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Abstract

The increased interest in understanding the thermodynamic activity in finite systems

such as nanotechnological and biological systems has initiated numerous studies in interdis-

ciplinary research. The properties and functions of these systems are inevitably connected

to their geometric structures. However, due to finite-size and surface effects, conventional

canonical statistical analysis fails to locate unique structural transition points for such sys-

tems. By considering integrated autocorrelation times of energetic and structural quantities,

generalizing microcanonical inflection-point analysis, and introducing conformational analy-

sis methods, we aim at developing more systematic and general approaches to the study of

systems of finite size. To elucidate the power of these methods, we investigate coarse-grained

lattice and off-lattice homopolymers by means of Monte Carlo importance sampling methods

such as Metropolis, parallel tempering, and a parallel version of multicanonical sampling.
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Chapter 1

Introduction

Cooperativity referring to the collective changes of a given system leads to the transfor-

mations among the macrostates that describe the macroscopic properties and states of the

system and are specified by sets of external parameters such as temperature and pressure.

Macrostates sharing similar thermodynamic properties are classified as being in the same

phase. The corresponding transition is referred to as phase transition, which is one of the

most fascinating phenomena in nature and has initiated many research for several decades

directed toward studying the physical mechanisms guiding the cooperative changes of the

system. In fact, phase transitions such as melting of ice, ferromagnetic, and superfluid tran-

sitions occur in the thermodynamic limit, i.e., for infinitely large systems. However, the

rapid growth of interest in nanotechnological and biological systems makes it necessary to

investigate the cooperative behaviors in finite-size systems. Among them, proteins, which are

prominent representatives of finite polymers, are of most concern due to their irreplaceable

role in maintaining the functionality of our bodies such as controlling transport processes and

enzymatic catalyzation of chemical reactions. The biological functions and processes of pro-

teins are inevitably connected to their geometric structures, i.e., the functional structures,

which are the specific three dimensional conformations of certain proteins and determine

1



the functions of these proteins such as forming the ion channels and stabilizing the cell

backbones, are usually in folded states. The structural transitions between the folded and

unfolded states present strong similarities as the phase transitions, which makes it possible

to extend the terminology defined in the thermodynamic limit to such finite systems. The

structural transitions are usually denoted as pseudophase transitions and the corresponding

phases are called pseudophases. But to what extent the analysis methods for the infinitely

large systems are still valid in studying systems with finite size needs to be verified.

The statistical analysis of the structural behavior under thermal conditions is the only

possibility to identify macrostates that are stable in parameter space and form conforma-

tional phases in a distinct region of that space. Canonical statistical analysis based on

discontinuities in thermodynamic quantities such as entropy, the specific heat, or order-

parameter fluctuations has long been employed with much success to identify and classify

thermodynamic phase transitions. However, discontinuities or divergences are not present if

the system is finite, in which case ambiguities in locating transition points also occur. Be-

cause of their chemical composition and biological function, proteins are the most prominent

examples of macromolecules that cannot be “scaled up”. However, in most of the applica-

tions, polymers are finite and in many cases sufficiently small as to render finite-size and

surface effects essential for its overall thermodynamic behavior. When canonical analysis is

applied to such systems, the detailed information about the structural transitions reflecting

the finite-size effects is lost. One possible scheme that can identify the structural transitions

and regain the information about finite-size effects is by studying the partition function ze-

ros [1–6]. But due to its intricacy, this method is difficult to implement. Therefore, the

unique identification of conditions for enhanced thermal activity is a challenge to modern

statistical physics for systems of mesoscopic scales.

Thanks to the fast development in computer technology, vast computational resources

are available nowadays and thus enables the accurate study of fundamental statistical quan-
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tities by using computer simulations. One such quantity is density of states, which opens a

completely new way for the study of structural transitions by utilizing the currently most

promising approach, microcanonical analysis [7,8]. Initially, first-order-like transitions, which

are structural transitions in finite systems possessing the features of first-order phase transi-

tions in thermodynamic limit, were analyzed by means of Maxwell’s construction [7–17]. In

this construction, the backbending region in the transition regime of the energetic tempera-

ture curve is replaced by an entirely flat segment. However, the Maxwell construction only

applies to single structural transitions of first order and is less feasible for the analysis of

first-order-like transitions accompanied by subphase transitions, which are subtle structural

transition signals usually embedded in the backbending regions of the first-order-like transi-

tions. Furthermore, higher order structural transitions that do not exhibit the backbending

feature cannot be analyzed by Maxwell construction. By extending the “flatness” idea of

Maxwell construction to a more general principle, the principle of minimal sensitivity [18,19],

the systematic extension of the microcanonical statistical analysis by classifying inflection

points in the microcanonical temperature [20] has turned out to be a promising approach

towards a unique investigation of structural transitions in mesoscopic systems. However, the

initial theorem only provides ways to identify first- and second-order pseudophase transi-

tions, which may constrain the application of this approach to systems with finite size where

higher-order pseudophase transitions are dominant due to finite-size effects.

In this thesis, we are aiming to introduce several novel statistical and conformational

analysis approaches that can be applied to study the structural transitions of finite-size

systems. The structure of the thesis is as follows. In Chapter 2, statistical analysis methods

including the conventional canonical analysis and the novel approaches, i.e., autocorrelation

times [21, 22] and generalized microcanonical inflection-point analysis [23], are discussed.

The Monte Carlo and data smoothing methods are explained in Chapter 3. To test the

availability of the autocorrelation time approach in identifying structural transitions, we

3



apply this method to study a simple coarse-grained flexible polymer model in Chapter 4.

The generalized microcanonical inflection-point analysis is further applied to investigate

the lattice polymer adsorption [24] in Chapter 5 and a flexible polymer with controlled

bonds [25,26] in Chapter 6. Several suitable order parameters new to the polymer study are

introduced in Chapter 6 as well. My thesis is summarized in Chapter 7.
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Chapter 2

Statistical analysis methods

2.1 Canonical analysis

For a given system under certain external conditions, the set of dominating microstates

constitute the macrostate of the system. This macrostate generally describes the major

properties shared by all the corresponding microstates. If these macrostates exhibit signifi-

cant similarities when the external parameter varies over a certain range, they are assigned

to the same phase. However, if a small variation of the parameter substantially changes the

properties of the macrostates, a phase transition may occur.

The conventional method of identifying and distinguishing phase transitions is based on

Ehrenfest’s classification. This approach classifies the phase transitions by locating discon-

tinuities or divergences in the derivatives of thermodynamic potentials. For example, for a

system in the canonical ensemble in which temperature, volume, and number of particles are

fixed, the natural thermodynamic potential is the Helmholtz free energy F (T, V,N).

If a discontinuity is observed in the first derivative of free energy, i.e., the entropy

(

∂F

∂T

)

N,V

= −S(T, V,N), (2.1)

5



Figure 2.1: Schematic temperature dependencies of entropy and heat capacity. (a, b) and (c,
d) are the dependencies for the system undergoing first- and second-order phase transitions,
respectively.

the corresponding transition is considered to be of first order. A sketch of the entropy for a

system undergoing a first-order phase transition is plotted in Fig. 2.1(a). The characteristic

of a first-order phase transition is the coexistence of the ordered and disordered phases So

and Sd which are separated by the latent heat

∆Qlat = Ttr∆S = Ttr(Sd − So) (2.2)

6



at the transition temperature. Because of the discontinuity in the entropy, the corresponding

heat capacities,
(

∂2F

∂T 2

)

N,V

= −
(

∂S

∂T

)

N,V

= − 1

T
CV(T ), (2.3)

on two sides of Ttr vary accordingly. Fig. 2.1(b) shows one kind of scenario. From the

thermodynamic point of view, the heat capacity quantifies the capacity of heat storage by

the system. In the canonical ensemble, the heat capacity defined in Eq. 2.3 represents the

amount of heat exchange TdS while temperature varies. Equivalently, in statistical physics,

the heat capacity, which corresponds to the fluctuations of energy, is given by

CV(T ) =
d〈E〉
dT

=
d

dT

∫

DXE(X)pcan(X, T )

=
d

dT

(∫ DXE(X)e−E(X)/kBT

∫ DXe−E(X)/kBT

)

=
1

kBT 2





∫ DXE2(X)e−E(X)/kBT

∫ DXe−E(X)/kBT
−
(∫ DXE(X)e−E(X)/kBT

∫ DXe−E(X)/kBT

)2




=
1

kBT 2
(〈E2〉 − 〈E〉2) (2.4)

where kB is the Boltzmann constant, E is the energy of the system, pcan(X, T ) represents

the probability of a conformation with N particles X = (x1,x2, . . . ,xN) in the canonical

ensemble at temperature T , and DX is the integral measure for the infinitesimal scan of the

3N -dimensional conformation space and defined via [7]

∫

DX =
1

N !(
√
2πh̄)3N

N∏

i=1

∫

d3xi. (2.5)

If the entropy is continuous, as plotted in Fig. 2.1(c), but a divergence occurs in the heat

capacity as shown in Fig. 2.1(d), the relevant phase transition is of second order and the

transition temperature can be identified from the position where CV diverges. The latent

7



heat ∆Qlat = 0 for the second-order phase transition implies that there is no coexistence

of two phases and the transition is continuous. Second-order phase transitions and the cor-

responding transition temperatures are also named as critical transitions and temperatures

Tc. Defining the dimensionless parameter t = (Tc − T )/Tc, the divergence near the criti-

cal temperature of the heat capacity curve follows the power law CV ∼ |t|−α, described in

Fig. 2.1(d) [7,27]. Here, α is the critical exponent associated with the heat capacity. Besides

CV, order parameters O with the property that O = 0 for T ≥ Tc and 6= 0 for T < Tc can also

be utilized to locate critical temperatures. Power law behavior, O ∼ tβ for T < Tc(t > 0),

with the corresponding critical exponent β can also be observed near the critical temperature

when the external field is zero. The representative order parameters are the mean value of the

spontaneous magnetization 〈M〉 in a magnetic system and the density difference |ρ−ρc| in a

gas-liquid system [7,27]. How the order parameters respond to the change of external fields

(magnetic field H for magnetic system and pressure P for gas-liquid system) is described

by the corresponding response quantities (susceptibility χ = (∂〈M〉/∂H)T and isothermal

compressibility κT = ρ−1(∂ρ/∂P )T , respectively), which are related to the fluctuations of the

order parameters. The relationship between the response quantities and the fluctuations of

order parameters can be illustrated in the two dimensional square-lattice Ising model, which

is the simplest mathematical model of ferromagnetic systems. In this model, the magnetic

dipole moments of atomic spins in the ferromagnetic systems are represented by the two

state spins σ = ±1. The energy of the system with Ns spins is given by

E = −J
Ns∑

〈ij〉
σiσj −H

Ns∑

i=1

σi

= −J
Ns∑

〈ij〉
σiσj −HM, (2.6)

where J > 0 is an interaction energy, 〈ij〉 indicates that the summation is over nearest

8



neighbors, and the spontaneous magnetization M =
∑Ns

i=1 σi has been used in the calculation.

The susceptibility can thus be derived as

χ =

(

d〈M〉
dH

)

T

=
d

dH

∑

µ

M(µ)pcan(µ, T )

=
d

dH

(∑

µ M(µ)e−E(µ)/kBT

∑

µ e−E(µ)/kBT

)

=
1

kBT





∑

µ M
2(µ)e−E(µ)/kBT

∑

µ e−E(µ)/kBT
−
(∑

µM(µ)e−E(µ)/kBT

∑

µ e−E(µ)/kBT

)2




=
1

kBT
(〈M2〉 − 〈M〉2), (2.7)

where µ represent configurations of the Ising model on the square lattice. The response

quantities (fluctuations of order parameters) also exhibit power law behavior, χ/κT ∼ |t|−γ,

with γ being the associated critical exponent near the critical temperature when the external

field is zero [7, 27]. The fluctuation Eq. 2.4 can be generalized and the thermal fluctuations

of standard order parameters such as mean values of radius of gyration Rgyr and end-to-end

distance Ree, which are utilized to describe the compactness of polymer structures, can be

defined as

d〈O〉
dT

=
d

dT

∫

DXO(X)pcan(X, T )

=
d

dT

(∫ DXO(X)e−E(X)/kBT

∫ DXe−E(X)/kBT

)

=
1

kBT 2

(∫ DXO(X)E(X)e−E(X)/kBT

∫ DXe−E(X)/kBT
−
∫ DXO(X)e−E(X)/kBT

∫ DXe−E(X)/kBT

×
∫ DXE(X)e−E(X)/kBT

∫ DXe−E(X)/kBT

)

=
1

kBT 2
(〈OE〉 − 〈O〉〈E〉), (2.8)
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These are the response quantities with respect to the temperature as an external field and

usually exhibit extremal values at transition temperatures. By considering the divergences

and extremal values of the fluctuation quantities, phase transition temperatures can be

located in the thermodynamic limit. Another quantity which also diverges near the critical

temperature is the correlation length ξ which has the power law behavior, ξ ∼ |t|−ν , with

the critical exponent ν [7, 28, 29].

The power law behavior and critical exponent reveal one of the most special and striking

properties of second order phase transitions: universality. Critical exponents of a system

are usually independent of the parameters contained in the system, such as the interaction

strength J and the lattice type in the Ising model. Instead, they are affected by the systems’

gross properties, such as the dimensionality of the lattice d and the number of the dimen-

sions of the order parameters. This yields the appearance of the universality class in which

different systems share the same critical exponents. By utilizing this universal property, the

investigation of the critical behavior of a complex system could be simplified to the study of

a relatively simple system which falls into the same universality class [30].

However, these fundamental concepts only apply to the systems in the thermodynamic

limit, i.e., system sizes are infinite. When applied to finite-size systems, these properties can

no longer be retained. First of all, the power law relations will become invalid in finite-size

systems. Fig. 2.2 shows the heat capacity and susceptibility of Ising models on the square

lattice with infinite and finite lattice sizes. Note that the susceptibility for the infinite lattice

refers to Eq. 2.7 and χ ∝ [〈M2〉 − 〈|M |〉2] has been employed for the 10× 10 lattice in order

to keep 〈|M |〉 6= 0 at T < Ttr in the simulation. The divergences of the fluctuation quantities

near the critical temperature in the thermodynamic limit become rounded peaks on the

10 × 10 square lattice. This phenomenon indicates that the power law behavior cannot be

used to asymptotically describe the critical behavior of the fluctuation quantities in finite-

size systems. In addition, finite-size effects can also cause ambiguities in the estimation of

10
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Figure 2.2: (a, b) Heat capacity CV and susceptibility χ indicate the same critical tempera-
ture T ≈ 2.269 for the Ising model on the square lattice with infinite size. However, for the
10× 10 square lattice, these two fluctuation quantities have peaks at different values of T as
shown in (c) and (d).
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Figure 2.3: Heat capacity CV and thermal fluctuation of square of radius of gyration
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gyr〉/dT of a 30-mer flexible polymer. Collapse transition, which is a pseudophase tran-
sition, identified by utilizing the peak at T = 1.4 in d〈R2

gyr〉/dT only appears as a wide
shoulder in CV.
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transition temperatures. For example, in the Ising model with infinite system size, critical

transition temperatures estimated by heat capacity and susceptibility will lead to the same

value T ≈ 2.269. But simulation results of a 10×10 square lattice exhibit two different values

of pseudophase transition temperatures, i.e., T ≈ 2.342 in CV and 2.486 in χ. Thus, the

estimated “transition” temperature is claimed as lying in the interval [2.342, 2.486] denoted

as the transition band. Therefore, when applying canonical analysis to study finite-size

systems, instead of getting unique pseudophase transition temperatures, one can only obtain

transition bands constructed by utilizing the temperatures estimated from various fluctuation

quantities. Furthermore, it is difficult to judge the orders of the “transitions” from the

measured quantities in the finite systems. Because the internal energies are continuous and

the fluctuation quantities exhibit rounded peaks at the pseudophase transition temperatures

in both first- and second-order “transitions”. Last but not least, when applied to study finite-

size systems, canonical quantities may not be able to display pronounced signals which are

crucial in identifying and locating pseudophase transitions. Fig. 2.3 shows the simulation

results of heat capacity CV and square of radius of gyration d〈R2
gyr〉/dT curves of a 30-

mer flexible polymer, which is a coarse-grained model for polymers such as proteins and

will be discussed in Chapter 4. In d〈R2
gyr〉/dT , a pronounced peak indicating the collapse

transition can be identified at T ≈ 1.4. But CV only presents a wide shoulder at the

same temperature, which makes locating the transition temperature difficult. Therefore,

canonical analysis is not always the optimal option in the study of finite-size systems. Note

that the properties of the systems in the thermodynamic limit, such as critical exponents and

transition temperatures, can be obtained from the data of finite systems by utilizing finite-size

scaling. However, the rapid growth of interest in understanding the thermodynamic activity

in finite systems such as biological systems manifests the necessity of finding other alternative

or more systematic and robust analysis methods. One of the alternative approaches to locate

“transition” temperatures is to employ autocorrelation times.
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2.2 Autocorrelation time

Suppose a time series with a large number of data from an importance sampling Monte

Carlo simulation such as the simulation with Metropolis algorithm and single monomer

displacement update (I will discuss the algorithm and update in Chap. 3) has been generated,

the expectation value of any quantity O, i.e., 〈O〉, can be estimated by calculating the

arithmetic mean over the Markov chain,

O =
1

N

N∑

j=1

Oj, (2.9)

where Oj is the value of O in the jth measurement and N is the number of total measure-

ments. Here, O is a random variable which fluctuates around its expectation value 〈O〉 when

the system is in equilibrium. Since each measurement Oj in the time series is also a random

variable with the same expectation value 〈Oj〉 = 〈O〉, it can be deduced that the expectation

value of O is the same as the expectation value of the individual measurement

〈O〉 = 〈 1
N

N∑

j=1

Oj〉 =
1

N

N∑

j=1

〈Oj〉 =
1

N

N∑

j=1

〈O〉 = 〈O〉. (2.10)

In Metropolis simulations, the individual measurements will not be independent. Thus, by

introducing the normalized autocorrelation function (A(0) = 1),

A(k) =
〈OlOl+k〉 − 〈Ol〉2

σ2
O

, (2.11)

where l can be any integer in the range [1, N − k] and σ2
O = 〈O2

l 〉− 〈Ol〉2 = 〈O2〉− 〈O〉2, the

corresponding variance of O is calculated as [31, 32]

σ2
O

= 〈O2〉 − 〈O〉2
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=
1

N2

N∑

i,j=1

〈OiOj〉 −
1

N2

N∑

i,j=1

〈Oi〉〈Oj〉

=
1

N2

N∑

i=1

(〈O2
i 〉 − 〈Oi〉2) +

1

N2

N∑

i 6=j

(〈OiOj〉 − 〈Oi〉〈Oj〉)

=
1

N



σ2
O +

2

N

N∑

i=1

N∑

j=i+1

(〈OiOj〉 − 〈Oi〉〈Oj〉)




=
1

N

[

σ2
O +

2

N

N∑

k=1

(〈OlOl+k〉 − 〈Ol〉〈Ol+k〉) (N − k)

]

=
1

N

[

σ2
O + 2

N∑

k=1

(〈OlOl+k〉 − 〈Ol〉〈Ol+k〉)
(

1− k

N

)]

=
2σ2

O

N

[

1

2
+

N∑

k=1

(

〈OlOl+k〉 − 〈Ol〉〈Ol+k〉
〈O2

l 〉 − 〈Ol〉2
)(

1− k

N

)]

=
2σ2

O

N

[

1

2
+

N∑

k=1

A(k)

(

1− k

N

)]

, (2.12)

where time translation invariance has been used. Fig. 2.4(a) shows an example of an auto-

correlation function which decays from 1 to 0 as time displacement increases. For large time

separation k, the autocorrelation function decays exponentially (Fig. 2.4(b)),

A(k) −→ e−k/τO,exp , (2.13)

where τO,exp is the exponential autocorrelation time of O. Because of large statistical fluctu-

ations in the tail of A(k), the accurate estimation of τO,exp is often difficult. By introducing

the integrated autocorrelation time,

τ ′O,int =
1

2
+

N∑

k=1

A(k)

(

1− k

N

)

, (2.14)

Eq. 2.12 becomes

ǫ2
O
≡ σ2

O
=

2σ2
O

N
τ ′O,int =

σ2
O

Neff

(2.15)
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Figure 2.4: Autocorrelation functions generated from the simulation of a flexible polymer
model, which will be discussed in Chapter 4, with Metropolis sampling in (a) linear and (b)
logarithmic scales.

with the effective statistics Neff = N/2τ ′O,int. According to Eq. 2.13, in any meaningful

simulation with N ≫ τO,exp, we can safely neglect the correction term in the parentheses in

Eq. 2.14. This leads to the frequently employed definition of the integrated autocorrelation

time,

τO,int =
1

2
+

N∑

k=1

A(k). (2.16)

The estimation of the integrated autocorrelation time requires the replacement of the expec-

tation value in A(k) by mean values, e.g., 〈OlOl+k〉 and 〈Ol〉 by OlOl+k and Ol. Therefore,

it is useful to introduce the following estimator

τ̃O,int(kmax) =
1

2
+

kmax∑

k=1

Ã(k) (2.17)

where Ã(k) is the estimator of A(k). Since Ã(k) usually decays to zero as k increases, τ̃O,int

will finally converge to a constant. Because of the statistical noise of Ã(k) for large k, τ̃O,int

is obtained by averaging Ã(k) over several independent runs. An example of measuring

the integrated autocorrelation time with integration of autocorrelation functions method is
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Figure 2.5: Integrated autocorrelation times estimated by (a) the integration of autocorre-
lation functions and (b) binning analysis.

demonstrated in Fig. 2.5(a). The estimator in this case converges to τ̃O,int ≈ 120 (the unit is

30 MCS, i.e., 30 Monte Carlo steps) which corresponds to the estimated value of integrated

autocorrelation time.

The standard estimator for the variance of O is

σ̃2
O = O2 −O

2
= (O −O)2 =

1

N

N∑

i=1

(Oi −O)2, (2.18)

and its expected value is

〈σ̃2
O〉 = 〈O2 −O

2〉

= 〈O2〉 − 〈O〉2 −
(

〈O2〉 − 〈O〉2
)

=
1

N

N∑

i=1

〈O2
i 〉 −

1

N2

N∑

i,j=1

〈Oi〉〈Oj〉 −
σ2
O

Neff

= 〈O2〉 − 〈O〉2 − σ2
O

Neff

= σ2
O

(

1− 1

Neff

)

, (2.19)

with σ2
O = 〈O2〉 − 〈O〉2. It is obvious that this form systematically underestimates the true
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1 , O
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2 , and O
B

K represent the binning block averages of bin 1, 2, and K, respectively.

value by a term of the order of τO,int/N . The 2τO,int/N correction is the systematic error

due to the finiteness of the time series, and it is called bias. Even in the case in which all

the data are uncorrelated (τO,int = 1/2), the estimator is still biased, 〈σ̃2
O〉 = σ2

O (1− 1/N).

Thus, it is reasonable to define the bias-corrected estimator

σ̃2
O,c ≡

Neff

Neff − 1
σ̃2
O =

1

N − 2τO,int

N∑

i=1

(Oi −O)2, (2.20)

which satisfies 〈σ̃2
O,c〉 = σ2

O. Thus, the bias-corrected estimator for the squared error of the

mean value becomes

ǫ2
O
=

σ̃2
O,c

Neff

=
1

N(Neff − 1)

N∑

i=1

(

Oi −O
)2

. (2.21)

For uncorrelated data, the error formula simplifies to

ǫ2
O
=

σ̃2
O,c

N
=

1

N(N − 1)

N∑

i=1

(

Oi −O
)2

. (2.22)

Integrated autocorrelation times can also be estimated by using the so-called binning method
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[33]. Assuming that the time series consists of N correlated measurements Oi, this time series

can be divided into K bins, which should be large enough so that the correlation of the data

in each bin decays sufficiently (NB ≫ τO,int). In this way, a set of K uncorrelated data

subsets is generated, each of which contains NB data points such that N = NBK. The

binning block average O
B
k (Fig. 2.6) of the k-th block is calculated as

O
B
k =

1

NB

NB∑

i=1

O(k−1)NB+i, k = 1, . . . , K, (2.23)

and

O =
1

K

K∑

k=1

O
B
k , (2.24)

coincides with the average (2.9). Since each bin average represents an independent measure-

ment, the variance of the binning block averages σ2

O
B can be estimated from Eq. 2.20,

σ̃2

O
B
,c
=

1

K − 1

K∑

k=1

(

O
B

k −O
)2

, (2.25)

and the statistical error of the mean value ǫ2
O
≡ σ2

O
= σ2

O
B/K is given by

ǫ2
O
=

σ̃2

O
B
,c

K
=

1

K(K − 1)

K∑

k=1

(

O
B
k −O

)2
. (2.26)

By comparing this expression with Eq. 2.15 and considering Eqs. 2.14 and 2.16, we see that

σ2

O
B/K = 2τO,intσ

2
O/N . Hence, the autocorrelation time can also be estimated by means of

the binning variance as

τ̃O,bin =
1

2
NB

σ̃2

O
B
,c

σ̃2
O

. (2.27)

Since the bin averages are supposed to be uncorrelated, we utilize the standard estimator

(2.18) for the variance of the individual measurements σ2
O (N ≫ 2τO,int). This method is

more convenient than the integration method (2.17) since a precise estimate of the autocor-
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relation function is not needed. For uncorrelated data and NB = 1, σ̃2

O
B
,c
= σ̃2

O for N ≫ 1.

Consequently τ̃O,bin = τO,int = 1/2. In the correlated case, too small bin sizes will under-

estimate the autocorrelation time. Given a time series consisting of N measurements, the

estimator σ̃2
O remains unchanged if NB is modified. Increasing NB reduces the number of

bins K which leads to the decrease of the variance σ̃2

O
B
,c
. However, the decrease rate is not

the same as NB is increased. Thus, the right hand side of (2.27) will converge to a constant

value identical to τO,int. Therefore, one typically plots the right hand side of Eq. 2.27 for

various values of NB and estimates τO,int by reading the value the curve converges to [7,32].

Fig. 2.5(b) shows an example of using binning analysis to estimate integrated autocorrela-

tion time. The estimated value is also about τ̃O,bin ≈ 120 (the unit is 30 MCS) which is the

same as the one estimated by employing integration of autocorrelation functions method in

Fig. 2.5(a).

In the past, most studies analyzing the properties of the autocorrelation times have

focused on spin models. The second-order phase transition between ferromagnetism and

paramagnetism is characterized by a divergent spatial correlation length ξ at the transition

point Tc. In the thermodynamic limit (i.e., infinite system size), the divergent behavior is

given by ξ ∼ t−ν , where t ≡ |1 − T/Tc| and ν is a critical exponent [28–30, 32, 34]. If an

importance sampling Monte Carlo method is employed [34–36], the number of configurational

updates that is needed to decorrelate the information about the history of macroscopic

system states is measured by the autocorrelation time τ . It is described by the power

law τ ∝ ξz ∝ t−νz, where z denotes the dynamic critical exponent, which depends on the

employed algorithm [30,32,34]. However, in a system of finite size, the correlation length can

never really diverge. This is because the largest possible cluster has the volume Ldf , where L

is the system size and df is the fractal dimensionality. Thus, the divergence of the correlation

length as well as the autocorrelation time are “cut off” at the boundary, i.e., ξ < L or ξ ∼ L

. Consequently, τ ∼ Lz at temperatures sufficiently close to the critical point [30, 32, 34].
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For local updates, such as single spin flips, and by using the Metropolis algorithm [37], the

autocorrelation time becomes very large near the critical temperature because the dynamic

critical exponent is in this case z ≈ 2 [30,38,39]. This effect is usually called critical slowing

down, but it can be reduced significantly if non-local updates, such as in Swendsen-Wang,

Wolff, and multigrid algorithms [30, 36, 40–45], are employed. Metropolis simulations with

local updates yield for the Ising model z ≈ 2.1665 in 2D and z ≈ 2.02 in 3D [30,38,39]. For

non-local updates, numerical estimates yield a z value less than unity [30, 40,42,43,46].

Since most phase transitions in nature are of first order [47–50], it is also useful to

discuss autocorrelation properties near first-order phase transitions. In a finite system, the

characteristic feature of a first-order pseudophase transition is the double-peaked energy

distribution with an entropic suppression regime between the two peaks. The dip is caused

by the entropic contribution to the Boltzmann factor ∝ exp(−2σLd−1), where σ is the

(reduced) interface tension and Ld−1 is the projected area of the interfaces. Thus, the

dynamics in a canonical ensemble will suffer from the “supercritical slowing down”, in which

the tremendous average residence time the system spends in a pure phase is described by the

autocorrelation time τ ∝ exp(2σLd−1) [32,51]. Since this slowing down is related to the shape

of the energetic probability distribution itself, it is impossible to reduce the autocorrelation

time by using cluster or multigrid algorithms. The simulation in a generalized ensemble, such

as multicanonical ensemble [52–57], where the slowing down can be reduced to a powerlike

behavior with τ ∝ Ldα (α ≈ 1) [52], can overcome this difficulty.

Based on slowing down and supercritical slowing down, we can utilize the extremal values

in the autocorrelation time vs. temperature curves as indicators to locate transition temper-

atures. This is an alternative approach which can be employed when canonical quantities

fail to exhibit pronounced signals. However, due to the algorithm dependencies of autocor-

relation times and finite-size effects, this method is also not stable. Certain algorithms or

update methods may lead to the disappearance of slowing down. Therefore, it is necessary
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Figure 2.7: (a) is a sketch of microcanonical entropy S(E) in the condition of no pseudophase
transition. Its first- to fourth-order derivatives over energy E are shown in (b) to (e),
respectively. For simplicity, X-axis (energy E) and Y-axis (S(E) or its derivatives) are not
plotted in the graphs. Black solid lines represent zero lines of S(E) or its derivatives.

to employ other systematic and robust methods which can clearly distinguish the sensitive

transition signals in finite-size systems.

2.3 Microcanonical inflection-point analysis

One of the currently most promising approaches is microcanonical inflection-point analy-

sis [20], which is based on the principle of minimal sensitivity (PMS). The principle of

minimal sensitivity was first proposed by Stevenson in order to solve the ambiguity caused

by the conventional perturbation theory which gives different results in different renormaliza-

tion schemes (RS) [18,19]. It asserts that if one only knows the first few terms of a physical

quantity’s perturbation expansion in some RS and the information that an approximation de-

pends on unphysical parameters of which the true result is independent, then the parameter

values should be chosen so as to minimize the sensitivity of the approximant to small varia-

tions in those parameters. The PMS has been widely applied and implemented [58–68]. By

extending this idea into the microcanonical inflection-point analysis, first- and higher-order

pseudophase transitions in finite size systems can be identified uniquely and systematically.

In this approach, the microcanonical entropy given by S(E) = kB ln g(E), where g(E)
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is the conformational density of states, contains the complete information about the pseu-

dophase behavior of a system and it is usually a monotonically increasing concave function

in the physically important region as shown in Fig. 2.7(a). The changes of the behavior are

signaled by alterations of the curvature of S(E) and exhibited in the inverse microcanonical

temperature defined as

β(E) ≡ dS(E)

dE
. (2.28)

The corresponding microcanonical temperature is T (E) = β−1(E). The β(E) curve is a

monotonically decreasing convex function if no pseudophase transition exists (Fig. 2.7(b)).

In the canonical ensemble, due to the large correlations within the system at the transition

temperature, the expectation value of the system energy 〈E〉 will undergo a dramatic in-

crease. In microcanonical analysis, this idea can be extended and the pseudophase transition

should occur in energy space where the inverse temperature β(E) behaves least sensitively as

energy increases. In the situation where least sensitivity is not observed in β(E), higher-order

derivatives of entropy could be investigated instead. If no pseudophase transition occurs, the

derivatives of S(E) are either monotonically increasing concave or monotonically decreas-

ing convex functions (Fig. 2.7). A change in monotonicity will cause an inflection point at

which the curve is least sensitive to the change of the energy, i.e., the increasing/decreasing

speed of the derivative curve is the slowest at this point. Such an inflection point is called

a least sensitive inflection point. The corresponding pseudophase transition should occur

at the least sensitive part of the higher-order derivative curve. This criterion serves as a

generalized PMS condition in microcanonical inflection-point analysis and can be employed

to identify pseudophase transitions in finite systems hierarchically.

In this scheme, a pseudophase transition between two pseudophases is defined to be of

first order if a backbending region is found in β(E) curve and the transition energy Etr

is located at the inflection point, the corresponding derivative of which is a positive peak
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Figure 2.8: (a) A first-order independent pseudophase transition can be identified from
the backbending region of β(E) and the positive peak in γ(E). (b, c, d) For independent
pseudophase transitions of second, third, or fourth order, least sensitive inflection points in
β(E), γ(E), and δ(E) together with the corresponding negative peaks or a positive valley in
γ(E), δ(E), and ǫ(E) are employed to locate pseudophase transition energies. For simplicity,
X-axis (energy E) and Y-axis (derivatives of microcanonical entropy S(E)) are not plotted
in the graphs. Black solid lines represent zero lines of the derivatives of S(E).
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appearing in

γ(Etr) =
d2S

dE2

∣
∣
∣
∣
∣
E=Etr

> 0. (2.29)

Since the backbending region can directly form in the monotonically decreasing convex func-

tion of β(E) in which no pseudophase transition appears, the occurrence of the corresponding

transition is usually independent of the existence of others. For the purpose of simplicity,

we denote the independent pseudophase transitions identified by utilizing microcanonical

inflection-point analysis as pseudophase transitions in this thesis. The scenario of first-order

independent pseudophase transition is plotted as a sketch in Fig. 2.8(a). As being discussed

in the Maxwell construction [7–17], the overall energetic width ∆Q of the undercooling,

backbending, and overheating regions is identical to the latent heat and positive for the

first-order pseudophase transition. It is worth noting that the backbending region becomes

a flat curve in the thermodynamic limit, which indicates that β(E) is least sensitive to the

change of the energy E in this flat region. For a second-order pseudophase transition, the

transition occurs at the inflection point where β(E) is least sensitive to the decreasing trend.

The corresponding derivatives around the inflection point show a negative peak, i.e.,

γ(Etr) < 0, (2.30)

in Fig. 2.8(b). Obviously, no latent heat exists in the pseudophase transition of second

order [7,20,69,70]. Like the first-order independent pseudophase transition, the appearance

of pseudophase transitions of other than second order is not a necessity for the occurrence

of the second-order independent pseudophase transition.

In the cases where no first- or second-order pseudophase transition signal is found, the

PMS condition can be extended to the γ(E) curve. Since γ(E) is an increasing concave

function in the case of no pseudophase transition (Fig 2.7(c)), an inflection point at which the

γ(E) curve behaves least sensitively to the increase is assigned as a third-order pseudophase
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transition signal. The derivatives of γ(E) around E = Etr for the third-order pseudophase

transition will form a positive valley, i.e.,

δ(Etr) =
d3S(E)

dE3

∣
∣
∣
∣
∣
E=Etr

> 0, (2.31)

as shown in Fig. 2.8(c). This valley can also be utilized to locate the third-order pseudophase

transition.

If a lower-order pseudophase transition can not be found, one may assume that the

system undergoes a fourth-order pseudophase transition. In the condition of no transition,

δ(E) is a monotonically decreasing convex function as plotted in Fig. 2.7(d). The sign of a

fourth-order pseudophase transition is the least sensitive inflection point in the δ(E) curve,

i.e., the inflection point at which the δ(E) curve decreases most slowly locally. One can also

use the negative peak in the ǫ(E) curve, i.e.,

ǫ(Etr) =
d4S(E)

dE4

∣
∣
∣
∣
∣
E=Etr

< 0, (2.32)

as another indicator for the fourth-order pseudophase transition (Fig. 2.8(d)). Note that

ǫ(E) is a monotonically increasing concave function as shown in Fig. 2.7(e) if no pseudophase

transition happens.

The PMS criterion can be extended to the higher order derivatives of S(E) if no lower than

fourth-order pseudophase transition is found. This can be done by analyzing the inflection

point of ǫ(E). In summary, the 2kth-order independent pseudophase transition (k is a

positive integer) can be recognized from the least sensitive inflection point in the (2k− 1)th

derivative of S(E) and the negative peak in the 2kth derivative of S(E), i.e.,

d2kS(E)

dE2k

∣
∣
∣
∣
∣
E=Etr

< 0. (2.33)
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The (2k + 1)th-order independent pseudophase transition (k is still a positive integer) can

be distinguished from the least sensitive inflection point in the 2kth derivative of S(E) and

the positive valley in the (2k + 1)th derivative of S(E), i.e.,

d(2k+1)S(E)

dE(2k+1)

∣
∣
∣
∣
∣
E=Etr

> 0 (2.34)

[23]. Note that the first-order independent pseudophase transition can only be distinguished

from the backbending behavior in β(E) and the positive peak in γ(E). This is different from

the other odd-order independent pseudophase transitions. Since phase transitions in most

very large systems (these systems can be regarded as in the thermodynamic limit) are of first-

or second-order, pseudophase transitions of higher than second order occurring in finite-size

systems may disappear in the thermodynamic limit. However, in nanotechnological and

biological systems, where the surface effects probably are very important in determining

the structural transitions, higher-order pseudophase transitions may not just appear as side-

effects of the first/second-order pseudophase transitions but become the essential signals

revealing the structural changes of these finite systems.

Another type of least sensitive inflection point can also be distinguished in the derivatives

of microcanonical entropies. The occurrences of the transitions corresponding to these in-

flection points depend on the existences of lower-order independent pseudophase transitions,

i.e., a dependent pseudophase transition of any order can only appear with the pre-existence

of a lower-order independent pseudophase transition. For example, a second-order dependent

pseudophase transition in Fig. 2.9(a) happens at the least sensitive inflection point where

β(E) increases most slowly in a certain region. Since β(E) is a monotonically decreasing

convex function in the case of no pseudophase transition, this locally increasing part can

only occur in the backbending region of β(E) which indicates the appearance of a first-order

independent pseudophase transition. The transition energy can be uniquely located by using
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Figure 2.9: (a, b, c) Graphical proofs of dependent pseudophase transitions of second, third,
and fourth orders. The transition energies can be identified by employing the least sensitive
inflection points and their corresponding positive valleys or a negative peak. For simplicity,
X-axis (energy E) and Y-axis (derivatives of microcanonical entropy S(E)) are not plotted
in the graphs. Black solid lines represent zero lines of the derivatives of S(E). Same points
in different curves in each subgraph are marked by the same signs.

the least sensitive inflection point in β(E) and its corresponding positive valley in γ(E).

For a third-order dependent pseudophase transition in Fig. 2.9(b), the corresponding least

sensitive inflection point usually appears in the certain region where γ(E) decreases. Since

γ(E) is a monotonically increasing concave function if there is no pseudophase transition,

the occurrence of the decreasing part leads to the formation of a peak in γ(E), which is

an identifier for a first- or second-order independent pseudophase transition. To locate the

transition energy, the least sensitive inflection point and the corresponding negative peak in

δ(E) can be utilized.

Fig. 2.9(c) exhibits the relationship between a fourth-order dependent pseudophase tran-

sition and its corresponding lower-order independent pseudophase transitions. The monoton-

ically decreasing property of the δ(E) curve in the no “transition” case restrict the occurrence

of the least sensitive inflection point in the locally increasing part of δ(E). This inflection

point can only appear on the right branch of a valley. If the valley is positive, an independent

pseudophase transition of third order can be identified. In the latter case, a δ(E) = 0 point
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on the left branch of the valley can be distinguished if the valley is negative. This zero point

indicates the formation of a peak in the γ(E) curve which further reveals the occurrence of

either a first- or second-order independent pseudophase transition. The positive valley in

the ǫ(E) curve is also an indicator for the fourth-order dependent pseudophase transition.

By extending this graphical proof to higher-order pseudophase transitions, we are able

to conclude that a dependent pseudophase transition of any order is allowed to happen only

with the existence of a lower-order independent pseudophase transition. The energy of a

2lth-order dependent pseudophase transition where l is a positive integer can be identified

from the least sensitive inflection point of (2l − 1)th derivative of S(E) and the positive

valley in 2lth derivative of S(E), i.e.,

d2lS(E)

dE2l

∣
∣
∣
∣
∣
E=Etr

> 0. (2.35)

In addition, for a (2l+1)th-order dependent pseudophase transition (l is a positive integer),

the transition energy can be located by employing the least sensitive inflection point in the

2lth derivative of S(E) and the negative peak in the (2l + 1)th derivative of S(E), i.e.,

d(2l+1)S(E)

dE(2l+1)

∣
∣
∣
∣
∣
E=Etr

< 0 (2.36)

[23]. It is worth noting that the appearance of an independent pseudophase transition does

not necessarily imply the occurrence of any lower-order dependent pseudophase transition.

Because of the systematic dependencies, dependent pseudophase transitions may represent

the precursors of the independent pseudophase transitions and enable an entirely new view

on the onset of pseudophase transitions.

Besides the least sensitive inflection points, the inflection points at which the derivatives

of microcanonical entropy behave most sensitively can also be observed, i.e., the increas-

ing/decreasing speeds of the derivative curves are the fastest at this point. Such inflection

28



Figure 2.10: Plots (a, b, c) demonstrate the functions of the most sensitive inflection points.
For simplicity, X-axis (energy E) and Y-axis (derivatives of microcanonical entropy S(E))
are not plotted in the graphs. Black solid lines represent zero lines of the derivatives of
S(E). Least and most sensitive inflection points are marked as purple solid disks and gray
triangles, respectively.

points are called most sensitive inflection points. To understand their functions, the physical

properties of pseudophase transitions need to be discussed. Pseudophase transitions which

are indicated by the least sensitive inflection points and peaks/valleys in the derivatives of

microcanonical entropy usually break the general monotonic, convex, and concave properties

of the derivative curves. To recover and maintain these general properties, most sensitive

inflection points need to be included. For example, in Fig. 2.10(a), a least sensitive inflection

point indicating a second-order independent pseudophase transition occurs at low energy in

the β(E) curve. Thus, β(E) changes from a convex function to a concave one after this

point. In order to recover the convexity, a most sensitive inflection point appears in the

higher energy region. In Fig. 2.10(b), the increasing feature of the γ(E) curve is broken by

a negative peak which indicates the occurrence of a second-order independent pseudophase

transition. To compensate for this effect, a valley connected by a most sensitive inflection

point needs to be formed. This inflection point is in charge of changing the concave peak to

a convex valley. In order to recover the concavity of γ(E), another most sensitive inflection

point occurs after the valley. The influence of the appearances of dependent pseudophase
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transitions on the convexity and concavity of the derivatives of microcanonical entropy is

illustrated in Fig. 2.10(c). In this plot, the backbending is observed in the δ(E) curve. If

there is no dependent pseudophase transition, similar as in Fig. 2.10(b), a most sensitive

inflection point will occur in order to change the convex property of the valley so that a con-

cave peak which recovers the decreasing property of δ(E) is capable of being formed. Such

an inflection point is one of the two most sensitive inflection points within the backbending

region. But if a fourth-order dependent pseudophase transition indicated by a least sensitive

inflection point emerges in the backbending region, another most sensitive inflection point

accompanying this transition point needs to appear to cancel out the effect of the least sen-

sitive inflection point on altering the local convex and concave properties of δ(E). In order

to keep δ(E) converging to zero in the large energy region, the third most sensitive inflection

point occurs on the right side of the peak to make δ(E) regain the convex and decreasing

properties [23].

Although the discussions above are for the systems with finite size, the scheme of identi-

fying pseudophase transitions in finite systems with microcanonical inflection-point analysis

can be extended to the infinite large systems. In these systems, the backbending region

in β(E) become flat and the least sensitive inflection points for both the independent and

dependent phase transitions become saddle points. The corresponding peaks and valleys

reach 0 at the transition energies.

The microcanonical inflection-point analysis is, therefore, a parallel analysis method to

the canonical analysis and the autocorrelation time approach. But the ambiguity of locat-

ing pseudophase transition temperatures caused by utilizing different order parameters in

canonical analysis and autocorrelation times in studying finite-size systems can be avoided in

this novel scheme. Analogous to the Ehrenfest scheme in thermodynamics, microcanonical

inflection-point analysis can be applied to any kind of system to distinguish and classify the

transitions systematically and hierarchically.
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Chapter 3

Simulation and data smoothing

methods

3.1 Markov chains and the master equation

Monte Carlo simulations [7, 34] rely on repeated random sampling to obtain random states

of a certain distribution which can be further utilized to calculate ensemble averages of

quantities. In simulations, Markov process, which is a stochastic process of generating the

random states, are usually utilized. The corresponding sequence of the generated states is

called a Markov chain. In this mechanism, a new state Xν of a given system is generated

from a previous state Xµ according to the transition probability ω(Xµ → Xν) which is

independent of all the states the system has been in with the exception of the previous state

Xµ. Such a process is driven by

dp(Xµ, t)

dt
=
∑

ν

ω(Xν → Xµ)p(Xν , t)− ω(Xµ → Xν)p(Xµ, t), (3.1)
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where p(Xµ, t) is the probability of the state Xµ at time t [34]. Due to particle conservation,

the transition probabilities should satisfy the normalization condition
∑

µ ω(Xν → Xµ) = 1.

When the system reaches equilibrium, dp(Xµ, t)/dt = 0 which yields the stationary states

probabilities p(Xµ) and the balance condition

∑

ν

ω(Xν → Xµ)p(Xν) =
∑

ν

ω(Xµ → Xν)p(Xµ). (3.2)

However, balance condition alone allows solutions in which the state probabilities p(Xµ)

dynamically change on cycles and the desired probability distribution can not be reached

[7, 30]. To eliminate the limit circles, a stronger condition called detailed balance

ω(Xν → Xµ)p(Xν) = ω(Xµ → Xν)p(Xµ). (3.3)

is needed. Simulational algorithms satisfying this condition can generate a Markov chain

of an aimed distribution if appropriate transition probabilities are chosen. To do this, the

transition probability ω(Xµ → Xν) can be written as

ω(Xµ → Xν) = s(Xµ → Xν)a(Xµ → Xν) (3.4)

where s(Xµ → Xν) is the selection probability, which determines the probability of choosing

the update from state Xµ to state Xν , and a(Xµ → Xν) is the acceptance probability which

controls the chance of accepting the suggested update. Thus, Eq. 3.3 can be written as

a(Xµ → Xν)

a(Xν → Xµ)
=

s(Xν → Xµ)

s(Xµ → Xν)

p(Xν)

p(Xµ)
. (3.5)
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For the purpose of maximizing the acceptance probabilities, the larger one of the two is

usually set to be 1 so that

a(Xµ → Xν) = min

(

1,
s(Xν → Xµ)

s(Xµ → Xν)

p(Xν)

p(Xµ)

)

. (3.6)

In most of the Monte Carlo simulations, updates for which the selection probabilities s(Xν →

Xµ) = s(Xµ → Xν) are usually chosen. The representatives of such updates are single spin

flips in the Ising model and space displacements of monomers in polymers. To improve

the sampling efficiency, Monte Carlo updates where the selection probabilities are unequal

are also introduced [71]. In addition, Monte Carlo updates should also satisfy ergodicity

which requires the probability of reaching any state of the system from any other state in a

finite number of updates to be non-zero. Based on the ergodic theory, the time average of a

quantity O over an infinitely long time series is equal to its ensemble average, i.e.,

O = limN→∞
N∑

i=1

Oi ≡ 〈O〉 =
∫

DXO(X)p(X) (3.7)

where DX is the integral measure for the infinitesimal scan of the conformation space and

p(X) represents the probability of a conformation X [7]. This relation is the foundation for

Monte Carlo simulations. However, only finitely long time series is allowed in simulations.

Eq. 3.7 can not rigorously be satisfied. By averaging the finitely long time series of a

quantity generated from the Markov process, the statistical ensemble average of a system

can be estimated by O ≈ 〈O〉.

3.2 Canonical Metropolis sampling

The standard Monte Carlo simulation method is the Metropolis importance sampling [37]

which works in the canonical ensemble and is capable of generating the Boltzmann distribu-
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tion which is Gaussian-like and has very small probabilities in the tails. The contribution

of the tails to the calculation of ensemble averages is usually negligible. Thus, an efficient

sampling should spend most of the efforts on sampling the highly probable region to obtain

the relevant information. Metropolis sampling is such an prominent algorithm.

In this method, the target probability of a microstate is identical to the Boltzmann

distribution p(X) ∼ e−βE(X) at a given temperature T (β = 1/kBT ). The acceptance

probabilities of Eq. 3.6 thus become

a(Xµ → Xν) = min
(

1, e−β∆E
)

(3.8)

where ∆E = E(Xν)−E(Xµ) and selection probabilities are chosen to be equal. Microstate

Xν is generated through an update such as a single spin flip in the Ising model and a space

displacement of a monomer in a polymer. The update will be automatically accepted if

∆E < 0. But if the energy of state Xν is larger, the update will be accepted with the

probability e−β∆E. Technically, one needs to generate a random number r ∈ [0, 1) and only

accept the update if r < e−β∆E.

The advantage of Metropolis sampling is that it can generate a true physical distribu-

tion, namely, a Boltzmann distribution. It can efficiently sample the conformation space

at temperatures much higher than the transition temperatures. However, in the simulation

at a very low temperature, the sampling might get trapped in a local minimum with the

consequence of a large autocorrelation time. In addition, since the Boltzmann distribution

at a first-order pseudophase transition temperature in a finite system is bimodal, i.e., two

peaks separated by the entropically suppressed energetic region are observed, the simulation

might easily get trapped in either one of the two peaks leading to insufficient sampling in

the region around the other peak.
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3.3 Parallel tempering

As discussed before, the Metropolis algorithm is not able to sample the low temperature

and phase transition regions efficiently where most of the interesting physics such as ground

state structures and pseudophase behavior changes occur. Algorithms that overcome these

limitations are developed. Among those methods, parallel tempering [73–76], which is also

known as replica-exchange Monte Carlo, is the simplest and popular one. To begin with, I

non-interacting systems in the canonical ensembles with different temperatures β1 < β2 <

. . . < βI are distributed into I replicas. These systems thus form a generalized ensemble

with the joint probability distribution

p(X1,X2, . . . ,XI) =
e−β1E(X1)

Z(β1)

e−β2E(X2)

Z(β2)
· · · e

−βIE(XI)

Z(βI)
(3.9)

where Z(β1), Z(β2), . . . , Z(βI) are the partition functions of corresponding temperatures [7].

Two combined ways are employed to update the system. The first method involves the local

update in one replica of the generalized ensemble. For example, in the Ising model, only a

single randomly chosen spin in one replica is allowed to flip. If ith replica is suggested to

do the update, since the selection probability s(Xi → X′
i) = s(X′

i → Xi), the acceptance

probability of Eq. 3.6 thus becomes

a(Xi ↔ X′
i) = min

(

1, e−βi∆Ei

)

(3.10)

where ∆Ei = E(X′
i)− E(Xi). Here, we abbreviate the writing by omitting the terms that

don’t change. This is just the Metropolis algorithm for replica i. Another type of update

involves swaps of conformations between two chosen replicas. With the choice of identical

selection probabilities from both directions, the acceptance probabilities of the swap updates
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for replica i and i+ 1 are derived as

a(Xi,Xi+1 ↔ Xi+1,Xi) = min

(

1,
e−βiE(Xi+1)e−βi+1E(Xi)

e−βiE(Xi)e−βi+1E(Xi+1)

)

= min
(

1, e(βi+1−βi)(E(Xi+1)−E(Xi))
)

= min
(

1, e∆β∆E
)

. (3.11)

In real simulations, since all the replicas are non-interacting, Metropolis runs in each replica

can proceed simultaneously. Swap updates can be conducted after hundreds Monte Carlo

(MC) sweeps (one MC sweep is equal to the number of system size MC steps). Similar to

Metropolis runs, swap updates among multiple replicas can also be carried out simultane-

ously, due to the exclusive feature of the updates. However, to improve the acceptance rates

of conformation exchanges, it is not optimal to choose the swapping replica pairs randomly.

This is because the acceptance probabilities in Eq. 3.11 decay exponentially with the in-

crease of ∆β∆E > 0. In simulations, neighboring replicas are often chosen to swap. The

temperatures of the neighboring replicas should be close enough to guarantee enough overlap

between their corresponding histograms so that high acceptance rates can be achieved.

The paralleling nature of parallel tempering makes its implementation onto multicore

processors very convenient [72]. By simulating the same systems at different temperatures

simultaneously, parallel tempering can dramatically enhance the computing efficiency. Be-

sides, through conformation exchanges, parallel tempering allows each replica to be heated

up and cooled down throughout the whole temperature region so that the autocorrelation

times can be decreased [72]. In addition, swap updates can also help configurations that

are trapped in metastable states at low temperatures to escape [72]. However, due to the

narrow histograms of energy h(E), which counts the number of times a certain energy E has

been reached in a simulation, at very low temperatures, very high density of temperatures is

required in order to keep reasonable acceptance rates for swap updates. Furthermore, confor-

36



mation exchanges between two neighboring replicas can be greatly suppressed in first-order

transition where a finite gap exists in the energy space. This gap increases the energy differ-

ence between the ordered- and disordered-conformations and thus decreases the acceptance

probabilities of swap updates. For these reasons, the implementation of parallel temper-

ing to the studies of systems at low temperatures and near first-order transitions becomes

crucial [7].

3.4 Multiple-histogram reweighting

For the study of phase transitions by utilizing microcanonical inflection-point analysis, the

key is to achieve a good estimation of density of states g(E). Since g(E) is directly related

to the Boltzmann distribution, the intuitive way is to measure the histogram h(E) during

the simulation and estimate the density of states as

g(E) = h(E, β)e−βE. (3.12)

However, in the canonical ensemble, accurate data can only be obtained in a certain energy

region at a given temperature. The consequence is that the estimate of the density of

states can only be valid in the region that the histogram covers. Therefore, a sophisticated

algorithm needs to be employed in order to combine the estimates of the density of states

which are obtained at different temperatures and overlap in energy. One of such approaches is

the “weighted histogram analysis method” (WHAM) [77,78]. In this method, the combined

estimate of density of states is

ĝ(E) =

∑I
i=1 hi(E)

∑I
i=1 MiẐ

−1
i e−βiE

(3.13)
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and the corresponding estimate of the partition function of ith thread is

Ẑi =
∑

E

ĝ(E)e−βiE. (3.14)

Here, Mi is the length of the time series at temperature Ti = 1/kBβi. These two estimates

can be solved iteratively. The procedure is as follows. The initial estimate of Ẑ
(0)
i is first

guessed which can be used to estimate ĝ(1)(E) by utilizing the histogram hi(E). The results

can be inserted into Eq. 3.14 to calculate Ẑ
(1)
i . This process needs to be repeated until both

of the estimates converge to constant values [7].

3.5 Multicanonical sampling

The shortcomings of parallel tempering at low temperatures and near first-order transitions

implies the necessity of finding another generalized ensemble which can increase the sampling

of the tails of the Boltzmann distribution and improve the sampling rates of the lowest-energy

conformations and of the entropically suppressed region in the first-order transitions [7].

A prominent algorithm is called multicanonical sampling [52, 79, 80] which can obtain the

statistics of all temperatures in a single run [81]. The strategy of multicanonical sampling

is to multiply a weight function Wmuca(E, T ) to the Boltzmann distribution pcan(E, T ) ∼

g(E)e−βE so that a flat distribution pmuca(E, T ) ∼ g(E)e−βEWmuca(E, T ) ≈ const. can be

achieved. In this generalized ensemble, the acceptance probability of an update is

a(Xµ → Xν) = min

(

1,
pmuca(Xν , T )

pmuca(Xµ, T )

)

= min

(

1,
Wmuca(E(Xν), T )e

−βE(Xν)

Wmuca(E(Xµ), T )e−βE(Xµ)

)

= min

(

1,
Wmuca(E(Xν), T )

Wmuca(E(Xµ), T )
eβ(E(Xµ)−E(Xν))

)

. (3.15)
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Here, the equal selection probabilities have been employed. However, the weight functions

usually can not be known before simulations. Otherwise, the density of states can be directly

calculated from them. Therefore, one can usually start the simulation with an initial guess

for the weight functions and employ the standard recursion [7,79,80,82] or its error-weighted

version [7,79,80] to iteratively estimate the weight functions until they converge to constant

values. The initial weight functions can be set to any arbitrary values which only affect

the convergence speed but not the final results. To improve the speed, initial runs with

the Metropolis method are often utilized to roughly estimate the density of states which is

further used to generate the initial weight functions. In the error-weighted recursion process,

the (n+1)th weight functions W (n+1)
muca (E, T ) can be calculated from the nth weight functions

W (n)
muca(E, T ) and histograms h(n)

muca(E)

W (n+1)
muca (E, T )

W
(n+1)
muca (E −∆E, T )

=
W (n)

muca(E, T )

W
(n)
muca(E −∆E, T )

(

h(n)
muca(E −∆E)

h
(n)
muca(E)

)α(n)(E)

(3.16)

[7, 79]. Here, α(n) is defined as

α(n)(E) =
wn(E)

∑n
i=0 wj(E)

(3.17)

where

wj(E) =
h(j)
muca(E)h(j)

muca(E −∆E)

h
(j)
muca(E) + h

(j)
muca(E −∆E)

. (3.18)

After the best estimates of weight functions are achieved, it is necessary to perform a long

multicanonical production run to generate the multicanonical time series which can be uti-

lized to estimate the canonical expectation values of quantities O at any temperature T ′

as

Ocan(T
′) =

∑

t O(Xt)W
−1
muca(E(Xt), T )e

(β−β′)E(Xt)

∑

t W−1
muca(E(Xt), T )e(β−β′)E(Xt)

. (3.19)
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For the calculation convenience, the temperature at which multicanonical sampling is per-

formed is usually set to be infinity because it does not have any meaning in the multicanonical

ensemble [7]. Thus, weight functions can be abbreviated as Wmuca(E) ∼ g(E)−1. Equation

3.15, 3.16, and 3.19 become

a(Xµ → Xν) = min

(

1,
Wmuca(E(Xν))

Wmuca(E(Xµ))

)

, (3.20)

W (n+1)
muca (E)

W
(n+1)
muca (E −∆E)

=
W (n)

muca(E)

W
(n)
muca(E −∆E)

(

h(n)
muca(E −∆E)

h
(n)
muca(E)

)α(n)(E)

, (3.21)

and

Ocan(T
′) =

∑

t O(Xt)W
−1
muca(E(Xt))e

−β′E(Xt)

∑

t W−1
muca(E(Xt))e−β′E(Xt)

, (3.22)

respectively. It is worth mentioning that multicanonical sampling can work with weights

depending on any arbitrary order parameters Wmuca(Q) and generate flat histograms in the

order parameter Q space. In addition, another alternative method to directly obtain the

estimate of density of states is to utilize Wang-Landau method [83] in which iterations of

weight functions can be avoided.

Like parallel tempering, multicanonical sampling can also be parallelized in order to

improve running efficiency. A commonly used simple parallelization scheme [84] is to first

perform the standard multicanonical runs in I replicas independently with the same initial

weight functions but different random seeds. After the kth iteration, since the weights are

identical in each thread, the energy histograms obtained for each replica can simply be

summed up:

Hk(E) =
I∑

i=1

Hk
i (E). (3.23)

The total histograms are combined with the current weights to calculate the weights for the

subsequent iteration by utilizing the error-weighted recursive scheme.
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3.6 Displacement update

To increase the efficiency of the simulations, advanced sampling algorithms must be com-

bined with sophisticated conformational updates. These updates must not only satisfy the

ergodicity, i.e., any state can be reached from any other state with non-zero probability, but

also need to obey detailed balance. One of the most commonly used updates in the study of

off-lattice polymer systems, which is a coarse-grained model for polymers such as proteins in

continuous space and will be discussed in Chapter 4 and 6, is the displacement update. In

this update, one monomer is randomly chosen to shift its position within a small cubic box

with edge length l. Technically, one needs to generate three uniformly distributed random

numbers ri ∈ [0, 1). The displacement ~d can be calculated as

di = 2× l × ri − l, (3.24)

where di are the 3 Cartesian components of ~d. The acceptance of the suggested update

is determined by the acceptance probabilities (Eq. 3.6) of the Monte Carlo method used.

The displacement update can be applied to all the atoms in a chain either sequentially or

randomly. Once the whole chain is updated, it is said that a Monte Carlo sweep has been

performed. In practice, it is not optimal to set the displacement box length to be a fixed

value for all the temperatures because the acceptance probabilities vary with temperature.

For example, for a system in the canonical ensemble at low temperature, l = 0.4 will lead

to a large energy difference when the displacement update is applied. Thus, most of the

updates will be rejected. However, for a system at high temperature, this displacement will

be too small to yield an efficient sampling in energy space. Both of the scenarios end up

with the consequence of increased autocorrelation times. Therefore, the size of the box l

should be adjusted for every temperature thread separately prior to the simulation in order

to achieve a Metropolis acceptance rate of approximately 50%. In addition, the displacement
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Figure 3.1: Sketches of Monte Carlo updates (end and corner flips, crankshaft moves, and
pivot rotations) used for updating polymers on a square lattice.

update apparently satisfies ergodicity and detailed balance because each conformation can

be eventually reached out from any other and the selection probabilities s(Xµ → Xν) =

s(Xν → Xµ).

3.7 Chain-growth algorithm

For the studies of lattice proteins and polymers, the standard Markov chain Monte Carlo

methods as described in the previous Sec. 3.1 can be employed. In these methods, as shown

in Fig. 3.1, the commonly used Monte Carlo updates include semilocal changes of bond orien-

tations such as end and corner flips, crankshaft moves [85–88], and nonlocal transformations
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such as pivot rotations [7,81,89]. However, the update of conformations becomes inefficient

when standard Monte Carlo updates are employed to study regular lattice systems with

small coordination numbers. This disadvantage becomes more critical when the polymer is

in a dense conformation.

To compensate for this disadvantage, a completely different approach based on chain

growth was introduced. In this approach, the lth monomer is randomly attached to one of

the unoccupied nearest neighbors of the (l− 1)th monomer. The growth will be terminated

if the whole polymer length N has been reached or all of the nearest neighboring sites of the

(l− 1)th monomer has been occupied. However, this simple chain growth is very inefficient,

because the number of discarded chains increases exponentially with the chain length [7].

By introducing the Rosenbluth chain growth method [90], the performance can be greatly

improved. In this method, each growth is assigned a Rosenbluth weight which is the number

of unoccupied nearest neighbors ml of the (l− 1)th monomer. The total Rosenbluth weight

of a chain of length n can be calculated as

WR
n =

n∏

l=2

ml. (3.25)

To further improve the running efficiency, one needs to employ the Pruned-Enriched Rosen-

bluth Method (PERM) [91–93] in which the (a-thermal) Rosenbluth weight factor WR
n is

replaced by

WPERM
n =

n∏

l=2

mle
−β(El−El−1)/kBT , 2 ≤ n ≤ N (E1 = 0,WPERM

1 = 1) (3.26)

where El is the energy of a partial chain of length l. In PERM, the population of the chains

is controlled by introducing two empirical parameters W>
n and W<

n . If WPERM
n > W>

n , an

identical chain is created and the weight is equally divided among them. For the case of

WPERM
n < W>

n , a random number r ∈ [0, 1) is first generated and the growth is stopped if
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r < 1/2. The chain is preserved if r > 1/2 and the weight is doubled in order to retain the

overall weight of the sample. The enriching and pruning processes are not started if WPERM
n

lies between the two thresholds and the chain continues growing as in the regular Rosenbluth

sampling. The enriching process can be improved by creating 2 ≤ k ≤ mn different copies in

the so-called “new PERM” variants nPERMss
is [new PERM with simple/importance sampling

(ss/is)] [7,94] so that the similar evolution caused by the identical copies can be eliminated.

To determine the number of copies k, a predicted weight W pred
n of length n is calculated and

compared with the upper threshold:

k = min

{

mn, int

(

W pred
n

W>
n

)}

. (3.27)

The final weight of each of the k selected sites αj (j ∈ {1, . . . , k}) where the chain continues

to grow is

W nPERMss
is

n,αj
= W

nPERMss
is

n−1

mn

k
(
mn

k

)

PA

e
−β

(

E
(αj)
n −En−1

)

, (3.28)

where

PA =

∑

α∈A χ
nPERMss

is
α

∑

A

∑

α∈A χ
nPERMss

is
α

(3.29)

is the probability of selecting a certain k-tuple A = {α1, . . . , αk} of different continuations

with

χnPERMss
α = 1, χnPERMis

α =
(

m(α)
n +

1

2

)

e−β(E
(α)
n −En−1), (3.30)

E(α)
n represents the energy of the polymer after placing the nth monomer at site α ∈ [1,mn],

and m(α)
n denotes the number of free neighbors to place the (n + 1)th monomer after this

choice. Since information about (n+ 1)th continuation is also contained in χnPERMis
α , chains

grow better when χnPERMis
α are considered. Another improvement is that by utilizing the

number of successfully created chains n and the current estimate of the partition sum, the

thresholds can be dynamically adjusted [7]. To estimate the density of states for the whole
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energy range, simulations running with the nPERM method at different temperatures needs

to be conducted. The densities of states valid in certain energy ranges at each temperature

need to be combined by means of multiple-histogram reweighting method [77,78].

3.8 Multicanonical chain-growth algorithm

However, the statistical errors in each histogram is difficult to be tracked if nPERM is

utilized. Another powerful approach in which density of states can be obtained in a single

simulation is the multicanonical chain-growth method [95,96]. In this method, an additional

weight W flat
n is introduced into the partition function

Zn =
1

c1

∑

t

W nPERMss
is

n (Xn,t)W
flat
n (E(Xn,t))

[

W flat
n (E(Xn,t))

]−1
(3.31)

in order to achieve a flat distribution in energy. Here, t counts the generated conformations

with n monomers and c1 is the number of chain growth starts. For T → ∞, W flat
n (E) ∼

g−1
n (E) and the partition function in Eq. 3.31 can be written as

Zn =
1

c1

∑

t

gn(E(Xn,t))
[

W nPERMss
is

n (Xn,t)W
flat
n (E(Xn,t))

]

=
1

c1

∑

t

gn(E(Xn,t))Wn(Xn,t). (3.32)

When weights Wn are taken as the probabilities to generate chains of length n, pn ∼ Wn,

desired flat histograms Hn(E) which are further used to calculate the density of states

gn(E) ∼ Hn(E)

W flat
n (E)

(3.33)
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can be obtained [7]. The canonical distribution at temperature T is then calculated as

pcan,Tn (E) ∼ gn(E)e(−E/kBT ) (3.34)

where kB is the Boltzmann constant.

In simulations, W flat
n (E), which are usually not known in advance, can be estimated

iteratively. In the zeroth iteration, a pure nPERMss
is run is conducted with the initial guess

of W flat,(0)
n (E) = 1 and H(0)

n (E) = 0 for all chains 2 ≤ n ≤ N . The accumulated histogram

of all generated chains of length n after the zeroth iteration can be calculated as

H(0)
n (E) =

∑

t

W
nPERMss

is
n,t δEt,E (3.35)

which can be further utilized to calculate the multicanonical weights for the 1st iteration

W flat,(1)
n (E) =

W flat,(0)
n (E)

H
(0)
n (E)

∀ n,E. (3.36)

With these weights, a flat histogram in the first iteration can be obtained.

The first and following iterations are multicanonical chain-growth runs. For the ith

run, histograms will be first reset, H(i)
n (E) = 0. The thresholds which can be determined

dynamically in each iteration are first set to be W> = ∞ and W<
n = 0. A predicted weight

W pred
n for adding the nth monomer is introduced as

W pred
n = W ss,is

n−1

mn∑

α=1

χss,is,(i)
α (3.37)

where the importances χss,is,(i)
α are defined as

χss,(i)
α = 1, χis,(i)

α =
(

m(α)
n +

1

2

)
W flat,(i)

n (E(α)
n )

W
flat,(i)
n−1 (En−1)

. (3.38)

46



W pred
n are employed to compare with the thresholds W<,>

n . If W pred
n > W>

n , k number of

copies calculated with Eq. 3.27 can be generated. The final weight of each of the k selected

sites αj (j ∈ {1, . . . , k}) where the chain continues to grow is

W ss,is
n,αj

= W ss,is
n−1

mn

k
(
mn

k

)

PA

W flat,(i)
n (E

(αj)
n )

W
flat,(i)
n−1 (En−1)

, (3.39)

in which

PA =

∑

α∈A χss,is,(i)
α

∑

A

∑

α∈A χ
ss,is,(i)
α

(3.40)

is the probability of selecting a certain k-tuple A = {α1, . . . , αk}. The strategy of choosing

the k sites to place the nth monomer according to probabilities PA is the following. After

calculating the probabilities for all the tuples, we consider the PA as partial intervals of

certain length and arranged successively in the total interval [0, 1]. Afterwards, a random

number r ∈ [0, 1) is generated. The final tuple which is chosen to continue the growth

is the one whose corresponding partial interval contains r. For the simple sampling case,

PA = 1/
(
mn

k

)

. If W<
n ≤ W pred

n ≤ W>
n , one of the mn sites is chosen to place the nth monomer

and the corresponding weight can be calculated with Eq. 3.39 by setting k = 1. For the case

in which W pred
n < W<

n , the growth of the chain is stopped with probability 1/2 and can be

continued at the last branching point. If no branching points exist, a new tour needs to be

started. But if the chain survives, a new site for the growth of the nth monomer is chosen

based on probability PA in Eq. 3.40 (k is set to be 1) and the corresponding weight calculated

by using Eq. 3.39 is doubled. The threshold values are determined via

W>
n = C1Z

flat
n

c2n
c21
, W<

n = C2W
>
n (3.41)
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where C1, C2 ≤ 1 are constants and the estimated partition sum is

Zflat
n =

1

c1

∑

t

W ss,is
n,t . (3.42)

Zflat
n and c1 are set to zero when a new iteration starts. In each iteration, the histograms of

energy E with chain length n are estimated by

H(i)
n (E) =

∑

t

W ss,is
n,t δEt,E, (3.43)

and the corresponding multicanonical weights for (i+ 1)th iteration are

W flat,(i+1)
n (E) =

W flat,(i)
n (E)

H
(i)
n (E)

∀ n,E. (3.44)

Once the desired flat histogram is achieved in the Ith iteration, the final density of states

can be estimated by [7]:

g(I)n (E) =
H(I)

n (E)

W
flat,(I)
n (E)

, 2 ≤ n ≤ N. (3.45)

3.9 Bézier smoothing

Computational results obtained in simulations are usually discrete values. For example, to

estimate microcanonical entropy S(E), the energy space needs to be divided into separate en-

ergy bins. The density of states associated with each energy bin can be recursively calculated

by utilizing multicanonical sampling with an error-weighted recursion scheme. However, to

study the structural transitions of a system with microcanonical inflection-point analysis, an

analytical form of S(E) is very helpful for calculating its derivatives. One powerful method

that can be utilized to generate a smooth, continuous function for S(E) by using a few con-
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trol points is to employ Bézier curves [97,98] which are commonly used in computer graphics

and product design.

Bézier smoothing works in the following way. Imagine n data points denoted as P have

been generated from a simulation. They can be used as control points to construct the Bézier

curve through

B(t) =
n∑

j=0

B(n)
j (t)Pj (3.46)

where t ∈ [0, 1] is the path parameter which allows one to traverse the smoothed curve, B(t)

represent the smoothed data points, and the expansion coefficients B(n)
j (t) are the Bernstein

basis polynomials:

B(n)
j (t) =

(

n

j

)

(1− t)n−jtj. (3.47)

Here, the superscript (n) in B(n)
j denotes the degree of construction level [7]. Note that the

endpoints of B coincide with P0 and Pn because B(n)
j (0) = δj0 and B(n)

j (1) = δjn. For a fixed

t, because of the similar forms and normalization property

n∑

j=0

B(n)
j (t) = 1 ∀t ∈ [0, 1], (3.48)

the expansion coefficients B(n)
j (t) can be regarded as the binomial probability distribution.

In the microcanonical analysis, microcanonical entropy and its derivatives depend only

on energy. Therefore, it will be convenient to write Eq. 3.46 in the two dimensional form.

For control points yj equally spaced in x space on the interval [x0, xn], xj = x0+j(xn−x0)/n,

the smoothed x can be written as

x(t) =
n∑

j=0

(

n

j

)

(1− t)n−jtjxj

=
n∑

j=0

(

n

j

)

(1− t)n−jtj[x0 + j(xn − x0)/n]
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= x0 + (xn − x0)
n∑

j=0

(

n

j

)

(1− t)n−jtjj/n

= x0 + (xn − x0)
n∑

j=1

(n− 1)!

(j − 1)!(n− j)!
(1− t)n−jtj

= x0 + (xn − x0)
n−1∑

j=0

(n− 1)!

j!(n− 1− j)!
(1− t)n−1−jtj+1

= x0 + t(xn − x0)
n−1∑

j=0

(

n− 1

j

)

(1− t)n−1−jtj

= x0 + t(xn − x0) (3.49)

and the corresponding smoothed y becomes

ybez(x) =
n∑

j=0

(

n

j

)(
xn − x

xn − x0

)n−j ( x− x0

xn − x0

)j

yj (3.50)

where t = (x − x0)/(xn − x0) has been utilized [7]. The power of Bézier smoothing is

that it can uniquely map the noisy control data into a smoothly interpolating, analytic

function. This property is particularly beneficial for the microcanonical inflection-point

analysis in which microcanonical entropy and its derivatives usually need to be smoothed

in order to identify the physical transition signals. To test the power of Bézier smoothing,

an example is shown in Bachmann’s book [7]. In that example, a smoothed curve is first

constructed from the noise data which is generated by adding noise to the original data of a

damped polynomial function mimicking the first-order-like transition. After comparing the

smoothed curve with the original function, one can conclude that the smoothed curve greatly

reproduces all qualitative large-scale features of the damped polynomial function with much

smaller numerical error than the error of the noise data.
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Chapter 4

Flexible polymer

4.1 Introduction

The necessity for a better understanding of general physical principles and mechanisms of

structural transitions of polymers, such as folding, aggregation, and the adsorption at sub-

strates has provoked numerous computational studies of polymer models [12, 13, 99–130]

Autocorrelation properties of such models govern the statistical accuracy of estimated ex-

pectation values of physical quantities but also help illustrate the dynamic behavior or the

relaxation properties. Verdier and co-workers were among the first to investigate autocorre-

lations of a simple lattice polymer approach, in which the Brownian motion of the monomers

is simulated by kinetic displacements of single monomers [131–134]. By using Monte Carlo

methods, the autocorrelation functions and relaxation times of structural quantities were

calculated in order to study dynamic properties of random-coil polymer chains such as the

relaxation of asphericity in lattice model chains with and without excluded volume interac-

tion [135,136]. More recently, these studies were extended to continuous models, where auto-

correlation properties of the center-of-mass velocity, Rouse coordinates, end-to-end distance,

end-to-end vector, normal modes, and the radius of gyration for polymer melts [137–139],
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and of dynamic quantities of a polymer immersed in a solution [140–146] were investigated.

Integrated autocorrelation times are also employed to judge the efficiency of importance-

sampling algorithms [147]. However, much less is known about how autocorrelation times

and structural transitions of polymers depend on each other.

In this chapter, we will investigate autocorrelation properties of different quantities for

elastic, flexible polymers, described by a simple coarse-grained model. The thermodynamic

behavior of the system is simulated by local monomer displacement and Metropolis Monte

Carlo sampling, resembling Brownian dynamics in a canonical ensemble. Brownian dynamics

is used to describe the Brownian motion of particles suspended in a fluid, i.e., random motions

of particles caused by the collision with the fast moving particles in the fluid. The goal is to

identify structural transitions and transition temperatures for this model.

4.2 Model and simulation method

4.2.1 Model

For our study, we use a generic model of flexible, elastic polymer chains of length L = 30 and

55 [7]. This is a coarse-grained model for the actual polymers such as proteins, DNA, and

polystyrene. In this model, all the atoms in each monomer, which is the repeated subunit

of polymers, are grouped together and represented by an effective interaction bead. The

quantum interactions among all the atoms of the polymers, such as the hydrogen bond and

the covalent bond between two bonded atoms, and the solvent effect, which is caused by the

interactions between polymers and solvent molecules, are represented by effective interactions

such as Lennard-Jones potential which will be described in the following. In order to improve

the computational efficiency, all the monomers are treated as in the same type. Such a coarse-

grained polymer is called a homopolymer. Although this model is simple, it is believed that

the generic features of structural transitions contained in all types of actual polymers can
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Figure 4.1: A sample conformation of the 30-mer flexible polymer. Bonded monomers
are interacted through FENE potential VFENE [148–150]. For the non-bonded monomers,
the truncated, shifted Lennard-Jones interaction V mod

LJ is introduced and utilized in this
simulation.

be qualitatively understood through studying such a model [7]. A sample conformation of

the coarse-grained flexible homopolymer of length 30 which is utilized in this simulation

is shown in Fig. 4.1. The reason why we choose 30- and 55-mer is that the ground state

of the 55-mer homopolymer, in which the Lennard-Jones interactions are included in the

bond potentials, is a double-layers icosahedron and 30 is an intermediate number between

55 and the other magic number 13 for homopolymers. In the model that we use in this

simulation, monomers adjacent in the linear chain are bonded by the anharmonic FENE

(finitely extensible nonlinear elastic) potential [148–150]

VFENE(ri i+1) = −K

2
R2ln

[

1−
(
ri i+1 − r0

R

)2
]

. (4.1)

(Fig 4.2). We set r0 = 1, which represents the distance where the FENE potential is

minimum, R = 3/7, and K = 98/5. Non-bonded monomers interact via a truncated, shifted

Lennard-Jones potential

V mod
LJ (rij) = VLJ(rij)− VLJ(rc), (4.2)
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Figure 4.2: FENE and truncated, shifted Lennard-Jones potentials.

with

VLJ(rij) = 4ǫ





(

σ

rij

)12

−
(

σ

rij

)6


 , (4.3)

where the energy scale ǫ = 1, the length scale σ = r0/2
1/6, and the cut-off radius rc = 2.5σ

(Fig. 4.2). For rij > rc, V
mod
LJ (rij) ≡ 0. The total energy of a conformation ζ = (~r1, · · · , ~rL)

for a chain with L monomers reads

E(ζ) =
L−2∑

i=1

L∑

j=i+2

V mod
LJ (rij) +

L−1∑

i=1

VFENE(ri i+1). (4.4)

4.2.2 Simulation Method

In our simulations, we employed the Metropolis Monte Carlo method. In a single MC

update, the conformation is changed by a random local displacement of a monomer. Once

a monomer is randomly chosen, its position is changed within a small cubic box with edge

lengths d = 0.3r0. In our simulations, the probability of accepting such an update is given by

the Metropolis criterion [37] as in Eq. 3.8. At each temperature, we performed about 9×109
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MCS after extensive equilibration. Shift register random number generator was employed to

generate random numbers in this study.

4.3 Results

4.3.1 Autocorrelation times at constant displacement

For the interpretation of the autocorrelation times of energy, square end-to-end distance,

square radius of gyration, and number of contacts, it is helpful to first investigate thermody-

namic properties of these quantities. To identify structural transitions in complex systems,

the most commonly considered observables are the energy E and its thermal fluctuation, the

heat capacity CV. For locating structural transitions in polymer systems, we also measured

the squared radius of gyration,

R2
gyr =

1

L

L∑

j=1

(~rj − ~rc.m.)
2 (4.5)

where ~rj is the coordinate of monomer j and ~rc.m. is the center of mass given by ~rc.m. =

1
L

∑L
j=1 ~rj, and the square end-to-end distance defined as

R2
ee = (~rL − ~r1)

2. (4.6)

The corresponding thermal response functions in the canonical ensemble d〈R2
gyr〉/dT and

d〈R2
ee〉/dT are particularly helpful for the identification of structural transitions, if CV fails

to provide a pronounced signal. In addition, the number of contacts Nc has also been

investigated. A contact between two non-bonded monomers is formed if their distance is in

the interval rij ∈ [0.8, 1.2] for the 30-mer and rij ∈ [0.87, 1.13] for the 55-mer. The number of

contacts is a simple discrete order parameter which is helpful in distinguishing pseudophases.
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Figure 4.3: Thermodynamic quantities for a flexible polymer with 30 monomers. (a) Mean
energy 〈E〉 and number of contacts 〈Nc〉; (b) heat capacity CV and thermal fluctuation of
the number of contacts d〈Nc〉/dT ; (c) square end-to-end distance 〈R2

ee〉 and square radius of
gyration 〈R2

gyr〉; (d) thermal fluctuations of the square end-to-end distance d〈R2
ee〉/dT and

the square radius of gyration d〈R2
gyr〉/dT . Error bars are smaller than the symbol size.

This quantity has proven to be particularly useful in studies of lattice models [107,108,151].

In the continuous model used here, it is a robust parameter that does not depend on energetic

model details.

We have plotted the mean values of energy and number of contacts in Fig. 4.3(a), as

well as the heat capacity and thermal fluctuation of the number of contacts in Fig. 4.3(b).

Square end-to-end distance and square radius of gyration curves are shown in Fig. 4.3(c)

and their thermal fluctuations in Fig. 4.3(d). The two clear peaks at T ≈ 1.4 of the latter
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Phase Conformation

Gas

Liquid

Solid

Figure 4.4: Sample conformations of the 30-mer flexible polymer for the “gas”, “liquid”, and
“solid” pseudophases.

represent the collapse transition (θ transition) of the 30-mer. Note that the fluctuations

of energy and contact number in Fig. 4.3(b) do not exhibit peaks at the transition point,

i.e., the temperature that the θ transition occurs, but only “shoulders”. As the temperature

decreases, dissolved or random coils (gas pseudophase) collapse in a cooperative arrangement

of the monomers, and compact globular conformations (liquid pseudophase) are favorably

formed (Fig. 4.4). As the temperature decreases further, the polymer transfers from the

globular pseudophase to the “solid” pseudophase which is characterized by locally crystalline

or amorphous metastable structures (Fig. 4.4). A corresponding peak and valley which

mark the liquid-solid (crystallization) or freezing transition of the 30-mer can be observed

at T ≈ 0.28 in the heat capacity and d〈Nc〉/dT curves, respectively, in Fig. 4.3(b). These

results coincide qualitatively with those of a previous study, where a slightly different model

was employed [20,152]. Due to insufficient Metropolis sampling at low temperatures, we did

not include data in the T < 0.2 region.
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ÃE
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Figure 4.5: (a), (b), and (c) Autocorrelation functions of E, R2
ee, R

2
gyr, and Nc at tempera-

tures below, near, and above the collapse transition temperature, respectively, for L = 30.
For each quantity, the estimated integrated autocorrelation time converges to a constant
as shown in (d), (e), and (f). The corresponding binning analysis results also show good
convergence and are plotted in (g), (h), and (i). Dashed lines represent the fitted curves.
Values of the fitted autocorrelation times the curves converge to are listed in Table 4.1.

T τ̃E,int τ̃E,bin τ̃Nc,int τ̃Nc,bin

0.8 122 ± 7 122 ± 13 101± 7 102 ± 13
1.37 810 ± 45 808 ± 94 763 ± 39 763 ± 93
3.5 209 ± 13 205 ± 25 446 ± 27 438 ± 52

T τ̃R2
ee,int

τ̃R2
ee,bin

τ̃R2
gyr,int

τ̃R2
gyr,bin

0.8 696 ± 33 680 ± 75 427 ± 28 426 ± 50
1.37 1851 ± 103 1853 ± 201 2450 ± 138 2443 ± 272
3.5 2145 ± 106 2103 ± 228 2539 ± 121 2485 ± 268

Table 4.1: Autocorrelation times of E, R2
ee, R

2
gyr, and Nc estimated by integration of auto-

correlation functions and by using the binning method at three temperatures below, near,
and above the collapse transition.
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We performed the integration of the autocorrelation (Eq. 2.17) and the binning analysis

(Eq. 2.27) to estimate the integrated autocorrelation times at 17 temperatures in the interval

T ∈ [0.26, 4.5] for the 30-mer and at 16 temperatures in the interval T ∈ [0.3, 5] for the 55-

mer. Mean values QO(x) (where QO(x) stands for ÃO(k), τ̃O,bin(NB) or τ̃O,int(kmax)) for a

quantity O were calculated at each temperature in Nr (Nr > 20) independent runs:

QO(x) =
1

Nr

Nr∑

i=1

Qi
O(x), (4.7)

where Qi
O(x) is the value calculated in the ith run. As shown in Fig. 4.5, all estimates of

autocorrelation functions and times converge for large values of k, kmax, and NB, respectively,

as expected. The error of QO(x) is estimated by

ǫ2
QO(x)

=
1

Nr − 1

Nr∑

i=1

(

Qi
O(x)−QO(x)

)2
, (4.8)

because all runs were performed independently of each other. The consistency of the two

different methods used for the estimation of autocorrelation times for the investigated quanti-

ties becomes apparent from Table 4.1, where we have listed the autocorrelation time estimate

for three temperatures below, near, and above the Θ point. The results coincide within the

numerical error bars.

In order to estimate the integrated autocorrelation time systematically, we performed

least-squares fitting for all the curves in both the integration method of the autocorrela-

tion function and binning analysis at each temperature. The empirical fit function for any

quantity O is chosen to be of the form

fO(x) = τ fO(1− e−x/xf

), (4.9)

where x represents kmax in the integration of the autocorrelation functions method and NB
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in binning analysis; τ fO and xf are two fit parameters. The fitting curves, also plotted in

Fig. 4.5, coincide well with the mean values of the integrated autocorrelation times in the

NB/kmax region where convergence sets in.

It is necessary to mention that when using the binning method to calculate error bars one

needs to ensure that the binning block length is much larger than the autocorrelation time.

The reason is obvious from Fig. 4.5. If the autocorrelation time estimated by the binning

method has not yet converged, the estimate τ̃O,bin is less than the integrated autocorrelation

time (τ̃O,bin < τO,int). Therefore, the estimated standard deviation

ǫ2
O
=

σ̃2

O
B
,c

K
=

2σ̃2
O

N
τ̃O,bin (4.10)

underestimates the true value ǫ2
O

= 2σ2
OτO,int/N in this case, yielding a too small error

estimate.

After the preliminary considerations, we will now discuss how the dependence of the

autocorrelation time on the temperature can be utilized for the identification of structural

transitions in the polymer system.

4.3.2 Slowing down at the Θ point

Figure 4.6 shows how the fitted estimated integrated autocorrelation times τ fO vary with tem-

perature. As the comparison shows, the autocorrelation times estimated by using the binning

analysis are in very good agreement with the results obtained by integrating autocorrelation

functions.

The integrated autocorrelation time curves of R2
ee and R2

gyr behave similarly at most

of the temperatures except the temperatures close to the freezing transition. This is not

surprising as both are structural quantities that are defined to describe the compactness of

the polymer. In addition, the integrated autocorrelation time curves of E and Nc behave
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Figure 4.6: Temperature dependence of integrated autocorrelation times (a) estimated with
the binning method; (b) obtained by the integration of autocorrelation functions for the
30-mer.
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similarly. Their relation can be understood as following. The polymer conformation in the

solid pseudophase is characterized by locally crystalline or amorphous metastable structures.

Therefore, the main contribution of each monomer to the energy in this pseudophase orig-

inates from the interaction between this monomer and its non-bonded nearest neighbors.

This is also reflected by the number of contacts to the nearest neighbors. Thus, E ∝ Nc in

the solid pseudophase. This can be seen in Fig. 4.3(a), in which, for example, E ≈ −88 and

Nc ≈ 88 at T = 0.2. The autocorrelation times of the two structural quantities are always

larger than the ones of E and Nc. The reason is that the structural quantities are not par-

ticularly sensitive to conformational changes within a single pseudophase. Furthermore, the

displacement update used here does not allow for immediate substantial changes. This can

be seen in Fig. 4.7(a) where the time series are shown at high temperature. From Fig. 4.7(b)

and 4.7(c), one notices that E and Nc fluctuate more rapidly than R2
gyr.

The most important observation from Fig. 4.6 is that slowing down, which is indicated

by the extremal values in the autocorrelation time curves and implies that the Metropolis

algorithm “slows down” because of increased correlations in the configurations generated,

appears near T ≈ 1.4 indicating the occurrence of the collapse transition. This temperature

is close to the peak positions of the structural fluctuations shown in Fig. 4.3(d).

Near the freezing transition (T ≈ 0.3), the autocorrelation times of all four quantities

rapidly increase. Since Metropolis simulations with local updates typically get stuck in

metastable states of the polymer at low temperatures, we do not estimate autocorrelation

times in the T < 0.26 region. The freezing transition is, therefore, virtually inaccessible

to any autocorrelation time analysis based on local-update Metropolis simulations. This is

amplified by the fact that the autocorrelation time increases naturally at low temperatures,

because of the low entropy. That means if there would be a signal of the freezing transition

at all in the autocorrelation time curves, it would be difficult to identify it.

The autocorrelation times of R2
ee, R

2
gyr, andNc seem to converge to constant values at high
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Figure 4.8: Same as Fig. 4.6, but for the 55-mer.

temperatures, whereas the autocorrelation time of E decays. This is partly due to the fact

that the structural quantities and Nc possess upper limiting values that are reached at high

temperatures, thereby reducing the fluctuation width at constant displacement range. This is

a particular feature of the results obtained in simulations with fixed maximum displacement

and it is different if the acceptance rate is kept constant instead. This will be discussed in

Sec. 4.3.3.

The overall behavior is similar to Metropolis dynamics for the two-dimensional Ising

model on the square lattice, in which the external field is excluded so that E ∈ [−2JL2, 2JL2]

where J > 0 is the coupling constant and L is the lattice size and the magnetization M ∈

[−L2, L2] [30].

In order to verify that the general autocorrelation properties apply also to larger poly-

mers, we repeated the simulations for a 55-mer. From Fig. 4.8, we notice that the behavior

is qualitatively the same, but the autocorrelation times of all quantities are larger than the

ones for the 30-mer, as expected. This supports our hypothesis that the qualitative behavior

of the autocorrelation times of the 30-mer is generic and representative for autocorrelation

properties of larger polymers. In particular, this method offers a possible way for the iden-
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Figure 4.9: (a) Integrated autocorrelation times of the energy τ̃E,bin at different acceptance
rates Paccp for various temperatures near the collapse transition of the 30-mer; (b) modified
autocorrelation times of energy versus acceptance rates; (c) acceptance rates at fixed maxi-
mum displacement d = 0.3r0 for different temperatures; (d) integrated autocorrelation times
at fixed acceptance rate P a

accp = 0.2 as a function of temperature for the 30-mer.

tification of transitions, where standard canonical analysis of quantities such as the specific

heat fails.

4.3.3 Autocorrelation times at a fixed acceptance rate

In order to find out how the autocorrelation times of different quantities change at a fixed

acceptance rate rather than at a fixed maximum displacement range, i.e., the displacement

box length, the first step of the intuitive method is to adjust the displacement box length
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at each temperature, as discussed in Sec. 3.6, so that the expected acceptance rate can be

reached. Then, the simulation can be conducted to calculate the integrated autocorrela-

tion times of different quantities with the adjusted displacement box length yielding the

expected acceptance rate at each temperature. However, since autocorrelation time calcu-

lation is very time consuming, instead of using the intuitive method, we directly generated

the autocorrelation times at a fixed acceptance rate from the ones at a fixed maximum dis-

placement range by employing the following approach. To begin with, we used the binning

method to calculate the integrated autocorrelation times at different constant acceptance

rates Paccp for different temperatures near the collapse transition for the 30-mer. The results

for the energetic autocorrelation times τ̃E,bin(Paccp) are shown in Fig. 4.9(a), measured for

five different temperatures. Autocorrelation times of the other quantities exhibit a similar

behavior. Two important conclusions can be drawn: (i) the values of the autocorrelation

times depend on acceptance rate and temperature, but (ii) the monotonic behavior of τ̃E,bin

as a function of Paccp is virtually independent of the temperature. Thus, if multiplied by a

temperature-independent empirical modification factor

M(Paccp) = e−4|Paccp−0.2|1.65 , (4.11)

the modified autocorrelation time curves become almost independent of Paccp at these tem-

peratures (see Fig. 4.9(b)):

τ̃bin(Paccp) ·M(Paccp) ≈ const. (4.12)

in the interval Paccp ∈ (0.14, 0.78). This feature of uniformity in monotonic behavior and

the empirical modification factor in Eq. 4.11 can then be used to modify the autocorrelation

times at all temperatures. For this purpose one reads the autocorrelation time τ̃dbin(T ) and

the acceptance rate P d
accp(T ) at fixed maximum displacement at a given temperature T from
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Fig. 4.6(a) and Fig. 4.9(c), respectively, calculates the modification factor M(P d
accp(T )) from

Eq. 4.11, and obtains the modified autocorrelation time τ̃ abin at constant acceptance rate

P a
accp by making use of Eq. 4.12. For simplicity, we choose P a

accp = 0.2, which yields

τ̃ abin(T ) = τ̃dbin(T ) ·M(P d
accp(T )), (4.13)

since M(0.2) = 1. The temperature dependence of this modified autocorrelation time is

shown in Fig. 4.9(d). One notices that the peaks indicating the collapse transition are

more pronounced than the ones in the fixed maximum displacement case, but qualitatively

(and quantitatively regarding the Θ transition point) this modified approach leads to similar

results. In the temperature range investigated here, the autocorrelation times of all quantities

seem to decrease above the Θ point. This is different than the behavior at fixed maximum

displacement range (cp. Fig. 4.6(a)).

4.4 Conclusions

Employing the Metropolis Monte Carlo algorithm, we have performed computer simulations

of a simple coarse-grained model for flexible, elastic polymers to investigate the autocor-

relation time properties for different quantities. Two different methods were employed to

estimate autocorrelation times as functions of temperatures for polymers with 30 and 55

monomers: by integration of autocorrelation functions and by using the binning method.

The results obtained for different energetic and structural quantities by averaging over more

than 20 independent simulations are consistent.

The major result of our study is that autocorrelation time changes can be used to locate

structural transitions of polymers, because of algorithmic slowing down. We deliberately

employed Metropolis sampling and local displacement updates, as slowing down is partic-
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ularly apparent in this case. We could clearly identify the collapse transition point for the

two chain lengths investigated. Low-temperature transitions are not accessible because of

the limitations of Metropolis sampling in low-entropy regions of the state space.

The identification of transitions by means of autocorrelation time analysis is, therefore, an

alternative and simple method to more advanced techniques such as microcanonical analysis

[7,8,10,20,23,153] or by investigating partition function zeros [1–6]. Those methods require

the precise estimation of the density of states of the system which can only be achieved in

sophisticated generalized-ensemble simulations. The autocorrelation time analysis method

is very robust and can be used as an alternative method for the quantitative estimation of

transition temperatures, in particular, if the more qualitative standard canonical analysis of

“peaks” and “shoulders” in fluctuating quantities remains inconclusive.
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Chapter 5

Lattice polymer adsorption

5.1 Introduction

Interfaces of organic and inorganic matter such as hybrid polymer-substrate systems have

been thoroughly investigated in recent years. Models used in computational studies cover

all scales and range from coarse-grained to atomistic, depending on the specificity of the

questions involved. A major problem is the understanding of structural transitions that ac-

company a polymer adsorption process at a substrate. There is a variety of structural pseu-

dophases and transition pathways that depend on external and internal system parameters.

Internally, competing energy and length scales associated with the interactions of monomers

with other elements of the chain and the substrate affect the transition processes. Exter-

nal conditions are governed, e.g., by thermodynamic control parameters such as pressure or

temperature, but also the solvent quality. By considering the competition between surface

attraction and monomer-monomer attraction through varying the corresponding attractive

strengths, computational studies on adsorption of lattice [107–116] and off-lattice [117–119]

polymers and proteins at homogeneous, flat substrates have been widely investigated. The

influence of different geometric attractive substrates on the formation of polymer structures
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has been explored by studying polymer adsorption at cylindrical [120, 121] and fluctuating

membrane-like surfaces [122], at nanowires [123–125], and in spherical cavities [126]. How

polymers and proteins identify the patterns of surfaces and substrates is also an important

subject triggering many computational studies [127–130].

In this chapter, we will investigate the effects of the temperature and a solvent qual-

ity parameter on the behaviors of a lattice polymer adsorbed at a solid substrate. The

pseudophase diagram of polymer adsorption will be constructed based on the generalized

microcanonical inflection-point analysis [8, 20, 23].

5.2 Model and simulation method

5.2.1 Model

The model we employ here is a grafted simple-cubic (sc) lattice polymer model with one

end anchored at a flat adhesive surface. The length of the polymer is L = 503 which is the

largest prime number that we can simulate (Fig. 5.1). The energy of the system could be

expressed as

E(ns, nm) = −ns − snm, (5.1)

where the number of nearest-neighbor, but nonadjacent monomer-monomer contacts is de-

noted by nm and the number of nearest-neighbor monomer-substrate contacts is signified by

ns. As shown in Fig. 5.1, if the distance between two nonadjacent monomers is equal to one

lattice size, i.e., rm = 1, the two monomers are considered to be in contact with each other.

Similarly, monomers located above the substrate with monomer-substrate distances equal to

one lattice size, i.e., rs = 1, are defined to be in contact with the substrate. nm and ns count

the numbers of such contacts. By introducing the dimensionless reciprocal solubility s, the

quality of the implicit solvent can be controlled in the simulation [108]. In order to lower the
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rm=1

rs=1

Figure 5.1: A sample conformation of the grafted simple-cubic (sc) lattice homopolymer
of length 503 (left). A sketch of this model illustrating the number of nearest-neighbor,
but nonadjacent monomer-monomer contacts nm and number of nearest-neighbor monomer-
substrate contacts ns (right).

system energy, the polymer will always judge either to form more surface-monomer contacts

or monomer-monomer contacts according to the value of s. If s < 1, more surface-monomer

contacts will be formed and vice versa.

5.2.2 Simulation method

In this chapter, we employ the contact-density chain-growth algorithm [155] which is an

improved variant of the recently developed multicanonical chain-growth sampling method

[95,96,154]. All these methods are based on a variant of the pruned-enriched version [91] of

Rosenbluth sampling [90]. With this method, we directly sample the contact density gnsnm
.

Because this allows us to conveniently calculate the density of states g(E, s) with Eq. 5.1

after the simulation by using the reciprocal solubility s. The process to estimate gnsnm
is

similar to the estimation of density of states introduced in Sec. 3.8 with the only change of
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the multicanonical chain-growth weights

W ss,is
n,αj

= W ss,is
n−1

mn

k
(
mn

k

)

PA

W flat,(i)
n

(

ns
(n,αj), nm

(n,αj)
)

W
flat,(i)
n−1 (ns

(n−1), nm
(n−1))

, (5.2)

where the multi-contact weights W flat,(i)
n

(

ns
(n,αj), nm

(n,αj)
)

∼ 1/g
n
(n,αj)
m n

(n,αj)
s

need to be de-

termined recursively [7]. In this simulation, we used MARSAGLIA pseudo random number

generator.

5.3 Results

5.3.1 Microcanonical inflection-point analysis

By applying the microcanonical inflection-point analysis to the grafted lattice polymer model,

we obtained all the pseudophase transitions for different s values varying from 0 to 2. Note

that, in this simulation, we calculate all the derivatives of entropy directly from S(E) by

utilizing an eleven-points stencil method. In order to reduce the noise due to fluctuation,

we employ Bézier smoothing onto every derivative of S(E) [7, 97, 98]. And then we use the

smoothed curves to do microcanonical inflection-point analysis. Fig. 5.2(a) shows examples of

the first- and second-order pseudophase transitions. In this graph, a first-order pseudophase

transition occurs at E ≈ −830 around which the backbending behavior appears in the

β(E) curve. And a corresponding positive peak is observed in the γ(E) curve at the same

location. In the meantime, a second-order pseudophase transition signal is observed at

E ≈ −767 where the β(E) curve behaves least sensitively and forms an inflection point. The

corresponding negative peak in the γ(E) curve also helps locate the pseudophase transition

energy. A third-order pseudophase transition is shown in Fig. 5.2(b). In this graph, a

least sensitive inflection point can be recognized at E ≈ −613 in the γ(E) curve and a

corresponding positive valley, i.e., a local minimum, is found in the δ(E) curve. Fig. 5.2(c)
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Figure 5.2: Examples of the application of the microcanonical inflection-point analysis
method to a grafted lattice polymer model. (a) First- and second-order pseudophase transi-
tions occur at E ≈ −830 and −767 for s = 0.83. (b) A third-order pseudophase transition
can be identified at E ≈ −613 for s = 0.50. Signals in (c) indicate the existence of a
fourth-order pseudophase transition appearing at E ≈ −590 for s = 1.30.
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Figure 5.3: Microcanonical pseudophase diagram for the homogeneous lattice polymer
grafted to an adhesive surface.

presents an example of the fourth-order pseudophase transition. The pseudophase transition

appears at E ≈ −590 in the δ(E) curve and forms a least sensitive inflection point. A

negative peak in the ǫ(E) curve at the same location further proves that this pseudophase

transition is of fourth order.

5.3.2 Structural Pseudophase Diagram

A pseudophase diagram based on microcanonical inflection-point analysis is constructed in

Fig. 5.3. Since microcanonical temperature T (E) = β(E)−1 has one-to-one correspondence

with energy and the information of the system is all contained in the density of states

g(E), in order to recognize what pseudophase one region belongs to, one can choose several

points in this region and find their corresponding energies. After that, one can continue to

check numerous configurations of these energies. The type of pseudophase that this region

belongs to is determined by the majority of these configurations. Fig. 5.4 lists the typical

configuration of each pseudophase.
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Since parameter s controls the competition between monomer-monomer attraction and

surface adsorption, a s < 1 value entails the polymer prefer to be adsorbed by the surface.

When the temperature is low, polymer is not only fully adsorbed but also well compact due

to small thermal fluctuation. The typical conformation of polymer in the pseudophase AC1

is an one layer well compact solid structure as shown in Fig. 5.4.

In the low T region, as s increases, more monomer-monomer contacts are preferred. The

system will undergo a solid-solid pseudophase transition and more than two layers structures

will be formed. This pseudophase transition is of first-order for T < 0.6 and turns into

second-order as T increases (see Fig. 5.3). For example, for s = 0.83, one can observe the

backbending behavior in the β(E) curve around E ≈ −830 and a corresponding positive peak

in the γ(E) curve in Fig. 5.2(a). These signals indicate a first-order pseudophase transition

occurs at T = 1/β ≈ 0.52. In the adsorbed, compact, multiple layers pseudophase (ACM),

the compactness of the structures will gradually decrease when the system’s temperature

raises. The label “a” to “e” in the pseudophase diagram shows the change of this trend.

Here “a” means the structures are the most compact, whereas “e” means the compactness

is the least. The change of this trend could be observed from the structures in Fig. 5.4.

The order of the transitions are mostly second. For instance, a second-order pseudophase

transition shows up at E ≈ −767 for s = 0.83 in the Fig. 5.2(a). A least sensitive inflection

point in the β(E) curve and a negative peak in the γ(E) curve indicate that this pseudophase

transition occur at T ≈ 0.71. However, some parts of the pseudophase transitions among

ACMa, ACMb, and ACMc are of first order.

As temperature continues raising, the system will become less compact. In the small

s value region, the adsorbed one layer polymer will greatly expand but keeps adsorbed on

the surface. The adsorbed, expanded pseudophase AE will be formed. The order of the

pseudophase transitions between AC1 and AE is either of second order or third order. For

example, a third-order pseudophase transition occurring at T ≈ 0.75 for s = 0.50 can be
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Phase Configuration ns nm

AC1 496 456

ACMa 171 756

ACMb 142 764

ACMc 131 752

ACMd 137 705

ACMe 130 668

AG 226 394

AE 444 217

AE2 89 389

DE 62 147

Figure 5.4: Examples of typical conformations in the different structural pseudophases for
homogeneous lattice polymer grafted to an adhesive surface. (see Fig. 5.3)
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identified from the least sensitive inflection point in the γ(E) curve and the positive valley

in the δ(E) curve at E ≈ −613 in Fig. 5.2(b). In the mean time, the structures in the large

s value region will undergo a second-order pseudophase transition and turn into globular.

The AG pseudophase will be formed. In addition, if one makes the system less dissolvable,

the expanded structures in AE pseudophase will form more monomer-monomer contacts and

become globular. The pseudophase transition between AE and AG pseudophases is of fourth

order as exhibited in Fig. 5.3.

As temperature further increases, the system will enter the partially adsorbed and ex-

panded pseudophase as labeled AE2 in Fig. 5.3. In this pseudophase, the major property

of the polymer is partially adsorbed on the surface and partially desorbed forming the fully

expanded structure in the free space. The typical configuration is shown in Fig. 5.4. This

pseudophase is the prelude of the fully desorbed pseudophase. The pseudophase transition

between the fully adsorbed pseudophase (AE or AG) and partially adsorbed pseudophase

(AE2) is of fourth order. An example of this transition shows up in Fig. 5.2(c), where a

least sensitive inflection point in δ(E) curve and a negative peak in ǫ(E) curve are observed

at E ≈ −590 for s = 1.30. By reading the corresponding β value, one can calculate the

transition temperature locating at T ≈ 3.3.

Ultimately, the polymer will become desorbed from the surface and fully expanded in

free space if the system is at high temperature. The corresponding pseudophase is desorbed

and expanded pseudophase as labeled DE in Fig. 5.3. The pseudophase transition between

AE2 and DE is of second order.

5.3.3 Bin Size Effect

During data analysis, one has to group the energies into different energy bins. The choice

of the bin size will affect the information of the pseudophase diagram. Since the model we

investigated is a discrete model, the bin size effect is more substantial. In order to avoid
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too much detail of pseudophase diagram information and remove the information due to

fluctuations, we constructed the pseudophase diagram Fig. 5.3 by employing the information

from different pseudophase diagrams with different bin sizes.

Fig. 5.5(a) demonstrates the pseudophase diagram with bin size dE = 0.80. Comparing

with Fig. 5.3, one can notice that the information in the low temperature region is clear

and similar except the noise due to fluctuation. For the adsorption transition (transition

between AE2 pseudophase and DE pseudophase), the pseudophase transition line has the

same shape and order as the one in Fig. 5.3 but less smooth. In the AE and AG pseudophase,

instead of showing clear transition boundary for AE and AG pseudophase as showed in

Fig. 5.3, the pseudophase diagram in Fig. 5.5(a) exhibits the process of the changes from

AE/AG pseudophase to DE pseudophase. These changes are reflected as the third-order and

fourth-order pseudophase transition lines. For example, by checking a tremendous number

of configurations in the AE pseudophase with s < 1 in Fig. 5.5(a), one can notice that

polymer gradually becomes desorbed from the surface as temperature increases until finally

fully desorbed and enters the DE pseudophase. For the AG pseudophase, since the polymer

is globular, these third-order and fourth-order pseudophase transition lines reflect how the

polymer gradually expands and becomes less adsorbed at the same time. At the end, the

globule will finally become a completely expanded structure in free space.

However, as the bin size becomes larger, i.e., dE = 5.00, the first- and second-order

pseudophase transitions in the low temperature region in Fig. 5.5(a) become third- and

fourth-order. At the same time, the fluctuation in Fig. 5.5(a) vanishes in Fig. 5.5(b). These

changes are all due to the increase of the bin size. Because the detailed information in the

small bin case will be averaged out when bin size becomes larger. This causes the convex

intruder in the microcanonical entropy and inflection points in the derivatives of entropy

to become less substantial. Ultimately, the previous lower-order pseudophase transitions

become higher-order. On the other hand, the adsorption transition is stable and becomes
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Figure 5.5: (a), (b), and (c) are microcanonical pseudophase diagrams for bin size dE =
0.80, 5.00, and 11.0, respectively. Note that some of the differences between these pseu-
dophase diagrams and Fig. 5.3 are due to the different plotting scheme.
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even more smooth. The pseudophase transition lines in AE and AG pseudophases vanish

and a transition boundary separating AE and AG pseudophases gradually appears. In

addition, the separating line between AE/AG and AE2 pseudophases begins to form. These

changes are all due to the average effects when one increases the bin size. The detailed

information about the change from adsorption to desorption has been averaged out and is

mainly embodied in the pseudophase transition line between AE/AG and AE2 pseudophases.

Whereas, the information about the compactness of the structures becomes more substantial

and leads to the formation of the separating boundary between AG and AE pseudophases.

When the bin size becomes very large, i.e., dE = 11.0, the information about the pseu-

dophase transition details has disappeared, only pseudophase transition lines separating the

major pseudophases remain. Note that the boundary line of the AC1 pseudophase and the

adsorption transition line is still stable. This further supports that these transitions are real

physical transitions. In the meanwhile, the AE and AG separation line and the AE/AG and

AE2 pseudophase transition line all become more substantial and stable.
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Figure 5.6: Microcanonical pseudophase diagram with the information of the origins of
different pseudophase transition lines.

Finally, we construct the pseudophase diagram in Fig. 5.3 by combining the information
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from the pseudophase diagrams with different bin sizes. The information about the origin

of each pseudophase transition line is summarized in Fig. 5.6. In short, for the pseudophase

transitions in low temperatures, we chose the data from small bin sizes like dE = 0.30, 0.80,

and 0.90 in order to keep the information about the process of how the compactness gradually

changes as temperature increases. For the higher temperature regions, we only chose the

large bin size data like dE = 9.00, 11.0, 17.5, and 18.5 to avoid too many redundant details.

5.4 Conclusions

In this chapter, for the purpose of testing and exhibiting the power of the microcanonical

inflection-point analysis, we simulated a grafted simple-cubic lattice polymer model with

one end anchored at a flat adhesive surface by employing a contact-density chain growth

algorithm. The pseudophase diagram of adsorption for a polymer with 503 monomers, pa-

rameterized by temperature and solvent quality, is constructed solely based on microcanon-

ical inflection-point analysis. The order of the “transition lines” varies from first-order to

fourth-order. In addition, the effect of bin size on the determination of structural transitions

of the lattice polymer model has also been investigated. We demonstrated that small bin size

is needed to be employed in order to distinguish the various solid state structures in the low

temperature region. For the pseudophase transitions at high temperatures, it is necessary to

utilize large bin size so that the redundant information about the details of transitions and

fluctuations can be avoided. This study confirms the general potential of microcanonical

statistical analysis for studies of pseudophase transitions for systems of finite size.
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Chapter 6

Flexible polymer with controlled

bonds

6.1 Introduction

During the past decades, basic polymer research has focused on the impact of intrinsic pa-

rameters on the formation of structural phases. This approach enabled, for example, the

study of the conformational behavior of polymer classes from flexible to stiff by varying

temperature and bending stiffness [156] and revealed the diversity of structural phases rang-

ing from the well-studied limit of flexible polymers to that of wormlike chains [157]. By

changing the interaction range between non-bonded monomers, structural phases of flexible

polymers have been investigated as well [15,16,69]. It has been found that the liquid phase

disappears for shorter interaction ranges and the collapse transition line eventually merges

with the freezing transition line. In addition, the influence of bond confinement upon the

structural phases and the transition behavior of a flexible chain of bonded beads has also

been examined recently [158]. This work shows that the liquid pseudophase disappears

with increasing bonded interaction range and finally the gas-liquid and the liquid-solid pseu-
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dophase transition lines merge. The systematic investigation of semiflexible elastic polymers

with self-interaction under the influence of torsion barriers allowed for the exploration of

helical pseudophases and their stability in the presence of bending restraints [159].

However, the influence of properties of the bonded potential between monomers adjacent

along the chain on structural phases of the polymer has not yet been thoroughly addressed. In

this chapter, we study the effects of bonded interactions on the structural phase properties of

a flexible, elastic homopolymer by adjusting the Lennard-Jones interaction strength between

bonded monomers through a width and asymmetry parameter in the bonded potential. The

state space was sampled by performing parallel tempering simulations [73–76], supported

by a parallel version of multicanonical sampling [7, 52, 79, 80, 84]. As the major result, the

microcanonical pseudophase diagram parameterized by the microcanonical temperature and

the bond potential parameter is constructed. In order to illustrate the diverse structures in

the low-temperature region, a systematic structural analysis has also been employed.

6.2 Model and simulation methods

6.2.1 Model

In this study, we systematically investigate the influence of the shape and effective range of

the potential between bonded monomers in a generic model of self-interacting flexible elastic

homopolymers of lengths 15 and 55 (Fig. 6.1). The interaction between non-bonded beads

of the polymer is based on a standard 12-6 Lennard-Jones (LJ) potential,

ULJ(r) = 4ǫ

[(
σ

r

)12

−
(
σ

r

)6
]

, (6.1)

where σ is the van-der-Waals radius and r is the monomer-monomer distance. For compu-

tational efficiency, the non-bonded potential is truncated at rc = 2.5σ and shifted by the
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Figure 6.1: A sample conformation of the 55-mer flexible polymer model with modified
bonded potential.

constant Ushift = ULJ(rc) to avoid a discontinuity of the potential at r = rc,

UNB(r) =







ULJ(r)− Ushift, r < rc,

0, otherwise.
(6.2)

The minimum of the potential is located at r0 = 21/6σ, which fixes the length scale associated

with this interaction. In the simulations we chose r0 ≡ 1.

The elastic bond between two adjacent monomers is modeled by the finitely extensible

nonlinear elastic (FENE) potential [148–150] and a Lennard-Jones potential, controlled by

the potential width and asymmetry parameter η,

UB(r) = −1

2
KR2 ln

[

1−
(
r − r0
R

)2
]

+ η[ULJ(r) + ǫ]− (Ushift + ǫ). (6.3)

The maximum bond extension is limited by the FENE potential, which diverges for r →

r0 ± R. The FENE parameters are set to standard values R ≡ 3/7 and K ≡ 98/5. The

Lennard-Jones potential of the bonded interaction causes an asymmetry for η > 0 and
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Figure 6.2: Potentials between bonded monomers, modeled by a FENE potential and
Lennard-Jones interaction for different values of the parameter η ∈ [0, 1] that controls the
width and asymmetry of the bonded potential.

reduces the potential width, while the location of the minimum r0 = 1 is unchanged for this

choice of parameters. The potential is shifted to have the same minimum value as in the

non-bonded case: UB(r0) = −ǫ − Ushift = UNB(r0). Figure 6.2 shows the bonded potentials

for various values of the η parameter. The overall energy scale ǫ is set to unity.

In our model, the total energy of a conformation X = (~r1, ..., ~rL) with the monomer-

monomer distance rjk = |~rj − ~rk| is given by

E(X) =
L−2∑

j=1

L∑

k=j+2

UNB(rjk) +
L−1∑

j=1

UB(rj j+1), (6.4)

where L represents the number of monomers.

6.2.2 Simulation methods

For 21 different values of η ∈ [0, 1], thermodynamic and structural quantities were measured

in parallel tempering simulations [73–76]. In our implementation of this replica-exchange
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Monte Carlo method, Metropolis sampling was performed at m = 96 to 128 different tem-

peratures Ti, i = 1, ...,m. At each temperature, displacement updates ~r → ~r + ~d were

employed within a cubic box with edge lengths li > |dn|, n = 1, 2, 3. The size of the box

li was adjusted for every temperature thread separately prior to the simulation in order

to achieve a Metropolis acceptance rate of approximately 50%. To facilitate the decorre-

lation of structures, exchanges of replicas between neighboring temperatures are proposed

and accepted with the exchange probability in Eq. 3.11. The temperatures Ti ∈ [0.11, 3.00]

were chosen equally distant in inverse temperature space to guarantee sufficiently high ex-

change probabilities in the low-temperature regime, where large autocorrelation times are

expected. The high exchange probabilities were confirmed by checking if enough round-trip

times, which is the number of times that a marked temperature thread walks along the tem-

perature ladder for a round trip, has been achieved in the simulation. Between subsequent

exchanges the periods of equilibration and sampling were chosen to be 5.5× 104 MCS each.

With 106 replica exchanges, the total number of MCS in each thread amounted to 1.1×1011.

However, for the structural analysis of the solid pseudophase, parallel tempering is not

the optimal method for the sampling of configurations at very low temperatures. Because

high density of temperature threads is required in order to keep a reasonable acceptance

probability for the swap updates. This is computationally very expensive. In order to

compensate for its disadvantage, we utilized a simple parallel version of multicanonical sam-

pling [7, 52, 79, 80, 84] discussed in Sec. 3.5 as a supportive method. This combination of

simulation methods not only allows for the verification of the simulation results achieved

by parallel tempering, but also enables reweighting to any temperature. For multicanonical

sampling, we also used the displacement update. In both the parallel tempering and the

parallel version of multicanonical sampling simulations, the MARSAGLIA pseudo random

number generator was utilized.

For the 15-mer polymer, we estimated the density of states by using multicanonical
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sampling. While for the 55-mer, the final density of states was constructed by combining

the estimates obtained from the different temperature threads in parallel tempering simula-

tion with the “weighted histogram analysis method” (WHAM) [77, 78] (see Sec. 3.4). The

estimated density of states was utilized to study the structural transitions with microcanon-

ical inflection-point analysis. In the simulation, the derivatives of microcanonical entropy

S(E) were calculated by utilizing eleven-point stencil. But discrete calculation of derivatives

quickly amplifies the noise of S(E) when applied directly. Therefore, it is useful to smooth

S(E) before applying the stencil. We used the Bézier algorithm [7, 97, 98]. The higher

derivatives of microcanonical entropies were also smoothed before analyzing the structural

transitions.

6.3 Results for a 15-mer

6.3.1 Canonical and microcanonical statistical analysis

First we discuss the results of canonical statistical analysis applied to our generic model.

Heat-capacity curves as functions of temperature (Fig. 6.3(a)) are constructed using the time

series of data collected in the multicanonical production run. At T ≈ 0.34, broad prominent

peaks, indicating the freezing transition, are identified for all simulated η values. At this

transition, globular structures change to more compact crystalline or amorphous structures.

For η = 0, an additional peak emerges at T = 0.11, suggesting the existence of a solid-solid

pseudophase transition. With increasing values of η the peak becomes more pronounced as

it gradually shifts towards zero temperature and finally disappears when η ≥ 0.1. However,

the order of the individual pseudophase transitions remains ambiguous and the broad peaks

of the freezing transition may envelope several pseudophase transitions which cannot be

resolved by the methods of canonical analysis. Therefore we further examine the system

using a more systematic and robust approach. One such method that has proven to reliably
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Figure 6.3: (a) Heat capacity CV, (b) microcanonical inverse temperature β(E), and (c,d)
its first and second derivatives γ(E) and δ(E), respectively.
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signal transitions is the microcanonical inflection-point analysis [20, 23].

The microcanonical results are shown in Fig. 6.3(b-d) for six different values of η. Careful

inspection of the first and second derivatives of β(E) in the energy region E ∈ [−45.5,−33]

reveals that the broad peak in the canonical specific heat encloses two distinct pseudophase

transition signals; clear indication that the freezing transition is a two-step process. The

first signal located at E ≈ −44, is a fourth-order pseudophase transition indicated by the

corresponding least sensitive inflection point in δ(E). The second pseudophase transition,

found at E ≈ −38, is of third order for η ≤ 0.2, but it is classified as a second-order

pseudophase transition for higher values of the potential width and asymmetry parameter.

In agreement with the canonical results, we have also identified signals corresponding to a

solid-solid pseudophase transition for values of η ≤ 0.1. For η = 0.02 and 0.05, the negative-

valued peaks in γ(E) at energies E = −49.7 and −50.4 respectively, indicate a second-order

pseudophase transition. The inflection point in γ(E) and the corresponding positive valley

in δ(E) = dγ(E)/dE at E = −48.92 reveal that for η = 0.00 the solid-solid pseudophase

transition is of third order.

6.3.2 pseudophase diagram

The pseudophase diagram is constructed on the basis of the signals identified in the micro-

canonical analysis and plotted in Fig. 6.4. In the “gas” pseudophase at high energies, the

polymer expands in free space and forms random-coil structures. As the energy decreases,

the expanded chain undergoes a second-order collapse transition and enters the “liquid”

pseudophase consisting mainly of globular structures. Passing the third/second-order pseu-

dophase transition associated with the nucleation process, the polymer enters the Sic−core

pseudophase in which incomplete icosahedral structures become dominant. Further decrease

in energy weakens thermal fluctuations and allows for the formation of a stable surface layer.

The pseudophase transition associated with the surface formation process is of fourth order.
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Figure 6.4: (a) Microcanonical pseudophase diagram parameterized by energy and the po-
tential width and asymmetry parameter η. Here, G, L, and S stand for “gas”, “liquid”, and
“solid” structural phases, respectively. The Sic−core pseudophase consists mostly of incom-
plete icosahedral structures. Sic and Sbi incorporate compact icosahedral and bihexagonal
structures, respectively. (b) Enlarged section detailing the low energy region for η < 0.15.
The solid-solid pseudophase transition line is extended by a dashed empirical line constructed
based on the data provided by structural analysis.
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Visual inspection of low-energy structures reveals that icosahedral geometries are dominant.

However, for η ≤ 0.1, the additional solid-solid pseudophase transition suggests the existence

of low-energy conformations with unexpected geometric properties. In order to examine the

low-energy structures systematically, we carry out a careful structural analysis utilizing a

suitable set of order parameters.

6.3.3 Structural analysis

Various order parameters, such as the number of monomer-monomer contacts, radius of

gyration, or radial and angular distributions, have proven to provide valuable insight into the

thermodynamic and structural properties of polymer systems. Based on the microcanonical

results in Fig. 6.4, we expect the existence of two solid pseudophases when the strength of

the potential width and asymmetry parameter is sufficiently small (η ≤ 0.1). We aim to

identify the dominant structures in the low-energy pseudophases and to gather additional

data supporting the existence of the solid-solid pseudophase transition line. For this purpose,

we employ a set of order parameters exploiting the symmetry properties of real spherical

harmonics [160].

We define a polymer core to consist of monomers within a distance rcore < 1.25σ of

the central monomer, which has been chosen to be nearest to the center of mass. Let

C = {~r1, ....., ~rM} be the coordinates of a core with M monomers. Various core geometries

can be distinguished using the set of rotationally invariant order parameters

Ql =




4π

2l + 1

l∑

m=−l

|ρl,m|2




1/2

, (6.5)

where

ρl,m =
1

M

M∑

i=0

Yl,m(~ri) (6.6)
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is the average of the real spherical harmonics evaluated at the locations of the core monomers.

The connection between the real and complex spherical harmonics is given by

Ylm =







i√
2

[

Ym
l − (−1)mY−m

l

]

if m < 0,

Y m
l if m = 0,

1√
2

[

Y−m
l + (−1)mYm

l

]

if m > 0.

(6.7)

Using of the order of 106 polymer structures per value of η, we computed Ql up to l =

6 and found that Q6 can be used most effectively to resolve the geometries of the low-

energy conformations. We present the results in the form of intensity plots in Fig. 6.5.

The probability of detecting a structure with a specific value of the order parameter at

an energy E is represented by shading; red indicating the maximum probability and black

corresponding to zero. In agreement with the microcanonical and canonical results, we detect

a single solid pseudophase for η > 0.1, corresponding to the narrow funnel in Q6 below the

pseudophase transition line at E ≈ −43. The dominant structures in this region contain an

icosahedral core which is typically found in the ground-state conformations of many short

polymer chains. Below η = 0.1, the 15-mer explores an additional solid pseudophase, as

indicated by the appearance of a second funnel centered around Q6 ≈ 0.41. Structures

which populate this pseudophase possess an unusual bihexagonal geometry. The energy

at which both pseudophases coexist agrees well with the microcanonical estimates for the

solid-solid pseudophase transition. Representative structures of both solid pseudophases are

shown in Fig. 6.6.

The shape of the bonded potential has undoubtedly a strong effect on the geometry of

the ground state. Having identified the two dominant structure types, we may ask why

the additional LJ term in the bonded potential eventually precludes the existence of the

bihexagonal pseudophase. The answer is readily obtained by comparing the average bond
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Figure 6.5: (a,b,c,d) Intensity plots of the Q6 order parameter for a 15-mer with η =
0.00, 0.05, 0.10, 1.0. The shading indicates the probability of detecting a configuration with
a given value of the order parameter, red being the maximum probability and black being
the lowest. The freezing and the solid-solid pseudophase transitions are indicated by solid
and dashed horizontal lines respectively. For η ≤ 0.1, the polymer has two distinct solid
pseudophases. In addition to the icosahedral pseudophase (Q6 ≈ 0.65) the polymer is found
in the bihexagonal pseudophase at low energies (Q6 ≈ 0.41).
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Figure 6.6: Two distinct low-
energy structures of the elas-
tic 15-mer. (a) Compact struc-
ture with a stable icosahedral
core and two monomers displaced
onto the incomplete second layer.
(b) The bihexagon is the pre-
ferred ground-state geometry for
η ≤ 0.1.

lengths for the icosahedral and bihexagonal structures. The bihexagon accommodates all

monomers into a single shell allowing for a larger number of non-bonded interactions and

consequently lower energy. However, the two six-monomer rings of the bihexagon contain

significantly compressed bonds (rbond ≈ 0.88r0), which become energetically infeasible as η

increases. In contrast, we find near-optimal bond lengths in the icosahedron (rbond ≈ r0),

hence the “narrowing” of the bonded potential imposes no additional energetic penalty.

6.4 Results for a 55-mer

6.4.1 Canonical statistical analysis

Figure 6.7 shows the plots of CV and d〈R2
gyr〉/dT of the 55-mer as functions of temperature

T for various η values. The clear peaks in the d〈R2
gyr〉/dT curve at T ≈ 1.6 in Fig. 6.7(b)

indicate the Θ-transition, where an extended coil collapses into a globular structure. One can

observe that increasing η leads to a shift of the Θ-transition to lower temperatures. Reducing

temperatures makes globular structures freeze into solid conformations. The corresponding

pseudophase transition signals can be observed in the group of peaks in CV and d〈R2
gyr〉/dT

at temperatures around T = 0.3. These pseudophase transition signals slightly shift to lower
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Figure 6.7: (a) Heat capacity CV; (b) and (c) thermal fluctuation of the squared radius of
gyration d〈R2

gyr〉/dT of a flexible polymer L = 55 for different values of η. Note the different
scales in (c).
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temperatures for small η values but start to move to higher temperatures when η ≥ 0.2.

Among these peaks, the signals with narrow widths and high peak heights at η ≥ 0.2

indicate the freezing transition. These signals become less pronounced and broader as η

decreases. Instead of being the indicators for a specific type of pseudophase transition,

these wide and low peaks are envelopes of multiple pseudophase transition signals. This

ambiguity in distinguishing and classifying the pseudophase transitions at low η values is

caused by finite-size effects which cannot be resolved by means of canonical analysis. It

is necessary to employ other systematic and robust methods which can clearly distinguish

the sensitive pseudophase transition signals in finite-size systems. Among other approaches,

microcanonical inflection-point analysis satisfies these needs.

6.4.2 Microcanonical analysis and pseudophase diagram

Applying microcanonical inflection-point analysis [7, 20, 23] for seven exemplary values of η

allows for the estimation of the microcanonical entropy and its derivatives. The entropy

plots are shown in Fig. 6.8(a). Simulations with η = 0.05, 0.2, and 1 exhibit backbending

behaviors in β(E) in Fig. 6.8(b) and corresponding positive peaks in γ(E) in Fig. 6.8(c).

These properties imply that the system undergoes first-order pseudophase transitions at

temperatures T ≈ 0.3. For η = 0.02, we find a least sensitive inflection point at E ≈ −241

in β(E) and a corresponding negative peak within γ(E). This signal indicates a second-

order pseudophase transition that occurs at T ≈ 0.23. At the same time, one can observe the

inflection points besides the peaks in the γ(E) curves, located at E ≈ −247,−242,−235, and

−229 for η = 0.02, 0.05, 0.2, and 1 respectively. Together with the corresponding positive

valleys in the δ(E) curves in Fig. 6.8(d), these inflection points help identify third-order

pseudophase transitions.

Based on microcanonical inflection-point analysis for 19 η values, we constructed a mi-

crocanonical pseudophase diagram, which is shown in Fig. 6.9(a). At high temperatures,
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Figure 6.8: (a) Microcanonical entropy S(E) for an array of η values; (b) microcanonical
inverse temperature β(E); (c) γ(E); (d) δ(E).
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Figure 6.9: (a) Microcanonical pseudophase diagram. Here, G, L, and S represent “gas”,
“liquid”, and “solid” pseudophase, respectively. (b) Low-temperature and small-η value
region, emphasizing the different solid pseudophases. In Sbi−core structures with bihexagonal
cores and liquid-like shells are dominant. Sic−core represents structures with well-formed
icosahedral cores but incomplete surface layer. In the Sic and Sbi pseudophases, icosahedral
and bihexagonal core structures with complete shells dominate. In Smix icosahedral and
bihexagonal core structures coexist. The “solid” subphases are separated by gray empirical
transition bands. Dashed lines represent lines of pseudophase transitions higher than second
order.
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the polymer is in the gas-like pseudophase in which dissolved or random coils can be ob-

served. Decreasing the temperature causes the polymer to collapse and to enter the liquid

pseudophase, where compact globular conformations are favorably formed. The correspond-

ing pseudophase transition is the well-known Θ-transition (collapse transition). Because

of the negative γ(E) peaks for all η values, this pseudophase transition is classified as of

second order and it is represented by the blue line in Fig. 6.9(a). As the temperature de-

creases further, the polymer transfers from the globular pseudophase to the more compact

“solid” pseudophase which is characterized by locally crystalline or amorphous metastable

structures. A magnification of the low-temperature and small-η region of the pseudophase

diagram, shown in Fig. 6.9(b), displays multiple pseudophase transition lines. In this graph,

the freezing transition is recognized by the microcanonical inflection-point analysis as of first

order for η > 0.04 and of second order for η < 0.04. This qualitative change is also reflected

in Fig. 6.8(b) and (c) where the monotonicity in the backbending region changes and posi-

tive gamma peaks gradually turn to negative ones as η becomes smaller. Nevertheless, since

the order of the freezing transition extension line in the low-η value region is higher than

second, it is worth discussing it in more detail. In addition, the pseudophase diagram in

Fig. 6.9(b) exhibits various higher-order pseudophase transition lines and diverse structures

in the low-temperature regions as η varies. Visual inspection of numerous structures only is

not enough to interpret the conformational phases in the complete pseudophase diagram. A

more systematic structural analysis is necessary to distinguish the conformational differences

among these subphases.

6.4.3 Structural analysis

For the purpose of identification of low energy solid-like structures which possess well-defined

symmetries, we employed a set of suitable order parameters. As expected, preliminary

inspection of structures obtained from simulations of the unmodified, flexible 55-mer (η ≈ 1)
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Figure 6.10: Polymer core structures: (left) icosahedral (ic-core); (right) bihexagonal (bi-
core); both found in a 55-mer at low energies in the range 0 < η < 0.025 of the bond potential
parameter that controls width and asymmetry.

shows that below the freezing transition virtually all conformations contain an icosahedral

core. However, with sufficiently weak bonded Lennard-Jones interactions (η < 0.03), two

distinct core geometries are found. In addition to the standard icosahedral core, which is

found in the global minimum structures of most short chains, we have identified a bihexagonal

core consisting of 15 monomers (Fig. 6.10). The six-fold dihedral symmetry of the bihexagon

and the icosahedral symmetry are best distinguished using the Q6 order parameter [160] . For

a perfect icosahedral core, Q6 ≈ 0.65, whereas a bihexagonal core corresponds to Q6 ≈ 0.41.

We present the results in the form of intensity plots in Fig. 6.11. Shades correspond to

the probability of finding a structure with a particular value of Q6 at a given microcanonical

temperature T (E). Black corresponds to zero probability and red to unity. An interesting

feature, found only in systems with η < 0.027, is marked by the green horizontal lines at

T ≈ 0.29. It is associated with the apparent shift of the peak of the Q6 distribution at this

temperature towards lower values. This indicates the onset of the formation of bihexagonal

cores in the liquid pseudophase and corresponds to the third-order pseudophase transition

line in the microcanonical pseudophase diagram (Fig. 6.9(b)). Below this transition, amor-

phous structures with loose bihexagonal cores and liquid-like surfaces are identified in the
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Figure 6.11: (a, b, c, d) Intensity plots of the Q6 order parameter corresponding to η =
0.005, 0.010, 0.020, 0.050, respectively. The probability of finding polymer structures with a
particular value of Q6 is represented by shading, with black being zero probability and red
corresponding to the maximum probability of 1.
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Phase Conformations

Sic−core

Sic

Sbi−core

Sbi

Figure 6.12: Typical structures of “solid” subphases. The figures in the same row are different
representatives of the same conformation. Icosahedral and bihexagonal cores are plotted in
blue and red respectively. Gray beads represent surface monomers. The structures in the
third column shows the explicit cores. The surface monomers are represented by a wireframe.
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Figure 6.13: The bond-length variance σ2
BL of the 55-mer as a function of energy for different

values of the model parameter η.

Sbi−core pseudophase. Typical conformations are plotted in Fig. 6.12.

At low temperatures and η = 0.005, we identify a single dominant funnel centered at

Q6 ≈ 0.41, containing structures with a bihexagonal core. The adjacent secondary funnels

all contain bihexagonal cores with slightly modified inter-monomer distances. Structures

with an icosahedral core are found in the weakly populated funnel at Q6 ≈ 0.65. The low-

temperature pseudophase transition signal is associated with the increase in the population

of structures with bihexagonal cores and is classified as of fourth order. This transition

signal is marked by violet pseudophase transition lines in Fig. 6.11(a) and the pseudophase

diagram in Fig. 6.9(b). A small increase in the strength of the bonded LJ potential leads

to a sharp increase in the population of icosahedral cores. If η = 0.01, the ground state

of the polymer is still found in the bihexagonal funnel, however the onset of a significant

population of icosahedral cores produces an additional fourth-order pseudophase transition

signal at T = 0.17 in both Fig. 6.9(b) and the Fig. 6.11(b). Further increase leads to a sharp

decline in the population of the bihexagonal funnel.
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This can be seen clearly for η ≥ 0.02 [see Fig. 6.11(c), (d)] where the energetic penalty

for non-optimal bond lengths becomes too large to accommodate structures with bihexag-

onal cores. Indeed, their formation requires significant variance in bond lengths, whereas

icosahedral cores can be formed with near-optimal values. For η ≈ 0, the pure FENE po-

tential permits large bond fluctuations. However, with the introduction of the bonded LJ

potential these fluctuations cause an energetic penalty. This explains why the bihexagonal

funnel exists only when the bonded LJ potential is sufficiently weak. In Fig. 6.13, we show

the bond-length variance as a function of energy for different values of the model parameter

η. With increasing values of η the variance decreases, most significantly in the low-energy

region. Most striking is the difference between the low-energy curves for η = 0.01 and

η = 0.02, where the former has a bihexagonal ground-state and the latter is icosahedral.

At η ≈ 0.04, the signal associated with the onset of the icosahedral funnel becomes first

order and can be unambiguously identified as the freezing transition. Beyond η ≈ 0.1, the

structural and energetic properties of the polymer are virtually identical to the standard

model (η = 1).

To sum up the information provided by the intensity plots in Fig. 6.11, and the plot of

the bond-length variances in Fig. 6.13, the low-temperature behavior of this flexible polymer

model can be classified into three pseudophases. For sufficiently small η values, bihexago-

nal core structures with compact hexagonal-like surface layers, shown in Fig. 6.12, can be

observed. As η gradually increases, icosahedral structures gradually become more dominant

due to the increase of the energy penalty of the non-optimal bond lengths. This results in

the appearance of the mixture of these two low-temperature structure types [Smix in the

Fig. 6.9(b)]. Once the width of the bonded potential is sufficiently narrow, the bihexagonal

core structures completely vanish and only the icosahedral structures persist. The corre-

sponding pseudophase is labeled Sic in Fig. 6.9 and representative structures are shown in

Fig. 6.12.
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The third-order pseudophase transition accompanying the freezing transition in Fig. 6.9(b)

is associated with the completion of the icosahedral shell. Upon decreasing the temperature,

liquid structures begin to nucleate and first form the stable icosahedral cores if η > 0.03.

Surfaces of the polymer structures still undergo large fluctuations in order to arrange the sur-

face monomers in optimal locations. The mobility of the monomers is confined to effectively

two dimensions on the surface. These structures are formed in the Sic−core pseudophase. If

the temperature is decreased further, the surface formation finishes and complete icosahedral

shell structures appear in the Sic pseudophase.

By applying a microcanonical analysis to this elastic flexible polymer model, the hierarchy

of the freezing transitions has been illustrated and classified into two processes, i.e., the

nucleation process which is identified by the first- or second-order pseudophase transition

and the surface layer formation which is related to the third-order pseudophase transition.

6.5 Conclusions

Performing parallel tempering simulations, supported by a parallel version of multicanonical

sampling, we have investigated the effects of the shape of the potential of bonded monomers

on the structure formation of elastic flexible polymers. For this purpose, we introduced the

model parameter η, which controls the width and asymmetry of the bond potential. In order

to identify and distinguish the various structural phases in this system, we systematically

applied the microcanonical inflection-point and conformational analysis to construct the

pseudophase diagram.

For the 15-mer, a freezing transition into an icosahedral pseudophase precedes a solid-

solid pseudophase transition into low-energy states with bihexagonal geometry for small

values of η. The non-optimal bond lengths found in bihexagonal conformations cause a large

energy penalty due to the “narrowing” of the bonded potential if η is increased. Hence only
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a single solid pseudophase remains for η > 0.1, which is icosahedral. In the 55-mer case, we

find similar diverse structure types in the low-temperature region upon varying η. Perturb-

ing the FENE potential allows for larger fluctuations of the bond lengths. Structures with

bihexagonal cores are commonly observed for small η values. Increasing η narrows the bond

potential width. The energetic penalty for non-optimal bond lengths becomes too large to

accommodate structures with bihexagonal cores. Thus, bihexagonal core structures gradu-

ally disappear for large η values and icosahedral cores become more dominant. The mixture

of these two types of structures finally disappears once the bond potential is dominated by

the Lennard-Jones potential. Only polymer conformations with icosahedral core are found

if η is sufficiently large. The striking consequences of a relatively small modification to the

standard model of elastic, flexible homopolymers illustrate the importance of a careful choice

of model parameters.

Another remarkable feature of our study is the observation of a hierarchy of the freezing

transition. For the 55-mer, the nucleation process is a first/second-order pseudophase transi-

tion but the accompanying shell formation process turns out to be a third-order pseudophase

transition. For the 15-mer, these two “transitions” are of second/third and fourth orders,

respectively. This feature fully demonstrates the power of the microcanonical inflection-

point analysis which not only helps identify the major transitions which are usually first-

and second-order but can also distinguish the details of the transition processes which are

usually presented as higher than second-order pseudophase transitions in finite systems.

The conclusions for the case studies of 15 and 55-mer are stable and robust. Small

variation of the polymer length does not qualitatively change the pseudophase diagram

constructed by the combination of microcanonical inflection-point and structural analysis.

However, it should be noted that structural properties depend sensitively on the system size

and changes of characteristic features are expected. A systematic extension of our study to

larger systems is future work.
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Chapter 7

Summary and outlook

The main work of this thesis is to introduce novel statistical and conformational analysis

methods that can be applied to investigate the structural transitions in finite systems in

which the structural properties are affected by finite-size or surface effects. The conventional

canonical analysis method, which is based on Ehrenfest’s scheme defined in the thermody-

namic limit, utilizes internal energy, average magnetization, and average radius of gyration

and their fluctuations like heat capacity, susceptibility, and thermal fluctuation of radius of

gyration to identify and locate phase transitions. The orders of the transitions are classified

according to the discontinuities and divergences in the derivatives of the thermodynamic po-

tentials such as the Helmholtz free energy and the Gibbs enthalpy. However, due to finite-size

effects, when applied to locate pseudophase transition temperatures, different order param-

eters and their corresponding fluctuations can cause ambiguities that can only disappear in

the thermodynamic limit. In addition, pronounced signals such as peaks may not be ob-

served in the fluctuation quantities so that one cannot employ them to identify pseudophase

transitions. Therefore, it is suggested to use the signal of slowing down of autocorrelation

times, which is indicated by the extremal values in the autocorrelation time curves and im-

plies that the algorithm becomes “slowing down” to generate uncorrelated configurations, as
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an alternative method to locate pseudophase transitions when the fluctuation quantities fail

to exhibit pronounced peaks. But since autocorrelation times highly depend on the Monte

Carlo algorithms and updates, the same problems contained in canonical analysis when ap-

plied to study finite-size systems may also appear when the autocorrelation time method is

utilized. Therefore, it is necessary to employ other more systematic and reliable methods

to clearly distinguish the sensitive pseudophase transition signals in systems of finite size.

One of such approaches is the microcanonical inflection-point analysis, which applies the

principle of minimal sensitivity to the derivatives of microcanonical entropy S(E) in order

to systematically and uniquely identify and classify transitions. In this method, the first-

order pseudophase transitions can be distinguished from the backbending behaviors in the

inverse temperatures β(E) and the positive peaks in γ(E) = dβ(E)/dE. We generalized

this approach to any higher-order pseudophase transitions and claimed the following: the

2kth-order pseudophase transition (k is a positive integer) can be identified from the least

sensitive inflection point in the (2k − 1)th derivative of S(E) and the negative peak in the

2kth derivative of S(E); the transition energy of the (2k+1)th-order pseudophase transition

can be located by employing the least sensitive inflection point in the 2kth derivative of

S(E) and the positive valley in the (2k + 1)th derivative of S(E). Pseudophase Transitions

higher than second-order, usually revealing the detailed processes of the first/second-order

pseudophase transitions, may only appear in finite size systems, due to the finite-size ef-

fects, i.e., surface effects. They may not exist in the thermodynamic limit. However, for

the studies of the actual finite systems such as proteins and DNA, in which surface effects

may be essential in determining the functions of these molecules, higher than second-order

pseudophase transitions can be critical in understanding the structural transitions of these

systems. In addition, we also found dependent pseudophase transitions whose occurrences

depend on the existence of lower-order “regular” pseudophase transitions. These dependent

pseudophase transitions may represent the precursors of “regular” pseudophase transitions.
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Microcanonical inflection-point analysis is robust. It can be extended and implemented to

study phase transitions of systems in the thermodynamic limit.

The first application of our methods is to distinguish the collapse transitions in a simple

coarse-grained flexible polymer model by utilizing autocorrelation time properties for differ-

ent quantities. In this model, atoms contained in a monomer are grouped and represented

by an effective interaction bead. The quantum potentials among all the atoms and the sol-

vent effects are replaced by the effective potentials among the beads. We simulated such

a system with the Monte Carlo Metropolis algorithm combined with displacement update

and estimated the autocorrelation times for various quantities by integration of autocorre-

lation functions and by using the binning method. The primary result is that slowing down

occurs as expected and is clearly represented by peaks in the autocorrelation time estima-

tors near the collapse transition temperature. By comparing with temperatures of extremal

thermal structural fluctuations, we claim that the extremal autocorrelation time can also be

considered as an indicator for the collapse transition.

We further applied microcanonical inflection-point analysis to study the adsorption of

a grafted simple-cubic (sc) lattice polymer model with one end anchored at a flat adhesive

surface. To simulate such a system, we employed the generalized-ensemble contact density

chain-growth algorithm. The pseudophase diagram constructed solely by microcanonical

inflection-point analysis exhibits various pseudophases separated by first- to fourth-order

pseudophase transition boundaries. Furthermore, bin size effect on the formation of struc-

tural transitions has also been revealed in this discrete model. Our results show that small

bin size is necessary to retain the information of the melting process occurring at low temper-

ature, whereas large bin size is preferred in the high temperature region because redundant

information about the details of pseudophase transitions and fluctuations can be filtered.

We also applied microcanonical inflection-point analysis to investigate an off-lattice flex-

ible homopolymer model in which the bond potential is controlled by a potential width and
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asymmetry parameter η. For η = 0, bonded monomers only interact via the spring-like

FENE potential. The Lennard-Jones interaction is incorporated into the bonds by setting

η = 1. The system was simulated by using the combination of parallel tempering and a

parallel version of multicanonical sampling. The pseudophase diagram was first constructed

by utilizing microcanonical inflection-point analysis. In the low temperature region, vari-

ous solid state subphases separated by third/fourth-order pseudophase transitions have been

found. To reveal the physical meanings of these signals, we introduced a set of suitable order

parameters including the rotationally invariant order parameter Q6 and bond-length vari-

ance to do conformational analysis. The probability intensity plots of the order parameter

Q6 were constructed by analyzing the collected huge amounts of conformations generated

during simulations. These plots show the existence of icosahedral and bihexagonal struc-

tures for the 15-mer. For the 55-mer, structures with icosahedral and bihexagonal cores can

be observed. Due to the narrow potential width in the η > 0.1 region, the non-optimal

bond lengths in the bihexagonal structures can cause a large energy penalty. Thus, only

the icosahedral structures with the near-optimal bond lengths are allowed. For η < 0.1, in

the case of the 55-mer, the mixture of the structures with icosahedral and bihexagonal cores

gradually disappears and only the lower energy structures with bihexagonal cores survive as

η decreases, whereas the dominating icosahedral structures directly become bihexagonal for

the 15-mer. In addition, the hierarchy of the freezing transition was also observed. For the

15- and 55-mer, the nucleation processes were found to be first/second- and second/third-

order pseudophase transitions, and the shell formation processes were classified as third- and

fourth-order pseudophase transitions.

From the studies of finite-size polymer systems, we can conclude that locating the slowing

down of autocorrelation times can be utilized as an alternative method to identify confor-

mational transitions, whereas microcanonical inflection-point analysis is a systematic and

robust approach that can be applied to any system. We expect to implement these methods
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to study more realistic systems such as proteins and DNA. Our methods may reveal the

intrinsic structural transition properties of systems that can not be identified by using the

conventional canonical analysis. Additionally, the dependent transitions are also expected

to be found in different systems.
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