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Abstract

Bioinformatics is an integral part of systems biology studies, yet many large scale multi-

omic studies fail to produce meaningful, actionable results. These experiments produce data

sets that are often massive, contain many different types of data in a variety of formats and

are often analyzed with a specialized set of tools. Also, scientific and clinical studies often

incorporate data sets that cross multiple spatial and temporal scales to describe a particular

phenomenon. In this work, these challenges are addressed though the development of a novel

analytical framework, Scientific Knowledge and Extraction from Data (SKED), incorporating

standardized quantitative data formats, called data primitives, and an extensible object-

oriented schema to manage analysis steps. The SKED framework was used to manage analysis

of diverse data types from different hosts (three species of non-human primates) and tissues

(whole blood, bone marrow, and blood plasma) to investigate molecular mechanisms and

interventions to promote host resilience to Plasmodium infections. Molecular targets that

may influence the host response, as well as FDA-approved modulators of these targets, were

identified using information from the Pharos database (from the Illuminating the Druggable

Genome project) and the Drug-Genome Interaction database. One of these modulators,

imatinib, is known to have multiple targets, which were also found here, and the evidence

supporting the re-purposing of this drug to promote a resilient host response is presented.

This work shows that the SKED approach is able to produce biologically meaningful and



verifiable results. The SKED framework is flexible and can be easily extended in the future

to new data types, new analysis methods, and other experimental systems.

Index words: Malaria, Plasmodium, bioinformatics, data integration, genomics,
transcriptomics, proteomics, non-human primates
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Chapter 1

Literature Review

1.1 Introduction

The bottleneck in the biological discovery pipeline is now the generation of meaningful results

and models from a complex dataset rather than its production and dissemination. The cost

of a generating a genome is now less than the cost to store it and the results of analysis may

be more than can reasonably be tested or confirmed.

The difficulties of repurposing even the simplest quantitative modeling tools (e.g. linear

regression) from one dataset to another, and the difficulties in integrating just two levels of

biologically complexity (e.g. transcriptome and metabolome), invite one to look for similari-

ties and commonalities in data structures that could be exploited for re-usability of analysis

methods between biological data types.

In order to address the problems associated with management of data analysis, the Sci-

entific Knowledge Extraction from Data (SKED) framework was developed as a part of this

work. Quantitative data are harmonized into data primitives, which are JavaScript Object

Notation (JSON) formatted files that contain the metadata and data associated with a data

primitive. The formats of each data primitive are described in detail in Chapter 3 and the

Appendix. The SKED object-oriented schema provides a means to easily re-use quantitative

pipelines and functions for different data types.

1.2 Systems Biology Needs New Data Management and Integration Approaches

Biological sciences are undergoing a rapid increase in the amount of data gathered during an

investigation; not only have experiments expanded from studying and measuring one part
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(e.g. a gene) of an organism to studying all structurally and functionally similar parts (e.g. a

genome) but we have also expanded the data types and levels of organization being studied

(e.g. epigenome, immunome, etc.). Raw output from next-generation sequencing (NGS) for

research has surpassed Moore’s Law of performance improvements in information storage and

computation, so that even the simplest, most basic experimental designs now produce larger

datasets than ever before [1]. The further expansion of these -omic technologies from research

to personal use and clinical practice(i.e. 23-and-me) has compounded the problem, as has

the increased availability and use of real-time biomedical and consumer health monitoring

devices [2, 3]. This expansion in technology has enabled research to shift from reductionist

approaches which focus on finding and determining the roles of components, to systems

approaches which focus on the dynamic interactions of the system’s constituents [4].

Systems approaches transcend the traditional boundaries across disciplines and frequently

rely on informatics approaches that involve complex datasets describing a system at multiple

spatial and temporal scales [5]. Systems chemistry, which aims to holistically understand

complex chemical systems and predict the outcomes of novel chemical systems relies on

intensive calculations for structural analysis [6]. Systems pharmacology, which aims to holis-

tically understand drug mechanisms to improve drug efficacy and clinical outcomes, relies

on data sets from multiple scales which may include chemical, cellular, physiological and

environmental measurements [7]. Systems biology is the focus in this work but the approach

should be applicable to other types of systems. Systems biology studies may incorporate

many levels of biological organization including population and ecosystem information while

systems medicine focuses on the improvement of human health and treatment of disease [8–

10]. Such systems approaches have resulted in advances in drug resistance reduction, cancer

therapy and cardiovascular disease. However powerful these approaches might be, they fre-

quently use large, heterogeneous, complicated and often sparse data and models to reach

conclusions.
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Over time, many public data resources have been developed that make biological

databases, standards, and analysis tools easily available and more easily used by the wider

scientific community, yet the re-organization and homogenization of data for different

projects is still a monumental task requiring specialized expertise. For example, the devel-

opers of the Findable, Accessible, Interoperable, and Reusable (FAIR) data sharing principles

have approximately 950 sets of standards and approximately 940 databases documented

and listed on their website (FAIRsharing.org) [11]. Also, the goals of the COmputational

MOdeling in Biology and NEtwork (COMBINE) initiative include the development of

standards for the new fields of systems and synthetic biology, and the improvement of the

interoperability of current standards and tools [12]. These initiatives and others like the

BD2K initiative, have made great contributions and are very useful sources of raw data [13].

1.2.1 Motivation for Data Primitives

Philosophers working on epistemological and scientific problems have used mathematical

notations to depict their ideas and model the natural world. Notable among these have been

Immanuel Kant, according to whom reality consists of knowledge of processes in time and

space [14]. Believing that these notions exist as real entities outside of human perception,

Leibniz and Newton argued whether time and space were relative or absolute quantities

[15]. Later, in a move from studying physical systems to biological systems, Robert Rosen

and subsequently A. H. Louie, used set theory to describe the complexity of a living system

[16–18].

In contrast to historic models depending on imprecise and sparse data sets, modern

models rely on precise and dense measurements of complex systems. Therefore, categories

of data structures are needed in order to reduce this complexity. According to the Kantian

view, reducing such data to a minimalistic representation would result in data structures

that represent time, space and associated information. According to Newton and Leibniz,

the absolute or relative notions of these measurements would be required for a reduced data
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framework. Anticipatory systems, as described by Rosen, would require data representations

that encompass all possible measures of physical and biological entities with ways of encoding

states or outcomes.

Efforts to generalize data types and formats for quantitative analysis have resulted in

minimalistic data structures called in this work “data primitives”. These structures provide

the basis of the SKED framework to organize, combine, re-purpose and analyze large and

small datasets. Quantitative scientists now have basic structures to easily utilize different

types of data from different sources at different scales. Their usefulness, formats and imple-

mentation are shown here.

1.3 Bioinformatics and Programming

1.3.1 Functional and Object-Oriented Programming in Bioinformatics

Functional programming connects inputs and outputs of a series of code expressions to create

a program. In contrast, object-oriented programming (OOP) uses data structures, associated

methods and interactions between objects to create a program. Functional programming is

most useful when the formats of input and output data structures are rigidly defined and

cannot be easily changed, while OOP is most useful when there is a variety of input data

formats. In many cases the data format does not even need to be known in advance [19].

Today, most bioinformatics programming uses functional programming pipelines to ana-

lyze data. Genome and transcriptome assembly are examples of this. A limited number of

raw sequence file formats (ex. FASTQ, BCL) are assembled into a small number of aligned

sequence file formats (ex. BAM/SAM). This creates complications when working on integra-

tive analyses, where information from more than one -omics technology is being used. Each

data type has its own particular set of tools and functions that may not be compatible with

the set of tools used to analyze a different data type.

OOP uses objects to encapsulate the data properties and methods associated with the

object. Classes define types or kinds of objects. There are many advantages to using this
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type of programming. First, real-world and abstract objects are easily modeled by object

classes in OOP. Second, classes reduce complexity and hide implementation details. This can

significantly reduce the complexity of a program [20]. Other advantages include scalability,

compatibility, re-usability, extensibility and platform independence[21].

1.3.2 Good Programming Practices: The Importance of Testing

To ensure that this project and the code written for this work is re-useable and can be built

upon in the future, good programming practices were followed as outlined by Martin [21].

These include well-commented code along with unit-testing for consistency and accuracy

of program features. The unit tests were designed using the built-in testing framework in

MATLAB 2018b. With unit tests to ensure the accuracy of individual code blocks, integration

tests were also performed to ensure that functions and methods produced consistent outputs.

These two levels of testing allow us to easily confirm the reproducibility and proper operation

of the SKED classes.

1.3.3 The Problem of Reproducibility

Reproducibility of computational research has been identified as one challenge for systems

biology [22, 23]. When reproducing computational results, “forensic bioinformatics”, where

a scientist must check the input and output data to determine the methods that have been

used, must often be used when documentation and directions did not provide enough infor-

mation [24]. One case study describes a novice user needing about 280 hours to reproduce

a method [25]. With the fast pace of research and the need to make the most of valuable

high-throughput experimental results, computational findings need to be reliable and easy

to use [26].

Solutions have been proposed including making scientific articles “preproducible”, so

that there is enough detail about the experiment or analysis for someone else to try it

themselves [27]. There is a “Manifesto for Reproducible Science” [28] and “Ten Simple Rules
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for Reproducible Computational Research” [23] along with “Ten Simple Rules for Reducing

Overoptimistic Reporting in Methodological Computational Research” [29]. The ReScience

Initiative encourages the replication of already published results and all data and code must

be submitted to their github repository before publication [30]. Yet none of these seems

to have made a significant impact on the way computational analyses are performed and

reported.

1.3.4 The Three V’s of Big Data Analysis in Bioinformatics

The three V’s of Big Data were first coined by Doug Laney in 2001 as Volume, Variety, and

Velocity [31]. Bioinformatics databases began with genomic information and the amount of

this information has expanded as different species have complete genomes assembled. The

Volume of biological data continues to increase. Next, as technology develops, new biological

data types will be measured and the Variety of biological data types will continue to increase.

Last, the number of measurements taken throughout an experiment will continue to increase,

and data growth will continue as more time points, Velocity, are recorded.

New analysis approaches are needed to enable researchers to deal with these 3V’s . The

SKED framework was specifically designed for this purpose and has been successfully used

in the implementation shown here.

1.3.5 Data Integration is Required to make full use of multi-omic data sets

When different -omic measurements are taken over the course of an experiment, a seemingly

easy, but surprisingly difficult, logical first step in analysis is to combine evidence, like tran-

scriptomic and metabolomic data, to look for novel molecular relationships. However the

information measured for each type of molecule is different, with processed transcriptomic

data consisting of gene identity and associated expression level, while processed untargeted

metabolomic data from mass spectrometry consists of mass-to-charge (m/z) ratio, retention
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time (RT), abundance level as well as putative molecular identity. The computational scien-

tist analyzing such data must then come up with a way to combine the data in a meaningful

way that is not biased toward the importance of either data type [32] and does not lose the

information associated with each unique measurement.

An examination of the commonalities of several data types showed that they were all

quantitative measures that changed throughout the experiment, leading to the classification

of “time series”. This classification was general enough to accommodate data taken at dif-

ferent time scales (daily vs monthly) and different biological levels (cellular vs molecular vs

clinical). We were then able to create and use a method called Massively Parallel Analysis of

Time Series (MPATS) to look at the thousands of different time series gathered during one

infection experiment [33] of the MaHPIC project. This approach was extended to include

other basic data types including images and text.

The success of this approach led us to think of other basic data structures for raw,

experimental data and to notice that these same data structures were also the most basic

for reporting results. For example, annotated graphs are very often used to display the

relationships between entities resulting from analysis.

The resulting reduced data structures are independent, atomic units of data representa-

tion, and their use has many advantages over current standards of data uniformization in

systems biology studies. In addition to facilitating data integration at all levels, data prim-

itives allow the standardization of the data ingestion step which significantly improves the

reproducibility of the analysis. Analysis methods can thus be easily repurposed from one

data type to another and used with combined data sets.

Rather than focus on the integration of only one or two data types, data primitives allow

the integration of multiple data types in a modular, extensible fashion. Data primitives are

the foundation of the SKED framework, in which data primitives are used for data storage to

allow integration of large, heterogeneous data sets and increase reproducibility and reliability

of computational analyses.
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1.4 Malaria Is Still A World-wide Problem

Malaria continues to be a worldwide health burden in spite of research efforts to develop novel

disease treatments and intervention strategies [34]. According to the WHO, an estimated 216

million (95% CI: 196-263 million) cases of malaria occurred in 2016, along with 445 000 deaths

[34].

Figure 1.1: Malaria is a problem that crosses multiple time scales and multiple spatial scales.

Clinical manifestations associated with Plasmodium infections may be classified into

asymptomatic, uncomplicated, and complicated cases with common symptoms that include

fever, chills, and muscle aches [35, 36]. Asymptomatic cases most often occur in adults from

regions of high malarial transmission and are characterized by the presence of circulating par-

asites, with parasitemias that may be up to 50,000 parasites per microliter, but no symptoms

[35, 37, 38]. Uncomplicated malaria is characterized by parasitemias typically in the range

of 1,000 to 50,000 parasites per microliter along with fever, sweating, chills and muscle aches
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but symptoms may include headache, nausea, vomiting, diarrhea, and anemia [35, 39]. Com-

plicated or severe malaria happens more often in P. falciparum infections than with other

infecting species and is deadly in 20% of adults and 10% of children [35, 40]. Since malaria

symptoms are not always related to the level of parasitemia, other causes and treatments

are needed to reduce the burden of the disease.

While in general, it can be seen that higher pathogen loads results in greater symptoms

and more complications, this is not always the case as was first shown by Rberg et al. [41].

Even though pathogen load is not clearly correlated to severity of symptoms, previous inter-

vention strategies have focused on mechanisms whereby parasite replication is prevented and

the parasite is cleared [42]. This anti-parasitic immunity is in contrast with anti-disease or

clinical immunity in which symptoms of the disease are prevented [42]. Anti-disease immu-

nity, which can be quantified by tolerance curves, is associated with asymptomatic malaria

cases [42–45]. An example of this is shown in Figure 1.2. In malarial infections, the hosts

own immune system, with excessive inflammatory activation, can be responsible for much of

the damage done by the disease [45–47].

For host-pathogen systems, exposure to the pathogen and the subsequent ability of the

host to maintain health and productivity, termed resilience, is often used when quantification

of the parasite load throughout the infection is not of interest or is not feasible, as with herd

animals and livestock [48–54]. Tolerance, resilience and anti-disease immunity, with their

focus on host processes and prevention of damaging immune responses, have been studied

more in recent years [43, 44, 55–57]. This has resulted in the identification of tolerance

pathways and mechanisms, including production of anti-inflammatory molecules, induction

of anti-oxidant mechanisms and metabolic adaptation by the immune system, that reduce

the impact of the disease without attacking the parasite [58–61].

To take advantage of both systems biology approaches and high-throughput technolo-

gies, the Malaria Host-Pathogen Interaction Center (MaHPIC) and the Technologies of Host

Resilience Host Acute Models of Malaria to Study Emerging Resilience (THoRs HAMMER)
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Figure 1.2: Tolerance curve diagram and summary

projects were designed to provide insight into malarial infections [62–64]. Systems biology

approaches can provide powerful insight into the multi-level interactions of a biological

system, while high-throughput technologies enable many variables to be simultaneously mea-

sured. Because the interactions between a host and its pathogens are complex, varied, and

hard to study in isolation, such systems approaches will enable a more integrated under-

standing than studying the systems in isolation. These projects provide a rich dataset from

controlled infections that provide a framework to investigate molecular, cellular, and clinical

mechanisms of disease which will lead the design of future strategies for interventions in

malaria.
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Chapter 2

Methodology

2.1 Overview

To address the bottleneck of data analysis in the biological discovery pipeline, the SKED

framework was designed. This approach takes advantage of software engineering principles

that are used in complex software and data management projects. The design includes the

definitions of data primitives to provide common understandings of quantitative data, the

exchange of data primitives using JSON formats and encapsulation of properties and methods

in an object-oriented scheme. The design improves the reproducibility and reliableness of an

analysis while being scalable to larger data sets and new data types. A researcher’s efforts

can then shift from implementation to interpretation and discovery.

The general overview of the analysis implementation and strategy for data integration

and homogenization for systems biology is shown in Figure 2.1. The analysis begins with

retrieving all relevant data from SKED Database (SKEDDB) and transforming the files into

time series data primitive format. While many data types were gathered over the course of

these experiments, the transcriptomic and proteomic data will be the focus here as these

data sets contain reliable and rich functional annotations. Information from the different

experiments was analyzed using statistical methods and the results from the resilient and

non-resilient hosts were compared. Additional comparisons were made to increase the power

and consistency of results. These results were then combined with knowledge from databases

to identify drug targets and to identify FDA-approved drugs that could be re-purposed as

activators or inhibitors to promote a resilient response. The analysis pipeline was also config-

ured to include options for targeted or guided investigation and an example is also included.

11



The classes, including example input data (from publicly available sources), analysis exam-

ples, and test functions, are located at https://gitlab.com/SKED.

Figure 2.1: General analysis overview. SKED classes provide functionality throughout the
quantitative analysis steps.
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2.2 Definitions of Data Primitives

Listed below is an overview of the notation and mathematical framework utilized throughout

this work. Firstly, let N := {0, 1, 2, ...} be the set of natural numbers, so that N+ := N−{0}

denotes the maximal strictly positive subset of the natural numbers. Additionally, for n ∈

N+ let Rn be the finite dimensional vector space comprised of n-tuples of real numbers.

Moreover, the following convention is utilized R+ := {x ∈ R|x ≥ 0}. Let C := {z̄ : z̄ =

a+ bi where (a, b) ∈ R2 and i =
√
−1} be the field of complex numbers, so that for m ∈ N+

the symbol Cm denotes the space of complex valued m-tuples. Furthermore, for m,n ∈ N+

denote the set of m × n real valued matrices by Rm×n. Finally, interval notation is to be

interpreted with respect to the underlying ordering (if any) imposed on the elements in the

interval.

Definition 1. Time Series Primitive. Let i,m, n ∈ N, a time series consisting of n time

points and m variables is a totally ordered set T := {(ti, xi)}, such that xi ∈ Cm for i ∈ [0, n].

Definition 2. Graph Primitive. A quadruple G = (V,E,W, S) is called a graph primitive

on V , where:

I Let V := {vl}, l ∈ [1,m] ⊂ N+, be defined as a vertex set. Each vl ∈ V is known as a

vertex.

II Let the symbol ψ denote a correspondence which assigns each element in V to an

unordered p-tuple σl ∈ Rp, where p ∈ N+. Denote the set S ⊂ Rp to be the image of

V under the mapping ψ. In this case, each σl ∈ S represents a set of numeric values

associated with each vertex, representing e.g. gene expression, metabolite intensity, etc.

The assumption is made that ψ is a surjection, i.e. for all σl ∈ S, there exists a vertex

vl ∈ V such that σl = ψ(vl), where l ∈ [1,m]. In set notation it follows that ψ : V � S.

III For i, j, k ∈ [1, n] ⊂ N+, the edge set E := {ek := (vi, vj) ∈ V × V } is comprised of n

unordered tuples called edges.
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IV Let the symbol ϕ denote a correspondence which assigns each element in E to an

unordered q-tuple ωk ∈ Rq, where q ∈ N+. Denote the set W ⊂ Rq to be the image

of E under the mapping ϕ. In this case, each ωk ∈ W represents a set of numeric

values associated with each edge, representing e.g. distance, capacity, weight, etc. The

assumption is made that ϕ is a surjection, i.e. for all ωk ∈ W , there exists an edge ek ∈

E such that ωk = ϕ(ek), where k ∈ [1, n]. In set notation it follows that ϕ : E � W .

Definition 3. Polygonal Mesh Primitive. A triple T = (V,E, F ) is called a polygonal

mesh, provided that the following three conditions are satisfied.

I Let l ∈ [1,m] ⊂ N+, then for all vertices vl ∈ V , there is an edge (vi, vj) ∈ E such that

vl = vi ∨ vl = vj.

II For p ∈ N+ and s ∈ [1, p] ⊂ N+, define the set F := {fs := (vi, vj, . . . , vk) ∈ V × V ×

· · · × V : vi 6= vj 6= · · · 6= vk}. The set F is composed of p unordered tuples called

polygons. Making use of a slight abuse of notation, it is required that for all (vi, vj) ∈ E,

there exists a polygon fs = (vi, vj, . . . , vk) ∈ F such that (vi, vj) ∈ fs.

III Provided two polygons intersect, i.e. fr ∩ fs 6= ∅, then the vertex or edge responsible

for the nonempty intersection is contained in V or E, respectively, in T .

Definition 4. Image Primitive. Consider the set Nn
+ := N+ × · · · × N+ (n-times). Let

(d1, . . . , dn) ∈ Nn
+ and denote the space of real-valued hypermatrices with non-negative

entries as Rd1×···×dn
+ . A hypermatrix H ∈ Rd1×···×dn

+ can be written as H = [hk1···kn ]d1,...,dnk1,...,kn=1.

A hypermatrix H is regarded as an image primitive provided that each entry hk1···kn

stands for the amount of color kn in spatial location hk1···kn−1 .

Remark. The common instances are listed below.

I In the case n = 3, there are two spatial dimensions representing a location called a

pixel and there are d3 different colors associated with each pixel.
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II In the case n = 4, there are three spatial dimensions representing a location called a

voxel and there are d4 different colors associated with each voxel.

Note that the terms d3 and d4 in the above cases represent the number of distinct colors (or

frequencies of the EM spectrum) and other properties (e.g. transparency) under considera-

tion.

Definition 5. Metadata Primitive. Let the sets of total data, meta data and experi-

mentally obtained data in the form of data primitives be labeled by ST , SM and SD :=

{(T1, G1, T1, H1), . . . , (Tk, Gk, Tk, Hk)}, respectively. The set ST admits a unique mutually

disjoint decomposition with respect to the analysis conducted, i.e. ST = SM ∪ SD where

SM ∩ SD = ∅. Elements of SM can be thought of as data that provides information about

experimentally obtained data, e.g. the instruments used, the instrument operators, dates,

etc. For |SM | = n and 1 ≤ i ≤ k, let Φ := {φ1, . . . , φn} be a family of mappings such that for

each smi
∈ SM and SDi

:= {(T1, G1, T1), . . . , (Ti, Gi, Ti)} ⊂ SD, we have that φi(SDi
) = smi

.

In this case, all of the sets under consideration are countable and finite, as a result

SM =
n⋃

i=1

{φi(SDi
)}.

Remark. A triangulated mesh is a particular case of more general structures called simplices.

A k-simplex is a k-dimensional geometric object with flat sides which is the convex hull of

its k + 1 vertices. The mesh stores the vertex, edge and face information of a given surface

or data set and is a piecewise planar surface, i.e. it is planar almost everywhere, except

at the edges where the triangles join. In the case where all of the faces are triangles, the

mesh is called triangulated. Therefore, a triangulated mesh can be regarded as a collection

of triangles in three dimensional space that are connected in a particular way (to form a

manifold on the given surface, i.e. each edge is shared by no more than two faces). It is well

known that any surface can be estimated by a series of triangles. Each triangle can store

additional data at the faces, e.g. colors, with sharp creases stored on edges and continuously
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varying quantities stored at each vertex. Due to their relatively simple geometric structure,

all triangles can be represented as triples. An advantage of using such a mesh lies in the

ability to efficiently answer data queries (information requests from a given database), e.g.

finding the vertices or edges of a particular face or finding all triangles around a vertex.

2.3 JSON Formats for Data Primitives

Data primitives were designed to be the basic building blocks of quantitative analysis and

JSON file format was chosen to be the basic file format for data primitives. JSON is a data-

interchange file format that is light-weight and easy to read [65]. The format is not based on

a single, individual programming language and automatic parsers have already been written

for most programming languages [65, 66].

The JSON format is based on the ability to create complex, nested structures and JSON

files are built around two basic data structures, objects and arrays. Objects are unordered

collections of name-value pairs, and are surrounded by curly braces ({}) [65]. Arrays are

ordered lists of values, and are surrounded by brackets ([ ]). [65] JSON values can be

strings(surrounded by double quotes (“ ”)), numbers, boolean, null, objects or arrays [65].

JSON is commonly used for fast, efficient browser communication in web sites.

To be effective as a basic unit of quantitative analysis, the JSON data primitive format

needs to be able to incorporate quantitative data and associated structural, administrative,

and descriptive metadata. Structural and administrative metadata provide information about

the data object, its origin and composition, while descriptive metadata contains more specific

information about parts of the data object [67]. The basic data primitive JSON format is

shown in Listing 1. The basic data primitive format contains a metadata section describing

the properties and descriptors of the data primitive. This section contains elements like

experiment name, subject name, subject species and location of the experiment. The “data”

element contains the quantitative values and variables associated with the data primitive
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(Listing 1, line 7). This element contains two sections: a header section with metadata and

descriptors and another section for the quantitative elements of the data primitive.

1 {

2 "data_primitive": {

3 "type": "Data_primitive_type",

4 "metadata": {

5 "external_metadata_files":[ ],

6 "reference ontologies": [ ],

7 "key metadata term 1": "value metadata term 1"

8 }

9 "data": {

10 "header": {

11 "key metadata term 2": "value metadata term 2"

12 },

13 "data primitive elements": {

14 "data point x": ". . .",

15 "key metadata term 3": "value metadata term 3"

16 }

17 }

18 }

19 }

Listing 1: Basic JSON data primitive format

The data primitive elements are different for each type of data primitive and these are

summarized in Table 2.1. The precise mathematical descriptions of each data primitive may

be found in [68]. Each of the data primitive elements in the right column form the basis for

the corresponding section in the JSON file. The individual data elements that make up a

particular data primitive JSON file are usually JSON arrays or JSON objects, but could be

any other valid JSON value.
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Table 2.1: Elements of different data primitives

Data Primitive Type Data Primitive Element

Time Series
T : set of time stamps
X: set of values

Image
V : set of vertices
S: array of color values

Polygonal Mesh
V : set of vertices
E: set of edges
F : set of polygons

Graph

V : set of vertices
S: set of vertex values
E: set of edges
W : set of edge weights

Metadata
K: set of unique keys
E: set of values

Because the time series data primitive is used throughout this implementation. An

example of a short time series JSON file may be found in Listing 2, while example formats

may be found in Appendix A for the remaining data primitives. The example in Listing 2

is for two variables(hematocrit and hemoglobin (hgb) levels in whole blood) measured at

three times during the experiment. These measurements are part of the common clinical

Complete Blood Count (CBC) and provide information about overall health [69]. Hemat-

ocrit values describe the ratio of the volume of red blood cells to total blood volume and can

indicate conditions like anemia or dehydration depending on if they are high or low [69]. In

this example, the metadata information about the experiment is easy to read at the top of

the file and there is a reference to an external file with more information. The data header

information(starting in line 16) contains properties about the variables and time formats in

the subsequent time series array information.
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1 {

2 "data_primitive": {

3 "type": "time_series",

4 "metadata": {

5 "id": "mahpic_E04_ME_CBC_RMe14",

6 "external_metadata_files": [

7 "E04M99MEMmCyDaWB_07102018-README_MULTIPL.txt"

8 ],

9 "experiment": "E04",

10 "subject": "RMe14",

11 "protocol": "ME_CBC",

12 "protocol_app_id": "3",

13 "summary": "E04 Clinical CBC Panel Results",

14 "data_type": "Clinical",

15 "protocol_description": "CBC Panel"

16 },

17 "data": {

18 "header": {

19 "term": [ "x_hematocrit_", "x_hgb_" ],

20 "description": [ "Measurement Name", "Measurement Name" ],

21 "unit": [ null, null ],

22 "timestamp_format": "YYYY-MM-DD HH:MM:SS.S"

23 },

24 "time_series": [

25 {

26 "time_stamp":"2013-09-04 00:00:00.0",

27 "value": [ ["43.0000"], ["13.6000"]

28 ]

29 },

30 {

31 "time_stamp":"2013-09-06 00:00:00.0",

32 "value": [ ["41.8000"], ["13.1000"]

33 ]

34 }

35 ]

36 }

37 }

38 }

Listing 2: Example of a small data primitive time series
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2.4 Object-Oriented Schema Designed for Extensible and Reproducible

Analysis

With SKED, the first step of data harmonization occurs using the SKED Ingestion classes,

as shown in Figure 2.2. The SKED ingestion classes provide a consistent user interface to

convert data from multiple source types into the JSON data primitive formats. The SKED

relational database has been implemented and the classes provide a means to retrieve all

quantitative data types (functional genomics, proteomics, metabolomics, etc) for results from

the MaHPIC-HAMMER projects. This harmonization step ensures that all quantitative data

is in the same format with the same structure. The classes have been implemented using

MATLAB 2018b [70] and are available online at https://gitlab.com/SKED.

To provide consistent functionality, object-oriented analysis classes were created to access

and use data primitives. These classes were implemented using MATLAB 2018b and are

shown in Figure 2.3. For reading and parsing the JSON files, the org.java package from the

JSON-java project are used [71]. The code for each class may be found in Appendix C Using

these Java classes enables reuse of previous code and provides a mechanism to make the

implementation of data primitives interoperable across programming languages and tools.

2.5 MaHPIC-Hammer Data Summary

A summary of the experiments described is found in Table 2.2. This table summarizes the

host species and infecting malaria species. The table also includes information about infection

type (primary or secondary) and the number of subjects. Note that the experiments involving

resilient subjects are on the right side of the table. The same tissue sample types were

not always collected throughout each experiment for each type of time point. Results are

described only for comparable samples.

The MaHPIC datasets may be referenced with BioProject Accession number PRJNA385820

and are part of superseries GSE94274: An Integrated Approach to Understanding Host-
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Pathogen Interactions. Most of these data sets are publicly available at NCBI as part of the

Gene Expression Omnibus (GEO). The platforms and procedures used for sample collection,

sample processing and library preparation and may be found with platform reference numbers

GPL14954, GPL25689, GPL25691, GPL25692 and GPL25694. Sequencing was performed

using Illumina HiSeq 1000, 2000 or 3000 with the appropriate host and parasite genomes for

each experiment. More information about the experiments, including the clinical information

and summary diagrams, may be found at http://plasmodb.org/plasmo/mahpic.jsp [72].

In addition to the blood and bone marrow transcriptomic data, targeted proteomics

analysis using plasma samples was also conducted. This was done using the SomaLogic

platform. The test uses SOMAmer (Slow Off-rate Modified Aptamer) reagents, which are

single-stranded DNA sequences that bind specifically to certain target proteins [73, 74].

2.6 Differential Expression

The differential expression analysis was conducted using the SKED object-oriented schema

with the Bioinformatics Toolbox in MATLAB 2018a [70]. The raw gene counts from whole

blood RNA-Seq analysis for each subject (M. mulatta or M. fascicularis) were first library-

size normalized and a negative binomial distribution was used to infer differential expression

[18] [75]. The Benjamini-Hochberg adjustment was used to correct for multiple testing prob-

lems with a false discovery rate of 10% [76]. Genes were considered differentially expressed if

the adjusted p-value was less than 0.05 and the fold change was more than two-fold. The dif-

ferentially up and down regulated genes were then compared across host species and parasite

species to determine unique and common genes to each group.

The targeted proteomic analysis resulted in measures of median hybridized samples across

plates which were downloaded from SKEDDB. A two-sample t-test was used to compare

protein abundances between baseline and infected samples [77].
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2.7 Reference Databases

To take advantage of previously accumulated knowledge, reference databases were used to

classify targets and to identify already FDA-approved modulators (activators and inhibitors)

of these targets. Publicly available databases like GenBank, for nucleotide sequences, and

UniProt, for protein sequences, make information more accessible and search-able as well

as easier to update so that the most current information is more available [78, 79]. The

two databases references in this analysis were the Pharos database [80–82] and the Drug-

Genome Interaction Database(DGIdb 3.0) [83–85]. The Pharos database categorizes targets

into four categories based on types of knowledge available about the target. These are called

Illuminating the Druggable Genome (IDG) targets and they are described in detail here

[82]. The databases were accessed through application program interfaces (API) to retrieve

information about the targets. The resulting data was visualized as graphs to summarize the

retrieved information.
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Figure 2.3: SKED Analysis Class diagram.
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Chapter 3

Results

3.1 Introduction

The SKED framework is flexible enough to enable both hypothesis-generating analysis and

hypothesis-driven research. First, differential expression of genes between bone marrow and

whole blood shows different cellular processes associated with the Plasmodium infection in

resilient and non-resilient hosts. These changes are also reflected in changes to the plasma

proteome.

With a goal of discovering novel drug targets and repurposing existing FDA approved

drugs, the stages of the Plasmodium infection were divided into three target product pro-

files: early infection (liver stage), rising/peak parasitemia and chronic phase. Uniquely dif-

ferentially expressed genes during these stages represent targets for these product profiles.

Combining this information with target and drug-information from the Pharos database and

DGidb identifies imatinib mesylate (trade name Gleevec) as a strong candidate for further

testing to promote a resilient host response. For an example of hypothesis driven research, the

expression of REVERBα, a key controller of circadian rhythm pathways will be examined.

3.2 Analysis Across Hosts, Tissues, and Data Types

3.2.1 Differentially expressed genes

During the controlled infection experiments, whole blood samples were taken from each

subject. Bone marrow samples were taken during the same time points as whole blood but

only for E03, E04, E30, E06, and E07. The numbers of differentially expressed genes for each
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time point category are found in Table 3.1 for whole blood, and in Table 3.2 for bone marrow

samples.

Of the samples taken from whole blood, there can be seen to be a great deal of variation

in the number of differentially expressed genes at each time point. The small sample sizes (n

= 2 for E30, for example) are most likely a major contributor to this. The only time point

that is directly comparable across all infections is acute parasitemia.

3.2.2 Plasma Proteomics analysis

Using the SKED classes, the analysis of plasma proteomics was conducted using the same

Bioinformatics analysis class. The results of the top five up and down regulated proteins are

summarized in Tables 3.3 and 3.4, respectively. The cellular processes that are associated with

blood stage malaria infections (e.g. RBC lysis, anemia) are reflected in the proteins whose

quantities changed the most throughout the infection. Noteably, this includes hemoglobin

for both the resilient and non-resilient species and haptoglobin, a marker for cell lysis.

Also of special interest, is Platelet-derived growth factor (PDGF) BB (PDGF-BB), which

is found as one of the most down regulated proteins in the non-resilient host. This family of

growth factors and their receptors are seen through out this analysis including in blood and

bone marrow transcriptomics.

3.3 Target and Therapeutic Intervention Identification

Target Product Profiles (TPPs) are used to plan drug and target intervention development

through out the experimental and drug approval process [86]. They have been written for

many infectious diseases including malaria [87]. Here the various Plasmodium infection stages

across the experiments have been combined to investigate relevant molecular interventions.

The target profile infection segments are: early infection, rising and peak parasitemia, and

chronic infection.
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3.3.1 Early Infection Targets

In order to investigate infection targets specific to early infection or the liver stage, the

differentially expressed genes specific to this time point were found as summarized in Figure

3.1. During this stage of the infection, the Plasmodium parasite has formed hypnozoites in

liver tissue and there is not expected to be a significant transcriptomic response.

Among molecules classified in the clinical target category (Tclin), c-KIT, a tyrosine-

protein kinase that is also a proto-oncogene is found (see Fig 3.1c). This target is inhibited

by imatinib as highlighted in the insert in Fig 3.1d.

3.3.2 Targets from Rising and Peak Infection

To find targets and modulators of the different resilient and non-resilient responses, sig-

nificantly differentially up regulated genes from log phase and peak parasitemia from the

different hosts were combined before being compared, as summarized in Figure 3.2a. Only

the targets in the clinical classification are shown since there were 1843 and 588 genes in each

category being compared. The Plasmodium species infecting the different hosts are described

in Table 2.2.

Of note in the clinical target category for targets from the non-resilient host is PDGFRA,

Platelet-derived growth factor receptor alpha. PDGFRA is also inhibited by imatinib as was

also found in the early infection target list.

3.3.3 Targets from Chronic Stage of Infection

The chronic stage of a Plamodium infection represents a time during the infection when

the host is controlling the parasite burden but not has not eliminated the parasite. Chronic

stage infections are characteristic of resilient but not necessarily resistant host responses. The

chronic stage for the non-resilient host, was induced by the administration of sub-curative

doses of Artemether, which is active against the blood-stage of the parasite. The resilient
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host species did not not require treatment to reach or to maintain the chronic phase. Unlike

in the other stages, no targets for imatinib were found in any host during chronic phase.

3.3.4 Differentially Expressed Genes From Bone Marrow also Support

Imatinib as an Intervention to Promote a Resilient Host Response

In addition to the targets, c-KIT and PDGFRA, found in whole blood and plasma, bone

marrow also contains other targets inhibited by imatinib. Imatinib also inhibits PDGFRB,

which was only found found to be significantly down regulated in the post-peak time point of

E07 (M. fascicularis infected with P. knowlesi). Unlike in whole blood, the ligands PDGFA

and PDGFB are found to be significantly upregulated at many of the same time points as

the PDGF repectors. This is seen in E06 ( M. mulatta infected with P. knowlesi) during log

phase and peak parasitemia.

3.4 Targeted Analysis: Circadian Clock(REV-ERB pathway)

As an example of hypothesis driven investigation, the SIRT family of proteins was inves-

tigated. This family of proteins is known to control circadian rhythms and the REV-ERB

pathway. The results from a Kruskal-Wallis test of REV-ERB (which is localized to the

nucleus of cells) are shown for all experiments in Figure 3.4. The general trend for this tran-

scription factor is that it’s expression level is reduced during infection time points indicating

a disruption in biological rhythms. This protein is also found in the plasma proteome with

less of a relationship between infection stage and fold change from baseline. No relation was

found with changes in REV-ERBα in the bone marrow transcriptomes across infections.
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Figure 3.1: Early infection targets. a) Unique up regulated genes during early infection in
the resilient host. b) Unique up regulated genes in the non-resilient host. c) IDG target
classifications for the 62 genes unique to early infection in the non-resilient M. mulatta host.
The shading represents the PDB DrugScore. d) FDA-approved drugs that are known to have
interactions with the targets from Part c. The shading represents the Knowledge Availability
Score, which is a combined literature reference score.

34



a)

BL

E03, E04, E06, E23 
log phase and peak 
parasitemia 
di�erentially 
expressed genes

E07, E15 log phase 
and peak 
parasitemia 
di�erentially 
expressed genes

1843

b)

c)

CHRNB2

CCR5

FLT4

SLC6A3

TUBB

ATP1A3

SMO

RRM1

CD22

PDE4C

KCNH2

PTGIR

MAOA

POLD1

PAH

FLT3

CRHR1

GRIN3B

Tclin

IL5

SLC5A2

THRB

KCNJ11
JAK3

CYP3A7

GHR

PDE10A NOD2

C1R

HDAC4

CACNA1D
KCNA2

PTGER3

KCNB1

PDGFRA

HTR4

PDE4B

GLA

HCK

HRH2

RYR3

GRIK3

IL4R

INSR
PGF

NGFR

MAOB

HCAR2

SCN3A

PTGS1
PDE5A

SCTR
P2RY12

CSF2RB

PRKCD
CYSLTR1

HPD

MPL

RAMP1
ADRA2A

CCR4

ACE

FGFR4 NPR1
CYP3A5

PTGS2

HSD11B1

KCNQ3

GABRB2

RAMP3

PDE1C

IL17RA

SLC18A2

ERBB4

GABRG3

BRAF

AVPR2

EDNRBANO1

GRIN2A

SLC12A3

KCNC2EDNRA

IFNAR2 GUCY2C

MGAM
YES1 ALK

PDE8A

Tclin

Figure 3.2: Rising and peak parasitemia targets. a) The diagram represents the comparison
between time points of log phase and acute parasitemia for resilient and non-resilient hosts.
b) Targets from the Pharos database for the genes unique to the non-resilient hosts were
found. c) Targets from the Pharos database for the genes unique to the resilient hosts were
found. The color of the target nodes represents the Knowledge Availability Score, a combined
data availability measure.
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Figure 3.3: Chronic phase targets. a) The diagram represents the comparison between time
points which were log phase and acute parasitemia for resilient and non-resilient hosts. b)
Targets from the Pharos database for the genes unique to the non-resilient hosts were found.
c) Targets from the Pharos database for the genes unique to the resilient hosts were found.
The color of the target nodes represents the Knowledge Availability Score, a combined data
availability measure.
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Chapter 4

Discussion

4.1 Overview

The SKED framework, which incorporates data primitives for data harmonization and uses

object-oriented analysis and design (OOAD) to promote re-usable and reproducible quan-

titative analysis, was used to manage data analysis with a large systems biology project to

produce meaningful, testable results. The project involved multiple -omic measurements over

the course of controlled malaria infection experiments. The traditional differential expression

analysis was extended to incorporate knowledge from publicly available databases to produce

predictions concerning molecular targets for further investigation. A data mining approach

was also used to discover if any FDA-approved drugs were known to modulate (activate or

inhibit) these targets.

SKED provides a framework for data analysis management instead of just data manage-

ment. Using data primitives enables a researcher to begin analysis without having to learn

about a complicated, underlying data format. Some implications for data analysis manage-

ment in the growing field of systems medicine and modern healthcare are discussed.

4.2 Resilience targets

The SKED framework was able to identify targets to promote the resilient host response from

multiple -omic data sources. Supporting evidence from more than one tissue and more than

one data type provides stronger support for a hypothesis than using one data type alone.

In this study, supporting evidence was found for the use of the PDGFR inhibitor, imatinib
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(Gleevec®) to promote a resilient response. Imatinib is taken orally and is well tolerated [88].

This drug was first widely used in chronic myeloid leukemia (CML) specifically for blocking

the activity of BCR-ABL fusion protein [89]. The PDGF and its receptors, PDGFRA and

PDGFRB, were found to be up regulated in multiple infection stages in the non-resilient

host in multiple tissues in the experiments investigated here.

Because circadian rhythms are known to be influential on disease outcomes immune

system function, an important circadian clock gene, REVERBα was also investigated in the

different tissues and data types [90]. Unlike many protein targets, REVERBα is known to

have small molecule activators, specifically GSK4112 and derivatives [91]. These are known

to improve glucose homeostasis in obese mice and inhibit inflammatory response [91, 92].

Evidence is shown here for their continued investigate in clinical and experimental studies.
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4.3 Analysis Management Using SKED

Data primitives enable the integration of heterogeneous data and the modular analysis and

reuse of code. Current standards and ontologies function like puzzle pieces, which allow

connections only to a reduced set of elements (as depicted in the left side of Figure 4.1).

Using data primitives, however, enables us to use data like LEGO® building blocks, in

which communication can occur between any two standards or combination of standards.

The mathematical definitions of data primitives, their implementation in JSON formats and

a relational database, as well as their utility in complex multi-omic systems biology studies

of malaria infection have been described.

Data 

Primitives

Figure 4.1: Current standards to data primitives is like moving from arranging puzzle pieces
to building blocks. Pyramid modified from Palsson et al. [93].

Analysis beginning with data primitives is an extension of current analysis types as

summarized in Table 4.1. The JSON data primitive storage format is an extension and

addition to many common storage and data organization formats. Analysis of data using

data primitives can be seen to be easily extensible to other experimental, analytical and

modeling systems.

40



T
ab

le
4.

1:
O

th
er

st
or

ag
e

fo
rm

at
s

an
d

ty
p

es
of

an
al

y
si

s
fo

r
d
at

a
p
ri

m
it

iv
es

D
at

a
P

ri
m

it
iv

e
T

y
p

es
C

om
m

on
S
to

ra
ge

F
or

m
at

s
T

y
p

es
of

A
n
al

y
si

s

T
im

e
S
er

ie
s

-
T

im
e

S
er

ie
s

D
at

ab
as

e
(T

S
D

B
)

F
re

q
u
en

cy
-d

om
ai

n
:

sp
ec

tr
al

an
d

w
av

el
et

an
al

y
si

s
T

im
e-

d
om

ai
n
:

co
rr

el
at

io
n

an
d

cr
os

s-
se

ct
io

n
al

an
al

y
si

s
D

y
n
am

ic
al

sy
st

em
s

an
al

y
si

s

G
ra

p
h

D
ir

ec
te

d
/u

n
d
ir

ec
te

d
gr

ap
h

C
S
V

fi
le

O
p
ti

m
iz

at
io

n
:

li
n
ea

r/
n
on

li
n
ea

r
p
ro

gr
am

m
in

g
H

y
p

er
gr

ap
h
,

b
ip

ar
ti

te
gr

ap
h

N
et

w
or

k
:

re
co

n
st

ru
ct

io
n

(g
en

e
re

gu
la

to
ry

,
m

et
ab

ol
ic

)
R

an
ke

d
li
st

P
ol

y
go

n
al

M
es

h
P

ol
y
go

n
al

W
R

L
,

3D
M

L
W

G
eo

m
et

ri
c

an
al

y
si

s
V

ol
u
m

et
ri

c

Im
ag

e
2D

B
M

P
,

T
IF

F
,

J
P

E
G

,
G

IF
O

b
je

ct
-b

as
ed

im
ag

e
an

al
y
si

s:
3D

3D
S

m
ed

ic
al

d
ia

gn
os

ti
c,

ge
og

ra
p
h
ic

M
et

ad
at

a
-

B
io

C
om

p
u
te

O
b

je
ct

s
M

et
a-

an
al

y
si

s
C

om
m

on
W

or
k
in

g
L

an
gu

ag
e

(C
W

L
)

an
y

n
es

te
d

D
at

a
P

ri
m

it
iv

e

41



4.4 Future Goals for Bioinformatics programming and analysis

Because using data primitives allows the focus to shift from data storage and sharing to

model reuse and analysis interpretation, integrative systems studies in biology and medicine

need an expanded set of guiding principles for data and model analysis. These goals are

summarized by the acronym STRRAITE, and are explained in Table 4.2.

Table 4.2: Data analysis management guidelines

S Scaleable should work for large and small datasets
T Transportable should work with different species and different time scales as

appropriate
R Reliable dependable, software reliability engineering and software quality

definition (Consortium for IT Software Quality(CISQ) - reliability,
efficiency, security, maintainability, size)

R Reproducible allows different researchers to achieve the same results
R Replicable same implications and meaning of program output
A Actionable leads to conclusions that promote further experimentation or

treatments
I Interpretable data primitives could be easily repurposed to work with many

different visualization tools
T Transparent traceable, known provenance of data exists
E Extensible could be used with new datasets and data types that have not been

discovered or measured yet

The lack of these aspects without significant effort in many large data projects in the life

sciences indicates a need for interoperable data types for both analysis input and output.

There is a need for atomic units of data representation which have standard formats so

that the underlying data structure can be easily understood by both humans and machines.

This simplification will enable data analysis pipelines to be easily repurposed from one

environment to another and to be more easily connected in more sophisticated computational

pipelines.
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4.5 Future Uses of Data Primitives

4.5.1 Introduction to P5 Medicine

Health informatics is a significant underlying component of the Triple Aim of health care

which has goals of simultaneously improving the patient experience, improving the health of

populations and reducing per capita costs [94]. As health care informatics begins to incor-

porate more P4 (predictive, preventative, personalized, participatory) systems medicine

approaches, and to include patient measurements that have traditionally been used in

research (genetic profiles, and other multi-omic technologies) [95], health informatics must

integrate large heterogeneous datasets that cross temporal and spatial scales (see Figure

1.1), to accomplish the goals of the Triple Aim. Most efforts so far have focused on creating

detailed, workable solutions to manage these datasets in isolation but few have focused on

their reconciliation. The magnitude of the problem is described in Figure 1.1. Molecular,

cellular, clinical, environmental and epidemiological data have all been gathered in vast

quantities to describe both individual patients and to characterize diseases, but this data

has not resulted in significant improvements to individual patient care or reduced care costs.

Currently there is no robust, scalable method to incorporate clinical information and other

multi-omic datasets for routine patient care. To address the informatics problems under-

lying P4 systems medicine and the Triple Aim of health care, we introduced the Scientific

Knowledge Extraction from Data (SKED) architecture, a technology-agnostic framework to

minimize the overhead of data integration, facilitate the reuse of analytical pipelines, and

guarantee of reproducibility of quantitative results.

4.5.2 SKED in Research

We implemented the SKED framework to study the pathogenesis of malaria using multi-

omic data (transcriptomics, proteomics, metabolomics, lipidomics), immunological data (flow
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cytometry, cytokine ELISAs), and clinical measurements (doctor assessments, and physio-

telemetry), as part of the Malaria Host-Pathogen Interaction Center (MaHPIC). We inves-

tigated the host-pathogen interactions between non-human primates hosts and Plasmodium

parasites as models for human malarial infections.

We were able to combine high frequency telemetry signals (ex. ECG) with other mea-

surements taken over the course of an infection [39], for example metabolomics (daily),

transcriptomics and immune response data (various times throughout the infection). Using

data primitives allowed us to easily perform different types of meta-dimensional analysis

as described by [32], including concatenation-based analysis, where multiple data types are

combined before analysis.

One of the most powerful aspects of SKED was the ability to harmonize data over multiple

time scales and multiple spatial scales and we envision this aspect to become even more

important as additional real-time, continuous data measures (as could easily by gathered by

e.g. a cell phone sensor) become available.

4.6 SKED Enables P4 Medicine

Combining data types before analysis (for e.g. network reconstruction) is time-consuming

and difficult, but can result in unique insights, for example predicting HDL cholesterol levels

from genotype and gene expression levels [96, 97].

Because the SKED framework provides a general, scalable solution to the problems of

data integration and data harmonization across multiple time and spatial scales, patient

treatments may be made more predictive as powerful algorithms that are able to identify

the most important biomarkers for a disease are found. Algorithms designed for one type

of data may be effortlessly repurposed for use on another data type. Concatenation-based

analysis thus becomes more feasible and could allow for acceleration of biomarker discovery,

since multiple-omic datasets may be combined in analysis [32].
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Chronic diseases (diabetes, cardiovascular disease, etc.) are now a major cause of mor-

tality in many countries; thus, biomarker discovery for early detection and intervention [98] is

a pressing need. SKED provides a workable solution to combine the complicated multi-omic

data sets that must be gathered from many people in order to determine the most significant

molecular predictors for these diseases.

As predictions about the onset of chronic disease improve, these accurate predictions

could enable earlier, preventative treatments to be undertaken. The data integration capa-

bilities of SKED establish a foundation for the use of more personalized medicine, as per-

sonalized medicine begins to make more use of genomic and other large-scale datasets to

describe a patient. As the “individualome” of each patient is created and becomes more

complicated, patients could be able to have a more active part in managing their own health

and outcomes [2]. Patients will thus be better able to manage their own health and have a

more active role in preventing the chronic disease they may be most susceptible to.

4.7 SKED enables the Triple Aim of Health Care

Because the SKED framework solves many problems associated with data integration and

harmonization at multiple levels in health information analysis, it is aligned with achieving

the goals of the Triple Aim in health informatics [94]. [99] identify three principles that

successfully guided organizations working on the implementation of the Triple Aim.

The first guiding principle was establishing a foundation for population management to

determine which populations (i.e. elderly, low-income, etc.) will be the focus of an inter-

vention. A system integrator (e.g. a local or state health department) gathers resources and

coordinates work in this step. The system integrator is also responsible for iterative improve-

ments and testing to determine when and how the most short- and long-term progress has

been made. Such analysis can be done easily and effectively on the kinds of heterogeneous

data that describe health outcomes using SKED. SKED allows algorithms used in one con-
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text to be extended to others so that the most advanced up-to-date methods may be applied

to any dataset to determine the effectiveness of an intervention.

The second guiding principle was to effectively manage services at scale. The SKED

framework allows for the analysis of all types of data (epidemiological, clinical, etc.) at dif-

ferent scales. Automated analysis with SKED could allow the most important services and

their beneficial effects to be identified and subsequently implemented. The results of imple-

menting different health services at different scales may be studied and the most effective

overall plans could be enabled through the use of SKED.

Last, Whittington et al. [99] identified the need for a learning system to determine which

measures have had the most effect. The authors propose that cycles of iterative testing are

needed to investigate the performance of different interventions and treatments in popula-

tions and individuals. Using data primitives in SKED can make such analyses more accurate

and consistent. A Resource Allocation Service (RAS) could simplify finding analysis pipelines

and data for comparison. For example, having data stored as data primitives could enable

a public health official to easily integrate and compare data sets from different counties and

states about the spread of an emerging infectious disease.

The power of SKED is not limited to multi-omic analysis and data integration, but also

can be extended to enable the goals of the Triple Aim of health care.

4.7.1 Conclusion

Through more efficient management of patient clinical records and patient data at a systems

medicine level, SKED could advance patient care towards more predictive and preventative

measures that offer the ability to improve individual care, improve overall outcomes, and

reduce overall costs associated with patient treatment. We have shown the usefulness of

SKED in the interpretation of multi-omic data in clinical disease manifestations and our

approach could be extended to general clinical and health management settings. Ultimately,
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the SKED framework has the ability to transform how complicated datasets for patients are

managed and analyzed.

47



Chapter 5

Conclusions

Scientific and clinical studies often incorporate datasets that cross multiple spatial and tem-

poral scales to describe a particular phenomenon. This is a particular challenge for modeling

since an analytical method developed for one data type cannot be easily re-purposed for uses

with an integrated dataset. In order to overcome these obstacles, SKED, including the use of

data primitives is proposed as a common currency between analytical methods and modeling

tools and an extensible object-oriented analysis and design . The data primitives identified

are time series, annotated graph, image, and polygonal mesh, with associated metadata.

The induction of disease resilience to an infection could offer mechanisms to treat a host

without exerting evolutionary pressure on the infecting agent. This also has implications for

chronic diseases,like cancer, for which treatments could be designed that help the patient

tolerate the disease giving treatments more time to be effective [57]. Disease resilience to

malaria could be extremely important in high transmission settings where children are the

first victims of malaria [100, 101]. This analysis has proposed several molecular targets and

interventions for further validation including the use of imatinib to stimulate bone marrow

responses.

The use of data primitives as inputs and outputs of algorithms promotes interoperability,

scalability, and reproducibility in scientific studies. Data primitives were used in a multi-

omic, multi-scale systems biology study of malaria infection to perform integrative analysis

quickly and efficiently. Using data primitives for communication between analytical methods

facilitates reproducible analyses of complex multi-scale datasets in a modular fashion.
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Data primitives were designed to be minimalistic and modular. They provide unified

structures for raw, processed, and computational data of different sizes and can act as

reusable modular outputs and inputs of analytical pipelines. They allow data integration of

multiple temporal and spatial scales and increase the reliability of a computational pipeline.

They encompass and expand upon current standards for data and model sharing to increase

the usability and reuseability of existing structures. Computational researchers and data

analysts using data primitives are then able to focus on the investigation and interpretation

of data as well as the design of new experiments and analysis pipelines. Their use has impli-

cations for the future of automated knowledge generation and the use of systems medicine

approaches in health care.
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Appendix

A JSON Data Primitive Formats

Figure A.1: JSON Image Example. This figure is coded by the JSON file in Listing A.1.

1 {

2 "data_primitive": {

3 "type": "image",

4 "metadata": {

5 "experiment": "example"

6 },

7 "data": {

8 "header": {

9 "transparency": true,

10 "color_scheme": "RGBA",

11 "default_color": [ 0, 0, 0, 0],

12 "size": {

13 "width": 2,

14 "height": 2

15 }

16 },

17 "pixels": [

18 [ [ 255, 255, 255, 255], []

19 ],

20 [ [],[]

21 ]

22 ]

23 }

24 }

25 }

Listing A.1: Example of a small data primitive image file
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(0,0,0)

Figure A.2: Mesh Example. This is the figure coded by the JSON file in Listing A.2.

1 {

2 "data_primitive": {

3 "type": "mesh",

4 "polygon_type": "triangle",

5 "data":{

6 "header": {

7 "vertex_names": [ 1, 2, 3, 4, 5, 6, 7, 8 ]

8 },

9 "mesh": {

10 "vertex": [

11 [1,0,0,1], [2,1,0,1], [3,0,0,0], [4,1,0,0], [5,0,1,1], [6,1,1,1],

[7,0,1,0], [8,1,1,0]↪→

12 ],

13 "edges": [

14 [1, 2], [2, 4], [4, 3], [3, 1], [5, 6], [6, 8], [8, 7], [7, 5], [1,

5], [2, 6], [3, 7], [4, 8]↪→

15 ],

16 "polygons":[

17 [1,2,6]

18 ]

19 }

20 }

21 }

22 }

Listing A.2: Example of a small data primitive mesh file
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PDGFRimatinib
mesylate

Figure A.3: Graph Example. This is the figure coded by the JSON file in Listing A.3.

1 {

2 "data_primitive": {

3 "type": "graph",

4 "metadata": {

5 "experiment": "example"

6 },

7 "data": {

8 "header": {

9 "terms": [ "id_vertex" ]

10 },

11 "vertex": [

12 {

13 "1": [ "imatinib mesylate" ]

14 },

15 {

16 "2": [ "PDGFR" ]

17 }

18 ],

19 "edges": [

20 {

21 "edge": [ 1 , 2 ],

22 "source": "imatinib mesylate",

23 "target": "PGDFR",

24 "interaction_type": "inhibition"

25 }

26 ]

27 }

28 }

29 }

Listing A.3: Example of a small data primitive graph with two nodes and one edge
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B Unified Modeling Language(UML) Reference Information

Class Name

function1

Attributes

Operations private-
+ public

protected#

Visibility

function2

property2
property1+_

+_

Figure B.1: Classes in UML are describes by attributes and methods, which are listed below
the class in the diagram. The visibility is listed next to each property and operation.

B

A implements B, A is a realization of B 

B is an aggregation of A, A is part of B, B has an(1+) A, 
B can exist without A

B is composed of A, B is made of A, 
B cannot exist without A

B is a generalization of A, B inherits from A,
A is a subclass of B, B is a superclass of A, B is an A

A is associated with B, unspecificed navigabilityA B

B depends on A

A is associated with B, 
B is navigable from A but A is not navigable from B

A B

A B

xA B

A B

A B

A B

Figure B.2: UML arrow Glossary. The different arrows and their various meanings are
explained.
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C SKED MATLAB Code

1 classdef clsSKEDTimeSeries < clsSKEDDPBase

2 properties (SetAccess = public)

3 Domain % JSONArray

4 Range % JSONArray

5 VarNames % JSONArray

6 end

7

8 properties (SetAccess = private)

9 l_Domain %cell array,Column Label, Each Column represent a

distinct value of the independent variable↪→

10 l_Range %nxm Matrix, n Rows corresponds with Row

Name(variable name), m Column Corresponds with m Time

Points

↪→

↪→

11 l_VarNames %Row Label, Each Row Represent a Variable

12 end

13

14 methods

15 %%% Purpose: SKEDTimeSeries object Constructor

16 %%% Input: sFileName

17 %%% Output: SKEDTimeSeries Object

18 %%% Example: o = clsSKEDTimeSeries(sFileName);

19 function obj = clsSKEDTimeSeries(sFileName)

20 obj.Type = 'time_series';

21 obj.Range = [];

22 switch nargin

23 case 0

24 error('A JSON file must be provided');

25 case 1

26 obj.jo = obj.loadJSON(sFileName);

27 [obj.l_Domain, obj.Domain] = obj.getDomain();

28 [obj.l_Range, obj.Range ] = obj.getRange();

29 obj.l_VarNames = obj.convertJSONArray2collection

('/data_primitive/data/header/term');↪→

30 obj.VarNames =

obj.getKey('/data_primitive/data/header/term');↪→

31 obj.FileName = sFileName;

32 end

33 end

34 %% ----------------------------------------

35 function out = getTimePoints(obj)

36 out = obj.getKey('/data_primitive/data/time_series');

37 if strcmp(class(out), 'org.json.JSONObject')

38 for i = 1:out.length

39 tempjo = LoadJSON(cFile{i});
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40 out = getKey(sKey,tempjo);

41 if ~strcmp(out,'')

42 return

43 end

44 end

45 end

46 end

47 %% ----------------------------------------

48 function [ out, l_out ] = getDomain(obj)

49 import org.json.*

50 out = {};

51 data = obj.getKey('/data_primitive/data/time_series');

52 for i = 1:data.length

53 o = data.get(i-1);

54 out{i} = o.get('time_stamp');

55 end

56 l_out = JSONArray(string(out));

57 % set the obj.Domain =

obj.getKey.('/data_primitive/data/time_series')↪→

58 end

59 %% ----------------------------------------

60 function [ out, l_out ] = getRange(obj)

61 import org.json.*

62 out = {};

63 tempOut = {};

64 data = obj.getKey('/data_primitive/data/time_series');

65 for i = 1:data.length

66 o = data.get(i-1);

67 o = o.get('value');

68 for j = 1:o.length

69 out{i,j} = str2num(o.get(j-1).get(0));

70 end

71 tempOut{i} = JSONArray(out(i,:));

72 end

73 l_out = JSONArray(string(tempOut));

74 end

75 end

76 end

Listing C.1: clsSKEDTimeSeries
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1 classdef clsSKEDGraph < clsSKEDDPBase

2 properties (SetAccess = public)

3 Verticies % JSONArray

4 Edges % JSONArray

5 VertexNames % JSONArray

6 VertexTerms % JSONArray

7 EdgeNames % JSONArray

8 EdgeTerms % JSONArray

9 end

10

11 properties (SetAccess = private)

12 l_verticies % cell array of vertex values(weights)

13 l_edges % cell array describing edges; each edge connects two verticies

14 l_vertexNames % cell array of vertex names (row variables, ex gene

names)↪→

15 l_vertexTerms % cell array of vertex terms (column variables, ex mean)

16 l_edgeNames % cell array of edge names

17 l_edgeTerms % cell array of edge terms

18 end

19

20 methods

21 %%% Purpose: SKEDGraph object Constructor

22 %%% Input: none

23 %%% Output: SKEDGraph Object (empty)

24 %%% Example: o = clsSKEDGraph();

25 function obj = clsSKEDGraph()

26 import org.json.*

27 obj.Type = 'graph';

28 obj.Verticies = JSONArray();

29 obj.Edges = JSONArray();

30 obj.VertexNames = JSONArray();

31 obj.VertexTerms = JSONArray();

32 obj.EdgeNames = JSONArray();

33 obj.EdgeTerms = JSONArray();

34 obj.l_verticies = {};

35 obj.l_edges = {};

36 obj.l_vertexNames = {};

37 obj.l_vertexTerms = {};

38 obj.l_edgeNames = {};

39 end

40

41 function obj = setVerticies(obj, cVerticies)

42 import org.json.*

43 obj.Verticies = JSONArray(string(char(cVerticies)));

44 obj.l_verticies = cVerticies;

45 end

46
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47 function obj = setEdges(obj, cEdges)

48 import org.json.*

49 obj.Verticies = JSONArray(string(char(cEdges)));

50 obj.l_verticies = cEdges;

51 end

52

53 function obj = setVertexNames(obj, cVertexNames)

54 import org.json.*

55 obj.VertexNames = JSONArray(string(char(cVertexNames)));

56 obj.l_vertexNames = cVertexNames;

57 end

58

59 function obj = setEdgeNames(obj, cEdgeNames)

60 import org.json.*

61 obj.EdgeNames = JSONArray(string(char(cEdgeNames)));

62 obj.l_EdgeNames = cEdgeNames;

63 end

64

65 function obj = setVerticiesFromTable(obj, tTable)

66 import org.json.*

67 cVertexTerms = tTable.Properties.VariableNames ;

68 cVertexNames = tTable.Properties.RowNames;

69 tTableValues = tTable{:,:} ;

70 obj.Verticies = JSONArray(string(tTableValues));

71 obj.VertexNames = JSONArray(string(cVertexNames));

72 obj.VertexTerms = JSONArray(string(cVertexTerms));

73 obj.l_verticies = tTableValues;

74 obj.l_vertexNames = cVertexNames;

75 obj.l_vertexTerms = cVertexTerms;

76 end

77

78 function obj = filterVerticies(obj, sVertexTerm, sQuantifier, nCutoff)

79 import org.json.*

80

81 % find idx of sVertexTerm

82 idx = 0;

83 for iVtxCtr = 1:size(obj.l_vertexTerms,2)

84 if strcmp(obj.l_vertexTerms{iVtxCtr},sVertexTerm)

85 idx = iVtxCtr;

86 end

87 end

88

89 cValues = obj.l_verticies(:,idx);

90 switch sQuantifier

91 case '<='

92 idx = cValues <= nCutoff;

93 case '<'
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94 idx = cValues < nCutoff;

95 case '>='

96 idx = cValues >= nCutoff;

97 case '>'

98 idx = cValues > nCutoff;

99 case '=='

100 idx = cValues == nCutoff;

101 case '~='

102 idx = cValues ~= nCutoff;

103 otherwise

104 error("Please enter a valid MATLAB quantifier (ex. '<')")

105 end

106

107 obj.l_verticies = obj.l_verticies(idx,:);

108 obj.l_vertexNames = obj.l_vertexNames(idx,:);

109 obj.Verticies = JSONArray(string(obj.l_verticies));

110 obj.VertexNames = JSONArray(string(obj.l_vertexNames));

111

112 end

113

114 function tTable = getTableFromVerticies(obj)

115 tTable = cell2table([num2cell(obj.l_verticies)]);

116 tTable.Properties.VariableNames = obj.l_vertexTerms;

117 tTable.Properties.RowNames = obj.VertexNames;

118 end

119

120 function obj = setVerticiesFromList(obj, cArray)

121 import org.json.*

122 tTable = cell2table(num2cell(zeros(length(cArray),2) )) ;

123 tTable.Properties.RowNames = cArray;

124 %tTable.Properties.VariableNames = { 'Varr'};

125 obj = setVerticiesFromTable(obj, tTable);

126 end

127

128

129 % function tTable = getTableFromVerticies(obj)

130 % tTable = cell2table([num2cell(obj.l_verticies)]);

131 % tTable.Properties.VariableNames = obj.l_vertexTerms;

132 % tTable.Properties.RowNames = obj.VertexNames;

133 % end

134

135 end

136

137 end

138

Listing C.2: clsSKEDGraph
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1 classdef (Abstract) clsSKEDAnalysisBase < clsSKEDJSONBase

2 %clsSKEDAnalysisBase Base class for analysis

3 properties

4 dataPrimitives % cell array of JSON data primitives

5 end

6

7 methods

8 function loadDataPrimitives(obj,cFiles)

9 import org.json.*

10 obj.dataPrimitives = {};

11 for i=1:length(cFiles)

12 sFile = cFiles{i};

13 tic

14 disp(['Loading ' sFile])

15 charData = fileread(sFile);

16 strData = convertCharsToStrings(charData);

17 jo = JSONObject(strData);

18 try

19 obj.jo = jo;

20 catch err

21 toc

22 end

23 Type = obj.getKey('/data_primitive/type');

24 switch Type

25 case 'time_series'

26 o = clsSKEDTimeSeries(sFile);

27 case 'graph'

28 o = clsSKEDGraph(sFile);

29 case 'polygonal_mesh'

30 o = clsSKEDMesh(sFile);

31 case 'image'

32 o = clsSKEDImage(sFile);

33 end

34 obj.dataPrimitives{i} = o;

35 toc

36 end

37 end

38 end

39 end

Listing C.3: clsSKEDAnalysisBase
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1 classdef clsSKEDBioinformatics < clsSKEDAnalysisBase

2 %clsSKEDBioinformatics Common methods for bioinformatics

3

4 properties

5 % Generic properties

6 Print % Boolean variable indicating whether results are visualized

7 Experiment % Descriptor for set of values to be analyzed

8 LowCountCutOff % Cut off point for RNAseq data

9 SubjectTPDefinitions % Subject time point definitions

10 TPstoAnalyze % List of time points to be compared ex. {'A','B' }

11 NormalizationType % 'libSize' is only option now

12 SKEDGraphContainer % Container object for graphs

13 SKEDTSContainer % container object for time series

14 KeyList % list of keys in container objects

15 ValueList % list of values corresponding to keys

16 end

17

18 methods

19 function obj = clsSKEDBioinformatics(cFiles)

20 obj.loadDataPrimitives(cFiles);

21 %Initialize properties

22 obj.Print = false;

23 obj.Experiment = '';

24 obj.LowCountCutOff = 10;

25 obj.SubjectTPDefinitions = {};

26 obj.TPstoAnalyze = {};

27 obj.NormalizationType = 'libSize';

28 obj.KeyList = {};

29 obj.ValueList = {};

30 obj.SKEDGraphContainer = containers.Map;

31 obj.SKEDTSContainer = containers.Map;

32

33 %load DP into Container Objects

34 for iDPCtr = 1: length(obj.dataPrimitives)

35 sDPName = obj.dataPrimitives{iDPCtr}.getKey(

'/data_primitive/metadata/id');↪→

36 oMap = containers.Map({sDPName}, {obj.dataPrimitives{iDPCtr}} );

37 switch obj.dataPrimitives{iDPCtr}.Type

38 case 'time_series'

39 obj.SKEDTSContainer = [obj.SKEDTSContainer; oMap];

40 case 'graph'

41 obj.SKEDGraphContainer = [obj.SKEDGraphContainer; oMap];

42 otherwise

43 error('Data primitive not implemented');

44 end

45 end

46 end
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47

48 function findTSFromKeys(obj)

49 obj.ValueList = values(obj.SKEDTSContainer,obj.KeyList);

50 end

51

52 function findGraphFromKeys(obj)

53 obj.ValueList = values(obj.SKEDTSContainer,obj.KeyList);

54 end

55

56 function [oGraphReport, oGraphReportAllGenes, oGr_FC] = DESeq(obj)

57 % This function finds DE genes and also records all the statistical

testing for DE genes in two output tables.↪→

58 % Input: clsSKEDBioinformatics object

59 % Output: MATLAB tables

60 % Usage: [tReport_DE_E03_AP, tReport_E03_AP ] =

DESeq(clsSKEDBioinformaticsE03);↪→

61 % Note: this script is based on the example given online at

https://www.mathworks.com/help/bioinfo/examples/

identifying-differentially-expressed-genes-

from-rna-seq-data.html

↪→

↪→

↪→

62

63 % NOTE: This function uses Group A as baseline and compares to

64 % Group B. Ex. fold-change is B/A (B over A)

65 if strcmp(obj.NormalizationType,'libSize')

66 [~, oGr_FC, tDataNorm, ~ ,cLabelsA, cLabelsB] =

funLibSizeDataNormFC(obj);↪→

67 else

68 error(' Please assign a valid string to NormalizationType.');

69 end

70 % assumes that only two types of timepoints are xeing compared

71 mGroupAnorm = cell2mat( table2cell(tDataNorm(:,1:(size(cLabelsA,2))

)));↪→

72 mGroupBnorm = cell2mat(

table2cell(tDataNorm(:,(size(cLabelsA,2))+1:end)));↪→

73 cGeneNames = tDataNorm.Properties.RowNames;

74

75 sGroupADesc = obj.TPstoAnalyze{1}{2}; sGroupBDesc =

obj.TPstoAnalyze{2}{2};↪→

76

77 normCountsmG = [mGroupAnorm, mGroupBnorm ];

78 meanGA = mean(mGroupAnorm,2);

79 meanGB = mean(mGroupBnorm,2);

80

81 meanBase = (meanGA + meanGB) / 2;

82 foldChange = meanGB ./ meanGA;

83 log2FC = log2(foldChange);

84
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85 lowCountThreshold = obj.LowCountCutOff;

86 lowCountGenesmG = all(normCountsmG < lowCountThreshold, 2);

87 % The online MATLAB demo uses the unnormalized values

88 % tLocal = nbintest(mGroupB, mGroupA, 'VarianceLink',

'LocalRegression');↪→

89 % The normalized values will be compared here.

90 tLocal = nbintest( mGroupBnorm,mGroupAnorm,

'VarianceLink','LocalRegression');↪→

91 if obj.Print == 1

92 h = plotVarianceLink(tLocal,'compare',true);

93 h(1).Title.String = ['Variance Link on ' sGroupBDesc ];

94 h(2).Title.String = ['Variance Link on ' sGroupADesc ];

95 end

96

97 pValue = tLocal.pValue;

98 [mFDR qValue] = mafdr(pValue);

99 cFoldChange = mean(mGroupBnorm,2)./mean(mGroupAnorm,2);

100 clog2FC = log2(cFoldChange);

101 % create table with statistics about each gene

102 geneTable = table(meanBase,meanGB,meanGA,cFoldChange,clog2FC);

103 geneTable.Properties.RowNames = cGeneNames;

104 geneTable.Properties.VariableNames = {'meanBase',

'meanGroupB','meanGroupA','FoldChange','log2FC'};↪→

105

106

107 % create table with statistics about each gene

108 geneTableWithoutLowCounts =

table(meanBase(~lowCountGenesmG),meanGB(~lowCountGenesmG),

meanGA(~lowCountGenesmG),cFoldChange(~lowCountGenesmG),

clog2FC(~lowCountGenesmG));

↪→

↪→

↪→

109 geneTableWithoutLowCounts.Properties.RowNames =

cGeneNames(~lowCountGenesmG);↪→

110 geneTableWithoutLowCounts.Properties.VariableNames = { 'meanBase',

'meanGroupB','meanGroupA','FoldChange','log2FC'};↪→

111

112 if obj.Print == 1

113 summary(geneTable)

114

115 mairplot(meanGB,meanGA,'Labels',cGeneNames,'Type','MA');

116 set(get(gca,'Xlabel'),'String','mean of normalized counts')

117 set(get(gca,'Ylabel'),'String','log2(fold change)')

118

119 mairplot( meanGB(~lowCountGenesmG), meanGA(~lowCountGenesmG),

'Labels',cGeneNames(~lowCountGenesmG), 'Type','MA');↪→

120 set(get(gca,'Xlabel'),'String','mean of normalized counts')

121 set(get(gca,'Ylabel'),'String','log2(fold change)')

122
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123 figure('units','normalized','outerposition',[0 0 1 1]);

124 histogram(tLocal.pValue,100);

125 title(['Histogram of P-Values' ]);

126 xlabel('P-value')

127 ylabel('Frequency')

128

129 figure('units','normalized','outerposition',[0 0 1 1]);

130 histogram(tLocal.pValue(~lowCountGenesmG),100)

131 title(['Histogram of P Values for without low count genes']);

132 xlabel('P-value')

133 ylabel('Frequency')

134

135 figure('units','normalized','outerposition',[0 0 1 1]);

136 histogram(qValue(~lowCountGenesmG),100);

137 title(['Histogram of Q Values for without low count genes']);

138 xlabel('Q-value')

139 ylabel('Frequency')

140

141 figure('units','normalized','outerposition',[0 0 1 1]);

142 nlog2MeanGA = log2(mean(mGroupAnorm,2));

143 nlog2FoldChange = log2(cFoldChange);

144 scatter(nlog2MeanGA(~lowCountGenesmG),

nlog2FoldChange(~lowCountGenesmG),

3,qValue(~lowCountGenesmG),'o')

↪→

↪→

145 colormap(flipud(cool(256)))

146 colorbar;

147 ylabel('log2(Fold Change)')

148 xlabel('log2(Mean of normalized counts)')

149 title(['Fold change by FDR without low count genes between ',

sGroupADesc,' and ', sGroupBDesc ])↪→

150 end

151

152 % Multiple Testing and Adjusted P-values

153 % compute the adjusted P-values (BH correction)

154 padj = mafdr(tLocal.pValue,'BHFDR',true);

155 % add to the existing table

156 geneTableWithoutLowCounts.pvalue = tLocal.pValue(~lowCountGenesmG);

157 geneTableWithoutLowCounts.padj = padj(~lowCountGenesmG);

158

159 % create a table with significant genes using low count cutoff

160 sig = geneTableWithoutLowCounts.padj < 0.1;

161 geneTableSigWithoutLowCounts = geneTableWithoutLowCounts(sig,:);

162 geneTableSigWithoutLowCounts =

sortrows(geneTableSigWithoutLowCounts,'padj');↪→

163 tReport = geneTableSigWithoutLowCounts;

164 oGraphReport = clsSKEDGraph();

165 oGraphReport = setVerticiesFromTable(oGraphReport, tReport);
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166

167 % create table with all genes

168 geneTable.pvalue = tLocal.pValue;

169 geneTable.padj = padj;

170 tReport_AllGenes = geneTable;

171 oGraphReportAllGenes = clsSKEDGraph();

172 oGraphReportAllGenes = setVerticiesFromTable( oGraphReportAllGenes,

tReport_AllGenes);↪→

173 % % create a table with significant genes to compare to MATLAB online

174 % sig = geneTable.padj < 0.1;

175 % geneTableSig = geneTable(sig,:);

176 % geneTableSig = sortrows(geneTableSig,'padj');

177 % tReport = geneTableSig;

178 % numberSigGenes = size(geneTableSig,1);

179

180 numberSigGenes = size(geneTableSigWithoutLowCounts,1);

181

182 % find up-regulated genes

183 up = geneTableSigWithoutLowCounts.log2FC > 1;

184 upGenes =

sortrows(geneTableSigWithoutLowCounts(up,:),'log2FC','descend');↪→

185 numberSigGenesUp = sum(up);

186 % create table with significant genes to compare to MATLAB online

187 % up = geneTableSig.log2FC > 1;

188 % upGenes = sortrows(geneTableSig(up,:),'log2FC','descend');

189 % numberSigGenesUp = sum(up);

190

191 % find down-regulated genes

192 down = geneTableSigWithoutLowCounts.log2FC < -1;

193 downGenes = sortrows(geneTableSigWithoutLowCounts(down,:),

'log2FC','ascend');↪→

194 numberSigGenesDown = sum(down);

195 % create table with significant genes to compare to MATLAB online

196 % down = geneTableSig.log2FC < -1;

197 % downGenes = sortrows(geneTableSig(down,:),'log2FC','ascend');

198 % numberSigGenesDown = sum(down);

199

200 % show table summary and figures

201 if obj.Print == 1

202 disp(['The number of significantly up regulated genes: '

num2str(numberSigGenesUp)])↪→

203 disp(['The number of significantly down regulated genes: '

num2str(numberSigGenesDown)])↪→

204 % display the top 10 up-regulated genes

205 if size(upGenes,1) < 10

206 top10GenesUp = upGenes(:,:)

207 else
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208 top10GenesUp = upGenes(1:10,:)

209 end

210

211 % find top 10 down-regulated genes

212 if size(downGenes,1) < 10

213 top10GenesDown = downGenes(:,:)

214 else

215 top10GenesDown = downGenes(1:10,:)

216 end

217

218 figure

219 scatter(log2(geneTableSigWithoutLowCounts.meanBase),

geneTableSigWithoutLowCounts.log2FC, 3,

geneTableSigWithoutLowCounts.padj,'o');

↪→

↪→

220 colormap(flipud(cool(256)));

221 colorbar;

222 ylabel('log2(Fold Change)');

223 xlabel('log2(Mean of normalized counts)');

224 title(['Fold change by FDR between ', sGroupADesc,' and ',

sGroupBDesc,' in without low count genes' ]);↪→

225 end

226

227 end % end function DE_Seq

228

229 function [oGr_DataNorm, oGr_FC, tDataNorm, tFC, cLabelsA,cLabelsB] =

funLibSizeDataNormFC(obj)↪→

230 % This function performs library size normalization and finds fold

change.↪→

231 % Input: clsSKEDBioinformatics object

232 % Output: MATLAB tables

233 % Usage: [tDataNorm, tFC ]= DESeq(clsSKEDBioinformaticsE03);

234 % Note: this script is based on the example given online at

https://www.mathworks.com/help/bioinfo/examples/

identifying-differentially-expressed-genes-from-rna-seq-data.html

↪→

↪→

235

236 % NOTE: This function uses Group A as baseline and compares to

237 % Group B. Ex. fold-change is B/A (B over A)

238

239 % define matricies mGroupA and mGroupB to hold values for the

different↪→

240 % time point groups to be compared

241 mGroupA = []; mGroupB = [];

242 cLabelsA = {}; cLabelsB = {};

243 sGroupADesc = obj.TPstoAnalyze{1}{2}; sGroupBDesc =

obj.TPstoAnalyze{2}{2};↪→

244 % assign group values and labels using subject time point

245 % definitions
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246 for iTPDefCtr = 1: size(obj.SubjectTPDefinitions,1)

247 sTPDefSubjectName = obj.SubjectTPDefinitions{iTPDefCtr}{1};

248 %fprintf('TPDefSubjectName: %s\n', sTPDefSubjectName )

↪→

249 for iDPCtr = 1:size(obj.ValueList,2)

250 sSubject = obj.ValueList{1,iDPCtr}.getMetaData('subject');

251 if contains(sSubject,'pasilla')

252 sExp = '';

253 else

254 sExp = obj.ValueList{1,iDPCtr}.getMetaData('experiment');

255 end

256 if strcmp(sTPDefSubjectName, sSubject)

257 %fprintf('SubjectName: %s\n', sSubject)

258 for iSubTPCtr =

2:size(obj.SubjectTPDefinitions{iTPDefCtr},2)↪→

259 if strcmp( obj.SubjectTPDefinitions

{iTPDefCtr}{iSubTPCtr}{2}, obj.TPstoAnalyze{1}{1}

)

↪→

↪→

260 % assign values and labels for TPA

261 if strcmp(sExp,'E07B')

262 cTPAName = strcat( {'Mf'}, sSubject, {'_'},

sExp, {'_TP'},

num2str(obj.SubjectTPDefinitions

{iTPDefCtr}{iSubTPCtr}{1}), '_',

obj.SubjectTPDefinitions

{iTPDefCtr}{iSubTPCtr}{2});

↪→

↪→

↪→

↪→

↪→

263 else

264 cTPAName = strcat( sSubject, {'_'}, sExp,

{'_TP'}, num2str(

obj.SubjectTPDefinitions

{iTPDefCtr}{iSubTPCtr}{1}), '_',

obj.SubjectTPDefinitions

{iTPDefCtr}{iSubTPCtr}{2});

↪→

↪→

↪→

↪→

↪→

265 end

266 %cTPAName = strcat( sSubject, {'_'}, sExp,

{'_TP'}, num2str(obj.SubjectTPDefinitions

{iTPDefCtr}{iSubTPCtr}{1}), '_',

obj.SubjectTPDefinitions

{iTPDefCtr}{iSubTPCtr}{2});

↪→

↪→

↪→

↪→

267 cLabelsA = [cLabelsA cTPAName ];

268 %fprintf('\tsTPAName: %s\n', string(cTPAName))

269 cTPARange = obj.ValueList{ 1,

iDPCtr}.l_Range(obj.SubjectTPDefinitions

{iTPDefCtr}{iSubTPCtr}{1}, :);

↪→

↪→

270 mGroupA = [mGroupA cell2mat(cTPARange')];

271 elseif strcmp(obj.SubjectTPDefinitions

{iTPDefCtr}{iSubTPCtr}{2}, obj.TPstoAnalyze{2}{1}

)

↪→

↪→
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272 % assign values and labels for TPB

273 if strcmp(sExp,'E07B')

274 cTPBName = strcat( {'Mf'}, sSubject, {'_'},

sExp, {'_TP'}, num2str(

obj.SubjectTPDefinitions

{iTPDefCtr}{iSubTPCtr}{1}), '_',

obj.SubjectTPDefinitions

{iTPDefCtr}{iSubTPCtr}{2} );

↪→

↪→

↪→

↪→

↪→

275 else

276 cTPBName = strcat( sSubject, {'_'}, sExp,

{'_TP'} ,num2str(

obj.SubjectTPDefinitions

{iTPDefCtr}{iSubTPCtr}{1}),'_',

obj.SubjectTPDefinitions

{iTPDefCtr}{iSubTPCtr}{2} );

↪→

↪→

↪→

↪→

↪→

277 end

278 %cTPBName = strcat( sSubject, {'_'}, sExp,

{'_TP'}, num2str(obj.SubjectTPDefinitions

{iTPDefCtr}{iSubTPCtr}{1}),'_',

obj.SubjectTPDefinitions

{iTPDefCtr}{iSubTPCtr}{2});

↪→

↪→

↪→

↪→

279 cLabelsB = [cLabelsB cTPBName ];

280 %fprintf('\tsTPBName: %s\n', string(cTPBName))

281 cTPBRange = obj.ValueList {1,iDPCtr}.l_Range(

obj.SubjectTPDefinitions

{iTPDefCtr}{iSubTPCtr}{1}, :);

↪→

↪→

282 mGroupB = [mGroupB cell2mat(cTPBRange')];

283 end

284 end % for loop over

285 end

286 end

287 end % end for lood over SubjectTPDefinitions

288 %%%%%%%%%%%%% library size normalization

289 mG = [mGroupA mGroupB];

290 %normalize using data from both groups

291 pseudoRefSample = geomean(mG,2);

292 nz = pseudoRefSample > 0;

293 ratios = bsxfun(@rdivide,mG(nz,:),pseudoRefSample(nz));

294 sizeFactors = median(ratios,1);

295 normCountsmG = bsxfun(@rdivide,mG,sizeFactors);

296

297 mGroupAnorm = normCountsmG(:,1:( size(cLabelsA,2) ) );

298 mGroupBnorm = normCountsmG(:,(size(cLabelsA,2))+1:end);

299

300 meanGA = mean(mGroupAnorm,2);

301 meanGB = mean(mGroupBnorm,2);

302
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303 meanBase = (meanGA + meanGB) / 2;

304 foldChange = meanGB ./ meanGA;

305 log2FC = log2(foldChange);

306

307 cGeneNames = regexprep(obj.ValueList{1,1}.l_VarNames,'^x_', '');

308 cGeneNames = regexprep(cGeneNames,'_$', '');

309

310 % save normalized data in a table

311 tDataNorm = cell2table([num2cell(mGroupAnorm),

num2cell(mGroupBnorm)]);↪→

312 tDataNorm.Properties.VariableNames = [cLabelsA,cLabelsB];

313 tDataNorm.Properties.RowNames = cGeneNames;

314

315 oGr_DataNorm = clsSKEDGraph();

316 oGr_DataNorm = setVerticiesFromTable(oGr_DataNorm, tDataNorm);

317

318 % find fold change relative to TP A

319 foldChange = [];

320

321 for iGrpBCtr = 1:size(mGroupBnorm,2)

322 cTPBValues = mGroupBnorm(:,iGrpBCtr);

323 sTPBLabel = cLabelsB{iGrpBCtr};

324 sTPBName = regexp(sTPBLabel,

'^[a-zA-Z0-9]*','match','forceCellOutput' );↪→

325 idx = contains(cLabelsA,sTPBName{1}{1});

326 foldChange = [ foldChange cTPBValues ./ mGroupAnorm(:,idx) ] ;

327 end

328

329 tFC = cell2table(num2cell(foldChange));

330 tFC.Properties.VariableNames = cLabelsB;

331 tFC.Properties.RowNames = cGeneNames;

332

333 oGr_FC = clsSKEDGraph();

334 oGr_FC = setVerticiesFromTable(oGr_FC, tFC);

335

336 if obj.Print == 1

337 figure('units','normalized','outerposition',[0 0 1 1]);

338 subplot(2,1,1)

339 maboxplot(log2(mG), 'orientation','horizontal','BoxPlot',

{'Labels',[ cLabelsA cLabelsB] } )↪→

340 title( ['Raw read count for all subjects between ', sGroupADesc,'

and ', sGroupBDesc ])↪→

341 ylabel('Time Points')

342 xlabel('Log2(counts)')

343

344 subplot(2,1,2)
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345 maboxplot(log2(normCountsmG),'title',['Normalized read count for

all subjects between ', sGroupADesc,' and ', sGroupBDesc

],'orientation','horizontal','BoxPlot', {'Labels',[ cLabelsA

cLabelsB] })

↪→

↪→

↪→

346 ylabel('Time points')

347 xlabel('Log2(counts)')

348 end

349 end % funlibSizeDataNormFC

350

351 function oGr = funLibSizeNormAllTP(obj)

352 cLabels = {}; mGroup = [];

353 for iTPDefCtr = 1: length(obj.SubjectTPDefinitions)

354 sTPDefSubjectName = obj.SubjectTPDefinitions{iTPDefCtr}{1};

355 %fprintf('TPDefSubjectName: %s\n', sTPDefSubjectName )

↪→

356 for iDPCtr = 1:length(obj.ValueList)

357 sSubject = obj.ValueList{iDPCtr}.getMetaData('subject');

358 try

359 sExp = obj.ValueList{iDPCtr}.getMetaData('experiment');

360 catch

361 sExp = '';

362 end

363 if strcmp(sTPDefSubjectName, sSubject)

364 %fprintf('SubjectName: %s\n', sSubject)

365 for iSubTPCtr =

2:length(obj.SubjectTPDefinitions{iTPDefCtr})↪→

366 % assign values and labels for TPA

367 cTPName = strcat( sSubject, {'_'}, sExp, {'_TP'},

num2str( obj.SubjectTPDefinitions

{iTPDefCtr}{iSubTPCtr}{1}), '_',

obj.SubjectTPDefinitions

{iTPDefCtr}{iSubTPCtr}{2});

↪→

↪→

↪→

↪→

368 cLabels = [cLabels cTPName ];

369 cTPRange = obj.ValueList {1,iDPCtr}.l_Range(

obj.SubjectTPDefinitions

{iTPDefCtr}{iSubTPCtr}{1}, :);

↪→

↪→

370 mGroup = [mGroup cell2mat(cTPRange')];

371 end

372 end

373 end

374 end

375

376 pseudoRefSample = geomean(mGroup,2);

377 nz = pseudoRefSample > 0;

378 ratios = bsxfun(@rdivide,mGroup(nz,:),pseudoRefSample(nz));

379 sizeFactors = median(ratios,1);

380 normCountsmG = bsxfun(@rdivide,mGroup,sizeFactors);
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381 cGeneNames = obj.ValueList{1,1}.l_VarNames;

382 % save normalized data in a table

383 tDataNorm = cell2table(num2cell(normCountsmG));

384 tDataNorm.Properties.VariableNames = cLabels;

385 tDataNorm.Properties.RowNames = cGeneNames;

386 % transform normalized data into graph data primitive

387 oGr = clsSKEDGraph();

388 oGr.setVerticiesFromTable(tDataNorm);

389 end % end function

390 end

391 end

Listing C.4: clsSKEDBioinformatics
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1 classdef (Abstract) clsSKEDDPBase < clsSKEDJSONBase

2 %clsSKEDDPBase Abstract class with function that returns JSON Object

3 properties (Access = public)

4 FileName % location of the JSON file

5 Type % Type of data primitive (e.g. 'TimeSeries','Graph')

6 end

7

8 methods (Access = public)

9 %% ----------------------------------------

10 function obj = clsSKEDDPBase(obj)

11 %

12 end

13 end

14 end

Listing C.5: clsSKEDDPBase
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