only structurally 

more complex and diverse than the genome, proteome and transcriptome, it is also more 

dynamic, changing rapidly in response to environmental factors including metabolic, 

disease and developmental states.  Glycans play roles in a wide variety of cellular 

processes including cell signaling, immunity, inflammation, and molecular recognition.  

Furthermore, alteration of glycans has been implicated in the etiology of every major 

disease known to man.  Expanding our knowledge of glycans’ structures and how they 
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function in human health and disease can serve as a guide for intelligent design strategies 

for the detection, identification and treatment of diseases.   Two promising areas include 

glycan based biomarker discovery for early cancer/disease detection and monitoring of 

treatment efficacy and development of new strategies to fight infection through host-

pathogen interaction interventions as well as potential immune response modulation for 

infection and auto-immune/allergic conditions.  Additionally, Development of glycan 

based small molecule and glycan modified biologic therapeutics is a thriving and 

promising multi-billion dollar industry. Full and comprehensive characterization of the 

glycans on glycoproteins has become an essential element for drug development, quality 

characterization, and basic biomedical research.   

Chapter 3 investigates potential biomarker identification through a combined 

proteomic and glycomic analysis of human pancreatic ductal fluid.  A comprehensive 

analysis of the N-linked glycome of pancreatic ductal fluid identified unexpected 

clustering of patient samples into discrete subgroups that are enriched in sialylation or 

fucosylation, or are mixed with respect to both types of glycans independent of diagnosis.  

Within each group, changes in glycan prevalences are detected comparing normal to 

cancer albeit on a small number of samples.  But, across groups, the glycan expression 

changes are different, even opposite in some cases.  Peng Zhao in Lance Wells’s 

laboratory observed changes in expression levels and heterogeneity of secreted pancreatic 

enzymes and non-enzyme pancreatic proteins in cancerous ductal fluid in comparison to 

normal ductal fluid in a small training set of samples by LC/MS/MS.  Therefore, 

interpretation of glycomic and glycoproteomic profiles must consider the heterogeneity 

of glycosylation across human populations before assessing the meaningfulness of 
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changes in candidate biomarkers.  The proteomic and glycomic features extracted from 

the training set of samples reported here establish important parameters for expanded 

validation and emphasize the need for large sample sets.   

Mass spectrometry has become a tool of choice for analysis of biomolecules given 

the limited sample often available.  Ease of peptide identification using tandem MS is 

mainly due to the linear structure of peptides and the availability of reliable peptide 

sequence databases. In proteomics, fragments with high intensities come from complete 

ion series, with the difference between two adjacent peaks representing the mass of an 

amino acid, thereby eliciting the amino acid sequence using the ion series. In glycomics 

MS data there are almost no complete ion series and the branched molecules further 

complicate sequence determination. In addition, isomeric monosaccharides share the 

same mass and differing only by the position of a hydroxyl group makes it impossible to 

distinguish them by MS alone.  Furthermore, databases for glycans exist but are limited, 

minimally curated, and suffer pollution from glycan structures that are unlikely to be 

produced in nature or are irrelevant to the organism of study. 

Advances in mass spectrometry instrumentation over the past decade have 

resulted in increased sensitivity, speed and mass accuracy of glycans released from 

biological samples.  Consequently, datasets have also increased and regularly produce 

over 2000 mass spectra per sample when an MS/MS approach is taken and could produce 

tens of thousands of spectra that must be interpreted depending on the level of 

fragmentation desired.   Glycomic datasets rely on primarily on manual interpretation and 

requires significant personnel time and expertise which in turn reduces the number of 

samples that can be analyzed. This bottleneck is a major impediment blocking the 
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expansion of glycomic analysis to a broad range of basic biomedical investigations. 

Progress in the field has been severely restricted by the absence of appropriate 

computational software tools that facilitate automated structural assignment and high 

throughput data analysis.  A major aim of this work is to provide tools for the community 

that simply data interpretation and thereby enable glycomic analysis for a wide variety of 

biomedical investigators.  

Glycomic datasets presented in Chapter 3 were manually interpreted over a period 

of 24 months and put a spotlight on the need for tools capable of automating and 

speeding up this task.  Chapter 4 was born directly out of needs identified while 

undertaking the task of manually describing the glycome of a multitude of sample sets.   

The workflows and data analysis tools described are conservatively expected to shift 

throughput from one sample every three months to six samples every week. This 

acceleration of data analysis constitutes a paradigm shift in the field of glycomics by 

making statistical confidence available to investigators through increased sample number. 

The tools and workflows are a starting point and a work in progress that will facilitate 

rapid growth in the field of glycomics.  Our goal is to make glycomic analysis a routine, 

albeit technically demanding, option for a broad range of biomedical investigations. 
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CHAPTER 2 

LITERATURE REVIEW 

Introduction 

All cells are coated with a complex layer of covalently attached sugar chains 

known as glycans.   Over half of all cellular proteins are glycosylated 2.  Proper 

glycosylation plays a critical role in development and differentiation of cells, cell-cell and 

cell-matrix interactions, host-pathogen interactions, fertilization, and signaling pathways.  

Cellular glycosylation profiles are altered under changing conditions including pH, 

nutrient availability, and cell status.  Glycans are often large and can dominate the 

physiochemical properties of their carrier, affecting solubility, half-life, immunogenicity 

and biological activity3.     

 Decades of research have shown that glycans are not only involved in normal 

physiology but also in the etiology of all major human diseases, both chronic and acute.  

Glycosylation changes have been reported in a broad range of diseases including cancer, 

autoimmune diseases, type II diabetes as well as the CDG’s (congenital disorders of 

glycosylation) 4.  Glycans play a clear role in regulation of the immune system which 

responds to perceived danger as either inflammation or immunity which are both 

regulated by glycans as well5.  Glycans regulate inflammation directly in a multitude of 

ways and inflammation underlies diabetes, arthritis, heart disease, asthma, and cancer.  

Antibodies which are themselves glycosylated are produced to fight pathogens which 

were detected by the presence of foreign glycans present on pathogens during infection.  
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In fact glycans dominate the interface of all self versus non-self recognition events 

including, pathogens, toxins, and erroneously identified targets of autoimmune diseases6.   

 Influenza was responsible for 4 major human pandemics since the 1900’s killing 

more than 50 million people and concern for new variants is a constant threat.  Influenza 

infection begins when hemagglutinin (HA), a viral coat protein binds a glycan structure, 

sialic acid, on a host cell.  Neuraminidase (N) cleaves the sialic acid which releases 

newly replicated virus particles from the host cell which then go on to infect other cells7.  

Tamiflu™ and Relenza™ are antiviral medications that target the neuraminidase and 

block influenza replication8.   Different variations of HA bind different glycan epitopes 

preferentially and is the basis of species selectivity as in Avian (2-3linked sialic acid) vs 

human (2-6 linked sialic acids) influenza9. 

 The HIV virus is another example illustrating the importance of glycans in human 

health and disease.  The HIV gp120 viral coat protein responsible for binding the CD4 

receptor on T cells to gain entry is coated in glycans10.  HIV uses the glycans to disguise 

itself and evade attack by the host immune cells.  In addition, HIV rapidly changes the 

glycans presented to prevent the immune system from forming effective antibodies 

capable of binding and neutralizing the virus and contribute to the poor performance of 

candidate HIV vaccines to date11.   

 Autoimmune diseases can occur when antibodies are made in response to a 

pathogen that bears glycans that are similar to the host organism’s glycans.   For 

example, infection by Campylobacter jejuni can result in Guilian Barre syndrome, a life 

threatening disorder that affects the peripheral nervous12.  Tissue damage occurs when 

the host immune system produces antibodies which mistakenly targets the host’s nerve 
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tissue which bears glycan similar to those presented by the bacterium.  This type of auto-

antibody event is also suspected in rheumatoid arthritis and systemic lupus as well.   

Glycosylation changes have been reported in all types of cancer cells and many 

tumor associated antigens are glycans usually only seen on developing embryos.  Many 

of the existing tests for cancer rely on differential glycosylated proteins.  Cancer antigen 

125 (CA125) and prostate-specific antigen (PSA) are two examples of glycoproteins used 

for detection and monitoring treatment efficacy.   Research has shown that core 

fucosylated alpha-fetoprotein (AFP-L3) improves diagnosis of hepatocellular carcinoma 

over standard AFP highlighting the importance of glycomic studies.   

Glycans play important roles in therapeutic applications, including both 

treatments and diagnostics, some of which include: increased accuracy in diagnostics 

(example AFP), influenza transmission inhibition by neuraminidase treatment 

(Relenza™8b and Tamiflu™8a), therapy for osteoarthritis by hyaluronic acid, and a 3 fold 

increase in the half-life of erythropoietin (EPO) by addition of two glycosylation sites.  

Heparin, a polysulfated GAG that acts as a blood anticoagulant, is one of the most useful 

drugs in medicine today13.  Vaccination development relies heavily on differential 

recognition of glycan variability by the immune system including type b influenza, 

leishmania, HIV, Neisseria meningitides, and meningococcus14.  Glycans are also 

potential biomarkers for early detection of cancer4, 15. 

Considering that glycans significantly influence the functions of cellular proteins 

and the therapeutic potency of glycoprotein biologicals, ongoing efforts to develop 

robust, sensitive, and quantitative glycan characterization methods are well justified.  Full 

and comprehensive characterization of the glycans on glycoproteins has become an 
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essential element for drug development, quality characterization, and basic biomedical 

research.  Manual interpretation of mass spectrometry datasets constitutes the core of 

most glycomics technology currently in use. However, Interpretation of up to 2000 mass 

spectra per biological sample consumes significant expert personnel time and reduces the 

number of samples that can be analyzed. This bottleneck is a major impediment blocking 

the expansion of glycomic analysis to a broad range of basic biomedical investigations.  

Progress in the field has been severely restricted by the absence of appropriate 

computational software tools that facilitate automated structural assignment and high 

throughput data analysis.  

Classification of Glycans 

Major glycan classes are defined by the carriers they are linked to, protein or 

lipid, as well as the type of linkage, N-linked or O-linked (Figure 2.1).  N-glycans are 

covalently linked to proteins with the consensus sequence Asn-X-Ser/Thr at an 

asparagine residue by formation of an N-glycosidic bond with a GlcNAc residue.  N-

glycans usually have a common core structure of Man3GlcNAc2 called the trimannosyl 

core.  Subsequent elongation of the trimannosyl core generates three classes of glycans, 

high mannose, complex, and hybrid.  The most common O-linked glycans, mucins, are 

covalently linked to the –OH of a serine or threonine by formation of a glycosidic bond 

with a GalNAc residue.   O-glycans are generally smaller and less branched than N- 

glycans, and exhibit several different core structures including cores 1-8 for mucins, O-

Man, O-GlcNAc, O-Fuc, and O-Glc; much diversity exists in this class.  

Glycosyltransferases extend N- and O-glycan cores by the stepwise addition of 

monosaccharide subunits.  Common occurring additions include neolactosamine units 
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(Galβ1-3GlcNAc) and lactosamine units (Galβ1-4GlcNAc), both of which are often 

elaborated further by sialic acids and fucose, as well as blood group and Lewis family 

specific sugar epitopes.  Proteoglycans have one or more linear sulfated glycan (GAG) 

chains linked to a core protein at a serine or threonine residue by formation of a 

glycosidic bond with a xylose subunit.   Other classes of glycoconjugates include GPI 

anchors, glycosphingolipids, and glycoglycerolipids.  The Consortium for Functional 

Glycomics (CFG)16 has standardized abbreviations and cartoon representations for 

glycans for consistency and ease of illustration of glycan moieties15.  

Figure 2.1 Classes of Glycans  

(adapted from Moremen, Tiemeyer, and Nairin 2012)17 
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All monosaccharides are made up of a chain of chiral hydroxymethylene units 

with a hydroxymethyl group at one end and an aldehyde or ketone group on the other 

end.  The aldehyde carbon is labeled C-1 whereas the carbonyl group in ketoses is at C-2.  

The absolute configuration, D or L, is determined by orientation of substituents at the 

highest numbered asymmetric carbon.  When in its cyclic state, a hemiacetal group is 

formed by the reaction of one of the hydroxyl groups with C-1.  Both 5 (furanose) and 6 

(pyranose) member rings can be formed, C-(1or2)-O-C-4 and C-(1or2)-O-C-5 

respectively.  A glycosidic bond is formed between the anomeric carbon (usually C-1) of 

one monosaccharide and a hydroxyl group of another, (i.e. a hemiacetal group reacts with 

an alcohol to form a full acetal).  Linkage anomerocity, α or β, is determined by the side 

of attack, where α indicates the bond is below the plane of the monosaccharide and β 

indicates it is above it.  The end of the sugar chain that is (or was) attached to the peptide 

is known as the reducing end whereas the end furthest away is referred to as the non-

reducing end15.  Glycan structure fragments are named according to Domon and 

Costello18 nomenclature (Figure 2.2).   
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Figure 2.2 Monosaccharides, glycosidic bond and fragmentation nomenclature 
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Although hundreds of distinct monosaccharides occur in nature, only ten of them 

serve as the major building blocks for all human glycopeptide glycans.  They include D-

glucose (Glc), D-mannose (Man), D-galactose (Gal),  L-fucose (Fuc), D-N-

acetylglucosamine (GlcNAc), D-xylose  (Xyl), D-glucuronic acid (GlcA),  D-N-

acetylgalactosamine  (GalNAc), and the sialic acids primarily N-acetyl-neuraminic acid 

(Neu5Ac ) and N-glycolyl-neuraminic acid (Neu5Gc)19.  Except for the sialic and uronic 

acids, the hexose or hexosamine building blocks are very similar in molecular weight and 

charge, making them difficult to distinguish.  Furthermore, the complexity of topologies 

present in glycans makes the task of unraveling their structure especially difficult.   

However, this complexity provides the diversity important for glycans to govern many 

aspects of the cell’s processes.  

 

Figure 2.3 Glycan structural representations 
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Glycan synthesis occurs in the endoplasmic reticulum and Golgi apparatus where 

a combination of the roughly 250 specific enzymes involved in glycan synthesis act in a 

highly regulated way20.   Differential glycan expression is controlled by varying 

combinations of glycosyltransferase/exoglycosidase expression and activity which is 

dictated by the cell’s type, status, and environment, although exact mechanisms are not 

completely understood21.  Unlike the linear nature of DNA, RNA, and protein synthesis, 

monosaccharide subunits are added sequentially with branching points and anomeric 

configurations forming a tree-like topology.   Three amino acids or nucleotides can be 

combined in six possible sequences whereas three hexoses alone can be theoretically 

combined to form 1,056 different sequences22.  Furthermore, the lack of a genetic 

template from which to predict glycan sequences renders database searches comparing 

experimentally derived fragmentation data with a reference library for rapid data analysis 

as is done in proteomics unlikely. 

Analytical Strategies 

Due to the chemical similarity of monosaccharide subunits and the complexity of 

sequence and linkage possibilities that glycans possess, no single analytical method is 

capable of complete compositional and structural determination of biological samples 

with limited quantities.  Detailed analysis requires a combination of approaches. 

Glycans can be released from their carrier enzymatically or chemically depending 

on the class of glycans present as well as the type of analysis desired.  The process of 

acid hydrolysis can be used to cleave all glycosidic bonds reducing glycans to their 

monosaccharide building blocks to give compositional analysis23.  Hydrazinolysis or β-

elimination using alkali treatment can be used to cleave intact glycans from their carriers 
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and can be optimized to target N- or O-glycans or a mixture of both24.  Intact glycans can 

also be cleaved from the peptide backbone by endoglycosidase enzymes including 

PNGase F or PNGase A for N-glycans25 as well as Endo H for high mannose and hybrid 

N-glycans specifically26.   Sequential exoglycosidase digestion of glycans produces data 

capable of differentiating glycan composition, sequence and linkage anomerocity26b; 

however, large quantities of sample and time are required.   

 

Figure 2.4 Multiple approaches for profiling glycans 
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Released glycans have a very low extinction coefficient in the UV range, limiting 

the sensitivity of direct detection by UV-vis methods. However 10-100 pmols can be seen 

by pulsed amperometric (PAD) or refractive index detection27.  Sensitivity of detection to 

the sub-picomolar range can be achieved by addition of a fluorescent tag such as 2-AB, 

2-AP, 2-AA or ANTS by reductive amination28.  It is important to note that all labeled 

glycans produce the same molar response, which is crucial for absolute quantification.    

Enzymatic or chemically released glycans can be chromatographically separated 

by a wide range of techniques, including normal 26aand reverse phase HPLC separations 

based on hydrophobicity differences, as well as capillary electrophoresis (CE), capillary 

affinity electrophoresis (CAE), and weak anion exchange (WAX) HPLC separations 

based on charge differences29.  In addition, fluorophore-assisted carbohydrate 

electrophoresis (FACE or PAGEFS) 30separates fluorescently labeled glycans 

electrophoretically on polyacrylamide gels using equipment widely available in most 

labs.  Gas chromatography can also be used to separate monosaccharides and small 

glycans after appropriate derivitazation (PMAA, TMS)29. 

Methods of detection and identification of pooled or separated glycans include the 

use of lectins for visualization, retention time measurement in chromatography, 

molecular weight determination in mass spectrometry, and measurement of magnetic 

field distortion in nuclear magnetic resonance (NMR) techniques.  Each of these methods 

can provide different pieces of the puzzle which can create a comprehensive picture of a 

glycan’s structure when reassembled correctly. 

Over 150 different lectins are commercially available3 and have been used to 

isolate and visualize glycans in a variety of ways including conjugation with biotin, HRP, 
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and fluorescent tags31.  While some lectins recognize different glycans quite selectively, 

very few of them have been fully-characterized.  Lectins offer a speedy, cost effective, 

high throughput method of glycan analysis and have been used to map glycosylation 

patterns and when immobilized on a stationary support facilitate affinity purification and 

enrichment.  However, accuracy of the representation of glycan abundance by lectin 

arrays in native physiological states has yet to be demonstrated. 

Detection of glycans by fluorescence measurement, as is often used in HPLC 

methodologies, is extremely sensitive.  Glycans can be separated chromatographically 

and fractions collected for further analysis as well.  This approach is the only 

methodology currently available for absolute quantification of a broad range of glycans32.  

Identification of glycan structures is based on comparison with retention times of known 

standards, which can be useful although limited by the inability to identify novel 

structures inherent to all methods dependent on standard libraries.  Structural resolution 

and throughput are limited with HPLC methods but can be increased with expertise32-33.  

Quantitative compositional analysis of mono and oligosaccharides from simple mixtures 

and purified samples is commonly carried out by this method5.    

NMR  is the only technique that can singlehandedly yield a full structural picture 

of a glycan, including linkage anomerocity, sequence and branching details as well as full 

monosaccharide identification24.  The drawbacks of this technology are that the amount 

of sample required is not obtainable from most biological materials, and that expensive 

equipment and technical expertise is required29.  Much can be learned about glycan-

glycan and glycan-protein interactions using NMR.  Because it provides structural 

information with reasonable sensitivity compared to NMR, mass spectrometry has 
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become a tool of choice for the detection and identification of glycans from biological 

samples.  

Table 2.1 Summary of glycan analytical approaches  

 NMR HPLC MS MS/MS  MSn 

Glycan label Native Fluorescence 

derivatization, 

2AB, 2AP, or 

native  

Permethylation 

(most 

common), 

2AP, 2AB, or 

native 

Permethylation 

(most 

common), 

2AP, 2AB, or 

native 

Permethylation 

(most 

common), 

2AP, 2AB, or 

native 
Advantages Complete 

structural 

details, 

composition, 

conformation 

& linkage 

Absolute 

quantification, 

sensitivity, 

separation/frac

tion collection 

possible, 

inexpensive 

Speed, 

coverage, ease 

of sample 

handling & 

data 

interpretation, 

software 

availability, 

sensitivity  

Speed, 

coverage, ease 

of sample 

handling, some 

structural data 

obtained 

Structural data 

rich- 

differentiate 

isobaric 

structures, 

some linkage 

and 

anomerocity 

details 

obtained 
Dis-

advantages 

Large sample 

size required 

and high level 

of expertise 

needed, high 

cost 

Relies on 

standards, not 

good for 

complex 

mixtures, 

structural 

details limited, 

co-eluting 

compounds 

No structural 

data obtained, 

identification 

on intact m/z, 

isobaric 

structures not 

differentiated, 

dimer/trimer 

formation 

Structural data 

limited, 

spectra 

interpretation 

manual  

Data 

interpretation 

difficult and 

time 

consuming 

Structural 

Resolution 

Very high Low Low Medium High 

Throughput Low Low/Medium High Medium Low 

Expertise 

level required  

Very high Medium Low Low/Medium High 

Application Glycan-glycan 

or glycan-

protein 

interactions 

Quantitative  

compositional 

analysis of 

mono & oligo 

saccharides 

from mixtures  

Rapid general 

glycan profile 

comparison 

between 

different 

samples 

(cancer vs. 

noncancer) 

General glycan 

profile 

comparison 

between 

different 

samples with 

some 

structural data 

support 

Specific 

epitope 

identification/ 

differentiation 

ex. Lex for 

biomarker 

discovery, 

isobaric 

structure 

differentiation 
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Mass Spectrometry  

Mass spectrometry (MS) is an analytical technique that measures the mass of all 

molecule’s present in a sample34.  Measured masses are reported as a spectra where 

mass/charge (m/z) is plotted on the x-axis versus relative abundance on the y-axis. Intact 

molecules measured in a full MS or can be isolated and broken into smaller pieces 

(MS/MS) and the resulting fragments can be measured in a similar fashion.  Initially MS 

was primarily used for small molecules, however, advances in sensitivity, robustness, and 

resolution have paved the way for a rapid expansion in development of applications for 

biological molecules, specifically, identification and quantification of peptides and most 

recently glycans35.  In order to measure molecules, they must first be ionized, sorted and 

separated according to their mass and charge.  All mass spectrometers consist of three 

basics components, an ionization source, a mass analyzer, and an ion detector, however 

multiple types exist for each component of the instrument and can be combined in 

varying ways to obtain the desired results34.   

While many types of ionization exist, the two techniques best suited for large 

biomolecules are the soft ionization techniques known as Matrix-Assisted Laser 

Desorption Ionization (MALDI) and Electrospray Ionization (ESI).  In MALDI, analytes 

are first co-crystalized in an organic matrix solution such as 2,5-dihydroxy benzoic acid 

(DHB) which serves to protect the analyte from destruction36.  Analyte/matrix mixtures 

are vaporized when pulses of UV laser beam at a fixed wavelength rapidly heat the 

mixture.  Ionization of the analyte occurs when charge is transferred from the matrix to 

the analyte causing the analyte to gain or lose a proton (positive mode vs negative mode).   
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In ESI, analytes are dissolved in an appropriate solvent containing a selected salt, 

and passed through a heated capillary37.  A high voltage electric field is applied as 

solvent/analyte droplets are sprayed causing them to break apart into a fine mist.  Heat 

from the capillary combined with a flow of Nitrogen gas causes the solvent to evaporate 

leaving the analyte carrying one or more charges38.  

MALDI and ESI each have advantages and disadvantages that must be 

considered.  The main advantage of MALDI is that most molecules carry only one charge 

therefore producing a straight forward spectrum39 when compared to that of multiply 

charged ESI spectrum where analytes are represented at multiple mz’s which can be 

difficult to read. MALDI is suited for very large molecules in excess of 300,000 atomic 

mass units (amu) where ESI is limited to 100,000 amu’s however MALDI suffers in the 

lower mass range below 600 amu due to interference from matrices40.  Unlike ESI, 

MALDI is tolerant to salts, buffers, and detergents making sample handling and 

preparation easier.  The main disadvantage of MALDI, especially when analyzing 

glycans, comes from the presence of labile bonds that can be easily broken during this 

type of ionization, for example sialic acid modifications are often disrupted.   

In addition to different types of ionization strategies, many different types of mass 

analyzers are available each with their own set of advantages and limitations as well.   

Mass analyzers all perform the task of essentially weighing analytes of interest but have 

varying approaches.  All mass analyzers operate under a high vacuum to keep ions from 

colliding and can be paired with different ionization techniques and methods of detection.  

Key aspects to consider for comparing mass analyzers include their mass accuracy, 

resolution, and sensitivity.  Mass analyzers can be grouped into time-of-flight, 
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quadripole, ion traps, and Fourier transformation including both magnetic sector and 

orbitrap methodologies.   

Time-of-flight (TOF) mass analyzers operate on the principle that upon 

simultaneous ionization and introduction into the flight tube, small ions travel faster and 

reach the detector before larger ones39.  TOF instruments measure the time it takes for 

ions to travel and converts that to mass.  TOF is most often paired with MALDI since all 

ions must be introduced simultaneously.  TOF is fast, sensitive, and suitable for a wide 

mass range, however it suffers from relatively low resolution when compared with 

others25.   

Quadrupole mass analyzers use a combination of RF and DC voltages applied to 

four parallel metal rods to act as a mass filter.  Different frequencies allow masses to pass 

through the length of the quadripole one at a time before exiting to the detector.  The 

quadripole can select one mass at a time or scan through the entire mass range using 

scanning mode41.  Multiple quadrupoles can be connected in sequence such as in the 

triple quad (QQQ) instrument to achieve high selectivity and sensitivity especially for 

low abundance analytes, however this type of mass analyzer configuration suffers from 

low resolution.  Additionally, when a complete spectrum is required as in scanning mode, 

sensitivity is greatly reduced as well42.  

Ion trap (IT) mass analyzers are similar to quadrupole analyzers, however, a ring 

electrode rather than metal rods form a 3 dimensional space where ions are trapped and 

stored.  RF and DC voltages are applied focusing ions in a small volume where they can 

be selectively excited and become unstable causing them to be ejected to the detector.  

The linear ion trap (LTQ) is a variation that traps ions in a 2 dimensional space that has 
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superior trapping capacity, resolution, and rapid ion accumulation.  Ion traps have the 

advantage of not only being capable of measuring intact analytes, but can also break them 

into fragments and re-measure the pieces.  Ion traps are limited by capacity of the trap, 

which means there is a maximum number of ions that will fit in the trap without effecting 

the behavior of each other and producing spectral distortions due to space charging 

effects and sensitivity/dynamic range suffers.   

Two types of mass analyzers rely on measuring the frequency in which analytes 

travel in orbit in response to a magnetic field as in Fourier Transform Ion Cyclotron 

Resonance (FTICR) or an electrostatic field as in the orbitrap mass analyzer.  Both 

analyzers trap the ions and allow them to oscillate and repeatedly measure their 

frequencies which are a function of their mass-to-charge ratio.  Fourier transformation 

deciphers the complex and overlapping transient trace of analyte motion into mass 

spectra.  These instruments have the highest mass accuracy and resolution available but 

are limited in sensitivity due to space charge limitations as well43.    

All samples in this thesis were analyzed using an LTQ-Orbitrap Discovery hybrid 

mass spectrometer44 that incorporates an LTQ XL linear trap and the Orbitrap 

manufactured by Thermo-Fisher.  It was equipped with nano-electrospray ionization 

(NESI).  Permethylated glycans were dissolved in 1mM sodium hydroxide in 50% 

methanol, and infused into the Orbitrap.  High resolution full MS were taken in FT mode 

in the Orbitrap and fragmentation by collision induced dissociation (CID) occurred in in 

the ion-trap.  Manufacturer specifications are reported as maximums45: Resolution 30,000 

FWHM at 400 m/z, mass range of 50-2000 m/z, mass accuracy 5ppm with external 

calibration, dynamic range 4,000 in a single spectrum and 10,000 between spectra46.   
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Figure 2.5 Mass Spectrometry variations 

Mass Spectrometry Data Acquisition 

There are two basic strategies in MS based glycan analysis, single-MS, in which a 

full MS spectrum is generated yielding an accurate mass to identify and relatively 

quantitate intact glycans in a sample, and MSn, which adds one or more dimensions of 

mass analysis by fragmentation in order to obtain structural details.   A continuum exists 

in the scientific community regarding the acceptable level of detail required to 

characterize glycans.  On one end, total molecular weight may be sufficient for some 



 

23 

investigators and at the other end, identification of each linkage position and type may be 

required.  Each approach has its advantages and disadvantages depending on the goal and 

needs of the investigator.  

  The single-MS approach is usually paired with MALDI-TOF technology and has 

the advantages of speed, broad range of mass coverage, and straight forward data 

interpretation.  Released glycans are first permethylated to increase sensitivity of 

detection and then mixed with suitable matrix before being spotted onto a target plate 

where ions are generated by laser pulse and separated according to mass by their time of 

flight (TOF)25, 40, 47.  With this approach, a structure’s accurate mass is determined which 

can be used to elucidate a likely monosaccharide composition (# hexoses, # 

deoxyhexoses, #sialic acids and # HexNAc’s) along with relative glycan abundances.  In 

addition, the few glycan data analysis software tools that have been developed (such as 

Cartoonist 48 and Glycoworkbench 49) have been tailored to data generated by this type of 

approach.   Rapid general glycan profile comparisons between samples can be generated 

to identify possible differences between experimental and control populations of glycans; 

However, no fragmentation data is obtained.  Therefore, structural isomers cannot be 

differentiated nor can linkages or branching patterns.    

   The MSn approach can be divided into two subclasses, MS/MS and MSn.  The 

MS/MS strategy takes one full MS scan by MALDI/TOF to identify potential glycan 

molecular ions and then subjects these ions to one degree of fragmentation by MALDI-

TOF/TOF CID looking for corroborating fragment ions to support the proposed glycan 

composition39.     Occasionally, some information regarding sequence and branching 

information may be obtained as well50.  The major drawback of adding the step of 
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fragmentation is the exponential increase in the time and skill level required for data 

interpretation.  

The MSn approach employs at least 3 rounds of fragmentation and is the most 

data rich MS technique employed today; a wealth of structural details can be elucidated 

by this methodology51,52,53.  In some cases, general composition, sequence and branching 

points, can be determined by MSn.  For example, the location of a fucose (core or distal, 

as well as linear or branched as in Lex) on a complex N-glycan can be determined by the 

presence and absence of key fragment ions.   The MSn approach involves de novo 

sequencing of each glycan present and requires expertise as well as a substantial time 

investment for data interpretation, especially considering the lack of software currently 

available. Detection of differences in these structural details however, provides the 

opportunity to observe significant changes in the fine details of glycosylation that would 

otherwise not be seen.                 

Many variations and combinations of the basic MS analytical strategies exist.  ESI 

ionization is commonly combined with a variety of ion trap mass analysis techniques 

including linear ion trap (LTQ), Orbitrap, and FT-ICR, depending on availability and the 

type of information desired.   A plethora of instrument workflows within each variation 

also exists a few of which include total ion mapping (TIM), selected reaction monitoring 

(SRM)54, and selected ion monitoring (SIM)55 analysis.   TIM analysis, involves 

successive isolation and fragmentation of overlapping ranges of ions effectively creating 

a MS/MS map of all ions present.  SIM and SRM analyses are data dependent acquisition 

techniques which monitor single product ions or reactions throughout sample injection 

usually following online chromatographic separation.  Separation of native glycans into 
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neutral and acidic pools followed by MALDI-FT-ICR-MS2 analysis56 as well as 

separation of permethylated glycans with a porous graphite column online with a Q- TOF 

CID produces fragmentation up to MS3 57.  Many other combinations exist and new ones 

are continually being developed. 

Mass Spectrometry Data Interpretation 

The task of mass spectral data interpretation for glycan analysis is certainly in its 

infancy and given the recent surge of interest in the field, many advances are expected in 

the near future.  Development of software capable of automating data interpretation is a 

desperately needed resource for the glycomics community.  A broad range of 

bioinformatic methodologies are beginning to emerge1, 58.   One strategy of automated 

interpretation employs algorithms that compare experimentally derived spectra against 

databases of known glycan structures and scores the confidence level and false discovery 

rate of an assignment much as is done by the SEQUEST algorithm in proteomics48.  This 

approach is commonly used with single MS dimensional data such as that obtained by 

MALDI/TOF analysis annotated by Cartoonist algorithms48.  The downside of this 

approach is that only previously reported glycan structures would be identified and novel 

structures would not be proposed.  As mentioned earlier, the difficulty of creating a 

quality theoretical glycan database with no template from which to derive glycan 

sequences, limits the ease of proteomic style scoring.    

Sample size is limited and can be completely exhausted by one TIM analysis, 

yielding only MS2 data.  However, the primary bottle neck of this work flow is data 

interpretation.  Manual interpretation of the 800 spectra generated per TIM is time 

consuming.  Additionally, every glycan in a TIM analysis is first characterized and then 
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compared to other samples in order to detect changes.  Manual interpretation is 

impractical for analyzing the larger datasets that are required for biomarker discovery or 

screening for cellular changes in glycosylation.  Many investigators refer to this step as 

the bottleneck of glycan analysis and have called for developing strategies to alleviate the 

challenges discussed.   

Spectral interpretation is based on the presence and absence of particular fragment 

ions51, 53.  Here, a structure is first fragmented and structural details of the individual 

pieces are assigned by unique cleavages and the location of free hydroxyl groups that 

were methylated during derivitazation59.  A confidence can be assigned to each section of 

the glycan giving linkage anomerocity and sequence information which together with 

knowledge of biosynthetic pathways can be used to reconstruct the intact glycan.    

In order to get maximum data with minimal time and sample, novel MSn 

workflows on a Thermo LTQ Orbitrap™ mass spectrometer45 have been employed.  

Workflows follow the basic scheme of direct infusion of free/released permethylated 

glycans into a ThermoFisher Orbitrap Discovery™ mass spectrometer coupled with 

electrospray ionization (ESI). Analysis of intact glycan structures is performed in the 

Orbitrap™ for maximum mass accuracy whereas collision induced dissociation (CID) 

fragmentation and subsequent mass analysis of fragments is performed in the ion trap for 

maximum sensitivity is used.  The most abundant peak in the full-MS spectrum is 

automatically selected to be fragmented in the ion trap generating an MS2 spectra from 

which product ions may be automatically fragmented further based on the presence of 

signature fragment ions or detection of a preselected neutral loss (NL) giving MS3 data 

(Figure #).  Product ions may be selected for further analysis if desired.  The parent ion is 
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excluded from being selected again for the remainder of the run and the cycle is repeated, 

ultimately resulting in a list of m/z present in order of intensity, followed by 

fragmentation data for each peak selected.  These methods are designed to be flexible and 

can be fine-tuned to focus on the type of data desired.  For example, the presence of 

particular epitopes such as Lex, can be characterized by probing for specific NL.  

Sensitivity can be increased by dividing the mass range into smaller regions, for example, 

run the program from 700-1200 m/z and again from 1200-2000 m/z.  A parent mass list 

can also be generated from the Full MS which is then used to select ions for 

fragmentation, or, to be excluded if low abundance glycans are the focus.   

One example of manual data interpretation strategy is as follows:  A full MS is 

taken and the most abundant peak m/z 1134 (z=+2) is selected for fragmentation 

generating the second spectrum shown (Figure #).  In this case a particular fragment ion 

(m/z 660) was detected which triggered another level of fragmentation.  Based on these 

three spectra, first, the molecular weight of the ion was calculated (m/z 2245) and entered 

into GlycoMod yielding the basic monosaccharide composition of M3N2 + 

(Hex)2(HexNAc)2(deoxyhexose)1.  Next, several plausible structures were proposed 

based on biosynthetic pathways.  The placement of the fucose is the main point of 

variability in this structure.  The Fuc could be located on the core GlcNAc or at the non-

reducing terminal (linear or branched) as in the Lex epitope.  The MS3 spectra indicated 

that it is not core fucosylated by the presence of m/z 660 and not 474.  The MS4 spectrum 

of m/z 660 showed a terminal but not Lex location for the fucose.  Without these 

additional fragmentation steps, accurate structural determination would have been 

unlikely.  Therefore, this level of analysis is crucial for a true understanding of 
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glycosylation patterns in a sample.  Most analysis performed today is at the MS or MS2 

level but generates less than 100 partially characterized structures.  Additional MS3 or 

MS4 experiments are required to resolve isobaric configurations.   

 

Figure 2.6 Structural determination of glycans MS3 approach 

Bioinformatic Tools For MS Data Interpretation 

Bioinformatic tools that are robust, freely available and instrument independent 

are desperately needed in the glycomics community, especially to assist in the annotation 

of mass spectrometric analysis of glycans released from glycoproteins.  Some tools have 

been developed over the last decade51, 60.  However, most are currently unavailable to the 

community and/or are not supported for further development.   
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A glycan’s basic composition can be determined by MS1 analysis, However, 

MS/MS is necessary to determine a glycan’s sequence or topology.  Analysis of MS data 

cannot determine the type of glycosidic bond (α or β) or distinguish isomeric 

monosaccharides like glucose/mannose/galactose which have the same mass.  It is also 

difficult to determine which arm of a branched glycan carries specific terminal 

modifications.  Therefore, structural annotations frequently rely on known biosynthetic 

pathway rules to ascertain these features.  For example, it is well established that N-

glycans are initiated by a GlcNAc residue attached to an asparagine, therefore assignment 

of that monosaccharide as GlcNAc rather than its isomer GalNAc is reasonable despite 

not having MS data that specifically defines that feature.   

  In addition, most glycan MS analyses rely on permethylation61 of free hydroxyl to 

methyl groups to increase sensitivity and improve ionization efficiency for MS analysis 

by ESI.  Permethylation also aids in structural determination because fragmentation of 

permethylated structures generates scars at sites of substitution.  For example, a Hexose-

HexNAc disaccharide fragment that was terminally located would have a mass that 

includes one more methyl group than one that was located internally.  This type of 

information is critical when determining structural variations in glycomics. However 

permethylation equalizes many of the chemical functionalities that might allow 

chromatographic separation based on chemical properties.  Thus, chromatographic 

resolution of permethylated N-linked glycans has proven to be difficult to date.  

Combined with the lack of robust automated software necessary to interpret the 

thousands of additional spectra, each of which will require manual interpretation, LC-MS 

or LC-MS/MS for permethylated glycans has been under-developed so far.  This 
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shortcoming is unfortunate because LC offers unique opportunities to separate isobaric 

glycans that are currently unresolved in direct infusion analyses.  We currently rely on 

the presence or absence of diagnostic ions in MS/MS spectra to determine structural 

topology.  However, isobaric mixtures complicate this strategy.  Ratios of key diagnostic 

ions can serve as a comparison between samples to give an indication of changes, but this 

approach is not reliable for determining the absolute quantity of isoforms in a mixture.  

The best solution for isomer mixtures will be to develop LC-MS/MS separation strategies 

and then employ automated annotation tools to interpret the massive volume of spectra 

that are generated, similar to well-established proteomic approaches. 

All glycomic discussions presented here have been focused on released glycans.  

However, it is desirable to not only know the glycan structure, but also know which 

site(s) they are attached to and on which proteins. Strategies and tools have begun to 

emerge for the analyses of intact glycoproteins which usually employ a two pronged 

approach where users first define the glycome, then using that information, define the 

peptides with those particular attachments. Software for glycopeptide analysis therefore 

requires robust tools to first define the glycome.  Therefore software tools to determine 

the released glycans remains a critical first step in the process. 

As previously discussed, glycan composition can be determined by MS using 

intact parent mass without any fragmentation data.  GlycoMod60c, Cooper 2001- attempts 

to find all possible oligosaccharide compositions that correspond to a particular parent 

ion mass.   It is helpful for determining compositions but does not use MS/MS spectra 

and therefore cannot differentiate between different topologies.  Glycomod is freely 

available online at http://web.expasy.org/glycomod/ .SysBioWare62, Vakhrushev 2009, 

http://web.expasy.org/glycomod/


 

31 

also uses MS1 data to determine glycan composition based on parent ion mass with 

added features including de-isotoping, baseline adjustment, and denoising.  It is not freely 

available to the public.  Cartoonist63, Goldberg 2006, labels MALDI MS1 glycan data 

with probable compositions from a database of 300 N-linked structures.   

CartoonistTwo60e captures the composition from Cartoonist and then further considers 

MS/MS CID data to assign topologies using multiple scoring and calibration approaches.  

The analysis relies on a set of N-glycans that may or may not exist in nature and neither 

version is freely accessible to the community.   

Additional programs have been developed that utilize SEQUEST like database 

matching algorithms including Glycoworkbench64 Ceroni 200865 and GlycoFragment66 

GlycoSearchMS67 Lohmann 2004,  which are freely available and SimGlycan©60a, a 

commercially available tool Apte 2009.  GlycoFragment and GlycoSearchMS are two 

modules that work together to aid in manual annotations.  GlycoSearchMS finds 

candidate compositions much like GlycoMod60c and then utilizes the GlycoFragment 

module to theoretically fragment candidate structures, thereby producing a list of 

expected ions for users to manually compare against experimental spectra.  

Glycoworkbench follows the same strategy but adds the possibility of automatically 

comparing theoretical peaks with experimental data.  These tools are helpful when 

comparing one spectrum at a time however they are limited when dealing with hundreds 

and thousands of spectra.  SimGlycan© takes these approaches one step further by 

analyzing spectra in batches of up to 1,500 which improves high throughput capabilities. 

However, SimGlycan© is proprietary and is limited by cost and access.  Additionally, the 

public databases utilized for these three programs suffer from pollution, including 
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redundancies, omissions and unlikely structures that complicate and slow down analysis 

time and accuracy.   

OSCAR68 by Ashline 200752 uses a complex MSn approach to fully describe and 

annotate PerMe O-linked glycan structures.  The level of structural determination 

produced by this approach is impressive.  However, sample size can be a limiting factor 

since MS5 or more is often required.  Additionally, OSCAR is not currently accessible to 

the public or supported by any appropriate infrastructure.   

Several programs have been developed to annotate tandem glycan MS spectra 

using a de novo sequencing approach in which structures are computed directly from the 

spectrum without the help of a glycan database.  They include: STAT69 Gaucher 2000, 

StrOligo70 Eithier 2002 (N-link instrument specific MALDI MS/MS data), a heuristic 

algorithm71 by Shan 2008, and dynamic programming approach called GlyCH72 by Tang 

2005.  None of these are available to the public and have considerable limitations given 

the computation burden associated with the combinations of monosaccharides available 

without a database to constrain the search space.  They are generally limited to no more 

than 10 monosaccharides per structure, posing significant problems when considering the 

usual portfolio of N-linked glycans found in biological materials.  The UniCarb-DB 

project initiated in 2009 as a continuation of the EUROCarbDB is currently focused on 

Glycan MS data and structural assignment based on fragmentation data.  However no 

tools have been provided to the community as of 2014.  

Current glycomics algorithms rely heavily on accurate parent ion mass and which 

peaks are present in the MS/MS spectra to determine the best candidate structures.  Each 

of the approaches described here relies on some type of scoring mechanism.  For 

http://www.eurocarbdb.org/
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example, Glycoworkbench has two scores, a counting score which reports the number of 

theoretical peaks of a glycan that are present in an experimental spectra, and an intensity 

score which says what percent of the total intensity present in the spectra is explained by 

those peaks.  Both scores are important; a glycan that has a high counting score but a low 

intensity score could indicate a poor match based on the peaks matching being of very 

low intensity and therefore possibly noise. However, a glycan that has a low counting 

score but a high intensity score could be an equally poor match if it happens to contain a 

single peak that has high intensity.  SimGlycan© uses a proprietary scoring algorithm 

that considers composition from mass accuracy and branching from specific diagnostic 

ions and combines them into a single score called the proximity score.  Unfortunately, the 

proprietary nature of the SimGlycan© algorithm precludes a robust validation of the 

approach.  The scoring mechanisms used with these approaches fail to give users a real 

sense of the validity of their data matches.  They can tell you which of the structures that 

algorithm considered matches the data best but they cannot tell you how likely that it is a 

real match.   

The proteomics community faced similar types of struggles before SEQUEST and 

MASCOT were fully developed.  The proteomics community had to find ways of 

defining the quality of their fitted data and developed standards for the field including 

proteomics established false discovery rate (FDR).  Glycomics is currently facing the 

same types of challenges but with the added complexities that are imposed by glycan 

branching and non-template driven biosynthesis.  Protein databases are complete and 

fully annotated since the genomic templates have been sequenced.  Glycans have no 

possibility to achieve this type of reference database and will suffer from this fact in 
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multiple ways.  For example, there will always be the possibility of a glycan structure not 

being in a database which would pose a problem when using database search strategies.  

Further, the idea of filling databases with all possible combinations of monosaccharides 

linked in all possible ways would be particularly troublesome given that there are 

between 1056 and 27648 possible variations of a simple trimer of monosaccharides 

depending on which constraints you consider versus 6 possibilities for either nucleic 

acids or amino acids.  Since there is no complete database, there is also no way to make a 

decoy database to determine FDR from.   

Probabilistic scoring mechanisms for peptide MS/MS database matching such as 

XCorr established by Eng73 Tabb74 and MacCoss long before FDR was implemented 

could be tailored to glycomics data to further improve data matching algorithms. After 

SEQUEST’s matching algorithm finds potential matches for spectra in the database, it 

applies XCorr (a statistical cross correlation function) to assess the quality of matches.  

XCorr only depends on the quality of the MS/MS spectrum and its fit to the theoretically 

generated spectrum and is independent of the database itself.  It is important for good 

matching algorithms to consider multiple factors in calculating goodness of fit including 

significance as well as correctness of a match.     

Quality databases and quality transparent goodness of fit indicators75 are essential 

for glycomic tools to be of value to the user and the community as a whole.  The 

glycomic community can leverage the work of pioneers in proteomics which laid 

important theoretical groundwork that may be applicable to glycomics76.  Many lessons 

were learned in the early proteomic years that can be a great value in developing sets of 

quality annotation standards that can be tailored to the unique nature of glycomic data 
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and can serve as a spring board to push glycomics and eventually glycoproteomics 

forward.  
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Abstract 

Sensitive and specific biomarkers for pancreatic cancer are currently unavailable.  

The high mortality associated with adenocarcinoma of the pancreatic epithelium justifies 

the broadest possible search for new biomarkers that can facilitate early detection or 

monitor treatment efficacy.  Protein glycosylation is altered in many cancers, leading 

many to propose that glycoproteomic changes may provide suitable biomarkers.  In order 

to assess this possibility for pancreatic cancer, we have performed an in-depth LC-

MS/MS analysis of the proteome and MSn-based characterization of the N-linked 

glycome of a small set of pancreatic ductal fluid obtained from normal, pancreatitis, 

intraductal papillary mucinous neoplasm (IPMN), and pancreatic adenocarcinoma 

patients.  Our results identify a set of seven proteins that were consistently increased in 

cancer ductal fluid compared to normal (AMYP, PRSS1, GP2-1, CCDC132, REG1A, 

REG1B, and REG3A) and one protein that was consistently decreased (LIPR2).  These 

proteins are all directly or indirectly associated with the secretory pathway in normal 

pancreatic cells.  Validation of these changes in abundance by Western blotting revealed 

increased REG protein glycoform diversity in cancer.  Characterization of the total N-

linked glycome of normal, IPMN, and adenocarcinoma ductal fluid clustered samples 

into three discrete groups based on the prevalence of 6 dominant glycans.  Within each 

group, the profiles of less prevalent glycans were able to distinguish normal from cancer 

on this small set of samples.  Our results emphasize that individual variation in protein 

glycosylation must be considered when assessing the value of a glycoproteomic marker, 

but also indicate that glycosylation diversity across human subjects can be reduced to 

simpler clusters of individuals whose N-linked glycans share structural features.   
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Introduction 

In 2010, the American Cancer Society estimated 41,000 diagnoses of pancreatic 

cancer in the U.S. 1.  With a very low percentage of five-year survival, early stage 

biomarkers for this disease are urgently needed, although there are markers that are used 

to monitor the course of disease; e.g., the glycan-specific serum marker, CA19-9 2, 3.  

Proteomic analyses of serum samples from patients with pancreatic ductal 

adenocarcinoma have yielded important information for developing potential biomarkers 

4.  Recent data has demonstrated that pancreatic cancer cells are not always of ductal 

epithelial origin, but may in fact more frequently arise from acinar cells5, the primary 

secretory cell responsible for producing the proteins of pancreatic ductal fluid.  

Therefore, pancreatic ductal fluid, which is likely to contain proteins released from 

pancreatic adenocarcinoma, has also been subjected to proteomic analysis in search of 

markers that could also be present in sera 6-12.  These previous studies have produced 

proteomes that overlap with each other and with the results reported here.  However, full 

validation of a single proteomic marker or set of proteomic markers has not been 

achieved for pancreatic cancer.   

In addition to altered protein expression during oncogenesis, many studies have 

clearly documented that the glycans expressed on glycoproteins secreted or released from 

various types of cancer cells exhibit changes in structure that are cell-type specific.  For 

example, glycoproteins that express N-glycans with a “core fucose” residue (alpha1,6 

fucose) are secreted into serum from hepatocellular carcinoma (HCC) but not from 

cirrhotic hepatocytes.  An assay for core-fucosylated alpha-fetoprotein is in use to test for 

HCC, and there is evidence that including other core-fucosylated glycoproteins, such as 
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GP73, in the analysis yields an HCC diagnostic test with higher specificity and 

sensitivity13-16.  Aberrant glycosylation in pancreatic carcinoma is apparent by increased 

serum levels of CA19-9 and by the detection of circulating antibodies directed against the 

mucin MUC1 that expresses truncated O-linked glycans (Tn antigens)17. 

In order to identify additional serum markers for pancreatic carcinoma, 

particularly those for early detection, our approach has first focused on applying 

proteomic and glycomic analytical technologies for in-depth analysis of pancreatic ductal 

fluid.  Markers identified in ductal fluid are then candidates for validation as serum 

markers using antibodies that recognize the glycan and protein differences that are 

identified between ductal fluid samples from patients with pancreatic cancer and from 

controls, including pancreatitis and intraductal papillary mucinous neoplasms (IPMN).  

Here, we report in-depth analysis of the proteome and the N-linked glycome of a training 

set of ductal fluid samples.  The results provide potential targets for full validation and 

highlight important considerations for analyzing human glycoproteomes.   

Experimental Methods 

Relative Contributions of Authors 

 The research presented here was contributed to equally between Peng Zhao under 

the direction of Lance Wells and Melody Perlman Porterfield under the direction of 

Michael Tiemeyer.  Zhao performed all protein based analyses and Porterfield performed 

all glycan based analyses.   

Pancreatic Ductal Fluid Samples  

Pancreatic ductal fluid samples along with matching serum and plasma samples 

were collected from patients who underwent endoscopic retrograde 
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cholangiopancreatogram (ERCP) or endoscopic ultrasound (EUS) procedures.  The 

ductal fluid samples were snap frozen in liquid nitrogen following aspiration from the 

patients.  Sample collection protocols were reviewed and approved by the Institutional 

Review Boards (IRBs) at the University of Arizona (Tucson, AZ) and the Translational 

Genomics Research Institute (Phoenix, AZ), and written informed consent was obtained 

from all patients.  Pancreatic ductal fluid samples from patients with the following four 

diagnoses were used in this study: pancreatic cancer, intraductal papillary mucinous 

neoplasm (IPMN), pancreatitis, and normal pancreas (Sphincter of Oddi Dysfunction, 

SOD Type II or III).  The age ranges and gender distributions for each diagnostic class 

were as follows: pancreatic cancer, 54-79 years, 5 male, 4 female; IPMN, 72-77 years, 2 

male, 1 female; pancreatitis, 41-56 years, 1 male, 2 female; normal pancreas, 31-72 years, 

2 male, 7 female (Supplementary Table S1).  For protein identification and 

quantification, 12 samples in total were analyzed (three samples for each diagnosis).  

Clear (no visible blood or bile contamination) pancreatic ductal fluid samples were 

thawed on ice and filtered by 0.2 µm spin columns (Nanosep). Protein concentration of 

all the samples was determined using the micro BCA protein assay kit (Pierce) following 

the manufacturer’s instructions. Equal amounts of protein (1 mg) were used for analysis.  

For glycomic analysis, 3 normal, 4 pancreatic cancer, and 2 IPMN samples were chosen.  

As described for proteomic analysis, ductal fluid samples that were clear (no visible 

blood or bile contamination) were selected for glycomic analysis.  For each sample, 300-

500 μl of ductal fluid were extracted with organic solvent as previously described18.  

Briefly, for 300 μl of ductal fluid, total volume was adjusted to 4:8:3 

(chloroform:methanol:water) by the addition of 0.4 ml water, 1.87 ml methanol, and 0.93 



 

47 

ml chloroform.  The adjusted sample was extracted overnight by nutation.  The next 

morning, proteins were harvested by centrifugation.  The protein pellet was washed three 

times with cold 80% acetone in water and the final pellet was dried under a stream of 

nitrogen.  The resulting solids were harvested as a uniform, white protein powder, which 

was stored desiccated at –20 oC.  The amount of material harvested from any individual 

sample was insufficient to allow glycomic and proteomic analysis to be performed on the 

same samples.    

Trypsin Digestion for Proteomic Analysis 

The fluid samples were reduced with 10 mM DTT for 1 h at 56 °C, alkylated 

(carboxyamidomethylated) with 55 mM iodoacetamide (Sigma) in dark for 45 min, and 

digested with trypsin (Promega) in 40 mM NH4HCO3 overnight at 37 °C. The digestion 

was quenched with 1% trifluoroacetic acid (TFA), and the resulting peptides were 

desalted with C18 spin columns (Vydac Silica C18, The Nest Group, Inc.) and dried in a 

Speed Vac. 

Protein Fractionation 

Protein fractionation was performed by reverse phase liquid chromatography (RP-

LC) using the Agilent 1100 series HPLC system (Agilent Technologies). Solvent A 

(0.1% TFA) and solvent B (0.085% TFA/80% acetonitrile) were used to develop a linear 

gradient starting with 5 minutes at 5% solvent B (95% solvent A), followed by a 60-

minute gradient at variable slope from 5% to 95% solvent B and staying for 3 minutes at 

95% solvent B, then returning to 5% solvent B (95% solvent A) in 1.5 minutes and 

staying for 4.5 minutes at 5% solvent B (95% solvent A).  Dried peptides were dissolved 

in solvent A and separated on a 2.1 × 250 mm silica-based C18 column (VYDAC) at a 
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flow rate of 100 µl/min over the linear gradient. Eluted peptides were collected every 4 

min, and subsequently combined into 5 fractions (F1, 15-32%; F2, 32-40%; F3, 40-45%; 

F4, 45-55%; and F5, 55-85%), desalted and dried as described above. 

Reverse Phase nanoLC-MS/MS Analysis 

Dried peptides from each fraction generated by RP-LC (12 x 5 in total) were 

resuspended in 0.5 µl of solvent B (0.1% formic acid/80% acetonenitrile) and 19.5 µl of 

solvent A (0.1% formic acid) and loaded onto a 75 µm x 105 mm C18 reverse phase 

column (packed in house, YMC GEL ODS-AQ120ǺS-5, Waters) by nitrogen bomb. 

Peptides were eluted directly into the nanospray source of an LTQ Orbitrap XL™ 

(Thermo Fisher Scientific) with a 140-min linear gradient consisting of 5-100% solvent B 

over 90-95 min at a flow rate of ~250 nl/min. In order to optimize the separation of 

peptides eluted into the mass spectrometer, gradients were expanded over a 70-min 

period in the appropriate region corresponding to each fraction collected from the 

previous offline RP-LC separation (F1, 4-30%; F2, 9-35%; F3, 15-42%; F4, 20-55%; and 

F5, 28-85%). The spray voltage was set to 2.0 kV and the temperature of the heated 

capillary was set to 200 °C. Full scan MS spectra were acquired from m/z 300 to 2000 

with a resolution of 60000 at m/z 400 after accumulation of 1000000 ions (mass accuracy 

< 5 ppm). MS/MS events were triggered by the 6 most intense ions from the preview of 

full scan and a dynamic exclusion window was applied which prevents the same m/z 

value from being selected for 6 seconds after its acquisition. All 5 sub-fractions were 

analyzed in technical triplicates and data were acquired using Xcalibur® (ver. 2.0.7, 

Thermo Fisher Scientific).  Spectra will be made available upon request.   

Proteomic Data Analysis 
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The acquired MS/MS spectra were searched against the UniProt human proteome 

database (58831 entries, updated at May 10, 2009) using SEQUEST (Bioworks 3.3, 

Thermo Fisher Scientific) with the following settings: 50-ppm and 0.5-Da deviation were 

set for monoisotopic precursor and fragment masses, respectively; trypsin was specified 

as the enzyme; only fully tryptic peptide identifications were retained; a maximum of 3 

missed cleavage sites, 3 differential amino acids per modification and 3 differential 

modifications per peptide were allowed; oxidized methionine (+15.9949 Da) and 

carbamidomethylated cysteine (+57.0215 Da) were set as differential modifications.  All 

of the raw spectra were searched against both normal and reversed database under the 

same parameters, and all of the output files from SEQUEST search were filtered and 

grouped by different biological samples and replicates in ProteoIQ™. The cutoff value of 

peptides was set to an Xcorr of 0.5 and the minimum peptide length was set to 4 amino 

acids. For protein identification, false discovery rate was set to 1% at protein level and 

peptides matched to multiple proteins were excluded; for protein quantification, the 1% 

protein-level false discovery rate data was further filtered to achieve a 10% peptide-level 

false discovery rate, and only proteins that are identified by more than one peptide and in 

more than one biological sample were considered. The validated result was submitted to 

Gene Ontology (www.geneontology.org)19 for protein subcellular localization and 

biological function annotation. 

In order to compare the protein expression levels across samples with different 

diagnoses, normalized spectral abundance factors (NSAF) were calculated for each 

protein that was commonly observed in all four diagnoses. In this approach, the spectral 

http://www.geneontology.org/
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counts (SpC) of each protein in a given dataset were divided by its length (L) and 

normalized to the sum of SpC/L values in the given dataset20, 21:   

𝑁𝑆𝐴𝐹𝑥 =
(
𝑆𝑝𝐶
𝐿

)𝑥

∑ (
𝑆𝑝𝐶
𝐿

)𝑥
𝑁
𝑖=1

 

To further resolve shared peptides between protein isoforms, a distribution factor 

was introduced into the calculation of NSAF22:  

𝑑𝑁𝑆𝐴𝐹 =
𝑢𝑆𝑝𝐶 + [(𝑑)(𝑠𝑆𝑝𝐶)]

𝑢𝐿 + 𝑠𝐿
 

𝑑 =
𝑢𝑆𝑝𝐶

∑𝑢𝑆𝑝𝐶
 

According to the equations above, dNSAF is calculated where spectral counts 

from shared peptides are distributed among protein isoforms based on a distribution 

factor, d. Spectral counts from peptides uniquely mapping to a protein are denoted as 

“uSpC”, while spectral counts from peptides shared between isoforms are labeled 

“sSpC”. Protein amino acid lengths mapped to unique and shared peptides are denoted as 

“uL” and “sL”, respectively. 

Immunoblotting 

Protein concentrations of normal and cancer pancreatic juice samples were 

determined by micro BCA protein assay. Equal amounts of protein from normal and 

cancer samples (ranging from 2-8 µg for different antibodies) were separated by 4-20% 

Tris-HCl precast minigels (Bio-Rad), and semi-dry transferred to Immobilon-P transfer 

membrane (Millipore). The membranes were blocked with 5% BSA in TBST (TBS with 

0.1% Tween 20), and probed with each antibody at 4 °C overnight as follows: 1:1000 

dilution for REG1A (Abcam), REG1B (Abcam), and REG3A (Abnova) blots, and 1:2000 
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dilution for phospholipase A2 (Abcam) and pancreatic lipase-related protein 2 (Abnova) 

blots. After the addition of secondary antibodies conjugated to horseradish peroxidase 

(HRP) at room temperature for 1 h, the final detection of HRP activity was performed 

using SuperSignal West Pico chemiluminescent substrates (Thermo Fisher Scientific). 

The films were exposed to CL-XPosure film (Thermo Fisher Scientific).  The amount of 

material harvested from any individual sample was insufficient to allow glycomic and 

proteomic analysis to be performed on the same samples., and orthogonal analyses 

(western blotting) to all be performed on the same samples.  However, in some cases, 

proteomic and western blot anlaysis were performed on the same sample. 

N-linked Glycan Analysis 

N-linked glycans were prepared from tryptic/chymotryptic digests of total ductal 

fluid proteins as described previously18.  Briefly, protein powder produced by organic 

extraction of ductal fluid (described above) was resuspended in 200 μl of trypsin buffer 

(0.1 M Tris-HCl, pH 8.2 containing 1 mM CaCl2) by sonication and boiling for 5 

minutes.  After cooling to room temperature, 25 μl of trypsin solution (2 mg/ml in trypsin 

buffer) and 25 μl of chymotrypsin solution (2mg/ml in trypsin buffer) were added.  

Digestion was allowed to proceed for 18 hours at 37 oC before the mixture was boiled for 

5 minutes.  Insoluble material was removed by centrifugation and the supernatant was 

removed and dried by vacuum centrifugation.  The dried peptide mixture was 

resuspended in 250 μl of 5% (v/v) acetic acid and loaded onto a Sep-Pak C18 cartridge 

column.  The cartridge was washed with 10 column volumes of 5% acetic acid.  

Glycopeptides were then eluted step-wise, first with 3 volumes of 20% isopropanol in 5% 

acetic acid and then with 3 volumes of 40% isopropanol in 5% acetic acid.  The 20% and 
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40% isopropanol steps were pooled and evaporated to dryness.  Dried glycopeptides were 

resuspended in 50 μl of 20 mM sodium phosphate buffer, pH 7.5, for digestion with 

PNGaseF (Prozyme, San Leandro, CA).  Following PNGaseF digestion for 18 hr at 37 

oC, released oligosaccharides were separated from peptide and enzyme by passage 

through a Sep-Pak C18 cartridge.  The digestion mixture was adjusted to 5% acetic acid 

and loaded onto the Sep-Pak.  The column run-through and an additional wash with 3 

column volumes of 5% acetic acid, containing released oligosaccharides, were collected 

together and evaporated to dryness.   

Following enzymatic release and clean-up, liberated N-linked glycans were 

permethylated23 and analyzed by direct infusion, nanospray ionization, ion trap mass 

spectrometry (NSI-LTQ/Orbitrap, Thermo Fisher).  An automated MS workflow was 

employed to sequentially capture MS/MS spectra for all detectable ions.  In this 

workflow, full MS spectra were obtained in the Orbitrap and the highest intensity peak 

was then selected for fragmentation in the linear trap (collision energy was 35-55% based 

on instrument calibration).  Following acquisition of each MS/MS spectra, the next most 

intense parent ion was selected for fragmentation.  In order to limit the fragmentation of 

redundant isotopes, an m/z window extending from -1.2 mass units below to +2.1 mass 

units above the parent ion was excluded. The cycle was repeated until fragmentation 

profiles revealed only background noise, generally 200 rounds.  The resulting MS and 

MS/MS files were processed using SimGlycan© (Premier Biosoft, Palo Alto, CA) to 

provide initial structural assignments for all m/z values associated with glycans24.   

SimGlycan assignments were subsequently validated by manually inspecting MS/MS 

spectra for the presence of signature fragments consistent with the proposed structure for 
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all glycans that demonstrated signal intensity differences in cancer or IPMN greater than 

2-fold above or below normal samples (61 assignments).  SimGlycan© assignments were 

also validated manually if the assigned structure was not considered to be a likely 

component of the human ductal fluid glycoproteome (Xylose-containing glycans, 

inappropriately degraded structures, biosynthetic impossibilities).  Such artifactual 

assignments arise because these structures are contained within the database used by 

SimGlycan©.  When MS/MS spectra for such candidate glycans were manually 

inspected, they uniformly revealed a lack of glycan-based fragmentation and their 

intensities were excluded from the total profile.  Signal intensities for valid glycan 

assignments were retrieved from full MS spectra as peak areas obtained using the 

Orbitrap FT.  Signals associated with different charge states of the same glycans were 

combined.  The prevalence of each glycan was calculated by normalizing its signal 

intensity to the total signal intensity for all detected glycans and is expressed as “% Total 

Profile” for each glycan.  The associations of glycans with clinical status were queried by 

hierarchical clustering methods using Euclidean distance calculations as previously 

described25, 26.   

Structural assignments for the glycans detected at the reported m/z values were 

based on the compositions determined by accurate mass of the intact molecule (detected 

by Orbitrap FT), the presence of diagnostic MS/MS fragments that report specific N-

glycan features, and the limitations imposed on structural diversity by known glycan 

biosynthetic pathways.  Key structural features that were used to assign glycan topologies 

included the detection of B-ion fragments and their Y-ion neutral loss counterparts 

corresponding to terminal LacNAc (Hex-HexNAc, assumed to be Gal-GlcNAc; fragment 
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at m/z = 486.2, [m+Na]+), internal LacNAc (Hex-HexNAc, fragment at m/z = 472.2, 

[m+Na]+) sialic acid (fragment at m/z = 398.2, [m+Na]+), outerarm Fuc (as fucosylated 

LacNAc; deoxyHex-Hex-HexNAc and/or Hex-(deoxyHex)-HexNAc; fragment at m/z = 

660.3, [m+Na]+), terminal Fuc (deoxyHex-Hex; fragment at m/z = 415.2, [m+Na]+); core 

Fuc (as Fuc-HexNAc at the reducing terminal; fragment at m/z = 474.2, [m+Na]+).  It is 

frequently not possible to unambiguously assign non-reducing terminal modifications to a 

specific arm of a complex N-linked glycan solely using MS/MS spectra.  For consistency 

of presentation and ease of comparison, outer arm modifications are presented as 

elaborations on the increasingly complex products of the known branching N-

acetylglucosamine transferases (GlcNAcT) in the following succession:  GlcNAcT1, T2, 

T4, T5.  For example, a monosialylated, fully galactosylated triantennary glycan is 

depicted with a single sialic acid on the arm initiated by GlcNAcT1 (the 3-arm) and the 

three antennae would be represented as products of GlcNAcT1, 2, and 4 (two GlcNAc 

residues on the 3-arm and 1 on the 6-arm).  The disialylated form of the same 

triantennary glycan would be depicted with the second sialic acid added to the arm 

initiated by GlcNAcT2 (the 6-arm).  Structural ambiguity is also annotated by brackets, 

which are meant to indicate equally likely sites for elongation.    

Results  

Protein Identification 

For each of the 4 diagnoses, 3 patient samples were analyzed in technical 

triplicates.  Each sample was trypsin digested and separated by off-line RP-HPLC 

separation.  Five fractions were collected for each sample and analyzed by LC-MS/MS to 

yield a total of 45 LC-MS/MS experiments for each diagnosis (180 total LC-MS/MS 
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analyses).  After filtering and removing duplicates, the combined data set consists of 368 

unique proteins identified by 1995 peptides corresponding to 58930 spectra, 74% 

(273/368) of which were identified by more than one peptide. Specifically, 112 proteins 

were identified by 750 peptides with 11598 spectra in normal samples; 138 proteins were 

identified by 743 peptides with 6590 spectra in pancreatitis samples; 124 proteins were 

identified by 808 peptides with 22581 spectra in IPMN samples; and 188 proteins were 

identified by 1068 peptides with 18161 spectra in pancreatic cancer samples (Table 3.1, 

Table 3.2 and Table 3.3, Figure 3.1). All the identified proteins were submitted to Gene 

Ontology (www.geneontology.org) for subcellular localization and biological function 

annotation. Based on the spectral counts assigned to each identified protein, the majority 

of the proteins are secreted proteins (81%) involved in proteolysis (52%) and metabolic 

process (29%) (Fig. 3.1).   

Figure 3.1. Subcellular localization and biological function of proteins identified in 12 

pancreatic ductal fluid samples.  Distributions were calculated based on spectral counts of 

identified proteins. 

 

Protein Quantification 

To evaluate the variation in protein expression across pancreatic ductal fluid 

samples with different diagnoses, the identified protein dataset was further filtered to 
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achieve a 10% peptide-level false discovery rate at 1% protein-level false discovery rate. 

After filtering, the resulting dataset was examined manually to eliminate proteins that 

were only identified by one peptide or in only one patient. In the final quantified dataset, 

a total of 47 proteins were quantified with 590 peptides and 46172 spectra across three 

diagnoses and normal controls (Fig. 3.2).  Specifically, 22 proteins were quantified with 

300 peptides and 8674 spectra in normal samples; 19 proteins were quantified with 215 

and 3774 spectra in pancreatitis samples; 35 proteins were quantified with 414 peptides 

and 18632 spectra in IPMN samples; and 36 proteins were quantified with 422 peptides 

and 15092 spectra in pancreatic cancer samples.   

 

Figure 3.2. Data filter process flow chart.  

368 proteins were identified by Sequest after filtering at 1% protein-level false-discovery 

rate (FDR). The dataset was then further filtered at 10% peptide-level FDR and 1-hit 

proteins were eliminated. In the resulting dataset, only proteins that were observed in at 

least 2 out of 3 patients were considered for quantification, and finally 47 proteins were 

quantified. 

 

By comparing the dNSAF values of proteins that were commonly observed in the 

samples from normal control and the three diagnoses, we were able to discover the 

differential expression of 22 proteins in our dataset (Fig. 3.3, Table 3.4). In comparison to 

normal controls, several proteins, such as REG1A, alpha-amylase, trypsin-1, 
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chymotrypsinogen B, and glycoprotein GP2-1, showed significant elevation in IPMN and 

cancer samples.  Several other proteins, such as pancreatic amylase, elastase 2A, 3B and 

3A, carboxypeptidase A1, and pancreatic lipase-related protein 2, were downregulated in 

IPMN and cancer samples compared to normal controls. We also found several proteins 

that were uniquely expressed in IPMN and/or cancer samples on the quantifiable level 

(Table 3.5), such as REG1B, REG3A, CCDC132, phospholipase A2, and elastase 2B. As 

we re-examined the uniquely expressed proteins on the identifiable level, we discovered 

that even though some of those proteins were unique in IPMN and/or cancer samples on 

quantifiable level, they may be observed universally in the other biological samples on 

identifiable level (Table 3.6). For example, REG1B was only seen in two cancer patients 

on the quantifiable level, however, it was identified in patients with all three diagnoses 

and normal controls, suggesting the protein is likely present in all samples but 

upregulated in cancer samples. 

Biological variation was also investigated by calculating the standard deviation 

across the biological triplicates based on the normalized spectral counts of each 

quantified protein (Figure 3.3, Table 3.7). The pronounced biological variances 

represented by the data are likely contributed by the differences of individual patients, 

such as gender, age, blood type and other medical conditions. The statistical data also 

indicates the need to increase the number of biological samples, and possibly to further 

stratify the samples based on multiple biological and medical factors instead of solely on 

diagnosis.      
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Figure 3.3. Variations in protein expression for pancreatitis, IPMN, and cancer samples.   

Protein expression variation in pancreatitis, IPMN, and cancer samples in reference to 

normal controls.  The ratios are calculated based on dNASF values of quantified proteins 

and are plotted on a Log2 scale.   

 

Orthogonal Validation of Protein Identifications 

Antibodies were obtained for a subset of candidate biomarkers in order to validate 

the proteomic results by Western blotting (Fig. 3.4).  While normal samples demonstrated 

2 major bands for REG1A, additional bands were observed in the cancer sample (Fig. 

3.4A).  A similar pattern was observed in REG1B and REG3A blots with more prominent 

increases in abundance and multiple bands present in cancer samples (Fig. 3.4B,C).  The 

molecular weight heterogeneity of REG proteins is believed to result from glycoform 

heterogeneity and proteolytic processing27. Distinctive bands of immunoreactive 

phospholipase A2 were observed at 32 kDa (full length) and 16 kDa (mature) in the 

cancer samples and were absent in the normal controls (Fig. 3.4D).  Therefore, 

phospholipase A2 (PLA2) can be considered as a positive marker for pancreatic 
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malignancy.  In contrast to REG proteins and PLA2, immunoreactive bands of pancreatic 

lipase-related protein 2 (LIPR2) at 37 kDa (mature) and at 52 kDa (full length) were 

decreased in cancer (Fig. 3.4E).  Therefore, REG proteins and PLA2 may be positive 

indicators for pancreatic cancer while LIPR2 may be considered a negative indicator. 

 

Figure 3.4. Validation of proteomic data by immunoblotting.  Pancreatic ductal fluid 

samples with diagnosis of pancreatic cancer (C5, C6, C7, C8, and C9) were compared to 

normal controls (N4, N5, N6, N7, and N8) by probing with respective antibodies: (A) 

REG1A, (B) REG1B, (C) REG3A, (D) Phospholipase A2 (PLA2), and (E) Pancreatic 

lipase-related protein 2 (LIPR2). Numbers on the left side of the blots indicate molecular 

weights in kDa. The split panels in A and D were originally part of the same blot, one for 

A and one for D.  The lanes of interest were originally separated by irrelevant samples 

and have been brought together to facilitate direct comparison.   

 

Total N-linked Glycan Profile 

A total of 80 glycans were analyzed by NSI-MS/MS (nanospray ionization-

MS/MS) and MSn as needed to elucidate the structural features of N-linked glycans 
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harvested from 3 normal, 2 IPMN, and 4 pancreatic cancer ductal fluid samples.  

Comparisons of the prevalence of all N-linked glycans did not detect glycan markers or 

even glycan patterns that could distinguish cancer from normal (Figure 3.5A).  However, 

the total glycan profiles for the samples analyzed were dominated by a small set of 

glycans whose prevalences ranged from 6 – 38% of the total profile.  These driver 

glycans overwhelmed the contribution of less prevalent glycans and did not sort with 

normal, cancer, or IPMN, nor were they correlated with patient gender or age (Table 3.8).  

After removing the driver glycans from the total profile and recalculating the prevalence 

of the remaining glycans, differences in the profile of minor glycans became apparent.  

By Wilcoxon rank-sum test, 9 of the remaining glycans showed increased or decreased 

prevalence (p ≤ 0.05) in cancer or IPMN compared to normal (Fig. 3.6).  Several of the 

discriminating glycan structures carry blood group epitopes of the H, Lewis X/A or 

Lewis Y/B type.  However, in their entirety, blood group epitopes or secretor status were 

not able to sort the samples by diagnosis, indicating that blood group by itself does not 

account for the observed segregation of cancer, normal, and IPMN (Figure 3.5B).   

A striking division of the 9 samples was detected by comparing the prevalences of 

the driver glycans.  All of the analyzed samples could be assigned to 1 of 3 groups based 

on driver glycan prevalence:  S-Group, dominated by sialylated glycans; F-Group, 

dominated by fucosylated glycans; M-Group, characterized by a mixture of the dominant 

S and F glycans (Fig. 3.7, 3.8, and 3.9).  Within each group, N-linked glycan profiles 

segregated normal from cancer (Fig. 3.10 and 3.11).  For the S-group, cancer samples 

showed increases in the major driver glycans (structures 34, 50, 55) as well as increases 

in branching and additional sialylation of less prevalent glycans.  For the M-group, an 
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obvious trend was not discernable among the major driver glycans.  However, among the 

less prevalent glycans in the M-group, increases in high mannose (structures 4, 6, 13, 22, 

21) and less complex glycans (structures 9, 17) mirrored decreases in highly branched, 

fully galactosylated and fucosylated glycans in the cancer and IPMN samples.  For the F-

group, the cancer sample showed decreases in the major driver glycans (structures 26, 33, 

40) as well as increases in glycan branching, outer arm fucosylation, and poly-LacNAc 

extension (structures 75, 79, 81, 82, 85).  The glycan structures that define the S-, M-, 

and F-groups (Fig. 3.7) are not biosynthetic precursors for the glycan structures that 

differentiate cancer from control samples within each group (Fig. 3.10 and 3.11), 

indicating that the generation of putative marker glycans does not simply reflect the up-

regulation of a dominant glycan processing pathway.   

Interestingly, the glycan profiles of the IPMN samples tested here exhibited 

characteristics of normal and cancer samples.  Consequently, the IPMN sample assigned 

to the F-group clustered with normal and the IPMN sample in the M-group clustered with 

cancer.  The segregation of the IPMN samples likely reflects the transitional nature of 

this diagnosis, with IPMN patients exhibiting a continuum of clinical presentation, 

including the possible progression to adenocarcinoma.  
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Figure 3.5. Heirarchical clustering of all detected glycans and blood group antigens.  

(A) The prevalence of glycans in the total profile of all detected glycans does not 

discriminate between cancer, IPMN, and normal.  

(B) Glycans bearing blood group epitopes also do not discriminate between cancer, 

IPMN, and normal samples. Glycan notation, numeric assignments, and clustering 

representations are as described in the legend to Figure 5 in the main text. 
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Figure 3.6.  N-linked glycans that differentiate between normal and cancer/IPMN 

identified from whole glycan profiles.   

A set of 6 dominant glycans (see Fig. 3.7) was removed from the whole profile and the 

prevalence of the remaining 79 glycans was recalculated for each sample.  After 

recalculation, 9 glycans exhibited statistically significant changes comparing cancer (C1 - 

C4) and IPMN (IP1 – IP2) patients to normal (N1 – N3, Wilcoxon rank-sum p ≤ 0.05).  

Hierarchical clustering of the prevalences of these 9 glycans demonstrates that their 

prevalences segregate normal ductal fluid glycan profiles from the glycan profiles of 

cancer or IPMN.  Graphic representation of glycan structures are in accordance with the 

guidelines proposed by the Consortium for Functional Glycomics (CFG):  blue square, N-

acetylglucosamine (GlcNAc); green circle, mannose (Man); yellow circle, galactose 

(Gal); red triangle, fucose (Fuc); pink diamond, sialic acid as N-acetylneuraminic acid 

(NeuAc); light blue diamond, sialic acid as N-glycolylneuraminic acid (NeuGc).  Glycan 

numbers are provided as arbitrary identifiers and refer consistently to the same structure 

throughout the manuscript and in the supplementary information (figures and tables).  

Brackets across the top of the cluster diagram provide a graphic presentation of the 

relatedness of the profile defined by each column.  Thus, the total path length separating 

any two samples is directly proportional to the similarity of the glycan profile presented 

by those samples.  For instance, N1 and N3 are more similar to each other than either is to 

N2 and all of the N samples are more similar to each other than any of the IP or C 

samples. 
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Figure 3.7.  Dominant glycans define three distinct sample groups.   

Analysis of 9 pancreatic ductal fluid samples identified 6 glycans that dominate the total 

glycan profiles of discrete sample subsets.  These driver glycans defined three groups:  S-

group, dominated by sialylated glycans; F-group, dominated by fucosylated glycans; and 

M-group, presented a balance of the S- and F-group drivers.  Hierarchical clustering 

robustly segregates S-, M-, and F-group samples.  N1, N2, and N3: normal samples. C1, 

C2, C3, and C4: cancer samples.  IP1, and IP2: IPMN samples.  Glycan notation, numeric 

assignments, and clustering representations are as described in the legend to Figure 5.   
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Figure 3.8.  

Deconvoluted mass 

spectra of N-glycans 

released from pancreatic 

ductal fluid.  

Full MS RAW data was 

collected by positive FT 

ion mode in an Orbitrap 

Disovery using nanospray 

direct infusion. The 

resulting data was de-

isotoped and 

deconvoluted by the 

Xtract functionality of the 

Xcalibur data package 

(Thermo Fisher 

Scientific). Three patterns 

of dominant glycan 

profiles were observed, 

defining the S-Group, M-

Group, and F-Group 

samples. N, normal; C, 

cancer; IP, IPMN. Peaks 

corresponding to the 

driver glycans for each 

class are annotated by 

structure. 
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Figure 3.9.  Additional annotation of mass spectra of N-glycans released from pancreatic 

ductal fluid harvested from normal patients representing the S-, M-, and F-Groups. 

To facilitate the comparison of total N-linked glycomic differences between the groups, 

full MS spectra from one representative individual of each group was de-isotoped, 

deconvoluted, and annotated in greater detail than is presented in Figure 3.8. 
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Figure 3.10.  Glycan structures that distinguish cancer from normal within sample 

groups.   

For each of the three groups defined by driver glycans (see Fig. 6), the 6 driver glycans 

were removed and the prevalence of the remaining glycans was recalculated.  

Subsequently, glycan prevalences were compared within each group.  Glycans that did 

not distinguish between normal and cancer (≤ 2-fold increase or decrease) within a group 

were removed and the prevalences of the remaining glycans were recalculated.  

Hierarchical clustering of the residual glycan pool identified glycan subsets that were 

increased or decreased comparing normal to cancer. N1, N2, and N3: normal samples. 

C1, C2, C3, and C4: cancer samples.  IP1, and IP2: IPMN samples.  Glycan notation, 

numeric assignments, and clustering representations are as described in the legend to 

Figure 3.6.   

  



 

68 

 

 

Figure 3.11.  Summary of group-specific changes in glycan structural features that 

discriminate normal from cancer.   

For S-group samples, cancer glycan profiles are characterized by increased driver glycan 

expression and decreased high-mannose glycans.  For F-group samples, driver glycans 

are decreased in cancer samples and glycan complexity is increased.  For M-group 

samples, driver glycan expression is not significantly altered, but high-mannose 

structures are increased and the most complex glycan structures are decreased in 

prevalence.  Thus, each group exhibits unique changes in ductal fluid glycan expression 

when comparing normal to cancer.  N1, N2, and N3: normal samples. C1, C2, C3, and 

C4: cancer samples.  IP1, and IP2: IPMN samples. 
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Discussion 

Glycomic and Proteomic Biomarker Strategy 

The identification of proteomic markers for human disease holds promise for 

improving early diagnosis and for enhancing clinicians’ ability to monitor treatment 

efficacy.  Glycomic markers offer similar opportunities and several are currently in 

service as cancer diagnostics (CA125, CA19-9, core fucosylation of αFP).  We have 

proposed that a marker or set of markers that reports changes in both protein and glycan 

composition could potentially yield higher sensitivity and specificity than a single protein 

or glycan marker.  This is especially true in a disease that affects a small percentage of 

the population such as pancreatic cancer in the United States.  With an incidence rate of 

approximately 1 in 10,000 Americans, a screen with a 1% false-positive rate and 1% 

false-negative rate of one million Americans would be expected to come back with 

10,099 positive identifications.  99 of these would be expected to be true-positives (from 

an expected 100 in the population group) while 10,000 of them would be false-positives.  

This simple example illustrates the need for multiplexing and orthogonal analyses.   

Predictive protein glycosylation changes might be found on proteins that are 

themselves biomarkers or might be detected as a change to the whole glycan profile of a 

biological sample.  Here, we have concentrated on defining the scope of the proteomic 

and glycomic changes associated with pancreatic cancer, as detected in ductal fluid.  Our 

quantitative proteomic results identified several proteins that are distinctively upregulated 

or downregulated in pancreatic cancer and/or IPMN samples, and some proteins that are 

only detected in cancer.  Our analysis of N-linked glycans released from ductal fluid 

glycoproteins revealed unexpected diversity and interesting commonalities between 
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subjects and also detected changes in glycan expression that correlate with pancreatic 

cancer.  Future work will investigate whether the glycosylation changes that we have 

detected can be mapped to the putative glycoprotein markers that we have identified.  

The current work (using a training set of samples) establishes important parameters for 

validating candidate glycomic and proteomic biomarkers (using a confirmatory set of 

samples) and for interpreting and expanding this biomarker discovery effort.   

Secreted Pancreatic Enzyme Proteomics 

The ductal fluid proteins most predictive of cancer in our training set are 

primarily secreted proteins that possess degradative enzyme activities consistent with the 

exocrine function of the pancreas.  A subset of lipases, glycosidases, and proteases 

exhibit changes ranging from a 6-fold increase to a 22-fold decrease in cancer.  We 

detected decreased pancreatic amylase (AMYP) in cancer ductal fluid, consistent with 

previous studies in a rat model that demonstrated significant loss of amylase from 

pancreatic tumor cells by immunocytochemistry28.  Likewise, decreased levels of elastase 

activity in duodenal aspirates have been reported following secretin-induced secretion in 

chronic pancreatitis, pancreatic cancer, and liver cirrhosis patients compared to normal 

controls29.  Consistent with this result, and with another recent proteomic analysis of 

pancreatic ductal fluid by Gao, et al., we detected decreased elastase proteins (ELA2A, 

3A, and 3B) in cancer10.  However, increased levels of elastase 3b (formerly designated 

elastase 1) in pancreatic cancer tissue samples have been observed by several groups30-35.  

Considering the full range of proteomic analyses completed to date, the utility of elastase 

3b as a biomarker for pancreatic cancer is in doubt, especially in light of its reported 

changes in pancreatitis as well as cancer.  Pancreatic lipase-related protein 2 (LIPR2), 
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which is the major colipase-dependent lipase in the pancreas36, has been implicated in 

tumor cell killing through apoptotic and necrotic death induced by high levels of 

unsaturated fatty acids37-44.  Consistent with the proteomic results presented here, 

pancreatic lipase immunoreactivity in serum was shown to decrease in pancreatic 

cancer45.  However, the recent proteomic characterization by Gao, et al. reported 

increased LIPR1 in cancer and failed to detect LIPR2, while we detect no change in 

LIPR1 and decreased LIPR210.   

The proteomic analysis by Gao, et al. also reported increased serine proteinase-2 

(PRSS2, trypsin 2) in cancer, a protein that we failed to detect, but our analysis did 

identify PRSS1 (trypsin 1) as a significantly increased candidate biomarker for cancer10.  

Disagreements between the current study and the results of Gao, et al. likely reflect the 

very different techniques used (2D-gel electrophoresis followed by MALDI-TOF/MS 

versus LC-iontrap MS/MS).  Another protein that we measured to be increased in 

pancreatic cancer is phospholipase A2 (PLA2), which has been previously associated 

with breast, lung and prostate cancers46-56.  We were unable to detect PLA2 in normal 

ductal fluid, although it was present in ductal fluid of cancer, IPMN, and pancreatitis 

patients, thereby failing to discriminate based on presence between pancreatic disease 

types.  Therefore, among the major secreted enzymes detected in pancreatic ductal fluid, 

we have identified increased AMYP and PRSS1, as well as decreased LIPR2 as candidate 

biomarkers worthy of further validation.   

Non-enzyme Pancreatic Proteomics 

Non-enzyme proteins, such as GP2-1, CCDC132, and REG family members also 

show significant changes in pancreatic ductal fluid.  GP2-1 is a major glycoprotein of 
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pancreatic acinar cell secretory granules and our analysis demonstrates that it is 

significantly increased in ductal fluid of IPMN and cancer patients compared to normal57.  

GP2-1 exists as a GPI-anchored form and as a truncated form that is secreted into the 

ductal fluid.  GP2-1 function is incompletely characterized but the protein has significant 

similarity to uromodulin (Tamm-Horsfall protein), a kidney protein secreted into the 

urine and associated with renal innate immunity and ionic homeostasis58.  Similarly, the 

coiled-coil domain-containing protein 132 (CCDC132) was only quantifiable or 

detectable in cancer and in one IPMN sample in our dataset; it was not detected in normal 

ductal fluid.  Like GP2-1, the function of CCDC132 is currently unknown, but this 

cytoplasmic phosphoprotein possesses an N-terminal domain with homology to vacuolar 

sorting factors, suggesting a role in protein trafficking and association with secretory or 

transport vesicles59.  The REG proteins are a group of structurally related proteins that 

stimulate proliferation and differentiation of liver, pancreatic, gastric, and intestinal cell 

populations27.  Members of the REG protein family have been linked to gastric, liver, and 

pancreatic cancer and we detected increased REG1a, REG1b, and REG3a proteins in 

ductal fluid from cancer patients60-63.  Interestingly, we not only detected changes in REG 

protein amounts, but also in REG protein glycoform distribution by Western blotting.  In 

general, REG proteins exhibited greater heterogeneity in cancer than in normal ductal 

fluid.  The differences that generate this heterogeneity are currently uncharacterized and 

may reflect distinct glycosylation profiles or differential proteolyitic processing of the 

apoproteins.  Therefore, among the non-enzyme proteins that we detected in pancreatic 

ductal fluid, we have identified increased GP2-1, CCDC132, REG1a, REG1b, and 
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REG3a, as well as increased heterogeneity of REG proteins as candidate biomarkers 

requiring further validation.   

N-linked Glycomics of Pancreatic Cancer 

Changes in N-linked protein glycosylation have been described in many cancers 

including pancreatic cancer, in which altered glycosylation of serum proteins has been 

demonstrated64-67.  The serum proteins previously reported to exhibit altered N-linked 

glycosylation in pancreatic cancer are acute phase proteins normally produced by 

hepatocytes, not pancreatic cells, in response to systemic inflammation.  By monitoring 

the glycan profile of pancreatic ductal fluid, we have accessed the secretory products of 

normal and cancerous pancreatic cells in the compartment of closest proximity to their 

biosynthetic origin.  Our purpose was to assess glycan profiles in a biological sample that 

would provide the greatest opportunity to detect relevant changes.  Surprisingly, our N-

linked glycomic analysis revealed 3 distinct glycosylation signatures within the 9 samples 

analyzed.  Each signature was defined by a set of highly prevalent driver glycans.   

These signatures were independent of cancer diagnosis, blood group status, and 

any other characteristic captured by our sample collection protocol, including age and 

sex.  However, the structural features of the driver glycans that define these groups 

suggest that expression of the Secretor α1-2 Fucosyltransfease (Se FucT), which 

generates blood group H epitopes in epithelial cells, might account for some of the 

differences.  If true, the S-group could be assigned as Se-/Se-, the M-group as Se-/Se+, 

and the F-group as Se+/Se+.  These assignments make sense when considering the 

reciprocal gradation of fucosylation/sialylation across the groups; decreasing Se FucT 

activity increases the prevalence of unmodified terminal Gal residues that are substrates 
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for sialyltransferases.  But the changes we observed in the total glycan profiles of cancer 

samples within each group indicate a more complex scenario.  In particular, it is difficult 

to propose how altered terminal fucosylation might affect branching, which we detect as 

increased in the S- and F-groups but decreased in the M-group.  Likewise, increased 

poly-LacNAc in the F-group was countered by decreased poly-LacNAc in the M-group.  

Such divergent changes in cancer glycan expression cannot be linked simply to the level 

of active Se FucT.  Rather, the divergent glycan profiles must reflect underlying changes 

in protein glycosylation that accompany cancer progression.   

It remains to be determined whether all human samples can be clustered into these 

three groups or whether additional glycan signatures will be defined by other principal 

components as we increase the statistical power of our analysis.  No analogous 

balkanization of glycan profiles has been described for serum glycomics, perhaps 

reflecting the more restricted cellular origin of pancreatic ductal fluid in comparison to 

systemically circulating blood.  Regardless of its origin, the sorting of human subjects 

into discrete glycomic bins provides unique opportunities to pursue personalized glycan-

based diagnostics.  Our data indicates that proteomic and glycomic analysis of pancreatic 

ductal fluid must first assign samples to a driver glycan class before attempting to 

decipher the relevance of candidate glycoproteomic markers.  On one hand, this 

classification requires that more samples must be characterized to achieve statistical 

power within each population. But, once sorted, glycomic and proteomic differences may 

provide markers capable of discriminating clinical diagnoses with greater specificity and 

sensitivity than is currently available.   
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Conclusions 

Increases (AMYP, PRSS1) and decreases (LIPR2) of secreted pancreatic enzymes 

and increases of non-enzyme pancreatic proteins (GP2-1, CCDC132, REG1a, 1b, 3a) 

were detected in cancerous pancreatic ductal fluid in comparison to normal pancreatic 

ductal fluid in a small training set of samples.  In addition, heterogeneity of the REG 

proteins was also found to increase in cancerous ductal fluid.  A comprehensive analysis 

of the N-linked glycome of pancreatic ductal fluid identified unexpected clustering of 

patient samples into discrete subgroups that are enriched in sialylation or fucosylation, or 

are mixed with respect to both types of glycans independent of diagnosis.  Within each 

group, changes in glycan prevalences are detected comparing normal to cancer albeit on a 

small number of samples.  But, across groups, the glycan expression changes are 

different, even opposite in some cases.  Therefore, interpretation of glycomic and 

glycoproteomic profiles must consider the heterogeneity of glycosylation across human 

populations before assessing the meaningfulness of changes in candidate biomarkers.  

The proteomic and glycomic features extracted from the training set of samples reported 

here establish important parameters for expanded validation and emphasize the need for 

large sample sets.   

  



 

76 

Table 3.1.   

Number of identifiable and quantifiable proteins in pancreatic ductal fluid.   

 

Identified Proteins 

Diagnosis Proteins Peptides Spectral  

counts 

Single-hit  

proteins 

Cancer 213 1094 18206 77 

IPMNa 149 831 22641 57 

Pancreatitis 163 769 6645 61 

Normal 136 775 11635 49 

Combined 451 2082 59127 184 

     

Quantified Proteins 

Diagnosis Proteins Peptides Spectral  

counts 

Unique  

proteins 

Cancer 36 422 15092 7 

IPMN 35 414 18632 8 

Pancreatitis 19 215 3774 1 

Normal 22 300 8674 0 
aIPMN, Intraductal papillary mucinous neoplasm 

 

 

 

 

Table 3.2.  

List of proteins identified in pancreatic ductal fluid samples from different diagnoses. 

All proteins identified with a protein FDR of <1% for each of the 4 diagnoses. 

*table is too large for this thesis, please see original document at Journal of Proteome 

Research 2014 13 (2), 395-407  

 

 

 

 

Table 3.3.  

List of peptides identified in pancreatic ductal fluid samples.  

The dataset was filtered under a protein FDR of 1%. The presented parameters include 

the Xcorr scores, mass differences, charge states, and spectral counts for each peptide. 

*table is too large for this thesis, please see original document at Journal of Proteome 

Research 2014 13 (2), 395-407  
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Table 3.4.   

Quantified pancreatic ductal fluid proteins differentially expressed in pancreatitis, IPMN, 

and cancer relative to normal.  
Uniprot 

Accession 

Abbreviation Protein Name Gene 

Name 

Protein 

Length 

(AA) 

Protein 

Weight 

(kDa) 

PT/Na 

(log2 

of 

ratio) 

IP/N 

(log2 

of 

ratio) 

C/N 

(log2 

of 

ratio) 

P02787 TRFE Serotransferrin TF 698 76.982 3.49 NQb 

in IP 

2.54 

P04118 COL Colipase CLPS 112 11.928  0.44 0.04 

P04745 AMY1 Alpha-amylase 1 AMY1A 511 57.713 -0.60 2.30 2.95 

P04746 AMYP Pancreatic alpha-amylase AMY2A 511 57.652 1.05 -0.24 -1.96 

P05451 REG1A Lithostathine-1-alpha REG1A 166 18.701 0.23 0.52 1.13 

P07477 TRY1 Trypsin-1 PRSS1 247 26.523 0.37 1.11 1.48 

P08217 ELA2A Elastase-2A ELA2A 269 28.851 -0.33 -0.29 -1.65 

P08861 ELA3B Elastase-3B ELA3B 270 29.256 -2.39 -1.17 -1.93 

P09093 ELA3A Elastase-3A ELA3A 270 29.438 -0.23 -0.75 -0.67 

P15085 CBPA1 Carboxypeptidase A1 CPA1 419 47.093 -0.39 -0.73 -0.70 

P15086 CBPB1 Carboxypeptidase B CPB1 417 47.320 -0.32 -0.80 0.08 

P16233 LIPP Pancreatic triacylglycerol 

lipase 

PNLIP 465 51.106 0.57 0.88 0.18 

P17538 CTRB1 Chymotrypsinogen B CTRB1 263 27.834 0.54 0.86 0.78 

P19835-1 CEL Isoform Long of Bile salt-

activated lipase 

CEL 742 78.278 -0.01 -0.19 -0.72 

P19961 AMY2B Alpha-amylase 2B AMY2B 511 57.655 NQ in 

PT 

1.30 NQ in 

C 

P48052 CBPA2 Carboxypeptidase A2 CPA2 417 46.781 NQ in 

PT 

0.31 -0.54 

P54315-1 LIPR1 Isoform 1 of Pancreatic 

lipase-related protein 1 

PNLIPRP1 467 51.797 NQ in 

PT 

-0.20 NQ in 

C 

P54317 LIPR2 Pancreatic lipase-related 

protein 2 

PNLIPRP2 469 51.895 NQ in 

PT 

NQ in 

IP 

-4.56 

P55259-1 GP2-1 Isoform 1 of Pancreatic 

secretory granule membrane 

major glycoprotein GP2 

GP2 537 59.424 NQ in 

PT 

2.87 3.73 

P55259-3 GP2-3 Isoform Alpha of Pancreatic 

secretory granule membrane 

major glycoprotein GP2 

GP2 534 59.071 NQ in 

PT 

1.37 -0.65 

Q3SY19 PRSS1 PRSS1 protein PRSS1 247 26.521 -0.20 0.50 1.98 
aN: Normal; PT: Pancreatitis; IP: Intraductal papillary mucinous neoplasm; C: Cancer. 
bNQ:  Not quantifiable in the indicated diagnosis.  

 

 

 

Table 3.5.  

Quantified pancreatic ductal fluid proteins differentially expressed in IPMN and cancer 

relative to pacreatitis.  

 
Uniprot 

Accession 

Abbreviation Protein Name Gene 

Name 

Protein 

Length 

(AA) 

Protein 

Weight 

(kDa) 

IP/PTa 

(log2 of 

ratio) 

C/PT 

(log2 of 

ratio) 

P68871 HBB Hemoglobin subunit 

beta 

HBB 147 15.970 -2.89 -1.00 

A8K008 A8K008 cDNA FLJ78387 NAb 472 51.546 NQc in IP -2.84 

Q5EFE6 Q5EFE6 Anti-RhD monoclonal 

T125 kappa light chain 

NA 234 25.664 NQ in IP -0.57 

aPT: Pancreatitis; IP: Intraductal papillary mucinous neoplasm; C: Cancer. 
bNA:  None assigned. 
cNQ:  Not quantifiable in the indicated diagnosis. 
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Table 3.6.   

Pancreatic ductal fluid proteins unique to each diagnosis.   

 
   Quantifiable In Identifiable In 

   Ca IP C IP  PT N 

Abbreviation Protein Name Gene Name (# Patients) (# Patients) 

CO3 Complement C3 C3 2  0 3  0 1  0 

IGHG3 Ig gamma-3 chain C region IGHG3 2  0 2  1  0 0 

REG1B Lithostathine-1-beta REG1B 2  0 2  1  1 1 

CC132 Isoform 1 of Coiled-coil domain-containing protein 132 CCDC132 2  0 2  1  0 0 

A0A5E4 Putative uncharacterized protein NAb 2  0 2  1  1  1 

Q569I7 Putative uncharacterized protein NA 2  0 2  1  1 0 

Q6ZP64 CDNA FLJ26451 fis, clone KDN03041 NA 2  0 2  0 0 0 

PA21B Phospholipase A2 PLA2G1B 2  3  2  1  2  0 

ELA2B Elastase-2B ELA2B 2  3  3  1  1  0 

TRY3 Isoform A of Trypsin-3 PRSS3 2  3  3  1  1  0 

HBA Hemoglobin subunit alpha HBA1 2  3 3 1 0 0 

REG3A Regenerating islet-derived protein 3 alpha REG3A 2 2 2 0 0 0 

CTRC Chymotrypsin-C CTRC 2 3 3 1 1 0 

aN: Normal; PT: Pancreatitis; IP: Intraductal papillary mucinous neoplasm; C: Cancer. 
bNA:  None assigned. 

 

 

 

Table 3.7.  

List of proteins quantified in pancreatic ductal fluid samples from different diagnoses.  

Proteins with a protein FDR of <1% were further filtered at peptide FDR of <10%. Only 

proteins identified by more than one peptide that were present in more than one sample 

with the same diagnosis were retained. *table is too large for this thesis, please see 

original document at Journal of Proteome Research 2014 13 (2), 395-407  
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Table 3.8.  

Patient information for samples used in this study.  

The approved protocol for collecting patient information for this study captured 

diagnosis, age, and sex for each patient. Due to limited sample amount, not all samples 

could be analyzed by all assays. The analyses performed on each sample are indicated. 
 

Diagnosis Patient identifier Age Sex Analysis* 

Normal N1 72 male Gly 

N2 42 female Gly, Pro 

N3 63 female Gly, Pro 

N4 64 female WB 

N5 47 male WB 

N6 34 female WB 

N7 33 female WB 

N8 31 female Pro, WB 

Pancreatitis PT1 56 male Pro 

PT2 41 female Pro 

PT3 47 female Pro 

IPMN IP1 82 male Gly, Pro 

IP2 72 male Gly, Pro 

IP3 77 female Pro 

Cancer C1 79 male Gly 

C2 61 female Gly 

C3 60 female Gly 

C4 54 male Gly 

C5 60 male WB 

C6 72 female Pro, WB 

C7 66 male Pro, WB 

C8 71 male Pro, WB 

C9 66 female Pro, WB 

*Gly, Glycomics; Pro, Proteomics; WB, western blot 
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Table 3.9. N-linked glycans identified in pancreatic ductal fluid samples.  

The monosaccharide composition and glycan prevalences are presented for each normal, 

cancer, and IPMN sample analyzed. Prevalences are presented as “% Total Profile,” 

calculated by dividing the signal intensity at the indicated mass by the total intensity for 

all detected glycans. 
 
    Monosaccharide Composition % Total Profile 

Glyca

n # 

Mol 

Weigh

t 

Fu

c 

Ne

u 

Ac 

He

x 

Hex 

NA

c 

Ne

u 

Gc N1 N2 N3 C1 C2 C3 C4 IP1 IP2 

1 1141.6 1 0 2 2 0 5.15 0.00 0.27 0.36 0.29 0.36 0.00 

0.0

0 0.00 

2 1345.7 1 0 3 2 0 0.91 0.00 0.00 0.00 0.00 0.00 0.00 

0.0

0 0.00 

3 1560.8 2 0 2 3 0 0.00 0.00 0.00 0.00 0.15 0.00 0.00 

1.5

6 0.00 

4 1579.8 0 0 5 2 0 4.75 1.21 1.58 3.51 1.82 3.58 0.33 

2.8

2 0.74 

5 1590.8 1 0 3 3 0 0.50 0.00 0.00 0.00 0.00 0.25 0.00 

0.0

0 0.00 

6 1783.9 0 0 6 2 0 3.77 0.61 0.29 3.11 3.06 4.09 0.34 

1.9

3 1.84 

7 1794.9 1 0 4 3 0 0.38 0.61 0.73 0.00 0.00 0.00 0.38 

0.3

7 0.58 

8 1824.9 0 0 5 3 0 0.25 0.00 0.00 0.00 0.00 0.45 0.33 

0.0

0 0.74 

9 1835.9 1 0 3 4 0 4.66 0.00 0.00 4.33 3.59 2.32 0.00 

0.0

0 0.00 

10 1865.9 0 0 4 4 0 0.00 0.00 1.14 0.16 0.00 0.00 1.84 

0.3

6 3.22 

11 1907.0 0 0 3 5 0 0.20 0.79 0.71 0.00 0.54 0.00 1.19 

1.3

6 0.81 

12 1969.0 2 0 4 3 0 0.65 0.00 0.00 0.50 0.00 0.00 0.58 

0.3

5 0.00 

13 1988.0 0 0 7 2 0 0.71 0.00 0.00 0.43 0.71 1.77 0.00 

0.0

0 0.00 

14 1999.9 1 0 5 3 0 0.00 0.77 0.89 0.19 0.00 0.37 0.78 

0.0

0 0.86 

15 2010.0 2 0 3 4 0 0.00 0.47 0.00 0.00 0.00 0.00 0.00 

0.7

1 0.00 

16 2040.0 1 0 4 4 0 1.62 6.04 4.60 1.87 0.88 1.80 3.44 

2.3

3 4.28 

17 2070.0 0 0 5 4 0 0.45 3.74 4.66 0.27 0.23 8.99 5.73 

1.9

7 8.14 

18 2081.0 1 0 3 5 0 1.92 0.66 0.63 0.79 0.72 1.18 0.00 

1.0

9 0.71 

19 2111.1 0 0 4 5 0 0.41 1.04 0.91 0.00 0.43 2.88 1.56 

2.5

3 0.96 

20 2156.1 1 1 4 3 0 2.33 0.00 0.00 0.26 0.23 0.79 0.00 

1.2

6 0.00 

21 2186.1 0 1 5 3 0 0.00 0.43 0.00 0.60 0.60 0.43 0.00 

0.0

0 0.00 

22 2192.1 0 0 8 2 0 1.38 0.00 0.35 0.45 0.43 1.42 0.48 

0.5

8 0.49 

23 2203.1 1 0 6 3 0 0.00 0.90 1.60 0.00 0.00 0.00 1.34 

0.0

0 0.87 

24 2214.1 2 0 4 4 0 0.31 1.25 0.94 0.00 0.00 0.00 1.55 

1.4

1 1.35 

25 2227.1 0 1 4 4 0 0.56 0.53 0.42 0.56 0.87 0.45 0.33 

0.6

0 0.00 

26 2244.1 1 0 5 4 0 1.03 

12.3

3 

23.1

9 1.55 2.00 9.43 

10.6

4 

7.2

4 

13.4

9 

27 2285.2 1 0 4 5 0 1.93 1.28 2.29 1.20 0.69 2.61 1.83 

3.6

7 1.76 
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28 2316.2 0 0 5 5 0 0.00 0.00 0.00 0.19 0.21 1.33 0.00 

1.7

4 0.00 

29 2388.2 3 0 4 4 0 0.00 1.15 0.45 0.00 0.00 0.00 0.46 

0.0

0 0.00 

30 2390.2 0 1 6 3 0 0.00 1.15 0.51 0.53 0.42 0.59 0.00 

0.0

0 0.38 

31 2396.2 0 0 9 2 0 0.90 0.00 0.00 0.51 0.00 1.10 0.29 

0.3

1 0.30 

32 2401.2 1 1 4 4 0 1.29 0.97 0.36 0.47 0.00 0.64 0.38 

0.5

7 0.00 

33 2418.2 2 0 5 4 0 0.65 7.63 

17.5

9 0.59 0.47 3.56 9.21 

4.9

9 9.15 

34 2431.2 0 1 5 4 0 3.16 0.44 0.50 4.50 5.71 2.15 0.73 

2.4

0 0.69 

35 2448.2 1 0 6 4 0 0.04 0.83 1.39 0.11 0.00 0.77 0.09 

0.9

6 0.31 

36 2459.2 2 0 4 5 0 0.90 0.64 0.92 0.00 0.18 0.59 1.30 

2.3

8 0.59 

37 2473.2 0 1 4 5 0 0.00 0.00 0.00 0.28 0.76 0.00 0.00 

0.0

0 0.00 

38 2489.2 1 0 5 5 0 0.70 1.15 1.34 0.48 0.36 3.25 1.46 

2.5

8 1.44 

39 2519.3 0 0 6 5 0 0.00 0.00 0.76 0.21 0.18 0.76 0.00 

0.0

0 1.04 

40 2592.3 3 0 5 4 0 0.63 5.28 7.08 1.98 0.00 1.13 7.64 

4.9

3 6.21 

41 2605.3 1 1 5 4 0 2.10 1.74 0.44 2.89 1.43 1.40 0.00 

4.0

5 0.00 

42 2622.3 2 0 6 4 0 0.19 0.44 0.85 0.00 0.00 0.25 0.28 

0.0

0 0.35 

43 2633.0 3 0 4 5 0 0.36 0.00 0.84 1.50 0.19 0.31 0.00 

1.3

2 0.44 

44 2646.3 1 1 4 5 0 1.21 0.00 0.00 0.31 0.00 0.68 0.00 

0.4

9 0.00 

45 2663.3 2 0 5 5 0 0.62 1.08 0.80 0.47 1.62 1.01 2.87 

3.4

8 2.98 

46 2676.3 0 1 5 5 0 0.21 0.00 0.00 0.34 0.92 0.00 0.00 

0.0

0 0.00 

47 2693.3 1 0 6 5 0 0.00 1.90 3.06 0.00 0.00 1.38 1.42 

0.8

3 3.22 

48 2767.0 4 0 5 4 0 0.86 0.95 1.06 0.14 0.67 0.89 2.55 

8.4

4 2.07 

49 2778.4 2 1 5 4 0 2.77 1.33 0.21 1.34 0.92 1.86 0.00 

0.6

7 0.00 

50 2792.4 0 2 5 4 0 

25.7

5 

15.2

3 0.78 

38.7

3 

34.2

4 

14.0

4 1.38 

7.8

7 0.00 

51 2868.4 2 0 6 5 0 0.30 1.18 4.59 0.08 0.09 1.27 1.10 

1.3

3 5.57 

52 2891.4 1 1 4 6 0 1.27 0.00 0.00 1.21 1.21 0.37 0.00 

0.0

0 0.00 

53 2908.0 2 0 5 6 0 0.19 0.00 0.00 0.00 0.00 0.23 0.00 

0.0

0 0.43 

54 2952.5 3 1 5 4 0 0.70 0.00 0.00 0.20 0.00 0.29 0.00 

0.2

6 0.00 

55 2966.5 1 2 5 4 0 6.92 1.95 1.01 

10.9

3 

11.7

8 5.87 0.44 

2.5

1 0.42 

56 2997.5 1 1 5 4 1 0.00 0.00 0.00 0.15 0.33 0.00 0.00 

0.0

0 0.00 

57 3011.5 4 0 5 5 0 1.10 0.91 0.78 0.00 0.27 0.23 0.27 

1.5

1 0.41 

58 3024.5 2 1 5 5 0 1.20 0.00 0.00 0.15 0.53 1.14 0.00 

1.0

2 0.00 

59 3036.9 0 2 5 5 0 0.00 0.00 0.00 0.37 0.35 0.00 0.00 

0.0

0 1.90 

60 3042.6 3 0 6 5 0 0.22 1.49 1.61 0.62 0.69 0.36 1.70 

0.9

5 3.10 

61 3082.6 3 0 5 6 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.3

8 0.00 
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62 3142.6 1 0 7 6 0 0.00 0.00 0.00 0.00 0.33 0.00 0.28 

0.3

5 0.26 

63 3186.6 5 0 5 5 0 0.71 0.42 0.00 0.00 0.00 0.00 0.00 

2.5

6 0.55 

64 3211.6 1 2 5 5 0 0.74 0.19 0.06 1.48 3.41 0.25 0.00 

0.4

9 0.00 

65 3215.6 4 0 6 5 0 0.00 2.72 2.86 0.00 0.00 0.19 2.62 

1.7

6 3.56 

66 3228.6 2 1 6 5 0 0.58 0.00 0.00 0.22 0.00 0.00 0.00 

0.0

0 0.00 

67 3241.6 0 2 6 5 0 1.04 0.00 0.00 0.92 1.45 0.29 0.00 

0.2

9 0.00 

68 3285.6 3 0 6 6 0 0.00 0.00 0.00 0.00 0.23 1.00 0.41 

1.2

2 0.31 

69 3316.7 2 0 7 6 0 0.00 0.00 0.23 0.00 0.00 2.81 1.74 

0.2

9 1.77 

70 3402.7 3 1 6 5 0 0.18 0.00 0.00 0.18 0.16 0.00 0.00 

0.0

0 0.00 

71 3416.7 1 2 6 5 0 0.00 0.00 0.00 0.39 0.64 0.00 0.00 

0.0

0 0.00 

72 3602.8 0 3 6 5 0 5.50 1.88 0.00 3.54 7.27 1.70 0.00 

0.5

5 0.00 

73 3663.8 4 0 7 6 0 0.06 4.04 2.92 0.00 0.00 1.39 7.70 

1.7

8 4.69 

74 3693.8 3 0 8 6 0 0.24 0.38 0.21 0.00 0.00 0.00 0.00 

0.0

0 0.00 

75 3735.9 3 0 7 7 0 0.00 0.00 0.00 0.00 0.00 0.00 0.51 

0.3

9 0.37 

76 3776.6 1 3 6 5 0 1.82 0.35 0.00 3.79 4.99 0.53 0.00 

0.6

8 0.00 

77 3809.0 6 0 6 6 0 0.32 1.25 0.00 0.00 0.00 0.00 0.00 

0.8

1 0.33 

78 3836.9 1 0 8 8 0 0.19 0.86 0.30 0.00 0.13 0.24 0.00 

0.0

0 0.00 

79 3939.8 3 0 8 7 0 0.00 2.17 0.00 0.00 0.22 0.63 4.33 

0.0

0 2.53 

80 4084.0 5 0 7 7 0 0.00 0.00 0.00 0.00 0.00 0.00 0.28 

0.7

3 0.00 

81 4114.1 4 0 8 7 0 0.00 1.46 0.44 0.00 0.00 0.30 8.66 

0.0

0 1.51 

82 4288.1 5 0 8 7 0 0.00 3.84 0.76 0.00 0.00 0.00 6.48 

0.0

0 1.90 

83 4413.2 0 4 7 6 0 0.47 0.00 0.00 0.00 0.37 0.00 0.00 

0.0

0 0.00 

84 4634.3 3 0 9 9 0 0.00 0.00 0.00 0.00 0.00 0.00 0.22 

0.0

0 0.17 

85 5186.6 5 0 10 9 0 0.00 0.32 0.08 0.00 0.00 0.00 0.51 

0.0

0 0.24 
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Table 3.10. Recalculated prevalences for each sample group.  

After removal of driver glycans and glycans that do not exhibit differences between 

normal and cancer, prevalences were recalculated for the residual glycan population for 

each sample group. The resulting prevalences are expressed as “% Subset of Profile.” 

 
S-Group      M-Group     

  % Subset of Profile    % Subset of Profile 

Glycan# N1 S1 S2  Glycan# N2 C3 IP1 

1 30.50 3.76 2.04  4 3.05 8.05 7.84 

2 5.39 0.00 0.00  6 1.52 9.21 5.35 

5 2.96 0.00 0.00  7 1.54 0.00 1.04 

7 2.23 0.00 0.00  8 0.00 1.02 0.00 

20 13.83 2.71 1.62  9 0.00 5.21 0.00 

21 0.00 6.23 4.28  11 1.99 0.00 3.77 

30 0.00 5.51 2.98  13 0.00 3.98 0.00 

36 5.35 0.00 1.28  14 1.94 0.84 0.00 

37 0.00 2.86 5.43  15 1.17 0.00 1.97 

44 7.18 3.16 0.00  16 15.20 4.06 6.48 

46 1.27 3.55 6.55  17 9.40 20.23 5.47 

54 4.12 2.03 0.00  19 2.62 6.48 7.04 

56 0.00 1.57 2.33  20 0.00 1.79 3.50 

57 6.49 0.00 1.90  22 0.00 3.19 1.60 

59 0.00 3.81 2.52  23 2.27 0.00 0.00 

60 1.31 6.43 4.90  24 3.15 0.00 3.91 

63 4.20 0.00 0.00  28 0.00 2.99 4.84 

64 4.36 15.29 24.23  29 2.90 0.00 0.00 

71 0.00 4.02 4.55  31 0.00 2.48 0.85 

76 10.81 39.07 35.38  38 2.89 7.31 7.17 

     39 0.00 1.70 0.00 

F-Group      43 0.00 0.70 3.67 

  % Subset of Profile  44 0.00 1.52 1.35 

Glycan# N3 C4 IP2  57 2.29 0.51 4.21 

4 8.45 1.09 2.83  58 0.00 2.56 2.82 

7 3.89 1.26 2.24  60 3.74 0.81 2.64 

8 0.00 1.10 2.84  63 1.05 0.00 7.13 

12 0.00 1.90 0.00  65 6.84 0.44 4.90 

18 3.38 0.00 2.72  68 0.00 2.25 3.39 

30 2.70 0.00 1.44  69 0.00 6.33 0.80 

35 7.41 0.29 1.18  73 10.17 3.12 4.94 

39 4.03 0.00 3.98  74 2.14 0.61 1.07 

41 2.32 0.00 0.00  77 3.15 0.00 2.25 

42 4.53 0.91 1.34  78 2.15 0.53 0.00 

43 4.49 0.00 1.71  79 5.46 1.42 0.00 

45 4.25 9.46 11.41  81 3.67 0.67 0.00 

47 16.31 4.69 12.34  82 9.67 0.00 0.00 

51 24.48 3.63 21.36      

57 4.13 0.91 1.56      

68 0.00 1.36 1.17      

69 1.22 5.74 6.79      

75 0.00 1.69 1.41      

78 1.57 0.00 0.00      

79 0.00 14.31 9.72      

81 2.37 28.59 5.79      

82 4.06 21.38 7.28      

85 0.41 1.69 0.90      
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CHAPTER 4 

DEVELOPMENT OF WORKFLOWS AND TOOLS FOR HIGH THROUGHPUT 

SEMI-AUTOMATED GLYCAN MASS SPECTRAL DATA ANNOTATION  

Abstract 

Most membrane and secreted proteins produced by eukaryotic cells undergo post-

translational modifications in the form of N-linked or O-linked glycans, giving rise to 

immense structural heterogeneity in mature glycopeptides. Even when cultured cells are 

held under tightly controlled fermentation conditions for the production of glycoprotein 

biologics, glycoform heterogeneity pertains and must be fully analyzed to ensure the 

quality and batch-to-batch consistency associated with production of biological 

therapeutics.  

The capacity of cells to present diverse glycan structures at their surface allows 

them to regulate their interactions with other cells and with their environment. Human 

genetic disorders that affect the fidelity of glycoprotein glycan synthesis and processing 

result in mental retardation, skeletal and connective tissue abnormalities, anemia, 

multiple sclerosis, compromised immune response, muscular dystrophies, and 

generalized failure to thrive. Therefore, mechanisms that regulate glycan expression 

provide novel, broadly applicable, but largely unexplored, targets for therapeutic 

intervention.  

The past 10-15 years have witnessed rapid growth in the interest of investigators, 

funding agencies, and pharmaceutical companies for characterizing glycoprotein glycan 
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diversity. Full and comprehensive characterization of the glycans on glycoproteins has 

become an essential element for drug development, quality characterization, and basic 

biomedical research.  Manual interpretation of mass spectrometry datasets constitutes the 

core of most glycomics technology currently in use. However, Interpretation of up to 

2000 mass spectra per biological sample consumes significant expert personnel time and 

reduces the number of samples that can be analyzed. This bottleneck is a major 

impediment blocking the expansion of glycomic analysis to a broad range of basic 

biomedical investigations.  Progress in the field has been severely restricted by the 

absence of appropriate computational software tools that facilitate automated structural 

assignment and high throughput data analysis.  

Through a collaborative partnership between PREMIER Biosoft Inc, computer 

scientists, experimentalists, and mass spectrometrists at the Complex Carbohydrate 

Research Center, tools have been developed in an effort to provide a semi-automated 

high throughput workflow aimed to fulfill this critical need.   The development of 

SimGlycan® functionalities along with database development and post-processing tools 

described here provide innovative bioinformatic solutions.  

The workflows that I have developed are conservatively expected to shift 

throughput from 1 sample every three months to 6 samples every week. This acceleration 

constitutes a paradigm shift in glycomics such that the statistical confidence afforded by 

increased sample number would be available to glycomics. Simply stated, our goal is to 

make glycomic analysis a routine, albeit technically demanding, option for a broad range 

of biochemical investigations. 
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Background And Significance  

The Importance of Glycoprotein Glycosylation 

The vast majority of all membrane and secreted proteins produced by eukaryotic 

cells are post-translationally modified by the addition of carbohydrate moieties in the 

form of Asn-linked or Ser/Thr-linked oligosaccharides. These N-or O-linked glycans 

impart immense structural heterogeneity to mature glycoproteins. As a general and well-

documented rule, a single glycoprotein produced by a single cell exhibits variable usage 

of glycosylation sites as well as heterogeneous glycan elaboration at the glycosylation 

sites that are utilized. This variability in glycoprotein glycoform production has been 

referred to as “microheterogeneity” and is the rule for eukaryotic cells, tissues, and 

expression systems. Even when cultured cells are held under tightly controlled 

fermentation conditions for the production of glycoprotein biologics, glycoform 

heterogeneity pertains and must be fully analyzed to ensure the quality and batch-to-batch 

consistency associated with production of biological therapeutics.  

Glycoform heterogeneity has been conserved and propagated across species 

because it provides significant advantages to cells in tissues. Cell-surface glycans mediate 

interactions between cells and define cellular identities within complex tissues at all 

stages of animal life. The capacity of cells to present diverse glycan structures at their 

surface allows them to regulate their interactions with other cells and with their 

environment. In addition, specific glycan structures frequently modulate the activities of 

the glycoproteins to which they are attached, adding a post-transcriptional, post-

translational layer of regulation onto protein function. In some instances, glycans on 

specific glycoproteins serve as recognition markers that modulate cell-cell interactions 
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among defined cell populations. In other contexts, the function of specific cell surface 

signaling molecules requires the elaboration of an exact glycan structure at a precise site 

on an appropriate glycoprotein. Human genetic disorders that affect the fidelity of 

glycoprotein glycan synthesis and processing result in mental retardation, skeletal and 

connective tissue abnormalities, anemia, multiple sclerosis, compromised immune 

response, muscular dystrophies, and generalized failure to thrive. Therefore, mechanisms 

that regulate glycan expression provide novel, broadly applicable, but largely unexplored, 

targets for therapeutic intervention. The full exploitation of such targets requires the 

development of rapid, facile, and robust tools for implementing deep and high-throughput 

glycan analysis.  

State-Of-The-Art In Glycomic And Glycoproteomic Analysis  

The past 10-15 years have witnessed rapid growth in the interest of investigators, 

funding agencies, and pharmaceutical companies for characterizing glycoprotein glycan 

diversity. With regard to basic science initiatives, the NIH (NIGMS) awarded a Glue 

Grant for the formation of the Consortium for Functional Glycomics (CFG) during this 

period, which has successfully facilitated a consolidation of efforts between 

Glycobiology, Glycomic, and Glycoproteomic investigators.  

A major goal of the CFG has been to develop and implement optimized methods 

for glycan analysis in various mammalian tissues. These efforts have been extremely 

successful in generating large datasets of raw mass spectrometric data, but significantly 

less successful in developing methods for interpreting these datasets. CFG data has been 

primarily limited to full MS data (mostly MALDI-TOF) with occasional extension into 

MS/MS or MSn analysis. When such deeper analysis has been undertaken, analysis of 
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fragmentation has been by manual interpretation. By any measure, the CFG has been 

successful in pushing the field forward, but this is a crucial time to consider what is 

needed to facilitate continued growth in glycomics and glycoproteomics beyond the era 

of the CFG.  

Approaches for unbiased acquisition of MS and MSn data that can describe the 

full diversity of glycans in complex samples have been developed. These approaches, 

largely based on ion-trap instrumentation and automated fragmentation workflows, 

generate extremely large datasets. For instance, a relatively uncomplicated analysis of N-

linked glycans harvested from a single animal tissue can produce over 700 separate 

spectra when the analysis is taken to MS277.  Each of these spectra currently requires 

manual interpretation to assess glycan presence and structural features. It is clear, 

however, that, in many cases, MS3 or MS4 is essential for confident structural 

assignment78. There is no tool available currently that can efficiently and practically 

assist analysts to sort through the mountain of data generated by standard MS 

instrumentation beyond MS, and especially beyond MS2.  

The goals and efforts of the CFG have been primarily focused on questions 

related to the basic science of glycan function in complex organisms. In parallel, a broad 

range of drug companies, from small biotechs to large pharma, have faced the need to 

define the glycan diversity of their glycoprotein biologics. The FDA has, for the most 

part, allowed a relatively broad range of techniques to be employed for glycan 

characterization (HPAEC-PAD, monosaccharide composition, GC-MS, FACE, CE-LIF), 

as long as the methods are supported by extensive validation. The flexibility of the FDA 

in this regard reflects the reality that a single tool has not been aggressively developed to 
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meet the need for comprehensive glycomic or glycoproteomic analysis. Advances in MS 

instrumentation, in the robustness of glycan release, and in the standardization of analytic 

techniques present new opportunities for proposing that MSn coupled to automated data 

interpretation can provide an essential and broadly applicable tool for process 

development, batch analysis, and quality control of drug substance in the pharmaceutical 

industry.  

Currently Available Tools For Glycomic And Glycoproteomic Analysis 

The academic community has adopted GlycoWorkbench, developed and 

supported by EurocarbDB as the most widely used tool for the interpretation of 

glycomics MS data. EurocarbDB, like the CFG in the United States, is a publicly funded 

endeavor to develop and implement glycomics tools and glycomics databases65. Also, 

like the CFG, EurocarbDB has ceased analytic operations. GlycoworkBench is supported 

in its current form through other resources, but will not be advanced or developed toward 

implementation of further upgrades.  The GlycoWorkbench platform has served the 

community well, but also has some significant limitations. Among its most useful 

functionalities, it allows users to easily input structures of interest and generate 

theoretical fragmentation schema that can serve as a benchmark for interpreting real data. 

The graphical interfaces of GlycoworkBench were developed in consultation with 

practicing glycomic analysts and they have proven to be efficient and user-friendly. They 

provide key functionalities that are utilized throughout the workflow that we describe.  

EurocarbDB had planned to make GlycoWorkbench a module that could be 

incorporated into workflows that would access a broader range of tools. Such workflows 

were envisioned to take raw MS data (and eventually MS/MS data) and provide a user-
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interface for assigning structures. SimGlycan® version 1.0 already provided this 

functionality60a.  Thus, SimGlycan® was already at the forefront of all publicly available 

glycomics tools for interpreting MS data. However, SimGlycan® has significant 

limitations that keep it from achieving truly useful status. The purpose of our 

collaborative effort with Premier Biosoft was to bring SimGlycan® to the level that it can 

be implemented as an innovative addition to the glycomics and glycoproteomics arsenal.  

More recently, an alternative annotation software tool named Gelato (Glycomic 

Elucidation and Annotation Tool) has been developed and implemented as part of a 

comprehensive glycomic analysis package called the GRITS toolbox which is presented 

here.   

Together, the gathered expertise of computer scientists, experimentalists, and 

mass spectrometrists provided unique opportunities to develop efficient and user-friendly 

computational tools that satisfy an unmet need for high-throughput and rigorous analysis 

of glycan modifications. The evolution of the workflow will be described in a stepwise 

historical fashion. The progression will follow from Version 1 to 4.  Advancements, 

rationale, and limitations will be described as well as future directions.  

Sample Preparation And Data Acquisition:   

Glycans were enzymatically released from glycoproteins by PNGase F, purified 

over C18 columns and permethylated77.  Permethylated glycans were dissolved in 1mM 

sodium hydroxide in 50% methanol, and directly infused into an LTQ-Orbitrap 

Discovery hybrid mass spectrometer using nano-ESI ionization.  High resolution full MS 

spectra were captured in FT mode in the Orbitrap and fragmented by collision induced 

dissociation (CID) in in the ion-trap (IT mode).  Manufacturer specifications reported as 
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maximums include: Resolution 30,000 FWHM at 400 m/z, mass range of 50-2000 m/z, 

mass accuracy 5ppm with external calibration, dynamic range 4,000 in a single spectrum 

and 10,000 between spectra.  RAW data was then submitted for structural assignment by 

SimGlycan® or GELATO and compared to manual interpretation.  

Software Descriptions: 

SimGlycan® by Premier Biosoft 

SimGlycan® is a commercially available glycan MS/MS data analysis tool 

produced by PREMIER Biosoft, Palo Alto CA (www.premierbiosoft.com).  SimGlycan® 

is a client server application that uses fragmentation fingerprinting to match experimental 

MS/MS data with theoretical fragments generated for structures present in a database to 

identify the best match.  Glycan structure matches are ranked and scored by calculating 

how well the experimental pattern matches the theoretical pattern score.   SimGlycan® 

calculates the glycan rank based on their proprietary matching algorithm which considers 

composition and branching patterns as defined by SimGlycan® as the following: 

“The composition score is a number which reflects how well the monosaccharide 

composition of the theoretical glycan matches that of the experimental glycan. 

The composition score is a function of two numbers, glycosidic percentage match 

and glycosidic intensity:  

Glycosidic Percentage Match: The percentage of the number of 

theoretical glycosidic and glycosidic/glycosidic fragment peaks 

that have the same m/z value as that of the experimentally 

observed peaks compared to the total number of theoretical peaks.  

Glycosidic Intensity: The percentage of the intensity of theoretical 

glycosidic and glycosidic/glycosidic fragment peaks that have the 

same m/z value as that of the experimentally observed peaks 

compared to the sum of the intensities of all theoretical peaks.  

The branching pattern score is a number which reflects how well the topological 

pattern of the theoretical glycan matches that of the experimental glycan. The 

branching pattern score is also a function of two numbers, cross-ring percentage 

match and cross-ring intensity:  

Cross-ring Percentage Match: Percentage of the number of 

theoretical cross ring and cross ring/glycosidic fragment peaks that 

http://www.premierbiosoft.com/
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have the same m/z value as the m/z values of the experimentally 

observed peaks compared to the total number of theoretical peaks.  

Cross-ring Intensity: Percentage of the intensity of theoretical cross 

ring and cross ring/glycosidic fragment peaks that have the same 

m/z value as the m/z values of the experimentally observed peaks 

compared to the sum of the intensities of all theoretical peaks.79 “ 

 

SimGlycan® added “product diagnostic ion presence” and product ion charge state 

parameters that combined with existing composition and branching scores to create a 

newer “proximity score” in later versions.   

GELATO (Glycomic Elucidation and Annotation Tool) by CCRC 

GELATO is a free, semi-automated tandem MS annotation tool that was designed 

and implemented at the Complex Carbohydrate Research Center (CCRC) through the 

collaborative efforts of the author, Rene Renzinger, and Brent Weatherly.. GELATO 

provides a novel algorithm that rapidly matches theoretical fragmentation spectra to 

experimental spectra similar to SimGlycan©.   The theoretical fragmentation calculations 

are generated from Glycoworkbench program libraries and provides a set of highly 

curated default glycan databases that can be used for the annotation (SweetyN and 

SweetyO). These databases are derived from the human curated Glycan Ontology 

(GlycO). In addition it is possible to use a user created database for the annotation 

instead. Gelato reports matches as number of peaks matched and % of the total intensity 

of the peaks matched in the spectrum.  Gelato is capable of considering multiple charge 

states for each m/z reported which alleviates issues caused by incorrect charge state 

reporting by the instrument.  Gelato is also capable of considering neutral losses 

including under-permethylation and loss of water.  Gelato is freely available and operates 
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within the SimianTools/GRITS toolbox.  Processing time is greatly reduced compared to 

SimGlycan©annotation as well. 

CONVERTER by CCRC 

The “Converter” tool extracts key information from the annotation results of 

either SimGlycan® or GELATO along with information contained in the RAW data file 

produced by the mass spectrometer and combines this information into a sortable table 

that reports the following information: 

o m/z, z, signal intensity, and scan number for each spectra 

o The SimGlycan® rank ,% match and proximity scores and/or the GELATO match 

statistics peak count and % intensity coverage.  

o A cartoon representation, generated by GlycoWorkbench, along with the 

corresponding exact mass and the associated GlycoWorkbench string.  

o A set of descriptors for the assigned structure including:  # Charges, # Hex, # 

HexNAc, # NeuAc, # NeuGc, # Fuc, # Sulfate, # Phosphate, # HexA, # Other, # 

Branches, # Gal-Gal disaccharide groups, # Non core Fuc, # LacNAc groups, # 

LacDiNAc groups, Bisecting GlcNAc present?, Core Fuc present?, Polysialic acid 

present?, and Glycan Type (High-Man, Bisecting, Hybrid, Complex).  

o Signal intensities detected for specific diagnostic MS/MS fragment ions (e.g., 

m/z=660 reports a monofucosylated LacNAc terminal), providing a diagnostic for 

structural validation and relative comparisons between samples. 

o A visual simulation of the theoretical isotopic distribution for the predicted glycan 

structure, which is compared to the actual isotopic distribution in order to 

generate a goodness-of-fit parameter. This parameter allows confidence levels to 
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be associated with each assignment and provides a rational basis for establishing 

thresholds below which MS signals are considered unreliable reporters of glycan 

prevalence. 

 

MERGE by CCRC 

The “Merge” tool was created so that multiple data sets that have been 

“converted” can be “merged” into one table.  Since samples contain differing but 

overlapping sets of glycans, it can be difficult to easily compare glycan profiles.  The 

Merge tool compiles the data from all samples into a single, non-redundant list which is 

then populated with glycan signal intensities and cartoon representations for each 

sample’s profile.  The profiles of multiple samples are placed side-by-side for easy visual 

inspection and for further data processing (generation of bar graphs, hierarchical 

clustering, other transformations, etc.). 

DatabaseBot by CCRC 

DatabaseBot is a freely available stand-alone Java program developed in 

collaboration with Rene Ranzinger that can be used to create customized databases that 

improve both speed and accuracy of the annotation procedure for glycan MS/MS spectra. 

DatabaseBot uses the freely available database GlycomeDB as a resource for structures 

but also allows the user to specify a list of any structures and upload them into a new 

database. Using the GlycomeDB workflow, the user can set filters to only include 

structures of interest for a particular project. The structures can be filtered by their 

appearance in carbohydrate structure databases and ontologies, by the amount of fuzzy 

information in the structures or by predefined substructural features that should or should 

not be observed in candidate structures. The filters reduce the search space by eliminating 
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redundancy and selecting only structures relevant for a particular research project, for 

example, glycans found only in yeast do not need to be considered in a project about 

human tissue. Customized databases help to improve the automated annotation of the 

experimental data and to minimize post-processing of SimGlycan® or Gelato outputs. 

SweetyN and SweetyO are two examples of customized database created using the 

DatabaseBot.  SweetyN consists of 895 highly curated N-linked glycan structures from 

the GlycO ontology and SweetyO contains # O-linked glycan structures.   

SimianTools CL (command line) by CCRC 

SimianTools CL is a freely available command line tool that uses the 

functionalities of the Converter and Merge tools combined with GlycoWorkbench to 

produce an extended spreadsheet format of SimGlycan® annotation results as described.  

SimianTools GUI (graphical user interface) by CCRC 

SimianTools GUI version 1.0 is a freely available standalone JAVA application 

based on the eclipse framework that was developed to replace SimianTools CL.  Users 

can load SimGlycan® annotation results and run Converter and Merge within a user 

friendly visual setting that does not require knowledge of command line operation.  

Converted and/or Merge annotation reports are exported to excel where they can be 

viewed, sorted, and modified as needed by the user. 

SimianTools GUI version 1.1 added the ability to manage data within the GUI, 

eliminating the need to have multiple applications open or to export outputs to excel.  

This version includes graphical user interfaces for the creation, management and display 

of SimGlycan® or Gelato data annotation, both of which can be enhanced with the 

Converter and Merge tools.  Experimental meta-data such as biological source, quantities, 
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sample preparation, and instrument settings are collected and stored along with the 

primary data in a transferable file format.  Version 1.1 also supports spectrum viewing 

and tables for converted/merged annotation results are viewable and interactive within 

the GUI.  All primary data and possible annotations are stored but user-selected subsets 

can be viewed, simplifying the visual presentation and enhancing comparisons.  

GRITS Toolbox GUI by CCRC 

Simian Tools GUI v 1.1 was renamed the GRITS Toolbox GUI when 

SimianTools GUI version 1.1 framework was extended to allow the addition of 3rd party 

plug-ins.  Other functionalities currently under development by various groups include 

iCRM for glycan quantification (Lance Wells), GAGID for glycosaminoglycan 

identification, SAGE for annotation by machine learning, and other methods for unique 

fragmentation pattern identification, all of which will plug into the GRITS framework.   

Programming:  

CCRC products including SimianTools CL, (Converter and Merge), SimianTools 

GUI, DatabaseBot, Gelato, and GRITS GUI were developed using java and the eclipse 

framework.  Workflows and software tools developed over the past 3 years result from a 

continuum of work in progress and for purposes of discussion are divided into four 

versions.  Each version is described followed by a discussion of advances made and 

remaining limitations.   

Workflows: 

 

 

 

1.0 Thermo RAW MS -> mzXML-> SimGlycan® 2.50 2009   

2.0 Thermo RAW MS-> SimGlycan® version 4.02 -> SimianTools CL 2011 

3.0 Thermo RAW MS-> SimGlycan® version 4.50 -> SimianTools GUI 2013 

4.0 Thermo RAW MS-> Gelato and/ SimGlycan®-> GRITS Toolbox 2014 
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Table 4.1 Workflows 

 1.0 2.0 3.0 4.0 

Annotation 

Tool Options 

SimGlycan®2.5 SimGlycan®4.02 SimGlycan®4.5 

Gelato 

 

Throughput low medium high  

  #scans load 1 1500 20,000  

  #scans  

analyzed 

1 500 1000  

     

Database SimGlycan® SimGlycan®22,456 

SweetieN  

SimGlycan®SweetieN 

SweetieO 

SweetieN 

SweetieO 

Others… 

Output browsing  within 

SG framework 

only 

Browsing SG and 

Csv file 

SG- 

Browsing &Csv file 

Gelato-  

 

GRITS 

browser & 

xls 

Post-

processing 

none SimianTools CL-  

command line 

Converter & Merge 

SimianTools GUI  

Converter, merge, 

sample data storage, 

spectra viewer  

GRITS 

GUI  

Converter, 

merge, 

sample data 

storage, 

spectra 

viewer 

 

Workflow 1.0:  RAW MS -> mzXML-> SimGlycan® 2.50   2009   

Approximately 500-1000 RAW MS/MS spectra were collected per sample for analysis.  

The RAW files were converted to mzXML format by a third party converter known as 

SASHIMI.  mzXML MS/MS spectra were both loaded into SimGlycan® 2.50 and 

analyzed individually.  All searches were performed against the SimGlycan® database 

which consisted of approximately 10,000 glycans at the time.  Results were ranked 

according to composition and branching score and viewed within the SimGlycan® 

application. 

Workflow 2.0: Thermo RAW MS-> SimGlycan® 4.02 -> SimianTools CL 2011 

Up to 1500 MS/MS spectra were loaded in native Thermo RAW format as a single batch. 

Searching and scoring was executed as a single job for up to 500 spectra and multiple 

jobs were able to be analyzed simultaneously.  Searches were performed against the 
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SimGlycan® database containing approximately 22,500 glycans.  Users could also 

choose to search customized databases including the highly curated SweetyN or SweetyO 

database created from GlycO using the DatabaseBot tool previously described.  

Templates of search parameters can be created and saved for future use.  A proximity 

score is calculated based a proprietary algorithm that considers both the composition and 

branching score as well as the presence of important diagnostic product ions and their 

charge state to increase the confidence of assignments.  Results can be either viewed in 

SimGlycan® or exported as a .csv file which reports scan number, m/z, z, rank, 

composition, sequence, and scores in a string.   The .csv output can be converted to a 

sortable excel spreadsheet with added cartoon representations by the Converter and 

Merge Tools using SimianTools CL.   

Workflow 3.0: Thermo RAW MS-> SimGlycan®4.50 -> SimianTools GUI 2013 

Up to 20,000 MS/MS profiles can be loaded simultaneously to the SimGlycan® server in 

native Thermo RAW format and search/scoring can be executed as a job on up to 1000 

spectra at a time.  The ion series appropriate to the type of fragmentation used to generate 

MS/MS spectra can be selected as a filter. For example, CID produces mostly glycosidic 

fragments and HCD/ETD produces more cross rings, therefore glycan spectra produced 

by CID would consider B/Y and C/Z ion fragments but not cross rings.  Users can choose 

to use SimGlycan© database or customized databases such as SweetyN.  Results can 

exported to Simian Tools GUI where they can be further processed by “converter” and 

“merge”.  Users may alternatively select to annotate spectra by the GELATO algorithm 

within SimianTools.   
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Workflow 4.0 Thermo RAW MS-> GELATO and/or SimGlycan© 4.50-> GRITS 

Toolbox 2014 

Version 4.0 has the same workflow options however, the framework has been extended 

to be able to accept new 3rd party plug in’s as additional modules.  The name was 

changed to GRITS toolbox. 

Workflow 4.0 GELATO glycan annotation with Screenshots (Figure 4.1-4.7) 

(1) A new project was created and samples were described in terms of material 

amount, species, adduct, sample preparation methods.  Viewing preferences were 

set for CFG cartoon representation style.  300 RAW MS/MS spectra were loaded 

into GRITS for each of 5 samples.  RAW data was converted to mzXML within 

GRITS and automatically stored in the project.  

(2) Annotation parameters were selected including, derivitazation, neutral losses to 

consider, database selection, and allowable mass deviations with a 500 ppm mass 

tolerance, SweetyN database,  

(3) Matching parameters were selected to allow up to 4 charges and fragmentation 

type appropriate to CID was selected.  The matching was allowed to run in the 

background for multiple samples simultaneously and required less than five 

minutes to complete. 

(4) Results were viewed in table format and were be compared to spectra, fragments 

matched, and scores.   

(5) Matches were selected according to filters such as the top 3 intensity coverage or 

manually checked upon inspection.   

(6) All five samples were merged into one table for side by side viewing.   
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(7) Converted and merged Results were stored and exported to excel.  All original 

data, settings and annotations for each mass were preserved and only the view 

changed when annotations were manipulated.  The entire workspace is portable 

and can be shared between researchers without the need to recreate it.  The 

screenshots below illustrate these steps and options.   
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Figure 4.1 Loading RAW data into a new project in GRITS  
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Figure 4.2 Gelato annotation settings 
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Figure 4.3 Gelato fragmentation settings   
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Figure 4.4 Gelato results table view 



 

112 

 

  

Figure 4.5 Gelato results comparative view 
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Figure 4.6 Gelato results fragment ion match view  
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Figure 4.7 Gelato MERGE view 
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Figure 4.8 Gelato export options 

Discussion: 

The first requirement that was necessary to move from single analyses to high 

throughput analyses of thousands of spectra was the ability to handle large quantities of 

data in a batchable manner.  This milestone was achieved rather early and without much 

difficulty and capacity continues to grow as computing speeds accelerate across the 

informatics field.   

Initial fragmentation matching and ranking algorithms were simplistic and 

provided little in the way of objective confidence to the user.  However, advances in 

algorithms, including the addition of the proximity score by SimGlycan® and alternative 

validation by Gelato annotation, have increased confidence levels tremendously. 

Additional data features extracted by Converter, such as diagnostic ion intensities and 

isotopic distribution matching functionalities, have enhanced the user’s ability to quickly 

validate structural assignments as well.  

Searching and scoring algorithms are inherently dependent on the quality of the 

database which is used to search against and have posed a major road block for rapid 

quality annotation of glycans.  However, implementation of highly curated databases, 
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namely SweetyN, has substantially improved the quality of annotations and overall 

confidence in these workflows.   Figure # highlights the negative consequences the 

presence of redundant, incomplete, and irrelevant structures have in a database search 

algorithm.  When the same structure is entered into the database multiple times with 

different identifiers they are treated as unique structures and can artificially fill the top 

ranked matches thereby hiding true alternate structural candidates.   Incorrect and 

incomplete structures also increase the amount of post processing time and effort required 

for analysis. The customized databases continue to be updated and are currently 

undergoing an extensive review in an effort to identify missing structures and isoform 

configurations.  These databases will also benefit from public release, as experts will be 

able to create their own highly curated databases for their species or system of interest, 

thereby expanding workflow benefits to other research efforts.   

 Figure 4.9 Redundant structures in public databases 
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Figure 4.10 Invalid and incomplete structures hinder automated annotation of glycans 

One major limitation of the type of analyses described here is the presence of 

mixtures of isobaric structures; ie: structures with different topologies but the same 

composition and therefore the same mass.  This limitation does not arise from the data 

interpretation workflow or database quality, but from the manner in which glycans are 

analyzed.  As described, the glycans are introduced into the mass spectrometer by direct 

infusion without any chromatography to separate isoforms. Therefore all structures with a 

given m/z are trapped together when selected for fragmentation.  Two approaches are 

likely to resolve the issue of isobaric complexity.  First, chromatographic resolution prior 

to MS, as is done for peptides in standard LC/MS, is possible and has been obtained for 

sets of non-derivatized or fluorescently tagged glycans80.  However, separation of 

permethylated glycans is still a target of development.  Second, targeted fragment ion 

methods such as the iCRM approach under development in the Wells’s lab, utilize 

reaction monitoring approaches to distinguish fragments that differentiate isobars in an 

automated fashion.  In theory, chromatography can be combined with intelligent reaction 

monitoring strategies as well.   
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The development of methods for chromatography of permethylated glycans will 

enhance the depth of discovery and the resolution of isobars.  Since permethylation is 

necessary for maximum ionization and for in-depth structural determination, 

development of these approaches would provide a significant advance.  LC/MS 

approaches will massively increase the number of spectra requiring interpretation.  The 

workflows described here provide the foundation for this type of analyses which would 

have been impossible by manual interpretation methods.   

The iCRM approach is a viable alternative in which product ion series unique to 

each isoform are identified and quantified relative to standards.  This method has proven 

valuable for O-linked glycan analysis and should be of equal value for N-linked analysis.  

However appropriate fragmentation pathways for generating discriminating ions are still 

in development and are likely to push the limits of the duty cycle of current 

instrumentation.  The ion series needed for identification of N-linked glycans will be 

more difficult to define in comparison to O-linked glycans given the large size of N-

glycans (average 8-12 monosaccharides per N-glycan structure vs 3-5 per O-glycan 

structure) and number of structures to be defined (900 vs 300).   

Great strides have been made in the journey toward high throughput glycomic 

analyses however much remains as well.  We have built the foundation necessary to 

move glycomics into the fast lane.  The tools we have built are works-in-progress and 

will continue to advance upon release to the public when additional users gain experience 

and suggest modifications.  Additionally, the workflows provide a mechanism such that 

enough data can be collected to perform statistical analyses that may give rise to metrics 

analogous to the false discovery rate in proteomics.  As results from SimGlycan®, 
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Gelato, and manual structural assignment are collected and compared, all three 

techniques will benefit by identification of weaknesses and will provide opportunity for 

improvement as well.    
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CHAPTER 5 

CONCLUSIONS AND FUTURE DIRECTIONS 

A dense and complex layer of glycans coat every living cell on Earth and 

therefore any interaction with the cell must involve glycans.   Glycans are involved in a 

wide range of cellular processes as part of normal physiology, development and cell 

signaling and are involved in every disease known to man.  Glycans are the most 

structurally diverse and ubiquitous protein modification known and the information 

content encoded by them is incomprehensible. Structural diversity arising from the non-

linear, non-template driven nature in which monosaccharide building blocks get linked 

together as glycans affords endless possibilities to affect the structure and function of 

carrier proteins.  Glycans biosynthesis relies on environmental factors such as pH and 

nutrient availability and ultimately provides information to complete the link between our 

genome and our expressed traits, or phenotype.  Deciphering the glycome will not only 

expand our fundamental understanding of human health and disease but the field of 

biology as a whole and will contribute to the development of new therapeutics as well. 

 Over a half a million deaths from cancer occur each year in the U.S. with costs 

estimated in the hundred billions, patients and society suffer as a whole.  Early treatment 

saves both lives and money.  Given that abnormal glycosylation is a universal feature of 

all cancer cells, and many existing clinical tests rely on glycoprotein detection, studies to 

further identify glycan based biomarkers as presented in Chapter 3 are well justified.  

One of the most important finding that came out of the glycomic side of this work was 
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the unexpected clustering of patients into discrete subgroups that were enriched with 

either sialylation or fucosylation or a mix of the two.  This finding was particularly 

insightful when considering human data sets since discrimination between cancer and 

non-cancer was only possible within each subset but not within the set as a  whole.  

While it is clear that glycans are promising biomarkers and may provide targets for 

therapy much is still to be learned.   And without a better understanding of the glycome, 

progress toward detecting and battling cancer along with all diseases will not be possible.   

 Glycomic analyses are challenging both experimentally and intellectually and 

currently practiced by a limited number of highly specialized laboratories.  Existing tools 

are limited and inadequate to expand the field to non-specialists.  The tools and 

workflows developed and presented in Chapter 4 provide a paradigm shift for glycomic 

analyses.  The acceleration and ease of data interpretation afforded by 

SimianTools/GRITS will propel glycomic analysis by specialist and non-specialist 

investigators to the next level.  Ultimately, this work will be a real option for a broad 

range of biomedical investigators.   

 While SimianTools/GRITS is an efficient and comprehensive tool for glycomic 

analyses, it is just a starting point.  Much more is needed for the field and many aspects 

are undergoing rapid development now.  The databases created by GlycO are the 

foundation of these tools are being expanded daily and will undergo a massive 

interrogation and expansion in 2014.  Modules for improved quantification are needed 

and currently under development.  Advanced scoring mechanisms and Isobaric separation 

of glycan structures are especially needed.  Accomplishing these goals will provide a next 

big step in the progression toward truly high throughput automated glycomics. 


