Go to main content
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DataCite
DublinCore
EndNote
NLM
RefWorks
RIS
Cite
Citation

Files

Abstract

Abstract Background Influenza A viruses exhibit complex epidemiological patterns in a number of mammalian and avian hosts. Understanding transmission of these viruses necessitates taking into account their evolution, which represents a challenge for developing mathematical models. This is because the phrasing of multi-strain systems in terms of traditional compartmental ODE models either requires simplifying assumptions to be made that overlook important evolutionary processes, or leads to complex dynamical systems that are too cumbersome to analyse. Results Here, we develop an Individual-Based Model (IBM) in order to address simultaneously the ecology, epidemiology and evolution of strain-polymorphic pathogens, using Influenza A viruses as an illustrative example. Conclusions We carry out careful validation of our IBM against comparable mathematical models to demonstrate the robustness of our algorithm and the sound basis for this novel framework. We discuss how this new approach can give critical insights in the study of influenza evolution.

Details

PDF

Statistics

from
to
Export
Download Full History