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ABSTRACT 

 Sample matching is one statistical technique that can be applied to observational data to 

archive covariate balance and thus aid in estimating causal effects in studies lacking of 

randomization. This thesis  (a) describes three types of sample matching methodologies-

Propensity Score Matching (PSM), Coarsen Exact Matching (CEM), and Genetic Matching 

(GM), and  (b) demonstrates and compares their application using empirical data from the Early 

Childhood Longitudinal Study-Kindergarten Class of 1998–99  (ECLS-K) and simulated data 

with seven scenarios differing by non-linear and/or non-additive associations between exposure 

and covariates. The study shows that CEM produces higher multivariate balance and consistently 

less biased effect estimate then the other two methods, although for data containing many 

categorical covariates curse of dimensionality is a noticeable concern in CEM. PSM and GM can 

result in more matched samples but carry higher extrapolation and model dependence in effect 

estimate.  
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CHAPTER 1 

INTRODUCTION 

 Making casual inferences based on observational data is a risky undertaking. Many 

educational and psychological researchers must resort to this strategy because randomized 

experiments, generally considered the gold standard in terms of assessing the causal effect of 

treatments, are not possible.  There are a variety of reasons that a randomized experiment might 

not be possible.  Among these are: the expense inherent in randomized designs; ethical concerns 

about withholding treatment from one sample; questions regarding the external generalizability 

of results due to the short term of the experiment; restrictions in the environment or settings, and; 

limited sample sizes in real practice  (Rubin,2006).  

The primary problem with observational data is that the probabilistic equivalence of pre-

treatment covariates is likely not held; therefore the estimated treatment effect would be biased 

by confounders that unevenly distribute across groups. To remove the confounding bias in an 

observational study, sample matching has been developed in the statistical treatment effect 

literature (Cochran & Cox, 1957; Rubin, 1972), and the econometric policy evaluation literature 

(Dehejia & Wahba, 1999; J. J. Heckman, Urzua, & Vytlacil, 2006; J. Heckman, 1974; Quandt, 

1958; Roy, 1951). The key goal of sample matching is to prune observations from the data so 

that the remaining data have more similar empirical distributions of the covariates across groups. 

Compared with the covariance adjustment directly on outcome variables, which is still the most 

common remedy for confounders in behavioral sciences, including education  (Hahs-Vaughn & 

Onwuegbuzie, 2006), sampling matching has two appealing features (Cochran & Cox, 1957; 
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Rubin, 1972; Rubin, 1973; Rubin, 1997).  First, if the observed values of confounders in 

different groups do not adequately overlap, sample matching would warn the investigator 

immediately, while covariance adjustment would still calculate the estimated mean effect 

adjusted for the influence of the mean covariates in the combined sample. In the extreme cases, 

the mean covariates in the combined samples can lie out of the range of covariates of any group, 

hence the adjusted mean effect, no matter how large the sample size is, cannot support any causal 

conclusions about treatment. Second, sampling matching reduces the model dependence in 

estimating the treatment effect because the estimated treatment effect in well-matched samples 

can be the mean difference on outcomes from difference groups, without subtracting out the part 

in outcomes that covariates account for, Covariate adjustment faces many choices of regression 

models of outcomes on covariates that could result in difference adjustments on estimated 

treatment effect.  

 The most widely applied sample matching is matching on unidimenstional balancing 

scores of observations. Observations with similar balancing scores are assumed to have similar 

covariates. As the most recognized balancing score, the propensity score is the conditional 

probability of being assigned to a treatment group given observed covariates. Propensity Score 

Matching  (PSM) has been widely used in economic research (Cox-Edwards & Rodriguez-

Oreggia, 2009; Czajka, Sharon M. Hirabayashi, Little, & Rubin, 1992; Lechner, 2002; Liu & 

Lynch, 2011; Mendola, 2007) and in medical research (Connors et al., 1996; Earle et al., 2001; 

Foody, Cole, Blackstone, & Lauer, 2001; Johnson et al., 2006; Lytle et al., 1999; Peterson et al., 

2006). Despite the popularity of this approach its assumption either on ellipsoidal symmetry of 

covariates or on correct specification of the propensity score model limit the occasions where it 

could achieve bias reduction. When either of the two requirements is satisfied, PSM will reduce 
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bias in all linear combinations of the covariates, a property named ―equal percent bias reduction‖  

(EPBR) (Rubin, 1976; Rubin & Thomas, 1992a). If the second requirement is met, PSM will 

further reduce bias due to the covariates‘ nonlinear and interaction terms. If neither is met, PSM 

will improve balance on one covariate leading to a reduction in balance on others, or increase 

the bias of some functions of the covariates even if all univariate means are closer in the 

matched samples than the unmatched. Unfortunately, the latter scenario is often the reality. 

 To get by with weaker assumptions, two alternatives have been developed. One is the 

generalization of PSM, called Genetic Matching (GM), which matches samples on their 

weighted Mahalanobis distances calculated from the distance matrix including propensity scores 

and other functions of the original covariates  (Diamond & Sekhon, In press.). GM adopts an 

iterative approach of automatically checking and improving covariate balance measured by 

univariate paired t-tests or univariate Kolmogorov-Smirnov (KS) tests. In every iteration, 

weights used in the distance calculation are adjusted to eliminate significant results from the 

univariate balance tests from the end of the last iteration. The iterative process ends when all 

univariate balance tests yield non-significant results. GM loosens the requirement on ellipsoidal 

distribution of covariates, however, unless nonlinear, and interaction terms are added into the 

distance matrix, it is still unclear whether GM can control the bias due to these terms. Another 

problem is the used univariate balance tests on covariates and on propensity scores, which do not 

assess joint balance of covariates.  

 The other alternative is multidimensional matching, or monotonic imbalance bounding  

(MIB), proposed by Iacus, King and Porro(Iacus, King, & Porro, In Press). A representative MIB 

technique is Coarsened Exact Matching (CEM). The essential idea of CEM is similar to blocking. 

CEM categorizes original covariates into user-defined intervals then matches treated units with 



 

4 

control units falling into the same the hyper-cuboids (Porro & Iacus, 2009) with all coarsened 

covariates as coordinates. Since how to coarsen each of the original covariates is user-defined, 

users would know how close the original values of covariates of units in the same hyper-cuboid 

are, without post-matching balance checking. In contrast, in PSM and GM the covariate 

difference among matched units are revealed after the matching meaning users have to alternate 

between modifying balancing score models and checking covariate balance. Moreover, changing 

the coarsening level of one covariate has no effect on the imbalance of any other covariate, but 

modifying balancing score models to reduce the imbalance of one covariate may worsen other 

covariates‘ imbalance. Also, like blocking, CEM directly makes the covariates‘ univariate 

distribution and multivariate distributions more similar across groups, so it should theoretically 

improve mean imbalance, variance imbalance, interaction imbalances and all other imbalance on 

covariates simultaneously. However, as the dimensions of covariates and the numbers of 

intervals of coarsened covariates increase, the curse of dimensionality may become the major 

concern with  CEM and result in more hyper- cuboids and fewer matched samples in all hyper- 

cuboids.  Iacus, King and Porro  (In press) argued that it is better not regarded as a disadvantage 

of CEM in practice. First, if insufficient matches are found by CEM using even the coarsest 

categorization that substantive theory can tolerate, it actually indicates that the data quality is bad 

for making causal inference because the overlapping of multivariate distribution of covariates in 

different groups is too small. In such cases, the big overlapping in propensity scores may not 

reflect the poor multivariate overlapping hence using PSM can still results in a lot of matched 

samples, which, however, are not good matched. - Second, real data in social science studies tend 

to have highly correlated covariates. In this situation, units having the closer values on covariate 
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   will be likely to have closer value on covariate     meaning that the increasing on dimensions 

does not reduce the number of matches heavily. 

 Comparisons between PSM and the two alternatives have been done by few researchers 

( (Diamond & Sekhon, In press; Iacus, King & Porro, In press). Both studies involved empirical 

and simulated examples. Diamond and Sekhon  (In press) only assessed the univariate balance of 

covariates of matched samples and did not involve CEM in their study. They concluded that GM 

outperformed PSM with less unbalance of covariates and less variances in effect estimation.  

Iacus, King and Porro  (In press) evaluated all three matching methods, however, their 

comparison between CEM and GM was only in one stimulation setting, which only considered 

the case where there was highly nonlinear relationship between the true propensity scores and the 

covariates. Their results indicated the superiority of CEM over the other two. The current study 

tries to address the limitations in those previous studies and to aid educational and psychological 

researchers in understanding and applying those matching methods. The empirical data used in 

this research came from Early Childhood Longitudinal Study, Kindergarten Class of 1998-99  

(ECLS-K8) eighth-grade data files. The effects of on-time versus delayed kindergarten entry on 

children‘s reading performance in the spring of first grade are estimated using the different 

matching algorithms. Students who have delayed kindergarten entry are defined as the treatment 

group.  
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CHAPTER 2 

LITERATURE REVIEW 

Ignorability of Treatment Status   

 The theory of counterfactual causality in statistics (Sobel, 1996) and econometrics (J. J. 

Heckman & Vytlacil, 2007) claims that an experimental unit i has two theoretical outcomes —

 one that would be observed if the unit were in the treatment group (      and one that would be 

observed if the unit were in the control group (     . D = 1 if    is observed, and D = 0 

corresponds to     being observed. The observed outcome is then 

                  

The difference between the two outcomes is the unbiased individual treatment effect for unit i, 

denoted as 

            

Two individual outcomes cannot be observed at one time, therefore any functions related to both 

of them, like      is not identifiable. In practice, researchers often have to focus on augmented 

treatment effects, such as Sample Average Treatment Effect (SATE) 

                  

where E (.) denotes expectation in the sample combining all control units and treated units. There 

is also Population Average Treatment Effect, PATE (Imbens, 2004). SATE and PATE are 

equivalent when we have random samples from the population. Here, we only consider the 

situation when SATE=PATE. SATE can be identified if it equals the observable           

          , the observed outcome difference between the treated group and the control group. 
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That happens only when the treatment is randomly assigned and samples comply with the 

assignment so that the units in the control group and the ones in the treated group are from the 

same population, then the conditional distribution of    given D is the same as the marginal 

distribution of   , which is equivalent to saying that the potential outcomes are independent of 

treatment status, or that treatment status is ignorable. This can be denoted as  

             D 

                                      

where       denotes independence.     

 In an observational study, where randomization is absent, matching supposes that if all 

confounders can be involved, denoted as X, meaning there is no omitted confounders, and 

control units and treated units are both found to have similar distribution of X, then  

              D | X 

                             =                      

Where    denotes expectations with respect to the distribution of X in a sample combining 

control units and treated units. Matching assumes that after conditioning on X, there is some 

randomness in the environment that switches units across treatment status (J. J. Heckman & 

Vytlacil, 2007). If all values of X are sampled from the entire population of units containing 

control and treated units together, we have 

                                   

                                   

(Rosenbaum & Rubin, 1983). Therefore, the optimal purpose of sample matching is to balance 

the distribution of X between the treatment group and the control group, not to use X or any 

function of X to predict D.  
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Balancing Score   

 Different sample matching methods differ in the choice of function of X used to make the 

distribution of X in the control group and treatment group similar. Rosenbaum and Rubin named 

such functions balancing scores b (x) (1983). The similar b (x) should indicate the similar X. 

When we substitute b (x) with X, maintaining the assumption about X, we have  

              D | b (x) 

                                                                           

=             

where b (x)’s are sampled from the entire combination of control and treated units,        denotes 

expectations with regards to the distribution of b (x) in this entire combination. 

 The finest balancing scores are first-order terms of X, the coarsest ones are the many-to-

one, or scalar functions of X.  The latter include propensity scores, Mahalanobis distances, and 

weighted Mahalanobis distances in GM. Between the two extreme cases of balancing scores are 

the coarsened or categorized X.  

 The scalar function of X, as a balancing score, has the advantage of avoiding what is 

known as the curse of dimensionality: the number of covariates is too large to allow a close 

match on every covariate simultaneously. It is like cutting a blueberry cheese cake. The more we 

cut, the smaller the cake pieces are, and the less likely two blue berries are found in one piece. 

For matching on a scalar function of X to maximize covariate balance, there are some 

requirements. The most practical one is the correct specification of each scalar function which 

should involve all first-order terms of X and their interaction or nonlinear terms if there is 

evidence that these terms influence the outcome. In reality, a scalar b (x) is usually regressed on 
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all observed first-order terms of X, mainly to remove mean imbalance on these covariates. Such 

models of b (x) can also control other types of imbalances on the distributions of confounders, 

when the following data restrictions are satisfied. 

 (1) All values of X are drawn randomly from specified populations  (Rosenbaum and 

Rubin ,1985a); 

 (2) The multivariate distribution for X in every group is ellipsoidal (Rubin & Thomas, 

1992a) —e.g., a normal distribution or t distribution—or the multivariate distribution of 

X in all groups is a discriminant mixture of proportional ellipsoidally symmetric densities 

(Rubin & Stuart, 2006). 

According to Rubin and Stuart (Rubin & Stuart, 2006), a multivariate distribution of X, F (X) is a 

―discriminant mixture of proportional ellipsoidally symmetric‖  (DMPES) distribution if it 

possesses the following properties: 

 (i) F (X) is a mixture of K ellipsoidally symmetric distributions,  

        

 

   

       

where K is the number of groups that are involved in sample matching,    has a center    

and an inner product   ,    is nonnegative for k=1,…,K and    
 
       

 (ii) The K inner products are proportional, 

                   . 

 (iii) The K centers are such that all best linear discriminants between any two groups are 

proportional, 
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In the case of matching a control group with a treat group, K=2.These restrictions seem too 

stringent to be real. But if they hold, Rubin and Stuart (2006) proved that if there is mean 

difference among the covariates of different groups, matching samples based on an arbitrary 

linear combination of X,         where Y have the correlation   with Z, the standardized best 

linear discriminant of F (X), and the correlation        with W which is orthogonal to Z, has 

the following  property,  named equal percent bias  reducing  (EPBR),  

 =             

 

 

Where rT refers to a random sample from    treated units, and rC means a random sample from 

   control units. EPBR says that after units are matched on Z the across-group difference on any 

linear combination of X is reduced by the same percentage because this percentage always equal 

to the percentage of difference reduction on Z, which . Matching methods which are not EPBR 

would increase the bias for some linear functions of X when reducing bias on others.  

 

Propensity Score Matching   

 Propensity Score Matching (PSM) is an EPBR matching. A propensity score, e (x), is the 

conditional probability of units being assigned to the treatment group, that is e(x)=Pr( D=1|X ). 

In randomized experiments, units enter different groups by chance, so the distributions of       

and X are very likely to similar across groups.  

If               D | X, then               D | e (x), 

                                                                          

=             

))()((

))()((

))()((

))()((

xZxZE

xZxZE

xYxYE

xYxYE

rCrT

mCmT

rCrT

mCmT












 

11 

Therefore e(x) is a balancing score of X, and e (x) should not equal to 1or 0, otherwise units 

cannot switch between groups (Heckman and Vytlacil, 2007). 

 In observational studies, true       can be estimated by a logistic regression on X. 

Matching based on e (x), as a linear combination of the first-ordered X, is EPBR, when the 

distribution of X is DMPES or when estimated       is calculated from a correct specified model. 

In the first case, matching on        results in bias reduction in the discriminant Z and hence 

minimize the across-group differences of all linear combination of the first-ordered X (Rubin & 

Thomas, 1992b).  It should be noticed that PSM obtains the mean balances of first-ordered X in 

expectation, or over repeated studies (Rosenbaum & Rubin, 1985). Just like in randomized 

experiments, chance imbalance on covariates could exist after well-performed matching. 

Additional adjustment on covariates (e.g covariance adjustment) might be still needed after PSM. 

Also, it is important to recognize that EPBR property mainly deals with the mean difference of 

first-order terms of X across groups, and it doesn‘t guarantee reducing difference on nonlinear or 

interaction terms of X across groups.When nonlinear or nonadditive relationships exist between 

treatment outcome and X, PSM become less effectual.   

 There are numerous ways of matching samples on      .The most desired and most 

difficult one is to match all treated units with control units having the exactly same values of  

    ‘s—Exact Matching. In practice, researchers have to match samples within an acceptable 

neighborhood of     —Inexact Matching. Because conditions for PSM to completely balance 

covariates across the entire samples are rarely available, Rosenbaum and Rubin (1984) 

recommended inexact matching followed by subclassifying samples into five strata based on 

propensity score.  Five subclasses of many continuous distributions have been observed to 

remove at least 90% of the bias due to non-random selection effects (Cochran, 1968). Even 
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though the covariates have quite different distributions between the whole treated group and the 

whole control group, these differences can be reduced within each of the five strata. Then the 

treatment effect can be estimated for every stratum(Rosenbaum & Rubin, 1983). Also, matching 

with or without replacement of controls units, yields different results. Abadie and Imbens(Abadie 

& Imbens, 2006) found matching with replacement resulted in the higher degree of covariate 

balance and the lowest conditional bias. 

 Even after the application of subclassification on     , within-stratum covariates may 

still have some imbalances. When this occurs, we must revise the model of     , and then check 

the multivariate and univariate balances of X again. The two steps should replicate until the 

acceptable balances achieve or the unbalanced X are included in the later covariance adjustment 

on the outcomes. 

  

Genetic Matching 

 Genetic Matching  (GM), proposed by Diamond and Sekhon(Diamond & Sekhon, In 

Press), offers the benefit of combining the merits of traditional PSM and Mahalanobis Metric 

Matching  (MMM) and the benefit of automatically checking balance and searching for best 

solutions, via software computational support and machine learning algorithms.  

 Just like PSM, MMM matches samples on a scalar function of X, named Mahalanobis 

Distance  (MD), the distance between a treated unit and a control unit in the high dimensional 

space of X, 

                     

Where    and    are vectors of covariates from different groups. One treated units will be 

matched with one or several control units having the smallest MDs with it. DMPES is also 



 

13 

required for MMM to be EPBR. Simulation studies (Rosenbaum & Rubin, 1985) showed that 

MMM was more successful than PSM in reducing the standardized mean difference of 

individual X, but it was far less successful in reducing the standardized mean difference on e (x), 

the scalar function of the covariates. The studies also found that and the combination of the two 

methods was superior to either of them alone in reducing covariate imbalance. Hence, it‘s argued 

that that e (x) should be included among the covariates matrix of MMM, alternatively, one may 

first match on the propensity score and then match based on MD within propensity score strata.  

 Rather than obtaining MD from one metrix as in MMM, the evolutionary algorithm of 

Genetic Matching (GM) searches amongst a range of metrics to find a generalized Mahalanobis 

distance, GMD. Candidate distance matrices differ in their assignment of weights for all 

confounding V‘s which include first-ordered X,     , and other functions of X. The algorithm 

weights each variable according to its relative importance in achieving the best overall balance. 

As discussed below, 

             =                
 

           

where           are the vectors of covariates and their other functions  from the treated group 

and the control group, and   
 

  is the Cholesky decomposition of S which is the variance-

covariance matrix of V. W denotes a weight component, which is a positive definite diagonal 

matrix. If both Vs only contain the first order term of X and W is an identity matrix, GMD=MD; 

if      is one element of V and its corresponding entry in W is 1 while other entries of W are 0, 

then GM is will be equivalent to propensity score matching. If neither matching on MD nor on 

     can achieve acceptable imbalance reduction, further modification on W will be conducted.   

 The general procedure for GM is  
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(1) Create an initial generation of Ws, the population size of which might be    =1000. 

Calculate 1000 times of GMDs based on Ws, then match treated units with 

replaceable control units based their GMD‘s, resulting in    ways of matching.  

(2) Evaluate W via balance checking. Good Ws would be the ones that minimize any loss 

function specified by researchers,  e.g the largest mean difference or distributional 

differences of individual elements of V, which could  be reflected in test statistics 

from t-tests or Kolmogorov–Smirnov tests. If all loss functions are minimized to 

acceptable levels, choose the matched samples based on the best W. 

(3) If unacceptable confounder imbalances still exist after Step 2, a new generation of Ws 

evolved from the best sets of Ws of the initial generation, will be used and evaluated.  

These steps will be iterated until balance criteria are satisfied, e.g., none of P values 

from Kolmogorov–Smirnov test for e (x) is statistically significant. How the new Ws 

evolve from the old Ws involves a derivative-based, quasi-Newton parameter 

optimization method described by Mebane and Sekhon (Sekhon & Mebane, 1998) . 

The generation of W trials evolves towards those containing, on average, better Ws 

and asymptotically converges towards the optimal solution: the one which minimizes 

the loss function. 

The package GenMatch in R was developed to conduct GM. 

 Simulations by Diamond and Sekhon(Diamond & Sekhon, In Press) considered seven 

matching scenarios which shared the outcome Ys as the linear combinations of treatment T and 

confounders but differed in the degree of linearity and additivity in the relationship between 

confounders and observed group membership. GM and PSM were compared in the seven 

scenarios, across which PSM always estimated e (x) as the linear combination of X that 
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influenced group assignments. Results showed that only when estimated e (x) in PSM was true 

chance of being assigned to treated group, estimated treatment effect after PSM had smaller 

absolute bias than the one after GM, and that in all seven situations GM led to smaller root mean 

square error (RMSE) of effect estimate and less significant P values in paired t-tests and KS-tests.  

 

Coarsened Exact Matching 

 Both PSM and GM are matching on a scalar balancing score—unidimensional matching,  

While Coarsen Exact Matching (CEM) is matching on a vector of balancing scores, meaning a 

vector of coarsened X. As discussed before, unidimensional matching tends to focus on obtaining 

univariate balance on the means of covariates. Mean balances of covariates might not remove 

bias in estimated effect due to imbalances on interactions, non-linear functions of X (Iacus et al., 

In Press).  

 Coarsened Exact Matching belongs to a multidimensional matching family, named 

Monotonic Imbalance Bounding (MIB). Besides dimensionality, the second biggest difference 

between MIB and matching on e(x) or on GDM is that MIB methods specify how covariates 

differ across groups before matching, instead of merely taking those difference as a post-

matching result as in PSM or GM. MIB methods select units satisfying a series of conditions, 

 
 
 

 
             

           
          

 
 
 

            
           

          

  

These inequalities state that, in every dimension of Xs, the distance D between the function    

(·) of X from a treated and the function    (·) of X from its matched control unit should be 

smaller than a monotonically increasing function   ( ), which means that if   >0,  
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       (   )<    ( ), j = 1, . . . , k. 

 =  (         ) is a vector or matrix of tuning parameters that researchers can specify before 

matching to control the confounder difference in matched samples. For instance, let the first X be 

Age, then the original ages of units can be divided into classes with interval of 15 :  (≤15),  (16–

30),  (31–45),  (46–60), … , where            =15, so when matching samples within the same 

age class, the maximum age difference between a treated unit and its matched a control unit 

cannot be bigger than 15.       

 The fact that one can choose to only change one element of   without altering other 

elements of    indicates that enlarging the tolerance for imbalance on one element of X would 

not affect the maximum imbalance on the rest elements (Iacus et al., In press). When the X of a 

treated unit and a control meet the above inequalities, the two units can be matched together.  

 In the case of CEM,    ( ) =  ,              
           

  =|       
       

|,   ( )=  . 

In every dimension, CEM divides the range of one element of X, denoted as   , into    different 

classes whose widths can be equal or unequal, depending on substantive theory of researchers, so  

                               
     

  . 

                  
   its elements may or may not be equal to others. Using the previous 

example, this time the original ages of units,    may be coarsened into classes of different 

intervals:  (≤15),  (16–20),  (21–35),  (36–45),  (45-65),  (≥66). Compared with the previous 

equal-interval classification, matching on age within the later kind of classes may be more 

theoretically meaningful for researchers who study labor forces. The following is the general 

procedure for CEM (Iacus, King, & Porro, 2009): 
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(1) Temporarily coarsen every    into several classes, then classes of   ‘s form matching 

bins, strata, or hyper-cuboids. 

(2) Sort units into hyper-cuboids according to their original   ‘s. 

(3) Keep the matched units, and use their original X in additional balance adjustment if 

necessary.  

To control for the bias in estimated treatment effect due to the nonlinear or interaction terms of X, 

unlike PSM and GM, CEM do not require identifying non-first-ordered terms of X which explain 

outcomes above and beyond the first-order terms. CEM is trying to make the marginal 

distributions of X in the treated group more similar to those in the control group. Such 

improvement can simultaneously happen in all dimensions of X, and increasing distribution 

similarity of one   , will not influence the levels of similarity already archived on other   ‘s, 

therefore the similarity on the multivariate distribution of X can be monotonically increasing, 

then covariate imbalance in the means, interaction, nonlinear functions of X across the treated 

and control groups can be reduced in CEM. 

 CEM and other MIB methods might face the curse of dimensionality due to sorting units 

in a high-dimensional space and find few matched observations even when using the most 

relaxed   ( ) that substantive theory can bear.  However, it is the data quality that shall be 

blamed, not the MIB methods. With the same data, PSM and GM might generate more matched 

units than MIB, but inferences from these data will need more faith that all functions of Xs that 

would affect group assignment and outcome are already included in propensity score model and 

the distance matrix, and faith that balance on all these functions has been checked and satisfied.  
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Covariate Selection and Sensitivity Analysis  

 Despite the growing popularity of sample matching, relatively little has been written 

about covariate selection strategies. Most of those rare studies were done for PSM, but their 

suggestions can still provide some guidelines for GM and CEM. There is agreement that all 

confounding first-ordered X with their special functions should be controlled by matching. The 

controversy in practice is on how to deal with model parsimony and the variables only related to 

either outcome or treatment exposure.  

 In the applied literature of PSM, covariates selection was often based on a variable‘s 

predictive power on samples‘ observed group assignment, so many analyses chose their final PS 

model to be the ones that with the highest C statistics(Hong & Yu, 2008; Stürmer et al., 2006; 

Weitzen, Lapane, Toledano, Hume, & Mor, 2004) However, as discussed before, the final goal 

of matching is to obtain covariate balance, not model fit of PS model. Rosenbaum  (2002) 

cautioned against reviewing the results of statistical significance tests as a way to select 

predictors included in the model of e (x). Westreich et al.(Westreich, Cole, Funk, Brookhart, & 

Stürmer, 2011)concluded that a high c-statistic in the propensity model is neither necessary nor 

sufficient for control of confounding and may result in less overlap in e (x)s between treated and 

untreated groups.  

 The analysis of Robins et al. (Robins, Mark, & Newey, 1992) showed that the asymptotic 

variance of an estimated effect based on a treatment exposure model is not increased and often 

decreased as the number of parameters in the exposure model is increased. However, this does 

not happen to all kinds of variables. Simulations (Brookhart et al., 2006; Robins et al., 1992; 

Rubin, 1997) suggested that all variables thought to be related to the outcome, whether or not 

they are related to exposure, should be included in a propensity score mode. Covariates that are 
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unrelated to the exposure but related to the outcome will increase the precision of the estimated 

treatment effect without increasing bias, and even if a covariate is theoretically unassociated with 

treatment exposure, there can be some slight chance relation between the covariate and the 

exposure for any given realization of a data set. In contrast, including variables that are related to 

the exposure but not the outcome will decrease the precision of the estimated exposure effect 

without decreasing bias. In small studies, the addition of these variables removes only a small 

amount of bias but can strongly decrease the precision of effect estimate. 

 No hidden bias in matching is a very strong assumption, requiring identifying all 

confounders. Therefore, post-matching sensitivity analysis should be conducted to assess the 

validness of this assumption in real data. An approach for such analysis is to assess how much 

hidden bias due to omitted confounders would need to be present to alter significance of effect 

estimate.  Suppose two units, say, j and k, with the same observed covariate values Xs but 

different unobserved true propensity score e (x, u), where Us are some unobserved confounders. 

We define a sensitivity parameter   as 

 

 
 

                    

                    
   

.When there is no hidden confounder U,    , Unit j and Unit K would have the same 

conditional probability of treatment exposure. If      due to unequal Us, one unit might be 

twice as likely as another to receive the treatment. A sensitivity analysis could use increasing   s 

to adjust the P values or confidence intervals in the significant test for treatment effect on 

matched samples, and make it more and more difficult to reject null hypothesis. Matched 

samples with lower risk of hidden bias are assumed to generate effect estimates more robust to 

enlarging  s. For more details see Rosenbaum‗s demonstrations (Rosenbaum, 2002). Model-

based Bayesian approaches for sensitivity analysis have also been developed (Gustafson, 
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McCandless, Levy, & Richardson, 2010; McCandless, Gustafson, & Levy, 2008), but the current 

study doesn‘t apply them due to their linearity and normality assumptions.   

 

Imbalance Measure  

 Typically reported imbalance measurements in the matching literature are test statistics 

for univariate mean difference in covariate between the treated group and the control group. But 

univariate balance does not necessary mean multivariate balance, and mean balances do not 

necessarily indicate balance on other moments.  The current study uses a multivariate imbalance 

measure    recommended by Iacus, Gary King, and Porro (Iacus et al., In Press).  

     represents the distance between the multivariate histograms of X. The cell or hyper-

cuboid frequency of the multidimensional histogram for one group is the within-group ratio of 

units with values of                    falling into a defined hyper-cuboid z, which is defined by 

H (X)= (                   ), a vector of coarsened X. Let             
 be the frequency for a 

multivariate cell z in the treated group, and              
  be its counterpart in the control group. 

Then  

       
 

 
              

             
 

 

   
           

       stresses its dependence on the choice of coarsening levels of X.  

        ranges from 0 to 1. For a given set of coarsen Xs, if the empirical multivariate 

distributions of Xs in different groups exactly coincide,             
             

,            if 

they are completely separated,           In other cases, let say          ,  then 60% of the 

area under the two histograms overlap. We expect better matched samples to have a 

smaller       .  
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CHAPTER 3 

METHOD 

Empirical Example: Delayed Kindergarten Entry   

 This study examined the performance of CEM, PSM, and GM in assessing the effects of 

age of entry into kindergarten on children‘s reading achievement in kindergarten. In the study, 

reading achievement of children who are delayed was compared to non-delayed entrants which 

included early and on-time students.  

 Data for the study came from the Early Childhood Longitudinal Study, Kindergarten 

Class of 1998-99  (ECLS-K8) sponsored by the U.S. Department of Education, National Center 

for Education Statistics (Tourangeau et al., 2009). The ECLS-K8 is following a nationally 

representative cohort of children from kindergarten through eighth grade. It includes information 

about children‘s family background, the nature and quality of the preschool and schools that they 

attend, and their developmental status in cognitive, physical, social, and emotional domains. The 

participants were mainly first time kindergarteners who were sampled in 1998-1999 school year 

and then followed up to the eighth grade. In the current study, children‘s scores from the first 

reading Item Response Theory (IRT) assessment at Fall kindergarten in ECLS-K8 were explored 

utilizing hierarchical linear models  (HLM).  

 

 Covariate selection for Matching Samples 

 Since the mid 1900s, a considerable amount of research (Buntaine & Costenbader, 1997; 

Langer, Kalk, & Searls, 1984a; Stipek & Byler, 2001a) has examined the relationship between 
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the age of entry in kindergarten and children‘s school performance in the areas of reading. Also, 

a body of research has included other child, school, and family factors that relate to age of entry 

and its effects on children‘s school performance (Bickel, Zigmond, & Strayhorn, 1991; Langer, 

Kalk, & Searls, 1984b; May, Kundert, & Brent, 1995; Stipek & Byler, 2001b).   

 In the beginning of variable screening for matching samples, each available variable that 

was measured before kindergarten entry and showed to relate to reading achievements or 

kindergarten entrance in the literature were entered as the second predictor into a sample fixed-

effects regression model of the reading theta of Fall kindergarten, where the entrance group 

membership (delayed/non-delayed) was the first predictor. This was done with Proc Mixed in 

SAS 9.1 (S.I. Incorporated, 2004). Meanwhile, this variable was used to predict entrance group 

membership in a simple logistic regression. This was done with Proc Logistic in SAS 9.1. For a 

continuous variable, its quadratic and interaction terms with categorical variables were also 

separately entered the above two regressions to assess their association with the dependent 

variables when the variability explained by their first-order term and entrance groups  

(in the first regression), or solely by their first-order tem ( in the second regression), were 

partialled out. For a categorical variable, its two-way and three-way interactions with other 

categorical variables were also subsequently entered into the regression models.     

 Family background variables as important achievement predictors are the first groups of 

covariate candidates for sample matching, including socioeconomic status, ethnicity, parental 

education, primary language used in family communication, and family size (Lee, Burkam, & 

Economic, 2002; Tazouti et al., 2011), and studies indicated that holding children out of 

kindergarten is a much more common practice among middle and upper class families 

((Bellisimo, Sacks, & Mergendoller, 1995; Graue & DiPerna, 2000).Children‘s individual 
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characteristics are the second groups of candidates, including gender, health status, cognitive 

traits, and temperament (Li-Grining, Votruba-Drzal, Maldonado-Carreño, & Haas, 2010). 

Bellisimo, et al.  (1995) found that socioeconomic status has interacted with gender, in that high 

socioeconomic status of parents was significantly correlated with holding out boys, and not girls 

from school; while among low socioeconomic status families no gender differences were found 

in holding out  (Stipek & Byler, 2001b). Children‘s initial cognitive abilities are correlated with 

later school performance {{84 Hindman,Annemarie H. 2011}}.  

The third group of candidates included parental involvement, child care and preschool 

experiences (Fantuzzo et al., 2005; Hindman & Morrison, 2011; Stylianides & Stylianides, 2011). 

Children who attend childcare before kindergarten have more familiarity with cognitive skills 

and academic setting than those who do not attend. Parents‘ perception on children‘s 

characteristics impacts their decision on delaying kindergarten entry or not (Noel & Newman, 

2008). Due to the fact that entry age restriction mostly applies to public kindergarten, School 

Type was also a covariate candidate that could impact parents‘ hold-out decision.  

  The original sample size from ECLS-K8 is 21409, after deleting students that were not 

first-time kindergarteners and did not change school in 1998 Fall Kindergarten, and students with 

missing (―REFUSED‖,‖ DON'T KNOW‖, or ―NOT ASCERTAINED‖) values on the Reading 

IRT assessment of Fall Kindergarten assessment (C1R4RTHT), entry group membership 

(P1WHENEN_1=1 or 0), and all covariate candidates, the final sample size left for analysis is 

14098. Most deleted cases was due to no record of the IRT Reading Theta (3739 cases), or no 

record of parents‘ rating on children‘s characteristics (3312 cases). In both the regression of 

reading IRT scores and the regression of entry group membership, alpha was set at 0.05 in 

candidates‘ regression coefficient tests. The initial variable screening revealed that all first-order 
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candidates along with some of interaction term and quadratic terms are significant predictors of 

reading theta. Given the large pre-matching sample size that was not a surprising result. 

Although matching samples on all those functions of Xs that significantly predicted the reading 

theta can reduce the risk of omitting important confounders, it also resulted in 0 matched samples 

in CEM and the multivariate imbalance measure             for all three matching methods 

compared, indicating the complete discrepancy between the multivariate distribution of Xs in 

treated group and the one in the control group. At the end, only candidates that significantly 

predicted both reading performance and entry group membership (Table 1) were used to obtain 

final matched samples. If the interaction term of some variables were confounders in the two 

regressions, their first-order terms were also used in matching.  

 From Table 1, the scales of WKPARED, P1EXPECT, and P1HELPAR are ordinal,  but 

they were treated as equal-interval in covariate screening, because that yielded significant 

regression coefficients and smaller Model BIC in the logistic regression of entry group 

membership. All statistics in Table 1 were calculated from the original values of candidates. In 

real matching, the original values of RACE and P1PRIMPK were lightly coarsened to increase 

the sample sizes in every class of the covariates. Specifically, Hispanic with race specified and 

Hispanic, no race specified were relabeled as one category, and Asian, Native Hawaiian or other 

Pacific Islander were grouped together. In P1PRIMPK, Relative care in child‘s home, ―Relative 

care in another home‖, ―Non-relative care in child‘s home‖, and ―Non-relative care in another 

home‖ were renamed only as ―Non-parental in-home care‖. Before matching, all continuous or 

equal-interval variables were standardized with mean=0 and variance=1, to eliminate the impact 

of different measurement scales on the calculation of e (x) and GMD.  Without standardization, a 

X measured in larger scale will affect e (x) and GMD  more than other Xs, increasing the balance 
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on this  X could  improve or worsen balance on other Xs more.  All categorical covariates were 

dummy coded before matching to allow the latter process of softwares. 

 Only first-order covariates in Table 1 were used in CEM. Two ways of coarsening were 

tried. One was choosing the cut-points for all continuous covariates automatically according to 

Sturges‘ rule, the default rule in cem ( ) function of R 2.10.1. That means every continuous 

variables were coarsened into 15 equal-interval classes, so six continuous covariates 

(P1CONTRO, P1SADLON, WKPARED, WKSESL, P1EXPECT, P1HELPAR) and thirty six 

dummy variables resulted in                hyper-cuboids. The other way of coarsening was 

selecting two continuous variables to specify cut-points while letting the others be chosen 

automatically. After exploring the effects of gradually relaxing any two variables‘ default 

coarsening on the matched sample size and on the imbalance measure       , which was  done  

via relax.cem ( ) function in of R 2.10.1, P1SADLON and P1CONTRO were parent‘s rating on 

the child‘s sadness/loneliness level and self-control . P1CONTRO was only divided into six 

equal- interval classes, P1SADLON were cut by every 20 percentile, but because its 20 

percentile equaled to its 40 percentile, there were only four intervals. The total number of hyper-

cuboids in the second coarsening was         . 

 PSM and GM were conducted using the MatchIt ( ) function of R 2.10.1.. First, only first-

order covariates entered matching to obtain matched samples, and then squared terms and 

interaction terms were introduced. For PSM, every treated unit child was randomly matched to 

five control units within 0.01 standard deviations of propensity scores. Different treated units can 

be matched to the same control unit. All units (treated and control) outside the common support 

or overlap of the propensity score distributions of the two groups (delayed and non-delayed) 

were discarded. In GM, the population size of Ws was set to be 500 for every generation.  
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 Models for Assessing the effect of delayed kindergarten Entrance 

 To make the models for estimating treatment effect in the three matched samples much 

easier to compare, covariates were selected via PROC GLMSELECT in SAS 9.1, using BIC as 

criteria. All first-order candidates involved in covariate selection for matching were used in this 

screening. Both stepwise selection and backward selection were applied on the original 

unmatched 14,098 samples and the six sets of matched samples by the three methods. The entry 

or removal of a variable depended on whether or not this action reduced the model BIC. After 

covariates were selected, fixed effect and mixed effect models were tried in PROC MIXED to 

decide the final effect models, with model BIC and p-values of Covariance Parameter Estimates 

as criteria  (       ).  

 

 Simulation Study: Seven Matching Scenarios    

 This Monte-Carlo simulation setting was the same as the one used by Lee et al. {{154 

Lee,Brian K. 2010}}, Diamond and Sekhon  (in press) and Setoguchi et al. {{81 Setoguchi,Soko 

2008}}. Setoguchi et al. used the binary treatment outcome, while Lee et al. followed by 

Diamond and Sekhon substituted that outcome with a continuous one. The current study used the 

continuous outcome. 

 The data were simulated for one hypothetical cohort studies  (n=2000) with a binary 

exposure A and the effect of treatment exposure        , the continuous outcome Y, and ten 

covariates  (           ). N=2000 was chosen for the computation efficiency of the used 

computer servers, also for the fact that the treated sample sizes in the evaluation of many 

educational programs are no more than 1000.  Four covariates (            ) were associated 

with both A and Y  (confounders), three  (         ) were associated with the exposure only  
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(exposure predictors), and three  (          ) were associated with the outcome only  

(outcome predictors). Six covariates  (  ,   ,   ,              were binary whereas four  

(  ,   ,   ,    ) were standard normal random variables with  mean=0 and variance =1 . 

Table 2 shows their intercorrelations.  

 Seven scenarios were explored. They shared the same 10 covariates for units with the 

same ID but differed in the degree of linearity and additivity in the true propensity score 

model—the chance of exposure: 

Scenario A: additivity and linearity  (first-order terms only) 

Scenario B: mild non-linearity  (one quadratic term) 

Scenario C: moderate non-linearity  (three quadratic terms) 

Scenario D: mild non-additivity  (three two-way interaction terms) 

Scenario E: mild non-additivity and non-linearity  (three two-way interaction terms and one 

quadraticterm) 

Scenario F: moderate non-additivity  (ten two-way interaction terms) 

Scenario G:moderate non-additivity and non-linearity  (ten two-way interaction terms and three 

quadratic terms) 

 The outcome Ys were generated as a linear combination of observed group membership, 

confounders, and outcome predictors with fixed coefficients across scenarios. Across scenarios, 

all three matching methods only matched samples on the first-order      . Once matched 

samples were obtained, the outcomes were regressed on group membership only. To evaluate the 

three matching methods, the average bias in effect estimate was calculated as  
                

       
  , the 

average absolute percentage difference between the regression coefficients of exposure and the 

true exposure effect over 1000 replications. Appendix A contained R scriptfor this simulation. 
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As in the empirical study, automatic CEM was implemented, PSM was still a .01-SD clipper 

matching, and the population size of Ws in every generation of GM was 500.  
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CHAPTER 4 

RESULTS AND DISCUSSION 

Empirical Example: Delayed Kindergarten Entry   

 Figure 1 shows the profiles of L1, multidimensional balance measure of matched samples 

from CEM, PSM, and GM. Because L1 is subject to the chosen interval width of covariates, the 

x axis of Figure1 came from random intervals of covariates, a point on the L1 profile lines 

indicate a L1 measure given certain covariate intervals. The unidimensional balance measure 

was also reported  (Table 3, Figure 2.1 to 2.6). 

 CEM yielded consistently lower L1s than the other two methods, no matter whether its 

cut points were automatically chosen (CEM1) or intentionally specified  (CEM2).  The  

independent t tests and chi-square tests on its matched samples  (Table 3)  were all statistically 

insignificant and had larger p-values then others matching methods across covariates . Also, all 

density plots of individual covariates  (Figure 2.1) seemed to be very close between groups, 

expect for P1CONTRO in CEM2. The most important advantage of CEM is that every matched 

treated unit has at least control unit that is similar with it on all covariates that researchers want 

to control; thus the study‘s internal validity is enhanced and the problem of extrapolation was 

completely avoided. However, these came with the shrinkage of samples size from 14098 to 78 

in CEM1 and to 189 in CEM2, although medium to high correlations  (.25~.85 ) were found 

between family SES, parental education level, parents‘ expectation on the child‘s education, pre-

kindergarten child care, kindergarten type, race and so on. Such smaller sample size may be 

alternative explanation for the larger p-values in univariate balances test.  Meanwhile, the 
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external validity of the study on kindergarten entry was limited by missing characteristics of 

matched samples. For example, non-white and Hispanic groups, non-English speaking parents 

are not representing in the matched samples by CEM. There are two primary reasons for small 

sample size in CEM. One was that the large numbers of hype-cuboids that the original samples 

had to be sorted into. The other was that 36 out of 42 covariates were dummy variables. For 

example, one control unit and one treated unit already have very closer values on 41 covariates, 

if the 42th covariate is a dummy variable and the two units take on its different values, 0 and 1, 

they will never be matched together. But if the 41th covariate is continuous, like height, and the 

two units‘ difference on height is not extreme, researchers will have more flexibility in their 

matching decision.  

 Different from CEM, GM and PSM yielded 1962 to 5030 matched samples. The density 

plots of first-order covariates in GM and PSM still show high similarity across groups as in CEM. 

GM generated less matched samples than PSM but outperformed PSM with consistently smaller 

L1s.  In the current case, including squared-terms and interaction terms did not help much in 

reducing L1 in GM and PSM. Although both PSM and GM used the same model to obtain the 

undimensional balancing score, GM actually gave up the intent of figuring out ―Chance of 

exposure‖ because it chooses the model‘s coefficients directly according to covariate balance 

instead of success prediction of observed exposure, while the terminology in PSM, like 

―propensity score‖, still carry the hope of finding a true model for chance of exposure and tend to 

misdirect users to focus on the goodness of fit of PS models.  

 Notice that it is not guarantee that every matched treated unit in GM and PSM has at least 

one control unit processing similar values of all covariates controlled in matching. For instance, 

treated unit in GM and PSM may share with its matched control units the same values of most 
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covariates but not their prekindergarten child care experience, in the whole matched sample the 

prekindergarten child care experience still shows association with kindergarten entry group 

membership. Inferences based on such kind of matched units require either the strong belief that 

the pair of matched units just have different values of the covariate, child care experience in the 

case, by chance, or the belief that the impact of child care experience on reading performance, is 

just linear and additive, or the belief that the those interactions already achieve balance in the 

matched units, or the belief that those interaction are considered in the statistic model for 

estimating assessing treatment outcomes. Otherwise, the study‘s internal validity is still 

threatened by alternative explanation for the reading performance.  

 Based on L1 profile and sample sizes, samples from CEM2, PSM1, and GM2 were used 

for assessing the effect of delayed kindergarten entry. Table 4.1 to 4.3 display the coefficients 

and test statistics of the final selected models. 

 The effect Model of CEM2 is a fixed effect model, and had fewest covariates primarily 

due to the smallest samples  (Treated: 84, Control: 105) and missing values of covariates. Based 

on the model, delayed kindergarten entry shows no statistically significant impact on the reading 

performance in Fall Kindergarten  (Estimated group difference on reading= 0.1051, SE= 0.06965, 

DF=185, P-value=0.1329, Effect Size: Cohen's d= 0.214611941). GM2 also had a fixed effect 

model and statistically insignificant group difference estimate 0.04023 with SE= 0.02283, 

DF=1951, P-value=0.0781, Cohen's d= 0.079451). A 2-level random intercept model was 

applied to data of PSM1 using RACE as level 2 subjects with no significant level-2 predictor. 

The 2-level model produced statistically significant estimated group difference on reading= 

0.04739 with SE= 0.01758, DF=5012, P-value=0.0071, and Cohen's d= 0.095512), but that 



 

32 

might be ascribed to the larger samples size of PSM1, given its estimated group difference was 

so close to that of GM2.  

 The absolute effect size and effect estimate of CEM2 departed from those of PSM1 and 

GM2. But it is not clear in this current analysis which method gives less biased results. First, the 

true effect is unknown in this empirical example. Second, many values of covariates were not 

represented in matched units of CEM1 as were those of PSM1 and GM2; therefore the 

population they can be generalized to might be different.  

 

Simulation Study: Seven Matching Scenarios  

 Table 5 displays the average bias of estimated effect and the standard deviation of these 

biases across the 1000iterations. Biases were calculated as the absolute percentage differences 

from the true treatment effect of -0.4. Across all seven scenarios when sample size=2000, CEM 

consistently had the smallest average estimate bias between 6.46%  (0.026) and 8.53%  (0.0341), 

but the biases‘ standard deviations were between 0.038 and 0.041,the largest among the three 

methods. GM where Ws‘ population size=500, consistently had the second smallest average bias 

ranging from 8.47%  (0.034) to 17.58%  (0.070) and the second largest biases‘ standard 

deviations from 0.029 to 0.032 . PSM performed the worst with Bias between  21.40% ( 0.086) 

and 34.0%  (0.136) , however, its biases were  slightly more stable than those of the above two,  

ranging from 0.026and 0.030. In general, as non-additivity and non-linearity increased in the true 

propensity score model, all three methods generated larger and more varying bias.  
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CHAPTER 5 

CONCLUSION 

 Compared with Propensity Score Matching and Genetic Matching, Coarsened Exact 

Matching shows better properties in achieving the multidimensional and unidimensional balance 

of covariates and in reduction in estimation bias. Therefore it is preferable when its matched 

sample is still representative of the population the study intends to be generalized to. Even for a 

nation-wide and carefully collected data like ECLSK, the curse of dimensionality is still quite a 

concern in CEM. But the concern could be less for data where continuous covariates take up 

larger share of covariates, especially in social science field.  

 In the cases where extrapolation level and modeling assumptions were still acceptable 

and CEM resulted in too small and limited samples, GM and PSM can be considered if 

collecting more data is not a practical option. On the algorithm, Genetic Matching could be a 

substitute for Propensity Score Matching. Matching samples with the same chance of exposure is 

to mimic the random selection process, where the chance of exposure is the same for every unit 

and the covariate balance is likely achieved automatically. The final goal of matching is 

covariate balance, while estimated chance of exposure can be just a byproduct in this process. It 

is not to say that since the fit of estimated chance of exposure is not sufficient for good matching, 

the considerations on the factors or mechanism that impact samples‘ observed group membership 

is not necessary.  On the contrary, those considerations still provide distinctly important insight 

on finding confounding covariates.     
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 As Diamond and Sekhon (Diamond & Sekhon, In Press) pointed out, matching is a case 

where computational power and machine-learning algorithms may help. There is little reason for 

a human to try the multitude of possible models or covariate cut-points to achieve balance when 

a computer can do this systematically and faster. Further study regarding the incorporation 

ofCoarsened Exact Matching with a genetic algorithm where multidimensional balance measure 

of covariates are cut-point selecting criteria, may be very useful.  
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Table 1 

 

Selected Covariates for Matching 

 

 

  

 

Variable Name in ECLS-

K8 Dataset 

Values Used in 

Covariate Screening 

Applied 

in 

Method 

Model BIC 

and 

Coefficient 

P value in 

Regression 

1 

Coefficient 

P value in 

Regression 

2 

GENDER 
1 = Male 

2 = Female 

CEM 

PSM 

GM 

24056.4 

<.0001 
<.0001 

RACE @ 
 (Child composite race) 

 

1 = White, non-Hispanic 

2 = Black or African 

American, non-Hispanic 

3 = Hispanic, race specified 

4 = Hispanic, no race 

specified 

5 = Asian 

6 = Native Hawaiian or other 

Pacific Islander 

7 = American Indian or 

Alaskan Native 

8 = More than one race, non-

Hispanic 

CEM 

PSM 

GM 

23318.4 

<.0001 
<.0001 

WKPARED ! 
 (Highest level of education for 

the child‘s parents or nonparent 

guardians who reside in the 

household.) 

1 = 8th grade or below 

2 = 9th to 12th grade 

3 = High school 

diploma/equivalent 

4 = Voc/Tech program 

5 = Some college 

6 = Bachelor‘s degree 

7 = Graduate/professional 

school/no degree 

8 = Master‘s degree 

9 = Doctorate or professional 

degree 

CEM 

PSM 

GM 

21703.3 

<.0001 
0.0008 

WKSESL 

 (Socioeconomic status  (SES) 

scale) 

Continuous  (Higher values 

indicate higher SES) 

CEM 

PSM 

CM 

21453.2 

<.0001 
0.0053 

WKSESL* RACE  
PSM 

CM 

21227.3 

<.0001 
0.0150 

P1EXPECT ! 

 (Parents‘ expectation for 

children‘s highest education  

level) 

1 = To receive less than high 

school diploma 

 2 = To graduate from high 

school 

3 = To attend two or more 

years of college 

CEM 

PSM 

CM 

23656.1 

<.0001 
0.0213 
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4 = To finish a 4-or-5-year 

college degree 

5 = To earn a master's degree 

or equivalent 

6 = To get ph.d., md, or other 

higher degree 

P1LANGUG 

 (Language (s) spoken most 

often at home by the 

parent (s)/guardian (s) in the 

household) 

1 = Both only speak English 

language 

2 = 1  (of 2) parents mainly 

speaks a non-English 

language 

3 = Both only speak a non-

English language 

CEM 

PSM 

CM 

24110.9 

<.0001 
0.0006 

P1HFAMIL 

1 = Two parents and sibling 

(s) 

2 = Two parents, no siblings 

3 = One parent and sibling (s) 

4 = One parent, no siblings 

5 = Other 

CEM 

PSM 

CM 

23604.5 

<.0001 
0.0010 

P1PRIMPK@ 

 (Primary, nonparental 

arrangement in which the 

child spent the most hours per 

week during the year 

before kindergarten) 

0 = No non-parental care 

1 = Relative care in child‘s 

home 

2 = Relative care in another 

home 

3 = Non-relative care in 

child‘s home 

4 = Non-relative care in 

another home 

5 = Head Start program 

6 = Center-based program 

7 = 2 or more programs 

8 = Location of care varies 

CEM 

PSM 

CM 

22934.1 

<.0001 
0.0009 

P1HSPREK 
 (The Child attended Head Start 

before Kindergarten) 

1 = Yes 

2 or -1 = No 

CEM 

PSM 

CM 

23427.3 

<.0001 
<.0001 

P1HSPREK* P1EXPECT !  
PSM 

CM 

23010.6 

0.0023 
0.0212 

P1DISABL 
1 = Yes 

2  or -1= No 

CEM 

PSM 

CM 

24034.2 

<.0001 
<.0001 

P1SADLON 
 (Parent‘s rating on the child‘s 

Sadness/Loneliness level) 

Continuous 

CEM 

PSM 

CM 

24138.1 

0.0002 
<.0001 

P1SADLON*P1SADLON 

 
Continuous 

PSM 

CM 

24076.0 

<.0001 
0.0284 

P1CONTRO 

 (Parents‘ rating on the child‘s 

self-control) 

Continuous 

CEM 

PSM 

CM 

23804.5 

<.0001 
0.9442 

P1CONTRO*P1DISABL  
PSM 

CM 

23728.6 

0.0297 
0.0008 

P1HELPAR ! 
1 = Not at all 

2 = Once or twice a week 
CEM 24140.8 0.5866 
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 (Parent‘s frequency of helping 

the child to do arts and crafts) 

3 = 3 to 6 Times a week 

4 = Everyday 
PSM 

CM 

0.0006 

P1HELPAR!*GENDER  
PSM 

CM 

24053.8 

0.0006 
0.0461 

P1SINGSO 

 (Parent‘s frequency of singing 

songs with the child) 

1 = Not at all 

2 = Once or twice a week 

3 = 3 to 6 Times a week 

4 = Everyday 

CEM 

PSM 

CM 

24087.6 

<.0001 
0.0023 

S2KSCTYP 
 (Type of School) 

1-3 = Non Public 

4 = Public 

CEM 

PSM 

CM 

23465.9 

<.0001 
<.0001 

S2KSCTYP* P1EXPECT !  
PSM 

CM 

23071.1 

<.0001 
0.0033 

 

Note: 

!    ------ The variable was used as a continuous variable in actual matching  

@ ------ The original values of the variable was coarsened in actual matching  

 

 

 

 

 

Table 2 

 

Correlations of Simulated Covariates  

 

      

  
Confounders 

Exposure 

Predictors 

Outcome 

Predictor   

                                   

Confounders    1 0 0 0           

   0 1 0 0           

   0 0 1 0           

   0 0 0 1           

Exposure 

Predictors 
   .2 0 0 0    1       

   0 .9 0 0    0 1      

   0 0 0 0    0 0 1     

Outcome Predictor    0 0 .2 0    0 0 0  1   

   0 0 0 .9    0 0 0  0 1  

     0 0 0 0    0 0 0  0 0 1 
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Table 3 

 

Characteristics of Empirical data 

  

 

ORIGINAL 

 

CEM 1 CEM 2 PSM 1 

  

 

Control 

Units 

 

Treated 

Units 

Control 

Units 

Treated 

Units 

Control 

Units 

Treated 

Units 

Control 

Units 

Treated 

Units 

MALE 

 (Gender=1) 

Proportion 0.49 0.61 0.60 0.61 0.61 0.60 0.60 0.61 

Sample Size 6463 622 24 23 64 50 2420 615 

   test P <0.0001** 0.96 0.8419 0.5643 

 

WHITE, 

NON-

HISPANIC 

Proportion 0.62 0.71 1.00 1.00 0.99 0.99 0.69 0.71 

Sample Size 8117 718 40 38 104 83 2790 713 

   test P <0.0001**   0.8737 0.3418 

 

AFRICAN 

AMERICAN 

Proportion 0.15 0.11 0 0 0 0 0.11 0.11 

Sample Size 1979 107     452 107 

   test P <0.0001**    0.5903 

 

HISPANIC Proportion 0.13 0.10 0 0 0 0 0.11 0.10 

Sample Size 1669 101     448 101 

   test P 0.01**     0.3198 

 

ASIAN OR 

PACIFIC 

ISLANDER 

Proportion 0.05 0.04 0 0 0 0 0.03 0.03 

Sample Size 704 40     135 33 

   test P 0.0496    0.9063 

 

AMERICAN 

INDIAN OR 

ALASKA 

NATIVE 

Proportion 0.02 0.03 0 0 0.01 0.01 0.03 0.03 

Sample Size 218 28   1 1 124 33 

   test P 0.0101   0.8737 0.7457 

 

PARENTS 

ONLY 

SPEAK 

ENGLISH 

Proportion 0.90 0.93 1.00 1.00 1.00 1.00 0.92 0.93 

Sample Size 11741 947 40 38 105 84 3717 940 

   test P 0.0001**   0.2473 

 

BOTH ONLY 

SPEAK NON-

ENGLISH 

Proportion 0.07 0.04 0 0 0 0 0.06 0.04 

Sample Size 971 45     222 45 

   test P 0.0004   0.1866 

 

2 PARENTS 

PLUS 

Proportion 0.67 0.72 0.98 0.97 0.93 0.91 0.71 0.72 

Sample Size 8717 726 39 37 98 77 2850 721 
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SIBLINGS 

FAMILY 
   test P 0.0010** 0.97 0.6638 0.5974 

 

2 PARENTS 

NO SIBLING 

FAMILY 

Proportion 0.10 0.09 0.025 0.026 0.04 0.05 0.09 0.09 

Sample Size 1287 93 1 1 4 4 359 93 

   test P 0.4991 0.97 0.7466 0.7486 

 

1 PARENT 

PLUS 

SIBLINGS 

FAMILY 

Proportion 0.15 0.13 0 0 0.01 0.01 0.13 0.13 

Sample Size 1989 128   1 1 538 128 

   test P 0.0277*  0.8737 0.5886 

 

1 PARENT 

NO SIBLING 

FAMILY 

Proportion 0.07 0.04 0 0 0.02 0.02 0.05 0.04 

Sample Size 886 44   2 2 204 44 

   test P 0.0027**   0.8212 0.3619 

 

PRIMARLY   

PARENTAL 

CARE 

Proportion 0.16 0.19 0 0 0.03 0.04 0.19 0.19 

Sample Size 2132 194   3 3 761 193 

   test P 0.0182*   0.7808 0.8432 

 

PRIMARLY 

NON-

PARENTAL 

IN HOME 

CARE 

Proportion 0.24 0.26 3 3 0.15 0.17 0.25 0.26 

Sample Size 3124 262 0.075 0.0789 16 15 1025 261 

   test P 0.1534 1.00 0.6290 0.7588 

 

PRIMARLY 

HEAD 

START 

PROGRAM 

Proportion 0.09 0.05 0 0 0 0 0.05 0.05 

Sample Size 1163 53     220 53 

   test P <0.0001**   0.8034 

 

PRIMARLY 

CENTER-

BASED 

PROGRAM 

Proportion 0.46 0.46 0.9250 0.9211 0.82 0.79 0.46 0.45 

Sample Size 5973 461 37 35 86 66 1848 456 

   test P 0.9317 0.9479 0.5660 0.7342 

 

ATTEND 2 

OR MORE 

PROGRAMS 

Proportion 0.04 0.03 0 0 0 0 0.0338 0.008 

Sample Size 539 31     136 31 

   test P 0.0992   0.6368 

 

NOT AT ALL 

SING TO 

CHILD 

Proportion 0.04 0.04 0 0 0 0 0.044 0.039 

Sample Size 575 40     180 39 

   test P 0.5035   0.4070 

 

ONCE OR 

TWICE A 

WEEK  SING 

TO CHILD 

Proportion 0.22 0.27 0.20 0.21 0.18 0.19 0.26 0.27 

Sample Size 2931 278 8 8 19 16 1043 274 

   test P 0.0002** 0.91 0.8670 0.3954 

 

3 TO 6 

TIMES A 

WEEK  SING 

TO CHILD 

Proportion 0.28 0.28 0.425 0.4211 0.32 0.31 0.29 0.28 

Sample Size 3678 280 17 16 34 26 1148 280 

   test P 0.7495 0.97 0.8339 0.6615 

 

EVERYDAY  

SING TO 

CHILD 

Proportion 0.45 0.41 0.3750 0.3684 0.50 0.50 0.41 0.41 

Sample Size 5901 415 15 14 54 42 1653 413 

   test P 0.0109* 0.95 0.9481 0.9886 

 

EVER 

ATTEND  
Proportion 0.14 0.09 0 0 0 0 0.10 0.09 

Sample Size 1768 90     391 90 
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HEAD 

START 

PROGRAM 

   test P <.0001**   0.4574 

 

IN PUBILC  

KINDERGAR

TEN 

Proportion 0.78 0.72 0.70 0.6842 0.72 0.73 0.73 0.72 

Sample Size 10202 1013 28 26 76 61 2952 726 

   test P <.0001** 0.88 0.9709 0.4453 

 

P1DISABL Proportion 0.13 0.20 0 0 0.04 0.05 0.17 0.20 

Sample Size 1706 204   4 4 683 197 

   test P <.0001**  0.7466 0.0514 

 

WKPARED Sample Size 13085 1013 40 38 105 84 4024 1006 

T-test P 0.0008** 0.9622 0.8987 0.4326 

 

WKSESL Sample Size 13085 1013 40 38 105 84 4024 1006 

T-test P 0.0056** 0.9739 0.8567 0.4595 

 

P1EXPECT Sample Size 13085 1013   105 84 4024 1006 

T-test P 0.0213* 0.9672 1.0000 0.4284 

 

P1SADLON Sample Size 13085 1013 40 38 105 84 4024 1006 

T-test P <.0001** 0.8691 0.1781 0.4871 

 

P1CONTRO Sample Size 13085 1013 40 38 105 84 4024 1006 

T-test P 0.9420 0.9215 0.6685 0.9417 

 

P1HELPAR Sample Size 13085 1013 40 38 105 84 4024 1006 

T-test P 0.5868 0.9276 0.6368 0.6860 

 

 

 

 

PSM1 

 

GM1 GM 2  

 

  

 

Control 

Units 

 

Treated 

Units 

Control 

Units 

Treated 

Units 

Control 

Units 

Treated 

Units 
  

MALE 

 (Gender=1) 

Proportion 0.59 0.61 0.60 0.61 0.60 0.61   

Sample Size 2284 611 573 622 571 622   

   test P 0.1684 0.6428 0.6210  

 

WHITE, 

NON-

HISPANIC 

Proportion 0.69 0.71 0.71 0.71 0.71 0.71   

Sample Size 2703 709 674 718 683 718   

   test P 0.3791 0.9442 0.8104  

 

AFRICAN 

AMERICAN 

Proportion 0.12 0.11 0.11 0.11 0.11 0.11   

Sample Size 449 107 104 107 102 107   

   test P 0.4559 0.7771 0.9451  

 

HISPANIC Proportion 0.11 0.10 0.10 0.10 0.10 0.10   

Sample Size 421 101 92 101 97 101   

   test P 0.5110 0.8375 0.9028  

 

ASIAN OR Proportion 0.03 0.03 0.03 0.03 0.03 0.03   
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PACIFIC 

ISLANDER 

Sample Size 125 33 29 33 28 33   

   test P 0.8889 0.7985 0.6709  

 

AMERICAN 

INDIAN OR 

ALASKA 

NATIVE 

Proportion 0.03 0.03 0.04 0.03 0.04 0.03   

Sample Size 103 32 35 35 36 35   

   test P 0.3411 0.7810 0.7151  

 

PARENTS 

ONLY 

SPEAK 

ENGLISH 

Proportion 0.93 0.93 0.94 0.93 0.95 0.93   

Sample Size 3619 935 894 947 905 947   

   test P 0.5855 0.5078 0.3119  

 

BOTH ONLY 

SPEAK NON-

ENGLISH 

Proportion 0.05 0.05 0.04 0.04 0.03 0.04   

Sample Size 184 45 35 45 32 45   

   test P 0.7601 0.3986 0.2086  

 

2 PARENTS 

PLUS 

SIBLINGS 

FAMILY 

Proportion 0.70 0.72 0.72 0.72 0.73 0.72   

Sample Size 2722 718 680 726 697 726   

   test P 0.2550 0.9945 0.5644  

 

2 PARENTS 

NO SIBLING 

FAMILY 

Proportion 0.10 0.09 0.09 0.09 0.09 0.09   

Sample Size 394 93 86 93 87 93   

   test P 0.4367 0.9274 0.9449  

 

1 PARENT 

PLUS 

SIBLINGS 

FAMILY 

Proportion 0.14 0.13 0.13 0.13 0.12 0.13   

Sample Size 531 127 127 128 119 128   

   test P 0.4340 0.6230 0.8929  

 

1 PARENT 

NO SIBLING 

FAMILY 

Proportion 0.05 0.04 0.04 0.04 0.04 0.04   

Sample Size 185 43 42 44 40 44   

   test P 0.5432 0.9292 0.8573  

 

PRIMARLY   

PARENTAL 

CARE 

Proportion 0.19 0.19 0.19 0.19 0.19 0.19   

Sample Size 721 192 181 194 181 194   

   test P 0.6274 0.9648 0.8931  

 

PRIMARLY 

NON-

PARENTAL 

IN HOME 

CARE 

Proportion 0.26 0.26 0.26 0.26 0.26 0.26   

Sample Size 1014 261 250 262 250 262   

   test P 0.9792 0.8089 0.8956  

 

PRIMARLY 

HEAD 

START 

PROGRAM 

Proportion 0.05 0.05 0.05 0.05 0.05 0.05   

Sample Size 213 52 52 53 51 53   

   test P 0.7328 0.8077 0.9232  

 

PRIMARLY 

CENTER-

BASED 

PROGRAM 

Proportion 0.46 0.45 0.46 0.46 0.46 0.46   

Sample Size 1785 453 436 461 444 461   

   test P 0.7454 0.8468 0.6931  

 

ATTEND 2 

OR MORE 

PROGRAMS 

Proportion 0.03 0.03 0.03 0.03 0.03 0.03   

Sample Size 118 31 24 31 27 31   

   test P 0.9119 0.4762 0.7539  

 

NOT AT ALL Proportion 0.04 0.04 0.04 0.04 0.04 0.04   
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SING TO 

CHILD 

Sample Size 145 38 38 40 36 40   

   test P 0.9129 0.9498 0.8295  

 

ONCE OR 

TWICE A 

WEEK  SING 

TO CHILD 

Proportion 0.26 0.27 0.27 0.27 0.26 0.27   

Sample Size 1022 274 258 278 248 278   

   test P 0.4683 0.8985 0.4433  

 

3 TO 6 

TIMES A 

WEEK  SING 

TO CHILD 

Proportion 0.28 0.28 0.27 0.28 0.27 0.28   

Sample Size 1102 277 251 280 263 280   

   test P 0.6971 0.5527 0.9371  

 

EVERYDAY  

SING TO 

CHILD 

Proportion 0.42 0.41 0.42 0.41 0.43 0.41   

Sample Size 1626 412 402 415 410 415   

   test P 0.7368 0.5317 0.3992  

 

EVER 

ATTEND  
HEAD 

START 

PROGRAM 

Proportion 0.09 0.09 0.09 0.09 0.08 0.09   

Sample Size 349 89 85 90 81 90   

   test P 0.9455 0.9552 0.7404  

 

IN PUBILC  

KINDERGAR

TEN 

Proportion 0.74 0.73 0.73 0.72 0.74 0.72   

Sample Size 2900 726 695 729 711 729   

   test P 0.2147 0.5284 0.2438  

 

P1DISABL 

Proportion 0.17 0.19 0.19 0.20 0.19 0.20   

Sample Size 648 194 183 204 184 204   

   test P 0.0402* 0.6344 0.6112  

 

WKPARED 

Sample Size 3895 1001 949 1013 957 1013   

T-test P 0.4151 0.7435 0.9461  

 

WKSESL 

Sample Size 3895 1001 949 1013 957 1013   

T-test P 0.9957 0.7943 0.7870  

 

P1EXPECT 

Sample Size 3895 1001 949 1013 957 1013   

T-test P 0.9942 0.6902 0.8370  

 

P1SADLON 

Sample Size 3895 1001 949 1013 957 1013   

T-test P 0.1336 0.7812 0.1471  

 

P1CONTRO 

Sample Size 3895 1001 949 1013 957 1013   

T-test P 0.9560 0.8736 0.5431  

 

P1HELPAR 

Sample Size 3895 1001 949 1013 957 1013   

T-test P 0.6888 0.8487 0.7062  
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Table 4.1   

 

Assessing the Effect of Delayed Entry in Matched Data Of CEM2 

 

Effect Estimate Error  df F  P>F 

Intercept -0.8441 0.05731 
   

P1WHENEN_1 
Delayed=0  Non-Delayed=-

0.1007  
0.06868 184 5.53 0.1443 

P1CPREK_1 Yes=0 No=-0.2982 0.1268 184 11.2 0.0198 

WKSESL  0.1764 0.0527 184 6.07 0.001 

 

 

 

Table 4.2   

 

Assessing the Effect of Delayed Entry in Matched Data Of GM2 

 

 

Effect Estimate Error  df F  P>F 

Intercept -1.1202 0.09797 1951 
  

P1WHENEN_1 

Delayed=0  Non-

Delayed= -0.04023 

  

0.02283 1951 3.11 0.0781 

P1CPREK_1 Yes=0 No=-0.1150 0.1268 1951 19.87 <.0001 

S2KSCTYP_1 Yes=0 No=0.1006 0.02711 1951 13.77 0.0002 

P1DISABL_1 Yes=0 No=0.1483 0.02889 1951 26.37 <.0001 

WKSESL  0.1606 0.01371 1951 137.25 0.001 

P1SINGSO_1 -0.0146 0.06194 1951 0.0576 0.8138 

P1SINGSO_2 0.01722 0.02866 1951 0.36 0.548 

P1SINGSO_3 0.08306 0.02803 1951 8.7616 0.0031 

White, non-Hispanic -0.00393 0.09332 1951 0.0016 0.9664 

African American, non-

Hispanic 
-0.06578 0.09976 1951 0.4356 0.5097 

Hispanic, race specified -0.09663 0.1037 1951 0.8649 0.3517 

Hispanic, no race specified -0.127 0.1086 1951 1.3924 0.2396 

Asian 0.09026 0.1128 1951 0.64 0.4236 

Pacific Islander 0.1095 0.1542 1951 0.5041 0.4778 
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American Indian or Alaskan 

Native 
-0.3652 0.1162 1951 9.8596 0.0017 

P1READBO 0.044 0.01221 1951 12.97 0.0003 

P1LEARN 0.04881 0.01182 1951 17.06 <.0001 

P1IMPULS -0.05453 0.01219 1951 20.02 <.0001 

 

 

 

Table 4.3   

Assessing the Effect of Delayed Entry in Matched Data Of  PSM1 

 

Fixed Effect Estimate Error  DF F P>F 

Intercept -1.1618 0.0472 
   

P1WHENEN_1 
Delayed=0   Non-

delayed=-0.04739 
0.01758 5012 7.26 0.0071 

P1CPREK_1 Yes=0 No=-0.1039             0.01584 5012 43 <.0001 

S2KSCTYP_1 Yes=0 No= 0.1041 0.01682 5012 38.31 <.0001 

GENDER_1 
Yes=0 No=0.05086 

             
0.01455 5012 12.22 0.0005 

P1HSPREK_1 Yes=0 No=0.09662 0.02617 5012 13.63 0.0002 

WKSESL  0.1472 0.008349 5012 310.81 <.0001 

P1EXPECT 0.03931 0.007791 5012 25.46 <.0001 

P1READBO 0.0424 0.007506 5012 31.91 <.0001 

P1LEARN 0.05621 0.007303 5012 59.23 <.0001 

P1IMPULS -0.03459 0.007386 5012 21.94 <.0001 

Random Effect Estimate Error  DF T P>T 

White, non-Hispanic 0.07438 0.03763 5012 1.98 0.0481 

African American, non-Hispanic 0.01348 0.04079 5012 0.33 0.7411 

Hispanic, race specified -0.03576 0.04346 5012 -0.82 0.4107 

Hispanic, no race specified -0.09371 0.04475 5012 -2.09 0.0363 

Asian 0.176 0.04786 5012 3.68 0.0002 

Pacific Islander -0.01567 0.06259 5012 -0.25 0.8023 

American Indian or Alaskan Native -0.01567 0.05212 5012 -2.41 0.0161 

More than one race, non-Hispanic 0.006815 0.05356 5012 0.13 0.8987 
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Table 5.   

Performance of Matching Estimation Methods in the Simulation 

 

     
SCENARIO 

  
 

METHOD  A B C D E F G 

         
Average 

Absolute  
CEM 8.53246 7.05615 7.05867 8.43705 6.70642 8.39068 6.46776 

Bias PSM 24.2892 21.5901 21.7248 24.3793 21.4006 25.2059 34.0266 
 (percent) GM 17.5841 13.0349 9.92120 14.9690 8.57345 14.1142 8.47269 

         
Standard  CEM 0.03904 0.03997 0.04102 0.03952 0.04136 0.03846 0.04055 
Deviation PSM 0.02715 0.02715 0.02655 0.02678 0.02600 0.02566 0.03007 

 
GM 0.03097 0.03109 0.03176 0.03050 0.03207 0.02923 0.02986 

 

 

Figure 1. L1 Profiles of Six Matched Datasets 
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Figure 2.1 Covariate Density By Group-CEM1 
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Figure 2.2 Covariate Density By Group-CEM2 
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Figure 2.3 Covariate Density By Group-PSM1 
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Figure 2.4 Covariate Density By Group-PSM2 
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Figure 2.5 Covariate Density By Group-GM1 
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Figure 2.6 Covariate Density By Group-GM2 
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Figure 3.1 Residual Plot of CEM2 

 

Figure 3.2 Residual Plot of GM2 
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Figure 3.3 Residual Plot of PSM1 
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APPENDIX A 

R SCRIPT FOR THE SIMULATION  

 

library (cem) 

library (MatchIt) 

library (MASS) 

 

matchample<-function (n){ 

se_ca<-rep (NA,n) 

se_cb<-rep (NA,n) 

se_cc<-rep (NA,n) 

se_cd<-rep (NA,n) 

se_ce<-rep (NA,n) 

se_cf<-rep (NA,n) 

se_cg<-rep (NA,n) 

se_pa<-rep (NA,n) 

se_pb<-rep (NA,n) 

se_pc<-rep (NA,n) 

se_pd<-rep (NA,n) 

se_pe<-rep (NA,n) 

se_pf<-rep (NA,n) 

se_pg<-rep (NA,n) 

se_ga<-rep (NA,n) 

se_gb<-rep (NA,n) 

se_gc<-rep (NA,n) 

se_gd<-rep (NA,n) 

se_ge<-rep (NA,n) 

se_gf<-rep (NA,n) 

se_gg<-rep (NA,n) 

for (i in 1:i) 

{set.seed (i) 

e1<-rnorm (2000,0,1) 

e2<-rnorm (2000,0,1) 

e3<-rnorm (2000,0,1) 

e4<-rnorm (2000,0,1) 

v1<-rnorm (2000,0,1) 

v3<-rnorm (2000,0,1) 

v4<-rnorm (2000,0,1) 

w2<-rnorm (2000,0,1) 

w4<-rnorm (2000,0,1) 
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v5<-0.2*v1+e1 

v6<-0.9*w2+e2 

v8<-0.2*v3+e3 

v9<-0.9*w4+e4 

w7<-rnorm (2000,0,1) 

w10<-rnorm (2000,0,1) 

w1<-ifelse (v1<0.5,0,1) 

w3<-ifelse (v3<0.5,0,1) 

w5<-ifelse (v5<0.5,0,1) 

w6<-ifelse (v6<0.5,0,1) 

w8<-ifelse (v8<0.5,0,1) 

w9<-ifelse (v9<0.5,0,1) 

ta<-1/ (1+exp (- (0.8*w1-0.25*w2+0.6*w3-0.4*w4-0.8*w5-0.5*w6+0.7*w7))) 

tb<-1/ (1+exp (- (0.8*w1-0.25*w2+0.6*w3-0.4*w4-0.8*w5-0.5*w6+0.7*w7-0.25*w2*w2))) 

tc<-1/ (1+exp (- (0.8*w1-0.25*w2+0.6*w3-0.4*w4-0.8*w5-0.5*w6+0.7*w7-0.25*w2*w2-

0.4*w4*w4+0.7*w7*w7))) 

td<-1/ (1+exp (- (0.8*w1-0.25*w2+0.6*w3-0.4*w4-0.8*w5-0.5*w6+0.7*w7+0.8*0.5*w1*w3-

0.25*0.7*w2*w4-0.4*0.5*w4*w5+ 

-0.8*0.5*w5*w6))) 

te<-1/ (1+exp (- (0.8*w1-0.25*w2+0.6*w3-0.4*w4-0.8*w5-0.5*w6+0.7*w7+0.8*0.5*w1*w3-

0.25*0.7*w2*w4-0.4*0.5*w4*w5+ 

-0.8*0.5*w5*w6-0.25*w2*w2-0.4*w4*w4+0.7*w7*w7))) 

tf<-1/ (1+exp (- (0.8*w1-0.25*w2+0.6*w3-0.4*w4-0.8*w5-0.5*w6+0.7*w7+0.8*0.5*w1*w3-

0.25*0.7*w2*w4+0.6*0.5*w3*w5-0.4*0.5*w4*w5+ 

-0.4*0.7*w4*w6-0.8*0.5*w5*w6-0.8*0.5*w5*w7+0.8*0.5*w1*w6-

0.25*0.7*w2*w3+0.6*0.5*w3*w4))) 

tg<-1/ (1+exp (- (0.8*w1-0.25*w2+0.6*w3-0.4*w4-0.8*w5-0.5*w6+0.7*w7+0.8*0.5*w1*w3-

0.25*0.7*w2*w4+0.6*0.5*w3*w5-0.4*0.5*w4*w5+ 

-0.4*0.7*w4*w6-0.8*0.5*w5*w6-0.8*0.5*w5*w7+0.8*0.5*w1*w6-

0.25*0.7*w2*w3+0.6*0.5*w3*w4+ 

-0.25*w2*w2-0.4*w4*w4+0.7*w7*w7))) 

g1<-runif (2000, 0, 1) 

ga<-ifelse (g1<ta,1,0) 

gb<-ifelse (g1<tb,1,0) 

gc<-ifelse (g1<tc,1,0) 

gd<-ifelse (g1<td,1,0) 

ge<-ifelse (g1<te,1,0) 

gf<-ifelse (g1<tf,1,0) 

gg<-ifelse (g1<tg,1,0) 

ya=-0.4*ga-3.85+0.3*w1-0.36*w2-0.73*w3-0.2*w4+0.71*w8-0.19*w9+0.26*w10 

yb=-0.4*gb-3.85+0.3*w1-0.36*w2-0.73*w3-0.2*w4+0.71*w8-0.19*w9+0.26*w10 

yc=-0.4*gc-3.85+0.3*w1-0.36*w2-0.73*w3-0.2*w4+0.71*w8-0.19*w9+0.26*w10 

yd=-0.4*gd-3.85+0.3*w1-0.36*w2-0.73*w3-0.2*w4+0.71*w8-0.19*w9+0.26*w10 

ye=-0.4*ge-3.85+0.3*w1-0.36*w2-0.73*w3-0.2*w4+0.71*w8-0.19*w9+0.26*w10 

yf=-0.4*gf-3.85+0.3*w1-0.36*w2-0.73*w3-0.2*w4+0.71*w8-0.19*w9+0.26*w10 

yg=-0.4*gg-3.85+0.3*w1-0.36*w2-0.73*w3-0.2*w4+0.71*w8-0.19*w9+0.26*w10 
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data1<-as.data.frame (cbind (ya,ta,ga,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10)) 

data2<-as.data.frame (cbind (yb,tb,gb,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10)) 

data3<-as.data.frame (cbind (yc,tc,gc,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10)) 

data4<-as.data.frame (cbind (yd,td,gd,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10)) 

data5<-as.data.frame (cbind (ye,te,ge,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10)) 

data6<-as.data.frame (cbind (yf,tf,gf,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10)) 

data7<-as.data.frame (cbind (yg,tg,gg,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10)) 

 

autocem_a<-cem (treatment="ga",data=data1,drop=c ("ya","ta","w8","w9","w10")) 

wa<-autocem_a$w 

dcema<-cbind (wa,data1) 

dcem_a<-dcema[which (wa>0.00000001),] 

lgca<-lm (ya~ga,data=dcem_a) 

coca<-coef (lgca) 

b0ca<-coca[' (Intercept)'] 

b1ca<-coca['ga'] 

se_ca[i]<-b1ca+0.4 

 

autocem_b<-cem (treatment="gb",data=data2,drop=c ("yb","tb","w8","w9","w10")) 

wb<-autocem_b$w 

dcemb<-cbind (wb,data2) 

dcem_b<-dcemb[which (wb>0.00000001),] 

lgcb<-lm (yb~gb,data=dcem_b) 

cocb<-coef (lgcb) 

b0cb<-cocb[' (Intercept)'] 

b1cb<-cocb['gb'] 

se_cb[i]<-b1cb+0.4 

 

#dim (dcem_a) get dimension 

 

autocem_c<-cem (treatment="gc",data=data3,drop=c ("yc","tc","w8","w9","w10")) 

wc<-autocem_c$w 

dcemc<-cbind (wc,data3) 

dcem_c<-dcemc[which (wc>0.00000001),] 

lgcc<-lm (yc~gc,data=dcem_c) 

cocc<-coef (lgcc) 

b0cc<-cocc[' (Intercept)'] 

b1cc<-cocc['gc'] 

se_cc[i]<-b1cc+0.4 

 

autocem_d<-cem (treatment="gd",data=data4,drop=c ("yd","td","w8","w9","w10")) 

wd<-autocem_d$w 

dcemd<-cbind (wd,data4) 

dcem_d<-dcemd[which (wd>0.00000001),] 

lgcd<-lm (yd~gd,data=dcem_d) 

cocd<-coef (lgcd) 
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b0cd<-cocd[' (Intercept)'] 

b1cd<-cocd['gd'] 

se_cd[i]<-b1cd+0.4 

 

autocem_e<-cem (treatment="ge",data=data5,drop=c ("ye","te","w8","w9","w10")) 

we<-autocem_e$w 

dceme<-cbind (we,data5) 

dcem_e<-dceme[which (we>0.00000001),] 

lgce<-lm (ye~ge,data=dcem_e) 

coce<-coef (lgce) 

b0ce<-coce[' (Intercept)'] 

b1ce<-coce['ge'] 

se_ce[i]<-b1ce+0.4 

 

autocem_f<-cem (treatment="gf",data=data6,drop=c ("yf","tf","w8","w9","w10")) 

wf<-autocem_f$w 

dcemf<-cbind (wf,data6) 

dcem_f<-dcemf[which (wf>0.00000001),] 

lgcf<-lm (yf~gf,data=dcem_f) 

cocf<-coef (lgcf) 

b0cf<-cocf[' (Intercept)'] 

b1cf<-cocf['gf'] 

se_cf[i]<-b1cf+0.4 

 

autocem_g<-cem (treatment="gg",data=data7,drop=c ("yg","tg","w8","w9","w10")) 

wg<-autocem_g$w 

dcemg<-cbind (wg,data7) 

dcem_g<-dcemg[which (wg>0.00000001),] 

lgcg<-lm (yg~gg,data=dcem_g) 

cocg<-coef (lgcg) 

b0cg<-cocg[' (Intercept)'] 

b1cg<-cocg['gg'] 

se_cg[i]<-b1cg+0.4 

 

psm_a<-matchit (ga~w1+w2+w3+w4+w5+w6+w7,data=data1,method = "nearest", discard = 

"both", replace =  TRUE, ratio = 5,  

caliper = 0.01, m.order = "random") 

dpm_a<-match.data (psm_a) 

lgpa<-lm (ya~ga,data=dpm_a) 

copa<-coef (lgpa) 

b0pa<-copa[' (Intercept)'] 

b1pa<-copa['ga'] 

se_pa[i]<-b1pa+0.4 

 

psm_b<-matchit (gb~w1+w2+w3+w4+w5+w6+w7,data=data2,method = "nearest", discard = 

"both", replace =  TRUE, ratio = 5,  
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caliper = 0.01, m.order = "random") 

dpm_b<-match.data (psm_b) 

lgpb<-lm (yb~gb,data=dpm_b) 

copb<-coef (lgpb) 

b0pb<-copb[' (Intercept)'] 

b1pb<-copb['gb'] 

se_pb[i]<-b1pb+0.4 

 

psm_c<-matchit (gc~w1+w2+w3+w4+w5+w6+w7,data=data3,method = "nearest", discard = 

"both", replace =  TRUE, ratio = 5,  

caliper = 0.01, m.order = "random") 

dpm_c<-match.data (psm_c) 

lgpc<-lm (yc~gc,data=dpm_c) 

copc<-coef (lgpc) 

b0pc<-copc[' (Intercept)'] 

b1pc<-copc['gc'] 

se_pc[i]<-b1pc+0.4 

 

psm_d<-matchit (gd~w1+w2+w3+w4+w5+w6+w7,data=data4,method = "nearest", discard = 

"both", replace =  TRUE, ratio = 5,  

caliper = 0.01, m.order = "random") 

dpm_d<-match.data (psm_d) 

lgpd<-lm (yd~gd,data=dpm_d) 

copd<-coef (lgpd) 

b0pd<-copd[' (Intercept)'] 

b1pd<-copd['gd'] 

se_pd[i]<-b1pd+0.4 

 

 

psm_e<-matchit (ge~w1+w2+w3+w4+w5+w6+w7,data=data5,method = "nearest", discard = 

"both", replace =  TRUE, ratio = 5,  

caliper = 0.01, m.order = "random") 

dpm_e<-match.data (psm_e) 

lgpe<-lm (ye~ge,data=dpm_e) 

cope<-coef (lgpe) 

b0pe<-cope[' (Intercept)'] 

b1pe<-cope['ge'] 

se_pe[i]<-b1pe+0.4 

 

psm_f<-matchit (gf~w1+w2+w3+w4+w5+w6+w7,data=data6,method = "nearest", discard = 

"both", replace =  TRUE, ratio = 5,  

caliper = 0.01, m.order = "random") 

dpm_f<-match.data (psm_f) 

lgpf<-lm (yf~gf,data=dpm_f) 

copf<-coef (lgpf) 

b0pf<-copf[' (Intercept)'] 
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b1pf<-copf['gf'] 

se_pf[i]<-b1pf+0.4 

 

psm_g<-matchit (gg~w1+w2+w3+w4+w5+w6+w7,data=data7,method = "nearest", discard = 

"both", replace =  TRUE, ratio = 5,  

caliper = 0.01, m.order = "random") 

dpm_g<-match.data (psm_g) 

lgpg<-lm (yg~gg,data=dpm_f) 

copg<-coef (lgpg) 

b0pg<-copg[' (Intercept)'] 

b1pg<-copg['gg'] 

se_pg[i]<-b1pg+0.4 

 

gm_a<-matchit (ga~w1+w2+w3+w4+w5+w6+w7,data=data1,method = "genetic", pop.size=500) 

dgm_a<-match.data (gm_a) 

lgga<-lm (ya~ga,data=dgm_a) 

coga<-coef (lgga) 

b0ga<-coga[' (Intercept)'] 

b1ga<-coga['ga'] 

se_ga[i]<-b1ga+0.4 

 

gm_b<-matchit (gb~w1+w2+w3+w4+w5+w6+w7,data=data2,method = "genetic", pop.size=500) 

dgm_b<-match.data (gm_b) 

lggb<-lm (yb~gb,data=dgm_b) 

cogb<-coef (lggb) 

b0gb<-cogb[' (Intercept)'] 

b1gb<-cogb['gb'] 

se_gb[i]<-b1gb+0.4 

 

gm_c<-matchit (gc~w1+w2+w3+w4+w5+w6+w7,data=data3,method = "genetic",pop.size=500) 

dgm_c<-match.data (gm_c) 

lggc<-lm (yc~gc,data=dgm_c) 

cogc<-coef (lggc) 

b0gc<-cogc[' (Intercept)'] 

b1gc<-cogc['gc'] 

se_gc[i]<-b1gc+0.4 

 

gm_d<-matchit (gd~w1+w2+w3+w4+w5+w6+w7,data=data4,method = "genetic",pop.size=500) 

dgm_d<-match.data (gm_d) 

lggd<-lm (yd~gd,data=dgm_d) 

cogd<-coef (lggd) 

b0gd<-cogd[' (Intercept)'] 

b1gd<-cogd['gd'] 

se_gd[i]<-b1gd+0.4 

 

gm_e<-matchit (ge~w1+w2+w3+w4+w5+w6+w7,data=data5,method = "genetic",pop.size=500) 
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dgm_e<-match.data (gm_e) 

lgge<-lm (ye~ge,data=dgm_e) 

coge<-coef (lgge) 

b0ge<-coge[' (Intercept)'] 

b1ge<-coge['ge'] 

se_ge[i]<-b1ge+0.4 

 

 

gm_f<-matchit (gf~w1+w2+w3+w4+w5+w6+w7,data=data6,method = "genetic",pop.size=500) 

dgm_f<-match.data (gm_f) 

lggf<-lm (yf~gf,data=dgm_f) 

cogf<-coef (lggf) 

b0gf<-cogf[' (Intercept)'] 

b1gf<-cogf['gf'] 

se_gf[i]<-b1gf+0.4 

 

gm_g<-matchit (gg~w1+w2+w3+w4+w5+w6+w7,data=data7,method = "genetic",pop.size=500) 

dgm_g<-match.data (gm_g) 

lggg<-lm (yg~gg,data=dgm_g) 

cogg<-coef (lggg) 

b0gg<-cogg[' (Intercept)'] 

b1gg<-cogg['gg'] 

se_gg[i]<-b1gg+0.4 

} 

mse_ca<-mean (se_ca,na.rm=TRUE) 

mse_cb<-mean (se_cb,na.rm=TRUE) 

mse_cc<-mean (se_cc,na.rm=TRUE) 

mse_cd<-mean (se_cd,na.rm=TRUE) 

mse_ce<-mean (se_ce,na.rm=TRUE) 

mse_cf<-mean (se_cf,na.rm=TRUE) 

mse_cg<-mean (se_cg,na.rm=TRUE) 

 

mse_pa<-mean (se_pa,na.rm=TRUE) 

mse_pb<-mean (se_pb,na.rm=TRUE) 

mse_pc<-mean (se_pc,na.rm=TRUE) 

mse_pd<-mean (se_pd,na.rm=TRUE) 

mse_pe<-mean (se_pe,na.rm=TRUE) 

mse_pf<-mean (se_pf,na.rm=TRUE) 

mse_pg<-mean (se_pg,na.rm=TRUE) 

 

mse_ga<-mean (se_ga,na.rm=TRUE) 

mse_gb<-mean (se_gb,na.rm=TRUE) 

mse_gc<-mean (se_gc,na.rm=TRUE) 

mse_gd<-mean (se_gd,na.rm=TRUE) 

mse_ge<-mean (se_ge,na.rm=TRUE) 

mse_gf<-mean (se_gf,na.rm=TRUE) 
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mse_gg<-mean (se_gg,na.rm=TRUE) 

 

mse<-rbind (mse_ca,mse_cb,mse_cc,mse_cd,mse_ce,mse_cf,mse_cg,mse_pa,mse_pb, 

mse_pc,mse_pd,mse_pe,mse_pf,mse_pg,mse_ga,mse_gb,mse_gc,mse_gd,mse_ge,mse_gf, 

mse_gg) 

mse 

} 

 

SIM2000<-matchample (1000) 

SIM2000 

 

matchample2<-function (n){ 

se_ca<-rep (NA,n) 

se_cb<-rep (NA,n) 

se_cc<-rep (NA,n) 

se_cd<-rep (NA,n) 

se_ce<-rep (NA,n) 

se_cf<-rep (NA,n) 

se_cg<-rep (NA,n) 

se_pa<-rep (NA,n) 

se_pb<-rep (NA,n) 

se_pc<-rep (NA,n) 

se_pd<-rep (NA,n) 

se_pe<-rep (NA,n) 

se_pf<-rep (NA,n) 

se_pg<-rep (NA,n) 

se_ga<-rep (NA,n) 

se_gb<-rep (NA,n) 

se_gc<-rep (NA,n) 

se_gd<-rep (NA,n) 

se_ge<-rep (NA,n) 

se_gf<-rep (NA,n) 

se_gg<-rep (NA,n) 

for (i in 1:i) 

{set.seed (i) 

e1<-rnorm (1000,0,1) 

e2<-rnorm (1000,0,1) 

e3<-rnorm (1000,0,1) 

e4<-rnorm (1000,0,1) 

v1<-rnorm (1000,0,1) 

v3<-rnorm (1000,0,1) 

v4<-rnorm (1000,0,1) 

w2<-rnorm (1000,0,1) 

w4<-rnorm (1000,0,1) 

v5<-0.2*v1+e1 
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v6<-0.9*w2+e2 

v8<-0.2*v3+e3 

v9<-0.9*w4+e4 

w7<-rnorm (1000,0,1) 

w10<-rnorm (1000,0,1) 

w1<-ifelse (v1<0.5,0,1) 

w3<-ifelse (v3<0.5,0,1) 

w5<-ifelse (v5<0.5,0,1) 

w6<-ifelse (v6<0.5,0,1) 

w8<-ifelse (v8<0.5,0,1) 

w9<-ifelse (v9<0.5,0,1) 

ta<-1/ (1+exp (- (0.8*w1-0.25*w2+0.6*w3-0.4*w4-0.8*w5-0.5*w6+0.7*w7))) 

tb<-1/ (1+exp (- (0.8*w1-0.25*w2+0.6*w3-0.4*w4-0.8*w5-0.5*w6+0.7*w7-0.25*w2*w2))) 

tc<-1/ (1+exp (- (0.8*w1-0.25*w2+0.6*w3-0.4*w4-0.8*w5-0.5*w6+0.7*w7-0.25*w2*w2-

0.4*w4*w4+0.7*w7*w7))) 

td<-1/ (1+exp (- (0.8*w1-0.25*w2+0.6*w3-0.4*w4-0.8*w5-0.5*w6+0.7*w7+0.8*0.5*w1*w3-

0.25*0.7*w2*w4-0.4*0.5*w4*w5+ 

-0.8*0.5*w5*w6))) 

te<-1/ (1+exp (- (0.8*w1-0.25*w2+0.6*w3-0.4*w4-0.8*w5-0.5*w6+0.7*w7+0.8*0.5*w1*w3-

0.25*0.7*w2*w4-0.4*0.5*w4*w5+ 

-0.8*0.5*w5*w6-0.25*w2*w2-0.4*w4*w4+0.7*w7*w7))) 

tf<-1/ (1+exp (- (0.8*w1-0.25*w2+0.6*w3-0.4*w4-0.8*w5-0.5*w6+0.7*w7+0.8*0.5*w1*w3-

0.25*0.7*w2*w4+0.6*0.5*w3*w5-0.4*0.5*w4*w5+ 

-0.4*0.7*w4*w6-0.8*0.5*w5*w6-0.8*0.5*w5*w7+0.8*0.5*w1*w6-

0.25*0.7*w2*w3+0.6*0.5*w3*w4))) 

tg<-1/ (1+exp (- (0.8*w1-0.25*w2+0.6*w3-0.4*w4-0.8*w5-0.5*w6+0.7*w7+0.8*0.5*w1*w3-

0.25*0.7*w2*w4+0.6*0.5*w3*w5-0.4*0.5*w4*w5+ 

-0.4*0.7*w4*w6-0.8*0.5*w5*w6-0.8*0.5*w5*w7+0.8*0.5*w1*w6-

0.25*0.7*w2*w3+0.6*0.5*w3*w4+ 

-0.25*w2*w2-0.4*w4*w4+0.7*w7*w7))) 

g1<-runif (1000, 0, 1) 

ga<-ifelse (g1<ta,1,0) 

gb<-ifelse (g1<tb,1,0) 

gc<-ifelse (g1<tc,1,0) 

gd<-ifelse (g1<td,1,0) 

ge<-ifelse (g1<te,1,0) 

gf<-ifelse (g1<tf,1,0) 

gg<-ifelse (g1<tg,1,0) 

ya=-0.4*ga-3.85+0.3*w1-0.36*w2-0.73*w3-0.2*w4+0.71*w8-0.19*w9+0.26*w10 

yb=-0.4*gb-3.85+0.3*w1-0.36*w2-0.73*w3-0.2*w4+0.71*w8-0.19*w9+0.26*w10 

yc=-0.4*gc-3.85+0.3*w1-0.36*w2-0.73*w3-0.2*w4+0.71*w8-0.19*w9+0.26*w10 

yd=-0.4*gd-3.85+0.3*w1-0.36*w2-0.73*w3-0.2*w4+0.71*w8-0.19*w9+0.26*w10 

ye=-0.4*ge-3.85+0.3*w1-0.36*w2-0.73*w3-0.2*w4+0.71*w8-0.19*w9+0.26*w10 

yf=-0.4*gf-3.85+0.3*w1-0.36*w2-0.73*w3-0.2*w4+0.71*w8-0.19*w9+0.26*w10 

yg=-0.4*gg-3.85+0.3*w1-0.36*w2-0.73*w3-0.2*w4+0.71*w8-0.19*w9+0.26*w10 

data1<-as.data.frame (cbind (ya,ta,ga,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10)) 
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data2<-as.data.frame (cbind (yb,tb,gb,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10)) 

data3<-as.data.frame (cbind (yc,tc,gc,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10)) 

data4<-as.data.frame (cbind (yd,td,gd,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10)) 

data5<-as.data.frame (cbind (ye,te,ge,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10)) 

data6<-as.data.frame (cbind (yf,tf,gf,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10)) 

data7<-as.data.frame (cbind (yg,tg,gg,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10)) 

 

autocem_a<-cem (treatment="ga",data=data1,drop=c ("ya","ta","w8","w9","w10")) 

wa<-autocem_a$w 

dcema<-cbind (wa,data1) 

dcem_a<-dcema[which (wa>0.00000001),] 

lgca<-lm (ya~ga,data=dcem_a) 

coca<-coef (lgca) 

b0ca<-coca[' (Intercept)'] 

b1ca<-coca['ga'] 

se_ca[i]<-b1ca+0.4 

 

autocem_b<-cem (treatment="gb",data=data2,drop=c ("yb","tb","w8","w9","w10")) 

wb<-autocem_b$w 

dcemb<-cbind (wb,data2) 

dcem_b<-dcemb[which (wb>0.00000001),] 

lgcb<-lm (yb~gb,data=dcem_b) 

cocb<-coef (lgcb) 

b0cb<-cocb[' (Intercept)'] 

b1cb<-cocb['gb'] 

se_cb[i]<-b1cb+0.4 

 

autocem_c<-cem (treatment="gc",data=data3,drop=c ("yc","tc","w8","w9","w10")) 

wc<-autocem_c$w 

dcemc<-cbind (wc,data3) 

dcem_c<-dcemc[which (wc>0.00000001),] 

lgcc<-lm (yc~gc,data=dcem_c) 

cocc<-coef (lgcc) 

b0cc<-cocc[' (Intercept)'] 

b1cc<-cocc['gc'] 

se_cc[i]<-b1cc+0.4 

 

autocem_d<-cem (treatment="gd",data=data4,drop=c ("yd","td","w8","w9","w10")) 

wd<-autocem_d$w 

dcemd<-cbind (wd,data4) 

dcem_d<-dcemd[which (wd>0.00000001),] 

lgcd<-lm (yd~gd,data=dcem_d) 

cocd<-coef (lgcd) 

b0cd<-cocd[' (Intercept)'] 

b1cd<-cocd['gd'] 

se_cd[i]<-b1cd+0.4 
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autocem_e<-cem (treatment="ge",data=data5,drop=c ("ye","te","w8","w9","w10")) 

we<-autocem_e$w 

dceme<-cbind (we,data5) 

dcem_e<-dceme[which (we>0.00000001),] 

lgce<-lm (ye~ge,data=dcem_e) 

coce<-coef (lgce) 

b0ce<-coce[' (Intercept)'] 

b1ce<-coce['ge'] 

se_ce[i]<-b1ce+0.4 

 

autocem_f<-cem (treatment="gf",data=data6,drop=c ("yf","tf","w8","w9","w10")) 

wf<-autocem_f$w 

dcemf<-cbind (wf,data6) 

dcem_f<-dcemf[which (wf>0.00000001),] 

lgcf<-lm (yf~gf,data=dcem_f) 

cocf<-coef (lgcf) 

b0cf<-cocf[' (Intercfpt)'] 

b1cf<-cocf['gf'] 

se_cf[i]<-b1cf+0.4 

 

autocem_g<-cem (treatment="gg",data=data7,drop=c ("yg","tg","w8","w9","w10")) 

wg<-autocem_g$w 

dcemg<-cbind (wg,data7) 

dcem_g<-dcemg[which (wg>0.00000001),] 

lgcg<-lm (yg~gg,data=dcem_g) 

cocg<-coef (lgcg) 

b0cg<-cocg[' (Intercgpt)'] 

b1cg<-cocg['gg'] 

se_cg[i]<-b1cg+0.4 

 

psm_a<-matchit (ga~w1+w2+w3+w4+w5+w6+w7,data=data1,method = "nearest", discard = 

"both", replace =  TRUE, ratio = 5,  

caliper = 0.01, m.order = "random") 

dpm_a<-match.data (psm_a) 

lgpa<-lm (ya~ga,data=dpm_a) 

copa<-coef (lgpa) 

b0pa<-copa[' (Intercept)'] 

b1pa<-copa['ga'] 

se_pa[i]<-b1pa+0.4 

 

psm_b<-matchit (gb~w1+w2+w3+w4+w5+w6+w7,data=data2,method = "nearest", discard = 

"both", replace =  TRUE, ratio = 5,  

caliper = 0.01, m.order = "random") 

dpm_b<-match.data (psm_b) 

lgpb<-lm (yb~gb,data=dpm_b) 
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copb<-coef (lgpb) 

b0pb<-copb[' (Intercept)'] 

b1pb<-copb['gb'] 

se_pb[i]<-b1pb+0.4 

 

psm_c<-matchit (gc~w1+w2+w3+w4+w5+w6+w7,data=data3,method = "nearest", discard = 

"both", replace =  TRUE, ratio = 5,  

caliper = 0.01, m.order = "random") 

dpm_c<-match.data (psm_c) 

lgpc<-lm (yc~gc,data=dpm_c) 

copc<-coef (lgpc) 

b0pc<-copc[' (Intercept)'] 

b1pc<-copc['gc'] 

se_pc[i]<-b1pc+0.4 

 

psm_d<-matchit (gd~w1+w2+w3+w4+w5+w6+w7,data=data4,method = "nearest", discard = 

"both", replace =  TRUE, ratio = 5,  

caliper = 0.01, m.order = "random") 

dpm_d<-match.data (psm_d) 

lgpd<-lm (yd~gd,data=dpm_d) 

copd<-coef (lgpd) 

b0pd<-copd[' (Intercept)'] 

b1pd<-copd['gd'] 

se_pd[i]<-b1pd+0.4 

 

 

psm_e<-matchit (ge~w1+w2+w3+w4+w5+w6+w7,data=data5,method = "nearest", discard = 

"both", replace =  TRUE, ratio = 5,  

caliper = 0.01, m.order = "random") 

dpm_e<-match.data (psm_e) 

lgpe<-lm (ye~ge,data=dpm_e) 

cope<-coef (lgpe) 

b0pe<-cope[' (Intercept)'] 

b1pe<-cope['ge'] 

se_pe[i]<-b1pe+0.4 

 

psm_f<-matchit (gf~w1+w2+w3+w4+w5+w6+w7,data=data6,method = "nearest", discard = 

"both", replace =  TRUE, ratio = 5,  

caliper = 0.01, m.order = "random") 

dpm_f<-match.data (psm_f) 

lgpf<-lm (yf~gf,data=dpm_f) 

copf<-coef (lgpf) 

b0pf<-copf[' (Intercept)'] 

b1pf<-copf['gf'] 

se_pf[i]<-b1pf+0.4 
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psm_g<-matchit (gg~w1+w2+w3+w4+w5+w6+w7,data=data7,method = "nearest", discard = 

"both", replace =  TRUE, ratio = 5,  

caliper = 0.01, m.order = "random") 

dpm_g<-match.data (psm_g) 

lgpg<-lm (yg~gg,data=dpm_f) 

copg<-coef (lgpg) 

b0pg<-copg[' (Intercept)'] 

b1pg<-copg['gg'] 

se_pg[i]<-b1pg+0.4 

 

gm_a<-matchit (ga~w1+w2+w3+w4+w5+w6+w7,data=data1,method = "genetic", pop.size=500) 

dgm_a<-match.data (gm_a) 

lgga<-lm (ya~ga,data=dgm_a) 

coga<-coef (lgga) 

b0ga<-coga[' (Intercept)'] 

b1ga<-coga['ga'] 

se_ga[i]<-b1ga+0.4 

 

gm_b<-matchit (gb~w1+w2+w3+w4+w5+w6+w7,data=data2,method = "genetic", pop.size=500) 

dgm_b<-match.data (gm_b) 

lggb<-lm (yb~gb,data=dgm_b) 

cogb<-coef (lggb) 

b0gb<-cogb[' (Intercept)'] 

b1gb<-cogb['gb'] 

se_gb[i]<-b1gb+0.4 

 

gm_c<-matchit (gc~w1+w2+w3+w4+w5+w6+w7,data=data3,method = "genetic",pop.size=500) 

dgm_c<-match.data (gm_c) 

lggc<-lm (yc~gc,data=dgm_c) 

cogc<-coef (lggc) 

b0gc<-cogc[' (Intercept)'] 

b1gc<-cogc['gc'] 

se_gc[i]<-b1gc+0.4 

 

gm_d<-matchit (gd~w1+w2+w3+w4+w5+w6+w7,data=data4,method = "genetic",pop.size=500) 

dgm_d<-match.data (gm_d) 

lggd<-lm (yd~gd,data=dgm_d) 

cogd<-coef (lggd) 

b0gd<-cogd[' (Intercept)'] 

b1gd<-cogd['gd'] 

se_gd[i]<-b1gd+0.4 

 

gm_e<-matchit (ge~w1+w2+w3+w4+w5+w6+w7,data=data5,method = "genetic",pop.size=500) 

dgm_e<-match.data (gm_e) 

lgge<-lm (ye~ge,data=dgm_e) 

coge<-coef (lgge) 



 

77 

b0ge<-coge[' (Intercept)'] 

b1ge<-coge['ge'] 

se_ge[i]<-b1ge+0.4 

 

 

gm_f<-matchit (gf~w1+w2+w3+w4+w5+w6+w7,data=data6,method = "genetic",pop.size=500) 

dgm_f<-match.data (gm_f) 

lggf<-lm (yf~gf,data=dgm_f) 

cogf<-coef (lggf) 

b0gf<-cogf[' (Intercept)'] 

b1gf<-cogf['gf'] 

se_gf[i]<-b1gf+0.4 

 

gm_g<-matchit (gg~w1+w2+w3+w4+w5+w6+w7,data=data7,method = "genetic",pop.size=500) 

dgm_g<-match.data (gm_g) 

lggg<-lm (yg~gg,data=dgm_g) 

cogg<-coef (lggg) 

b0gg<-cogg[' (Intercept)'] 

b1gg<-cogg['gg'] 

se_gg[i]<-b1gg+0.4 

} 

mse_ca<-mean (se_ca,na.rm=TRUE) 

mse_cb<-mean (se_cb,na.rm=TRUE) 

mse_cc<-mean (se_cc,na.rm=TRUE) 

mse_cd<-mean (se_cd,na.rm=TRUE) 

mse_ce<-mean (se_ce,na.rm=TRUE) 

mse_cf<-mean (se_cf,na.rm=TRUE) 

mse_cg<-mean (se_cg,na.rm=TRUE) 

 

mse_pa<-mean (se_pa,na.rm=TRUE) 

mse_pb<-mean (se_pb,na.rm=TRUE) 

mse_pc<-mean (se_pc,na.rm=TRUE) 

mse_pd<-mean (se_pd,na.rm=TRUE) 

mse_pe<-mean (se_pe,na.rm=TRUE) 

mse_pf<-mean (se_pf,na.rm=TRUE) 

mse_pg<-mean (se_pg,na.rm=TRUE) 

 

mse_ga<-mean (se_ga,na.rm=TRUE) 

mse_gb<-mean (se_gb,na.rm=TRUE) 

mse_gc<-mean (se_gc,na.rm=TRUE) 

mse_gd<-mean (se_gd,na.rm=TRUE) 

mse_ge<-mean (se_ge,na.rm=TRUE) 

mse_gf<-mean (se_gf,na.rm=TRUE) 

mse_gg<-mean (se_gg,na.rm=TRUE) 

 

mse<-rbind (mse_ca,mse_cb,mse_cc,mse_cd,mse_ce,mse_cf,mse_cg,mse_pa,mse_pb, 
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mse_pc,mse_pd,mse_pe,mse_pf,mse_pg,mse_ga,mse_gb,mse_gc,mse_gd,mse_ge,mse_gf, 

mse_gg) 

mse 

} 


