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Abstract

Anthropogenic activities greatly accelerate the nutrient input into ecosystems. Rivers

and streams not only transport nutrients between terrestrial and oceanic ecosystems but

also transform nutrients and control the nutrients export from watersheds. Thus, a robust

technique of estimating nutrient uptake rate in streams is necessary. Using pulse release of

solutes to estimate nutrient uptake rates is an logistically easy experimental approach but a

proper statistical method for analyzing such data is lacking. In this study, we analyzed the

theoretical and practical issues of the current methods and propose a new method of esti-

mating nutrient uptake rate from pulse release data based on the solute dynamics described

by the advection–dispersion equation. The new method allowed us to estimate the dynamics

of nutrient uptake with explicit assumptions. We implemented the estimation routine in R

(https://github.com/songchao1986/Nutrient-uptake) for easy application.

Index words: Nutrient uptake, Nutrient spiraling, Partial differential equation,
Nonlinear model
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Chapter 1

Methods of Analyzing Nutrient Uptakes Rate in Streams

Streams play a critical role in transporting and transforming nutrients globally. In streams,

nutrients are continually taken up by the biological activities and temporarily retained

in stream ecosystems as they are physically transported. Recent research suggested that

nutrient uptake and transformation due to biological activities in streams has a profound

control on the nutrient export out of the watershed and therefore influences the nutrient

input to the receiving ecosystems (Peterson et al, 2001; Mulholland et al, 2008). As anthro-

pogenic activities have greatly accelerated nutrient input into ecosystems, nutrient loading

has exceeded the holding capacity of many ecosystems, resulting in deleterious impacts to

the ecosystems (Vitousek et al, 1997). Therefore, understanding nutrient uptake in streams

is not only of great scientific interests, but also relates to practical issues in ecosystem man-

agement. Hence, it is critical to investigate the characteristics of nutrient uptake in streams.

A robust method of estimating nutrient uptake rate in streams is particularly important and

will be our focus in this thesis.

Researchers have employed various methods to measure nutrient uptake rate in streams.

The first approach is a constant injection approach. A concentrated solute solution containing

conservative tracer and reactive tracer (nutrient) is injected into the stream at a constant

flow rate until the concentration of both tracers reaches steady state. The relative decrease

in concentration of the nutrient compared to the conservative tracer when moving down-

stream is then used to estimate the nutrient uptake rate (Webster and Ehrman, 1996). A

second common approach is similar to the constant injection method but uses isotope labeled

1
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nutrient tracers (Newbold et al, 1981; Peterson et al, 2001; Mulholland et al, 2008). A con-

centrated solution of isotope labelled nutrient tracer and conservative tracer is injected into

the stream with a constant flow rate. After sufficient time for the stream to reach steady state

in the isotope tracer concentration, isotopic signature in various forms of nutrients can be

determined. The downstream decrease in isotopic signature is then used to estimate nutrient

uptake rates. A third approach uses a pulse release of conservative and nutrient tracers to

estimate nutrient uptake (Covino et al, 2010). Specifically, a small volume of concentrated

solution with both conservative and nutrient tracers is released in the stream as a pulse. The

concentration of each tracer is monitored at a downstream location. The concentration of

each tracer over time, often referred to as the breakthrough curve, is then used to estimate

the nutrient uptake rate.

Both constant injection method and the isotope method require a constant injection of

concentrated solute solution in streams until concentration in stream reaches equilibrium.

The equilibrium often requires long time to achieve. It is thus logistically inconvenient to

apply these methods. Methods based on constant injection are also limited to application in

small streams because a high injection flow rate and a large reservoir of concentrated solute

solution are required in large streams and rivers, which are not always feasible in the field.

In addition to being logistically challenging, the isotope approach requires measurements of

isotope signature of water samples. The high cost of isotopically enriched material and sample

analysis by mass spectrometry limit the use of this technique. In contrast to the logistical

difficulty with methods based on constant injection, the pulse release method is logistically

easy to perform in the field. Releasing a pulse of concentrated solutes and monitoring the

breakthrough curves downstream are quick and easy. Thus the pulse release method has been

increasingly accepted as the preferred method to measure nutrient uptake rate by stream

ecologists.

Covino et al (2010) proposed a method to estimate nutrient uptake rate from pulse release

data. The method they proposed consists of the following steps. Here we use chloride (Cl)
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and nitrogen (N) as examples of conservative and nutrient tracers to illustrate the method

proposed by Covino et al (2010):

1) Release a pulse of concentrated solution of Cl and N with known mass of each solute.

At the downstream location with known distance to the release location, take samples of

stream water and measure concentrations of both Cl and N in the sample.

2) Subtract the background N and Cl concentrations from the sample concentrations

and obtain a background corrected N/Cl ratio for each sample. At time 0, the background

corrected N/Cl ratio at the release location is the ratio of the release solution. At the time

of sampling, we have a background corrected N/Cl ratio of the sample. For each sample,

perform a linear regression of the log transformed background corrected N/Cl ratio on time

using the two points for each sample. The slope of the regression is the per time uptake rate

for that sample. Repeat this procedure and obtain a per time uptake rate for each sample.

3) Calculate the uptake rate (in the unit of concentration of nutrient per time) for each

sample by multiplying the per time uptake (in the unit of per time) rate calculated in step

2 and the measured N concentration of each sample. The uptake rate and the nutrient

concentration for each sample is then used as data and fit to an assumed function describing

the concentration dependence of uptake rate. For example, the Michaelis–Menten function

is a general function describing concentration dependence of chemical reaction rate

rate =
Vmax

Km + C
. (1.1)

Here, Vmax is the maximum uptake rate, Km is the half saturation constant and C is the

nutrient concentration. Alternatively, one can fit a first order uptake

rate = KC . (1.2)

Here K is the per time first order uptake rate. The choice of the uptake function can be made

based on the understanding of the system or based on visual examination of the calculated

uptake rate–concentration relationship.
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Although the approach proposed by Covino et al (2010) provides a convenient recipe

to analyze nutrient uptake rate from pulse release data, the theoretical justification of this

method has not been thoroughly investigated. It remains unclear what assumptions about

solutes transport and uptake are implicitly made when performing such calculation. Thus,

there is a pressing need to theoretically evaluate this method to verify its validity.



Chapter 2

Issues with the Current Method

2.1 Inconsistent assumptions on the form of nutrient uptake

The key step in estimating nutrient uptake rate as proposed by Covino et al (2010) is

using the regression of log(N/Cl) over time to estimate an per time uptake rate for each

sample. Although the reasoning of such calculation is not explicitly presented by Covino

et al (2010), we attempt to derive their calculation procedure by analyzing the dynamics of

solute transport and uptake in streams. Through such analysis, we shall see the assumptions

made implicitly when using the method by Covino et al (2010). This allows us to evaluate

the validity and the scope of application of their method.

The solute concentration change at any time and location is the result of advection (i.e.

solutes movement with water flow), dispersion (i.e. solutes diffusion over concentration gra-

dients) and biological production and uptake based on mass balance. Thus, solute dynamics

in streams can be described by a one dimension advection–dispersion–decay model. Here,

we use Cl and N as examples of conservative and nutrient tracers. If we assume that the

nutrient production rate is constant and uptake rate follows a first order uptake function,

the transport and uptake of Cl and N after a pulse release can be modeled as:

∂C

∂t
= −U ∂C

∂x
+D

∂2C

∂x2
−KC + I . (2.1)

Here C is the solute concentration, U is the velocity of water flow, D is the dispersion

coefficient and K is the first order nutrient uptake rate per time, I is the nutrient production

rate, t is time and x is distance. Both Cl and N have the same parameters except that the

per time uptake rate K and production rate I for Cl are 0. In particular, because dispersion

5
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in streams is dominantly turbulent dispersion, the dispersion coefficient is determined by

flow conditions instead of characteristics of the solutes. Thus, dispersion coefficient for N

and Cl should be equal. The initial condition that models a pulse release is that the tracers

are injected uniformly across the cross-section over an infinitesimally small width along the

flowing direction. To specify such an initial condition, we use the Dirac delta function

C(x, 0) =
M

A
δ0(x) . (2.2)

Here, M is the total mass of injected tracer, A is the cross section area and δ0(x) is the Dirac

delta function. We assume that there is a stable background concentration of tracers (C0)

before pulse release by specifying the boundary condition as

C(±∞, t) = C0 . (2.3)

We further assume that the background tracer concentration before pulse release is stable,

meaning that the production and uptake balance each other at the background concentration.

Thus,

I = KC0 . (2.4)

We can analytically solve the model specified above and obtain the concentrations of both

Cl and N over time t at the sampling distance x (O’Loughlin and Bowmer, 1975; Genuchten

et al, 2013):

CCl(x, t)− CCl,0 =
MCl

A
√

4πDt
exp

[
− (x− Ut)2

4Dt

]
, (2.5)

CN(x, t)− CN,0 =
MN

A
√

4πDt
exp(−Kt) exp

[
− (x− Ut)2

4Dt

]
. (2.6)

If we take the log ratio of equation 2.6 and 2.5, we obtain the log ratio of background

corrected tracer concentration as

log

[
CN(x, t)− CN,0

CCl(x, t)− CCl,0

]
= log

[
MN

MCl

]
−Kt . (2.7)

Equation 2.7 justifies why the regression of background corrected log(N/Cl) on time (step

2 of the Covino et al (2010) method) gives an estimate of uptake rate K. Equation 2.7 is
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the result of equation 2.1–2.4. To arrive at equation 2.7, it is necessary to assume a first

order uptake (equation 2.1), i.e. uptake rate is proportional to the nutrient concentration.

Therefore, when using equation 2.7 to estimate uptake rate as proposed by Covino et al

(2010), one implicitly assumes that uptake is first order. This is in direct contradiction to the

third step proposed by Covino et al (2010), where they proposed to use a Michaelis–Menten

function to describe the uptake–concentration relationship. It is inherently inconsistent to

assume one form of uptake in one step and another form of uptake in another step. The

inconsistent use of assumption invalidate the method proposed by Covino et al (2010).

The analysis of solute dynamics above also shows that the approach by Covino et al

(2010) is solely based on solute dynamics in the stream main channel. However, it is well

known that the porous benthic sediments, often referred to as transient storage zone, interact

with solutes in the stream channel, temporarily store the solutes and delay the downstream

transport of solutes. Consequently, the presence of transient storage zone could significantly

alter how solute concentration in water changes over time and space (Runkel, 2002). It is

therefore important to include transient storage in modeling nutrient uptake in streams.

Given the common presence of transient storage zone in streams, a model focusing solely on

solute dynamics in stream channel is likely very limited in its scope of application.

2.2 Vulnerability to inaccurate background concentration measurements

A second deficiency of the Covino et al (2010) method arises from the fact that background

concentration of solutes is needed to estimate nutrient uptake rate. Specifically, to calcu-

late the uptake rate for each sample, one needs to subtract the background concentration

of solutes from the measured concentration of solutes in each sample. Thus, an accurate

measurement of background solute concentration is necessary. However, chemical analysis

of solutes concentration has limitations. For example, in streams with low background con-

centration of N, there is often substantial inaccuracy in measuring the background concen-
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tration due to a detection limit of the chemical assay. Inaccurate background concentration

may cause error in the estimate of nutrient uptake rate.

To demonstrate potential influences of inaccurate background concentration measure-

ments, we first simulated breakthrough curves of Cl and N assuming first order uptake

following equation 2.5 and 2.6, and then calculated the uptake rate following the steps pro-

posed by Covino et al (2010) using a slightly inaccurate background concentration. In the

simulation, we assumed that we released 4g N (MN) and 1000g Cl (MCl) and monitored

solute concentration every 2 seconds at 10m downstream from the release point. The flow

velocity (U) is 1m/s and dispersion coefficient (D) is 0.1m2/s. The cross section area of the

stream (A) is 1m2. We set the uptake rate (K) at 0.05/min. We set the background concen-

tration of N at 5 µg/L. We followed the steps in the method proposed by Covino et al (2010)

but used a background N concentration of 4.9 µg/L in the calculation (step 2). It is worth

mentioning that a deviation of 0.1 µg/L is a fairly conservative magnitude of inaccuracy given

the precision of measuring N concentration in water samples. For example, Sororzano (1969)

first proposed the widely used phenolhypochlorite method for ammonia determination and

reported a coefficient of variation of 0.023. Given that we simulated the solute concentration

using equation 2.5–2.6, we assumed that the uptake rate is proportional to the concentration

and thus expected a linear relationship between uptake rate and concentration. However,

the calculated uptake–concentration relationship using a slightly inaccurate background N

concentration showed a nonlinear relationship (Fig. 2.1). This contradicts the assumption

of first order uptake, which was used to simulate the data. The parameter values we chose

in this simulation are comparable to realistic range of values commonly found in nutrient

uptake experiments. Thus, the simulation suggests that the estimated nutrient uptake rate

based on the method proposed by Covino et al (2010) is sensitive to slight inaccuracy in

background concentration measurements, limiting its application to real field data.
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Figure 2.1: Inaccuracy in background concentration results in unexpected nonlinear depen-
dence of uptake rate on concentration

2.3 Inappropriate error propagation

A third deficiency with the method proposed by Covino et al (2010) is improper error

propagation. Because measurement error of solute concentration always occurs, the estimated

per time uptake rate from regression of log(N/Cl) over time (step 2) contains uncertainty.

However, the regression of calculated uptake rate on nutrient concentration (step 3) does not

properly incorporate the uncertainty in estimated per time uptake rate. Thus, uncertainty

of parameter estimates, i.e. standard error of Vmax and Km, cannot be reliably evaluated.

In summary, the method proposed by Covino et al (2010) is theoretically flawed with

inconsistent assumptions. Practically, the method suffers from high sensitivity to measure-

ment inaccuracy and does not allow for proper evaluation of uncertainty. Thus, we argue
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that such method should not be adopted and a new method to analyze the pulse release

data needs to be developed.



Chapter 3

A new method of estimating nutrient uptake with pulse release

The analyses of the method by Covino et al (2010) suggest two major directions of improve-

ments. First of all, estimates of nutrient uptake rate in streams should rely on explicitly

specified underlying model of solute dynamics in water and assumptions of the form of

uptake. Assumptions of the model need to be consistently used throughout. Second, the

source and distribution of error need to be specified and explicitly incorporated in model

fitting. This enables us to obtain meaningful estimates of the uncertainty in nutrient uptake

rate. This also allows for model comparison to select proper form of nutrient uptake.

3.1 Model specification

Based on the insights gained from analyzing the existing approach, we propose a new method

to estimate nutrient uptake from pulse release data. First, we specify the model describing

how concentration of solutes change over time based on solute transport and forms of nutrient

uptake. In generally, the solute dynamics in flowing water can be described by an advection–

dispersion–decay model (Stream Solute Workshop, 1990). In addition, solutes in the main

channel of a stream may exchange with the sediments at the bottom of the channel, which is

often referred to as transient storage zone (Bencala, 1983). Thus, a general model describing

the dynamics of nutrients in streams is the advection–dispersion–decay model with transient

storage (Runkel, 2007).

∂C

∂t
= −U ∂C

∂x
+D

∂2C

∂x2
+ I − f(C)− α(C − Cs) , (3.1)

∂Cs

∂t
=

A

As

α(C − Cs) . (3.2)

11
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Here, C and Cs are concentration of solutes in the main channel and transient storage

respectively, U is flow velocity, D is dispersion coefficient, A/As is the ratio of cross section

area of the main channel and the transient storage zone, α is the exchange rate between

main channel and transient storage zone, I is the constant nutrient production rate in the

stream channel. The assumption of constant nutrient production rate is justified because

nutrient production rate is unlikely to change significantly during the short period of pulse

release experiment. The function f(C) is chosen to be suitable for describing nutrient uptake

rate in the stream channel. Nutrient uptake is an enzymatic catalyzed reaction and thus

the concentration dependence of nutrient uptake rate in stream channel can be generally

described by the Michaelis–Menten function

f(C) =
VmaxC

Km + C
. (3.3)

Here, Vmax is the maximum uptake rate, and Km is the half saturation constant. Michaelis–

Menten function is a general form describing concentration dependence of uptake rate. When

nutrient concentration is low (C � Km), Michaelis–Menten uptake is approximately first

order. Thus, we have an alternative choice of function describing the nutrient uptake rate in

the stream channel, namely the first order uptake function

f(C) = KC , (3.4)

where K is the per time uptake rate.

While we have modeled the pulse release by assuming that the tracers are injected uni-

formly across the cross-section over an infinitesimally small width, such initial condition

as specified by the Dirac delta function (equation 2.1) is difficult to implement if we have

to numerically solve the partial differential equation model for solute dynamics (equations

3.1–3.3). Thus, we modified the initial condition slightly by assuming that the tracers are

injected uniformly over a short length of x0. Mathematically, the initial condition can be
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expressed as

C(x, 0) =


C0, x < 0 or x > x0;

C0 + M
x0wd

, 0 6 x 6 x0.

(3.5)

Here, M is the mass of injected tracer, C0 is the background concentration, w is the width of

stream and d is the depth of stream. The volume of water at which the tracers are injected into

initially is thus x0wd, assuming that the cross section of the stream is roughly rectangular.

Given that the tracer solution is often released quickly, an arbitrary choice of a short x0 is

likely reasonable. Because dispersion is the major process responsible for the spread of the

initial pulse, the choice of a short injection time should not influence the modeled dynamics of

solutes significantly (See appendix). We further assume a stable background concentration

of tracers during the period of pulse release experiment. This gives rise to the boundary

condition

C(±∞, t) = C0 . (3.6)

The assumption of stable background concentration also suggests that the concentration of

solutes is equal in the channel and transient storage zone

C0 = Cs,0 . (3.7)

and the input and uptake balance each other in the main channel

I = f(C0) . (3.8)

In summary, with equations 3.1–3.8, we use observed concentration of solutes to esti-

mate parameters in the model (U , D, α, A/As, C0, Vmax and Km or K). Equations 3.1–3.8

offer multiple choices of models describing solute dynamics in streams. The combination

of different forms of nutrient uptake (choosing among equations 3.3 and 3.4) and whether

we include transient storage zone (α = 0 or α 6= 0) offers four candidate models: 1) main

channel model with Michaelis–Menten uptake; 2) main channel model with first order uptake;

3) transient storage zone model with Michaelis Menten uptake; and 4) transient storage zone
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models with first order uptake; A model selection procedure can then be performed to choose

the most proper model for a particular data set.

We assume a normal distributed measurement error, i.e. the difference between modeled

and measured solutes concentrations follows independent and identical normal distribution.

Thus we can use least squares as the criteria for model fit.

3.2 Computational considerations

Fitting the partial differential equation model as specified in equations 3.1–3.8 leads to a

few considerations of computation. First of all, the partial differential equation model for

nutrient dynamics (equations 3.1–3.8) usually does not have a closed form analytical solution

(van Genuchten et al, 2013) and needs to be solved numerically to obtain the trajectory of

solute concentration over time. One reliable method of solving partial differential equation

numerically is the method of lines. For partial differential equation with two independent

variables, method of lines first divides space into finite number of segments and solve the

partial differential equation as a sequence of ordinary differential equations defined on the

segment (Schiesser, 2012). In this study, we used the method of lines implemented in R

package ReacTran to numerically solve the partial differential equation (Soetaert et al, 2010;

Soetaert and Meysman, 2012).

One particular issue when numerically solving partial differential equation is numerical

dispersion. Numerical dispersion refers to the dispersion–like behavior of nutrient pulse solely

caused by inaccuracy of the numeric method of solving partial differential equation. When

solving partial differential equation numerically, a pulse will appear to spread even without

diffusion. Such behavior is undesirable. We employed two strategies to tackle the problem of

numeric dispersion. First, we used the algorithm proposed by Fiadeiro and Veronis (1977)

to reduce the amount of numeric dispersion when numerically simulating partial differential

equations. The algorithm switches between backward differencing and central differencing to

achieve a compromise between stability, accuracy and reduced numerical dispersion. Second,
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we divided the space in finer resolution to reduce numeric dispersion. Since the degree of

numeric dispersion depends on the relative magnitude of advective and dispersive transport,

it is impossible to propose a general rule of setting spatial resolution. Thus, we tested the

simulation with different spatial resolution until the degree of numeric dispersion does not

affect parameter estimates when fitting the model.

A second consideration is the choice of algorithm for nonlinear least squares fitting.

We chose a variant of Levenberg–Marquardt algorithm (Levenberg, 1944; Marquardt, 1963)

implemented in R function nlfb in package nlmrt because this method is robust to ill

conditioned problems and provide the ability to put upper and lower bound of parameter

estimates (Nash, 1990).

A third consideration is the starting values of parameters as bad starting values can

lead to slow or no convergence, or possibly convergence to the wrong solution. Since the

general advection–dispersion–decay model with transient storage is not analytically solvable,

it is difficult to analyze the behavior of the model to obtain starting values of parameters.

Instead, we analyze the behavior of the model without transient storage zone to obtain

rough estimates of starting values for a subset of parameters. In equations 2.5 and 2.6,

the observed solute concentration when t→ 0 and t→∞ is approximately the background

concentration. Thus the average of measurements at the beginning or towards the end of pulse

release experiments is a reasonable starting value for background concentration. Equation

2.5 suggests that conservative tracer concentration is the highest at t = U/x. Thus we use the

time it takes the peak to arrive at the sampling location and the distance between injection

and sampling locations to obtain a starting value for U . It is difficult to obtain starting values

for other parameters by analyzing the model. We thus simulate the model (equations 3.1–3.8)

with various combination of parameters until it visually fits the observed data. These values

are then used as the starting value for nonlinear least squares fitting.
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3.3 Evaluating the new method with simulated data

To evaluate whether the model and algorithm discussed above can correctly estimate the

nutrient uptake rate, we applied the proposed new method to simulated data sets. In partic-

ular, we simulated breakthrough curves of Cl and N assuming transient storage and first order

uptake (equations 3.1, 3.2, 3.4–3.8). The parameter values used to simulate the data were

CCl,0=6mg/L, CN,0=3µg/L, D=0.3m2/s, U=1.5m/s, α=0.03/s, A/As=2, and K 0.05/s. For

initial condition (equation 3.5), we assumed that the tracers were injected uniformly over a

length of 0.5m. The Cl and N concentration immediately after the pulse release was 1g/L and

2mg/L respectively. We sampled 68 pairs of N and Cl concentrations from the breakthrough

curves at 40m downstream of the releasing location. As discussed above, we used method of

lines to numerically solve the partial differential equation. Thus, we need to discretize space

for this numerical method. In this simulation study, we divide the stream into segments of

length 0.5m. We added random error drawn from a normal distribution with mean 0 and

standard deviation 0.5 to the simulated Cl and N concentration. We then fit the proposed

new models with different specifications to the data. The candidate models we fit to the data

were 1) main channel with first order uptake (equations 3.1 with α = 0, 3.4–3.6, 3.8), 2)

main channel with Michaelis–Menten uptake (equations 3.1 with α = 0, 3.3, 3.5, 3.6, 3.8),

3) transient storage with first order uptake (equations equations 3.1, 3.2, 3.4–3.8), and 4)

transient storage with Michaelis–Menten uptake (equations 3.1–3.3, 3.5–3.8). We also used

the method by Covino et al (2010) to compare its performance to the new method. Specif-

ically, we calculated the uptake rate for each sample (step 2) using the correct background

concentration for correction and assumed a first order update (step 3). Due to long compu-

tation time for numerically solving partial differential equation, we performed the simulation

200 times. The mean, variance and mean square error of the parameter estimates are fully

summarized in Table 3.1.
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The data sets were generated from a model with transient storage zone and a first order

uptake in the main channel (equations equations 3.1, 3.2, 3.4–3.8). For each iteration of

simulation, we fit the four candidate models to the simulated data and obtained an AIC for

each model. The model with the same structure as the one used to generate the data set

had the lowest AIC 100% times in our simulation, and correctly recovered the parameter

values used to simulate the data set as evidenced by small MSE and bias (similar variance

and MSE of parameter estimates) (Table 3.1). Visually, this model resulted in a good fit

to data (Figure 3.1). On the other hand, the estimated uptake rate based on Covino et al

(2010) differs significantly from the true parameter value used in simulating the data sets

(Table 3.1). This finding confirms our analysis that the method proposed by Covino et al

(2010) is based on first order uptake in the stream channel and is not applicable to streams

with transient storage zone.

3.4 Application to field data

The data we used to demonstrate the application of the new method come from a pulse

release experiment in the Luquillo Experimental Forest in northeastern Puerto Rico. We

performed the experiment in a first order stream within the Rio Mameyes watershed. During

the pulse release experiment, we added 667g NaCl as conservative tracer and 3g NH4Cl as

the nutrient tracer. We monitored the solute breakthrough curve 48.9m downstream of the

pulse release location. The background Cl concentration measured immediately prior to the

release experiment was 8mg/L. The N background concentration was below the detection

limit of 5µg/L. We collected 28 water samples throughout the solute breakthrough curve.

We measured N and Cl concentration for each sample.

We fitted all four candidate models to the data and used AIC to select the best fit model.

We assumed that the injected solutes were uniformly distributed over a 0.5m length of the

stream initially. We set a higher limit of estimated background Cl and N concentration

at 12 mg/L and 5µg/L, given the measurements of background concentration prior to the
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Figure 3.1: Model fits to the simulated data set
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release experiment. The parameter estimates and AIC for each candidate model are listed

in Table 3.2 and fitted curves are displayed in Figure 3.2). We found that models including

transient storage zone had a significant better fit to the data. Based on AIC, model with

transient storage and first order uptake of nutrient is the best model. We also found that the

Michaelis–Menten uptake and first order uptake result in very similar residual sum of square.

The estimated half saturation constant Km in Michaelis–Menten uptake function is much

higher than the observed N concentration in breakthrough curve. Because Michaelis–Menten

uptake is approximately equal to a first order uptake when the actual nutrient concentration

is much lower than half saturation constant Km, The similar fit between these two models

is expected. It suggests that the Michaelis–Menten uptake is not necessary and first order

uptake is sufficient to describe the nutrient uptake dynamics in this data set.

We also estimated uptake rate following the method by Covino et al (2010). Given that

this method inherently assumes a first order uptake, and the first order uptake model is found

to be the best model in our model comparison (Table 3.2), we first obtained a per time uptake

rate for each sample (step 2) and regress the uptake rate on concentration following a first

order uptake (step 3). In the experimental data set, the background Cl concentration is

8mg/L and the background N concentration measured prior to the pulse release experiment

is below the detection limit of 5µg/L. We thus follow the convention to use half detection

limit, i.e. 2.5µg/L, as the background N concentration in the Covino et al (2010) method.

We found that the resulting estimate of per time uptake K differs significantly from that

estimated based on the advection-dispersion models (Table 3.2). The Covino et al (2010)

method also does not allow us to assess the uncertainty in the parameter estimates due to

its improper error propagation.
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Figure 3.2: Model fits to the experimental data set



Chapter 4

Conclusions

We evaluated the existing method through theoretical analyses and fitting to simulated data

set. We found that the existing method had inconsistent use of assumptions and is sensitive

to slight inaccuracy in solute concentration measurements. The existing method is based on

nutrient dynamics in the stream main channel and does not include the influences of transient

storage. These problems suggest that the existing method has severe methodological flaws

and is inadequate to deal with the complexity in real data sets. We developed a new method

based on description of the solute dynamics in streams and tested this method with both

simulated and experimental data sets. Our method allows for inclusion of transient storage

zone and different forms of nutrient uptake function, and thus provides a flexible model to

estimate nutrient uptake from pulse release experiment in streams.

One limitation of the new method is that the starting values of parameters used for

nonlinear least square fitting are difficult to obtain. It is well known that good starting

values are critical for convergence to correct parameter estimates in nonlinear models. While

we can get rough estimates for flow velocity based on the timing of peak concentration in the

breakthrough curves and background concentration based on sample measurements prior to

the pulse solute release, it is difficult to obtain estimates of other parameters in the model.

Currently, we recommend testing various starting values of parameters and compare the

resulting model fit. Future research should aim to develop a robust method for obtaining

starting values of the parameters.

The new method we developed requires numerically solving the partial differential equa-

tion that describes the solute dynamics in streams. Accurately solving partial differential

23
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equation is time consuming. Consequently, processing large amount of nutrient release data

likely requires dedicated computing facility and implementation of parallel computing.

Despite the limitations discussed above, this new method is the first attempt to pro-

vide a flexible and logically consistent method to estimate nutrient uptake from pulse

release experiments. The new method is based on sound and well understood mechanisms

of solute dynamics. The R code we implemented for this method (https://github.com/

songchao1986/Nutrient-uptake) provides a convenient tool to analyze nutrient uptake

data for stream ecologists.
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Appendix

Influence of initial conditions

To numerically solve the partial differential equation, we replace the initial condition specified

by a δ function with

C(x, 0) =


C0, x < 0 or x > x0;

C0 + M
x0wd

, 0 6 x 6 x0.

(1)

Here, M is the mass of injected tracer, w is the width of stream and d is the depth of

stream. The volume of water at which the tracers are injected into initially is thus x0wd,

assuming that the cross section of the stream is roughly rectangular. We argue that an

arbitrary choice of a short x0 should not influence the simulated breakthrough curves. To

prove this point, we simulated three breakthrough curves of Cl using the same parameter

sets we used in the simulation study. Specifically, The parameter values used to simulate the

data were CCl,0=6mg/L, D=0.3m2/s, U=1.5m/s, α=0.03/s and A/As=2. We monitor the

concentration at 40m downstream from the release point. For initial conditions, we simulated

three scenarios. The first scenario assumes that the tracer is injected uniformly over a length

of 0.5m. The Cl concentration immediately after the pulse release was 1g/L. The second

scenario assumes that the tracer is injected uniformly over a length of 0.25m and the initial

concentration of Cl after release is 2g/L. The third scenario assumes that the tracers injected

uniformly over a length of 0.2m and the initial concentration of Cl after release is 2.5g/L.

We ensure the total amount of tracer injected remains the same in the three scenarios. The

breakthrough curve for each scenario is shown in Figure 1. We see that choosing different

values of x0 does not alter the simulated breakthrough curve significantly.
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Figure 1: Simulated breakthrough curve of Cl for different x0


