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ABSTRACT 

Septic systems, also known as onsite wastewater treatment systems (OWTS), are used 

widely across the southeast of U.S. As widely as these systems are used in the southeast and 

other parts of the U.S., their impact on microbial water quality has not been elucidated to allow 

for their proper management at the watershed level. The overall goal of this study was to isolate 

septic system impact at the watershed level by using multiple approaches including targeted 

monitoring of fecal indicator bacteria (FIB) and microbial source tracking (MST) markers as 

well as watershed scale modeling. Twenty four urbanizing watersheds impacted by a gradient of 

septic system density and land use characteristics were monitored over a three year period for 

water quality parameters including the FIB E. coli and enterococci, human-specific 

Bacteroidales genetic markers and standard water quality parameters (pH, dissolved oxygen, 

temperature, specific conductance). Septic system influence on fecal bacteria loads at the 

watershed level was also modeled with the soil and water assessment tool (SWAT). Correlation 

and multivariable regression analysis indicate that septic systems, specifically the density of 

septic systems and the proximity of septic systems to streams, were significant drivers of fecal 



pollution in urbanizing watersheds of metropolitan Atlanta. The influence of septic systems was 

seasonally dependent with the strongest impact observed in spring season. Analysis of the 

human-associated marker showed strong negative correlation (r = -0.64) to the proximity of 

septic systems to streams during the spring season. Additionally, the human marker was 

significantly higher in high density watersheds compared to low density areas overall. SWAT 

model results show septic system influence as a result of the proximity of septic systems to local 

streams, with the most significant influence observed when septic systems are less than 10 m 

from nearby streams. This study provides tools that can be used at the watershed level to 

understand the impact of septic systems on microbial water quality. The study findings can be 

used to support decisions regarding septic system management to protect water resources.  
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CHAPTER 1 

INTRODUCTION 

Septic systems have been reported to impact the quality of groundwater and surface water 

resources in the United States and other parts of the world (Carroll et al., 2005; Gerba and Smith 

Jr, 2005; Scandura and Sobsey, 1997; Whitlock et al., 2002). Water quality impairments of 

concern include pathogens, elevated nitrate, and organic enrichment. These ongoing pollution 

incidents have raised serious questions about the effectiveness of septic systems. In recent years, 

growing concerns over public health and environmental impacts have resulted in improved 

controls over point sources of contaminants (Kramer et al., 2006). Control measures have been 

developed based on improved characterization of point sources and their impacts on water 

quality. In contrast, controls over non-point sources (e.g. septic systems) are either non-existent 

or where they exist have proved to be inadequate because of limited data on the sources and fate 

of pollutants. It is therefore vital, in the interest of public health and environmental protection, to 

evaluate the contribution of non-point sources such as septic systems in the context of 

developing improved management controls.  

Fecal pathogens account for the majority of assessed water quality impairments in the 

United States (Benham et al., 2006). Over 157,289 miles of rivers and streams in the United 

States are listed as impaired by fecal pathogens under Section 303 (d) of the Clean Water Act 

(USEPA 2016). Potential sources of pathogens identified in the report include septic systems, 

run-off from impervious surfaces and unspecified non-point sources. While a great deal is known 

about the contributions of septic systems to nutrient loads in groundwater and surface waters, the 
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same cannot be said of septic systems’ contribution to pathogen loads in groundwater and 

surface waters. Very little is known about the relative contributions of septic systems, storm-

water run-off, livestock and wild animals to the total pathogen load at the watershed scale to 

enable effective control of sources (Cahoon et al., 2006; Carroll et al., 2005; Lipp et al., 2001). 

Furthermore, the relationship between contaminant load, sources and septic system density has 

not been clearly established.   

Several approaches have been used to implicate septic systems in pathogen 

contamination. A couple of studies employed direct measurements of FIB to link septic systems 

to the occurrence of pathogens in groundwater and surface waters (Arnade, 1999; Atoyan et al., 

2011; Cahoon et al., 2006; Lipp et al., 2001). The presence of FIB such as fecal coliforms, 

Clostridium perfringes, Escherichia coli (E. coli) and fecal enterococci is used as an indicator of 

contamination with other pathogenic bacteria, protozoa and viruses of fecal origin (Field and 

Samadpour, 2007). The FIB paradigm is a useful tool that signifies the presence of pathogens of 

fecal origin but tells us very little about the sources of these pathogens (Bernhard and Field, 

2000).  

Even though FIB monitoring is mandatory under current water quality monitoring 

regimes, the effectiveness of this approach has been questioned because of the isolation of 

infectious pathogens in water bodies showing low concentrations of FIB (Plummer and Long, 

2007). Others have used source tracking or tracer techniques to implicate septic systems in 

pathogen contamination (Dickerson Jr et al., 2007; Habteselassie et al., 2011; Knee et al., 2008).  

Microbial source tracking (MST) methods are currently the gold standard for tracking the 

source(s) of fecal pollution at the watershed level (Dickerson Jr et al., 2007; Griffith et al., 2003; 

McQuaig et al., 2006). In the long-term, several authors (Boehm et al., 2003; Field and 
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Samadpour, 2007; Habteselassie et al., 2011; Noble et al., 2006) have suggested multiple 

approaches utilizing targeted pathogen monitoring, FIB for baseline monitoring coupled with 

MST to determine pathogen sources.  

Other studies have reached contrasting conclusions about the contribution of septic 

systems to pathogen loads in groundwater and surface waters (Thompson et al., 2012; Mallin et 

al., 2000; Young and Thackston, 1999). Research by Thompson et al. (2012) showed no 

correlations between septic systems and pathogen levels in groundwater and surface waters even 

though septic systems significantly contributed to nutrient loads in groundwater and surface 

waters. Inconsistencies in research results can be attributed to differences in local conditions of 

soil, precipitation, temperature, solar radiation and hydrologic regimes that influence pathogen 

dynamics in soil and water. Variability in the above controls affects sorption, predation and die-

off of pathogens at the drainfield and watershed scales (Habteselassie et al. 2011; Beal et al., 

2005). Understanding the interrelationships between local controls and septic system 

performance is therefore critical to our search for local solutions to protect public health and the 

environment from elevated pathogen concentrations in water.  

It has been widely reported that increasing septic system density has a direct impact on 

pathogen loads in nearby surface waters (Atoyan et al., 2011; Cahoon et al., 2006; Lipp et al., 

2001). The authors correlated increasing septic system density to high pathogen concentrations 

in surface waters. This assertion is debatable because of poor definition of what constitutes high 

or low density systems. Such inconsistencies have led to non-comparable results; hence little 

from previous studies can be extrapolated to other areas. The situation is complicated by septic 

systems failures which can affect contaminant loads significantly (Habteselassie et al., 2011). 

For example, a failed septic system in a low density impacted watershed can increase the 
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discharge of pollutants several fold. Previous studies have also largely focused on the impacts of 

high density of septic systems on coastal waters, with little known about the potential impacts of 

varying watershed sizes and land-use distribution on water quality in streams and rivers.   

A better understanding of septic system impacts at the watershed scale, and watershed 

characteristics influencing contaminant fate and transport will be instrumental to the 

development of watershed management programs. Significantly, after years of extensive research 

in urban watersheds there is still inadequate information about the dynamics of pollutant 

transport and fate in the environment (Carey et al., 2013). The identification of pollutant sources 

has become vital because of the requirements to develop total maximum daily load (TMDL) to 

facilitate the restoration of impaired water bodies (Habteselassie et al., 2011). In Georgia, where 

over 600 stream segments are listed as impaired by fecal coliforms (GDNR, 2011), TMDL 

development is crucial for the restoration of these water bodies to water quality standards. Water 

bodies that are not listed as impaired under Section 303 (d) of Clean Water Act will also benefit 

substantially from management programs based on improved characterization and quantification 

of contaminant sources.  

Objectives of study 

The overall goal of this study was to determine the impact of septic systems on microbial 

water quality of streams in watersheds impacted by a gradient of septic system density. The 

major hypothesis to be tested is that areas of high septic system density are at increased risk of 

fecal pollution compared to areas of low septic system density. This hypothesis depends on the 

proper identification of the contribution of septic systems to fecal contamination in streams – 

previous studies have not clearly established the contribution of septic systems to fecal pollution 

at the watershed scale. This study utilizes multiple approaches consisting of targeted monitoring 
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of FIB, MST and watershed scale modeling, to evaluate the impact of septic systems on 

microbial water quality at the watershed scale. To achieve the project goal, the following 

objectives have been set;  

1. Identify the influence of septic systems and land use characteristics on stream fecal 

pollution at the watershed level 

2. Isolate and quantify the impact of septic systems in streams of watersheds with variable 

density of septic systems using bacterial and viral genetic markers 

3. Model septic system impact on microbial water quality with the soil and water 

assessment tool (SWAT)  

Three approaches were employed to address the objectives outlined above. First, we 

monitored FIB numbers in streams of well-characterized urbanizing watersheds with varying 

septic system density. This study, which is covered in Chapter 3, addresses the question of fecal 

pollution sources outlined in Objective 1. Chapter 4 of this dissertation research presents data on 

the use of MST methods to isolate the influence of septic systems in our study watersheds. This 

will fulfill Objective 2 of our study. Finally, we used the SWAT watershed scale model to 

predict the impact of septic systems on stream fecal pollution loads in our study area. This 

information is covered in Chapter 5 of this dissertation.  
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CHAPTER 2 

LITERATURE REVIEW 

Status of septic systems in the United States 

Septic systems play an important role in the wastewater management infrastructure in the 

United States. According to the United States Census Bureau (2009), approximately 25% of 

housing units in the U.S. depend on septic systems for the treatment of wastewater. Recent trends 

indicate a rise in the use of septic systems in response to rapid population growth and the 

concomitant increase in housing. The USEPA (2002) estimates that ~33% of all new built homes 

use septic systems. Moreover, septic systems are now considered as a viable low-cost, long-term, 

decentralized approach to wastewater treatment if they are planned, designed, installed, operated 

and maintained properly (USEPA, 2002). This is in contrast to previous thinking which 

considered septic systems as temporally installations to be replaced eventually by centralized 

wastewater treatment systems.  

The U.S. Census Bureau (2009) estimates that approximately 26 million homes, 

businesses and recreational facilities nationwide use septic systems as the primary method of 

wastewater treatment. These systems collect, treat, and release about 4 billion gallons of treated 

effluent daily (USEPA, 2002). The majority of septic systems are found in small communities 

(those with fewer than 10,000 people) and in these communities greater than 61% of housing 

units rely on septic systems for their wastewater treatment needs (U.S Census Bureau, 2009). 

Nationally, the distribution and density of housing units with septic systems varies widely across 

regions and states. According to the USEPA (2002), greater than one third of homes in the 
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Southeast use septic systems, including 48% in North Carolina, 43% in Alabama, 40% in South 

Carolina and about 36% in Georgia. Additionally, one third of new homes nationwide rely on 

septic systems, emphasizing its importance and highlights the significance of septic systems in 

meeting current and future wastewater treatment needs.  

Septic systems impact on water quality 

It has long been known that improperly functioning or poorly maintained septic systems 

are sources of pollution that contaminate surface and ground waters (USEPA, 2002). Even 

properly functioning systems have been reported to contribute significantly to pollutant loads in 

surface waters after high precipitation events (Arnade, 1999; Habteselassie et al., 2011). Several 

studies have implicated septic systems in the impairment of ground water and surface water 

resources with contaminants including pathogens, organic pollutants and nutrients (Badruzzaman 

et al., 2012; Lapworth et al., 2012; Mallin and McIver, 2012; Weiskel et al., 1996). Over the last 

couple of decades, nutrients such as nitrogen and phosphorus have received the most attention 

due to apparent public health and environmental impacts of elevated levels of these 

contaminants. Human and environmental health impacts such as eutrophication leading to 

reductions in fish populations have combined to drive efforts at the local and national levels to 

reduce nutrient concentrations in water bodies (Badruzzaman et al., 2012; Kramer et al., 2006). 

The impacts of pathogens until recently, have received very little attention at the local and 

national level.  

Septic systems and surface water quality 

Microbial contamination of surface waters is commonly associated with septic systems. 

Atoyan et al. (2011) evaluated microbial water quality of the Pettaquamscutt River, Rhode 

Island, and observed high counts of fecal coliform and enterococci bacteria. The authors 
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attributed contamination to the high density of septic systems around the monitoring stations. 

Cahoon et al. (2006) reports of long-term closures of shellfish harvesting areas in coastal waters 

in Southwestern Brunswick County, North Carolina. The authors attributed this phenomenon to 

fecal coliform contamination. Evaluation of water quality data from sampling locations pointed 

to septic systems as the major contributor to fecal coliform bacteria loads. Comparisons of septic 

systems to storm water runoff to determine sources of fecal coliform showed that even in 

instances where storm water runoff was influential, the source of the pathogens was traceable to 

wastewater originating from failing septic systems. 

Coastal water contamination with E. coli, enterococci and Bifidobacteria (Conn et al., 

2012; Thompson et al., 2012; Plummer and Long, 2007), Cryptosporidium and Giardia (Lipp et 

al., 2001a, b) originating from septic systems has also been reported. According to Conn et al. 

(2012) coastal areas with shallow groundwater and sandy soils are at most risk from septic 

system failure and hence contamination by total coliform bacteria. A combination of high 

rainfall, high septic system density and the frequent occurrence of episodic precipitation events 

such as hurricanes and tropical storms in coastal climates have been linked to septic system 

failures (Habteselassie et al., 2011). In North Carolina, approximately 429,000 acres of potential 

shell-fishing waters have been permanently closed due to fecal coliform impairments (Conn et 

al., 2012). Fecal bacteria impairments also impact the recreational use of coastal water resources. 

Frequent closures of public beaches in Virginia have been attributed to high enterococci counts 

that exceeded regulatory thresholds (Dickerson Jr et al., 2007). 

Human enteric viruses have been detected in surface waters in watersheds impacted by 

effluent from septic systems (Lipp et al., 2001a, b). Frequently, enteric viruses have been 

detected in water samples even though FIB concentrations have been within threshold values 
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(Harwood et al., 2005; Hörman et al., 2004). Viruses have also been shown to migrate long 

distances away from their origin and show remarkable survivability; remaining viable for long 

periods of time (Lipp et al., 2001a). Lipp et al. (2001b) isolated enteroviruses in Sarasota Bay, 

Florida with virus concentrations ranging from 0.17 to 0.77 infectious units 100 l-1. These viruses 

are known to be infectious at relatively low concentrations (Rodríguez-Lázaro et al., 2012). Paul 

et al. (2000) studied viral fate and transport in Florida Keys and found that viral pathogens 

seeded into septic tanks migrated at rates ranging from 1.7 m hr-1 to an astounding 57.5 m hr-1. 

Viral particles were also detected in adjacent canals within 3 hrs and 15 min after seeding under 

local conditions. Additionally, some enteric viruses are thought to be zoonotic and differ in 

persistence, pathogenicity and infectivity (Rodríguez-Lázaro et al., 2012). 

Septic systems and groundwater quality 

The relationship between septic systems and groundwater quality has been widely studied 

with evidence of water quality impairments reported. The contributions of septic systems to 

groundwater recharge (Bremer and Harter, 2012; Landers and Ankcorn, 2008; Burns et al., 2005) 

signifies the potential for transfer of contaminants from septic system drainfield to underlying 

groundwater resources. Bremer and Harter (2012) concluded, based on detailed groundwater 

flow and transport modeling, that areas with high spatial septic density are more susceptible to 

groundwater contamination with leachate from septic systems compared to low density septic 

areas. Arnade (1999) reported significant fecal coliform contamination of groundwater in wells 

located 12 m to 36 m away from septic tanks. The results showed a strong correlation between 

increasing fecal coliform contamination and decreasing distance between wells and septic tanks. 

Also, the results indicated a strong influence of seasons on contaminant loads, with samples 
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showing twice as much fecal coliform contamination in the wet season compared to the dry 

season.  

Other pathogenic bacteria and viruses have been detected in groundwater near septic 

systems. In most instances the degree of contamination is related to the density of septic systems, 

status of septic systems i.e. whether systems are functioning properly or failing, and the 

hydrologic, soil and climatic factors which control the fate and transport of contaminants 

(Cahoon et al., 2006; Habteselassie et al., 2011; Lipp et al., 2001a; Lipp et al., 2001b). Direct 

monitoring of groundwater wells revealed significant loads of total coliforms, E. coli and 

enterococci in groundwater near septic systems (Conn et al., 2012; Habteselassie et al., 2011). 

High contaminant loads in monitoring wells was attributed to hydraulic and treatment failures of 

septic systems.  

Approaches to fecal source tracking 

The identification of sources of pathogens and other contaminants in water is driven by 

the need to quantify the relative contributions of sources in order to develop best available 

management techniques to protect and improve water quality (Plummer and Long, 2007). The 

identification of pollutant sources has become vital due to the requirements to develop total 

maximum daily load (TMDL) under section 303(d) of the Clean Water Act to facilitate the 

restoration of impaired water bodies (Habteselassie et al., 2011). Typically, standard methods of 

monitoring FIB have been used to assess the quality of water and to implement control measures 

necessary to protect public health and the environment (Harwood et al., 2014). Although 

successful at identifying fecal contamination in water bodies, FIB monitoring do not identify the 

sources of contaminants (Cahoon et al., 2006; Field and Samadpour, 2007; Habteselassie et al., 

2011; Plummer and Long, 2007). Multiple approaches utilizing targeted pathogen monitoring, 
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FIB for baseline monitoring coupled with MST has been suggested (Field and Samadpour, 2007; 

Habteselassie et al., 2011).  

The presence of diverse non-point sources of fecal contamination at the watershed scale 

presents challenges to water resource management (Carroll et al., 2005). Carroll et al. (2005) 

observed that the numerous possible sources of pathogens at the watershed scale make it difficult 

to isolate septic systems as a prominent source of fecal pollution. In a comparative study of 

failing and properly functioning septic systems, Habteselassie et al. (2011) suggested the 

contribution of other fecal sources to E. coli and enterococci contamination. Non-point sources 

that have been widely implicated at the watershed scale include storm-water run-off (Cahoon et 

al., 2006), wildlife (Habteselassie et al., 2011) and livestock (Parajuli et al., 2009). Uncertainty in 

source discrimination can be reduced through the development of new methods and approaches 

for identifying and quantifying fecal sources at the watershed scale (Griffith et al., 2010). 

Conventional and emerging approaches for MST at the watershed scale have been 

previously described (Tran et al., 2015; Wuertz et al., 2011; Field and Samadpour, 2007). MST 

techniques are divided into library-dependent and library-independent methods depending on 

whether the method requires a library (a database of bacterial isolates or patterns or traits from 

fecal samples of known origin) (Plummer and Long, 2007; Stoeckel and Harwood, 2007). 

Library-dependent methods are most often culture-based, requiring the culture of environmental 

isolates from water samples (Field and Samadpour, 2007; Stoeckel and Harwood, 2007). 

Library-independent methods on the other hand are based on sample-level detection of source-

specific microbial genetic markers (Roslev and Bukh, 2011). The use of host-specific genetic 

markers in source tracking studies has increased in recent years due to improvements in 

molecular methods leading to rapid turn-around for genetic assays (Field and Samadpour, 2007). 
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Comparative studies of source tracking methods found host-specific molecular assay to be best at 

differentiating between human and non-human fecal sources (Griffith et al., 2003).  

MST methods employing Bacteroidales genetic markers have shown remarkable promise 

for rapid source identification and quantification of fecal sources in environmental water samples 

(Ahmed et al., 2016; Stoeckel and Harwood, 2007; Griffith et al., 2003). Several studies have 

applied these markers for source identification in the U.S. (Boehm et al., 2013; Stewart et al., 

2013; Shanks et al., 2010), Europe (Gawler et al., 2007; Gourmelon et al., 2007) and other parts 

of the world (Ahmed et al., 2009; Jenkins et al., 2009). Moreover, Bacteroidales markers have 

showed high sensitivity and specificity in comparative studies (Griffith et al., 2003; Stoeckel and 

Harwood, 2007). Viral genetic markers have also been employed successfully to track the 

sources of enteric viruses in water samples (Wong et al., 2012). Noble et al. (2006) used PCR to 

detect and quantify markers of human fecal contamination including a human-specific 

Bacteroides marker and enteroviruses in surface water near Santa Monica Bay, California. 

Boehm et al. (2003) also employed human specific Bacteroides sp. and enterovirus to implicate 

human sewage in fecal contamination in coastal surface waters and groundwater of the 

California coast. Some genetic markers including Bacteroidales are geographically stable and 

generally persist long enough to be detectable in natural water samples (Field and Samadpour, 

2007). 

Modeling bacteria loads at the watershed level  

Watershed models have been used as part of an integrated watershed management 

approach to forecast peak flow, assess the effect of land use change, identify options for 

reduction of non-point sources of pollution, model source-specific pollution, analyze causes of 

nutrient loss and assess climate change impacts among others (Yang et al., 2008). Distributed 



17 
 

watershed models such as SWAT (Soil Water Assessment Tool) are designed to predict the 

impact of management on water, sediment, microbial loads and agricultural chemical yields in 

ungaged watersheds (Gassman et al., 2007). Few studies have used SWAT to model the 

contribution of septic systems to fecal contamination at the watershed scale (Niazi et al. 2015; 

Frey et al., 2013; Parajuli et al., 2009; Coffey et al., 2010). Parajuli et al. (2009) used FIB and 

antibiotic resistance analysis to model source specific fecal bacteria. This model which was first 

calibrated for flow and sediment, was used to first model single sources of bacteria (livestock or 

human or wildlife) and then the combined effects of two sources were also evaluated. Results 

indicated poor agreement between simulated and observed results for single sources whilst the 

combined sources showed results ranging from unsatisfactory to good. The authors 

recommended further research to address uncertainties in results stemming from bacteria source 

tracking (BST) uncertainty and spatial variability. 

 In other studies, Frey et al. (2013) estimated that approximately 4 septic systems were 

failing in an agricultural watershed in the 178 km2 Payne River watershed in Ontario, Canada. 

The contribution of these failing systems was treated as a point source input in the model. Niazi 

et al. (2015) treated input from failing septic systems as a fertilizer management operation in a 

rural watershed in Salem County, New Jersey. Similar to other work in the literature, the study 

by Niazi et al. (2015) focused on a rural watershed dominated by agricultural land use. Septic 

systems’ influence on fecal bacteria loads in areas not dominated by agricultural land use has 

received very little attention. The limited studies that have modeled septic system impact at the 

watershed level shows promise, however further studies are needed to assess the performance 

and reliability of these models for predicting septic system influence in mixed use watersheds.  
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CHAPTER 3 

INFLUENCE OF SEPTIC SYSTEMS AND LAND USE CHARACTERISTICS ON STREAM 

FECAL POLLUTION AT THE WATERSHED LEVEL1 

 

 

  

                                                 
1 Sowah, R., Zhang, H., Radcliffe, D., Bauske, E., and Habteselassie, M. Y. 2014. Journal of Applied 
Microbiology 117, 1500-1512. Reprinted here with permission of the publisher. 
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ABSTRACT 

This study aims to identify the sources of fecal pollution in suburban watersheds and in 

so doing determine the impact of septic systems on microbial water quality. Water samples were 

collected from streams in 24 well characterized watersheds during baseflow to analyze for the 

levels of fecal indicators E. coli and enterococci. The watersheds represent a gradient of land use 

conditions from low to high density of septic systems, as well as developed to undeveloped uses. 

Our findings indicate statistically significant interaction between septic density and season for 

enterococci count (p = 0.005) and stream yield (p = 0.04). Seasonal variations in bacterial count 

and stream yield were also observed, with significant differences between spring-fall and 

summer-fall. Results from multiple linear regression models suggest that land use (including 

septic system density, average distance of septic systems to streams, percent developed area and 

forest cover) and water temperature could explain approximately half (R2 = 0.50) of the 

variability in bacterial count and yield in spring and summer. There is a significant positive 

relationship between septic system density and fecal pollution levels. However, this relationship 

is season dependent and is influenced by watershed level characteristics such as average distance 

of septic systems to streams, percent developed area and forest cover. This study confirms the 

significant impact of septic systems on fecal pollution during baseflow and provides the tools 

that will enable effective pollution monitoring at the watershed scale. 
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INTRODUCTION 

As widely as septic systems are used for wastewater treatment in the U.S., their impact on 

water quality have not been clearly elucidated. This scenario is nowhere more evident than in 

southeastern U.S. where approximately 40% of residential housing units use septic systems for 

wastewater treatment (U.S. EPA, 2002). There is no doubt that septic systems serve an important 

wastewater treatment need in suburban and rural settings where centralized wastewater treatment 

facilities are non-existent. Of significant concern, however, are recent reports that implicate 

septic systems and non-point sources in general in widespread fecal pollution of surface waters 

(U.S. EPA, 2014; U.S. EPA, 2013). It is generally agreed that non-point sources such as septic 

systems, agricultural runoff and wildlife have become the greatest threat to surface water quality 

in the wake of stringent controls over point sources of contamination under the Clean Water Act 

(Conn et al., 2012; Carroll et al., 2005). The public health risks, ecological implications and 

socio-economic impact associated with fecal pollution of surface waters are well documented in 

previous studies (Field and Samadpour, 2007; McQuaig et al., 2006; Gerba and Smith Jr, 2005; 

Borchardt et al., 2003). These concerns have heightened the need to identify the impact of septic 

systems at the watershed level to aid management efforts.     

Identifying the sources of fecal pollution at the watershed level is an important element in 

current water quality management strategies such as the total maximum daily load (TMDL) 

(Ahmed et al., 2012; Habteselassie et al., 2011). However, source identification has proved 

challenging due to the presence of multiple non-point sources of fecal pollution at the watershed 

level (Carroll et al., 2005). It is therefore not surprising that most watershed management 

programs have failed to account for septic systems as a prominent source of fecal pollution. This 
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is of concern as several researchers have implicated septic systems in fecal pollution of surface 

water resources (Habteselassie et al., 2011; Cahoon et al., 2006; Carroll et al., 2005).  

In recent years, multiple approaches encompassing FIB monitoring, targeted pathogen 

monitoring and MST techniques have been suggested as a long-term solution to the challenges 

arising from the diverse sources of fecal pollution at the watershed level (Habteselassie et al., 

2011; Field and Samadpour, 2007; Noble et al., 2006; Boehm et al., 2003). In the short-term, FIB 

monitoring, which is an established water quality assessment tool, can be combined with analysis 

of watershed level characteristics to identify the sources of fecal pollution. A number of studies 

have used this approach to identify the sources of fecal pollution at the watershed level (Sauer et 

al., 2011; Burns et al., 2005; Hatt et al., 2004; Mallin et al., 2000). Burns and co-workers 

assessed the effects of impervious area on pollutant levels in a suburban catchment near New 

York City. The authors reported that the levels of pollutants in developed areas were elevated 

relative to an undeveloped watershed. Mallin et al. (2000) examined the effect of land use factors 

on fecal pollution and noted that percentage impervious coverage explained as much as 95% of 

the variation in FIB abundance in estuarine systems.  

Other studies have considered the influence of septic systems on microbial quality of 

surface waters (Atoyan et al., 2011; Lipp et al., 2001a; Lipp et al., 2001b; Young and Thackston, 

1999). There is anecdotal evidence that increased septic system density leads to increased 

pollutant levels in surface waters (Mallin and McIver, 2012; Lipp et al., 2001a). In contrast, 

Young and Thackston (1999) noted that the true impact of septic systems at the watershed level 

may be masked by the complexity of sources in a mixed use watershed. In a similar study, 

Thompson et al. (2012) found no association between septic system density and FIB levels in an 

island community off the coast of Florida. Available studies on septic system impacts at the 
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watershed level have focused on large catchments and predominantly estuarine or marine waters 

(Mallin and McIver, 2012; Carroll et al., 2005; Lipp et al., 2001a). Thus, the results from these 

studies are not easily applicable to small watersheds and the streams that drain these watersheds. 

Typically, runoff-induced septic system impacts have received the bulk of attention with little 

emphasis on septic systems’ impacts during baseflow. In an attempt to bridge this knowledge 

gap, Landers and Ankcorn (2008) evaluated the influence of septic systems on baseflow quantity 

and specific conductance over one dry season in 2007. The authors, who investigated the same 

watersheds used in the present study, observed significant increases in baseflow quantity and 

specific conductance with increasing septic system density. The present study would address the 

impact of septic systems on microbial water quality as well as capture any seasonal patterns in 

septic system impacts.   

The overall goal of our study was to understand the dynamics of septic systems’ impact 

at the watershed level as influenced by land use characteristics. To the best of our knowledge, no 

published work has considered the impact of septic systems on microbial water quality across a 

broad septic density gradient. Also, the relationships between septic system density and fecal 

pollution, and the influence of land use factors on this interaction must be explored further to 

identify trends. The working hypothesis in the present study was that increasing septic system 

density increases fecal pollution levels in streams under baseflow conditions. Our objectives 

included the evaluation of temporal and spatial variations in fecal pollution levels in streams of 

urbanizing watersheds with varying septic density. Also, we intended to isolate septic system and 

watershed level factors that influence microbial water quality under baseflow conditions.  
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MATERIALS AND METHODS 

Site characterization 

The study area is in Gwinnett County, northeast of Atlanta, GA and has a mean annual 

precipitation of about 1245 mm (National Weather Service; 

http://www.nws.noaa.gov/climate/xmacis.php?wfo=ffc). The study area consists of 24 

watersheds which range in size from 0.18 to 8.81 km2. A map of the study area and watershed 

boundaries, modified from Landers and Ankcorn (2008), is presented in Figure 3.1.  The selected 

watersheds are in the Ocmulgee and Oconee River basins, which drain to the Altamaha River 

and ultimately into the Atlantic Ocean. The selected watersheds are typical of urbanizing 

watersheds along the Interstate 85 corridor in the southeastern Piedmont region of the U.S. This 

region, which has seen rapid population growth over the past two decades, depends largely on 

surface water for more than 65% of public water supply. The watersheds represent a gradient of 

land use conditions from low to high density of septic systems, as well as developed to 

undeveloped uses. Watersheds 1 – 11 and 15 are characterized as having low density of septic 

systems (LD) with the remaining twelve characterized as having high density of septic system 

(HD). An arbitrary threshold of less than 38 septic systems per km2 was set for LD watersheds 

and greater than 77 septic systems per km2 for HD watersheds (Table 3.1). These thresholds took 

into consideration the U.S. EPA’s designation of areas with greater than 15 units/km2 as regions 

of potential groundwater contamination. Considering that the EPA’s recommendation was 

published over three decades ago (U.S. EPA, 1977) and the intervening years, especially the past 

20 years have seen improvements in septic system technology and regulation, we decided to 

raise the low density threshold to 38 units/km2.   

http://www.nws.noaa.gov/climate/xmacis.php?wfo=ffc
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Watershed characteristics were determined from spatial datasets processed in geographic 

information systems. Watershed characteristics described by Landers and Ankcorn (2008) and 

land uses determined using the StreamStats interactive map of Georgia 

(http://water.usgs.gov/osw/streamstats/georgia.html) are shown in Table 3.1. The average septic 

density (units km-2), percent impervious coverage and percent agricultural land use are 22, 6.7 

and 32.5 respectively for LD, and 216, 18.3 and 4.2 respectively for HD watersheds. Other 

watershed selection criteria in addition to septic density included similar geological setting, 

precipitation, climate, accurate base-flow measurement locations and available spatial datasets of 

natural, infrastructure and water-use characteristics. Weather data for the area was collected from 

the Georgia Automated Environmental Monitoring Network (http://www.georgiaweather.net/). 

Additional information on site characteristics can be found in Landers and Ankcorn (2008). 

Sample collection  

Surface water samples from streams in the 24 watersheds were collected during baseflow 

on 7 sampling events spanning November, 2011 to November, 2013, creating a data set with two 

spring samples, two summer samples and three fall samples. Baseflow conditions were 

determined using long-term discharge measurements at two USGS stream gages 

(http://waterdata.usgs.gov/ga/nwis/uv/?site_no=02205522; http://waterdata.usgs.gov/ga/nwis/uv 

/?site_no=02207385) near the study site. Also, baseflow sampling coincided with periods of zero 

precipitation 72 hours prior to the sampling event. Baseflow sampling (n = 168) coincided with 

the spring (n = 48; March 2012 and April 2013), summer (n = 48; July 2012 and 2013) and fall 

(n = 72; November 2011, 2012 and 2013) seasons.  At each monitoring station, samples were 

collected in duplicate in 1 L sterile high-density polypropylene, screw-capped bottles.  Samples 

were kept on ice and transported to the laboratory for analysis (usually within 6 hours of sample 

http://water.usgs.gov/osw/streamstats/georgia.html
http://www.georgiaweather.net/
http://waterdata.usgs.gov/ga/nwis/uv/?site_no=02205522
http://waterdata.usgs.gov/ga/nwis/uv
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collection). Sample collection and analysis followed guidelines of the National Field Manual for 

the Collection of Water-Quality Data (USGS, variously dated). Baseflow discharge (m3 sec-1) 

was measured at each monitoring point during sampling events by our project partners at the 

United States Geological Survey (USGS) Georgia Water Science Center in Atlanta. The 

velocity-area method (Rantz, 1982) was used for discharge measurements. Environmental water 

quality parameters including pH, temperature, dissolved oxygen and specific conductance were 

measured during sampling with a calibrated Quanta multi-parameter probe (HYDROLAB, 

Loveland, CO).  

Water quality analysis 

Water samples were analyzed for the FIB E. coli and enterococci using the Colilert-18 

and Enterolert kits (IDEXX Laboratories Inc., Westbrook, ME). The Colilert-18 and Enterolert 

kits are defined substrate methods for E. coli and enterococci respectively and are U.S. 

Environmental Protection Agency (U.S. EPA) approved and are included in Standard Methods 

for Examination of Water and Wastewater. Each sample was diluted (10–fold dilution based on 

previous analysis of samples from the monitored streams) to 100 ml volume using sterile 

deionized water. The Colilert-18 and Enterolert substrates were then added to the 100 ml dilution 

to dissolve. The samples were then poured into a 97 well tray, sealed and incubated for 18 hours 

and 24 hours for E. coli and enterococci respectively. The number of positive wells, based on 

UV fluorescence, was used to estimate the MPN of E. coli and enterococci using manufacturer 

supplied MPN tables. All samples were run with negative controls (100 ml of diluent used to 

dilute samples) and followed manufacturer recommended quality control procedures.  
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Data analysis  

FIB levels in streams were expressed as stream yield (MPN sec-1 km -2) by multiplying 

FIB count (MPN 100 ml-1) by the stream discharge (m3 sec-1) to obtain the stream load. The load 

was then divided by the watershed area to give the stream yield. Both FIB count and stream yield 

were reviewed for normality and log-transformed to achieve normality prior to data analysis. 

Statistical analysis assessed the influence of environmental parameters and land use factors on 

microbial water quality in the watershed groups. The distribution free Kruskal-Wallis test was 

used to identify seasonal differences in physical and chemical water quality parameters. A 

distribution free Spearman’s rank correlation test was also used to determine correlations 

between water quality parameters and land use factors. Correlation analysis was conducted for 

each watershed group on a seasonal basis as well as for the pooled dataset. In addition, multiple 

linear regression analysis was performed to determine the combination of environmental 

parameters and land use factors driving microbial water quality in urbanizing streams. Two-way 

analysis of variance (ANOVA) was used to test differences between watershed groups and 

seasons and to see if there was a significant interaction between the factors. Tukey pairwise 

comparison test was performed when treatment groups were significantly different. All data 

analysis was performed in SAS 9.3 (SAS Institute, Cary, NC) and statistical significance 

estimated at the 95% confidence level. 

RESULTS 

Physical and chemical water quality  

The means and ranges for environmental parameters are summarized by season and for 

the pooled dataset in Table 3.2. For the pooled data, specific conductance in LD watersheds 

ranged from 25 to 85 µS cm-1 with a mean of 50.6 µS cm-1. The mean specific conductance in 
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HD watershed was 83.6 µS cm-1 with a range of 39.5 to 193 µS cm-1. The range of values for 

specific conductance, however, varied by season. Specific conductance was lowest during the 

fall months with a range of 26.5 to 65 µS cm-1 and mean of 46 µS cm-1. In comparison, the mean 

values for the spring and summer seasons were 57 µS cm-1 and 52 µS cm-1 respectively. The data 

for spring and summer were also more variable, with data ranges of 37 to 85 µS cm-1 and 25 to 

79 µS cm-1 respectively. In general, specific conductance was higher in HD watersheds than LD 

watersheds based on the pooled as well as the seasonal data. The average specific conductance 

(pooled data) for the HD watersheds was approximately 65% greater than specific conductance 

for LD watersheds. Seasonally, the mean specific conductance for HD watersheds was higher 

and the range of values more variable than LD watersheds regardless of season.  

The main effects of density and season on specific conductance were statistically 

significant with p < 0.001. Pairwise comparison showed a statistical difference (p < 0.001) 

between LD and HD watersheds. Also, statistically significant differences were observed for 

spring-fall (p <0.001), spring-summer (p =0.04) and summer-fall (p = 0.03). There was not a 

statistically significant interaction between density and season (p = 0.59). Other environmental 

water quality parameters including pH, dissolved oxygen and temperature were not significantly 

different irrespective of septic density or season (Table 3.2).  

Microbial water quality 

Microbial water quality was assessed by enumerating E. coli and enterococci levels in 

stream water samples. Table 3.3 summarizes E. coli and enterococci counts and stream yields 

across watershed groups and over seasons. E. coli count (pooled) ranged from 15 to 2,739 MPN 

100 ml-1 in LD watersheds and 10 to 1,643 in HD watersheds. Enterococci counts (pooled) were 

relatively higher, ranging from 20 to 11,401 MPN 100 ml-1 in LD watersheds and 31 to 5,963 



35 
 

MPN 100   ml-1 in HD watersheds (Table 3.3). The ranges of FIB counts were consistently wider 

in LD watersheds than HD watersheds. Bacterial stream yield, which reflects the influence of 

streamflow and watershed area, followed a similar trend (Table 3.3). The data also suggests 

widespread fecal pollution across both LD and HD watersheds (Figure 3.2). In LD watersheds, 

approximately 49% of all samples exceeded the one-time single sample E. coli action value for 

recreational water use of 235 MPN 100 ml-1. The percentage of samples that exceeded the E. coli 

threshold in HD watersheds was 45% (Figure 3.2a). Enterococci counts exceeded the single 

sample action value of 70 MPN 100 ml-1 in 90% and 92% of all samples collected in LD and HD 

watersheds respectively (Figure 3.2b). The recommended action values are provided in the 

revised EPA recreational water quality criteria and are described as precautionary single-sample 

threshold values for recreational water use (U.S. EPA, 2012). 

Seasonal variations in FIB count and stream yield were observed and the data is 

presented in Table 3.3 and Figures 3.2 and 3.3. Mean FIB count for a single sampling event was 

highest during summer in LD watersheds and during spring in HD watersheds (Figure 3.2a). 

Two-way ANOVA showed no significant interaction between septic system density and season 

for E. coli count and stream yield (Table 3.4). Detailed analysis of the effect of septic system 

density on E. coli count and stream yield showed no significant differences between HD 

watersheds and LD watersheds within season. The effect of season on E. coli count was varied, 

with significant differences observed for spring-fall (LD; p = 0.04), spring-fall (HD; p = 0.044), 

summer-fall (LD; p = 0.008) and summer-fall (HD; p = 0.03); spring-summer was however not 

statistically different in both watershed groups. The stream yield of E. coli showed a similar 

seasonal pattern, with significant differences between spring-fall (LD and HD; p <0.001), 

summer-fall (LD and HD; p <0.001). E. coli yield was not significantly different between spring 
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and summer in both watershed groups. The outcome of two-way ANOVA test (Table 3.4) show 

statistically significant interaction between septic system density and season for enterococci 

count (p = 0.005) and stream yield (p = 0.04). The main effect of season and watershed density 

was therefore difficult to generalize due to the significant interaction between the factors. 

Typically, FIB was lower in count and stream yield during the fall (Figures 3.2 and 3.3).  

Land use/water quality relationships 

The influence of land use factors on water quality indicators was evaluated through 

correlation analysis (Tables 3.5 and 3.6). Five main land use factors, namely septic systems 

density, average distance of septic to streams, percent agriculture land use, percent forest cover 

and percent developed area, were evaluated to determine their impact on fecal pollution 

dynamics in the monitored streams. Spearman rank correlation between microbial and 

physicochemical water quality/land use parameters by watershed density (Table 3.5) show a 

positive and moderate correlation (r = 0.42) between E. coli count and percent agricultural land 

use in LD watersheds. As expected, agricultural activities remain the dominant source of fecal 

pollution in LD watersheds. In HD watersheds, agricultural land use was negatively correlated (r 

= -0.28) with E. coli count as envisaged because other land use factors play a more significant 

role than agriculture. Septic system density, percent impervious area and average distance of 

septic to streams were negatively correlated with E. coli count in LD watersheds. Positive 

correlation, albeit weak correlation was observed between E. coli count and other land use 

factors including septic system density, percent impervious area and percent developed area in 

HD watersheds. E. coli stream yield showed a similar correlation pattern to E. coli count.  

Enterococci count, similar to E. coli, was positively correlated with septic system density 

and percent developed area in HD watersheds. Percent forest cover and agriculture on the other 
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hand were negatively correlated with enterococci count in the HD watersheds. Land use factors 

did not show significant correlations with enterococci count in LD watersheds. Enterococci 

stream yield was not significantly correlated with any land use factor in HD watersheds but was 

correlated to percent impervious area in LD watersheds. In general, FIB count and stream yield 

were significantly correlated with physical and chemical water quality parameters in both 

watershed groups. Temperature, pH and specific conductance were overall positively correlated 

with FIB count and stream yield, whilst dissolved oxygen was largely negatively correlated with 

bacterial count and yield. Temperature showed the strongest correlation with FIB count and 

stream yield amongst the environmental parameters. Analysis of relationship between microbial 

water quality indicators showed moderately positive (r = 0.49) correlation between E. coli and 

enterococci counts in LD watersheds. The relationship was positive in HD watersheds, however, 

the Spearman correlation coefficient was lower (r = 0.38).  

Relationships between FIB and land use/environmental parameters were also explored at 

the seasonal level (Data not shown). Average distance of septic systems to streams was the most 

important factor affecting microbial water quality in the spring. Our results demonstrate a 

negative correlation between average distance of septic to streams and bacterial count and stream 

yield in spring. Percent developed area, percent imperviousness and septic system density were 

all negatively associated with enterococci count in the summer whilst percent developed area 

was positively related to enterococci count during spring. With the exception of distance of 

septic system to stream, all land use factors were not significantly related to enterococci count 

during fall.  
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Multiple linear regression 

Multiple linear regression (MLR) models were developed to assess the ability of land use 

characteristics and environmental water quality parameters to predict fecal pollution in streams. 

The backward elimination procedure was employed to identify the set of variables that best 

explained variations in FIB load. The criteria for including variables in the final model included 

a variance influence factor (VIF) of less than 10 and significance of each variable at α = 0.05 

(Gonzalez, 2012; Hathaway, 2010). Details of the reduced models for each microbial water 

quality parameter, predictive variables included, VIF values and p-values are presented in Table 

3.6. Models were developed at the seasonal level due to the significant seasonal variations 

observed in microbial water quality. The reduced model for E. coli count in spring included 

percent forest cover, percent developed areas, septic system density and water temperature. The 

coefficient of determination (R2) was 0.46 for this model. In general, septic system density and 

average distance of septic to streams were important predictors of microbial water quality in 

spring. Enterococci yield exhibited the highest R2 of 0.50 in spring with average distance of 

septic to streams and septic system density being the important explanatory variables. Land use 

characteristics were not significant predictors of E. coli count and stream yield during the 

summer. Temperature appeared to play a significant role in microbial water quality during the 

summer. However, septic system density was an important predictor of enterococci count during 

the summer. The R2 for this model, which also included water temperature, was a moderate 0.50. 

Water quality parameters and land use characteristics were generally not good predictors of 

microbial water quality during fall (R2 = 0.06 to 0.23).  
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DISCUSSION 

Although there is currently no U.S. water quality standard for specific conductance, it is 

generally considered a useful indicator of water quality (Plummer and Long, 2007). Specific 

conductance, which is a measure of the amount of dissolved solutes in water, was significantly 

different between LD and HD watersheds. Consistently higher specific conductance observed in 

HD watersheds indicates a continuous source of dissolved ions in these watersheds. This 

observation agrees with results from a study by Hatt et al. (2004) which showed that increasing 

septic system density was associated with elevated specific conductance under baseflow 

conditions. Moreover, Landers and Ankcorn (2008) found septic system density to be 

statistically significant in relation to specific conductance and opined that this may indicate the 

influence of treated wastewater in HD watersheds. In our study watersheds, the only likely 

source of treated wastewater, especially in HD watersheds, is septic systems.    

FIB counts in monitored streams showed widespread fecal pollution with variations along 

temporal and spatial scales. Data (Figure 3.2) indicate that more than 49% and 90% of all water 

samples exceeded the single sample threshold for E. coli and enterococci respectively. This is a 

significant observation considering that the numbers of intestinal enterococci in feces are 

generally about an order of magnitude lower than those of E. coli (WHO, 2006). Differences in 

counts of E. coli and enterococci may be attributed to the fact that most enterococci species 

generally survive longer in water environments and are more resistant to drying (McFeters et al., 

1974). Wider ranges of FIB values observed in LD watersheds are indicative of the presence of 

multiple sources of fecal pollution. On average the percent of forest, agriculture and developed 

areas in LD watersheds are evenly distributed in the ratio 37:32:23 whereas the same land uses in 

HD watersheds are disproportionate in the ratio 25:4:69. The observed range of FIB counts in 
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LD watersheds is therefore a reflection of the variable sources of fecal pollution in these 

watersheds. Moreover, the sources impacting water quality in LD watersheds may be unstable 

(for example the activities of livestock and wildlife within the watershed), explaining the wide 

variation in bacterial counts at different sites in LD watersheds. A single sample taken in a LD 

watershed may significantly over or under estimate FIB content. The sources of fecal pollution in 

HD watersheds, with their low percentage of agricultural and forest land uses, are less varied, 

explaining the smaller range of E. coli and enterococci counts.  

Under baseflow conditions, elevated FIB counts may be indicative of continuous sources 

of fecal pollution at the watershed level (Carroll et al., 2005). Continuous sources, such as 

centralized wastewater treatment facilities are however insignificant in this study as the Georgia 

Permit Compliance System database (Georgia GIS Clearing House, https://data.georgiaspatial. 

org/index.asp) indicates no NPDES (National Pollutant Discharge Elimination System) discharge 

points within the study watersheds. In the absence of point sources, the FIB source could be 

polluted groundwater or it could be residual FIB that reached the streams in runoff during 

storms. The most likely groundwater source that is impacting the watersheds is septic systems. 

As noted by Landers and Ankcorn (2008), the annual contribution of septic systems to baseflow 

is constant, assuming steady-state water use and recharge to baseflow conditions. If FIB 

originates from runoff, then the FIB source could be a factor that is associated with developed 

areas such as pet waste or failing septic systems, especially in HD watersheds.  

Our findings suggest seasonal variations in bacterial count and stream yield at the 

watershed level. In general, E. coli counts and stream yield did not vary significantly between 

LD and HD watersheds between and within season. E. coli count and yield were however higher 

in warmer periods (spring and summer) than fall. This outcome is consistent with other studies 
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that found higher fecal bacterial counts during summer and spring in comparison to fall 

(Hathaway et al., 2010; Selvakumar and Borst, 2006). Plummer and Long (2007) observed that 

increased fecal bacterial densities in streams during the warmer months could be attributed to 

increased inputs from livestock and increased survival times of FIB. Two-way ANOVA showed 

statistically significant interaction between septic system density and season for enterococci 

count and stream yield with p-values 0.005 and 0.04 respectively. This finding is important 

considering that several studies have found enterococci to be a better fecal indicator organism 

than coliforms (Savichtcheva and Okabe, 2006; WHO, 2006; Kinzelman et al., 2003).  For future 

water quality analysis of fresh waters, complimentary monitoring of enterococci levels should be 

undertaken to provide confidence in analysis of absence/presence of fecal pollution and seasonal 

patterns of pollution levels as impacted by septic system density.  

Correlation analysis indicated that agricultural activities played a significant role in fecal 

pollution levels in LD watersheds. Positive correlation with bacterial levels was observed as 

agriculture land use increased in LD watersheds. However, increasing agriculture land use 

resulted in decreased bacterial levels in HD watersheds indicating that other sources such as 

septic systems and other suburban features may be more significant indices of fecal pollution 

levels in HD watersheds. The percent developed area, percent impervious area and septic system 

density were all positively correlated with fecal pollution as expected. Although climatic factors 

are considered the main drivers of fecal pollution during storm flow, fecal pollution during 

baseflow seem to be primarily driven by land use factors (Hatt et al., 2004; Young and 

Thackston, 1999). At the seasonal level, average distance of septic to streams appears to be the 

most significant factor influencing indicator bacterial levels in streams. This effect is prominent 

during spring when the further away streams are from septic systems resulted in lower bacterial 
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count and stream yield. It was not surprising that the average distance of septic to streams was 

most influential during spring because higher precipitation during spring should lead to higher 

rates of microbial transport from septic drainfields to streams down gradient.  

Statistical predictive models have been suggested as supplementary tools to improve 

fecal pollution monitoring (Gonzalez et al., 2012). Predictive models developed using 

generalized linear regression models have proved successful as an early warning system for 

recreational use of surface water (Francy, 2009; Telech et al., 2009). In the present study, MLR 

analysis of baseflow microbial water quality confirms that land use and water temperature 

explained approximately 50% of the variability in FIB count and yield in spring and summer. 

Land use factors that were instrumental included septic system density, average distance of 

septic to streams, percent developed area and forest cover. Land use factors and environmental 

parameters did not appear to influence variability in microbial water quality during fall with R2 < 

0.25. Additional sampling is needed or other variables should be considered to better explain 

variations in FIB content during the fall. 

CONCLUSIONS 

Our findings indicate statistically significant interaction between septic density and 

season for enterococci count and stream yield. Seasonal variations in bacterial count and stream 

yield were also observed, with significant differences between spring-fall and summer-fall. 

Results from multiple linear regression models suggest that land use (including septic system 

density, average distance of septic systems to streams, percent developed area and forest cover) 

and water temperature could explain approximately half (R2 = 0.50) of the variability in bacterial 

count and yield in spring and summer. The results also show significant positive relationship 

between septic system density and fecal pollution levels. This relationship is, however, season 
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dependent and is influenced by watershed level characteristics such as average distance of septic 

systems to streams, percent developed area and forest cover. Understanding the seasonal changes 

in FIB counts and the relationship with land use characteristics such as septic systems can inform 

decisions to bring surface waters in line with water quality standards. This study also provides 

information that can be used in predictive models to greatly increase the predictive power of 

such models. 
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Table 3.1. Septic system properties and land use characteristics in the study area  

Watershed 
ID 

Low density 
(LD) or high 
density (HD) 

of septic 
systems 

Basin area 
(km2) 

Septic 
density 

(units/km2) 

Av. 
distance of 
septic to 

stream (m) 

% Forest 
cover 

% 
Agriculture  

land use 

% 
Developed 

area 

% 
Impervious 

area 

%  
Slope 

1 LD 8.39 8 163 51.0 27.7 9.4 4.2 8.8 
2 LD 1.55 10 126 44.5 25.8 13.8 3.3 10.6 
3 LD 2.67 14 163 48.8 32.9 10.2 4.3 8.5 
4 LD 0.62 36 172 46.4 23.9 22.0 11.6 7.3 
5 LD 1.48 20 86 32.6 45.5 17.8 5.4 5.8 
6 LD 5.28 15 108 30.2 49.2 14.4 4.1 6.5 
7 LD 1.11 18 90 43.7 29.4 18.5 6.3 10.6 
8 LD 1.27 17 94 34.2 48.9 14.3 3 9.2 
9 LD 2.95 27 159 26.4 42.6 23.4 7.8 7.7 

10 LD 4.4 34 119 43.1 17.2 36.1 7.3 8.3 
11 LD 4.2 25 119 31.8 36.3 25.6 7.6 7.8 
15 LD 1.68 37 140 14.7 10.3 70.6 15.2 4.6 
12 HD 3.29 115 105 44.1 10.6 41.8 12.3 9.1 
13 HD 8.81 88 117 33.8 6.6 54.5 13.2 8 
14 HD 1.74 141 104 26.0 6.1 60.7 16.1 8.5 
16 HD 2.59 187 99 19.6 0.1 77.6 26.4 5.7 
17 HD 1.68 230 138 21.0 12.0 66.8 20.1 7.5 
18 HD 0.98 308 151 31.3 1.5 66.6 18.4 7.4 
19 HD 0.18 373 105 11.4 0.0 88.2 20.3 7.8 
20 HD 0.54 290 83 24.8 0.0 75.5 18.3 6 
21 HD 1.14 214 63 22.2 5.0 70.7 17.5 8.6 
22 HD 1.94 157 63 21.7 4.5 71.7 18.9 7 
23 HD 0.52 233 65 22.9 3.1 73.9 18.4 7.3 
24 HD 0.67 253 55 19.4 1.6 77.7 20 7.6 

Mean LD   2.97 22 128 37.3 32.5 23.0 6.7 8 
Mean HD   2.01 216 96 24.8 4.2 68.8 18.3 7.5 
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Table 3.2. Mean and ranges for environmental water quality parameters (Data summarized by season and watershed group; LD or HD 

= watersheds with low or high density of septic systems, respectively) 

 
 
 
Parameter 

Spring  Summer 
LD watersheds HD watersheds  LD watersheds HD watersheds 

Mean Low High Mean Low High  Mean Low High Mean Low High 

pH 6.64 4.45 7.18 6.22 5.16 7.4  6.87 5.75 8.2 6.82 6.13 7.6 
Dissolved oxygen 
(mg/l) 

8.34 5.99 10.4 8.85 7.02 12  8.03 6.95 9.5 7.63 4.64 9.4 

Temperature (oC) 14.1 12.1 17.1 15.8 12.5 20  20.3 17.2 25 20.9 18.1 25 

Specific conductance 
(µS/cm) 

57 37 84.5 102 54 193  51.9 25.1 79 83.6 54 140 

  
 
 
Parameter 

Fall  Pooled dataset 
LD watersheds HD watersheds  LD watersheds HD watersheds 

Mean Low High Mean Low High  Mean Low High Mean Low High 

pH 6.49 5.72 7.14 6.49 5.55 7.8  6.64 4.45 8.2 6.51 5.16 7.8 
Dissolved oxygen 
(mg/l) 

11.72 5.99 19.4 11.7 7.02 22  9.83 5.99 19 9.85 4.64 22 

Temperature (oC) 9.72 7.25 11.8 9.73 6.54 13  14 7.25 25 14.6 6.54 25 

Specific conductance 
(µS/cm) 

46.17 26.5 64.5 73.1 39.5 138  50.6 25.1 85 83.6 39.5 193 
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Table 3.3. Mean and ranges of microbial water quality parameters (Data summarized by season and watershed group; LD or HD = 

watersheds with low or high density of septic systems, respectively) 
 
 

 
Parameter 

Spring  Summer 
LD watersheds HD watersheds  LD watersheds HD watersheds 

Mean Low  High Mean Low  High  Mean Low  High Mean Low  High 

E. coli count 
(MPN 100 ml-1) 

485 41 2,739 413 10 1,643  533 28 1,970 313 68 985 

E. coli yield  
(MPN sec-1 km-2) 

35,937 2,456 255,944 33,900 542 164,293  22,563 1,066 83,628 24,382 892 100,495 

Enterococci count 
(MPN 100 ml-1) 

285 56 1399 759 54 5,635  2,238 259 11401 879 92 5963 

Enterococci yield 
(MPN sec-1 km-2) 

22,720 3,294 130,682 58,919 3,961 305,189  127,832 4,539 538,160 72,146 2,199 524,120 

               
 
 

 
Parameter 

Fall  Pooled dataset 
LD watersheds HD watersheds  LD watersheds HD watersheds 

Mean Low  High Mean Low  High  Mean Low  High Mean Low  High 

E. coli count 
(MPN 100 ml-1) 

261 15 1,181 238 10 1,358  404 15 2,739 309 10 1,643 

E. coli yield  
(MPN sec-1 km-2) 

7,383 75 55,017 5,719 125 28,595  20,029 75 255,944 19,103 125 164,293 

Enterococci count 
(MPN 100 ml-1) 

251 20 1,173 301 31 1,351  829 20 11,401 597 31 5,963 

Enterococci yield 
(MPN sec-1 km-2) 

6,210 234 29,484 6,432 565 41,515  45,677 234 538,160 40,204 565 524,120 
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Table 3.4. Two-way ANOVA results (p-values) for water quality parameters by septic system 

density and season  

Parameter 

E. coli 
count      (MPN 
100 ml-1) 

E. coli 
yield       (MPN 
sec-1 km-2) 

Enteroco
cci count           
(MPN 100 ml-1) 

Enterococc
i yield (MPN sec-1 
km-2) 

Density 0.425 0.815 0.838 0.786 
Season <0.001 <0.001 <0.001 <0.001 
Density * Season 0.808 0.853 0.005 0.040 

 

  



54 
 

Table 3.5. Statistically significant Spearman correlations (r) between microbial and 

physicochemical water quality parameters/basin characteristics (Dataset pooled by watershed 

group: LD and HD = watersheds with low or high density of septic systems, respectively) 

Parameter 

E. coli count 
(MPN 100 ml-1) 

 

E. coli yield 
(MPN sec-1 km-2) 

LD 
watersheds  

HD 
watersheds        

 

LD 
watersheds  

HD 
watersheds        

Temperature (oC) 0.32 0.26 
 

0.37 0.47 
pH 0.25 ns 

 
0.31 ns 

Dissolved Oxygen  
(mg l-1) -0.26 ns 

 
ns 

ns 

Specific conductance (µS cm-

1) 0.31 
ns 

 
0.46 0.23 

Enterococci  0.49 0.38 
 

0.48 0.36 
% Forest cover ns§ -0.24 

 
ns ns 

% Agriculture land use 0.42 -0.28 
 

0.33 ns 
% Developed area ns 0.28 

 
ns ns 

Septic density -0.25 0.22 
 

-0.26 ns 
% impervious area -0.39 0.24 

 
-0.36 ns 

Av. distance from septic (m) -0.49 
ns 

 
-0.39 ns 

      

Parameter 

Enterococci count 
(MPN 100 ml-1) 

 

Enterococci yield  
(MPN sec-1 km-2) 

LD 
watersheds  

HD 
watersheds        

 

LD 
watersheds  

HD 
watersheds        

Temperature (oC) 0.58 0.26 
 

0.59 0.50 
pH 0.26 ns 

 
0.32 ns 

Dissolved oxygen  
(mg l-1) -0.37 ns 

 
-0.33 -0.23 

Specific conductance (µS 
cm-1) ns 0.22 

 
0.36 0.28 

E. coli  0.49 0.38 
 

0.48 0.36 
% Forest cover ns -0.23 

 
ns ns 

% Agriculture ns -0.41 
 

ns ns 
% Developed  ns 0.37 

 
ns ns 

Septic density ns 0.23 
 

ns ns 
% impervious ns ns 

 
-0.24 ns 

Av. distance from septic (m) -0.25 ns  ns ns 

§ns: not significant 
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Table 3.6. Multiple linear regression models of E. coli count (EC), E. coli yield (ECY), enterococci count (ENT) and enterococci yield 

(ENTY) (Data grouped by season) 
  
  

Spring Summer Fall 
EC ECY ENT ENTY EC ECY ENT ENTY EC ECY ENT ENTY 
R2 =0.46 R2 =0.42 R2 =0.36 R2 =0.50   R2 =38 R2 =0.49 R2 =0.62 R2 =0.21 R2 =0.23 R2 =0.06 R2 =0.10 

Intercept 2.75 7.68 4.85 6.91   
 No 
significa
nt 
variable  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

7.52 6.05 7.71 4.77 6.59 2.57 3.78 
Variable 1 % Forest 

cover 
% Forest 
cover 

Av. 
distance 

Av. 
distance 

Temperat
ure 

Temperat
ure 

DO‡ % Devel 
oped 

% Imper 
vious 

Av. 
distance 

% Devel 
oped 

β1 -0.037 -0.029 -0.009 -0.0085 -0.16 -0.14 0.17 -0.0055 -0.04 -0.003 -0.012 
VIF 3.37 3.56 1.12 1.17 na† 1.00 1.28 1.33 1.22 na 4.16 
p-value 0.0025 0.029 0.0004 0.0017 <0.0001 <0.0001 0.02 0.02 0.0012 0.04 0.0063 
Variable 2 % Devel 

oped 
% Devel 
oped 

Temperat
ure 

Septic 
density 

 Septic 
density 

Temperat
ure 

Av. 
distance 

Av. 
distance 

  Septic 
density 

β2 -0.027 -0.029 -0.097 0.0014  -0.0015 -0.22 -0.0073 -0.0064   0.0025 
VIF 7.87 7.84 1.12 1.19  1.00 1.28 1.56 1.42   4.16 
p-value 0.0008 0.0016 0.035 0.04  <0.0016 <0.0001 0.0005 0.015   0.014 
Variable 3 Septic 

density 
Av. 
distance¶ 

  Temperat
ure 

     pH pH     

β3 0.0032 -0.0074   -0.12       -0.41 -0.57     
VIF 4.25 1.23   1.21       1.38 1.39     
p-value 0.039 0.014   0.0092       0.0097 0.0074     
Variable 4 Temperat

ure 
Septic 
density 

          Temperat
ure 

Temperat
ure 

    

β4 0.12 0.0058           0.12 0.18     
VIF 1.19 5.55           1.28 1.28     
p-value 0.007 0.0084           0.0076 0.002     
Variable 5   SC§                   
β5   -0.014                   
VIF   2.4                   
p-value   0.029                   

¶Av. distance: Average distance of septic to streams; §SC: Specific conductance; †na: not applicable; ‡DO: Dissolved oxygen
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Figure 3.1. Location of the study site with boundaries for watersheds with low (LD) or high 

(HD) density of septic systems and monitoring stations in Gwinnett County, GA 
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Figure 3.2. E. coli (a) and enterococci (b) counts in streams of watersheds with low (LD) or high (HD) density of septic systems over 

the sampling period. Broken line represents the single sample threshold value for E. coli and enterococci for recreational use. Mean 

bacterial count for each sampling event is represented by (*) on each boxplot.  
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Figure 3.3. E. coli (a and b) and enterococci (c and d) stream yield grouped by sampling period 

and season in watersheds with high density (HD) and low density (LD) of septic systems.  
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CHAPTER 4 

ISOLATING THE IMPACT OF SEPTIC SYSTEMS ON FECAL POLLUTION IN STREAMS 

OF SUBURBAN WATERSHEDS2 

 

 

  

                                                 
2  Sowah, R. A., Habteselassie, M. Y., Radcliffe, D. E., Bauske, E. and Risse, M. 2016.  Water Research 
http://dx.doi.org/10.1016/j.watres.2016.11.007. Reprinted here with permission of the publisher. 

http://dx.doi.org/10.1016/j.watres.2016.11.007
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ABSTRACT 

The presence of multiple sources of fecal pollution at the watershed level presents 

challenges to efforts aimed at identifying the influence of septic systems. In this study multiple 

approaches including targeted sampling and monitoring of host-specific Bacteroidales markers 

were used to identify the impact of septic systems on microbial water quality. Twenty four 

watersheds with septic density ranging from 8 – 373 septic units/km2 were monitored for water 

quality under baseflow conditions over a 3-year period. The levels of the human-associated 

HF183 marker, as well as total and ruminant Bacteroidales, were quantified using quantitative 

polymerase chain reaction. Human-associated Bacteroidales yield was significantly higher in 

high density watersheds compared to low density areas and was negatively correlated (r = -0.64) 

with the average distance of septic systems to streams in the spring season. The human marker 

was also positively correlated with the total Bacteroidales marker, suggesting that the human 

source input was a significant contributor to total fecal pollution in the study area. Multivariable 

regression analysis indicates that septic systems, along with forest cover, impervious area and 

specific conductance could explain up to 74% of the variation in human fecal pollution in the 

spring season. The results suggest septic system impact through contributions to groundwater 

recharge during baseflow or failing septic system input, especially in areas with >87 septic 

units/km2. This study supports the use of microbial source tracking approaches along with 

traditional fecal indicator bacteria monitoring and land use characterization in a tiered approach 

to isolate the influence of septic systems on water quality in mixed-use watersheds. 
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INTRODUCTION 

Septic systems are used widely for wastewater treatment in southeastern United States. It 

has been reported that 37 – 48% of all housing units in North and South Carolina, Georgia and 

Alabama use septic systems for wastewater treatment (U.S. EPA, 2002).  This usage rate exceeds 

the national average of 23% according to the same report. It is also estimated that more than 33% 

of new homes in the United States are on septic systems, which make septic systems second only 

to centralized systems, in terms of the number of households served, in the wastewater 

management infrastructure (U.S. EPA, 2002). A significant number of these septic systems are in 

suburban areas, with some reports showing that the majority of septic systems are now located in 

suburban communities compared to rural areas (MNGWPD, 2006; U.S. EPA, 2002). The upward 

trend in septic systems’ use has coincided with widespread fecal pollution of surface waters 

across the United States, raising questions about the potential contribution of septic systems to 

water quality impairment at the watershed level (Verhougstraete et al., 2015; Sowah et al., 2014).  

Data from the United States Environmental Protection Agency implicate fecal pathogens 

as the leading cause of water quality impairment in the United States (U.S. EPA, 2016). 

Frequently, the sources of fecal matter impacting surface water bodies have proved difficult to 

isolate especially in urbanizing areas with mixed land use (Liang et al., 2013). Typically, fecal 

pollution of surface water resources derives from two or more sources within a watershed (Jent 

et al., 2013; Chin et al., 2009). These sources may include wildlife, livestock, manure 

applications and human inputs (wastewater treatment facility discharges, faulty septic systems 

and leaky sewers). The inputs from these sources can also vary on both temporal and spatial 

scales which further complicate pollution management. The traditional approach of monitoring 

fecal indicator bacteria (FIB) such as Escherichia coli (E. coli), enterococci and fecal coliforms 
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is not capable of differentiating sources of fecal pollution at the watershed scale (Tran et al., 

2015; Sauer et al., 2011; Field and Samadpour, 2007). This has led to new approaches that rely 

on FIB monitoring along with analysis of watershed characteristics (such as land use, 

imperviousness and septic density) and environment conditions (including precipitation and 

rainfall intensity) in addition to microbial source tracking (MST) with host-specific markers to 

discern fecal pollution sources at the watershed scale (Verhougstraete et al., 2015; Tran et al., 

2015; Sowah et al., 2014; Peed et al., 2011).  

Understanding the link between septic systems and fecal pollution of surface waters is 

critical to improving water quality. It is a well-known fact that individual septic systems can 

contribute to fecal pollution of ground and surface waters if the systems are not properly 

designed, sited and maintained (Schneeberger et al., 2015; Habteselassie et al., 2011; Humphrey 

et al., 2011). Until recently, there was limited information on the aggregate impact of septic 

systems at the watershed scale leading to inadequate regulation and improper management of 

septic systems throughout the United States. (Gregory et al., 2013; Carey et al., 2012; Farnleitner 

et al., 2011; Swann, 2001). Recent studies have attempted to bridge this knowledge gap by 

examining the relationships between septic system use and fecal bacteria levels at the watershed 

level (Verhougstraete et al., 2015; Sowah et al., 2014; Peed et al., 2011). Using host-specific 

MST markers in combination with low-order head-watershed sampling and precipitation 

information, Peed et al. (2011) observed a positive correlation between the concentration of 

human-specific marker and septic systems following precipitation. Predictive models developed 

by Sowah et al. (2014) indicated that septic system density and average distance of septic to 

streams were significant factors driving fecal pollution in suburban watersheds of Georgia. More 

recently, Verhougstraete et al. (2015) used classification and regression tree analysis (CART) to 
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demonstrate a link between increasing septic system numbers and bacterial concentrations. The 

findings of these studies show that MST methods employing human-associated Bacteroidales 

markers, when combined with land use information, can be a powerful tool for isolating septic 

system influence at the watershed level.  

As promising as these studies are for water resources management, questions still remain 

about the relationship between septic system density and fecal pollution under different 

hydrologic and climatic conditions. The applicability of MST methods to different geographic 

areas and land use scenarios need to be assessed to improve confidence in this approach. This 

information is critical in suburban watersheds with mixed land use and multiple fecal sources 

including failing septic systems, leaky sewers, livestock, pets and wildlife that can present 

challenges to watershed managers. Also, previous studies utilizing MST methods have focused 

on relatively low to medium density septic impacted watersheds, that is, areas with <100 septic 

units/km2 (Verhougstraete et al., 2015; Peed et al., 2011). The current study provides a 

comprehensive assessment of septic system impacts in watersheds with a gradient of septic 

system density ranging from 8 – 373 septic units/km2. In addition to examining septic system 

impacts, this study also addressed concerns about the influence of leaky sewer pipes on fecal 

pollution loads.  

The overarching goal of this study therefore was to evaluate the impact of septic systems 

on fecal pollution loads in suburban streams. Our main objective was to determine the 

relationship between septic system variables and fecal pollution loads at the watershed level. The 

present study used MST approaches together with targeted water quality monitoring to capture 

septic system influence across a wide range of septic densities typical of suburban areas in the 

southeastern United States. Additionally, seasonal and temporal trends in fecal pollution loads as 
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impacted by increasing septic density, land use characteristics and water quality parameters were 

examined. Moreover, the utility of enteric viruses for tracking human sources of fecal pollution 

will be explored as part of a comprehensive MST toolkit approach to evaluating septic system 

impacts at the watershed level. Finally, the utility of MST for identifying septic system influence 

on water quality was evaluated as part of a tiered approach to fecal source identification at the 

watershed level. 

MATERIALS AND METHODS 

Study Area 

The study area is in Gwinnett County, northeast of Atlanta, GA and was previously 

described in Sowah et al. (2014) and Landers and Ankcorn (2008). It has a mean annual rainfall 

of about 1245 mm. The study area consists of 24 watersheds which range in size from 0.2 to 8.8 

km2. A summary of watershed characteristics is provided in Table 4.1. The selected watersheds 

are in the Ocmulgee and Oconee River basins, which drain to the Altamaha River, and ultimately 

into the Atlantic Ocean. A map of the study area and watershed boundaries is presented in Figure 

4.1. The selected watersheds are typical of suburban watersheds along the Interstate 85 corridor 

in the southeastern piedmont region of the United States. The watersheds represent a gradient of 

land use characteristics from low to high density of septic systems representing low density 

residential to medium density residential land use. The watersheds were classified into two 

groups: low density (LD) watersheds and high density (HD) watersheds. An arbitrary threshold 

of <38 septic units/km2 was set for LD watersheds and >77 septic units/km2 for HD watersheds. 

The criteria for watershed classification was based on U.S. EPA’s designation of areas with >15 

septic units/km2 as regions of potential groundwater contamination (U.S. EPA, 1977). The LD 

threshold was raised to account for improvements in septic system technology and regulation in 
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the last two decades. The predominant soil types in the study area are the moderately permeable 

Appling and Pacolet soil series (Web Soil Survey, 2016). The soils in this region are typically 

underlain by saprolite with saturated hydraulic conductivities (Ksat) in groundwater ranging from 

0.7 – 62.4 cm/day (Amoozegar et al., 1993). Other watershed characteristics were determined 

from spatial datasets of land cover (Fry et al., 2011), septic systems (GCBC, 2013) and sewer 

lines (GCDPU, 2004). 

Sample collection  

Surface water samples from streams in the 24 selected watersheds were collected during 

baseflow on 9 synoptic sampling events spanning November, 2011 to July, 2014. Synoptic 

sampling coincided with the spring (n = 72; March 2012, April 2013 and March 2014), summer 

(n = 72; July 2012, 2013 and 2014) and fall (n = 72; November 2011, 2012 and 2013) seasons. 

Baseflow conditions were determined using antecedent precipitation and hydrograph from two 

USGS gage stations near the study area (USGS, 2016). Also, baseflow sampling coincided with 

periods of zero precipitation at least 72 hours prior to the sampling event. At each monitoring 

station, samples were collected in duplicate in 1-L sterile high-density polypropylene bottles. 

Samples were kept on ice and transported to the laboratory for analysis of FIB (usually within 6 

hours of sample collection). Sample collection and analysis followed guidelines of the National 

Field Manual for the Collection of Water-Quality Data (USGS, variously dated). Baseflow 

discharge (m3/s) was measured at each monitoring point during sampling events by our project 

partners from the United States Geological Survey (USGS) Georgia Water Science Center in 

Atlanta. The velocity-area method (Rantz, 1982) was used for discharge measurements.  
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Standard water quality analysis 

Data for E. coli and enterococci concentrations and water quality parameters such as pH, 

temperature, dissolved oxygen and specific conductance which covers synoptic sampling from 

November 2011 – November 2013 were presented in Sowah et al. (2014). In this study, two 

additional synoptic samples (March 2014 and July 2014) were analyzed for E. coli and 

enterococci using the Colilert-18 and Enterolert kits (IDEXX Laboratories Inc., Westbrook, 

ME). The methods used followed similar protocols outlined in Sowah et al. (2014). Standard 

water quality parameters including pH, temperature, dissolved oxygen and specific conductance 

were also measured during sampling with a calibrated Quanta multi-parameter probe 

(HYDROLAB, Loveland, CO). 

Bacterial and viral DNA extraction  

Bacterial DNA was concentrated by filtering 100 ml of water sample through 0.40 μm 

polycarbonate filters (GE Whatman, Pittsburgh, PA). For virus concentration, the same volume 

of water was filtered through a 0.45 um HA mixed cellulose filter (EMD Millipore, Billerica, 

MA) pretreated with 2.0 ml of 250 mM AlCl3 as suggested by Haramoto etal 2004.  Filters were 

placed in microcentrifuge tubes and stored at -80oC prior to DNA extraction.  Bacterial and viral 

DNA were directly extracted from the filters using the PowerFecal and PowerWater DNA 

isolation kits (MOBIO Laboratories, Carlsbad, CA) respectively and followed manufacturer’s 

recommendations. At least one extraction blank was processed along with each batch of synoptic 

surface water samples. The method blanks were extracted from sterile ultrapure water. DNA was 

eluted to a final volume of 50 µl and stored at -20oC for use in qPCR assays. 
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Bacterial qPCR assays 

To identify septic system influence in our watersheds, we performed qPCR assays 

targeting the HF183 human-associated Bacteroidales marker (Seurinck et al., 2005) in extracted 

water samples. A ruminant-associated marker BacR (Reischer et al., 2006) and total 

Bacteroidales marker AllBac (Layton et al., 2006) were also enumerated to identify drivers of 

fecal pollution in the watershed. The MST markers used in this study were selected on the basis 

of their widespread use and validation in different geographic regions. Method comparison 

studies in the United States indicate that the HF183 marker is one of the high performing 

markers in terms of specificity and sensitivity (Boehm et al., 2013; Layton et al., 2013; Shanks et 

al., 2010). Similar to the HF183 marker, the AllBac marker has seen widespread application in 

different locations and demonstrated high sensitivity to fecal material from a wide range of 

animals. Recently, the specificity of the AllBac and other generic Bacteroidales markers have 

been questioned due to their cross-reaction with environmental Bacteroidales strains (Vierheilig 

et al., 2012; van der Wielen and Medema, 2010). In the absence of new and more specific 

general Bacteroidales marker - the development of a new marker was outside the scope of this 

study, we believe the AllBac marker can provide useful information for MST analysis and 

furthermore the data generated in this study can be compared to previous studies that employed 

this marker. Finally, the BacR marker has proved effective for discriminating ruminant sources 

from other sources of fecal pollution as attested to by method validation studies in the U.S. 

(Boehm et al., 2013; Raith et al., 2013). Human and ruminant sources of fecal pollution were the 

focus of this study as land use information suggests that these sources were the likely 

contributors to total fecal pollution in streams.  

These genetic markers target regions of the 16S rRNA gene of Bacteroidales in 

representative host groups. To achieve quantitation by qPCR, standards were developed for each 
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assay using previously described protocols (Okabe et al., 2007a; Ahmed et al., 2009). Standards 

were developed from Bacteroides sp. genomic DNA obtained from the American Type Culture 

Collection (ATCC) or extracted from fecal material sourced locally. Amplified DNA products 

were cloned into pGEM-T Easy Vectors (Promega, Madison, WI), transformed into competent 

E. coli cells (JM109 High Efficiency Competent Cells, Promega) and plated on LB agar plates 

containing IPTG/X-gal/Ampicillin. Recombinant plasmids were purified with a PureYield 

Plasmid Midiprep System (Promega, Madison, WI), quantified with NanoDrop 2000 

spectrophotometer (NanoDrop Technology, Wilmington, DE) and serially diluted 10-fold to 

generate reaction standards. Standard curves ranged from 3 x 100 to 3 x 107 copies of plasmid 

DNA and were run in triplicate. The StepOnePlus Real-Time PCR System (Life Technologies, 

Grand Island, NY) was used for all qPCR reactions. Each qPCR reaction mixture contained 10 µl 

of SYBR Select Master Mix (Life Technologies, Grand Island, NY), optimized concentration of 

150 nM for both forward and reverse primers and 2 ul of sample DNA in a final reaction volume 

of 20 µl. PCR conditions for HF183 marker consisted of hold of 10 min at 95oC followed by 40 

cycles of 30 s at 95oC, 30 s at 53oC and 1 min at 60oC. The conditions for AllBac marker were 

10 min at 95oC followed by 40 cycles of 30 s at 95oC and 45 s at 60oC. Finally, PCR conditions 

for BacR marker consisted of hold for 10 min at 95oC, 40 cycles at 95oC for 15 s and 1 min at 

60oC. Primer sequences for each marker are detailed in Table 4.2. 

Viral qPCR assay 

The human adenovirus marker JTVX (Jothikuma et al.,2005) was quantified using 

TaqMan qPCR for confirmatory evidence of human source impact. Five sampling events (March 

2012, July 2012, Nov. 2012, March 2014 and July 2014) that showed widespread distribution of 

the human HF183 marker were selected for adenovirus screening. This approach is in line with 

https://www.promega.com/products/dna-and-rna-purification/plasmid-purification/pureyield-plasmid-midiprep-system/
https://www.promega.com/products/dna-and-rna-purification/plasmid-purification/pureyield-plasmid-midiprep-system/
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suggestions by several authors for use of multiple MST markers to improve confidence in MST 

results (Lee et al., 2014; McQuaig et al., 2012; Ahmed et al., 2012). Adenovirus standards were 

developed from genomic DNA from human adenovirus strain ADV40 obtained from ATCC. 

Standards were generated from plasmid DNA following the same procedure outlined above. 

TaqMan qPCR assay was performed using the StepOnePlus Real-Time PCR System (Life 

Technologies, Grand Island, NY). Each 20 ul reaction mixture contained 1 x TaqMan Gene 

Expression Master Mix (Life Technologies, Grand Island, NY) with 0.9 uM forward and reverse 

primers, 150 nM of probe, and 2 ul of template DNA. PCR conditions for Adenovirus marker 

was slightly modified from Jothikuma et al. (2005) and consisted of hold at 95oC for 10 min 

followed by 40 cycles at 95oC for 15 s, 55oC for 30 s and 72oC for 30 s. Adenovirus primer and 

probe sequences are provided in Table 4.2.  

qPCR inhibition test and lower limit of quantification (LLOQ) 

The presence of humic acids and other organic substances in environmental samples have 

been noted to inhibit PCR (Opel et al., 2010; Field and Samadpour, 2007). A test for qPCR 

inhibition in water samples was performed using a previously described protocol (Ahmed et al., 

2009). Briefly, 3 x 104 copies of the HF183 standard was spiked into undiluted (n = 18) and 10-

fold diluted samples (n = 18) that tested negative for the HF183 marker and method control 

samples (n = 14) that were extracted from sterile ultrapure water. The cycle threshold (CT) values 

of undiluted and diluted sample DNA was compared to the CT values from method control 

samples using one way analysis of variance (ANOVA) to determine differences in CT values. 

Significance was tested at 95% confidence level. Additionally, samples that showed a positive or 

negative signal for the Bacteroidales markers were also diluted 10 and 100-folds and run again 

to see if inhibition contributed to the negative signal. The LLOQ for the MST assays was 
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determined as the lowest concentration of the qPCR standards that was detected in all qPCR 

assays (Ahmed et al., 2015; Kildare et al., 2007; Okabe et al., 2007a; Reischer et al., 2007). 

Therefore the lowest concentration of the standards within the linear range of quantification was 

taken as the assay LLOQ which also represents the limit of detection in this study. 

Quality control for qPCR 

Melt-curve analysis was performed for SYBR Green reactions to distinguish specific 

PCR products from non-specific products. Melt-curve runs proceeded by increasing the 

temperature from 53oC to 95oC at 0.3oC increments. The PCR products were also routinely 

verified on agarose gel to confirm specificity of amplified products. All qPCR runs also included 

positive controls (plasmid DNA) and negative controls (in triplicate) containing nuclease free 

water. Standard curves, which were calculated as simple linear regressions, were used to 

calculate amplification efficiencies (which ranged from 90 to 100% in this study) for each 

instrument run. Amplification efficiencies were calculated using the equation 𝐸𝐸 = 10
1
−s − 1, 

where E is the amplification efficiency and s is the slope of the standard curve. In theory, 100% 

efficiency implies that the amount of PCR product doubles with each cycle. All standard curves 

generated for marker quantification in this study had a goodness of fit R2 value above 0.98.  

Data Presentation and Statistical Analysis  

The data was summarized on a seasonal basis for presentation and statistical analysis. 

Data for spring, summer and fall represent the geometric mean of synoptic samples collected 

over the study period. For statistical analysis, samples that were below the limit of quantification 

and qPCR non-detects were replaced with values imputed using robust regression on order 

statistics (ROS). Regression on order methods of imputing non-detects are reported to provide 

better results compared to other methods such as the maximum likelihood elimination approach 
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or substitution with detection limits (Helsel, 2010; Wong et al., 2009; Helsel, 2005). The ROS 

method was used within the U.S. EPA’s ProUCL Statistical tool to impute values of non-detects 

based on a log-normal distribution of the detected values (U.S. EPA, 2013). The copies of total 

and host-associated markers were expressed as marker yield in gene copies per second per square 

kilometer (copies s-1 km-2) by accounting for streamflow and watershed area. Marker yield was 

log-transformed to achieve normality for use in statistical tests. A closer look at the watersheds 

in Figure 4.1 will show that nine of the watersheds (sites 3, 4, 5, 9 in LD watersheds and sites 14, 

18, 19, 20, 23 in HD watersheds) were nested within larger watersheds. In order to meet 

independence assumption of statistical tests, we performed Durbin Watson test to check for 

autocorrelation of Bacteroidales markers in the nested watersheds (Little et al., 2008). The 

Durbin Watson test results showed that sites 3, 5, 14, 18 and 23 were auto-correlated with 

watersheds downstream and as such were excluded from statistical analysis. 

Two-way analysis of variance (ANOVA) was performed to determine the effect of septic 

density and season on total and host-associated marker yield. The generalized linear model 

procedure (proc GLM) was used in SAS 9.3 (SAS Institute, Cary, NC) to examine variations in 

marker yield due to septic density and seasonal factors. The Tukey post-hoc multiple comparison 

test was used to determine main effects and simple main effects following statistically significant 

difference or interaction. Spearman rank correlations were performed to determine the 

relationships between total and host-specific marker and septic density, average distance of 

septic systems to streams, sewer line density, land use characteristics, FIB, and standard water 

quality parameters. Additionally, multivariable linear regression models were developed to 

determine the combination of land use and water quality variables driving human-associated 

Bacteroidales levels in suburban streams. Variable selection in the regression models was based 
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on the backward elimination method using the proc REG procedure in SAS. Inclusion of 

variables in the model depended on the variables meeting a significance threshold of p = 0.05 to 

avoid over-parameterizing the regression models, and a variance inflation factor of <10 to reduce 

multicollinearity of model variables (Gonzalez et al., 2012; Hathaway et al., 2010). Moreover, 

residuals for response and explanatory variables were plotted and checked to confirm that 

normality assumptions of the models were not violated. All statistical analyses were performed 

with SAS 9.3 (SAS Institute, Cary, NC) and statistical significance was defined at p ≤ 0.05 

unless stated otherwise.  

RESULTS 

Analysis of qPCR Inhibition and limit of quantification 

Comparison of qPCR inhibition in water samples collected from the study area with 

sterile water showed no statistically significant difference in CT values for the spiked human-

specific marker (Table 4.3). Moreover, dilution of samples that tested positive and negative in 

qPCR tests did not result in significant changes in results following re-run of the samples. This 

leads us to conclude that qPCR inhibition did not significantly affect results from this study. 

Assay limits of quantification determined using the standards were 3 gene copies per reaction for 

the human marker and 30 gene copies per reaction for the total, ruminant and adenovirus 

markers.  

Distribution of total and host-associated Bacteroidales markers 

The Bacteroidales markers targeted in this study were widely distributed in streams 

impacted by LD to HD of septic systems. Figure 4.2 shows the distribution of total, human- and 

ruminant-associated markers grouped by season and septic density. The total Bacteroidales 

marker, which captures fecal inputs from human, bovine, canine and swine among others, was 
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detected in 100% (n = 216) of samples. Total Bacteroidales concentration ranged from 3.3 – 6.7 

log10 copies/100 ml whilst the yield of the total marker was between 4.7 – 8.8 log10 copies/s.km2. 

The highest and lowest concentrations of total Bacteroidales were recorded in fall in LD areas 

whereas the yield was highest in spring in LD watersheds and lowest in fall in HD areas (Figure 

4.2). The human marker was quantifiable in 57% (n = 216) of the samples collected from the 

study area. The frequency of detection, based on the number of samples that were quantifiable, 

was 63% for HD watersheds and 51% for LD watersheds. The human marker varied from non-

detect or below the limit of quantification to a maximum of 3.7 log10 copies/100 ml. The highest 

concentration was observed in spring in HD watersheds. Similarly, the maximum yield of human 

marker was observed in HD areas in the spring. The ruminant marker was quantifiable in 65% (n 

= 192) of surface water samples: 61% in HD watersheds compared to 68% in LD watersheds. A 

total of 192 samples (representing 8 synoptic sampling events) were included in the analysis of 

the ruminant marker due to low detection (3 out of 24 samples) of the marker in samples 

collected in November 2011. It is recommended that more than 50% of the samples have to be 

detected (ITRC, 2013). The ruminant marker varied from non-detect to maxima of 5.9 log10 

copies/100 ml and 8.1 log10 copies/s.km2 in concentration and yield respectively. The average 

concentration and yield of the total, human- and ruminant-associated markers in HD and LD 

watersheds followed a seasonal trend, with low levels of the markers observed in fall in 

comparison to spring and summer seasons. Statistical tests were performed with the yield of total 

and host-associated Bacteriodales markers since the yield provides a robust estimate of marker 

distribution, accounting for differences in hydrologic conditions and watershed area.  

Results from two-way ANOVA tests show variations in the influence of septic system 

and season on the yield of total and host-associated markers (Table 4.4). Analysis of the effect of 
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septic density and season on total Bacteroidales yield showed no significant interaction between 

the factors on marker yield. Septic density, moreover, did not appear to influence total 

Bacteroidales yield in the watersheds. However, seasonal changes played a key role in the yield 

of total Bacteroidales with statistically significant differences (p < 0.001) between spring, 

summer and fall. A look at the main effect showed that total Bacteroidales yield was 

significantly higher in spring and summer compared to fall (p < 0.001). There was however no 

difference in marker yield between spring and summer. For the human-associated marker, there 

was no significant interaction between septic density and season. The main effect showed 

significance difference between levels of septic density (p = 0.046) and season (p < 0.001) for 

the human-specific marker. The results showed that the marker was significantly higher in HD 

watersheds compared to LD areas. Similar to the results for total Bacteroidales, the human 

marker yield was significantly higher in spring and summer compared to fall (p < 0.001), but not 

statistically different between spring and summer. Statistically significant interaction (p = 0.002) 

was observed between septic density and season for the ruminant-specific marker. Simple main 

effect analysis showed that the ruminant marker was significantly higher in LD watersheds in the 

spring and summer when compared to the fall season in HD watersheds. 

Correlation analysis 

Spearman rank correlation coefficients for total and host-associated marker yield as 

influenced by land use characteristics and standard water quality parameters are presented in 

Table 4.5. Results indicate that the human marker was negatively correlated with average 

distance of septic to stream (r = -0.64, p = 0.003) for samples collected in spring. Septic density 

and the average distance of septic to stream were not correlated with human marker yield in 

summer or fall. However, the pooled data showed a significant negative correlation between the 
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average distance of septic to stream and human marker yield (r = -0.52, p = 0.008). The 

relationship between septic density and ruminant marker, as expected, was negatively correlated 

(r = -0.76, p < 0.001) in fall. We also observed a strong positive correlation between total 

Bacteroidales and human marker yield (r = 0.65, p = 0.005) for the pooled data. However, total 

Bacteroidales was not correlated with ruminant marker in general. Sewer line density, a potential 

source of human fecal input into streams, showed no correlation with human marker yield for all 

seasons and the pooled dataset. In contrast, sewer line density was correlated with total 

Bacteroidales (r = 0.62, p = 0.006) in the summer. In general, E. coli and enterococci yield were 

positively correlated with human marker for all seasons and the pooled data. No correlations 

were observed between the total Bacteroidales marker and land use and environmental 

parameters in spring. Overall, the percent of agriculture land cover was a significant predictor of 

ruminant marker yield in this study (r = 0.57, p = 0.009). 

Multivariable linear regression analysis 

Multivariable regression models developed in this study were of the format  𝑌𝑌 = 𝛽𝛽0 +

𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 +  .  .  .  𝛽𝛽𝑛𝑛𝑋𝑋𝑛𝑛 where Y is the dependent variable, 𝛽𝛽0 is the intercept, 𝛽𝛽1 to 𝛽𝛽𝑛𝑛 are 

parameter estimates and X represents the explanatory variables. Using the proc REG procedure 

in SAS, we examined the influence of land use characteristics and water quality parameters on 

human marker yield on a seasonal level. The results, summarized in Table 4.6, showed that 

septic density and average distance of septic to stream were important variables explaining 

variations in human marker yield in spring and fall. A strong septic system impact was detected 

in spring samples in line with the observed outcome from correlation analysis. Moreover, the 

regression model for the pooled data had septic system as the most critical factor driving human 

fecal pollution in the study area. The percent of impervious cover could also explain some of the 
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variation in human fecal pollution overall. Water quality parameters such as specific 

conductance and water pH were also significant explanatory variables for human fecal pollution 

in the study area. None of the land use characteristics and environmental variables examined in 

this study were predictors of human marker yield in the summer. The adjusted R2 values for the 

seasonal models were 0.74, 0.31 and 0.47 in spring, fall and pooled data respectively. 

Distribution of human adenovirus  

Five sampling events that showed widespread distribution of human Bacteroidales 

marker were further assessed for molecular signature of human adenovirus pathogen. The 

detection frequency of adenovirus marker was comparable in HD and LD watersheds, with the 

highest detections observed in samples collected in spring. In HD watersheds approximately 

85% of the samples (n = 60) were positive for human adenovirus compared to 78% (n = 60) of 

samples collected in LD watersheds. Approximately 56% (n = 120) of the samples analyzed 

were within the range of quantification of the Taqman qPCR. However, a significant number of 

the quantifiable samples were collected in spring season (66% of the samples) with 28% and 6% 

from summer and fall respectively. Of the samples that were quantifiable with qPCR, 58% were 

from HD watersheds and 53% from LD areas. Comparison of the average yield of adenovirus 

marker from HD and LD watersheds using One Way ANOVA shows that the marker yield was 

not significantly different (p = 0.58) between the watershed groups (Figure 4.3).  

DISCUSSION 

The overall goal of this study was to examine the influence of septic systems on fecal 

pollution in suburban watersheds by tracking the sources of human fecal input impacting streams 

of watersheds with varying septic density. In a previous study, Sowah et al. (2014) assessed 

septic system influence by monitoring the streams in the watersheds in this study for standard 
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FIB (Sowah et al., 2014). The results from the previous study which included comparison of FIB 

loads in HD and LD watersheds, correlation and multivariable regression analysis pointed to the 

contribution of septic systems to total fecal pollution in streams. Validation of the results from 

the previous study and similar studies implicating septic systems in water quality impairment 

require the use of multiple approaches as recommended in the literature (Noble et al., 2006; 

Boehm et al., 2003). The present study employs the widely used HF183 human-associated 

Bacteroidales marker to track the influence of septic systems on fecal pollution in streams. This 

marker has shown stability in different geographical locations with comparatively better 

specificity and sensitivity in method comparison studies here in the United States (Boehm et al., 

2013; Stewart et al., 2013; Shanks et al., 2010; ), Europe (Gawler et al., 2007; Gourmelon et al., 

2007) and other parts of the world (Ahmed et al., 2009; Jenkins et al., 2009).  

Seasonal trends in total and host-associated marker distribution in the study area compare 

to the observed distribution of FIB reported by Sowah et al. (2014). Overall, FIB and 

Bacteroidales marker yields were higher in samples collected in spring and summer compared to 

fall. The seasonal trends are also symptomatic of the underlying seasonal changes in hydrologic 

conditions. Table 4.7 shows the seasonal changes in climatic and hydrologic conditions in the 

study area. Average baseflow discharge in this study was relatively low in the fall compared to 

summer and spring (Table 4.7). This pattern in flow and fecal pollution indicators suggests that 

the sources of fecal pollution impacting the streams in the study area are both temporally and 

seasonally stable. This seasonal trend, in relation to human-associated Bacteroidales, is 

suggestive of a continuous source of fecal pollution such as wastewater treatment discharges, 

leaky sewer pipes, failing septic systems or septic effluent transported through groundwater into 

streams (Carroll et al., 2005). Our research, however, shows that none of the streams in this 
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study are impacted by permitted wastewater treatment discharges (GAEPD, 2016). Moreover, 

leaky sewers appear to be an insignificant source of human fecal input in the study area based on 

correlation and regression analysis. This leaves septic systems as the most likely continuous 

source of human fecal pollution in the study area.  

Results of ANOVA and correlation analyses support our hypothesis that septic systems 

are a significant source of human fecal pollution in HD areas. The observed increase in human 

marker yield in streams of HD watersheds compared to LD areas, and strong correlation of 

human marker with average distance of septic to stream are suggestive of pronounced septic 

system impact in areas with septic densities above 87 septic units/km2. The linear increase in 

human marker with decrease in septic distance to stream was particularly strong in spring which 

coincides with the seasonal shallow groundwater table in the study area. Combined with 

moderate to high hydraulic conductivity of saprolite in the saturated zone, the shallow 

groundwater can act as a conduit for the transport of effluent from the dense network of septic 

drainfields into nearby streams. The influence of septic systems on baseflow water quality has 

been the subject of recent studies including work by Peed et al. (2011) that found no correlation 

between septic systems and human-associated Bacteroidales marker under low flow conditions. 

This study however confirms that under baseflow conditions, the influence of septic systems 

depends on seasonal trends in hydrologic conditions in our study area. The marked septic system 

impact in spring is not surprising considering the reported interconnectivity of groundwater and 

surface water systems in the Southern Piedmont region (Clarke and Peck, 1991). Evaluation of 

the relationships between Bacteroidales markers showed a positive correlation between human 

and total Bacteroidales yield for the pooled data, suggesting the significant contribution of 

human sources to total fecal pollution in the study area.  The relative contribution of the human 
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marker to total Bacteroidales yield in streams was not examined in this study due to the 

differential persistence of Bacteroidales markers in the aquatic environment, and inadequate 

information about the copies of Bacteroidales genetic markers in different host animals and 

humans (Tambalo et al., 2012; Dick et al., 2010; Walters and Field, 2009). 

Our data shows significant difference in ruminant influence in LD and HD watersheds, 

with LD areas recording higher ruminant marker yield. This result was expected as stream walks 

of the watersheds in the summer of 2015 revealed that livestock, particularly cattle had access to 

the streams in watershed numbers 6, 7 and 8. The positive correlation of ruminant marker with 

total Bacteroidales in summer highlights the seasonal nature of animal impacts, especially in the 

LD watersheds with higher agricultural and forest cover. The prominent agricultural land uses 

include hay and pastures which are commonly grazed by cattle and horses. The strong negative 

correlation between the ruminant marker and septic density in fall was expected as increasing 

septic system footprint was associated with low agricultural land use. The diversity of animal 

hosts contributing to the ruminant signature in streams may explain the seasonal differences in 

the influence of land use factors such as forest cover and agricultural activities (Table 4). The 

pooled data in contrast, isolates agriculture as the predominant animal source of ruminant marker 

in the study area.   

In general, poor correlations have been reported between human Bacteroidales markers 

and FIB levels in previous MST studies (Sauer et al., 2011; Edge et al., 2010; Okabe et al., 

2007a). These studies have, however, been largely focused on pollution incidents arising from 

storm runoff. Storm induced pollution can originate from diverse sources at the watershed level 

which leads to confounding results. In this study we found moderate to strong positive 

correlations between human marker and E. coli and enterococci levels. The overall correlation 



 

 

80 
 

coefficients between the human marker and E. coli and enterococci were 0.71 and 0.57 

respectively. It has been reported that FIB and Bacteroidales markers differ in their persistence 

profiles in the aquatic environment (Ballesté et al., 2010; Okabe et al., 2007b). The observed 

positive correlations between FIB and the human marker therefore suggest a continuous source 

(e.g. septic systems) of human fecal pollution in the study area. In addition to septic systems, 

forest cover was also significant in driving variations in host-associated marker yield in suburban 

streams. The effect of forest cover was particularly strong in the spring for both human and 

ruminant markers. With respect to the human marker, forest cover was negatively correlated, 

supporting our observation of increasing human input from areas with higher septic system 

density and low forest cover. Surprisingly, forest cover was negatively correlated with the 

ruminant marker in spring which suggests that ruminant animals that were not directly associated 

with forest cover may be contributing to ruminant input in the streams.  

The regression models developed in this study provide further evidence of the significant 

contribution of septic systems to human fecal pollution at the watershed level. Combined with 

land use characteristics such as impervious cover and percent forest cover, the density of septic 

systems and average distance of septic to stream could explain a significant amount of human 

fecal pollution, especially in the spring. The contribution of septic systems to variations in 

human fecal pollution in fall and pooled data was also significant, stressing the apparent 

influence of septic systems on fecal pollution in suburban streams. Water quality indicators such 

as specific conductance and pH, which can affect microbial survival and persistent, were also 

important explanatory variables of human fecal pollution in the study area. However, the 

contribution of septic systems to human fecal pollution in summer was not obvious from 

correlation and multivariable statistical analysis.  
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Additionally, the distribution of human adenovirus marker was not sensitive to the 

density of septic systems based on the limited analysis. The viral marker, however, was most 

frequently detected and quantifiable in samples collected in spring compared to summer and fall. 

This finding suggests once again that human impact, in terms of fecal pollution of streams, was 

more elevated during the spring months in the study area. Due to the low detections and copies 

numbers of adenovirus marker in samples collected in summer and fall, a detailed analysis of 

seasonal changes of this marker was not possible. We suggest the use of larger volumes of water 

samples (>100 ml) for concentrating viral particles for MST studies in future to overcome low 

copy numbers of the marker in summer and fall. 

CONCLUSIONS 

The findings from this study suggest the influence of septic systems, specifically the 

density of septic systems and average distance of septic to streams, on fecal pollution at the 

watershed level in areas with >87 septic units km-2. Our study also showed that septic systems 

were more likely to impact water resources in the study area during the spring season which is 

associated with shallow groundwater table and high baseflow conditions. Apparently, the density 

of sewer pipes in the study area did not affect the yield and distribution of human-associated 

Bacteroidales marker which makes septic systems the predominant source of human fecal 

pollution in the study area. This study supports the use of MST approaches together with 

traditional FIB monitoring and land use characterization in a tiered approach to isolate the 

influence of septic systems on water quality in mixed use watersheds. Future research should 

consider monitoring other human-associated markers and pathogens as multiple lines of evidence 

to elucidate septic system impacts. Finally, the findings of this study can be used by watershed 

managers and stakeholders to promote septic system management at the watershed level.  
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Table 4.1. Average land use characteristics by watershed classification 

Watershed group 
HD watershed LD watershed 

Mean Min Max Mean Low High 

Watershed area (km2) 2.01 0.2 8.8 3 0.6 8 
Slope (%) 7.5 5.7 9 8 4.6 10.6 
Septic density (units/km2) 216 88 373 22 8 37 

Sewer line density (m/km2) 1298 0 3149 633 0 4119 
Impervious cover (%) 18 12 26 6.7 3 15 
Agricultural land use (%) 4 0 12 32.5 10 49 
Forest cover (%) 24.8 11 44 37 14.7 50.9 
Average distance of septic to 
streams (m) 96 55 151 128 86 172 
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Table 4.2. Primer and probe sequences for Bacteroidales and adenovirus markers analyzed in this study 

Host-specific 
marker 

Primer sequence (5' - 3')  Amplicon 
size (bp) Source 

Total 
Bacteroidales 

F - GAGAGGAAGGTCCCCCAC 106 Layton et al., 2006 
R - CGCTACTTGGCTGGTTCAG 

Human 
Bacteroidales 

F - ATCATGAGTTCACATGTCCG 82 Seurinck et al., 2005 
R - TACCCCGCCTACTATCTAATG 

Ruminant 
Bacteroidales 

F - GCGTATCCAACCTTCCCG 118 Reischer et al., 2006 
R - CATCCCCATCCGTTACCG 

Adenovirus 
marker 

F - GGACGCCTCGGAGTACCTGAG 96 Jothikumar et al., 2005 
R - ACIGTGGGGTTTCTGAACTTGTT 

FAM – TGGTGCAGTTCGCCCGTGCCA - TAMRA 
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* p-value represents statistical significance for comparison of CT values for diluted and 
undiluted stream water samples and sterile water 

  

Table 4.3. Analysis of inhibition in extracted DNA spiked with human-specific 

marker 

Samples 
PCR cycle threshold (CT ± margin of error at 95% 

confidence level) 
Undiluted extract 10-fold diluted extracts 

Sterile water 28 ± 0.6  Stream water 
samples 28 ± 0.2 (p = 0.41*) 28 ± 0.2 (p = 0.35*) 
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Table 4.4. ANOVA results showing p-values for human marker as 

impacted by septic density and season 

Bacteroidales 
marker Parameter p-value (α = 0.05) 

Total 
Bacteroidales 

Density 0.35 
Season <0.001 

Density*Season 0.42 
Human 

Bacteroidales 
Density 0.046 
Season <0.001 

Density*Season 0.76 
Ruminant 

Bacteroidales 
Density 0.004 
Season 0.006 

Density*Season 0.002 
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Table 4.5.  Spearman rank correlation data for Bacteroidales markers as influenced by 

standard water quality parameters and land use characteristics 

Bacteroidales 
Marker Parameter 

Spearman correlation coefficient (r) 
Spring Summer Fall Pooled Data 

Total 
Bacteroidales 

Percent impervious cover -0.20 0.35 -0.19 -0.12 
Septic density -0.05 0.41 0.02 0.1 
Percent forest cover 0.16 -0.51* 0.14 -0.01 
Percent agricultural land use 0.27 -0.39 0.11 -0.02 
Av. distance of septic to stream -0.23 -0.25 -0.19 -0.29 
Sewer line density -0.04 0.62* 0.13 0.36 
Dissolved oxygen -0.07 0.44 0.02 -0.23 
pH 0.34 -0.04 0.15 0.15 
Water Temperature -0.03 0.16 0.31 0.4 
Specific conductance -0.30 0.51* 0.18 0.21 
E. coli 0.23 0.48* 0.63* 0.65* 
Enterococci -0.10 0.17 0.6* 0.39 
Human Bacteroidales 0.25 0.31 0.77* 0.65* 
Ruminant Bacteroidales 0.35 0.52* 0.28 0.34 

      
Human 

Bacteroidales 
Percent impervious cover 0.27 0.07 -0.24 0.08 
Septic density 0.39 0.25 -0.11 0.29 
Percent forest cover -0.57* -0.02 0.24 -0.18 
Percent agricultural land use -0.23 -0.12 0.18 -0.11 
Av. distance of septic to stream -0.64* -0.27 -0.23 -0.52* 
Sewer line density -0.13 -0.07 -0.01 -0.09 
Dissolved oxygen 0.11 0.39 -0.05 0.26 
pH 0.04 -0.2 -0.14 0.04 
Water Temperature 0.54* -0.08 0.34 0.35 
Specific conductance 0.44 0.36 0.24 0.41 
E. coli 0.4 0.79* 0.71* 0.71* 
Enterococci 0.52* 0.54* 0.63* 0.57* 
Ruminant Bacteroidales 0.43 0.32 0.38 0.4 

      
Ruminant 

Bacteroidales 
Percent impervious cover 0.29 -0.26 -0.75* -0.34 
Septic density 0.37 -0.21 -0.76* -0.33 
Percent forest cover -0.53* -0.03 0.54* 0.07 
Percent agricultural land use -0.05 0.3 0.85* 0.57* 
Av. distance of septic to stream -0.45* 0.08 0.51* 0.21 
Sewer line density 0.32 0.11 -0.41 -0.07 
Dissolved oxygen 0.11 0.23 0.09 0.18 
pH 0.12 0.14 -0.03 0.17 
Water Temperature 0.35 -0.15 0.4 -0.05 
Specific conductance 0.46* 0 -0.46* -0.11 

 
E. coli 0.37 0.55* 0.54* 0.52* 

 
Enterococci 0.04 0.48* 0.37 0.07 

* Significant at p ≤ 0.05 

  



 

 

98 
 

 

Table 4.6. Output of multivariable linear regression models for human associated 

Bacteroidales marker yield for seasonal and pooled data 

Season Variable Parameter 
estimate 

Variance 
inflation factor 

(VIF) 
p-value Intercept 

Adjusted 
R-square 

(Ra
2) 

Spring Impervious 
cover 

-0.049 4.3 0.003 

6.4 0.74 
Septic density 0.003 5.9 0.006 
Forest cover -0.029 2.5 0.0006 

Dist. to streama -0.006 1.5 0.006 
SC b -0.01 3.5 0.018 

              
Summer Nonec           

           
Fall Impervious 

cover 
-0.029 1.4 0.021 

10.46 0.31 Dist. to stream -0.007 1.6 0.011 
Water pH -0.9 1.4 0.02 

              
Pooled 

data 
Impervious 

cover 
-0.025 3.2 0.025 

4.2 0.47 Septic density 0.002 1.3 0.017 
Dist. to stream -0.003 3.7 0.041 

a  Average distance of septic systems to streams 

b  Specific conductance 
c  No variables met the significant threshold of p ≤ 0.05 
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Table 4.7.  Seasonal climatic and hydrologic conditions in 

the study area 

Parameters Spring  Summer  Fall 
Average monthly ambient 
temperature (oC) 

16 27 11 

Average monthly precipitation 
(cm) 

11 10 10 

Average baseflow during 
sampling (m3/s) 

0.025 0.012 0.008 
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Figure 4.1. Location of the study site with boundaries and monitoring stations in Gwinnett 

County, GA 
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Figure 4.2. Distribution of total, human and ruminant markers grouped by septic system density and season. Figures (a), (b) and (c) 

shows concentrations of total, human and ruminant markers respectively, whilst (d), (e) and (f) represents the yield of total, human and 

ruminant markers respectively. The data includes imputed non-detect values and the (*) symbol represents the mean of the 

observations
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Figure 4.3. Plot of adenovirus marker distribution in high and low density watersheds for five 

selected sampling events. Bars represent interquartile range whilst horizontal line in bars and * 

symbol depicts the median and mean respectively. 
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CHAPTER 5 

MODELING SEPTIC SYSTEM IMPACT ON MICROBIAL WATER QUALITY WITH THE 

SOIL AND WATER ASSESSMENT TOOL (SWAT)3 

  

                                                 
3  Sowah, R. A., Radcliffe, D. E. and Habteselassie, M. Y.  To be submitted to Environmental Science and 
Technology 



 

 

104 
 

ABSTRACT 

Watershed scale models such as the soil and water assessment tool (SWAT) are 

promising tools for studying the impacts of septic systems on water quality and quantity. The 

goal of this study was to use SWAT to evaluate the impact of septic systems on bacterial loads in 

urbanizing watersheds. To achieve this objective, we modeled the flow regime and fecal 

bacterial loads in Big Haynes Creek watershed located in Gwinnett County, GA and a smaller 

sub-basin that is nested within the Big Haynes Creek watershed. Flow predictions in the study 

area shows that on average septic systems contribute approximately 7% to the total water yield 

annually. This observation is significant and contradicts suggestions that septic systems are 

100% consumptive use. Model results also suggest that the distance of septic systems to streams 

in the study area can influence bacterial loads in streams. Bacterial source analysis points to 

septic systems contribution to microbial water quality when septic systems are less than 10 m 

from streams. This result suggests that the current mandated minimum distance of 15 m between 

septic system drainfields and streams in the state of Georgia may be adequate to protect water 

resources. However, the results from this study show that there are still local areas with septic 

systems within the minimum separation threshold which could present risk to water quality. The 

findings of this study provide the tools that can be used at the watershed level to assess septic 

system critical areas to support septic system management. 
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INTRODUCTION 

There is a common perception that septic systems are contributing to widespread fecal 

pollution of streams and rivers in the U.S. (U.S. EPA, 2016). Recent studies by Verhougstraete et 

al. (2015) and Peed et al. (2011) have sought to address concerns about the potential impact of 

septic systems on microbial water quality in the U.S. Water quality assessments in the 

metropolitan Atlanta area by the present authors suggest the impact of septic systems on 

microbial water quality of streams (Sowah et al., 2014; Sowah et al., 2016). These studies by 

Sowah et al. monitored streams in 24 urbanizing watersheds for traditional fecal indicator 

bacteria (FIB) and microbial source tracking (MST) markers to characterize the influence of 

septic systems on microbial water quality. The findings from these studies show that FIB loads in 

streams can be partly explained by the density of septic systems and the average distance of 

septic systems to streams in the watersheds. Moreover, the human-specific Bacteroidales marker 

(HF183) was found to be significantly higher in watersheds impacted by high septic system 

density compared to low density areas and was negatively correlated with the average distance of 

septic systems to streams in the spring season. Understanding the contribution of septic systems 

to water quality at the watershed level will require multiple approaches including watershed 

scale modeling to support monitoring programs. 

Watershed scale models such as HSPF (Hydrologic Simulation Program Fortran) and 

SWAT (Soil and Water Assessment Tool) have been used widely to evaluate the impact of land 

use and management on water quality in rural and urban watersheds (Baffaut and Sadeghi, 2010; 

Chin et al., 2009; Benham et al., 2006; Jamieson et al., 2004). The SWAT model was developed 

by the USDA Agricultural Research Service in the early 1990s to predict the impact of 

agricultural activities and management practices on water, sediment and chemical yields in 
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mixed-use watersheds (Arnold et al., 1998). The model has been updated over the years to 

include bacteria and septic system subroutines. The current version of the model (SWAT 2012), 

which incorporates a septic biozone algorithm, is a promising tool for evaluating septic systems’ 

impact on water quality and quantity (Oliver et al., 2014b; McCray et al., 2009).  

Although SWAT bacterial modeling has received considerable attention over the years, 

the contribution of septic systems to bacterial loading at the watershed level has not been 

adequately assessed. This has been partly attributed to limited information on the spatial 

distribution of septic systems at the watershed level to allow for accurate prediction of septic 

system impacts on bacterial loads (Benham et al., 2006; Jeong et al., 2011). Moreover, the few 

studies that have addressed septic impacts on bacterial loads at the watershed level using the 

modeling approach have mainly focused on rural/agricultural watersheds (Niazi et al., 2015; Frey 

et al., 2013; Coffey et al., 2010; Parajuli et al., 2009b). To the best of our knowledge no study 

has used SWAT to examine the impact septic systems on bacterial loading in watersheds with 

high septic system density.  

Accurate prediction of septic system impact using watershed scale models depends 

largely on the availability of data on the distribution and condition of septic systems in the 

watershed. It has been suggested that the lack of precise information on the spatial distribution of 

septic systems can reduce the predictive power of watershed scale models (Jeong et al., 2011; 

Coffey et al., 2010). Previous studies have addressed the lack of spatial information on septic 

systems by assigning septic units to houses in rural settings only (Parajuli et al., 2009b; Niazi et 

al., 2015). This approach may overlook large areas of septic influence in suburban areas which 

currently have the majority of septic systems (U.S. EPA, 2002). In recent years, there has been a 

move toward better management of septic systems which holds promise for septic system 
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modeling in suburban watersheds. Other developments include the availability of water quality 

data required for model calibration and validation. These new developments should help reduce 

model uncertainties leading to improved prediction power of watershed scale models. 

The traditional approach to assessing septic systems impacts on water quality has focused 

on failing septic systems. Three types of septic system failure are generally described (Swann, 

2001). The first type of failure, which is widely reported, is hydraulic failure which results in 

sewage backing up into the house and ponding of septic effluent on the surface of the drainfield 

(also called soil absorption system). This failure can be caused by clogging of the distribution 

system and build-up of plaque in the biozone (biologically active layer in the soil absorption 

system) or installation in unsuitable soils (Jeong et al., 2011; Beal et al., 2005). Another type of 

failure occurs when plumes of inadequately treated effluent move through soil macropores and 

cracks due to poor soil conditions. This is known as subsurface failure and can result in the 

transport of pollutants into groundwater and nearby water bodies. Finally, treatment failure 

occurs when the septic system is not able to efficiently remove pathogens and nutrients from the 

wastewater prior to discharge into shallow groundwater. Most modeling applications usually 

consider failure due to hydraulic failure of the system (Jeong et al., 2011). Subsurface and 

treatment failures have received little attention in water quality studies due to difficulties in 

assessing their impact on water resources. 

Typically, properly functioning septic systems are considered to be efficient in the 

removal of pollutants from sewage and as such their impact on water quality is not accounted for 

in most watershed scale models including SWAT. Properly operating septic systems have been 

reported to remove significant amount of contaminants from sewage including 99.9% of bacteria 

(Coffey et al., 2010). This treatment of properly operating septic systems may not hold true 
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under all conditions as several studies have demonstrated the movement of viral tracers from 

active septic systems through groundwater into receiving surface waters (Paul et al., 2000; 

Deborde et al., 1998; Scandura and Sobsey, 1997). It may also be true that above a given density 

of systems (number of systems per square km), properly functioning systems have a detrimental 

effect. Further studies are therefore needed to elucidate the fate and transport of fecal pollutants 

through properly operating septic systems.  

In this study, we used the SWAT 2012 watershed scale model to evaluate the impact of 

septic systems on bacterial loads in urbanizing watersheds. The septic system subroutine 

developed by Jeong et al. (2011) and incorporated in SWAT 2012 was evaluated to assess model 

performance for flow predictions. Sensitivity of bacterial loads to failing septic systems was 

examined by modeling the effect of different septic failure rates at the watershed level. We also 

assessed model sensitivity to septic inputs applied under the following scenarios: as a land 

application, or as point source input discharged directly into streams as reported in previous 

studies (Coffey et al., 2010, Parajuli et al., 2009a, Niazi et al., 2015). Our objectives included a) 

determine the impact of septic systems on the flow regime in an urbanizing watershed; b) assess 

the effect of different septic failure rates on bacteria load and; c) examine watershed level factors 

and model parameters driving septic system impacts on microbial water quality. This study 

provides a modeling framework to address the poorly understood subject of septic system 

impacts on fecal pollution at the watershed scale.  
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MODEL SET-UP 

Study Area 

The study area was the Big Haynes Creek watershed located in Gwinnett County, 

Georgia, USA (Figure 5.1). The watershed, which has a USGS gage station at the outlet, is 44.77 

km2 in area and falls within the Altamaha River Basin in the Southern Piedmont physiographic 

region. Nested within the Big Haynes Creek watershed is a smaller watershed (sub-basin 7) of 

2.1 km2. This sub-basin has an automated ISCO sampler (Teledyne ISCO, USA) installed at the 

outlet (Figure 1). Sub-basin 7 is also one of the high density septic impacted watersheds 

(watershed #17) discussed in Chapters 3 and 4 of this dissertation. The predominant land use in 

the Big Haynes Creek watershed is residential (approximately 65% of the watershed area). Other 

significant land uses include forest (25%), pasture/hay (8.7%) and septic systems (0.9%) based 

on an assumed septic drainfield area of 100 m2. Details of the land use distribution for Big 

Haynes Creek and Sub-basin 7 are presented in Table 5.1. The area has a mean annual rainfall of 

about 1245 mm and average slope of 7%.  The population density is approximately 4403 km-2 

according to the 2010 population census (U.S. Census Bureau, 2009). Observed flow and 

bacterial data were obtained from the USGS gage station at the outlet of Big Haynes Creek and 

from our ISCO sampler in sub-basin 7.  

SWAT Model 

The SWAT (ArcSWAT 2012) watershed model was used to predict flow and bacteria in 

the watershed. The model, which is a continuous-time, semi-distributed model, is interfaced with 

ArcGIS which provides capability to represent spatial data on land use, topography, climate and 

hydrology (Arnold et al., 2012). The SWAT model was selected for this study due to the 

incorporated septic system subroutine which allows the modeling of septic influence at the 
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watershed level. Other advantages of the SWAT model are the capability to simultaneously 

model persistent and less persistent bacterial populations within a watershed, and the direct 

simulation of bacterial die-off/regrowth with Chick’s law (Chin et al., 2009). Major model 

components relevant to flow and bacteria include weather, hydrology, soil properties, 

agricultural operations, stream/pond/reservoir routing and septic systems (Gassman et al., 2007; 

Neitsch et al., 2011). The model works by dividing the watershed into sub-basins which are 

further divided into hydrologic response units (HRUs) (Coffey et al., 2010). These HRUs are 

unique combinations of soil, land use and slope within the sub-basins and have no spatial 

context. The use of HRUs allows the heterogeneity of the soil, topography and land use at the 

sub-basin level to be represented in the simulation (Douglas-Mankin et al., 2010).  

Bacteria subroutine in SWAT  

The bacterial module in SWAT covers key processes such as source loadings from 

livestock, wildlife, point sources and septic systems that contribute to bacterial loads in the 

watershed. Bacterial fate and transport processes in SWAT are represented by equations 

governing the movement of bacteria from land areas to the stream network and bacterial die-off 

and regrowth in each sub-basin reach (Neitsch et al., 2011). Bacterial movement from land areas 

can be in surface runoff or with sediments eroded into the stream network. The SWAT model 

assumes that only bacteria in the top 10 mm of the soil are available for transport with runoff. 

The bacteria that leaches out of the surface layer with the soil solution is assumed to be lost to 

the system and is not accounted for in shallow groundwater return flow into streams. The 

bacteria partition coefficient in manure (BACTKDDB [–]) and partition coefficient in soil 

(BACTKDQ [m3 mg-1]) are parameters that affect how much bacteria is transported to the reach 
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in any given day. Die-off and regrowth of bacteria in both soil and stream is described by 

Chick’s first order decay equation below: 

Ct=C0 e-KtA
�T - 20�

         (1) 

where Ct = concentration at time t, C0 = initial concentration, K = decay rate (d-1), t = time (days), 

A = temperature adjustment factor (THBACT), and T = temperature (oC). In this study regrowth 

of bacteria is not modeled due to uncertainties in regrowth parameters.  

The new septic system algorithm in SWAT is based on whether a septic system is active 

(properly functioning) or failing (altered by plaque build up to the point where hydraulic 

conductivity is compromised) (Jeong et al., 2011). Under active septic systems, septic effluent is 

treated within an active biozone layer that attenuates bacteria and other pathogens in the 

wastewater. Failing septic systems on the other hand have no biozone processes implemented in 

SWAT leading to ponding of septic effluent on the soil surface (Jeong et al., 2011). Although 

SWAT does not directly model bacteria and pathogens in septic effluent ponding on soil surface, 

it can be assumed that failing septic systems in close proximity to streams can potentially 

discharge effluent into nearby water bodies under the right conditions. This explains why 

previous studies have shown better SWAT bacteria model sensitivity when failing septic systems 

were treated as point source inputs (Parajuli et al., 2009a; Frey et al., 2013).    

Data Acquisition 

A 10 m digital elevation model (DEM) and national land cover dataset (NLCD) was 

obtained from the Natural Resources Conservation Service (http://datagateway.nrcs.usda.gov/). 

The Soil Survey Geographic Database (SSURGO) was downloaded from the SWAT website 

(http://swat.tamu.edu/software/arcswat/). A septic system shapefile was obtained from the 

Gwinnett County Geographic Information Systems database (GCBC, 2013). Climatic data for 

http://datagateway.nrcs.usda.gov/
http://swat.tamu.edu/software/arcswat/
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the project was accessed from two sources: SWAT’s Global Weather Database 

(http://globalweather.tamu.edu/) and Applied Climate Information System (ACIS) PRISM 

datasets (http://www.rcc-acis.org/). Daily precipitation and temperature values were obtained 

from 6 ACIS weather stations while information on wind speed, relative humidity and solar 

radiation were retrieved from 2 weather stations in the Global Weather Database.  

Watershed Delineation and HRU Definition 

The DEM was used to delineate the Big Haynes Creek watershed and estimate watershed 

characteristics such as slope, topography and flow direction. A threshold of 2% of the watershed 

area was used as a threshold to initiate a perennial stream to define the stream network and sub-

basins in the watershed. This threshold level has been recommended as satisfactory for modeling 

applications in SWAT (Arabi et al., 2006; Coffey et al., 2010). The watershed was then 

delineated using the outlet at the USGS gage station (USGS 02207385 Big Haynes Creek at 

Lenora Road, Nr Snellville, GA). A total of 32 sub-basins were created with the watershed 

delineation tool in SWAT. An outlet was placed at the location of our ISCO sampling station so 

that one of the sub-basins (number 7) corresponded to the nested watershed (Figure 1). The 

septic system file was merged with the NLCD map to generate a single land use map following 

the steps outlined by Oliver et al. (2014a). The slope of the watershed was then grouped into 3 

classes of 0 – 5%, 6 – 10% and >10%. The new land use map and soils data were then redefined 

into SWAT land use and soil categories for use in HRU definition. To create a reasonable 

number of HRUs, thresholds of 0%, 10% and 30% were used to define land use, soils and slope 

respectively. The soils threshold was less stringent in order to generate all soil groups 

(Hydrologic A to D soils) to allow assessment of soils prone to septic system failure. Septic land 

http://globalweather.tamu.edu/
http://www.rcc-acis.org/
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use was exempted from the HRU definition threshold because of the small percentage of 

watershed area under septic land use. Overall, a total of 2600 HRU’s were created. 

Bacteria Source Characterization 

The main sources of fecal bacteria in the watershed include manure from grazing beef 

cattle, confined dairy cows and wildlife, plus runoff from failing septic systems.  

Livestock 

The amount of manure produced by cattle in the watershed was estimated from the stock 

density of animals in the watershed. A total of 184 cattle were estimated for the watershed based 

on a stock density of 0.47 cows ha-1 in Gwinnett County as reported by the Department of 

Agriculture (USDA Census, 2002). Personal communication with Robert L. Brannen of the 

UGA Cooperative Extension Office in Gwinnett County also confirmed the livestock density in 

the watershed. The 184 cattle include 122 beef cows and 62 dairy cows based on estimates from 

the Agricultural Census. Manure production rates by cows were obtained from the American 

Society of Agricultural Engineers (ASAE) Manure Production and Characteristics database 

(ASAE, 2005) and the U.S.EPA’s Bacterial Indicator Tool (BIT) (U.S. EPA, 2000). Grazing 

operations were assumed to continue year round for beef cows and between the months of April 

and November for dairy cows. Manure accumulation from dairy cows during the winter was 

applied as a fertilizer to pasture/hay land use areas once a month from April to November.  Table 

5.2 provides details of manure production rates and bacterial numbers in manure for livestock in 

the study area. The fecal coliform levels in manure were estimated in SWAT model input units 

of CFU g-1 using the average manure fecal coliform levels from the BIT. An average waste flow 

rate of 0.029 m3 day-1 and fecal bacterial loading of 4 x 108 CFU 100 ml-1 were estimated as the 

in-stream contribution of cattle to fecal bacteria. This was based on the assumption that a third of 
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all cattle in the watershed have direct access to streams and therefore deposit manure directly 

into the streams in sub-basins with significant pasture/hay land use (U.S. EPA, 2000). Fencing 

cattle out of streams is not a common practice in this area. No scenario was reported for 

in-stream cattle manure deposition in sub-basin 7 as the number of animals did not meet the 

criteria for direct manure input into streams.  

Wildlife 

Due to inadequate data on wildlife populations in the watershed, only the effect of white-

tailed deer was simulated in this study. A density of 0.14 deer per ha was used in the watershed 

based on average deer populations in Gwinnett County (GDNR, 2007). Average manure 

deposition from grazing deer in the watershed was estimated based on population density and 

manure production characteristics reported by Yagow et al. (2001) (Tables 5.1 and 5.2). An 

average fecal coliform count of 2.2 x 105 CFU g-1 of manure was used based on manure 

production rate and fecal coliform levels reported in the BIT.  

Septic system loading 

A total of 4,068 and 416 septic systems were located in the Big Haynes Creek watershed 

and sub-basin 7 respectively. Because the septic system algorithm in SWAT does not currently 

quantify bacterial loads from failing septic systems, effluent from failing systems was land 

applied to septic HRU’s or treated as a point source input deposited directly into streams. For 

land application, septic effluent was added to septic land use areas through continuous 

fertilization under management operations. We assumed that 30% of septic systems were failing 

in the study area under the land application scenario. It is estimated that septic systems fail at 

rates of 5 – 40% (Swann, 2001), whilst the U.S. EPA puts it at 10 – 20% (U.S. EPA, 2002). In 

this study, a high failure rate of 30% was used based on previous studies that showed poor 
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SWAT model response to septic effluent applied to land areas (Parajuli et al., 2009b; Coffey et 

al., 2010). A total of 1,220 septic units were therefore considered failing, producing 

approximately 31 kg ha-1 day-1 of septic waste.   

Under the scenario where failing septic systems were treated as a point source input, 

failing systems were identified as the systems that were in close proximity to the nearest stream. 

These systems have the potential to discharge effluent into streams due to their location. These 

septic systems were determined using the ‘generate near table’ option in the proximity analysis 

toolbox in ArcGIS. The rational for this approach was to allow for septic effluent to be 

introduced directly into the streams as a point source as suggested by previous studies (Parajuli 

et al., 2009a; Frey et al., 2013). According to the previous authors, SWAT bacteria model results 

are most sensitive to septic effluent introduced directly into streams. Four proximity thresholds 

(<5 m, <10 m, <20m and <30 m from the nearest stream) were used to assess the effect of 

different failure rates on bacterial loads. A total of 5, 8 and 18 septic units were considered 

failing and discharging directly into streams when the thresholds were <5 m, <10 m and 20 m 

respectively at the watershed level. At the sub-basin level, 1, 2 and 3 septic systems were treated 

as failing at thresholds of <10 m, <20 m and <30 m respectively. Failing septic systems 

contributed 0.32 m3 of effluent per day per septic system and fecal coliform concentration of 6.3 

x 106 CFU 100 ml-1 (Parajuli et al., 2009a). Properly functioning septic systems, on the other 

hand, were simulated using the new septic algorithm to estimate the contribution of septic to 

daily flow regime. For flow simulation, default septic system parameters were used with the 

exception of the following parameters: SEP_CAP (number of permanent residents in each house) 

of 2.8, SEP_STRM_DIST (average distance to the stream from the septic systems) of 0.63 and 

SEP_DEN (number of septic systems per square kilometer) ranging from 2 – 232 units km-2.  
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Sensitivity analysis and calibration of SWAT model 

The SWAT-Cup SUFI-2 calibration and uncertainty analysis program (Abbaspour, 2007) 

was used to calibrate and validate the SWAT model. The SUFI-2 algorithm captures 

uncertainties in model output by propagating uncertainties in parameters. The assumption is that 

uncertainty in parameters, which are expressed in the parameter ranges, accounts for all sources 

of uncertainty including uncertainty in variables such as rainfall, conceptual model and measured 

data (Abbaspour, 2007). The SWAT model was first calibrated for flow using 22 flow 

parameters identified from the literature and using expert judgment (Table 5.3). During the 

calibration process, global sensitivity analysis was performed to determine sensitive parameters 

to focus calibration efforts. The flow model for Big Haynes Creek was calibrated for the period 

1998 – 2007 and validated for the period 2008 – 2013 with a warm-up of 4 years. The model was 

then calibrated and validated for bacteria by adding bacteria parameters to the calibrated flow 

parameters and running the different source scenarios (Tables 5.4 and 5.5). Due to uncertainty of 

bacterial source loads, different source scenarios were run in this study to assess the potential 

contribution of each source to total fecal pollution. The bacteria source analysis was also geared 

toward evaluating the potential pathways of septic systems’ contribution to fecal pollution of 

streams observed in the MST analysis in the study area. Other studies in the literature have used 

a similar approach to estimate bacterial sources and analyze the impact of different source 

scenarios on bacterial output at the watershed level (Coffey et al., 2010; Parajuli et al., 2009b). 

 The bacteria sub-model was calibrated and validated in years 2003 and 2004 respectively 

for fecal coliform concentration (CFU 100 ml-1) at the Big Haynes Creek outlet. At the sub-basin 

level observed flow, Escherichia coli (E. coli) and enterococci counts collected between 2012 

and 2013 were compared to model results. E. coli and enterococci were treated as less persistent 
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and persistent bacteria respectively. This is due to the high concentrations of enterococci 

observed in streams as compared to E. coli. Bacteria parameter values for the default bacterial 

simulation were obtained from previous SWAT modeling studies (Coffey et al., 2010; Cho et al., 

2012; Kim et al., 2010; Parajuli et al., 2009a, b). Fifteen bacteria and sediment parameters were 

evaluated for sensitivity to bacterial concentrations in the watersheds. 

Model evaluation  

Model performance was evaluated using the recommendations from Moriasi et al. (2015). 

A combination of Nash-Sutcliffe efficiency (NSE) coefficient, coefficient of determination (R2) 

and percent bias (PBIAS) were used to assess model performance. The NSE index indicates how 

well the plot of observed versus simulated data fits a 1:1 line. Values of NSE ranges between –∞ 

and 1.0 with NSE = 1 indicative of a perfect fit between predicted and measured values (Moriasi 

et al. 2007). The equation for estimating NSE is shown below;  

 

𝑁𝑁𝑁𝑁𝑁𝑁 = 1 − � ∑ �𝑌𝑌𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑌𝑌𝑖𝑖

𝑠𝑠𝑠𝑠𝑠𝑠�
2𝑛𝑛

𝑖𝑖=1

∑ �𝑌𝑌𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜− 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�

2𝑛𝑛
𝑖𝑖=1

�      (2) 

 

The R2 statistic describes the proportion of the measured data variance explained by the model 

and ranges from 0 to 1 with 1 indicating perfect model fit (Moriasi et al., 2007). Another 

important performance metric is the PBIAS which measures the tendency of the simulated data 

to be larger or smaller than the observed values. The NSE, R2 and PBIAS are widely used in 

hydrology and water quality modeling with extensive information on reported values for 

comparison (Moriasi et al., 2007). According to Moriasi et al. (2015), model predictions are 

considered satisfactory when daily NSE > 0.50, R2 > 0.60 and PBIAS ≤ ±15% for flow 

predictions. Similar performance criteria for bacterial modeling have not been described and as 
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such model accuracy for bacterial predictions in this study was assessed relative to previous 

studies. An additional model efficiency metric, p-factor, was evaluated in this study to estimate 

uncertainty in model outputs linked to model inputs or structural uncertainty (Abbaspour, 2007). 

The p-factor which varies from 0 to 1, measures the percentage of the observed data that is 

bracketed by the 95 percent prediction uncertainty (95PPU) of the model predictions resulting 

from propagating the uncertainties in the selected parameters (Abbaspour et al., 2015). A p-

factor of > 0.70 was recommended by Abbaspour et al. (2015). 

RESULTS AND DISCUSSION 

Sensitivity analysis and calibration of flow parameters 

The sensitivity analysis results, presented in Table 5.3, showed that parameters such as 

transmission losses from the main channel (TRNSRCH), effective hydraulic conductivity in 

main channel (CH_K2), and Manning's "n" value for the main channel (CH_N2) were the 

dominant processes controlling the flow regime at the watershed scale. This indicates that 

in-stream processes play a significant role in the flow regime in this watershed. Other flow 

parameters that were significant included the curve number for moisture condition 2 (CN2), 

base-flow alpha factor for bank storage (ALPHA_BNK) and the threshold depth of water in the 

shallow aquifer required for return flow to occur (GWQMN). At the finer scale of Sub-basin 7, 

flow was influenced by soil parameters such as saturated hydraulic conductivity (SOL_K), 

available water capacity of the soil layer (SOL_AWC) and moist bulk density (SOL_BD) in 

addition to parameters affecting flow in the main channel.  

In general, flow predictions at the outlet of Big Haynes Creek watershed was satisfactory 

based on performance criteria recommended by Moriasi et al. (2015). In this study, flow 

calibration on a daily time-step at the outlet of Big Haynes Creek resulted in NSE, R2 and PBIAS 
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of 0.67, 0.68 and 5.9% respectively (Figure 5.2). Model performance was slightly better during 

the validation period with NSE, R2 and PBIAS of 0.70, 0.70 and 8.6% (Figure 5.3). The p-factor 

for both calibration and validation time intervals were > 0.70 (Figures 5.2 and 5.3). The flow 

model performance exceeded results reported by Oliver et al (2014a) who modeled flow in the 

same watershed using shorter calibration and validation time intervals. At the sub-basin level, the 

flow model prediction accuracy was lower with NSE and R2 values of 0.21 and 0.30, and -0.02 

and 0.02 for calibration and validation timeframes respectively (Figure 5.4). However, estimates 

of PBIAS were within the acceptable performance ranges with 6.8% and 3.7% observed for 

calibration and validation periods respectively. Overall, flow predictions were unsatisfactory at 

the sub-basin level and this could be attributed to measurement errors in observed data from 

stage-discharge estimation at the sub-basin outlet. The observed flow was often very low and 

there were problems with sediment and trash filling in around the water level gauge. This may 

have caused the step-up and step-down in some parts of the time series in Figure 5.4 in the later 

part of 2012 and near the end of 2013. Also, poor model accuracy at the sub-basin level may be 

due to the fact that the NSE statistic is insensitive to low flow periods due to the squared error 

term in equation (2) (Krause et al., 2005). The calibrated flow model predicted a 7% increase in 

total water yield as a direct result of the input from septic systems in the Big Haynes Creek 

watershed. At the sub-basin level, septic systems’ contribution to water yield was approximately 

13%. The observed contribution of septic systems to water yield in this study compares with 

previous research in the study area (Oliver et al., 2014a; Landers and Ankcorn, 2008).  

Scenario analysis, sensitivity and calibration of bacteria model 

Seven bacterial source scenarios were examined to determine the sources of fecal bacteria 

impacting surface waters (Table 5.5). From the scenario analysis, point source loading of effluent 
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from failing septic systems in the watersheds was found to best capture variations in bacterial 

concentrations at the watershed and sub-basin outlets. Typically, point source loads from failing 

septic systems improved model predictions for both calibration and validation periods. At the 

watershed level, all three failure rates representing point source loading of septic effluent 

improved model performance compared to other source scenarios considered in this study. 

Results of point source loading of septic systems showed NSE values of 0.10 to 0.15 and -0.13 

and -0.07 for calibration and validation periods respectively.  The scenarios representing point 

source loading from septic systems also showed the lowest values for PBIAS considering both 

calibration and validation periods (7.1 to 19.7) and the highest p-factor values (0.63 to 0.91) at 

the watershed level. Estimates of PBIAS close to zero indicate less model bias, with positive 

values suggesting model under predication bias. The model performance under the failing septic 

system scenarios was comparable to SWAT bacteria model results reported in the literature 

(Niazi et al., 2015; Frey et al., 2013). The negative values indicate a poor model fit resulting 

from the inability of SWAT to simulate some part of the bacterial fate and transport process in 

the watersheds. One important pathway for bacterial transport to streams that is not currently 

modeled by SWAT, and which may be contributing to fecal bacterial loads in streams, is the 

movement of septic effluent through the shallow groundwater. Bacterial source tracking data 

from the study area suggest the potential for groundwater-associated bacterial transport into 

streams from the high density of septic systems in the study area and the proximity of these 

systems to streams (Chapter 4 of Dissertation). Unsatisfactory results for bacteria models can 

also be attributed to uncertainties in bacterial sources and the paucity of measured data for model 

calibration (Parajuli et al., 2009b; Coffey et al., 2010).  
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Sensitivity analysis looked at the effect of changes in model parameters such as 

BACTKDQ (bacteria partition coefficient in surface runoff) and THBACT (temperature 

adjustment factor for bacteria die-off/growth) among others (Table 5.4) on bacterial 

concentrations at the watershed and sub-basin levels. We also examined the impact of input 

parameters including MANURE_KG (dry weight of manure deposited daily) and FRT_KG 

(amount of fertilizer applied to HRU). These input parameters directly influence the amount of 

manure deposited by livestock and wildlife and therefore the amount of fecal bacteria available 

for runoff into streams. Our results for all source scenarios showed that the model did not 

respond significantly to changes in the amount of manure deposited in pastures and forest areas 

by cattle and deer respectively. The results however showed that THBACT and BACTMX 

(bacteria percolation coefficient) were the most significant bacteria parameters at the watershed 

level. The most significant parameters at the sub-basin level include THBACT and WDPRCH 

(die-off factor for less persistent bacteria in streams at 20°C). The fact that in-stream bacterial 

die-off factors THBACT and WDPRCH were the most significant model factors is not surprising 

considering that the potential sources of fecal bacteria in the watersheds were found to be direct 

deposition into streams. Similar studies in the literature found THBACT to be one of the most 

sensitive parameters that affect bacterial fate and transport at the watershed level (Parajuli et al., 

2009a; Niazi et al., 2015; Coffey et al., 2010).  

Bacterial source estimation and model predictions 

The contribution of animal and human sources to total fecal pollution at the watershed 

level was estimated for the <10 m failing septic scenario that best represented watershed 

conditions. Bacteria source contributions were estimated as the ratio of the predicted total fecal 

coliform load from each source to the predicted total fecal coliform load for the simulation 
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period. Bacteria from livestock and wildlife manure deposited on land represented a small 

fraction of the bacterial load observed in streams. We estimated a source load of 1% attributable 

to livestock and wildlife manure deposited on land with the remaining 99% from direct 

deposition into streams from failing septic systems in close proximity to streams. It has to be 

noted that even though the model fit under the direct cattle manure deposition into streams was 

poor, we cannot discount direct deposition from animals in this watershed due to uncertainties in 

the number of livestock and wildlife with access to streams. Moreover, streams walks in the 

study area showed that livestock, especially cattle, had access to streams in the study area 

(Hoghooghi et al., 2016).   

In general, model predictions of bacterial concentrations under the best source scenario 

followed a similar pattern to the observed bacterial concentrations at the outlet of Big Haynes 

Creek watershed (Figure 5.5). Predicted bacterial concentrations ranged from 35 – 330 CFU 100 

ml-1 at the outlet of the watershed and were within the range of observed values. On average, the 

model under predicted bacterial concentrations by an average of 12%. In contrast, model 

predictions of bacterial concentrations in Sub-basin 7 were significantly lower by an average of 

36% over the calibration and validation periods for the best source scenario (failing septic 

systems <20 m from streams). Another significant observation is the higher bacterial 

concentrations at the Sub-basin outlet in comparison to observed values at the outlet of Big 

Haynes Creek watershed. This is due to the larger number of storm flow samples analyzed at the 

sub-basin outlet. Runoff during storms can carry fecal bacteria from the land surface into streams 

(Gonzalez et al., 2012; Baffault and Sadeghi, 2010; Benham et al., 2006) The plot (Figure 5.6) of 

predicted and observed bacterial concentrations at the sub-basin outlet shows wide variations in 

observed values compared to the predicted bacterial concentrations. The variation in observed 
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values suggests that source loadings may vary over time and may also be indicative of the 

presence of multiple sources impacting bacterial numbers. Our results suggest that at the finer 

sub-basin scale accurate predictions of bacterial loads will require detailed information on source 

loadings in order to capture temporal changes in bacterial concentrations.  

CONCLUSIONS 

This study demonstrated the influence of septic systems on watershed hydrology and 

microbial water quality. Model simulation of the flow regime in the study area showed that on 

average septic systems contributed between 7 – 13% of the total water yield. This observation is 

significant and challenges suggestions that septic systems are 100% consumptive use. Model 

results also suggest that runoff of fecal bacteria into streams from failing septic systems in close 

proximity to streams is a significant source of bacterial loads. Analysis of different bacterial 

source scenarios in the watershed points to the influence of septic systems on microbial water 

quality when septic systems are <10 m from streams and other water bodies. This result suggests 

that the current minimum required distance of 15 m from septic drainfields to streams mandated 

in the state of Georgia may be adequate to protect water resources. However, the results also 

suggest that there are still a number of septic systems that were installed prior to the current 

regulatory threshold which could present risks to water quality. Bacteria simulations in this study 

also highlight the current limitation of the septic system sub-routine in the SWAT model to 

accurately represent all fate and transport processes pertinent to bacteria in septic effluent. It is 

our recommendation that future updates to SWAT should include, among others, processes or 

sub-routines to estimate bacterial output from failing septic systems through effluent ponding on 

the soil surface and effluent that enters shallow groundwater. This will enable a direct 

assessment of the effect of septic system condition, that is, whether failing or properly 
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functioning, on microbial water quality of nearby streams and other water bodies. Finally, the 

findings of this study provide the tools that can be used at the watershed level to assess septic 

system critical areas to support septic system management. 
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Table 5.1. Land use percentages in Big Haynes Creek and Sub-basin 

Land use 
Big Haynes Creek Sub-basin 7 

Area (ha) % Area (ha) % 
Residential 2900.8 64.8 149.2 70.9 

Forest 1135.4 25.4 41.9 19.9 
Pasture/Hay 389.7 8.7 15.3 7.3 

Septic  40.6 0.9 4.2 2.0 
Water 11.4 0.3 0.0 0.0 
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Table 5.2. Manure application rates for animals and failing septic systems 

Source Type of application 
Manure 
input  

Fecal coliform 
load (CFU/g) 

Cattle Grazing (kg dry wt. ha-1 day-1) 1.74 3.2 x 106 
Fertilizer application (kg ha-1) 129 3.2 x 106 

Deer Grazing (kg dry wt. ha-1 day-1) 0.03 2.2 x 105 
Failing septic 
systems 

Continuous fertilization (kg ha-1 
day-1) 

31 1.0 x 105 
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Table 5.3. Sensitivity analysis and calibrated hydrologic parameters 

Parameter Min Max Criteriaa 

Big Haynes Creek Sub-basin 7  

Definition 
Fitted 
value 

Sb (p-
value) Rank 

Fitted 
value 

S (p-
value) Rank 

CN2 -0.3 0.2 r -0.11 0.03 7 -0.28 0.00 3 Curve number for moisture 
condition 2 

ALPHA_BNK 0 1 v 0.46 0.01 5 0.01 0.00 8 Baseflow alpha factor for bank 
storage 

CH_K2 -0 500 v 1.29 0.00 2 71.2 0.00 1 Effective hydraulic conductivity 
in main channel alluvium 

CH_N2 -0 0.3 v 0.20 0.00 3 0.04 0.00 5 Manning's "n" value for the main 
channel 

GW_REVAP 0.02 0.2 v 0.02 0.66 15 0.02 0.18 13 Groundwater "revap" coefficient 

RCHRG_DP 0 1 v 0.63 0.34 12 0.7 0.24 14 Deep aquifer percolation fraction 

GWQMN -0.5 2 r -0.06 0.00 4 0.2 0.31 16 Threshold depth of water in the 
shallow aquifer required for 
return flow to occur 

GW_DELAY -0.5 4 r 2.8 0.79 17 0.84 0.10 11 Groundwater delay 

DEEPST -0.8 2 r -0.11 0.45 13 0.8 0.47 19 Initial depth of water in the deep 
aquifer  

SHALLST -0.8 2 r -0.4 0.15 10 0.36 0.11 12 Initial depth of water in the 
shallow aquifer 

ESCO 0 1 v 0.86 0.89 19 0.61 0.3 15 Soil evaporation compensation 
factor 

EPCO 0 1 v 0.53 0.73 16 0.52 0.54 20 Plant uptake compensation factor 

SURLAG 1 24 v 16.3 0.07 8 15.5 0.43 18 Surface runoff lag time 

TRNSRCH 0 1 v 0.26 0.00 1 0.02 0.00 4 Fraction of transmission losses 
from main channel that enter 
deep aquifer 

CH_K1 0 300 v 16.7 0.97 22 267 0.36 17 Effective hydraulic conductivity 
in tributary channel alluvium  

CH_S1 -0.5 10 r 7.38 0.91 20 4.95 0.68 21 Average slope of tributary 
channels 

OV_N -0.5 10 r 15.2 0.82 18 3.85 0.00 7 Manning's "n" value for overland 
flow 

HRU_SLP -0.5 0.8 r 0.07 0.22 11 -0.18 0.00 6 Average slope steepness 

SOL_K -0.8 0.8 r 0.73 0.03 6 0.65 0.00 2 Saturated hydraulic conductivity 

SOL_AWC -0.5 1 r 0.03 0.09 9 -0.38 0.03 10 Available water capacity of the 
soil layer 

SOL_BD -0.2 0.5 r 0.01 0.56 14 0.04 0.03 9 Moist bulk density 

RES_RR     -0.2 2 r 1.52 0.94 21 -0.07 0.70 22 Reservoir average daily principal 
spillway release rate 

a Modification criteria used  b Global sensitivity measure 
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Table 5.4. Results of sensitivity analysis and calibration of bacteria parameters for best case source scenarios (<10 septic: 

Big Haynes, <20 septic: Sub-basin 7) 

Parameter Min Max Criteria 

Big Haynes Creek Sub-basin 7   

Definition 
Fitted 
value 

S (p-
value) Rank 

Fitted 
value 

S (p-
value) Rank 

BACT_SWF 0 1 v 0.77 0.74 13 0.91 0.05 5 
 
Fraction of manure applied to land areas that has active 
colony forming units 

BACTKDQ 100 250 v 204 0.64 12 159 0.01 3 Bacteria soil partition coefficient. 
BACTMX 8 19 v 15.5 0.07 2 13.9 0.23 7 Bacteria percolation coefficient in manure 
WOF_LP 0 1 v 0.85 0.81 14 0.52 0.36 9 Wash-off fraction for less persistent bacteria 
THBACT 0.5 8 v 4.38 0.017 1 0.94 0.00 1 Temperature adjustment factor for bacteria die-

off/growth. 
WDLPS 0 1 v 0.97 0.43 9 0.02 0.18 6 Die-off factor for less persistent bacteria adsorbed to 

soil particles. 
WDLPRCH 0.5 1 v 0.83 0.18 7 0.94 0.00 2 Die-off factor for less persistent bacteria in streams 

(moving water) at 20°C 
BACTKDDB 0 1 v 0.9 0.2 8 0.88 0.02 4  Bacteria partition coefficient. 
BIO_MIN -0.2 2 r 0.3 0.11 4 -0.01 0.91 14 Minimum plant biomass for grazing 
BIO_INIT -0.2 2 r 1.54 0.54 10 0.12 0.34 8 Initial dry weight biomass (kg/ha) 
FRT_KG -0.5 2 r 1.61 0.12 5 1.5 0.42 10 Amount of fertilizer applied to HRU 
MANURE_KG -0.5 2 r -0.12 0.92 15 0.90 0.93 15 Dry weight of manure deposited daily 
SPEXP 1 1.5 v 1.25 0.16 6 1.10 0.70 12  Exponent parameter for calculating sediment 

reentrained in channel sediment routing. 
ADJ_PKR 0.6 1.8 v 1.52 0.58 11 0.69 0.52 11 Peak rate adjustment factor for sediment routing in the 

sub-basin (tributary channels) 
SPCON 0.0001 0.01 v 0.01 0.1 3 0.00 0.71 13 Linear parameter for calculating the maximum amount 

of sediment that can be reentrained during channel 
sediment routing. 
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Table 5.5. Model performance statistics for bacteria in Big Haynes Creek and Sub-basin 7 

Watershed 
  NSE PBIAS p-factor 

Scenario Calibration Validation Calibration Validation Calibration Validation 
Big 

Haynes 
Creek 

Manure application to land 
from cattle and wildlife 
(Baseline) 

-1.3 -1.16 100 100 0 0 

Land application of septic 
effluent 

-1.26 -1.13 99.4 99.6 0 0 

Septic as point source (<5 m) 0.10 -0.07 30 31.6 0.91 0.75 
Septic point source (<10 m) 0.13 -0.09 16.8 7.1 0.91 0.75 
Septic as point source (<20 m) 0.15 -0.13 8.9 19.7 0.91 0.63 

  
Instream cattle manure 
deposition 

0.05 -23.27 -4.4 -218 0.55 0.50 

  

Instream cattle manure 
deposition plus septic as point 
source (<5 m) 

-119 -2382 -645 -2982 0.27 0.38 

   
      

Sub-basin 
7 

  
  

Manure application to land 
from cattle and wildlife 
(Baseline) 

-0.06 -0.74 92.8 100 0.08 0 

Land application of septic 
effluent 

-0.04 -0.74 92.1 99.9 0 0 

Septic point source (<10 m) -0.25 -0.53 37.6 63 0.38 0.17 
Septic as point source (<20 m) -0.55 -0.42 19.4 53.4 0.46 0.33 
Septic as point source (<30 m) -1.05 -0.42 20.9 39.6 0.46 0.5 
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Figure 5.1. Map of study area showing watershed and sub-basin modeled in this study  
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Figure 5.2. Calibrated flow at the outlet of Big Haynes Creek watershed with observed and 

predicted flow as well as the 95 percent prediction uncertainty band 
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Figure 5.3. Observed and predicted flow at the outlet of Big Haynes Creek watershed for the 

validation period 
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Figure 5.4. Observed and predicted flow at the outlet of sub-basin 7 for the calibration and 

validation periods 
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Figure 5.5. Observed and predicted bacterial concentration at the outlet of Big Haynes Creek 

watershed for the calibration and validation periods 
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Figure 5.6. Bacterial concentration at the outlet of sub-basin 7 for calibration and validation 

periods when proximity of septic system to streams is <20 m 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

This study used multiple approaches including targeted monitoring of FIB, MST markers, 

watershed characterization and watershed scale modeling to assess the impact of septic systems 

on microbial water quality in urbanizing watersheds of metropolitan Atlanta. The results suggest 

widespread fecal pollution of streams in the study area with up to 90% of water samples 

collected from streams exceeding EPA’s single sample recreational water quality criteria for 

FIB. Analysis of FIB loads indicates seasonal and temporal variations in bacteria levels with 

significantly higher bacteria loads observed in spring and summer compared to fall. These 

changes in FIB levels were influenced by watershed level characteristics including the density of 

septic systems, average distance of septic to streams and forest cover as determined from 

correlation and multivariable regression analysis.  Regression models indicate that ~50% of the 

variation in FIB levels can be explained by septic system density, average distance of septic 

systems to streams, per cent developed area, forest cover and water temperature in spring and 

summer seasons.  

Analysis of host-associated Bacteroidales markers suggests the influence of septic 

systems, specifically the density of septic systems and average distance of septic to streams on 

fecal pollution at the watershed level. Human-associated Bacteroidales yield was significantly 

higher in high density watersheds compared to low density areas and was strongly correlated (r = 

-0.64) with the average distance of septic systems to streams in spring. The human marker was 

also positively correlated with the total Bacteroidales marker, suggesting that the human source 
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input was a significant contributor to total fecal pollution in the study area. Multivariable 

regression analysis indicate that septic systems along with forest cover, impervious area and 

specific conductance could explain up to 74% of the variation in human fecal pollution in spring. 

The results suggest septic system impact through contributions to groundwater recharge during 

baseflow or failing septic system inputs especially in areas with >87 septic units km-2.  

The SWAT model developed in this study confirms septic systems’ influence on 

watershed hydrology and microbial water quality. Flow simulation in the study area shows that 

on average septic systems contribute between 7 – 13% to the total water yield. This observation 

is very significant and challenges suggestions that septic systems are 100% consumptive use. 

Model results also suggest that direct deposition of fecal bacteria into streams is the likely source 

of bacterial loadings. Analysis of different bacterial source scenarios in the watershed points to 

the influence of septic systems on microbial water quality when septic systems are less than 10 m 

from streams and other water bodies. This result suggests that the current minimum required 

distance of 15 m from septic drainfields to streams mandated in the state of Georgia may be 

adequate to protect water resources. However, the results also suggest that there are still a 

number of septic systems that were installed prior to the current regulatory threshold which could 

present risks to water quality.  

Lastly, this study supports the use of MST approaches along with traditional FIB 

monitoring and land use characterization in a tiered approach to isolate the influence of septic 

systems on water quality in mixed-use watersheds. The findings of this study provide the tools 

that can be used at the watershed level to assess septic system critical areas to support septic 

system management. Finally, the results of this study can be used by watershed managers and 

stakeholders to promote septic system management at the watershed level. 
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