
Equivalence of Mirror Families Constructed by Toric Degenerations of

Flag Varieties

by

Joe Rusinko

(Under the direction of Valery Alexeev)

Abstract

Batyrev (et. al.) constructed a family of Calabi-Yau varieties using small toric degen-

erations of the full flag variety G/B. They conjecture this family to be mirror to generic

anticanonical hypersurfaces in G/B. Recently Alexeev and Brion, as a part of their work

on toric degenerations of spherical varieties, have constructed many degenerations of G/B.

For any such degeneration we construct a family of varieties, which we prove coincides with

Batyrev’s in the small case. We prove that any two such families are birational, thus proving

that mirror families are independent of the choice of degeneration. The birational maps

involved are closely related to Berenstein and Zelevinsky’s geometric lifting of tropical maps

to maps between totally positive varieties.

Index words: Toric Degenerations, Calabi-Yau Varieties, Mirror Symmetry



Equivalence of Mirror Families Constructed by Toric Degenerations of

Flag Varieties

by

Joe Rusinko

B.S., Davidson College, 2001

A Dissertation Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Doctor of Philosophy

Athens, Georgia

2007



c© 2007

Joe Rusinko

All Rights Reserved



Equivalence of Mirror Families Constructed by Toric Degenerations of

Flag Varieties

by

Joe Rusinko

Approved:

Major Professor: Valery Alexeev

Committee: Bill Graham

Mitch Rothstein

Robert Varley

Miljenko Zabcic

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

May 2007



Acknowledgments

I would like to thank all of the professors, graduate students and departmental staff at

the University of Georgia for their role in helping me progress over the past five years. I

would especially to thank my committee members for the time they spent shaping me as a

mathematician.

Valery Alexeev’s inspiring lectures got me interested in algebraic geometry. He suggested

my thesis problem one day in my office and patiently helped me understand the what the

question was asking for the next year. It was his insight and perseverance that helped guide

me through these problems. Most importantly, he has never settled for anything less than

my best.

I will always be indebted to Robert Varley for the countless hours spent in his office

trying to clarify and develop any mathematical ideas I happened to be wondering about at

the time. These conversations helped me truly understand the subtleties of our discipline.

Thanks to Sybilla Beckman for introducing me to the world of mathematics education and

for her help in developing me as a teacher. I appreciate the time Dr. Galewski and Dr. Shifrin

spent developing both my mathematical and teaching abilities.

Michael Guy and Val Cormani have always been there to share their ideas and advice.

They have been both admired colleagues and coveted friends. I want to thank Deana, Craig,

Paul and Tremaine for helping me through the nonacademic challenges of graduate school.

Finally, I would like to thank my parents who have always been there for me throughout

the past 27 years. My mom has always encouraged and supported my dreams. Her faith in

me has been a buoy when times were tough. My dad has shown me how hard work and

compassion can lead to great success. I would not have made it through graduate school

without their support.

iv



Table of Contents

Page

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Algebraic Geometry Background . . . . . . . . . . . . . . . . . . . 3

2.1 Calabi-Yau Varieties . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Fano Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Flag Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Toric Varieties, Hypersurfaces and Degenerations . . . . 10

3 Classical Mirror Constructions . . . . . . . . . . . . . . . . . . . . 18

3.1 Calabi-Yau Hypersurfaces in Toric Varieties and their

Mirrors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Mirror Construction for flag and Fano varieties . . . . . 19

4 Representation Theory Background . . . . . . . . . . . . . . . . . . 23

4.1 Definitions, Notation and Basic Facts . . . . . . . . . . . . 23

4.2 Quantum Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 String Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 String Degenerations of Flag Varieties . . . . . . . . . . . . . . . 30

5.1 Constructing the Degeneration . . . . . . . . . . . . . . . . 30

5.2 Are String Degenerations Small? . . . . . . . . . . . . . . . 32

v



vi

6 Combinatorics of ∆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1 Gleizer and Postnikov’s description of ∆ . . . . . . . . . . 35

6.2 How points of ∆ change under a Braid move . . . . . . . . 39

6.3 How the Facets of ∆ change under a Braid move . . . . . 41

6.4 Integrality of ∆∗ . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 Mirror Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.1 Definition of Mirror Candidates . . . . . . . . . . . . . . . . 50

7.2 Case of standard reduced decomposition . . . . . . . . . . 51

7.3 Tropicalization and Geometric Lifting . . . . . . . . . . . . 52

7.4 Birationality of Fω0
. . . . . . . . . . . . . . . . . . . . . . . . 54

7.5 Proof that construction coincides with Batyrev’s in the

small case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.6 Necessity of Combinatorial Box equations . . . . . . . . . 64

Appendix

A Remaining Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.1 Combinatorial Questions . . . . . . . . . . . . . . . . . . . . . 68

A.2 Algebraic Geometry of the Combinatorial Box Equations 69

A.3 The role of Tropicalization . . . . . . . . . . . . . . . . . . 70

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



List of Figures

2.1 ∆ and ∆∗ for the pair (P2, 3H) . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Γ for G/B of type A2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Polytopes ∆ and ∆∗ for G/B of type A2. . . . . . . . . . . . . . . . . . . . . 20

3.3 Γ with labeled edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.1 Γ(s3s1s2s1s3s2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2 A rigorous path may not contain either of these two segments . . . . . . . . 37

6.3 String Diagrams for ω0 = s3s1s2s1s3s2 and ω0
′ = s1s3s2s1s3s2 . . . . . . . . . 40

6.4 String diagrams for ω0 = s3s1s2s1s3s2 and ω0
′ = s3s2s1s2s3s2 . . . . . . . . . 40

6.5 Graph of columns for λ-inequalities . . . . . . . . . . . . . . . . . . . . . . . 43

6.6 String diagrams with one rigorous path before and after the 3-move . . . . . 45

6.7 String diagrams with one rigorous path before but two such paths after a 3-move 46

7.1 Relative position of O. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.2 String paths used to show that the local box conditions are needed . . . . . 65

7.3 Picture used to show that the second and third box conditions are used in the

proof of birationality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.1 Examples of Minkowski sums . . . . . . . . . . . . . . . . . . . . . . . . . . 69

vii



Chapter 1

Introduction

In the late 1980’s, string theorists were studying a type of algebraic variety known as a

Calabi-Yau. They discovered a surprising relationship between pairs of Calabi-Yau varieties

now known as Mirror Symmetry.

To any three (complex) dimensional Calabi-Yau, physicists associate two distinct physical

theories of the Universe, the A and B models. Two Calabi-Yau manifolds are considered

mirror if the A-model for one is physically equivalent to the B-model for the other and vice

versa. Often, if a calculation is difficult on a particular model it may be replaced by a more

tractable problem on its mirror.

Using this relationship, physicists were able to predict solutions to previously unsolved

mathematical problems. For example, they were able to predict the number of holomorphic

rational curves of a given degree on a quintic hypersurface in P4. Mathematical confirmation

of these predictions sparked great interest among mathematicians in string theory. During the

past 20 years, string theory has been put into a more rigorous setting and mirror symmetry

has become a power mathematical tool.

Classical examples of Calabi-Yau varieties include generic anticanonical hypersurfaces

in flag varieties. One would like to find a family of varieties which are mirror to these

hypersurfaces. Givental constructed such a family for full flag varieties. This construction

was extended to partial flags in a more combinatorial setting by Batyrev, Ciocan-Fontanine,

Kim, and van Straten.

Their construction relied on a particular degeneration of the flag variety to a toric variety

corresponding to a reflexive polytope ∆. Every reflexive polytope has a dual polytope ∆∗,

1
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which in turn corresponds to a toric variety X∆∗ along with its anticanonical class −KX∆∗
.

The mirror family of Calabi-Yau varieties were conjectured to be a special subfamily of the

linear system | −KX∆∗
| whose coefficients satisfy a set of relations called “box equations”.

In later work, Batyrev showed that this construction could be applied to any Fano variety

by using a nice class of toric degenerations. He called them small toric degenerations.

Recently, Caldero-Alexeev-Brion constructed a set of toric degenerations of the flag

variety which we call string degenerations. We cannot use the aforementioned mirror con-

structions since not all string degenerations are small. The primary aim of this thesis is to

construct an appropriate mirror family using these degenerations. The biggest challenge is

identifying the appropriate subfamily of mirror candidates in |−KX∆∗
|. Using combinatorial

description of the degenerations, we are able to define a set of relations called “combinato-

rial box equations”. The subfamily of | −KX∆∗
| whose coefficients satisfy these relations are

the appropriate mirror candidates. This family coincides with the Batyrev’s when the string

degenerations are small.

We give an explicit birational map between any two such families. This is especially nice

for two reasons. Since most mathematical definitions of “mirror properties” are birational

invariants, this shows that the mirror families defined are independent of the choice of string

degeneration. Finally, the toric limits of the G/B vary greatly depending on the choice of

string degeneration. Our results show that these mirror families are a way of tying all of

these degenerations together.



Chapter 2

Algebraic Geometry Background

2.1 Calabi-Yau Varieties

In this chapter we fix notation and review the standard results in algebraic geometry that

we will need in our mirror construction.

Fix the ground field C. Let X be a smooth irreducible projective variety of dimension n.

We can define ωX := ∧nΩX the nth exterior power of the sheaf of differentials on X. To this

sheaf we can associate a divisor class KX called the canonical class.

Definition 2.1.1. A smooth projective variety X is called a smooth Calabi-Yau if KX ∼ 0

(i.e. KX is the divisor of a rational function on X) with H i(X,OX) = 0 for 0 < i < n.

Example 2.1.2. Elliptic curves and generic degree (n+1) hypersurfaces in Pn are examples

of smooth Calabi-Yau varieties.

Although the study of mirror symmetry generally involves smooth Calabi-Yau manifolds,

it is sometimes necessary to extend the notion to singular varieties. In order to do this, we

review some basic facts and definitions from singularity theory.

2.1.1 Singularities

Definition 2.1.3. We say that a variety X has (Q)-factorial singularities if every Weil

divisor D on X is (Q)-Cartier. (i.e. there exists a positive integer d such that dD is a

Cartier divisor).

3
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Definition 2.1.4. For any normal variety X, we can define a Weil divisor KX by extending

the anticanonical line bundle on the nonsingular locus of X to a line bundle on X, and then

taking the associated divisor. (see [M02, Rem4-1-2] for details).

Definition 2.1.5. A normal variety X has (Q)-Gorenstein singularities if KX is

(Q)-Cartier.

A proper birational map f : Y → X from a smooth projective variety Y is called

a resolution of singularities of X. If X and Y are normal, and X has only Q-Gorenstein

singularities then

KY = f ∗KX + ΣaiEi

where Ei are the exceptional divisors of the resolution. The collection of coefficients a :=

(a1, a2 · · ·an) is called the discrepancy of the resolution.

Definition 2.1.6. If for a normal variety X there exists a resolution of singularities such

that for every ai ∈ a :

1. ai > 0 We say that X has terminal singularities

2. ai ≥ 0 We say that X has canonical singularities

3. ai > −1 We say that X has log-terminal singularities

4. ai ≥ −1 We say that X has log-canonical singularities

For more details on these definitions and singularity types see [M02, Chpt. 4]. Some

classical mirror constructions require the use of singular varieties. Since we are working over

C there exists a resolution of singularities for any of our varieties. It is not always possible to

both resolve the singularities of our variety and maintain a trivial canonical class. Instead,

we use a partial resolution which doesn’t affect the canonical class.

Definition 2.1.7. A birational map between normal varieties

f : Y → X
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is called crepant if KY = f ∗KX.

Definition 2.1.8. [Bat94, def.2.2.13] Let φ : W ′ → W be a projective birational morphism

of normal Q-Gorenstein algebraic varieties. Then φ is called a maximal projective crepant

partial desingularization (MPCP-desingularization) of W if φ is crepant and W ′ has only

Q-factorial terminal singularities.

Definition 2.1.9. Let X be an normal irreducible projective variety of dimension n. We say

that X is a Calabi-Yau variety if

1. X has only Gorenstein canonical singularities

2. KX ∼ 0

3. H i(X,OX) = 0 for 0 < i < n, where OX is the sheaf of regular functions on X

If a singular variety has KX ∼ 0 and an MPCP-desingularization exists, then its MPCP-

desingularization will be a (possibly singular) Calabi-Yau.

2.2 Fano Varieties

We would like to start our study with a source of smooth Calabi-Yau varieties. One such

source is the anticanonical class of a Fano Variety.

Definition 2.2.1. A smooth variety X is called Fano if its anticanonical class −KX is an

ample divisor.

Lemma 2.2.2. Let X be a Fano variety. Smooth elements of the linear system | −KX | are

smooth Calabi-Yau varieties.

Proof. Let D be a smooth element in | − KX |. By the adjuction formula we have KD =

(D+KX)|D = (−KX +KX)|D = 0|D = 0. We have H i(X,OX) = 0 for 0 < i < n by Kodiara

vanishing.
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2.3 Flag Varieties

Flag Varieties provide a large class of Fano Varieties. We rely on Michel Brion’s lectures on

flag varieties for complete proofs about the basic facts of flag varieties which we review here

[Br05]. Another standard reference is Fulton’s book on Young Tableaux [Ful97].

A flag of vector spaces of type (d1, d2, · · · , dr) is collection of vectors spaces

0 ( V1 ( V2 ( · · · ( Vr ( Cn+1

such that dim Vi/Vi−1 = di.

Definition 2.3.1. Let {e1, · · · , en+1} be an ordered basis for Cn+1, the standard flag of type

(d1, d2, · · · , dr) is the collection of coordinate subspaces

0 ⊆ 〈e1, · · · , ed1
〉 ⊆ · · · ⊆ 〈e1, · · · , eΣr

i=1dr
〉 ⊆ Cn+1

Let F (d1, d2, · · · , dr) be the set of flags of type (d1, d2, · · · , dr). The group G := SLn+1(C)

acts transitively on F . Let P := P (d1, d2, · · · , dr) be the isotropy group of the standard flag

in SLn+1. Then P is the set of block upper triangular matrices in SLn+1 with diagonal blocks

of size di. Therefore F (d1, d2, · · · , dr) ∼= G/P (d1, d2, · · · , dr) has the structure of a smooth

homogeneous algebraic variety of dimension Σ1≤i<j≤rdidj. When the set (d1, d2, · · · , dr) is

clear we refer to these partial flag varieties as F = G/P .

Examples 2.3.2. 1. The partial flag variety G/P (1) = Pn.

2. The partial flag G/P (k) is the Grassmanian of k-planes in (n+ 1)-space.

3. G/P (

n︷ ︸︸ ︷
1, 1, · · · , 1) is called the complete flag variety. Here, P is actually a minimal

parabolic (or Borel) subgroup so we refer to the complete flag as G/B.

Remark 2.3.3. These constructions can also be carried out for other classical Lie groups

G. The case G = SLn+1 is often referred to as the type An flag variety.
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2.3.1 Divisors on G/B

We review a brief description of Divisors on G/B in terms of pullbacks of hyperplane sections

on Grassmanians. Note that we have a forgetful morphism f : G/B → G/P for any P . In

particular we have maps fk : G/B → G/P (k), where G/P (k) is the Grassmanian of k-planes

in Cn+1.

Definition 2.3.4. Let Hk be the hyperplane section on G/P (k) under the Plücker embedding.

We define divisors Dk on G/B by Dk := f ∗
k (Hk).

The following are standard facts about G/B (see [Br05])

Theorem 2.3.5. 1. The Picard group of G/B is a free abelian group of rank n generated

by Dk for 1 ≤ k ≤ n.

2. The ample cone of divisors in G/B consists of divisors in the classes corresponding to

Zn
>0 in Pic(G/B). Every ample divisor on G/B is very ample.

3. KG/B
∼= −2(Σn

k=1Dk)

From this we see that the anticanonical class of G/B is an ample divisor, thus the full

flag variety is Fano.

Remark 2.3.6. In fact all of the partial flag varieties are Fano. Their canonical classes are

described in [Br05, Prop 2.2.8]

Lemma 2.3.7. Generic anticanonical hypersurfaces in G/B of type An are smooth Calabi-

Yau varieties for n ≥ 2.

Proof. This follows from Bertini’s theorem and the adjunction formula.

Given this collection of smooth Calabi Yau varieties, we would like to find a family whose

fibers are their mirrors. To do this we first need to sketch a mathematical formulation of

mirror symmetry.
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2.3.2 Mirror Varieties

Physically, two smooth Calabi-Yau varieties X and X ′ are mirror if the A-model conformal

field theory on X is the same as the B-model conformal field theory on X ′ and vice versa.

In this section we give some of the mathematical descriptions of this property.

The most classical mathematical formulation of mirrors involves the Hodge diamonds of

the varieties.

Definition 2.3.8. For an n-dimensional smooth projective variety X, define

hp,q(X) := dimHp(X,Ωq). We call this collection of numbers the Hodge numbers of X.

We note some standard properties of Hodge numbers.

1. hp,q(X) = hq,p(X) (Hodge Decomposition Theorem [GH78, p117])

2. hp,q(X) = 0 if either p or q is greater than the dimension of X (Grothendieck’s Van-

ishing Theorem)

3. hp,q(X) = h2n−p,2n−q(X) (Poincaré Duality)

Definition 2.3.9. The Hodge diamond is the set of Hodge numbers hp,q where p and q range

from 0 to the dimension of X.

Mirror Property 1. If two smooth Calabi-Yau varieties X and X ′ are mirror to one

another, then hp,q(X) = hn−p,q(X ′) for all values of p and q.

Remark 2.3.10. If X and X ′ satisfy these conditions then their Hodge diamonds will be

mirror images of one another (hence the name “mirror” symmetry).

Remark 2.3.11. There is a definition of homological mirror symmetry as an equivalence

of the derived Fukaya category of X with the bounded derived category of coherent sheaves

on X ′ and vice versa. This idea is described by Kontsevich in [K94]. A slightly less abstract

definition is that X and X ′ have the same associated GKZ-hypergeometric series as described

in [CK99].



9

In some of the classical mirror constructions we are forced to go outside the category of

smooth Calabi-Yau varieties and consider varieties which are nonsmooth and noncompact.

By the work of Deligne [Del71A, Del71B], there exists a set of invariants called Hodge Deligne

numbers which are defined even when the variety is singular and/or not projective. Hodge

Deligne numbers as a consequence of a mixed Hodge structure, which is a more subtle version

of a classical Hodge structure.

Definition 2.3.12. A pure Hodge structure of weight r on a Q-vector space H is a decom-

position of its complexification

HC = H ⊗Z C =
⊕

p+q=r

Hp,q

such that Hp,q = Hq,p.

Given a pure Hodge structure of weight r on H we can define a descending filtration F

on HC by F p :=
⊕

s≥p

Hs,r−s. We call this filtration a Hodge filtration. Any Hodge filtration

gives a pure Hodge structure on H .

Definition 2.3.13. [DK86, 1.2] Let H be a a vector space over Q. A mixed Hodge structure

on H consists of an ascending weight filtration W on H, and a descending Hodge filtration

F on HC := H⊗Z C. The filtration F must induce a pure Hodge structure of wieght r on the

complexification of GrWH = Wr/Wr−1. In particular

(GrWH)C =
⊕

p+q=r

Hp,q.

We define the Hodge Deligne numbers hp,q(H) := dimHp,q.

Since the varieties involved need not be compact, it is often easier to use cohomology

with compact support denoted H∗
c (X). Here are some basic facts about cohomology with

compact support, and it’s associated mixed Hodge structure hp,q(Hk
c (X)) [DK86, 1.4].

Theorem 2.3.14. [Del71A, Del71B] For any algebraic variety X there exists a mixed Hodge

structure on H∗
c (X,Q) with the following properties:
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1. If f : X → Y is a proper morphism then f ∗ : H∗
c (X) → H∗

c (Y ) is compatible with the

Hodge structure.

2. The Künneth isomorphism H∗
c (X) ⊗ H∗

c (Y ) → H∗
c (X × Y ) is compatible with Hodge

structures.

3. If Y is a closed subvariety in X, then the following is an exact sequence of Hodge

structures.

· · · → Hk
c (X\Y )→ Hk

c (X)→ Hk
c (Y )→ Hk+1

c (X\Y )→ · · ·

4. The Hodge Deligne numbers hp,q(Hk
c (X)) = 0 for p+ q > k, and for p or q < 0.

5. If X is a smooth projective variety then the Hodge Deligne structure on

H∗
c (X) ∼= H∗(X) is consistent with the classical Hodge structure, and so

hp,q(Hk
c (X))) = dimHp(X,Ωq).

In addition, one can define an e-polynomial e(X)

e(X; x, x) :=
∑

p,q

(−1)p+qhp,q(Hk
c (X))xpxq

which encapsulates the data of the Hodge Deligne numbers. This e-polynomial is additive

for disjoint unions, which in some cases allows us to calculate the Hodge Deligne numbers

from the Hodge numbers of the closure of the variety [DK86, 1.5].

2.4 Toric Varieties, Hypersurfaces and Degenerations

In Chapter 3 we will discuss several classical constructions of mirror families involving hyper-

surfaces in toric varieties and degenerations of flag varieties to toric limits. We give a basic

overview of these tools here.
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2.4.1 Toric Varieties

Definition 2.4.1. A normal variety X is called a toric variety if it contains an algebraic

torus T ∼= (C∗)n as a dense open subset, and an action T ×X → X that extends the natural

action of T on itself.

Example 2.4.2. The following are all examples of toric varieties: (C∗)n ⊂ An ⊂ Pn.

The geometric properties of toric varieties can be described in terms of the combinatorics

of associated polytopes and cones. We review some of the basic facts here. See [Ful93, O88]

for more details.

Definition 2.4.3. Let M be a k-dimensional lattice with N := Hom(M,Z) its dual. Then

define MR := M ⊗Z R and NR := N ⊗Z R.

Definition 2.4.4. A polytope is the the convex hull of a finite set of points in MR.

Definition 2.4.5. A polytope ∆ ⊂MR is integral if all its vertices lie in M .

To any n-dimensional projective toric variety with a choice of Q-Cartier divisor D we

can associate a polytope ∆ := ∆(X,D) ⊆ MR. The following are some basic facts about ∆.

1. ∆(X,D) can be translated to an integral polytope if and only if D is Cartier.

2. Facets of ∆ are in one to one correspondence with T -invariant divisors on X.

3. If D is Cartier then integral points of the polytope k∆ correspond to a basis of

H0(X, kD).

The association goes in both directions. To a polytope in M we can associate a toric pair

(X,D) with D a Q-Cartier divisor. Toric varieties can also be described by cones and fans.

Definition 2.4.6. Let N be the lattice Hom(M,Z). A strongly convex rational polyhedral

cone σ ⊂ NR is a cone with apex at the origin generated by a finite number of vectors which

are contained in the lattice and with the additional requirement that σ doesn’t contain a line.
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Unless otherwise noted a cone will refer to a strongly convex rational polyhedral cone.

Viewing M as a lattice of monomials, we can associate to a cone σ an affine toric variety

Xσ := SpecC[σ∩M ] [Ful93]. We can also associate to any affine toric variety X a cone σ(X)

(see [Ful93] for details).

Definition 2.4.7. A normal fan Σ is a finite collection of cones σi ⊂ NR with the following

properties.

1. Each face of a cone σi is also a cone in Σ.

2. The intersection of two cones in Σ is a face of each.

Definition 2.4.8. To any cone σ in MR we define a cone σ̂ in the dual lattice NR as

σ̂ := {x ∈ N |〈x, v〉 ≥ 0 for all v ∈ σ}

Note that ̂̂σ = σ.

Lemma 2.4.9. If σ is a strongly convex rational polyhedral cone then so is σ̂.

Each cone σi corresponds to an affine toric variety X(σi). To any fan Σ we can associate a

toric variety XΣ by gluing the affine varieties Xσi
together along the common faces X(σi∩σj)

[Ful93].

Lemma 2.4.10. If the union of the cones in a fan Σ is NR, then the corresponding toric

variety XΣ is proper.

Every cone σ ∈ Σ corresponds to an affine toric variety which is an open subset of XΣ.

These open subsets have a unique closure denoted V (σ) which corresponds to the union of

all of the affine varieties Xσ′ for each σ′ containing σ.

Examples 2.4.11. 1. If σ = (0) then V (σ) = XΣ.

2. If σi is a cone generated by a single ray then Di := V (σi) is a T -invariant divisor.
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The rays σi are perpendicular to the facets of ∆ giving the correspondence between facets

of ∆ and T -invariant divisors stated above. Given a projective variety, it is often helpful to

use both the fan and polytope pictures when trying to understand the geometry.

Remark 2.4.12. To any polytope ∆ we can associate a normal fan Σ in a unique way, but

to any fan we can associate many different polytopes depending on the choice of line bundle

(see [Ful93, O88] for details).

2.4.2 Hypersurfaces in Toric Varieties

We view M as the lattice of monomials in the group algebra C[M ] := C[t1, t
−1
1 , · · · , tn, t−1

n ].

When we intersect the elements of |OX∆
(1)| with the torus T = Spec[M ], we can describe

the corresponding affine hypersurfaces Zf,∆ as solutions to the equations

f∆ := ΣcmT
m = 0

where cm is a complex coefficient and we sum over all integral points in ∆. We refer to this

collection of toric hypersurfaces as L(∆).

Definition 2.4.13. If ∆ is an integral polytope containing the origin in its interior we define

V (∆) as the subfamily of L(∆) where the sum is only taken over the origin and the vertices

of ∆.

Definition 2.4.14. For any affine toric hypersurface Zf,∆ we denote its closure in X∆ by

Zf,∆. We denote an MCPC-desingularization of Zf,∆ by Ẑf,∆.

Theorem 2.4.15. [Bat94, Thm 4.2.2]For any generic affine hypersurface Zf,∆ ∈ L(∆) there

exists an MCPC-desingularization of the closure Zf,∆ of Zf,∆ inside of X∆. The singular locus

of Ẑf,∆ has codimension at least 4.

2.4.3 Reflexive Polytopes

Definition 2.4.16. To any polytope ∆ ⊂ MR define

∆∗ := {y ∈ NR|〈x, y〉 ≥ −1, for all x ∈ ∆}.
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Example 2.4.17. Let X = P2 and D = −KP2 = 3H, where H is the class of a hyperplane.

We know that H0(X,D) is generated by homogeneous monomials of degree 3 in three vari-

ables, which after a dehomogenization can be represented by the nine points in the following

lattice. The corresponding polytopes are shown in Figure 2.4.17.

b b

b

b

b

b b

b

b

b

b

∆X

b

b

b

b b

∆∗
X

Figure 2.1: ∆ and ∆∗ for the pair (P2, 3H)

The polytopes ∆ and ∆∗ above are examples of what Batyrev calls reflexive polytopes.

Every face H of a polytope determines a linear function h such that h(x) = 0 for all x ∈ H .

The integral distance between a point x and a face H is defined to be h(x).

Definition 2.4.18. [Bat94, Def4.1.5] Let H be a rational hyperplane in MR, p a point in

MR. Assume H is generated by integral points H ∩M , i.e., there exists a primitive l ∈ N

such that H = x ∈MR| < x, l >= c for some integer c. Then the integral distance between

H and p is equal to |c− < p, l > |.

Definition 2.4.19. An integral polytope ∆ is called reflexive if there exists a point p on the

interior of ∆ which is distance one from every facet.

In [Bat94] Batyrev proves the following properties of reflexive polytopes.

Proposition 2.4.20. 1. A polytope ∆ is reflexive if and only if ∆∗ is reflexive.

2. ∆ is reflexive if and only if both ∆ and ∆∗ are integral polytopes whose only interior

point is the origin.
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3. The pair (X,D) corresponds to a reflexive polytope if and only if D = −KX and X∆,

i.e. a toric Fano variety with Gorenstein singularities.

4. If ∆ is a reflexive polytope then generic elements of | −KX | are Calabi-Yau varieties

(Not necessarily smooth Calabi-Yau varieties)

2.4.4 Picard Group of Toric Varieties

We give a combinatorial description of the Picard group of the toric variety X. It is known

that the T -invariant Weil divisors can be written as D := ΣaiDi, where Di are the divisors

corresponding to the rays of the fan Σ [Ful93]. For any ray σi we denote by ei the first

integral point on the ray.

Lemma 2.4.21. [Ful93] Every divisor on a toric variety is linearly equivalent to a

T -invariant divisor.

Property 1. A Weil divisor D = ΣaiDi is Cartier if and only if for each maximal cone σ

(i.e. a cone in Σ not contained in any other cone) there exists an m ∈M such that for every

σi ∈ σ, 〈m, ei〉 = −ai.

This fact allows us to calculate the Picard group of X using the following theorem.

Theorem 2.4.22. [Ful93] The following sequence is exact.

0→M → DivTX → Pic(X)→ 0

Here DivTX denotes the free abelian group of T -invariant Cartier divisors on X.

2.4.5 Degenerations

As we will see in Chapter 4, Batyrev uses reflexive polytopes to construct a duality between

families of Calabi-Yau hypersurfaces in toric varieties [Bat94]. This work was extended in

[BCFKvS00]to find mirrors for hypersurfaces in partial flag varieties. This is done by degen-

erating the flag variety to a toric variety and then using a specialized version of the mirror
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construction for toric hypersurfaces. These constructions, and the extension to the case of

small toric degenerations will be discussed in the next chapter.

Definition 2.4.23. Let X ⊂ Pm be a smooth variety of dimension n. A toric variety Y ⊂ Pm

is called a toric degeneration of X, if there exists a Zariski open neighborhood U of 0 ⊂ A1

and an irreducible subvariety X̃ ⊂ Pm × U such that the morphism π : X̃ 7→ U is flat and

the following conditions hold:

1. the fiber Xt := π−1(t) ⊂ Pm is isomorphic to X for all t ∈ U\0;

2. X0 is isomorphic to Y ⊂ Pm;

A more refined version of toric degeneration is a “small toric degeneration”. The “small-

ness” is a combination of conditions on singularities of the fibers and a condition on the

Picard groups.

Definition 2.4.24. [Bat04, Def 3.1] Let X ⊂ Pm be a smooth Fano variety of dimension

n. A normal Gorenstein toric Fano variety Y ⊂ Pm is called a small toric degeneration of

X, if there exists a Zariski open neighborhood U of 0 ⊂ A1 and an irreducible subvariety

X̃ ⊂ Pm × U such that the morphism π : X̃ 7→ U is flat and the following conditions hold:

1. the fiber Xt := π−1(t) ⊂ Pm is smooth for all t ∈ U\0;

2. the special fiber X0 := π−1(0) ⊂ Pm has at worst Gorenstein terminal singularities and

X0 is isomorphic to Y ⊂ Pm;

3. the canonical homomorphism

Pic(X̃/U) 7→ Pic(Xt)

is an isomorphism for all t ∈ U .

An example of a small toric degeneration which was used in the classical mirror construc-

tions of Batyrev et. al. can be found in[GL96].
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Lemma 2.4.25. [Bat04] If X is a small toric degeneration of Y then −KX is Cartier and

thus ∆(X,−KX) is a reflexive polytope.

We are now armed with the tools needed to understand the most classical combinatorial

construction of mirrors to the generic anticanonical hypersurfaces in G/B.



Chapter 3

Classical Mirror Constructions

The first example of mirror symmetry was constructed by physicists Greene and Plesser for

generic quintic hypersurface in P4 [GrP90]. In this chapter we review several mathematical

mirror constructions which include Greene and Plesser’s result as a special case. Special

attention is given to the construction of mirrors to the anticanonical hypersurfaces of G/B.

3.1 Calabi-Yau Hypersurfaces in Toric Varieties and their Mirrors

Conjecture 3.1.1. [Bat94] For a reflexive polytope ∆, MPCP-desingularizations of com-

pactifications of generic elements of L(∆) are mirror to MPCP-desingularizations of com-

pactifications of generic elements of L(∆∗).

As evidence Batyrev proves that the Hodge Deligne numbers of MPCP-desingularizations

of generic hypersurfaces of L(∆) and L(∆∗) satisfy hn−2,1(ẐX∆
) = h1,1(ẐX∆∗

) and vice versa.

This implies the mirror relations in the case of Calabi-Yau threefolds. Batyrev proved this

result by using Danilov and Khovansky’s method of calculating the Hodge Deligne numbers

of generic toric hypersurfaces in terms of the number of integral points on certain faces of ∆

and ∆∗ [DK86].

Proposition 3.1.2. [Bat94, Thm 4.3.7,4.4.2] For n ≥ 4 and ZX∆
∈ L(∆), then the Hodge

number hn−1,1(ẐX∆
) = h1,1(ẐX∆∗

) = l(∆) − n − 4 −
∑

codimθ=1

l∗(θ) · l∗(θ∗) where θ denotes a

face of a reflexive polytope ∆ and θ∗ denotes the corresponding dual face on ∆∗.

Example 3.1.3. P4 is a toric variety which corresponds to the 4-simplex. For the 4-simplex

with with vertices at distance 5 from the origin ∆ is a reflexive polytope and L(∆) consists of

18
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generic quintic hypersurfaces. The mirror construction coincides with Greene and Plesser’s

original construction of mirrors to generic quintic threefolds.

This construction was extended to include the case of Calabi-Yau complete intersections

in toric varieties in [BB96].

3.2 Mirror Construction for flag and Fano varieties

3.2.1 Example: Mirrors of Anticanonical Hypersurfaces in G/B

In this section we review the work of Batyrev, Ciocan-Fontanine, Kim, and van Straten

[BCFKvS00]. In this work they used a particular small toric degeneration (namely the sagbi

or equivalently Gonciulea-Lakshmibai degeneration), to construct mirrors to the anticanon-

ical hypersurfaces in partial flag varieties. We review this example in the case of a complete

flag.

Fix G/B of type An, and create an oriented graph Γ as follows. The vertices of Γ will be

split into two groups V = Dots ∪ Stars. The vertices lie in the first quadrant of Z2 (with

coordinates y1 and y2) as follows. If y1 + y2 < n then place a Dot on (y1, y2). If y1 + y2 = n

place a Star on (y1, y2). For the edges draw vertical and horizontal lines connecting all of

the vertices. Orient the edges down and to the right. The picture for the A2 case is shown in

Figure 3.2.1. Let M be the lattice of rank |Dots| with coordinates xd corresponding to the

b b

b

*
*

*

Figure 3.1: Γ for G/B of type A2

Dots in Γ. To each oriented edge e from vertex vtail to vhead we associate an inequality in MR

xtail − xhead ≥ 0
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with the condition that if v corresponds to a Star with coordinate (y1, y2) then xv is the

constant y1. We call this collection of inequalities the Γ-inequalities.

Example 3.2.1. For G/B of type A2 the following inequalities define ∆.

x0,1 ≤ 2

x0,0 ≤ x0,1

x1,0 ≤ 1

x1,0 ≥ 0

x0,0 ≥ x1,0

x0,1 ≥ 1

Theorem 3.2.2. [BCFKvS00] The set ∆ := {x ∈ MR satisfying the Γ-inequalities } is a

reflexive polytope. Moreover, this polytope corresponds to a toric variety X∆ which appears

as a small toric degeneration of G/B in [GL96].

For our example above the polytopes ∆ and ∆∗ are shown in Figure 3.2.1. It would be

0

5

4

1

4

3

2
1

3

6

0

22

0

1

∆

4

5

0

4

3

5

1

3

4

22

4

0

∆∗

Figure 3.2: Polytopes ∆ and ∆∗ for G/B of type A2.

reasonable to think of L(∆) as a birational model of the limit of anticanonical hypersurfaces

in G/B. A logical guess would be that the mirrors would thus be birational to generic
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elements in L(∆∗). Unfortunately that family is too large. Instead the correct version was

formulated by looking at a subfamily of V (∆∗) whose coefficients satisfied a set of relations

called box equations.

The box equations are given by relations among the coefficients which correspond to

rays in Σ which in turn correspond to facets of ∆. These facets are defined by inequalities

corresponding to edges in Γ. So we have a one to one correspondence between edges ei and

coefficients ai. Which means the box equations can be described in terms of relations between

edges of Γ.

Definition 3.2.3. [BCFKvS00]For every square in the diagram of Γ we denote

eleft, eright, etop and ebottom the corresponding edges. box equations are the collection of rela-

tions aleftabottom = atoparight for every square in Γ.

Example 3.2.4. We can calculate the box equations in the A2 case using Figure 3.2.4 The

b b

b

*
*

*
e1

e2 e3
e4

e5 e6

x1

x2 x3

Figure 3.3: Γ with labeled edges

the equations defining V (∆∗) ∩ T are:

1 = a1t
−1
1 + a2t1t

−1
2 + a3t

−1
3 + a4t1 + a5t2t

−1
3 + a6t3

The corresponding box equations are

a2a5 = a3a4

.
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3.2.2 Mirror Construction using Small Toric Degenerations

Let X be a small toric degeneration of a smooth Fano variety Y , with corresponding fan Σ

and polytope ∆ = ∆(X,−KX). Batyrev extends the construction from the full flag case to

find mirrors to generic anticanonical hypersurfaces in Y . In particular, the mirrors will be

birational to generic elements of V (∆∗) whose coefficients relations which we will again call

box equations.

Definition 3.2.5. A set of coefficients a = (a1, · · · , ar) satisfies box equations if for every

maximal dimensional cone in Σ there exists an m ∈M such that

〈m, ei〉 = log|ai|

for every ray σi in the maximal cone.

Remark 3.2.6. The set a satisfying the box equations, is is a multiplicative version of the

condition for a divisor to be Cartier. Such a set a is also known as Σ-admissible.

Conjecture 3.2.7. [Bat04, 4] Generic elements of the subfamily of V (∆∗) whose coefficients

satisfy the box equations are birational to mirrors of generic elements of | −KY |.

Remark 3.2.8. The explicit construction of mirrors to anticanonical hypersurfaces in G/B

described in the previous section is a specific example of this construction.



Chapter 4

Representation Theory Background

We want to use different degenerations of G/B to construct and compare mirror families

of Calabi-Yau varieties. Several such degenerations, called string degenerations, were con-

structed in [Cal02, AB04] by viewing algebraic geometry ideas from a representation theory

perspective. In this section we review the background material from representation theory

and Quantum Groups we need to explain and understand the string degenerations.

4.1 Definitions, Notation and Basic Facts

Working over C, let G be the algebraic group SLn+1, B the Borel subgroup of upper trian-

gular matrices, U the subgroup of upper uni-triangular matrices, and T the maximal torus of

diagonal matrices. One has B = TU . We let B− and U− denote the opposite Borel subgroup

and its unipotent radical. Let Φ be the root system of (G,T ), with Φ+ the subset of positive

roots. We denote α1, ..., αn the corresponding simple roots.

Let W be the Weyl group of (G,T ) with s1, ..., sn the reflections associated to α1, . . . , αn.

Note that W ∼= Sn+1 so we can view si as the transposition exchanging i and i + 1. These

transpositions define a length function l on W . Let ω0 be the unique element of maximal

length corresponding to the permutation sending 1 to n + 1, 2 to n and so forth. There are

N = l(ω0) = n(n+1)
2

positive roots, which is the dimension of the flag variety G/B.

Let Λ be the weight lattice generated by the fundamental weights ω̂i , 1 ≤ i ≤ n, and let

Λ+ :=
⊕

i

Z≥0ω̂i be the semigroup of integral dominant weights. If λ lies on the interior of

the cone Λ+
R

we call it a regular dominant weight. We let ρ be the sum of the fundamental

weights (which is equal to half the sum of the positive roots).

23
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Definition 4.1.1. For any weight λ let V (λ) := {v ∈ G|tg = λ(t)v for all t ∈ T}. If V (λ)

is nonempty we call it a weight space.

Note that V (λ) is a simple G-module with highest weight λ. Set λ∗ := −ω0λ, where ω0

acts on λ by permuting the fundamental weights.

For any λ we can associate a line bundle on G/B denoted Lλ (see [FH, 23.3] for details).

We have the following facts about about the line bundles Lλ [Br05, AB04].

1. Lλ is globally generated (resp. ample) if λ is dominant (resp. regular dominant).

2. If λ is a regular dominant weight then we have H0(G/B,Lλ) = V (λ∗)

3. If λ = 2ρ the Lλ = −KG/B.

In constructing the string degenerationsG/B is viewed asG/B = Proj(
∞⊕

k=1

H0(G/B,Lkλ)).

It will be helpful to have a combinatorial understanding of a basis for H0(G/B,Lkλ). One

way of doing so is by viewing V (λ∗) as a dequantization of quantum weight space Vq(λ
∗)

since its basis elements are in one to one correspondence with integral points of a polytope.

We introduce quantum groups in order to define and understand Vq(λ
∗).

4.2 Quantum Groups

Let q be a nonzero complex number which is not a root of unity. We define An as the asso-

ciative algebra with unit over the field of rational functions Q(q) generated by the elements

x1, · · · , xn modulo the relations:

1. xixj = xjxi for |i− j| > 1

2. x2
ixj − (q + q−1)xixjxi + xjx

2
i = 0 for |i− j| = 1

Remark 4.2.1. When the rank is clear, we will write An as A.

We also define define an associative algebra U+ generated by E1, · · · , En satisfying the same

relations. These algebras are graded by Λ+, where the degree of xi is ω̂i. We denote the
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degree γ homogeneous components of A by A(γ). A and U+ are dual to one another by the

following theorems of Berenstein and Zelevinsky.

Theorem 4.2.2. [BZ93, Prop 1.1] There exists a unique action (E, x) 7→ E(x) of the algebra

U+ on A satisfying the following properties:

1. (Homogeneity) If E ∈ U+(α), x ∈ A(γ) then E(x) ∈ A(γ − α).

2. (Leibniz formula)

Ei(xy) = Ei(x)y + q−(γ,αi)xEi(y) for x ∈ A(γ), y ∈ A

(here (γ, α) is defined by means of the Cartan matrix).

3. (Normalization) Ei(xj) = δij.

Proposition 4.2.3. [BZ93, Prop. 1.2]

1. If γ ∈ Q+ {0} and x is a nonzero element of A(γ) then Ei(x) 6= 0 for some i = 1, · · · , n.

2. For every γ ∈ Q+, the mapping (E, x) 7→ E(x) defines a non-degenerate pairing

U+(γ)×A(γ)→ A(o) = Q(q)

In addition to showing the duality of A and U+, these propositions show us how the E

act on x like a quantum derivation.

Example 4.2.4. The Quantum Group A2 is generated by x1 and x2 with the relations

x2
1x2 + x1x

2
2 = (q + q−1)x1x2x1

x2
2x1 + x2x

2
1 = (q + q−1)x2x1x2



26

The dual algebra U+ is generated by E1 and E2 subject to the same relations. An example

of the quantum derivative would be

E1(x
2
1xj) = E1((x

2
i )(xj))

= E1(x
2
1)x2 + q−(2α1,α1)x2

1E1(x2)

= E1(x
2
1)x2 + q−4x2

1 · 0

= (E1(x1)x1 + q−(α1,α1)x1E1(x1))x2

= (x1 + q−2x1)x2

= (1 + q−2)x1x2

4.3 String Bases

Recall, we are interested in these quantum groups because we are looking for a combinatorial

structure on the basis elements of V (λ∗). We examine a particular type of basis for A called

a string basis. Such a basis will restrict to a basis of Vq(λ
∗). We will the use the specialization

map to get a basis for V (λ∗).

For any subset B ⊂ A, let [B]+ ⊂ A be the set of all linear combinations of elements of

B with coefficients in Z[q, q−1].

Definition 4.3.1. A basis B of A is called a string basis if

1. B consists of homogeneous elements and contains 1.

2. For every b,b′ ∈ B the product bb′ ∈ [B]+.

3. Ei(b) ∈ [B]+ for b ∈ B, i = 1, · · · , n

4. If b ∈ B, and l is the maximal integer such that El
i(b) 6= 0 then E

(l)
i (b) ∈ B.

Classically there were two known bases of U+, Lusztig’s canonical basis and Kashiwara’s

crystal basis [L90, Kash95]. Lusztig and Grojnowski later proved that these bases were

equivalent [GrL93].
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Proposition 4.3.2. [BZ93, Prop 1.3] The basis in A dual (under the map in 4.2.3) to

Lustzig’s canonical basis in U+ is a string basis. This basis is known as the dual canonical

basis.

The work of Littelmann and Berenstein-Zelevinsky [BZ93, Lit98] gives a method of asso-

ciating elements of the dual canonical basis B to integral points of a strongly convex rational

polyhedral cone. This method depends on the choice of ω0.

4.3.1 String Cone

If x ∈ A is non zero then for each i we let

li(x) = max {l ∈ Z+|e
l
i(x) 6= 0}

and define

E
(top)
i (x) := E

(li(x))
i (x)

For any reduced word decomposition ω0 = si1 · · · siN of ω0 we define a(ω0, x) = (a1, · · · , an)

the string of x in the direction ω0 by ak := lik(E
(top)
ik−1

E
(top)
ik−2
· · ·E(top)

i1
(x). Note that a maps the

elements of the dual canonical basis to the lattice ZN .

Example 4.3.3. Fix the reduced word ω0 = s1s2s1 for the quantum group A2. Assume that

x2
1x2 is an element of the dual canonical basis. Then we can calculate its string as follows.

From our previous calculation we have

E1(x
2
1x2) = (1 + q−2)x1x2(which is not 0 so l1(x

2
1x2) ≥ 1.)

E1((1 + q−2)x1x2) = (1 + q−2)E1(x1)x2 + q−(α1,α1)x1E1(x2)

= (1 + q−2)x2 + 0)

= (1 + q−2)x2(which is not 0 so l1(x
2
1x2) ≥ 2.)

E1((1 + q−2)x2) = 0 so l1(x
2
1x2) = 2.
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Now we need to calculate l2:

E2((1 + q−2)x2) = 1 + q−2 so l2(x
2
1x2) ≥ 1

E2(1 + q−2) = 0 so l2(x
2
1x2) = 1.

Finally we calculate l3:

E1(1 + q−2) = 0

so l3(x
2
1x2) = 0. Therefore the element x2

1x2 would be represented by the string (2, 1, 0).

Proposition 4.3.4. [BZ93] Any element of the dual canonical basis b ∈ B is uniquely

determined by a(ω0, b). In addition, under the map a, the elements of the dual canonical

basis B are in one to one correspondence with integral points of a strongly convex rational

polyhedral cone C := C(B, ω0) ⊂ RN .

The inequalities describing the cone C are given in [BZ01], and a combinatorial descrip-

tion for them is given in [GlP00]. We will review this description later in the paper.

4.3.2 Quantum groups and a Basis for V (λ∗)

Now we want to use our understanding of quantum groups to give us some data about the

basis for V (λ∗) = H0(G/B,Lλ).

Definition 4.3.5. For λ in Λ+, let Vq(λ) be the simple A module with highest weight λ. Let

vλ be the corresponding highest weight vector.

Definition 4.3.6. For λ in Λ+, λ = Σλiω̂i we define

Bλ := {b ∈ B, li(b) ≤ λi}.

Theorem 4.3.7. [Kash95, 9,Prop. 8.2] For λ ∈ Λ+ the collection Bλ ·vλ is a basis for Vq(λ).

The image of the inequalities defining Bλ under the map a define a convex rational

polyhedral cone in ZN known as the λ-cone. This theorem shows that the basis elements of

Vq(λ) are in one to one correspondence with integral points which lie both in the string and

the λ-cone. The intersection of these two cones is an N -dimensional polytope ∆ := ∆(λ, ω0).
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Example 4.3.8. In the case A1 we must have ω0 = s1. The dual canonical basis consists of

elements of the form xk
1 for nonnegative integers k. Then a maps the basis elements to R by

a(xk
1) = k. Thus the string cone would be defined by the inequality x ≥ 0. For λ = nω̂1 we

have Bλ = {xm
1 |m ≤ n}. From this we see the λ-cone is given by the inequality x ≤ n. The

polytope ∆, which is the intersection of the two cones, is an interval of length n.

Lemma 4.3.9. [Cal02, Prop 2.1.1] The basis for Vq(λ) specializes to a basis for V (λ) when

q = 1.

This extends our combinatorial model to a basis ofH0(G/B,Lλ). In the following chapter

we will see how this model can be used to construct different degenerations of the flag variety.



Chapter 5

String Degenerations of Flag Varieties

5.1 Constructing the Degeneration

In this Section we review the string degeneration in the case of G/B of type An. We follow

the notation found in [AB04]. The construction is due to work of Caldero, Alexeev and Brion

in [Cal02, AB04]. Let A :=
⊕

λ∈Λ+

H0(X, λ) Recall for a fixed λ ∈ Λ+ the associated line bundle

Lλ is ample.

Now remember that H0(X,Lλ) ∼= V (λ∗) which has a basis coming from the specialization

of the dual canonical basis. By fixing a reduced decomposition ω0 we can associate these dual

canonical basis elements to integral points in the the polytope ∆(ω0, λ). We denote a basis

element of A as an ordered pair (λ, φ) where λ is the corresponding weight, and φ is an

integral point in the polytope ∆(ω0, λ). We will refer to the set of basis elements of A as βA.

Lemma 5.1.1. [Cal02, Thm2.3] Let bλ,φ and bλ′,φ′ be in βR. The dual canonical basis has

the following multiplicative property:

bλ,φbλ′,φ′ = bλ+λ′,φ+φ′ + Σγc
γ
λ,λ′,φ,φ′bλ+λ′,γ

where the constant cγλ,λ′,φ,φ′ = 0 unless γ < φ+ φ′ in the lexicographic order of NN .

From this Caldero defines a filtration on A as follows.

Proposition 5.1.2. [Cal02, Prop 3.1] A≤φ := {(γ, ψ) ∈ βA|ψ ≤ φ in the lexicographical

order of of ZN} defines an NN filtration on A such that the associated graded algebra grA =
⊕

A≤φ/A<φ is naturally isomorphic to the C-algebra of the semigroup defined by the string

cone.
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This construction would yield a sequence of degenerations from G/B to an affine toric

variety, but what we want is a single projective degeneration.

Using the fact that A is finitely generated, and its elements can be associated to points of

a polyhedral cone. Caldero constructs an N-filtration on A denoted A≤m such that associated

graded algebra grA is the algebra of the string cone.

Instead of these affine degenerations, Alexeev and Brion looked at the projective case.

Fix λ ∈ Λ+.

Definition 5.1.3. R(X,Lλ) :=

∞⊕

n=0

H0(X,Ln
λ).

We have G/B ∼= ProjR(X,Lλ). The N-filtration on A restricts to an N-filtration on

R(X,Lλ) denoted by R(X,Lλ)≤m.

From this Alexeev and Brion prove:

Theorem 5.1.4. [AB04, Thm. 3.2] Fix a reduced decomposition ω0 and λ ∈ Λ+. Then there

exists a family π : X → A1, where X is a normal variety, together with divisorial sheaves

OX (n) (n ∈ Z) such that

1. π is projective and flat.

2. π is trivial with fiber G/B over the complement of 0 in A1, and OX (n)|G/B
∼= Lnλ for

all n.

3. The fiber of π at 0 is isomorphic to X∆ where X∆ is the projective toric variety corre-

sponding to the polytope ∆(ω0, λ).

This family is constructed using the Rees algebra R :=
∞⊕

m=0

R≤mt
m, and putting X =

ProjR, then, using Caldero and Alexeev-Brion’s work, checking that such a variety has the

above properties. We refer to these degenerations as string degenerations.

In the rest of the paper unless otherwise specified the string degeneration of G/B will

refer to the degeneration for the pair (G/B,−KG/B = L2ρ).
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5.2 Are String Degenerations Small?

The string degenerations are seen to be different, as the polytopes ∆ change vastly depending

on the choice of ω0. For example the number of faces of each different dimension differ, as

does the rank of the Picard group of the corresponding toric variety. Since Batyrev has a

mirror construction for any small toric degeneration, we are interested in whether or not the

string degenerations of G/B are small. It turns out that they are in some case but that they

fail to be small in others. Recall that a key component of smallness is the Picard group of

the special fiber.

Theorem 5.2.1. For any string degeneration of G/B we have rank Pic(X∆) ≤ rank Pic(G/B).

Proof. Since H2(X∆,OX∆
) = 0 then there exists an open neighborhood of 0 over which

PicX /S is smooth [FGIKNV, Prop 9.5.19]. This allows us to extend the line bundle on X∆

to a line bundle on a nearby fiber.

Remark 5.2.2. The statement that the rank of the Picard group of the special fiber cannot

exceed the rank of the Picard group of a generic fiber, holds for any toric degeneration.

5.2.1 Example of a Nonsmall Degeneration

Proposition 5.2.3. For the case of A3 with ω0 = s3s1s2s1s3s2 the string degeneration is not

small.

Proof. For this choice of degeneration the polytope ∆ = ∆(2ρ, ω0) is a six dimensional

polytope with 38 vertices and 13 facets (entire f-vector= (38, 133, 197, 152, 63, 13)). Recall

that the set of T-Invariant divisors is generated by the corresponding rays σi. Using the

freely available program polymake we can calculate the first integral points on each of these

rays. As before we can write every T-invariant divisor on X∆ as D = Σ1
i=02aiDi where Di is

the T -invariant divisor corresponding to the ray σi, with first integral point ei.
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We list these first integral points in a table below.

e0 = (0, 1, 0, 0, 0, 0)

e1 = (1, 0, 0, 0, 0, 0)

e2 = (0, 0, 0, 0, 0, 1)

e3 = (0, 0, 1,−1, 0, 0)

e4 = (0, 0, 1, 0,−1, 0)

e5 = (0, 0, 0, 0, 1,−1)

e6 = (0, 0, 0, 1, 0,−1)

e7 = (0,−1, 1,−2, 0, 1)

e8 = (−1, 0, 1, 0,−2, 1)

e9 = (0, 0,−1, 1, 1,−2)

e10 = (0, 0, 0, 0,−1, 1)

e11 = (0, 0, 0,−1, 0, 1)

e12 = (0, 0, 0, 0, 0,−1)

Following the methods described in Section 2.4.4, we can calculate that a T -invariant divisor

is Cartier if and only if the following equations are satisfied:

a0 + a7 = a3 + a11

a1 + a8 = a4 + a10

a3 + a10 = a4 + a11

a4 + a9 = a5 + a12

a5 + a10 = a6 + a11
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Using the exact sequence

0→M → DivTX → Pic(X)→ 0

we can calculate:

rank PicXDelta = rankDivTX − rankM

= Rank T-Invariant Divisors - Number of Cartier Relations− dimX

= 13− 4− 6 = 3

Since 3 6= 4 = rank PicG/B we see that the degeneration isn’t small.



Chapter 6

Combinatorics of ∆

In this chapter we seek to understand the combinatorics of the polytope ∆. This will allow

us to define the appropriate mirror families, and later, to prove that these families are all

birational.

6.1 Gleizer and Postnikov’s description of ∆

The polytope ∆(λ, ω0) is the intersection of Berenstein and Zelevinsky’s string cone and

a polyhedral cone called the λ-cone [AB04, Thm 1.1]. Explicit inequalities describing the

λ-cone can be found in [Lit98, 1] and [AB04, Thm 1.1]. Inequalities for the string cone are

given in [BZ01, 3.10] and [Lit98, 1]. A combinatorial description for them is given in [GlP00,

Cor.5.8].

In this section we review Gleizer and Postnikov’s combinatorial description of the string

cone and add a combinatorial description of the λ-cone as well. For our description of the λ

cone we fix λ = 2ρ so that Lλ = −KG/B.

Gleizer and Postnikov describe the string cone in terms of a picture called a string diagram

[GlP00]. We review their construction here.

Remark 6.1.1. In this description the order in which we write the reduced decomposition

of ω0 is reversed from their original description.

Let ω0=si1si2 . . . siN be a reduced decomposition of ω0. They represent this decomposition

with a string diagram described below: Start with n + 1 strings at the top of the diagram.

Move down the diagram exchanging the string in the i1 column with the string in the i1+1
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column. Continuing down the diagram exchange the string in the i2 column with the string

in the i2 + 1 column. Continue this process until you have made N exchanges. The strings

will have reversed their orders when they reach the bottom of the diagram.

Label the intersection points t1, t2, . . . , tN from top to bottom. Label the strings U1

through Un+1 on the top from left to right. Mark vertices u1 through un+1(resp. b1 through

bn+1) as the upper (resp. lower) ends of the strings U1 through Un+1.

Example 6.1.2. Figure 6.1.2 shows the string diagram for n = 3 and reduced word decom-

position ω0 = s3s1s2s1s3s2:

u1 u2 u3 u4
t1

t2

t3

t4

t5

t6

b4 b3 b2 b1

Figure 6.1: Γ(s3s1s2s1s3s2)

Definition 6.1.3. ([GlP00]) Pick a number k from 1 to n. Form an oriented graph on the

string diagram as follows. Orient strings U1 through Uk upward and the rest of the strings

downward. A rigorous path is an oriented path from bk to bk+1 not meeting any vertex more

than once, and avoiding the two bad fragments in Figure 6.1.3.

Each rigorous path defines an inequality as follows:

Σaixi ≥ 0 where ai =





1 if the path switches from Ui to Uj and i < j

−1 if the path switches from Ui to Uj and i > j

We refer to these inequalities as string inequalities.
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Here the thin line denotes a string, and the thick line indicates the rigorous path.

Figure 6.2: A rigorous path may not contain either of these two segments

Example 6.1.4. For the string diagram pictured in Figure 6.1.2 we have the following list

of rigorous paths and corresponding inequalities:

k = 1 :

b1 7→ t5 7→ t3 7→ t4 7→ t6 7→ b2 corresponds to: x3 ≥ x4.

b1 7→ t5 7→ t6 7→ b2 corresponds to: x5 ≥ x6.

b1 7→ t5 7→ t3 7→ t2 7→ t4 7→ t6 7→ b2 corresponds to: x2 ≥ 0.

k = 2 :

b2 7→ t6 7→ b3 corresponds to: tg ≥ 0.

k = 3 :

b3 7→ t6 7→ t4 7→ b4 corresponds to: t4 ≥ t6.

b3 7→ t6 7→ t5 7→ t3 7→ t4 7→ b4 corresponds to: t3 ≥ t5.

b3 7→ t6 7→ t5 7→ t1 7→ t3 7→ t4 7→ t6 7→ b4 corresponds to: t1 ≥ 0.

Note in this example all possible oriented paths from bi to bi+1 are rigorous. An example

of a nonrigorous oriented path between two neighboring bottom vertices can found using

ω0 = s1s2s3s2s1s2. In that case for k = 1 the oriented path b1 7→ t3 7→ t4 7→ t5 7→ t6 7→ b2 is

not rigorous.

Proposition 6.1.5. [GlP00, Cor. 5.8] The string cone is the collection of points in RN

satisfying the string inequalities.
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Lemma 6.1.6. For λ = 2ρ, the λ-cone is the collection of points in RN satisfying the

following inequalities which we call λ-inequalities:

λi : xi ≤ 2 +
∑

j>i

cjxj

for i from 1 to N , where

cj =





1 if the vertex tj is one column to the right or left of ti

−2 if the vertex for tj is in the same column as ti

0 otherwise.

This is simply a way of visualizing the Lie-algebraic definition of the λ-cone (see [AB04,

Thm 1.1]), and of associating a λ-inequality to each intersection point in the string diagram.

Example 6.1.7. For the string diagram in Figure 6.1.2 we have:

λ1 : x1 ≤ 2 + x3 − 2x5 + x6

λ2 : x2 ≤ 2 + x3 − 2x4 + x6

λ3 : x3 ≤ 2 + x4 + x5 − 2x6

λ4 : x4 ≤ 2 + x6

λ5 : x5 ≤ 2 + x6

λ6 : x6 ≤ 2

Definition 6.1.8. For any weight λ we define the λ-cone as the intersection of the collection

of points satisfying set of inequalities in the definition above, but with the constant 2 replaced

by < λ, αi >. Similarly we define the polytope ∆(λ, ω0) to be the intersection of the string

cone with the corresponding λ-cone.

6.1.1 Boxes

In constructing mirrors using the string degenerations we will need an a set of relations that

play the role of “box equations”. We begin with a definition of a “box”.
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Definition 6.1.9. Let Γ = Γ(ω0) be the string diagram viewed in R2. Then for each bounded

connected component c of R2\Γ, we call the boundary of c a box.

Example 6.1.10. For the string diagram Γ(s3s1s2s1s3s2) there are three boxes given by the

following circuits. (See Figure 6.1.2)

1. t2 7→ t3 7→ t4 7→ t2

2. t3 7→ t5 7→ t6 7→ t4 7→ t3

3. t1 7→ t5 7→ t3 7→ t1

Definition 6.1.11. A box bounded by a cycle ti 7→ ti+1 7→ ti+2 7→ ti is called type RR121121

if ti+1 is the column to the right of ti, and type R212 if ti+1 is in the column to the left of ti.

These boxes will help us describe how ∆ changes for different choices of reduced word

decompositions.

6.2 How points of ∆ change under a Braid move

Any two reduced decompositions of ω0 are connected by a finite sequence of the following

two braid moves.

1. 2-move: exchanges (si, sj) with (sj, si) where |i− j| > 1

2. 3-move: exchanges (si, sj, si) with (sj, si, sj) where |i− j| = 1

Figure 6.2 shows a 2-move from ω0 = s3s1s2s1s3s2 to ω0
′ = s1s3s2s1s3s2 Figure 6.2 shows

a 3-move from ω0 = s3s1s2s1s3s2 to ω0
′ = s3s2s1s2s3s2 A 3-move from ω0 to ω0

′ fixes all of

the string diagram except for one box of type R121orR212.

Definition 6.2.1. Given a 3-move from ω0 to ω0
′, label the unfixed box in the string diagram

for ω0, R and its image R′. Note that if R is of type R121 then R′ must be of type R212 and

vice versa.
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u1 u2 u3 u4
t1

t2

t3

t4

t5

t6

b4 b3 b2 b1

u1 u2 u3 u4
t1

t2

t3

t4

t5

t6

b4 b3 b2 b1

Figure 6.3: String Diagrams for ω0 = s3s1s2s1s3s2 and ω0
′ = s1s3s2s1s3s2

u1 u2 u3 u4
t1

t2

t3

t4

t5

t6

b4 b3 b2 b1

u1 u2 u3 u4
t1

t2

t3

t4

t5

t6

b4 b3 b2 b1

Figure 6.4: String diagrams for ω0 = s3s1s2s1s3s2 and ω0
′ = s3s2s1s2s3s2
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The map between string cones differing by a single braid move, defined by Berenstein

and Zelevinsky in [BZ93, Thm 2.7], restricts to a map between polytopes ∆(ω0) and ∆(ω0
′) .

They prove that the map fixes all of the coordinates except for the two or three corresponding

to those being exchanged in the braid move. For those coordinates they have the following

maps:

1. 2-move: (xi, xj) → (xj , xi)

2. 3-move: (xi, xj , xk) → (max(xk,xj − xi),xi + xk,min(xi,xj − xk)). Note that i, j and k

are consecutive integers.

6.3 How the Facets of ∆ change under a Braid move

Recall, that we are seeking to define a mirror family in an analogous way to Batyrev’s

construction. Following this motivation we are interested in understanding vertices of ∆∗

and how they change under the braid move. Since vertices of ∆∗ correspond to facets of ∆,

we examine how the facets of ∆ change under Berenstein and Zelevisnky’s piecewise linear

map.

Notice that the piecewise linear map for a 2-move is just a relabeling of the variables so

the polytopes are obviously isomorphic. In this section we classify the defining inequalities of

∆ and how they change under a 3-move. From these results we prove that the dual polytope

∆∗ is integral.

Definition 6.3.1. Write the defining inequalities of ∆(ω0) as
∑

i

midxi ≤(0 or 2), and

define Md = (m1d
, · · · , mNd

). Let TMd := t
m1d

1 t
m2d

2 · · · t
mNd

N and define BFω0
as the family of

hypersurfaces in the torus T=SpecC[t1, t
−1
1 , . . . , tN , t

−1
N ] given by the equations:

fω0,a := 1−
∑

d

adT
Md = 0

where d runs over all defining inequalities of ∆. We will refer to individual hypersurfaces as

Zω0,a, where a = (a1, · · · , ar) denotes the coefficient vector.
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Only three coordinates change under a 3-move. In what follows we will refer to those

coordinates as xi, xj , and xk. We call the product of the ti, tj , and tk variables inside of TMd

a monomial piece, and refer to this product as τMd. We will refer to the monomial pieces

associated to string (resp. λ) inequalities as string (resp. λ) monomial pieces. Since each

inequality corresponds to a monomial, we can classify all possible string and λ-inequalities

in terms of their monomial pieces.

Example 6.3.2. For the reduced word decomposition ω0 = s3s1s2s1s3s2 there is a unique

possibility for performing a 3 move, namely s3s1s2s1s3s2 → s3s2s1s2s3s2. So we can classify

the monomials in terms of the three coordinates that change ti := t2, tj := t3, tk := t4. The

rigorous path b1 → t5 → t3 → t4 → t6 → b2 corresponds to the monomial t−1
3 t4 so it will

fall under the classification of t−1
j tk. The λ1-inequality which corresponds to the monomial

t1t
−1
3 t25t

−1
6 would be represented by the monomial piece t−1

j .

6.3.1 Classification of λ-Monomial Pieces

Theorem 6.3.3. The following is a complete classification of λ-monomial pieces before and

after a 3-move.

tit
−1
j t2k ↔ tit

−1
j t2k tjt

−1
k ↔ tjt

−1
k tk ↔ tk t−1

i t−1
k ↔ t−1

j

t2i t
−1
j t2k ↔ t−1

i t2jt
−1
k

An arrow indicates which monomial pieces are exchanges under the braid move.

Proof. As above, we fix ti, tj and tk as the coordinates on which the 3-move occurs. We

classify the monomial pieces for the inequalities λl for all values of l. For l > k the monomial

for λl doesn’t have any terms from the braid move section. This means that the monomial

piece is 1 and it doesn’t change after a braid move.

For λi, λj, and λk we have the following monomial pieces regardless if R is of type R121

or R212: λi : tit
−1
j t2k λj : tjt

−1
k λk : tk
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If l < i, then the λl monomial piece only depends on which column tl lies (as pictured in

Figure 6.3.1).

u1 u2 u3
ti

tj

tk

b3 b2 b1

col.1 col.2 col.3 col.4

Figure 6.5: Graph of columns for λ-inequalities

1. If tl is in column 1 we have the monomial piece t−1
i t−1

k before, and t−1
j after the braid

move.

2. If tl is in column 2 we have the monomial piece t2i t
−1
j t2k before, and t−1

i t2j t
−1
k after the

braid move.

3. If tl is in column 3 we have the monomial piece t−1
i t2jt

−1
k before, and t2i t

−1
j t2k after the

braid move.

4. If tl is in column 4 we have the monomial piece t−1
j before, and t−1

i t−1
k after the braid

move.

Note that for R of type R212 we get the same collection of monomial pieces.

Example 6.3.4. For the reduced word ω0 = s3s1s2s1s3s2 λ1 corresponds to the monomial

t1t
−1
3 t25t

−1
6 represented by the monomial piece t−1

j . Relative to the box R121, t1 is in column 4.

After the braid move the λ1 corresponds to the monomial t1t
−1
2 t−1

4 t25t
−1
6 which corresponds to

the monomial piece t−1
i t−1

k .

6.3.2 Classification of String Monomial Pieces

In a similar fashion we will classify all of the string monomial pieces. We do this by examining

how a rigorous path may pass through a type R121 region. We will then see which rigorous

paths are possible after the braid move.
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Theorem 6.3.5. The following is a complete classification of the string monomial pieces,

and how they are exchanged under a type B2 braid move. The & sign indicates that a pair of

monomial pieces must occur together.

t−1
k ↔t

−1
i & t−1

j tk

ti ↔tk & t−1
i tj

titk ↔tj

t−1
i t−1

k ↔t
−1
j

tit
−1
j tk ↔t

−1
i tjt

−1
k

Proof. We would like to classify all of the string inequalities in terms of their monomial

pieces. By symmetry we can assume that R is of type R121. If a string monomial piece is

anything other than 1, the corresponding rigorous path pmust change strings in the region R.

Any oriented path entering R more than once must intersect itself so it cannot be rigorous.

Therefore, we may assume that a rigorous path only enters and exits R once. There are

6 ∗ 5 = 30 possible pairs of entry and exit points for p. If p enters R at the vertex be, then all

strings Uf for f ≥ e must be oriented upward. Therefore p cannot exit R through bf where

f < e. Similarly if p enters at ue it may not exit through uf for f > e. This eliminates 6

pairs of entry and exit points. By the same reasoning no rigorous path which changes strings

on R can enter at b3 (resp. u1) and exit at u3 (resp. b1). What remains are 22 entry and exit

pairs.

Figure 6.3.2 correspond to cases of entry and exit points in which there is a unique

rigorous path before and after the braid move. In each diagram displayed in Figure 6.3.2

there is one possible rigorous path through R before the braid move. After the braid move

there are two possible rigorous paths through R′. Since the string cone is the collection of

points satisfying all possible string inequalities there must be two inequalities (and hence

monomial pieces) in the image. In what follows we group these monomial pieces together.
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u1 u2 u3
ti

tj

tk

b3 b2 b1

u1 u2 u3
t′i

t′j

t′k

b3 b2 b1
We have the monomial piece t−1

i t−1
k → t′j

−1

u1 u2 u3
ti

tj

tk

b3 b2 b1

u1 u2 u3
t′i

t′j

t′k

b3 b2 b1
We have the monomial piece t−1

i t−1
k → t′j

−1

u1 u2 u3
ti

tj

tk

b3 b2 b1

u1 u2 u3
t′i

t′j

t′k

b3 b2 b1
We have the monomial piece t−1

i tjt
−1
k → t′it

′
j
−1t′k

Figure 6.6: String diagrams with one rigorous path before and after the 3-move
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u1 u2 u3
ti

tj

tk

b3 b2 b1

u1 u2 u3
t′i

t′j

t′k

b3 b2 b1

u1 u2 u3
t′i

t′j

t′k

b3 b2 b1
We have the monomial pieces t−1

k → t′i
−1& t′j

−1t′k
u1 u2 u3
ti

tj

tk

b3 b2 b1

u1 u2 u3
t′i

t′j

t′k

b3 b2 b1

u1 u2 u3
t′i

t′j

t′k

b3 b2 b1
We have the monomial piece t−1

k → t′i
−1& t′j

−1t′k
u1 u2 u3
ti

tj

tk

b3 b2 b1

u1 u2 u3
t′i

t′j

t′k

b3 b2 b1

u1 u2 u3
t′i

t′j

t′k

b3 b2 b1
We have the monomial pieces t−1

k → t′i
−1& t′j

−1t′k.

Figure 6.7: String diagrams with one rigorous path before but two such paths after a 3-move
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We can construct the other 16 cases of entry and exit points from these six using sym-

metry. For each rigorous path on R′ listed above there is a corresponding rigorous path on

R as follows. For the entry and exit points of the new path, exchange b1 and b3 (resp u1 and

u3). Then construct a new path which changes strings at the same vertices as the path on R′.

Unless the path on R′ changes strings at every vertex, this new path will be rigorous. This

is what we call horizontal path symmetry. Rigorous paths which changes strings at every

vertex do not have horizontally symmetric partners. There is also a vertical symmetry. Take

a path on R and exchange the “top” with “bottom” on the entry and exit points (i.e. b3

is switched with u1). Now create a path which changes strings at vertically flipped vertices

(i.e. ti instead of tk). This will be a new rigorous path. The remaining 16 single entry point

cases can be gotten from the 6 listed above, through a combination of horizontal and vertical

symmetries. From this classification we see that the sets of monomial pieces exchanged under

a 3-move.

Example 6.3.6. We let START (resp. FINISH) denote the piece of a rigorous path before

it enters (resp. after it exits) R or R′. Assume the following is a rigorous path before the

braid move: START 7→ b2 7→ tk 7→ b3 7→ FINISH. Since the 3-move only effects the braid

move region, we can follow the “START” and “FINISH” pieces of the path in the exact same

way. What remains to see is how many ways we can get from b2 to b3 in a rigorous setting.

It turns out there are two such paths:

START 7→ b2 7→ t′k 7→ t′i 7→ t′j 7→ b3 7→ FINISH: and

START 7→ b2 7→ t′k 7→ t′j 7→ b3 7→ FINISH.

Thus after the braid move there are two corresponding rigorous paths. This gives the

associate of monomial pieces t−1
k 7→ t′−1

i &t′−1
j t′k.

6.4 Integrality of ∆∗

Given this classification we can prove that the polytope ∆∗ is integral. To do this we want

to show that each facet of ∆ is at height 1 from an interior integral point.
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Lemma 6.4.1. For any braid region R, the line connecting the apex of the λ-cone and the

origin lies on the hyperplane xi + xk = xj .

Proof. It suffices to show that the apex of the λ-cone lies on the hyperplane. At the apex all

of the λ-inequalities are equalities. We can write the following equations, where A, B and

are the contributions to the equation from xd for d > k.

xi =2 + xj − 2xk + A

xk =2 +B

Note that since ti and tk are in the same column of the string diagram we have A = B. From

this we can see that

xi + xk = (2 + xj − 2xk + A) + xk = (xj − xk) + 2 + A = (xj − xk) + xk = xj .

Theorem 6.4.2. ∆∗(ω0) is an integral polytope for any reduced decomposition ω0 .

Proof. In [BCFKvS00], Batyrev (et. al.) show that for the reduced decomposition

ω0 = s1s2s1 . . . snsn−1 . . . s1 the polytope ∆∗ is an integral polytope with a unique interior

point P = (1, 2, 1, · · · , n, n− 1, · · · , 2, 1). The facets of ∆ determine linear functions L such

that L(P ) = 1. Let Ψ be the piecewise linear map between polytopes defined be Berenstein

and Zelevinsky. We want to show that under a 3-move, the facets of ∆′ determine L′ such

that L′(P ′) = 1 where P ′ = Ψ(P ).

The map Ψ is defined by two linear maps ψ1 and ψ2 which agree on the hyperplane

xi +xk = xj . For any linear function L associated to a facet of ∆ there are two corresponding

linear functions on ∆′; L′
1 = L ◦ ψ−1

1 and L′
2 = L ◦ ψ−1

2 .

The point P is halfway between the origin (which is the apex of the string cone) and

the apex of the λ-cone. By the preceding lemma this shows that P lies on the hyperplane

xi + xk = xj . Since ψ1 and ψ2 agree on that hyperplane we have ψ1(P ) = ψ2(P ) = Ψ(P ).
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Therefore, we can make the calculations L′
1(P

′) = L(ψ1
−1(P ′) = L(P ) = 1 and L′

2(P
′) =

L(ψ1
−1(P ′) = L(P ) = 1, which implies that the polytope ∆′∗ is integral. Note that P ′ is still

halfway between the origin and the apex of the λ-cone, which allows this argument to be

repeated.

Under a 2-move the polytopes ∆ and ∆′ are isomorphic, so ∆∗ is integral if and only if

∆′∗ is integral.

By starting with ω0 = s1s2s1 . . . snsn−1 . . . s1 and the point

P = (1, 2, 1, · · · , n, n− 1, · · · , 2, 1) we can compose braid moves and always have an interior

point P ′ on which all of the defining linear functionals take value 1. This proves that ∆∗ is

integral for any choice of reduced decomposition.

Corollary 6.4.3. The monomials in fω0,a correspond to vertices of ∆∗ (i.e. BFω0
= V (∆∗)).

Remark 6.4.4. If in addition we knew this interior point was unique, and ∆ was integral,

this would show that ∆ was in fact a reflexive polytope.



Chapter 7

Mirror Construction

7.1 Definition of Mirror Candidates

Recall from Chapter 6 that BFω0
is a family over the affine space Ar and is a subfamily of the

linear system |OX∆∗
(1)| intersected with the torus. We want to define a special subfamily of

BFω0
whose members are mirrors to the anticanonical hypersurfaces of G/B. In this chapter

we prove such a family exists, and we give an explicit birational map between these families

for any two choices of ω0.

We restrict our attention to a subfamily ofBFω0
whose coefficients satisfy a set of relations

we call combinatorial box equations.

Lemma 7.1.1. Every box of the string diagram is obviously bounded above by a vertex ttop

and directly below by a vertex tbot.

Definition 7.1.2. Let T λtop (resp. T λbot) be the monomial in fω0,a corresponding to the

λ-inequality associated to ttop (resp. tbot).

Definition 7.1.3. For every two string inequalities p1, p2 with corresponding monomials T p1

and T p2 satisfying the following box conditions:

1. there exists a box with corresponding monomials T λtop and T λbot such that T p1 T λtop =

T p2 T λbot,

2. the ttop degree of T p1 = −1,

3. the tbot degree of T p2 = 1,

50
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we define an equation ap1
aλtop

= ap2
aλbot

. We call the collection of all such equations the

combinatorial box equations.

Definition 7.1.4. Let Pω0
be the subscheme defined by the combinatorial box equations in

the torus Spec C[a1, a
−1
1 , · · · , ar, a

−1
r ].

Definition 7.1.5. Let Fω0
be the subfamily of BFω0

whose coefficients are nonzero and

satisfy the combinatorial box equations. Note that Fω0
is a family over the base Pω0

.

Example 7.1.6. In the case of A3 with ω0 = s3s1s2s1s3s3 we have BFω0
is the family of

hypersurfaces satisfying :

a0t
−1
1 + a1t

−1
2 + a2t

−1
6 + a3t

−1
3 t5 + a4t

−1
3 t4 + a5t

−1
4 t6 + a6t

−1
5 t6 + a7t1t

−1
3 t52t

−1
6 + a8t2t

−1
3 t24t

−1
6 +

a9t3t
−1
4 t−1

5 t26 + a10t4t
−1
6 + a11t5t

−1
6 + a12t6 = 1

For this example the combinatorial box equations are

a0a7 = a3a11

a1a8 = a4a10

a3a10 = a4a11

a4a9 = a5a12

Remark 7.1.7. Attempting to extend Batyrev’s definition of “box equations” to a nonsmall

case, by restricting to multiplicative versions of the conditions for the corresponding divisors

to be Cartier would lead to the extra relation

a5a10 = a6a11

7.2 Case of standard reduced decomposition

In their work Alexeev and Brion prove that for the reduced decomposition

ω0 = s1s2s1 · · · snsn−1 · · · s2s1 the anticanonical string degeneration of G/B is the same as
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that constructed in [GL96]. In addition they give a linear change of coordinates between the

polytope ∆ and the polytope used in [BCFKvS00].

In particular inequalities defined by horizontal edges on the graph Γ correspond to λ

inequalities, while vertical edge inequalities correspond to string inequalities. By using this

association, it is easy to check that the combinatorial box equations defined above, are

precisely the box equations defined by Batyrev et. al.

As a consequence, for the reduced decomposition ω0 = s1s2s1 · · · snsn−1 · · · s2s1 the mirror

family constructed above is precisely the mirror family defined by Batyrev et. al. We will see

later that the combinatorial mirror family coincided with Batyrev’s construction whenever

the string degeneration is small.

7.3 Tropicalization and Geometric Lifting

We want to show that the families Fω0
are birational, which would imply that their generic

elements would have the same mirror properties. In what follows we show the birationality

by constructing an explicit map between the families. This map can be thought of as an

example of geometric lifting which we describe in this section.

Definition 7.3.1. A tropical semiring is a collection of elements S along with two operations

⊕ : S × S → S and ⊗ : S × S → S called tropical addition and multiplication, satisfying the

following properties.

1. ⊕ and ⊗ are commutative, associative and obey the distributive property.

2. There exists an additive identity 0 ∈ S

3. There exists a multiplicative identity 1 ∈ S

4. Every nonzero element s ∈ S has a multiplicative inverse s−1

Notice that not every element needs to have an additive inverse, so although division

makes sense in this ring, subtraction does not.
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Example 7.3.2. The set Rtrop := R ∪ −∞ with the operators ⊕ and ⊗ defines by

a⊕ b = max(a, b) and a⊗ b = a + b

(ordinary addition), is an example of a tropical semiring.

These semirings are the basis for the study of tropical geometry, which has some inter-

esting connections with algebraic geometry.

Our work is in part motivated by one of these connections.

7.3.1 Tropicalization and Geometric Lifting

If f is a subtraction free rational function from Rn → Rm with integral coefficients, we can

replace the multiplication and addition with tropical addition and multiplication to get a

function

ftrop : Rn
trop → Rm

trop.

Since the process of tropicalization is the limit of taking logs of the absolute value of the

functions we lose any coefficients. This process is called tropicalization. Note that every such

rational function has a unique tropicalization.

Example 7.3.3. If f : R2 → R is defined by f(x, y) = 4x2 + 3xy + y
x

then ftrop(x, y) =

max(2x, x+ y, y − x).

The piecewise linear maps defining the map between string cones can be viewed as tropical

maps as follows.

Example 7.3.4. The map f : (x, y, z)→ (min(z, y−x), x+z,max(x, y−z)) can be written

tropically as

f : (x, y, z)→ (
yz(z + y

x
)

x
, xz, x +

y

z
)

The inverse operation to tropicalization is called geometric lifting. If ftrop is a tropical-

ization of a rational map f we call f a geometric lift of ftrop. Note that geometric lifting is

not a unique operation (since tropicalization doesn’t see the coefficients).
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7.4 Birationality of Fω0

We want to show that all of the families Fω0
are independent of the choice of reduced

decomposition. We do this by giving an explicit birational map between any two such families.

Definition 7.4.1. Assume that ω0 and ω0
′ differ by a 3-move. Let C =

aλk

aλi

T=SpecC[t1, t
−1
1 , . . . , tN , t

−1
N ] and T ′=SpecC[t′1, t

′
1
−1, . . . , t′N , t

′
N

−1]. For a fixed coefficient

vector a, define ha : T ′
99K T by

(ti, tj , tk) = (
t′it

′

k
+Ct′j
t′i

,
t′it

′

k

C
,

Ct′it
′

j

t′it
′

k
+Ct′j

), and tq = t′q for q /∈ {i, j, k}.

Define a map h′a : T 99K T ′ by exchanging t with t′ in the map above. Then we have

h′a ◦ ha = id.

Remark 7.4.2. Note that the map ha is a geometric lift of the piecewise linear map between

the corresponding polytopes.

Proposition 7.4.3. For a fixed coefficient vector a = (a1, · · · , ar) ∈ Pω0
, f ′ := h∗a(fω0,a)

defines a variety Zω0
′,a′ for some coefficient vector a′. Therefore, we have an induced bira-

tional map ha : Zω0
′,a′ 99K Zω0,a.

Remark 7.4.4. We will see in Proposition 7.4.10 that the map g defined by g∗(a) = a′ is an

isomorphism between the parameter spaces P ′
ω0

′ and Pω0
. The coordinates for a′ are explicitly

given as regular functions of the coordinates for a in Proposition 7.4.6.

Proof of Proposition 7.4.3. We show that for a fixed coefficient vector a, ha is birational

in two steps. First, in Proposition 7.4.6, we show that h∗a(1−
∑

d

aiT
Md) = (1−

∑

d′

a′iT
M ′

d)

for some coefficient vector a′. Then, in Section 7.4.2 we show that the coefficient vector a′ is

actually in P ′
ω0

′ by showing that g∗ preserves the combinatorial box equations.

7.4.1 Action of h∗ on fω0,a

Definition 7.4.5. We refer to the box equations coming from the boxes R and R′ as local

box equations.
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Proposition 7.4.6. Fix a coefficient vector a satisfying the local box equations. Then

h∗a(1−
∑

d

adT
Md) = (1−

∑

d′

a′dT
M ′

d)

for some coefficient vector a′.

Remark 7.4.7. A priori it is not even clear that h∗a(1 −
∑

d

adT
Md) is a sum of Laurent

monomials. This theorem is an example of what Fomin and Zelevinsky call a Laurent phe-

nomenon and may be related to their work on cluster algebras [FZ02].

Proof. We examine how h∗a acts on 1 −
∑

d

aiT
Md monomial by monomial. Since h∗a only

depends on ti, tj, and tk we classify its action on monomials based on the corresponding

monomial pieces.

A priori h∗a(fω0,a) is a rational function, but not a sum of monomials. In several cases, in

order to see that h∗a(1−
∑

d

aiT
Md) is a linear combination of monomials, we have to group

pairs of monomials together. In some cases h∗a only maps a particular combination of two

monomials to a monomial, if the coefficients satisfy the local box equations. The map h∗a
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takes the following classes of monomials to monomials (or sum of monomials):

h∗a(adt
−1
i t−1

k ) = adaλi
a−1

λk
t′−1
j

h∗a(adt
2
i t

−1
j t2k) = ada

−3
λi
a3

λk
t′−1
i t′2j t

′−1
k

h∗a(adt
−1
i t2j t

−1
k ) = ada

3
λi
a−3

λk
t′2i t

′−1
j t′2k

h∗a(adt
−1
j ) = ada

−1
λi
aλk

t′−1
i t′−1

k

h∗a(adt
−1
i t−1

k ) = adaλi
a−1

λk
t′−1
j

h∗a(adt
−1
j ) = ada

−1
λi
aλk

t′−1
i t′−1

k

h∗a(adtitk) = ada
−1
λi
aλk

t′j

h∗a(adtj) = adaλi
a−1

λk
t′it

′
k

h∗a(adtit
−1
j tk) = ada

2
λk
a−2

λi
t′−1
i t′jt

′−1
k

h∗a(aλj
tjt

−1
k ) = a2

λi
aλj

a−2
λk
t′it

′−1
j t′2k + aλi

aλj
a−1

λk
t′k

h∗a(adt
−1
i tjt

−1
k ) = ada

−2
λk
a2

λi
t′it

′−1
j t′k

h∗a(adt
−1
k ) = adt

′−1
i + adaλi

a−1
λk
t′−1
j t′k

h∗a(adti) = adt
′
k + ada

−1
λi
aλk

t′−1
i t′j

The following classes of monomials must be grouped together in order for h∗a to take them

to a monomial.

h∗a(aλi
tit

−1
j t2k + aλk

tk) = a−1
λi
a2

λk
t′jt

′−1
k

The following classes of monomials must be grouped together, and their coefficients must

satisfy the local box equations in order for h∗a to take them to monomials. We write the

second coefficient in terms of the local box equation.

h∗a(adtk + ada
−1
λi
aλk

t−1
i tj) = adt

′
i

h∗a(adt
−1
i + adaλi

a−1
λk
t−1
j tk) = adt

′−1
k
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The monomials occurring in image(ha
∗) are precisely those occurring in fω0,a. From this we

see that

h∗a(1−
∑

d

aiT
Md) = (1−

∑

d′

a′iT
M ′

d) for some coefficient vector a′i. The inverse map is given

by using the same construction for the braid move from ω0
′ to ω0.

7.4.2 Preservation of Box Equations.

Proposition 7.4.8. For any 3-move, the map g∗ preserves box equations.

Proof. Let R′ be the image of the box R (we can assume it is of type R212 with the proof

of the other case following using the same methods). We classify all boxes O′ of the string

diagram for ω0
′ by their positions in comparison with R′.

The proof of every case follows the following method: First, classify all possibilities of

monomial pieces τ for which the box condition on O′ could be satisfied. Since we know how

the monomial pieces change under the braid move, we verify that the box conditions must

be satisfied for the box O = preimage(O′). Since a ∈ P we know that if the box conditions

are satisfied on O, then the corresponding box equations (in ad) are also satisfied. We use

the map g to write a′d in terms of ad, and check that new combinatorial box equations on O′

are satisfied.

Remark 7.4.9. For some string monomials on O′ there are two different corresponding

string monomials in the preimage. Only one of these two string monomials is used to con-

struct a box condition on the preimage. The first box condition may not be met in the preimage

when the other choice of string monomial is used.

We classify the boxes O′ into eight groups. For each group, we state how many pair of

monomial pieces could possibly correspond to monomials satisfying the box conditions on

O′.

1. O′ doesn’t touch R′ (1 pair)

2. O′ = R′ (1 pair)
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3. O′ is below and left of R′ (3 pair)

4. O′ is above and left of R′ (3 pair)

5. O′ is directly above R′ (3 pair)

6. O′ is directly below R′ (3 pair)

7. O′ is to the right of R′ (6 pair)

8. O′ is to the left of R (6 pair)

What follows is the proof for the case when R′ is directly above O′. The proof for all of the

other groups follow the exact same method.

Assume R′ is directly above O′ as in Figure 7.4.2. Assume that p′1 and p′2 satisfy the

ti
tj

tk λtop

λbot

O

t′i
t′j

t′k

λtop′

λbot′

O′

Figure 7.1: Relative position of O.

box conditions on O′. Let τMd be the monomial piece associated to TMd. By comparing the

λ-inequalities see the following relationship among monomial pieces.

τp′2

τp′1
=
τλtop′

τλbot′
= tk.

From this we see that there are three possibilities for pairs of string monomial pieces.
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1. Assume that

τp′1 = t−1
i t−1

k and τp′2 = t−1
i .

We construct a set of monomials satisfying the box conditions for the box O as follows.

T p′1 · T λtop′ = T p′2 · T λbot′

T p′1 · T λtop · t−1
j t2k = T p′2 · T λbot

T p1 · t−1
i tjt

−1
k · T

λtop · t−1
j t2k = T p2 · t−1

i tk · T
λbot

T p1 · T λtop = T p2 · T λbot

Since the box condition are satisfied on O, we have the following equations in ai.

ap1
aλtop

= ap2
aλbot

.

Rewriting the a′i in terms of ai we see that

ap′1
aλtop′

= ap1
aλtop

and ap′2
aλbot′

= ap2
aλbot

.

Therefore,

ap′1
aλtop′

= ap′2
aλbot′

.

2. Assume that

τp′1 = t−1
k and τp′2 = 1.

We construct a set of monomials satisfying the box conditions for the box O as follows.

T p′1 · T λtop′ = T p′2 · T λbot′

T p′1 · T λtop · t−1
j t2k = T p′2 · T λbot

T p1 · tjt
−2
k · T

λtop · t−1
j t2k = T p2 · T λbot

T p1 · T λtop = T p2 · T λbot
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Since the box condition were satisfied on O, we have the following equations in ai.

ap1
aλtop

= ap2
aλbot

.

Rewriting the a′i in terms of ai we see that

ap′1
aλtop′

= ap1
aλtop

and ap′2
aλbot′

= ap2
aλbot

.

Therefore,

ap′1
aλtop′

= ap′2
aλbot′

.

3. Assume that

τp′1 = t−1
i tjt

−1
k and τp′2 = t−1

i tj .

We construct a set of monomials satisfying the box conditions for the box O as follows.

T p′1 · T λtop′ = T p′2 · T λbot′

T p′1 · T λtop · t−1
j t2k = T p′2 · T λbot

T p1 · t−2
i tj · T

λtop · t−1
j t2k = T p2t2i t

−2
j t2k · T

λbot

T p1 · T λtop = T p2 · T λbot

Since the box condition are satisfied on O, we have the following equations in ai.

ap1
aλtop

= ap2
aλbot

.

Rewriting the a′i in terms of ai we see that

ap′1
aλtop′

= ap1

a2
k

a2
i

aλtop

ai

ak
and ap′2

aλbot′
= ap2

ak

ai
aλbot

.

Therefore,

ap′1
aλtop′

= ap′2
aλbot′

.
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The proof of the other seven cases follows the exact same argument. We have shown that the

combinatorial box equations are preserved under g∗, which completes the proof of proposition

7.4.3.

7.4.3 Isomorphism of Parameter Spaces

Proposition 7.4.10. If ω0 and ω0
′ differ by a single braid move then P ′

ω0
′

∼= Pω0
.

Proof. Assume ω0 and ω0
′ differ by a 3-move. As in remark 7.4.4, define g : P ′ → P by

g∗(a) = a′. By the proof of Proposition 4.6 we see that this defines a regular map from

Pω0
to the torus of coordinates of P ′

ω0
′ . Proposition 4.7 shows that the image of this map

is actually in P ′
ω0

′. Similarly we can construct a regular map g′ : Pω0
→ P ′

ω0
′. We can use

Proposition 7.4.6 to verify that these maps are inverse to one another. To complete the proof

we note that Pω0
and P ′

ω0
′ are obviously isomorphic under a 2-move.

Corollary 7.4.11. The parameter space Pω0
is a toric variety for any choice of ω0.

Proof. In the case of the standard reduced decomposition (s1s2s1 . . . snsn−1 . . . s1) the combi-

natorial box equations and Batyrev’s box equations are exactly the same. By Batyrev’s work

[Bat04, Rm.4.2], the set of nonzero ai satisfying the box equations form a toric variety. By

the previous lemma, we see that under a braid move the parameter spaces are isomorphic.

We can compose braid moves to see that the parameter spaces are isomorphic for any choice

of reduced decomposition.

7.4.4 Birationality of the Families Fω0

Lemma 7.4.12. For ω0 and ω0
′ differing by a 2-move, the map H : Fω0

′ → Fω0
defined by

exchanging ti with tj and exchanging the corresponding coefficients is an isomorphism.

Proof. This is a consequence of Berenstein and Zelevinsky’s map between string cones for

the 2-move case.
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Theorem 7.4.13. If ω0 and ω0
′ differ by a 3-move, the map

H : Fω0
′ 99K Fω0

defined as H := (g, ha) is a birational map of families.

Proof. This follows from the fact that g is an isomorphism, and ha is a birational map for

any fixed coefficient vector a.

Corollary 7.4.14. For any two reduced decompositions ω0 and ω0
′, the families Fω0

and

Fω0
′ are birational.

Proof. Connect ω0 and ω0
′ by a sequence of braid moves. For each braid move there is a

birational map of families, so we can compose these maps to get a birational map between

Fω0
and Fω0

′.

Corollary 7.4.15. Smooth Calabi-Yau manifolds birational to the generic elements of Fω0

have the same Hodge numbers for any choice of ω0.

Proof. Since the generic elements are all birational, smooth Calabi-Yau manifolds birational

to them have the same Hodge numbers by the work of Batyrev and Kontsevich [Bat00,

K95].

7.5 Proof that construction coincides with Batyrev’s in the small case

Recall that in [Bat04] Batyrev proposes a mirror construction for any small toric degenera-

tion. We set up the next lemma to help show that our construction is the same as Batyrev’s

in the case of a small degeneration.

Lemma 7.5.1. For any inequalities λtop, λbot, p1, and p2 whose corresponding monomials

satisfy a combinatorial box condition on O, there exists a facet of ∆∗ containing the vertices

corresponding to λtop, λbot, p1, and p2.
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Proof. Define the linear function L(t1, · · · , tN) := ttop − tbot + 1. We check that L = 0 on

the corresponding vertices λtop, λbot, p1, and p2, and L ≥ 0 on all other vertices of ∆∗.

L(λtop) = 1− 2 + 1 = 0

L(λbot) = 0− 1 + 1 = 0

L(p1) = −1− x+ 1

L(p2) = y − 1 + 1

But since λtop + p1 = λbot + p2 we see that x = y = 0 which implies that L(p1) = L(p2) = 0.

Next we want to show that for every other vertex v of ∆∗, L(v) ≥ 0. Assume v is a vertex

corresponding to a λ-inequality λv then

L(v) =





0− 0 + 1 = 1 If λv lies below λbot or least 2 columns to the

left or right of λtop

0− (−1) + 1 = 2 If λv is in the region O.

2− 2 + 1 = 1 If λv lies in the column above λtop

−1− (−1) + 1 = 1 If λv lies above and adjacent to λtop.

String vertices can only take values from the set {-1,0,1} on the coordinates ttop and tbot.

From this we see that the only way the linear function L could be negative on such a vertex

v, is if ttop coordinate of v was −1 and the tbot coordinate was 1. Any such inequality would

correspond to an oriented path which intersects itself, which is a contradiction.

We see that (L = 0) defines a face of ∆ containing the four vertices. This completes the

proof since any face is contained in a facet.

Theorem 7.5.2. For a small string degeneration Fω0
is same as the family constructed by

Batyrev in [Bat04, Sect. 4].
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Proof. In the case of a small toric degeneration Batyrev defines a subfamily of varieties in

|OX∆∗
(1)| whose coefficients satisfy box equations. (Box equation terminology was used in

[BCFKvS00]. The coefficients satisfying the box equations are referred to as Σ-admissible in

[Bat04].)

Our combinatorial box equations are a subset of Batyrev’s box equations if, and only

if, the vertices in ∆∗ corresponding to λtop, λbot, p1, and p2 all lie in a common facet of

∆∗. Therefore, by Lemma 7.5.1 we have shown that the combinatorial box equations are a

subset of Batyrev’s box equations. Batyrev proves in [Bat04, Rem. 4.2] that his box equations

define an irreducible variety of dim = rank(Pic(X∆∗)) + dim(G/B). This is the same as the

dimension of the parameter space Pω0
. By Lemma 7.4.11, Pω0

is an irreducible variety. If

Batyrev’s family had any more independent box equations they would define a variety of

smaller dimension. Therefore, Batyrev’s box equations cut out exactly Pω0
, and the families

are the same.

Corollary 7.5.3. For all reduced decompositions ω0, generic elements of Fω0
share the mirror

properties of the generic elements of Batyrev’s families.

Proof. In the small case the families are the same by Theorem 7.5.2, and thus their generic

elements share the same mirror properties. By Corollary 4.12 the generic elements are bira-

tional for any choice of reduced decomposition, and therefore share the same mirror proper-

ties.

7.6 Necessity of Combinatorial Box equations

In this section we try to illuminate the role of the box conditions and equations. The following

example demonstrates the way in which the local box equations are needed.

Example 7.6.1. Consider the set of rigorous paths given in Figure 7.6.1: Notice here that

the box conditions are satisfied with λtop = λ, λbot = λk, p1 the path on the right and p2 the

path on the left. Since we would like to have the sum of the two monomials map on the left
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u1 u2 u3
ti

tj

tk

b3 b2 b1

u1 u2 u3
ti

tj

tk

b3 b2 b1

u1 u2 u3
t′i

t′j

t′k

b3 b2 b1

We have the monomial piece t−1
j tk + t−1

i → t′−1
k

Figure 7.2: String paths used to show that the local box conditions are needed

map to the monomial on the right we would need

h∗a(a1t
′−1
j t′k + a2t

′−1
i ) = At−1

k

for some constant A. So we calculate:

h∗a(a1t
′−1
j t′k + a2t

′−1
i ) = a1

C

titk

Ctitj
titk + ctj

+ a2
ti

titk + ctj

=
a1C

2tjt
−1
k + a2ti

titk + Ctj

So in order for

a1C
2tjt

−1
k + a2ti

titk + Ctj
= At−1

k

we would have to have

a1C
2tjt

−1
k + a2ti = (At−1

k ) · (titk + Ctj)a1C
2tjt

−1
k + a2ti = Ati + ACtjt

−1
k

So we get that A = a2 and AC = a1C
2.

This forces the relation a2 = a1C. Substituting for C we see a2aλi
= a1aλk

. Which is precisely

the local box equation.

One notices that although all the box conditions held in these local cases, the only one that

played a pivotal role was the first box condition. The next calculation demonstrates shows

how the second and third box condition play a key role in the proof of the preservation of

box equations.
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Example 7.6.2. As in our proof, assume R′ is directly above O′ as pictured in Figure 7.6.2.

Assume that p′1 and p′2 satisfy the first box conditions on O′ but not necessarily the second

ti
tj

tk λtop

λbot

O

t′i
t′j

t′k

λtop′

λbot′

O′

Figure 7.3: Picture used to show that the second and third box conditions are used in the
proof of birationality

and third box condition.

By comparing the λ-inequalities see the following relationship among monomial pieces.

τp′2

τp′1
=
τλtop′

τλbot′
= tk.

In addition the the possibilities that occur in the proof of the preservation of combinatorial

box equations, we could have τp′1 = 1 and τp′2 = t−1
k . But if we followed the proof above, we

could not guarantee that a box condition would be satisfied on the box O, which would mean

that we couldn’t push the box equations forward, to see that they are preserved. It isn’t clear

that this situation is actually possible. It is possible that the first box condition implies the

second and third.

The following result in demonstrates why all of the box equations are needed, not just

the local box equations.

Proposition 7.6.3. For any two reduced decompositions ω0 and ω′
0, the map between the

families BFω0
and BFω′

0
defined by compositions Φ(a, t) is only a rational map when restricted

to the families Fω0
and Fω′

0
.
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Proof. By Corollary 7.4.14, the families Fω0
are birationally mapped to one another under

compositions of Φ(a, t). Let LFω0
be the largest subfamily of BFω0

on which restrictions of

compositions of Φ(a, t) define a rational map. Assume Z ∈ LFω0
and that p1, p2, λtop, λbot

satisfy the box conditions for a box O. We want to show that the corresponding box equations

are satisfied. This means that Z is in fact in Fω0
.

The position of a boxO in relation to the other boxes only changes under a braid move ifO

is of type R121 orR212. Under the reduced decompositions ω0 = (s1, s2, s1, · · · , sn, · · · , s1) and

ω0
′ = (sn, sn−1, sn, · · · , s1, · · · , sn) the relative position of the boxes is completely exchanged.

This shows that every box O can be transformed into one of type R121 by a sequence of braid

moves.

Let (b1, b2, · · · , bf) be a sequence of such braid moves. We label the corresponding

sequence of regions (O1, · · · , Of) where Of is a region of type R121. In the proof of the

theorem above, we see that if the box conditions are met for a box Oi then there exists

p′1, p
′
2, λtop′ , λbot′ satisfying the box conditions on Oi+1. This gives us a sequence of box

conditions (BC0, BC1, · · · , BCf) where BC0 is our original box condition on O, and BCf is

a local box condition on a region of type R121.

By their construction the maps Φ(a, t) only take elements of BFω0
to elements of BFω0

′

if the local box equations are met. If the local box equations aren’t satisfied then the map

φ∗
a doesn’t even take the equation for Zω0,a to a sum of monomials. Therefore if Z ∈ LFω0

then the local box equations corresponding to BCf must have been met. The proof of the

preservation of box equations shows that box equations corresponding to BCi are met if and

only if those corresponding to BCi+1 are met. We can now repeat this process to see that

the box equations corresponding to BC0 must have been satisfied. So Z must have been an

element of Fω0
which means that LFω0

= Fω0
.



Appendix A

Remaining Questions

A.1 Combinatorial Questions

There are several interesting questions which remain about the combinatorics of ∆(λ, ω0).

Question A.1.1. For which combinations of (λ, ω0) is the polytope ∆(λ, ω0) integral?

Alexeev and Brion conjectured in [AB04] that that ∆(λ, ω0) is integral if and only if

< λ, αi > is integral for all i. They give examples when ∆(λ, ω0) isn’t integral for the toric

degenerations of G/B for G of other classical types.

For λ = kω̂i the polytope ∆(λ) is integral for any choice of reduced decomposition.

Moreover the number of vertices doesn’t depend on the reduced decomposition. [AB04, Thm

4.5]. These weights corresponds to degenerating a Grassmanian variety.

Question A.1.2. Describe ∆(λ) for other weights λ.

The polytope ∆ can still be modeled as the intersection of the λ-cone with the string

cone. The problem in using this description is that certain inequalities become irrelevant,

and other inequalities become strict equalities. It would be nice to have a combinatorial rule

for the defining inequalities and equalities for ∆. In the classical case the partial flags can be

found by looking at a subgraph of the Dots and Stars graph and then using the same rules.

Another possible solution to this problem would be find a set of smaller base polytopes

(maybe even simplices) that can be connected together in an appropriate fashion to form

the ∆(λ, ω0).

68
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A.1.1 Building ∆ from Smaller Pieces

Given two polytopes ∆ and ∆′ we can construct a new polytope ∆ + ∆′ as follows.

Definition A.1.3. For ∆,∆′ ⊂MR we define the Minkowski sum of ∆ and ∆′ by

P := ∆ + ∆′ := {m ∈MR such that there exist points a ∈ ∆ and b ∈ ∆′ with m = a+ b.

+ =

(0,0) (0,0) (0,0)

+ =

(0,0)

(0,0)
b

Figure A.1: Examples of Minkowski sums

Conjecture A.1.4. For λ = (k1ω̂1 + · · ·knω̂n) The string degeneration corresponding to the

pair (λ, ω0) is small if and only ∆(λ, ω0) = Σn
i=1∆(kω̂i, ω0).

A.2 Algebraic Geometry of the Combinatorial Box Equations

Question A.2.1. For other weights λ it is easy to define families BFλ,ω0
. What are the

appropriate combinatorial box equations in these cases, and how do the subfamilies defined

by these equations relate?

The answer to this question may be suggested by an appropriate path model for the other

weights.

Question A.2.2. Is there a more geometric interpretation of the combinatorial box equa-

tions?
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For example, if the degeneration is small, the combinatorial box equations are equivalent

to a multiplicative version of the conditions which make a T -invariant divisor on X∆ Cartier.

This no longer hold in the nonsmall case. If we could find a geometric understanding of

the combinatorial box equations it may be possible to define these families for any toric

degeneration of a Fano variety.

Question A.2.3. Danilov andKhovansky constructed a combinatorial method to for com-

puting the HodgeDeligne numbers for ”generic” toric hypersurfaces. Unfortunately, toric

hypersurfaces satisfying the combinatorial box equations may fall outside of this generic locus.

Can one construct a combinatorial method of computing the Hodge Deligne numbers of the

toric hypersurfaces satisfying the combinatorial box equations?

The calculation of Danilov and Khovansky applies to a open subset of toric hypersurfaces

which they call “nondegenerate with respect to ∆.” In the case of ∆(s1s2s1) the family Fs1s2s1

is precisely the closed set of hypersurfaces which are degenerate. However, a calculation in

the nonsmall case shows that the combinatorial box equations don’t define the degenerate

locus. Is there a relationship in general between the degenerate locus and the box equations?

In addition, it would be nice to have a combinatorial method for computing the Hodge

Deligne numbers of the fibers of Fω0
.

A.3 The role of Tropicalization

The maps between the families can be seen as geometric lifts of tropical maps between

tropical varieties associated to the families.

Question A.3.1. The maps φ are only rational when restricted to the families Fλ,ω0
, but the

tropical maps don’t see the corresponding coefficients. Can we understand the combinatorial

box equations in the tropical setting?



71

Berenstein and Zelevinsky were able to geometrically lift these piecewise linear maps to

rational maps between totally positive varieties [BZ01]. Total positivity has been connected

to mirror symmetry through the work of Rietsch [R06].

Our toric hypersurfaces can be viewed as tropical varieties by taking

Ztrop := limt7→inf logt(|Zf∆
|). It would make sense that the piecewise linear maps defined by

Berenstein and Zelevinsky would give maps between these tropical varieties. In the simplest

example this is almost the case. All but one piece of the corresponding tropical variety maps

as expected. Unfortunately one piece doesn’t map to the anticipated image at all. Does the

failure of this piecewise linear map to be a map between tropical varieties, relate to the

failure of our map above to be rational unless it is restricted to Fω0
? This would be very

interesting since the coefficients a are lost under the tropicalization map.

Question A.3.2. Is it possible to understand our families and maps in this larger setting?

In particular is there a general theory tying mirror symmetry, total positivity, and tropical

geometry together (at least in the case of flag varieties)?

Since Berenstein and Zelevinsky’s work connecting these piecewise linear maps between

string cones and total positivity is completed for any classical Lie group, such an under-

standing may suggest how to study this problem for Flag varieties of type other than An.

Perhaps by fitting tropical geometry into the following diagram we will be able to understand

the apparent connections.

TPVω0
99K TPVω0

′

l l

∆ ←→ ∆′

l l

∆∗ no map ∆′∗

l l

Fω0
99K Fω0

′
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