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Chapter 1

Introduction

The first two decades of the twenty-first century have seen an explosion of the usage of data

across many industries; baseball has been no exception. While baseball has a rich and storied

relationship with statistics, there has been a proliferation of statistical analysis devoted to

the game of baseball both among the teams and in the public sector. It is now common

for most Major League Baseball teams to employ at least one or two personnel devoted to

analytics and several teams have devoted Research & Development departments [1]. Since

the publication of Moneyball [2] and the movie of the same name, baseball analysis has taken

off in the public world with websites such as Fangraphs, The Hardball Times, and Baseball

Prospectus devoted to analytics in baseball. Even the most casual of fans are becoming

familiar with the world of sabermetrics, the term used to define the statistical analysis of

baseball, as sabermetric concepts are becoming increasingly used by broadcasters and writers.

The pace at which baseball digests information is only increasing. While baseball has long

had radar guns and the pitch tracking system PITCHf/x since 2006 [3,4], in the 2015 season

Major League Baseball began using a Doppler radar and high-definition video system called

Statcast to track nearly every aspect of the game. Examples of the kinds of measurements

that Statcast records are the exit velocity and launch angle of batted balls; velocity, break,
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and spin rate of pitches; and sprint speed and first step quickness for both fielders and

baserunners [5–7].

One goal of this work is that it will be accessible to both statistical and baseball audiences.

For this reason, in the second chapter, we provide a primer on key concepts in the statistical

analysis of baseball. Various metrics for both batting and pitching performances are introduced

along with their strengths and weaknesses as assessments of player performance. We also

present the concept of linear weights which is essential to the remainder of the thesis. Lastly,

we present two new metrics: Expected Batting Runs Above Average (xbRAA) and Expected

Pitching Runs Above Average (xpRAA) that will be used heavily in the remainder of our

work. These two new metrics are compared with alternatives already existing in the public

sphere.

In the third chapter, we more fully describe Statcast data. We outline some of the ways

that it has been used in the public sabermetric community and also look at some strengths

and shortcomings of the system. In particular, we outline the data collection and cleaning

process used to obtain the subset of the Statcast data that will be employed here.

In the fourth chapter, we provide a high-level overview of the statistical techniques used to

perform the analysis. The first sub-chapter overviews LightGBM, a gradient boosting tree

method that is heavily utilized in the ensuing analysis. The second and third sub-chapters

overview Bayesian optimization and tree-structured Parzen estimators, two hyperparameter

optimization techniques used here to select an optimal set of hyperparameters for the

LightGBM models.

The fifth chapter details the two versions of the LightGBM batted ball classifiers, one that

utilizes exit velocity, vertical launch angle, batter handedness, year, and half of season as

predictors and a second that includes the aforementioned variables along with a proxy to

horizontal angle. We begin by presenting the methodology and results of the hyperparameter

optimization routines. From there, we present the model results in both a numeric and visual
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fashion with a particular emphasis on using the results to visualize and better understand

the dynamics of batted balls in Major League Baseball.

Using the two batted ball classifiers, we present two versions of xbRAA and xpRAA.

We compare and contrast the two versions of the metrics against each other according to

properties that have been deemed desirable in the sabermetric community. We demonstrate

that the introduced metrics have more desirable empirical properties than the traditional

metrics, in addition to the philosophical superiority discussed in the first chapter. We also

use the introduced metrics to examine some of the best and worst performers and those with

the largest gaps between their expected performance and realized performance.

In the seventh chapter, we present a new framework for examining the “Juiced Ball”

hypothesis and the so-called “Fly Ball Revolution”. Over the last three years, offensive

performance in Major League Baseball has increased precipitously. Currently, the sabermetric

community believes that this is the product of two forces: first, the balls used by Major

League Baseball have changed in some capacity, leading to balls that come off the bat faster

and/or fly further; second, that batters across the MLB have been intentionally seeking to

hit balls in the air more in hopes of hitting more extra-base hits. We begin the section by

providing an overview of the research done on the juiced ball hypothesis up to this point. We

then present a framework where through counterfactual analysis, we are able to quantify how

much of the change in the offensive environment can be attributed to the change in the ball

used by Major League Baseball.
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Chapter 2

Baseball Analytics Background

2.1 Basic Definitions

For completeness, we overview a few key baseball terms that are necessary for understanding

the remainder of this section and the rest of the thesis as a whole. A plate appearance refers

to a completed turn batting. An at-bat is any plate appearance that does not end with a

walk, a hit-by-pitch, a sacrifice bunt, a sacrifice fly, interference or obstruction, or if a hitter

is removed and replaced with another batter (except in the case of being replaced with two

strikes in which the replacement subsequently strikes out). While the official definition of

a hit is rather extended, a hit occurs when a batter makes contact with the ball such that

it lands in fair territory and the batter reaches base without the aid of a defensive player

making an error. There are four kinds of hits: singles, doubles, triples, and home runs. The

name refers to how far the batter advances on a hit: single means the batter got to first base,

a double means to second, a triple to third base, and a home run all the way back around to

home. Home runs usually occur by hitting the ball with such force that the ball clears the

outfield wall in fair territory. One other definition that will be needed below is that of an

earned run. An earned run simply refers to when an offensive player is able to get to home
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plate without the aid of an error by the defensive team. All of these definitions and more can

be found in the official rulebook of Major League Baseball [8].

2.2 Batter Statistics

2.2.1 Batting Average

Batting average is probably the most recognizable of all baseball statistics, and most readers

are likely familiar. It is simply defined as the number of hits over the number at-bats.

BA = H

AB

While it is a very popular statistic, it is a deeply flawed measure of a player’s offensive

talent. First, it completely ignores both walks and HBPs. This makes very little sense as

walks are valuable as they avoid an out and get a runner on base. A second major flaw with

batting average is that it weights all hits the same. Even the most casual observer of the

game can see that this is a poor metric for that reason. Obviously, a home run is worth more

than a single, but determining how much more remains to be seen.

2.2.2 Slugging Percentage

SLG = 1B + 2× 2B + 3× 3B + 4× HR
AB

One attempt at improving on batting average is slugging percentage. Slugging percentage

attempts to address the flaw in batting average of weighting all types of hits the same. As

opposed to assigning a weight of one to each hit type, slugging percentage assigns a weight

corresponding to the number of total bases associated with that kind of hit. While this is
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certainly an improvement over batting average. It is still flawed in that it also ignores walks

and HBPs. Additionally, slugging percentage assumes that the value of hits relative to each

other can be seen in the number of total bases they provide. We will see that this is, in fact,

a poor assumption.

2.2.3 On-Base Percentage

OBP = H +BB +HBP

AB +BB +HBP + SF

Whereas slugging percentage addresses the problem of equally weighting all hits, on-base

percentage corrects the problem of ignoring walks and HBPs. On-base percentage effectively

measures how good players are at avoiding outs and equivalently getting on-base. The proper

evaluation of on-base percentage has been one of the hallmarks of the sabermetric mindset.

Baumer and Zimbalist [9] showed that the degree to which teams have valued on-base skills

has steadily climbed from the 1980s and 1990s through the early 2010s with a spike occurring

after the publication of Moneyball [2].

2.2.4 OPS

OPS = OBP + SLG

On-base percentage more properly evaluates the ability to avoid making outs and getting

on-base, while slugging percentage acknowledges that different kinds of hits should be valued

differently. A very popular way to combine the strengths of these two measurements separately

is to simply add them together. While a crude technique that lacks a natural interpretation

on account of the difference in denominators, OPS has been shown to be a very effective

measurement of offensive performance in MLB. As is seen in the Table 2.2.1 taken from

Baumer and Zimbalist, we can see that of the measurements considered thus far that team
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Table 2.2.1: Correlation with Runs Scored

Statistic Correlation
Batting Average 0.822
Slugging Percentage 0.910
On-Base Percentage 0.885
OPS 0.946

OPS has the strongest correlation to the total number of team runs scored from 1954-2011

[9].

While it is a crude measure, it overall does a very good job of capturing offensive performance.

However, it lacks a natural interpretation, and it still fails to properly assign values relative

to one another.

2.2.5 Linear Weights

The motivating idea behind linear weights is to assign the proper value to each event that

occurs on the baseball field. The idea can be summarized as weighting events according to

the average change in expected runs that an event provides. Early versions of linear weights

were suggested by Lindsey [10] and were brought to great popularity in the sabermetric

community by Palmer [11]. Tango has continued to popularize and advance linear weights

usage in the public sabermetric community in [12–15].

In order to understand linear weights, one must first understand the run expectancy matrix.

At any moment in any half of an inning, the game is in one of twenty-four base out states:

there can be zero, one, or two outs and there are three bases that may or not be occupied.

The run expectancy for that base-out state can be calculated by considering all such times

that a team was in that base-out state and then taking the average number of runs scored

over the remainder of the inning. This gives rise to a matrix like the one below taken from

Fangraphs [16]:
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Table 2.2.2: Run Expectancy Matrix

Runners No Outs One Outs Two Outs
Empty 0.461 0.243 0.095
1 _ _ 0.831 0.489 0.214
_ 2 _ 1.068 0.644 0.305
1 2 _ 1.373 0.908 0.343
_ _ 3 1.426 0.865 0.413
1 _ 3 1.798 1.140 0.471
_ 2 3 1.920 1.352 0.570
1 2 3 2.282 1.520 0.736

For a particular event, we can calculate its run expectancy based on the twenty-four base-

out states (RE24). This is defined as the sum of the difference between the run expectancy

after the event has ended and the starting run expectancy and the number of runs scored on

the play.

RE24 = RE of Ending State− RE of Starting State + Runs Scored

To calculate a linear weight for a particular event one simply averages the RE24 values for

all such events. For example, to find the linear weight for a single, we take the average of the

RE24 values for all singles.

While the concept of linear weights can be extended to a pitch-by-pitch basis, the RE24

version will suffice here. We utilize the linear weights that Fangraphs reports for the 2015

season [16].

2.2.6 RAA

The advantage of linear weights is that it allows us to assign proper weights to different events

based on their impact on the expected run values. This allows sabermetricians to design
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metrics that are both strongly interpretable and properly capture the value of different events

which previous attempts such as slugging percentage and on-base percentage failed to do.

The first such metric that we present is batting runs above average (bRAA). For all plate

appearances that end in an official at-bat, an unintentional walk, a sacrifice fly, or a hit by

pitch, bRAA is defined as the the linear weight of that event. The name comes from the fact

that the average plate appearance would add zero runs to the run expectancy by construction,

thus considering the linear weight represents how much above or below average that outcome

was than an average plate appearance. Thus the sum of all such plate appearances represents

the total number of runs that a batter was above or below average over the course of the

season. While bRAA itself is a counting statistic, it is easily turned into a rate statistic by

dividing by the number of relevant plate appearances.

bRAA = −.26×Out+ .29×uBB+ .31×HBP+ .44× 1B+ .74× 2B+ 1.01× 3B+ 1.39×HR

AbRAA = −.26×Out + .29× uBB + .31× HBP + .44× 1B + .74× 2B + 1.01× 3B + 1.39× HR
AB + BB− IBB + SFF + HBP

The choice of what plate appearances are considered was inspired by wOBA [12]. Plate

appearances not included consist of situations in which the batter was not given a chance

to show his offensive value. For example, if a batter is intentionally walked, while that may

demonstrate he is viewed as a dangerous batter (or that the batter behind him in the order

is much worse), it does not serve as a demonstration of his offensive skill in its own right.

Similarly, if a batter attempts a sacrifice bunt, he was intentionally trying to get out in order

to advance a runner, and it does not accurately reflect his offensive ability.
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2.2.7 wOBA

As mentioned above, weighted on-base average (wOBA) [12] was introduced by Tango and

is one of the most popular linear weight based statistics in the sabermetric community. It

relays the same information as AbRAA does, but it has been put on a different scale in order

to be more interpretable to a larger audience. The reasoning goes that common fans have

very little intuition for run values, so wOBA is put onto a scale with which fans will be more

familiar. The weights are shifted to be relative to an out and then multiplied by a constant

in order to get wOBA to have the same scale as OBP.

wOBA = .69× uBB + .72× HBP + .89× 1B + 1.27× 2B + 1.62× 3B + 2.10× HR
AB + BB− IBB + SFF + HBP

It is our opinion that this shifting and scaling is very detrimental. First, as a result, wOBA

has no natural interpretation. While the values of events relative to each other have been

preserved, they are no longer anchored to an actual baseball meaning. Similarly, the sum

of wOBA no longer has an interpretation as the sum value of a batter’s contribution above

average.

2.3 Pitching Statistics

2.3.1 ERA

ERA = 9× ER
IP

Earned run average (ERA) is a very simple metric that has traditionally been used to

evaluate pitcher performance. It is defined as the number of earned runs a pitcher has given
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up divided by the number of innings he has pitched. It is then multiplied by nine since there

are nine innings in a regulation baseball game, thus it can be interpreted as the number of

runs we expect the pitcher would give up in a whole nine-inning game.

2.3.2 FIP

In the early 2000s, the sabermetric community became aware of the fact that outcomes

on balls in play were largely luck driven and were not something that most pitchers could

control well [17]. However, the things that were largely in the pitchers’ control were the

number of home runs they give up, the number of walks and hit by pitches they allow, and

the number of batters they strikeout. This has led to the popularity of statistics such as

Fielding Independent Pitching (FIP) introduced by Tango [18].

FIP = 13× HR + 3× (BB + HBP)− 2×K
IP + C

C = League ERA− 13× League HR + 3× (League BB + League HBP)− 2× League K
League IP

In a similar manner to wOBA, FIP is intentionally put back onto the scale of a more

familiar metric, ERA. While it only considers home runs, walks, hit by pitches, and strikeouts,

it has been shown to be a better predictor of future ERA than past ERA [19,20].

2.3.3 xFIP

xFIP =
13× (Fly Balls× LgHR

Lg Fly Balls) + 3× (BB + HBP)− 2×K
IP + C

C = League ERA− 13× League HR + 3× (League BB + League HBP)− 2× League K
League IP

Expected Fielding Independent Pitching (xFIP) assumes that not only is preventing damage

on balls in play not a skill for pitchers but also that luck plays a large role in the number
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of home runs that pitchers give up. As opposed to including the number of home runs,

xFIP estimates the number of home runs that should have been given up by multiplying

the number of flyballs the pitcher allowed by the league average home run per flyball ratio.

While this may seem like an oversimplifying assumption, it has been shown to be a better

predictor of future ERA than both ERA and FIP [19,20].

2.3.4 SIERA

The last of the ERA estimators outlined here is Skill-Interactive Earned Run Average. There

are two common versions of SIERA: one produced by Baseball Prospectus and one produced

by Fangraphs [21,22]. Here we outline the Fangraphs version developed by Swartz. For a

more thorough treatment see Swartz’s series of articles where he fully explains the metric

[20,23–26].

From a statistical standpoint, SIERA is the fitted value of a linear model with ERA as the

response variable and a selection of expertly chosen pitching statistics used as explanatory

variables. In addition to being a better predictor of future ERA than the other ERA estimators

discussed [19,20], the model provides strong insight into the dynamics of effective pitching.

While particular interpretations of the coefficients are not discussed here, we include the

model in Table 2.3.1 to give readers intuition on how the model works.

2.3.5 Slash Line Against

BAA/OBPA/SLGA

While ERA and its estimators are a very popular set of pitching statistics, they are not

always the most appropriate. For one, all the estimators are on the scale of the number of

earned runs we could expect them to give up over a nine-inning game. This is somewhat more
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Table 2.3.1: SIERA Table

Coefficient
Constant 5.534
K/PA -15.518
(K/PA)2 9.146
BB/PA 8.648
(BB/PA)2 27.252
netGB/PA -2.298
±(netGB/PA)2 -4.92
K/PA · BB/PA -4.036
K/PA · netGB/PA 5.155
BB/PA · netGB/PA 4.546
Year Coeff. -.02 - .289
Percent Innings as SP 0.367
1 netGB is the difference between the number groundballs and flyballs allowed

appropriate for starting pitchers who routinely pitch multiple innings; however, one could

argue that it might be more appropriate to report the number of runs to be given up over six

or seven innings as opposed to nine as it is now very rare for a starting pitcher to throw a

complete game. For relievers, who routinely pitch just an inning or possibly only to a couple

of batters, the ERA interpretation is not particularly natural. In many situations, it would

be better to know how we expect a pitcher to perform against a single batter. Thus we have

a collection of “against” statistics: batting average against, on-base percentage against, etc.

Essentially any rate offensive statistic can be turned into a measurement of pitcher quality by

examining the batter values of that offensive statistic against that pitcher. A commonly used

version of this principle is to report the “slash line” of batting average, on-base percentage,

and slugging percentage against a pitcher. The strengths and weaknesses of these metrics

as an evaluation of pitcher performance are the same as they are for measures of offensive

performance but further complicated by the pitcher’s dependence on his defense.
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2.3.6 pRAA, ApRAA, and wOBAA

In the same way that batting average, on-base percentage, and slugging percentage can be

adapted to be measurements of pitching performance, we can adapt the linear weight-based

metrics to be measures of pitcher performance. We define pitching runs above average to

be the batting runs above average against and analogously for average batting runs above

average and weighted on-base average.

2.4 Proposed Metrics

The goal of baseball statistics is very often to quantify how good we think a particular player

is at a specific skill. Batting average measures how good a batter is at getting hits, on-base

percentage measures how good a batter is at getting on-base, and bRAA provides a catch-all

measure of how good a player is with a bat in his hand. The common shortcoming with all

these metrics is that they are all limited to what actually happened and do not consider what

could have or should have happened. Said a different way, these statistics hope to capture

what a player’s true underlying skill level is, but traditional statistics capture two sources

of randomness: randomness coming from the random variation in player performance and

randomness coming from environmental factors outside of the player’s control. For example,

consider a hypothetical MLB game between the Tampa Bay Rays and the Seattle Mariners

at Seattle’s Safeco Field. Suppose that Seattle’s slugging designated hitter, Nelson Cruz, hits

a ball hard to straight-away centerfield against Tampa’s Chris Archer. Due to the climate

and the dimensions, Safeco Field is known for suppressing fly balls. Further, suppose the

Rays’ centerfielder, Kevin Kiermaier who is one of the premier defensive baseball players

in all of baseball, races back to the wall, leaps, and makes a great catch to rob Cruz of a

home run. According to traditional statistics, Cruz gets no more credit for that batted ball

than had he hit a shallow flyball. In the same way, Archer is not punished by traditional
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statistics for giving up what should have been a home run had it been hit at an average

park and had he not had one of the best defensive players in baseball playing behind him.

These problems give rise to a class of statistics called expected statistics which are generally

denoted by appending a lower case “x” to the front of the name. We have already discussed

a fairly naive one in xFIP. Here we propose the addition of several such metrics.

2.4.1 xbRAA and AxbRAA

We propose a metric that will here be called expected batting runs above average (xbRAA).

For non-batted balls, the xbRAA associated with an event is the linear weight associated

with the event. However, for batted balls, the xbRAA is the dot product of the linear weights

for batted ball events (out, single, double, etc) with the probability vector that a batted ball

is an out, single, double, etc based on the way that it was hit. As with the non-expected

version, we only consider plate appearances that are an official at-bat, unintentional walks,

sacrifice flies, and hit by pitches.

xbRAA =



.29 uBB

.31 HBP

−.26 K

−.26× P(Out) + .44× P(1B) + .74× P(2B) + 1.01× P(3B) + 1.39× P(HR) Batted Ball

Similarly, to evaluate performance on a plate appearance by plate appearance basis we

define the average denoted here as AxbRAA.
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AxbRAA =
∑

N xRAA
N

N = AB + uBB + SFF + HBP

The advantage of a statistic such as this can clearly be seen in the above example illustrated

above. In that example, even though the ball was caught, Nelson Cruz’s batted ball would

have had a very high xbRAA associated with it as it would have had a very high probability

of being a home run in a neutral setting. xbRAA removes the randomness that can be

attributed to factors such as weather, park dimensions, and the quality of defensive players in

the field. It instead gives a better measurement of the skill of interest which is the ability to

hit the baseball well and in such a manner that it produces runs. However, this metric now

has the concern of how to estimate the probability of each of the possible events, a problem

that is addressed in the fourth chapter. It should be noted that similar metrics have been

proposed in the past. An expected weighted on-base average, expected batting average, and

expected slugging percentage are provided in the Statcast data [5]. However, we believe that

the formulation we present offers several advantages over the xwOBA as provided by Statcast.

First, we apply state-of-the-art classification techniques to estimate the probabilities of the

batted ball types and use cross-validation to ensure that overfitting does not occur; whereas

it is unclear how the xwOBA version is calculated. Secondly, we provide the probability

estimates for each batted ball outcome in addition to just presenting the xbRAA. These

probabilities are useful for investigating a number of baseball phenomenon as will be shown

here. Further providing the probability estimates allows one to create a variety of expected

statistics such as a true expected FIP or an expected on-base percentage. Lastly, we believe

that bRAA is philosophically superior metric to wOBA for the reasons presented above, thus

xbRAA is superior to xwOBA in our opinion.
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2.4.2 xpRAA and AxpRAA

We also introduce expected pitching runs above average and a per batter faced version of

it. The advantages of these metrics over traditional metrics are the same as for the batting

versions.
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Chapter 3

Statcast Data

The primary source of data used here consists of publicly available Statcast data provided by

MLB Advanced Media (MLBAM). Statcast is a hybrid radar-camera system implemented in

all Major League Baseball stadiums beginning in 2015. The system uses a Doppler radar-based

system to track the velocity, spin rate, release location, etc of pitches and the exit velocity,

launch angle, and hang time. The camera part of the system tracks the location of every

player on the field allowing measurements such as their route efficiency, sprint speed, and

first step quickness [5–7]. The system presents a potential gold mine of information allowing

essentially all aspects of baseball to be measured and then analyzed. However, with any

project as bold and large-scale as this, there are difficulties to be expected. The Statcast

system has been no exception. While it has revolutionized baseball, there have been problems

with large measurement errors [27,28]. Nevertheless, Statcast has equipped both the teams

and the public to better understand the sport of baseball than ever before.

While the player location and the more granular data is only available to MLBAM and the

front offices of Major League Baseball teams, the pitch level data has been made available to

the public through baseballsavant [29]. Utilizing Bill Petti’s baseballr package [30] we scraped

every pitch from the regular MLB regular season from 2015 to 2017. From there we filtered to
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only pitches on which an outcome from a plate appearance was reached. Plate appearances

not pertinent to the analysis (interference, intentional walks, and sacrifice bunts) were also

filtered out. This left us with a dataset consisting of nearly 550,000 plate appearances of

which more than 380,000 were batted balls. Each observation consists of an event outcome,

the batter, the pitcher, as well other identifying variables. For batted ball observations the

additional fields of exit velocity/launch speed (the speed with which the ball comes off the

bat), the vertical launch angle, and the coordinates on the field in which the ball was fielded

or landed in the case of home runs. From the fielding coordinates, we derived a proxy to the

horizontal launch angle off the bat by measuring the horizontal angle from home plate to

that coordinate on the field.

Secondary sources of data were taken from Fangraphs Leaderboards [31]. This consisted of

traditional yearly baseball data where each observation corresponds to a particular player in

a particular year along with their statistics for the year.
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Chapter 4

Methodological Background

4.1 LightGBM

Gradient boosting trees [32] are a very popular set of machine learning algorithms with

widely-used implementations including Xgboost [33] and LightGBM [34]. While XGBoost

has long been one of the most popular implementations due to its excellent performance and

its prominence in machine learning competitions, LightGBM has been gaining in popularity

due to its comparable performance and considerable increase in training speed.

LightGBM employs a histogram-based algorithm [35] for finding split points in the con-

struction of the tree. This is done by binning continuous variables and then making splits

based on the bins as opposed to the individual values. While an approximation, it is much

more efficient in memory consumption and training speed as training now consists of a

one-time histogram building step of O(n× p) and finding splits from the histogram which is

O(k × p) as opposed to finding exact split points which is O(n × p) at each step where n

is the size of the data, p is the number of features, and k is the number of bins used in the

histogram. Additionally, LightGBM introduced two new algorithms for speeding up training

on datasets with a large number of observations and a large number of features respectively.
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Gradient-based One-Side Sampling (GOSS) is introduced as a manner of reducing the number

of data instances used in training. Observations with large gradients (instances for which

the model is well trained) are kept and random sampling is performed on instances with

small gradients (instances for which the model is not well trained) in such a way that the

emphasis is placed on under-trained instances without changing the original distribution

by much, an assertion defended by mathematical and empirical results. A second method,

Exclusive Feature Bundling (EFB), is introduced for reducing the number of features through

exploiting the sparsity of features. LightGBM is demonstrated to achieve comparable results

to exact methods while offering major speedups.

While the Statcast data here is neither large in the number of observations or in the

number of features, we elect to use LightGBM because of its excellent performance and its

vast superiority in training times over other methods. This advantage in speed is particularly

advantageous because it allows us to perform the hyperparameter optimization much quicker

than it would with other methods such as XGBoost.

4.2 Bayesian Optimization with Gaussian Process Pri-

ors

In Bayesian optimization [38] of machine learning algorithms, the relationship between a

model’s hyperparameters and its cost function is modeled by a Gaussian process. As addi-

tional trials are run, the Gaussian process is updated reflecting the current beliefs about the

relationship between the choice of hyperparameters and the model’s performance. The poste-

rior distribution after one iteration becomes the prior for the next iteration. An acquisition

function is defined to dictate which set of hyperparameter values would be best to use in the

next iteration. Common acquisition functions include expected improvement (EI) [38] which

chooses the set of hyperparameter values which maximize the expected improvement over
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the current best trial, probability of improvement (PI) [39] where the set of hyperparameter

values that maximizes the probability of improving over the current best iteration are chosen,

and confidence bounds methods where the next set of hyperparameter values to be evalu-

ated are chosen based on where the confidence bounds are at their minimum or maximum

depending on the goal. In practice, a Bayesian optimization routine usually begins by several

rounds of evaluating the machine learning algorithm at random hyperparameter values before

proceeding to use the acquisition function for choosing the next set of hyperparameters to be

evaluated. For a more rigorous and complete introduction to Bayesian Optimization see [40]

on which this overview was based.

Based on the recommendations put forth in [40], we utilize automatic relevance determina-

tion (ARD) Matern 5/2 for the kernel of the Gaussian Process and expected improvement as

the acquisition function. We utilize GPyOpt [41] for performing the Bayesian optimization of

the LightGBM models.

4.3 Tree-Structured Parzen Estimators

The tree-structured Parzen estimator [42] assumes a hyperparameter space χ that follows a

tree-structure (for example, choosing how many hidden layers in a neural network, and then

choosing the parameters for a particular choice of layers). The algorithm seeks to model the

probability distribution of the cost function we are seeking to optimize given the choice of

hyperparameters (p(y|x)) by modeling p(x|y) and p(y). This contrasts with the Gaussian

Process Bayesian Optimization overviewed above which directly models p(y|x). The TPE

models p(x|y) by replacing with priors over the hyperparameter space with non-parametric

densities. In particular, TPE defines p(x|y) as:
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p(x|y) =


`(x) if y < y∗

g(x) if y ≥ y∗

where `(x) is the density formed by all observed hyperparameter sets with a corresponding

loss of less than y∗ and g(x) formed by the remaining observations. The value y∗ is chosen

to be some quantile γ of the observed y values so that p(y < y∗) = γ, but a specific model

for p(y) is not necessary.

TPE is based on optimizing the expected improvement over y∗. It is shown in that:

EIy∗(x) =
∫ y∗

−∞
(y − y∗)p(y|x) ∝ (γ + g(x)

`(x) (1− γ))−1

Thus to maximize improvement, we choose the next point to evaluate according to g(x)/`(x).

TPE uses an Adaptive Parzen estimator to estimate `(x) and g(x). For each continuous

hyperparameter a uniform prior over some interval, a Gaussian prior, or a log-uniform prior

is specified. TPE uses an equally-weighted mixture of the specified prior and a Gaussian

centered at each evaluated point where the cost is less than y∗ for `(x) and greater than

y∗ for g(x). The standard deviation of each Gaussian is set to the greater of the distances

between a point and its left or right neighbor, but where the distribution is truncated to keep

it in a reasonable range. For categorical variables where the prior is a vector of length N with

probabilities pi, the posterior is proportional to Npi + Ci where Ci is the number of times

that value was chosen for observations belonging to the set corresponding to `(x) or g(x).

We utilize the implementation of TPE provided by hyperopt [43].
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Chapter 5

Batted Ball Classifier

In order to better understand the behavior of batted balls in Major League Baseball and

to obtain outcome probabilities to fuel a class of “expected” metrics namely the xbRAA

and xpRAA introduced above, we present two variations of a batted ball classifier using

the LightGBM algorithm. The first model seeks to predict whether a batted ball is an out,

single, double, triple, or home run based on the launch speed, the vertical launch angle, the

handedness of the batter as well as the year and the half of the season which are used to

model suspected changes in batted ball dynamics across and within seasons. The second

model includes the same variables as well as a proxy to the horizontal launch angle of the

batted ball. Similar investigations of Statcast batted ball data has been performed by Arthur

and Petti in [44] and [45].

5.1 Hyperparameter Optimization

In order to find an optimal set of hyperparameters for the Lightgbm batted ball classifier,

we employ the hyperparameter optimization techniques discussed in the previous chapter.

We perform a five-fold cross validation where the function that we seek to minimize is the
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Table 5.1.1: Hyperparameter Space

Space Bayes Opt Partial Model TPE Partial Model Bayes Opt Full Model TPE Full Model
Learning Rate (.01, .3) 0.0226 0.0445 0.01 0.0225
Number of Leaves 127, 255, 511, 1023, 2047, 4095 127 255 127 127
Min Data in Leaf 1,...,50 1 3 50 46
Min Gain to Split (0,5) 0.581 1.029 1e-06 7.157
Min Sum Hessian in Leaf (0, 10) 5.879 0.435 0 0.1229
L2 Regularization (0, 100) 11 1.66 15.26 99.51
Bagging Fraction (.5, 1.00, .025) 1 0.825 1 0.875

Table 5.1.2: Hyperparameter Optimization Results

Log Loss Time Per Iteration (sec)
Bayes Opt Full Model 0.4247 279.72
TPE Full Model 0.4236 114.42
Bayes Opt Partial Model 0.5392 190.00
TPE Partial Model 0.5391 60.42

out-of-sample log-loss. For both the full model including the proxy to horizontal launch

angle and the partial model, we run three hundred iterations of both the Tree-Structured

Parzen Estimator and the Bayesian Optimization algorithm. In Table 5.1.1, we display the

hyperparameters that we chose to optimize, the space of searchable values, as well as the

optimal values chosen for each of the optimization routines.

In Table 5.1.2, we display the best log-loss found for each optimization routine as well as

the average time in seconds per iteration. We have that the tree-structured Parzen estimator

out-performed the Bayesian Optimization routine both in terms of log-loss for both model

formulations. Additionally, the tree-structured Parzen estimator technique was considerably

faster for both model formulations offering speed-ups of 244% and 314% for the full and

partial models respectively. For these combined reasons, we elect to use hyperparameter set

from the tree-structured Parzen estimator.

Furthermore in Figure 5.1.1, we display the results of the optimization routines with the

red line tracing the current minimum log-loss. For the full model specification, we can observe

that for the Bayesian optimization there is more variation in the log-losses than there is in
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Figure 5.1.1: Hyperparameter Optimization Trials

the TPE log-losses. The opposite seems to be true of the partial model, where the log-losses

for the Bayesian optimization model are very tightly grouped with a few outliers.

5.2 Model Results

5.2.1 Model Performance

In Table 5.2.1, we report the overall model performance on the out-of-sample cross-validation

folds for both the full model which includes the horizontal component and the partial model.

The full model achieves an overall accuracy of about 83% whereas the partial model achieves

an accuracy of about 78%. These both offer very substantial improvements over the null

model (which would be to predict an out for all outcomes) which has an accuracy of 67%.
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Table 5.2.1: Overall Model Performances

Accuracy Kappa AccuracyLower AccuracyUpper AccuracyNull
Full Model 0.829 0.644 0.828 0.830 0.67
Partial Model 0.781 0.521 0.779 0.782 0.67

Proper calibration of probability predictions is much more important to us than actually

predicting the correct label, but nevertheless, the models perform very well in terms of

accuracy.

In Tables 5.2.2 and Table 5.2.3, we report various performance metrics by batted ball

outcome for both the full model and the partial model respectively. For both models, we see

from the F1 score along with other metrics that both models perform the best on recognizing

outs and home runs. This is to be expected as home runs are very differentiated from most

batted ball types and outs are the most common class. Furthermore, we see that both models

have very poor performance on triples. This is very reasonable as triples are very rare events

and typically look very similar to doubles off the bat. The biggest improvement from the

partial model to the full model is that the full model achieves much better performance

on doubles. This makes sense as doubles are very influenced by the horizontal component.

Almost all doubles occur either right down the foul lines, the gap between rightfield and

centerfield, or between leftfield and centerfield.

5.3 Model Visualizations

5.3.1 Launch Angle/Exit Velocity Visualizations

In both plots in Figure 5.3.1, we plot the exit velocity of the batted ball along the horizontal

axis and the vertical launch angle along the vertical axis. For the left plot, the color is

determined by the predicted class for the partial model and in the right plot the color is
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Table 5.2.2: Full Model Classification Results by Class

Outs Singles Doubles Triples Home Runs
Sensitivity 0.920 0.663 0.536 0.005 0.819
Specificity 0.728 0.937 0.977 1.000 0.989
Pos Pred Value 0.873 0.742 0.620 0.560 0.777
Neg Pred Value 0.817 0.910 0.968 0.993 0.992
Precision 0.873 0.742 0.620 0.560 0.777
Recall 0.920 0.663 0.536 0.005 0.819
F1 0.896 0.700 0.575 0.011 0.797
Prevalence 0.670 0.215 0.065 0.007 0.043
Detection Rate 0.616 0.143 0.035 0.000 0.035
Detection Prevalence 0.706 0.192 0.056 0.000 0.046
Balanced Accuracy 0.824 0.800 0.756 0.503 0.904

Table 5.2.3: Partial Model Classification Results by Class

Outs Singles Doubles Triples Home Runs
Sensitivity 0.914 0.579 0.202 0.008 0.703
Specificity 0.606 0.919 0.985 1.000 0.987
Pos Pred Value 0.825 0.662 0.489 0.808 0.716
Neg Pred Value 0.776 0.889 0.947 0.993 0.987
Precision 0.825 0.662 0.489 0.808 0.716
Recall 0.914 0.579 0.202 0.008 0.703
F1 0.867 0.618 0.285 0.016 0.709
Prevalence 0.670 0.215 0.065 0.007 0.043
Detection Rate 0.613 0.125 0.013 0.000 0.030
Detection Prevalence 0.743 0.188 0.027 0.000 0.043
Balanced Accuracy 0.760 0.749 0.593 0.504 0.845
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determined by the xRAA from the partial model. These models offer very interesting insight

into the outcomes for batted balls in MLB. We observe that there is a strip of batted balls

that are most likely to be singles that range from softly hit balls with a moderately high

launch angles to balls hit very hard on a very flat trajectory. Singles, with the exceptions

of groundballs hit through holes in the infield, typically land in front of the outfielders but

behind the infielders. Thus a ball hit softly with enough loft to get over the infielder but

not enough power to get to the outfielders is likely to fall for a single in the same way a

ball that is hit very hard but flat will not give the infielder much time to move towards and

make a play on the ball but will not carry all the way to the outfielders. We see the same

corresponding strip in the xRAA version of the plot.

Predicted doubles occupy a very narrow and short strip situated above the right end of

the strip of singles but beneath the clump of home runs. This makes intuitive sense based on

our baseball knowledge. As said above doubles usually occur down the foul lines or in the

right- or left-centerfield gap. Excluding doubles on groundballs hit hard down the foul lines,

a double must carry further than a single in order for it to get down in the gaps between

where the outfielders play. Thus doubles will typically have more loft than a single, but not

too much that they allow the outfielders sufficient time to get underneath the ball or in the

case of hard-hit batted balls go over the wall for a home run.

Home runs are seen in the dark purple clumps in both plots. The home run clump is

bordered beneath and slightly to the left by the strip of the doubles which reflects the intuition

that home runs are very similar to doubles but they carry further which is either a result of

increased exit velocity or launch angle.

Another interesting aspect of batted balls is that as exit velocity increases there is a fanning

in of the launch angles. In order to hit a ball at an extreme angle, one must have contacted

either near the top or the bottom of the ball. Thus less force will be imparted on the ball and

it will leave at lower exit velocity than if the ball had been hit nearer to its center. While
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Figure 5.3.1: Batted Ball Outcomes by Exit Velocity and Launch Angle

none of these conclusions are new, visualizing the results in this way provides us with a sanity

check to make sure that the predictions are lining up with what we know about baseball and

providing a way to quantify what we previously knew qualitatively about batted balls.

5.3.2 On-Field Visualizations

Another way of validating that our model corresponds with our prior baseball knowledge

is to plot the probability of a batted ball outcome based on the location it was fielded (or

in the case of home runs where it landed out of play). These results are displayed in the

six-paneled figure 5.3.2 where the full model predicted probability of a hit, out, single, double,

triple, and home run are plotted based on the position on the field where they were fielded

(or landed out of play). In the first row, we plot the probability of a hit and the probability

of an out which are complements of each other. As is expected, we see very high probabilities

of outs where we know defensive players are positioned and high probabilities of hits in areas
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unoccupied by defenders.

In the next row, we plot the probability of a single and the probability of a double based

on the batted ball locations. As is expected the probability of single is highest for those balls

fielded in front of the outfielders and behind the infielders. We can also see where balls that

were hit up the middle, in the hole in between where the third baseman plays and where the

shortstop plays, and in the hole between where the first baseman plays and where the second

baseman plays. We can also observe that there are balls fielded on the left half of the infield

in front of the third baseman with a high probability of a single. These correspond to bunts

and so-called swinging bunts that are hit softly and in such a location that the batter is able

to beat a throw to first. We see that those kind of results are strongest on the left half of

the infield and away from the pitcher because those locations will require a longer and more

difficult throw to first base.

As stated above, we see that the probability of a double is strongest down the foul lines

and in the two outfield gaps. It is also interesting to note that some of the balls with a

higher probability of a double were in fact fielded on the infield indicating groundballs or line

drives where the third or first baseman was either positioned more down the line or quickly

adjusted to a ball hit down the line. The model also does a very good job of picking up the

characteristics of a triple. The high triple probability areas occur in the right-center gap

and down the rightfield line, and to a lesser extent in the left-center gap. There is a higher

probability of a triple on balls hit to the right half of the field because that requires a longer

throw to third base. It is encouraging to see that the model is accurately capturing that

dynamic. In the last plot of figure 5.3.2, we are able to validate that the model is properly

predicting home runs. It accurately captures how the fences are shorter in left and right field

than in center.

Combining these sources of information and weighting them according to their run values

yields figure 5.3.3 where plot the full model xRAA of a batted ball based on the location it
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was fielded or landed in the case of home runs.
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Chapter 6

Expected Outcome Framework for

Evaluating Player Performance

Using the two batted ball classifiers introduced in the previous chapter, we now present two

corresponding versions of expected runs above average calculated using the two different

models. We denote these by xRAA and xRAA-Partial throughout this section with xRAA

corresponding to the full model which includes the proxy to the horizontal angle and xRAA-

Partial corresponding to the model that only uses the velocity and launch angle components

of a batted ball. We will examine both of these metrics in the context of batting and pitching

performance beginning with an inspection of their respective distributions. We then proceed

to examine how they compare to traditional measures of performance through year-to-year

correlations, predictive power for future performance, and reliability. Further, we explore,

for both batters and pitchers, some of the best performances and worst performances from

the 2015-2017 seasons. We also address players who overperform and underperform these

expected statistics and demonstrate that it is possible to consistently overperform and or

underperform based on attributes beyond those expressed in these expected metrics. Only

players with at least 250 batters faced or relevant plate appearances will be considered here.
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Table 6.1.1: AbRAA, AxbRAA, AxbRAA-Partial Quantiles

5% 10% 25% 50% 75% 90% 95%
AbRAA -0.046 -0.037 -0.018 0.000 0.019 0.038 0.051
AxbRAA -0.046 -0.037 -0.020 -0.001 0.019 0.039 0.051
AxbRAA-Partial -0.046 -0.037 -0.022 -0.001 0.019 0.039 0.053

6.1 Distribution

6.1.1 Batters

In order to develop some intuition for these metrics, we begin with a simple examination of

their distributions. In Table 6.1.1, we report several quantiles for AbRAA, AxbRAA, and

AxbRAA-Partial. As can be seen, the quantiles are very similar across each of the metrics.

As is to be expected, the median batter seasons from 2015-2017 results is about zero for

each of the three metrics. Similarly, an above average batter (75%) added approximately .02

runs above an average plate appearance per time to the plate. Likewise, a below average

batter (25%) costs his team approximately .02 runs per plate appearance when compared to

an average batter. Great and very bad batters gain and cost their teams .04 runs per plate

appearance respectively when compared to the average batter. At the extremes, we have that

the best batters in the league can contribute more than .05 runs more per plate appearance

than an average batter, whereas the worst batters with at least 250 plate appearances cost

their teams about .045 runs per plate appearance when compared to the performance we

could expect from an average batter. We suspect that the true underlying skill is actually

symmetric between the best and worst batters but there is a selection bias at work here in

that the worst batters will likely not get enough plate appearances to qualify as they are an

offensive liability.

In Figure 6.1.1, we plot the distributions of AbRAA, AxbRAA, and AxbRAA-Partial. We

can see the same general results discussed above. Almost all the of the mass is concentrated
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Figure 6.1.1: AbRAA, AxbRAA, AxbRAA-Partial Distributions

between -.05 and .05; however, we see the distributions are skewed with considerably more

mass in the .05 to.10 range than in -.10 to -.05, a result of the fact that the worst batters

simply are not given many plate appearances.

6.1.2 Pitchers

We now examine the distribution of ApRAA, AxpRAA, and AxpRAA-Partial. It is important

to note that good pitchers will have a negative value for these metrics. That is because

batters are expected to produce fewer runs per plate appearance against them when compared

to an average pitcher. As in seen in Table 6.1.2 the skew for pitchers is more obvious than

it was for batters. We can see the median of pitchers who faced at least 250 batters is

approximately -.008 across each of the three metrics. An above average pitcher (25%) saves

his team between .024 and .028 runs per batter faced when compared to an average pitcher.

A below average pitcher costs his team somewhere around .01 runs per batter faced when

compared to an average pitcher. Great pitchers (10%) save their teams about .045 runs per

plate appearance according to the expected statistics and about .048 runs according to the
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Table 6.1.2: ApRAA, AxpRAA, AxpRAA-Partial Quantiles

5% 10% 25% 50% 75% 90% 95%
ApRAA -0.060 -0.048 -0.028 -0.008 0.012 0.029 0.043
AxpRAA -0.054 -0.045 -0.026 -0.008 0.011 0.027 0.037
AxpRAA-Partial -0.053 -0.045 -0.024 -0.007 0.010 0.026 0.033

traditional version of the metric. This gap between the expected versions of the metric and

the traditional versions continues to widen at the extremes. According to the traditional

version of the metric, the best pitchers save their team about .06 runs per batter faced when

compared to a typical pitcher, whereas the best 5% for the expected versions save more than

.053 runs per batter faced. This gap is seen on the opposite side of the spectrum as well: the

traditional version has a larger magnitude than the expected versions. This is a product of

the fact that by traditional metrics their skills are conflated with the skills of the defense that

plays behind them. If a pitcher has an elite defense that plays behind him that will make

him appear considerably better than he is. The expected metrics are able to isolate only

pitcher performance in a manner similar to what FIP and xFIP did but without ignoring the

information communicated by batted balls.

The increased skew for pitchers is very likely a result of the fact that pitchers really only

contribute through their pitching skills whereas position players can provide value through

batting, baserunning, and fielding. Many below average batters are able to continue to play

and get plate appearances based on their strengths in these other areas. Pitchers, by and

large, are not able to make up for their deficiency in any meaningful way.

In Figure 6.1.2, we plot the density of each of the three metrics to give a further sense of

how ApRAA, AxpRAA, and AxpRAA-Partial are distributed.
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Figure 6.1.2: ApRAA, AxpRAA, AxpRAA-Partial Distributions

6.2 Year-to-Year Correlations

A very common way of comparing statistics within the sabermetric community is to look at

the year-to-year correlation. While it does not show that one measurement of performance is

superior to another, a higher year-to-year correlation would suggest that the metric is more

robust to noise and better captures an underlying skill (or is possibly over-regressed).

6.2.1 Batters

In Table 6.2.1, we report the year-to-year correlation for the introduced metrics along with the

traditional metrics discussed above. As expected, we find that AxbRAA and AxbRAA-Partial

have a much higher year-to-year correlation than the traditional metrics suggesting that they

better measure the underlying skill and are not as influenced by other random factors. Of

the two, AxbRAA-Partial’s correlation is higher suggesting that there is more year-to-year

variation in the horizontal launch angle than when considering just the vertical launch angle

and exit velocity in the model.
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Table 6.2.1: Year-to-Year Correlations for Various Batting Metrics

Correlation
AxbRAA 0.622
AxbRAA-Partial 0.680
AbRAA 0.433
BA 0.407
OBP 0.475
SLG 0.468
OPS 0.449

Table 6.2.2: Year-to-Year Correlations for Various Pitching Metrics

Correlation
AxpRAA 0.499
AxpRAA-Partial 0.514
ApRAA 0.429
ERA 0.336
FIP 0.504
xFIP 0.613
SIERA 0.654

6.2.2 Pitchers

In Table 6.2.2, we present the year-to-year correlation for ApRAA, AxpRAA, AxpRAA-

Partial, and ERA and its aforementioned estimators. One point to mention is that ERA

and its estimators are on an innings pitched scale as opposed to a batters faced scale and

would thus be expected to have higher correlations. Nevertheless, we see that AxpRAA and

AxpRAA-Partial have a higher year-to-year correlation than pRAA and ERA and very similar

correlations to FIP. SIERA and xFIP both have higher correlations, but that is expected

as they are on an innings pitched scale and are heavily regressed (xFIP assumes that every

pitcher gives up home runs at the same rate per flyball which is a faulty assumption).
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6.3 Prediction of Future Performance

While a strong year-to-year correlation is a desirable property in a baseball metric, an even

more desirable property is its ability to predict the skill of interest moving forward. For

example, you are not usually interested in a pitcher’s FIP on its own but rather in the context

that you believe it to be a better indicator of what a pitcher’s ERA will look like moving

forward than his ERA currently. In a similar manner, we are interested in these expected

metrics not necessarily in their own right but in their ability to better capture the talent level

of the player and serve to give us a better idea of how the batter will perform moving forward.

In this section, we will compare the predictive ability of ARAA, AxRAA, and AxRAA-Partial

to predict future ARAA. More specifically, we will use the statistics from the first half of the

season to predict performance in the second half of the season. Note that the halfway mark

in the baseball community typically refers to the All-Star break which confusingly does not

actually occur halfway through the regular season. While unclear, this language will be used

here. In order to predict second-half performance, we fit a simple linear regression model

with the chosen first half metric as the explanatory variable. Only players with at least 125

relevant plates appearances or batters faced in both halves are considered.

6.3.1 Batters

In Table 6.3.1, we report the R2 and root of the mean squared error of the regression using

metric from the first half to predict the second half AbRAA. We see that both expected

versions are better predictors of performance in the second half of the season with the partial

version of the metric slightly outperforming the full model version. This is a very interesting

result especially since we know that full model performs better in the classification task.

It would appear that horizontal angle (or at least the proxy used here) is subject to more

random variation than the launch angle and exit velocity.
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Table 6.3.1: Predictions of Second Half AbRAA

R2 RMSE
First Half AbRAA 0.1133 0.0355
First Half AxbRAA 0.1247 0.0353
First Half AxbRAA-Partial 0.1262 0.0353

Table 6.3.2: Year-to-Year Correlation In Difference between AbRAA and AxbRAA

Diff Correlation
AxbRAA - AbRAA 0.354

As mentioned above, some batters provide additional value through defensive performance

but others through their skill in baserunning which is often closely tied to their speed. The

classification models that AxbRAA is based only consider the characteristics of the batted

ball when making their predictions. So in that way, it provides an excellent assessment of the

quality of the batted balls that a player hits; however, it ignores the fact that the outcome

probabilities could be different for two batters on identical batted balls. A very fast batter

might be able to beat the throw to first base and thus get a single where a slower batter

would be more likely to be thrown out. Similarly, a faster batter can turn would be singles

into doubles by trying to take the extra base. Additionally, there are some batters who

typically hit balls towards one side or the other with much greater regularity and as a result

opposing teams will shift their defensive players to better defend those specific areas. Thus, it

is possible for batters to consistently under or overperform their AxbRAA. In Table 6.3.2, we

report the year to year correlation between the difference in AxbRAA and AbRAA strongly

supporting the notion that there are batters who as a result of additional offensive skills or

lack thereof over or underperform their expectation based on the way they contact the ball.

Even with the exclusion of additional information, we found that AxbRAA and AxbRAA-

Partial were both better predictors of future AbRAA performance than was past AbRAA.

However, by including the difference between their AxbRAA (or AxbRAA-Partial) and their
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Table 6.3.3: Predictions of Second Half AbRAA with First Half Difference

R2 RMSE
First Half AbRAA 0.1133 0.0355
First Half AxbRAA 0.1247 0.0353
First Half AxbRAA and Diff 0.1471 0.0349
First Half AxbRAA-Partial 0.1262 0.0353
First Half AxbRAA-Partial and Diff 0.1632 0.0345

Table 6.3.4: Predictions of Second Half ApRAA

R2 MSE
First Half ApRAA 0.0991 0.0345
First Half AxpRAA 0.0950 0.0346
First Half AxpRAA-Partial 0.0766 0.0349

AbRAA in the first half along with their first half AxbRAA (or AxbRAA-Partial) we are

able to better predict performance in the second half by a meaningful margin as is seen in

Table 6.3.3.

6.3.2 Pitchers

In Table 6.3.4, we perform the same analysis as above. Here we have that traditional metric

has a slightly higher R2 value and lower RMSE. Contrasting with the batters, the partial

model version of AxpRAA performs considerably worse than either the full model version

or the traditional statistic. While the traditional statistic did moderately outperform the

full model expected version, as we noted above defensive performance is not factored into

expected statistics whereas it will be implicitly included in the traditional statistic.

In the same way we did for batters, we examine the year-to-year correlation in the difference

between AxpRAA and ApRAA with the result displayed in 6.3.5. The year-to-year correlation

in the difference is much lower for batters than for pitchers. This is because for batters

the primary reasons for maintained under or overperformance were player-specific (speed,
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Table 6.3.5: Year-to-Year Correlation In Difference between ApRAA and AxpRAA

Diff Correlation
AxpRAA - ApRAA 0.136

Table 6.3.6: Predictions of Second Half ApRAA with First Half Difference

R2 MSE
First Half ApRAA 0.0991 0.0345
First Half AxpRAA 0.0950 0.0346
First Half AxpRAA and Diff 0.1183 0.0342
First Half AxpRAA-Partial 0.0766 0.0349
First Half AxpRAA-Partial with Diff 0.1165 0.0342

baserunning ability) whereas for pitchers it is likely a product of their defense which will

change from year-to-year.

Nevertheless, by including the gap between AxpRAA (or AxpRAA-Partial) and ApRAA

alongside AxpRAA (or AxpRAA-Partial), we find that we can substantially increase our

ability to predict future performance as is seen in Table 6.3.6

6.4 Reliability

Another area of interest in sabermetrics is determining at what sample size performance

statistics become meaningful. There has been a well-established line of research measuring

the reliability of various batter and pitching statistics including the work of Russell Carleton

[46–48], Tango & Lichtman [12], Carty [49,50], and Sean Dolinar and Pemstein [51–53]. Here

we apply a methodology most similar to Dolinar and Pemstein to compare the reliability of

the expected statistics with their traditional versions.

Our methodology is as follows for both batters and pitchers. We separate the data into

player-season combinations from the 2015-2017 seasons. In increments of 25 beginning with 25
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and going to 600, we sample k pertinent plate appearances or batters faced from each player-

season combination with at least k appearances. Six hundred such plate appearances/batters

faced is chosen as the upper limit because the sample size of batters and pitchers with more

than 600 appearances in a particular season is rather small and susceptible to noise. We

could get larger samples by grouping by player as opposed to grouping by player and season;

however, we believe that the differences from season to season as a result of aging and other

factors would neutralize whatever advantage we get from being able to consider larger samples.

After taking a sample of k appearances, we then compute Cronbach’s alpha for average runs

above average, the full model average expected runs above average, and the partial model

average expected runs above average.

6.4.1 Batters

As can be seen in figure 6.4.1, the reliability of AxbRAA and AxbRAA-Partial is much higher

across all sample sizes. For the traditional statistic, we see that the coefficient of reliability is

only approaching .6 after 600 plate appearances. However, with only 200 plate appearances

the same level of reliability has been achieved by AxbRAA-Partial and after about 300

plate appearances for the full model AxbRAA. Furthermore, by 600 plate appearances, the

partial model version of AxbRAA has a reliability coefficient of about .8 and for the full

model version a coefficient of about .75. These are extremely powerful properties for properly

evaluating baseball players. The expected metrics which are driven based on the way the

batter actually hits the ball as opposed to only what happens become more reliable much

quicker meaning that sabermetricians both in the public and private sphere would be better

able to better know a player’s true talent level in much fewer plate appearances.

Another interesting feature to note in figure 6.4.1 is how the reliability coefficient appears

to be starting to approach an asymptote below 1. We believe that this is the product of

the fact that acquiring 600+ plate appearances takes a considerable amount of time during
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Figure 6.4.1: Reliability of bRAA, xbRAA, and xbRAA-Partial

which the true talent level of the batter will fluctuate due to aging, injury, rest, etc. So even

if we were able to collect samples of thousands of plate appearances per batter per season

we believe that the curve would not eventually approach a reliability coefficient of 1. It is

also interesting to observe that the partial model AxbRAA is always a more reliable metric

than the full model version. As touched on above, this seems to be a result of the fact that

there is more variance in the horizontal launch angle (or at least the proxy used here) than

in vertical launch angle or the exit velocity.

6.4.2 Pitchers

The pitcher reliability curves shown in figure 6.4.2 display considerably different behavior

than those for batters. First, across all three metrics and all plate appearances, the reliability

is much lower than it is for batters. Additionally, whereas there were the potential beginnings

of an asymptotic behavior for the expected statistics by 600 plate appearances for the batters,

this does not seem to be the case for pitchers and rather appears that with more plate

appearances the reliability would continue to increase by large amounts. Furthermore, the
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Figure 6.4.2: Reliability of pRAA, xpRAA, and xpRAA-Partial

partial model AxpRAA has considerably lower reliability than either the full model version

or the observed results. An additional surprise is that the metric based on the observed

result, in fact, has a higher reliability than the full model version. We hypothesize that this is

once again a result of the fact that the traditional metric incorporates defensive information

implicitly.

6.5 League Leaders

In this section, we utilize the introduced metrics in a method similar to how they would

typically be used in public or private sabermetric analysis to evaluate the performance of

individual players. We take a look at batters who had the best and worst seasons according

to the full model AxbRAA as well as those who most under or overperformed their expected

metrics. We then do the same for pitchers.
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Table 6.5.1: Best Batting Seasons by AxbRAA 2015-2017

Player Season PA Team Median
Launch
Angle

Median
Exit Velo

K% BB% AbRAA AxbRAA bRAA xbRAA

David Ortiz 2016 610 BOS 16.9 93.8 13.8 10.70 0.078 0.107 47.7 65.5
Miguel Cabrera 2016 664 DET 12.5 95.3 17.3 9.04 0.061 0.101 40.2 67.0
Aaron Judge 2017 667 NYY 15.7 97.7 31.0 17.40 0.089 0.095 59.3 63.5
Bryce Harper 2015 635 WSH 14.7 94.2 20.3 17.20 0.108 0.077 68.3 48.8
Mike Trout 2016 669 LAA 12.8 91.8 20.3 15.50 0.076 0.076 50.6 51.1
Joey Votto 2017 687 CIN 16.0 90.3 12.1 16.60 0.086 0.076 58.9 52.4
Freddie Freeman 2016 675 ATL 18.0 93.5 25.3 10.50 0.063 0.074 42.5 49.8
David Ortiz 2015 593 BOS 15.5 94.9 15.9 10.10 0.040 0.074 23.5 43.7
Giancarlo Stanton 2017 679 MIA 10.9 92.3 23.7 10.60 0.074 0.073 50.3 49.3
Josh Donaldson 2016 692 TOR 13.7 94.8 17.1 14.90 0.064 0.072 44.3 50.2
1 Team indicates the team that the player played for at the end of the season
2 League average strikeout rate is approximately 20 percent
3 League average walk rate is approximately 8 percent
4 Team indicates the team that the player played for at the end of the season

6.5.1 Best AxbRAA Performances

In Table 6.5.1, we report the ten best seasons by AxbRAA by players with at least 502 plate

appearances (the number of plate appearances needed to qualify for being a league leader)

that count towards the calculation of AxbRAA. Other statistics of interest that have been

included are the median vertical launch angle, the median exit velocity, the player’s strikeout

percentage, the players walk and hit-by percentage, as well as the xbRAA and bRAA. The

names that we find here a very unsurprising for even casual baseball fans as the list is entirely

composed of slugging superstars. While they all have excellent reputations as elite batters,

there are similarities and differences between them all. We find that for all of them that

they tend to hit the ball in the air and at high exit velocities. Further, we see that almost

all of them have double-digit walk rates well above the league average. However, there are

substantial differences between these batters. Consider Joey Votto and Aaron Judge. Votto

has the lowest strikeout rates of the group and one of the best walk rates in the group, but

also the lowest median exit velocity. Judge on the other hand strikes-out an absurd amount

but also has the highest walk rate of the group and hits the ball very hard when he does

make contact with it.
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Turning our attention to the last column of Table 6.5.1, we get a sense for how much value

these best of the best batters add to their team over the course of the season. We see that

these batters in expectation can create more than 50 runs when compared to an average

MLB batter. A commonly used rough conversion between runs and wins is that for each

additional 10 runs a team scores we would expect a team to win approximately one more

game. Thus we see that these elite batters can add five or more wins to their team with their

bat when compared to an average batter.

6.5.2 Worst AxbRAA Performances

On the other end of the spectrum in Table 6.5.2, we report the worst seasons by AxbRAA by

players with at least 502 plate appearances that count towards AxbRAA. Whereas the best

batters had median launch angles in the teens and accompanying median exit velocities over

90mph, no batter here has a median exit velocity above 90 with most in the mid-eighties

and lower median launch angles. Additionally, the walk rates are all in the single digits. It

can also be observed that these batters in expectation cost their teams between about 23

and 35 runs over the course of the season when compared to an average batter which would

correspond to about 2.5-3.5 wins.

6.5.3 Overperforming Batters

In Table 6.5.3, we report the batters who most outperformed their expected results on average.

As we noted above there are batters who can consistently outperform their AxbRAA as a

result of speed and baserunning abilities; we observe several such players here. Dee Gordon,

Jonathan Villar, Jose Altuve (who appears twice), Jose Reyes, and Ender Inciarte are all

known as exceptionally fast baseball players and thus are able to outperform their expectation.

However, we also observe several batters who based on our prior knowledge of their skill-sets,
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Table 6.5.2: Worst Batting Seasons by AxbRAA 2015-2017

Player Season PA Team Median
Launch
Angle

Median
Exit Velo

K% BB% AbRAA AxbRAA bRAA xbRAA

Chris Owings 2015 538 ARI 11.80 87.5 26.8 4.28 -0.057 -0.056 -30.70 -30.2
Billy Hamilton 2017 628 CIN 8.80 81.9 21.0 7.01 -0.037 -0.055 -23.10 -34.7
Jose Reyes 2015 506 COL 9.74 84.0 12.3 5.14 -0.021 -0.051 -10.60 -25.7
Jean Segura 2015 575 MIL 1.44 87.6 16.0 1.91 -0.046 -0.049 -26.60 -28.4
Billy Burns 2015 549 OAK 5.14 83.0 14.8 4.55 -0.007 -0.049 -3.89 -26.9
Jimmy Rollins 2015 558 LAD 13.80 86.6 15.4 7.89 -0.037 -0.044 -20.80 -24.7
Anthony Gose 2015 533 DET 3.70 87.9 27.2 8.44 -0.018 -0.044 -9.51 -23.4
Josh Harrison 2016 518 PIT 12.70 88.0 14.7 3.47 -0.019 -0.044 -10.00 -22.8
Alcides Escobar 2017 621 KC 11.50 86.3 16.3 2.25 -0.044 -0.042 -27.10 -26.3
Alcides Escobar 2016 670 KC 8.23 85.2 14.3 3.73 -0.038 -0.041 -25.30 -27.8
1 Team indicates the team that the player played for at the end of the season
2 League average strikeout percentage is approximately 20 percent
3 League average walk rate is approximately 8 percent
4 Team indicates the team that the player played for at the end of the season

we believe to have gotten extremely lucky. Billy Burns, for example, seems to have benefited

tremendously from good fortune. He rated as an almost average batter despite the fact that

in expectation we would have expected him to be one of the worst batters in the league.

We already saw Bryce Harper’s 2015 season in the best AxbRAA seasons above, but we

have reason to believe that he also go extraordinarily lucky that season as his expected

AxbRAA was an elite but .077 but his AbRAA was an otherworldly .108. While Harper is a

solid athlete, we have no reason to believe that he should have been able to outperform his

expected stat line like this.

6.5.4 Underperforming Batters

In 6.5.4, we report the players who most underperformed their expected statistics. This

list is heavily dominated by first baseman and designated hitters who tend to be very slow.

Furthermore, there are also batters who are very easy to shift against. For example, David

Ortiz was both very slow and an extreme pull-hitter so teams would often shift their defense

over to be in better position to take away would have been hits. Miguel Cabrera is another

interesting one as he is both very slow and plays half of his games in the Detroit’s Tiger
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Table 6.5.3: Overperforming Batters by AxbRAA

Player Season PA Team Median
Launch
Angle

Median
Exit Velo

AbRAA AxbRAA Diff Diff Next
Year

Diff
Previous

Year
Dee
Gordon

2015 640 MIA -0.216 85.3 0.007 -0.041 -0.048 -0.026 NA

Billy
Burns

2015 549 OAK 5.140 83.0 -0.007 -0.049 -0.042 0.005 NA

Didi Gre-
gorius

2016 590 NYY 13.700 86.8 -0.004 -0.037 -0.033 -0.021 -0.003

Jonathan
Villar

2016 670 MIL 3.400 90.7 0.025 -0.007 -0.032 -0.012 -0.038

Bryce
Harper

2015 635 WSH 14.700 94.2 0.108 0.077 -0.031 0.000 NA

Jose
Altuve

2015 678 HOU 9.600 88.2 0.016 -0.014 -0.030 -0.018 NA

Jose
Altuve

2017 658 HOU 10.100 87.8 0.067 0.036 -0.030 NA -0.018

Jose
Reyes

2015 506 COL 9.740 84.0 -0.021 -0.051 -0.030 -0.022 NA

Zack
Cozart

2017 507 CIN 15.200 88.0 0.057 0.028 -0.029 NA -0.010

Ender
Inciarte

2017 712 ATL 9.760 85.0 0.003 -0.026 -0.029 NA -0.008

1 Diff indicates the difference in AxbRAA and AbrAA.
2 Team indicates the team that the player played for at the end of the season

Comerica Park which is very spacious. In addition to these factors, research has indicated

that Detroit’s tracking system reads values higher than what they are in reality which further

contributes to Miguel Cabrera’s gap between AxbRAA and AbRAA [54].

6.5.5 Best AxpRAA Performances

In Table 6.5.5, we report the best seasons by AxpRAA by starting pitchers with at least 502

batters faced. As with the batters, this list is populated by the superstars that we would

expect. Perhaps the most obvious takeaway from this table is the dominance of the Los

Angeles Dodgers’ Clayton Kershaw who has all three of his seasons from 2015-2017 in the top

ten as well as the two top spots overall. Part of the reason for Kershaw’s exceptional success

his high strikeout percentage in the low 30s and an extremely low BB%. This higher than
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Table 6.5.4: Underperforming Batters by AbxRAA

Player Season PA Team Median
Launch
Angle

Median
Exit Velo

AbRAA AxbRAA Diff Diff Next
Year

Diff
Previous

Year
Miguel
Cabrera

2016 664 DET 12.5 95.3 0.061 0.101 0.040 0.039 0.030

Miguel
Cabrera

2017 523 DET 13.2 94.6 -0.008 0.031 0.039 NA 0.040

Kendrys
Morales

2016 616 KC 11.1 94.8 0.012 0.048 0.035 0.025 0.022

Albert
Pujols

2016 644 LAA 11.0 93.0 0.006 0.040 0.034 0.025 0.022

David
Ortiz

2015 593 BOS 15.5 94.9 0.040 0.074 0.034 0.029 NA

Brandon
Moss

2015 519 STL 19.6 91.0 -0.013 0.018 0.031 0.004 NA

Kyle
Seager

2015 676 SEA 15.5 90.6 0.007 0.037 0.030 0.016 NA

Mitch
More-
land

2017 570 BOS 12.2 90.4 0.003 0.032 0.029 NA 0.017

David
Ortiz

2016 610 BOS 16.9 93.8 0.078 0.107 0.029 NA 0.034

Manny
Machado

2017 687 BAL 12.8 93.5 0.005 0.034 0.028 NA 0.015

1 Diff indicates the difference in AxbRAA and AbrAA.
2 Team indicates the team that the player played for at the end of the season

average strikeout rate and lower than average walk/HBP rate is a key part of the success of

many of these pitchers as all posted above-average to elite strikeout rates and all but one

posted walk rates of less than 8.

These elite starting pitchers in expectation saved between .05 and .08 runs per batter when

compared to the performance of an average starting pitcher. Over the course of the season,

this can translate to saving their team in excess of 40 runs and more than approximately

four wins over an average pitcher.

In Table 6.5.6, we report the best seasons by AxpRAA by pitchers with at least 200 batters

faced so as to allow relief pitchers to be included. Relief pitchers typically only pitch about an

inning at a time whereas starters are responsible for pitching many innings typically between

five and seven. As a result, relief pitchers are usually able to give a higher per pitch effort
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Table 6.5.5: Best Starting Pitching Seasons by AxpRAA 2015-2017

Player Season TBF Team Median
Launch
Angle

Median
Exit Velo

K% BB% ApRAA AxpRAA pRAA xpRAA

Clayton
Kershaw

2016 539 LAD 7.58 87.3 31.9 2.23 -0.0965 -0.0819 -52.0 -44.2

Clayton
Kershaw

2015 885 LAD 5.89 86.1 33.9 5.20 -0.0762 -0.0758 -67.4 -67.1

Zack
Greinke

2015 836 LAD 7.77 87.8 23.8 5.26 -0.0812 -0.0697 -67.9 -58.2

Jake
Arrieta

2015 833 CHC 2.34 85.0 27.4 6.24 -0.0775 -0.0639 -64.6 -53.3

Corey
Kluber

2017 772 CLE 11.00 87.5 34.2 5.05 -0.0663 -0.0592 -51.2 -45.7

Max
Scherzer

2017 773 WSH 18.20 87.6 34.5 8.15 -0.0606 -0.0582 -46.9 -45.0

Jacob
deGrom

2015 739 NYM 10.10 88.4 27.6 5.14 -0.0602 -0.0561 -44.5 -41.4

Clayton
Kershaw

2017 674 LAD 9.49 86.4 30.0 4.45 -0.0513 -0.0535 -34.6 -36.0

Matt
Harvey

2015 718 NYM 10.40 89.0 25.5 5.43 -0.0475 -0.0513 -34.1 -36.9

Justin
Verlan-
der

2015 533 DET 19.20 87.8 21.2 6.38 -0.0398 -0.0499 -21.2 -26.6

1 Team indicates the team that the player played for at the end of the season
2 League average strikeout rate is approximately 20 percent
3 League average walk rate is approximately 8 percent

and also have the advantage of facing batters only once. Because of this elite relief pitchers

are often better on a rate basis than the best starting pitchers. We observe this in Table

6.5.6 as nine of the ten spots are occupied by relief pitcher seasons with the one exception

being Clayton Kershaw’s 2016 season.

With these elite reliever seasons, we see that many of them have extremely high strikeout

rates and low walk rates as well. From, the median launch angle, we can see that there

are a few separate groups. Zach Britton throws a sinking fastball that generates exorbitant

amounts of groundballs, whereas Kenley Jansen and Josh Fields are known for throwing a

cutter and fastball respectively that rise relative to what we would expect from gravity alone

and generate a lot of flyballs and pop-ups.
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Table 6.5.6: Best Pitching Seasons by AxpRAA 2015-2017

Player Season TBF Team Median
Launch
Angle

Median
Exit Velo

K% BB% ApRAA AxpRAA pRAA xpRAA

Kenley
Jansen

2016 246 LAD 23.30 86.4 42.3 4.47 -0.106 -0.115 -26.0 -28.4

Zach
Britton

2016 250 BAL -15.80 83.2 29.6 6.00 -0.107 -0.110 -26.8 -27.5

Andrew
Miller

2016 274 CLE 5.03 88.8 44.9 4.01 -0.091 -0.103 -24.9 -28.3

Aroldis
Chap-
man

2016 222 CHC 8.01 90.0 40.5 8.11 -0.095 -0.094 -21.2 -20.8

Seung-
Hwan
Oh

2016 308 STL 15.80 89.4 33.4 5.52 -0.081 -0.090 -25.0 -27.7

Kenley
Jansen

2017 257 LAD 17.40 86.0 42.4 3.50 -0.093 -0.089 -23.9 -22.8

Zach
Britton

2015 249 BAL -17.00 88.1 31.7 5.22 -0.067 -0.085 -16.7 -21.1

Josh
Fields

2015 204 HOU 20.10 89.3 32.8 8.33 -0.051 -0.084 -10.4 -17.2

Andrew
Miller

2017 242 CLE 14.40 83.8 39.3 10.70 -0.094 -0.083 -22.8 -20.1

Clayton
Kershaw

2016 539 LAD 7.58 87.3 31.9 2.23 -0.096 -0.082 -52.0 -44.2

1 Team indicates the team that the player played for at the end of the season
2 League average strikeout rate is approximately 20 percent
3 League average walk rate is approximately 8 percent

6.5.6 Worst AxpRAA Performances

In Table 6.5.7, we report the worst seasons by AxpRAA from 2015-2017 by starting pitchers

with at least 500 batters in each season. When contrasted with the elite starting pitchers

we see that these pitchers give up much harder contact and also produce strikeouts at a

lower than average rate and/or walk than is average as well. This combination of giving up

hard contact, failing to get high strikeout totals, and walking batters proves costly as these

pitchers cost their team between .035 and .06 runs per batter faced when compared to an

average pitcher which translates over a full to season to up to 40 runs worse than an average

pitcher which roughly equates to about four wins lost over the course of the year.
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Table 6.5.7: Worst Pitching Seasons by AxpRAA 2015-2017

Player Season TBF Team Median
Launch
Angle

Median
Exit Velo

K% BB% ApRAA AxpRAA pRAA xpRAA

Derek
Holland

2017 622 CWS 13.90 91.0 16.7 13.00 0.053 0.060 33.20 37.1

Jeremy
Guthrie

2015 658 KC 16.30 90.0 12.8 7.90 0.040 0.055 26.20 36.4

Ricky
Nolasco

2017 777 LAA 13.20 92.0 18.3 7.46 0.029 0.052 22.90 40.3

Jordan
Zimmer-
man

2017 708 DET 16.90 90.1 14.4 6.92 0.041 0.041 29.10 29.0

Kyle
Gibson

2017 692 MIN 6.84 90.6 17.3 9.54 0.026 0.039 18.00 26.9

Bartolo
Colon

2017 642 MIN 13.00 90.6 13.9 5.61 0.049 0.038 31.20 24.4

Yovani
Gallardo

2017 571 SEA 11.00 89.8 16.5 10.30 0.022 0.038 12.40 21.5

Mike
Pelfrey

2017 542 CWS 6.72 90.3 14.6 12.50 0.032 0.037 17.60 19.8

Kyle
Kendrick

2015 622 COL 13.90 90.6 12.9 8.04 0.053 0.036 32.70 22.1

Jeremy
Hellick-
son

2017 688 BAL 17.60 89.0 14.0 7.70 0.014 0.035 9.69 24.3

1 Team indicates the team that the player played for at the end of the season
2 League average strikeout percentage is approximately 20 percent
3 League average walk rate is approximately 8 percent

6.5.7 Overperforming Starting Pitchers

Unlike with batters, the starting pitchers with the largest positive gap between their expected

and realized pitching runs above average (displayed in Table 6.5.8) are not quite as obvious

as with the batters. Some are explainable as Jake Arrieta and Tim Hudson pitched in front

of the best and second best defense in baseball according to Fangraphs’ defensive metrics

[31]. Other pitchers may have just gotten extremely lucky in a given year. Nevertheless,

these pitchers benefited in the neighborhood of .025 runs per batter faced when compared

to an average pitcher. Over the course of six hundred batters faced this would equate to 15

runs better than their expectation which would substantially influence how that pitcher is

evaluated. Teams with access to this kind of information could better avoid signing players

who have gotten lucky and would be overvalued. The presence of Verlander (who spent
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Table 6.5.8: Overperforming Pitchers By AxpRAA

Player Season TBF Team Median
Launch
Angle

Median
Exit Velo

K% BB% ApRAA AxpRAA Diff Diff Next
Year

Diff
Previous

Year
Jake
Arrieta

2016 792 CHC 6.42 87.8 23.9 10.20 -0.051 -0.024 0.027 -0.001 0.014

Justin
Verlan-
der

2017 844 HOU 16.60 89.3 25.8 8.53 -0.030 -0.003 0.027 NA 0.005

Chris
Tillman

2016 712 BAL 13.20 89.8 19.5 10.10 -0.006 0.020 0.026 0.000 0.009

Jose
Urena

2017 715 MIA 13.30 88.6 15.7 10.30 -0.005 0.020 0.025 NA -0.008

Andrew
Cashner

2017 702 TEX 10.30 89.0 12.1 10.40 -0.015 0.009 0.024 NA -0.019

Michael
Fulmer

2017 671 DET 8.70 87.4 17.0 6.86 -0.035 -0.011 0.024 NA 0.018

Erasmo
Ramirez

2015 664 TB 7.48 88.8 18.8 7.38 -0.030 -0.006 0.024 -0.010 NA

Sonny
Gray

2015 830 OAK 4.71 89.7 20.4 7.35 -0.051 -0.028 0.023 -0.007 NA

Alex
Cobb

2017 738 TB 8.19 90.1 17.3 6.50 -0.014 0.009 0.023 NA -0.046

Tim
Hudson

2015 522 SF 3.35 90.6 12.3 8.24 0.000 0.023 0.023 NA NA

1 Diff indicates the difference in AxpRAA and AprAA.
2 Team indicates the team that the player played for at the end of the season
3 League average strikeout rate is approximately 20 percent
4 League average walk rate is approximately 8 percent

most of 2017 with Detroit before being trade to Houston) and Fulmer on this list should be

discounted somewhat as it is known that Detroit’s exit velocity readings are higher than in

reality [54].

6.5.8 Underperforming Starting Pitchers

On the reverse, in Table 6.5.9 we report the starting pitchers who had the largest negative

gap between their expected and realized pitching runs above average. These pitchers lost

between .020 and .029 runs per batter faced based on the difference between their expected

and realized performances. The opposite conclusion holds true for these pitchers; they are

very likely undervalued compared to their actual talent level and could likely be had for a

lower salary.
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Table 6.5.9: Underperforming Pitchers by AxpRAA

Player Season TBF Team Median
Launch
Angle

Median
Exit Velo

K% BB% ApRAA AxpRAA Diff Diff Next
Year

Diff
Previous

Year
Juan
Nicasio

2016 505 PIT 11.600 89.7 27.3 9.70 0.005 -0.024 -0.029 0.004 -0.006

Jameson
Taillon

2017 576 PIT 8.950 88.8 21.7 8.16 0.012 -0.016 -0.027 NA -0.007

CC
Sabathia

2015 718 NYY 8.130 89.1 19.1 7.38 0.014 -0.011 -0.025 -0.019 NA

Michael
Pineda

2015 664 NYY 7.420 89.2 23.3 3.61 -0.003 -0.028 -0.024 -0.022 NA

Chris
Rusin

2015 564 COL 5.700 89.2 14.9 6.91 0.037 0.013 -0.023 -0.006 NA

Kyle
Freeland

2017 670 COL 5.920 89.2 16.0 10.00 0.014 -0.009 -0.023 NA NA

Michael
Pineda

2016 754 NYY 10.800 90.0 27.2 7.69 0.009 -0.013 -0.022 -0.012 -0.024

Luis
Perdomo

2016 654 SD 0.455 91.3 16.1 7.03 0.029 0.007 -0.022 -0.005 NA

Tim
Adelman

2017 529 CIN 18.000 89.2 20.2 10.60 0.036 0.015 -0.021 NA 0.006

Jacob
deGrom

2017 819 NYM 10.400 88.0 29.2 6.84 -0.025 -0.045 -0.020 NA 0.004

1 Diff indicates the difference in AxpRAA and AprAA.
2 Team indicates the team that the player played for at the end of the season
3 League average strikeout rate is approximately 20 percent
4 League average walk rate is approximately 8 percent
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Chapter 7

Juiced Ball

7.1 Motivation

Over the past three seasons there has been a very dramatic increase in offensive output across

the league. As can be seen in Table 7.1.1, the number of runs across the league has increased

by more than 2,000 runs which corresponds to four-tenths of a run more per team per game.

Even more dramatic has been the increase in the number of home runs going from 4,909 in

2015 to an all-time MLB high of 6,105 in 2017. This corresponds to nearly a quarter of a

home run more per team per game. Associated with these events has been an increase in the

average launch angle. More and more players are putting an emphasis on hitting the ball

in the air, a so-called fly ball revolution. While launch angle has gone up steadily, average

exit velocity went up in 2016 but was actually on average below its 2015 levels. Nevertheless,

xRAA on batted balls has increased tremendously going from .027 in 2015, to .037 in 2016,

all the way to .042 in 2017.

The shift in offensive output can be seen even more clearly when broken down by halves

of the season. The most dramatic jump in offensive performance took place between the

first and second half of the 2015 season where there was an uptick in average exit velocity,
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Table 7.1.1: Increasing Offensive Production In MLB

Year Runs
Scored

Runs Per
Game

Total
Home
Runs

Home
Runs Per

Game

Avg.
Exit Velo

Avg
Launch
Angle

xRAA-
Batted
Balls

2015 20647 4.25 4909 1.01 87.7 10.5 0.027
2016 21744 4.48 5610 1.16 88.1 11.2 0.037
2017 22582 4.65 6105 1.26 87.0 11.5 0.042

Table 7.1.2: Batted Ball Summary 2015-2017

Year Half Avg Exit
Speed

Avg
Launch
Angle

Avg HR
Prob

xRAA

2015 First 87.5 10.3 0.035 0.022
2015 Second 88.1 10.9 0.043 0.037
2016 First 88.1 11.0 0.044 0.037
2016 Second 88.0 11.6 0.043 0.036
2017 First 87.1 11.3 0.048 0.043
2017 Second 86.8 11.8 0.048 0.041

average launch speed, and very sharp jumps in the average home run probability and the

xRAA. The offensive performance stabilized at about this level through the end of the 2016

season before another substantial jump at the start of the 2017 season that was sustained

through the second half of the year as well.

While the increased emphasis on hitting the ball in the air has been offered as an explanation

for the increase in scoring and home runs most in the baseball community believe that this

alone could not have caused the observed increase in offensive production. Past upticks in

offensive performance have been the result of the introduction of the live ball in the 1920s,

the lowering of the mound after the 1968 season, and the steroid era in the late 1990s and

the early 2000s. The most popular theory currently is that there have been changes in the

ball that have led to the increase in offensive performance. We will begin by recapping the

previous research that has been done regarding the juiced ball hypothesis. From there we

will introduce our methodology for analyzing the effects of the juiced ball. This framework
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allows us to predict how batted balls would have performed had they been contacted in a

different ball environment which we use to separate out the effects of the juiced ball and the

fly revolution, to visualize how batted ball behavior has changed as a result of the juiced ball,

and to examine the effects of the juiced ball on a player-by-player basis examining which

batters have benefited the most and which pitchers have been the most harmed by the effects

of the juiced ball.

7.2 Previous Research Done on the Juiced Ball

The first major piece done concerning the scoring surge in the second half of the 2015 season

was published by Arthur and Lindbergh at FiveThirtyEight before the start of the 2016 MLB

season [55]. After summarizing the magnitude of the increase in scoring and contrasting it

with the decade-long trend of decreasing offensive, they consider several hypotheses for the

increase in scoring in the second half of 2015: a smaller strike zone, the weather, better rookie

batters, diminished pitching quality, and a bouncier baseball. Citing the work of Roegele who

showed that the strike zone continued to expand in 2015 [56], they dismiss the first hypothesis.

While limited in their ability to analyze humidity and wind, they dismiss temperature as the

cause showing that it could not have produced an effect of the magnitude that was observed.

One theory that was very popular at the time was that a considerably better than average

rookie class of batters fueled the increase in offense [57]. Another popular theory was that

the quality of pitching was down in the second half of the season as a result of injury, trade,

or resting for the playoffs. In order to test this hypothesis, Arthur and Lindbergh develop a

model to predict exit velocity based on the pitcher, the batter, the temperature, the count,

the pitch velocity, and the called strike probability of the pitch. While their model does

predict somewhat higher values later in the season, it dramatically underestimates the exit

velocities observed in September and October. Additionally, they attempt to predict the

outcomes of second-half matchups based on the quality of the players involved and observe
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7% decrease in predicted strikeout rate, an 8% increase in walk rate, and a 31% increase

in home run rate. These results combine to discredit the idea that the massive increase in

offense is largely attributable to a tremendously successful rookie class or diminished league

average pitcher quality. Lastly, they suggest that an increased liveliness of the baseballs would

explain the increase well. They demonstrate how the average daily deviation from expected

exit velocity began increasing after the All-Star break when there would have been a new

batch of balls brought into circulation. Using the Sports Science Laboratory at Washington

State University, they measured the coefficient of restitution of balls from the 2014 season

and those from the second half of the 2015 season but found inconclusive results.

Midway through the 2016 season in [58], Nathan compares home run behavior in the first

half of the 2015 season with home run behavior in the first half of the 2016 season. He

concludes that the primary reason for the increase in home runs in 2016 is the result of

more hard-hit balls as opposed to more balls hit at ideal home run trajectory demonstrating

that there was 27% increase in batted balls hit between twenty-five and thirty degrees with

an exit velocity of greater than 95 mph while there had only 7.5% increase in batted balls

simply hit in the twenty-five to thirty degrees range. He repeats this result using different bin

dimensions with similar results. In an addendum, he shows that while exit velocity is up by

large amounts for balls with vertical launch of greater than ten degrees, it is very similar for

balls hit at line drive angles of between zero and ten degrees. He interprets this as potential

evidence against a juiced ball, as based on his physics knowledge, he would expect that if the

ball was juiced line drives would show the greatest increase in exit velocity as a result of a

higher coefficient of restitution.

Shortly after Nathan’s article was published in The Hardball Times, Lindbergh and Arthur

published a second piece at FiveThirtyEight with evidence in favor of a juiced ball [59]. They

look at instances where batters and pitchers squared off against one another in the MLB and

also at the highest level of minor league baseball, AAA, which uses a baseball manufactured
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in a different location. They built a mixed logit model with random effects for batter, pitcher,

and park and a fixed effect for league, and found the league effect to be statistically significant

in predicting home run probability.

In May of 2017, Lindbergh in [60] relays the findings of a report of the testings of MLB

baseballs done at the Baseball Research Center at the University of Massachusetts Lowell.

The results showed that game balls taken from five different teams were within MLB’s

manufacturing specifications and that the weight, circumference, and coefficient of restitution

were comparable to past quality checks. This has been the strongest evidence against a juiced

ball hypothesis so far.

However, a month later Lindbergh and Lichtman return to the juiced ball hypothesis

[61]. They begin by recapping the continued increase in home runs and scoring, the rejected

theories that had been previously considered, and the history of changes in the ball producing

dramatic changes in Japanese baseball, the NCAA, and the Mexican League. They also

argue that attributing the increase in offensive performance entirely to changes in batter

philosophy is unlikely to have taken place so quickly. They also explain how the coefficient of

restitution (effectively the bounciness of the ball) can affect the velocity of the ball, while the

circumference and seam height can have a considerable impact on the air resistance of the ball

which impacts how far the ball can carry. The publication focuses on a new set of laboratory

testing commissioned by Lichtman using 17 game balls from before the 2015 All-Star break

and from the 2016 season. The testings revealed significant differences in the coefficient of

restitution, the seam height, and the circumference between the balls used in before the 2015

All-Star break and the balls used in 2016. They estimate that the differences in the batted

balls could have produced results similar to what has been observed in Major League Baseball

over the past few seasons. They also outline how lax MLB’s allowable ranges are for their

baseballs, and show that it could be possible for the ball to increase offensive performance

while remaining within the boundaries. Lindbergh and Lichtman also acknowledge that many
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hitters have been intentionally trying to hit more balls in the air, suggesting that part of the

reason for the rapid adoption has been that fly balls are becoming more profitable. They

also call attention to a spike in the AAA home run rate that took place after Lindbergh’s

and Arthur’s above work suggesting that the adoption of a flyball driven approach may be

spreading to other levels.

The next week Arthur published [62] at FiveThirtyEight with additional evidence supporting

a juiced ball. By measuring the amount of speed lost on four-seam fastballs from when the

ball is released to when it crosses the plate, Arthur was able to approximate the average drag

coefficient per month for baseball data from 2013 to 2017. He demonstrates that reduced

monthly drag coefficients account for nearly 25 percent of the variation in the ratio of home

runs to fly balls. He also finds evidence that the yearly drag coefficient has decreased from

2014 through 2017. He estimates that of the 47% increase in home run rate between 2014

and that point in 2017 that about half of it can be attributed to higher exit velocities from

a springier ball, and that the remaining half of the increases can be attributed to changes

in drag forces on the ball as well as adjustments made by batters across the league. In a

follow-up study [63], Arthur shows that baseball’s drag coefficient has become considerably

more consistent from 2008 to 2017.

It would appear that the MLB is beginning to take some measures surrounding the juiced

ball. Following the end of the 2017 season, MLB Commissioner Rob Manfred mandated that

all teams must begin storing their game balls in a climate-controlled, enclosed room in an

effort to create a more uniform ball environment across the league. Major League Baseball

will be installing climate sensors in each such room to determine if a humidor, a device used

to reduce the liveliness of batted balls by storing them in a moist and cool environment that

has been effective in reducing offensive performance at the home of the Colorado Rockies,

will be necessary league wide beginning in the 2019 season [64]. Additionally, Manfred has

commissioned a team of scientists to investigate whether the ball was in fact juiced during
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the 2017 season [65].

At the time of this writing, the most recent major work in the public sphere on the juiced

ball was done by Arthur and Dix at FiveThirtyEight [66]. Arthur and Dix discuss results of

studies commissioned by “ESPN Sport Science” (ESPN is FiveThirtyEight’s parent company)

and performed by the Keck School of Medicine at the University of Southern California and

Kent State University’s Department of Chemistry and Biochemistry. The two studies reveal

differences in the density and chemical composition of the cores of two groups of baseballs:

four balls used in games between August 2014 and May 2015 and three balls used in games

from August 2016 and July 2017 along with a brand new MLB ball directly from Rawlings.

The balls were first analyzed at the Keck School of Medicine using CT scans that revealed

the outer layer of the baseball’s core was 40 percent less dense in the new group of balls.

After the tests at USC, the balls were sent to Kent State where through thermogravimetric

analysis it was found that the region of the core that was less dense in the new group was on

average composed of seven percent more polymer and ten percent less silicon which would

create a less dense core validating the results of the CT scan study. While the changes to the

weight of the ball as result of the differences in core density would have a negligible impact

on the flight of the ball, these changes in core composition coincide with the increase in the

bounciness of the ball that has been previously observed. At this juncture, Arthur and Dix

believe that more than half of the approximately 46 percent increase in home run rate can be

attributed to the increased bounciness of the ball corresponding to an increase in velocity

and the decreased air resistance of balls that would allow balls to carry further. He believes

that the remainder of the increase in offensive performance could be attributed to the fly ball

revolution.
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7.3 Methodology

The core idea behind our analysis of the juiced ball is that using the batted ball classifier

introduced above we can make a prediction for what the outcome of a batted ball would

have been in a different ball environment. While most of the analyses above have focused

on quantifying and describing the changes in the ball itself, we seek to predict at a batted

ball-by-batted ball level what would have happened if an average ball from a particular ball

environment had been used.

Since we do not have ball specific measurements for each baseball, we must find a way

to indirectly capture the effects of changes in ball composition. While there is substantial

in-batch variations within baseballs, we decide to capture ball environment effects on a

season and half of season basis. For this reason, both season and the half of the season were

included as predictors in the batted ball classifiers introduced to supplement the ball specific

characteristics (exit velocity, launch angle). By using the season and half of season as proxies

for measuring changes in average ball environment, we are making the assumption that there

are no other changes that would impact the outcomes of batted ball that are changing by

year or half of season that would not be picked up by the batted ball specific measurements

of exit velocity and launch trajectory. We can obtain a counterfactual prediction for a batted

ball under a different ball environment by inputting the batted ball characteristics and the

counterfactual season and half of season into the batted ball classifier model. However, this

is not quite sufficient. As previous research has suggested there seem to be two ways that

the balls have been juiced: carrying further through less air resistance and coming off the

bat faster through a springier ball. By inputting a counterfactual year and half, we would

only be accounting for the reduced air resistance of the ball. We will also need to produce a

counterfactual exit velocity for a different ball environment.

In order to obtain a counterfactual velocity prediction, we employ another LightGBM

model but this time in a regression context. Exit velocity is modeled as a function of vertical
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launch angle, the proxy to horizontal launch angle, batter handedness, the season, and the

half of the season. There is an obvious relationship between launch angle: balls hit at a line

drive launch angle tend to be hit harder, and balls hit at very high vertical launch angles or

very low launch angles reflect poor contact and thus lower velocity. We know that balls hits to

a player’s pull side are on average hit at a higher exit velocity which motivates the inclusion of

horizontal launch angle and the batter’s handedness. Season and half of season are included

for capturing the changing ball environment’s impact on velocity and can be manipulated

to get counterfactual predictions. While these are all relevant predictors for estimating a

batted ball’s exit velocity, it is very limited. Ideally, we would like to have measurements

such as the bat speed, the contact angle, where on the bat the ball hit, and where on the

ball the bat hit. With this set of information, we would be much better equipped to predict

batted ball exit velocities than with the current model. One other potential shortcoming in

the velocity predictions is measurement errors in the Statcast data itself. The time span in

question represents the first three years of Statcast’s use in MLB. We feel it is very likely that

the way raw information is measured and converted into the data used here has undergone

adjustments during this time. While this was checked against, it is possible that there could

be changes that would impact the results of this analysis

In order to find a good set of hyperparameters for the velocity model, we use the tree-

structured Parzen estimator routine as used to fit the classification models. The best

out-of-sample root mean squared error is 11.66 mph.

Below, we describe the full process employed here for acquiring the counterfactual batted

ball predictions. For a particular batted ball, we predict the exit velocity both in the original

batted ball environment and in the counterfactual ball environment (lines (1) and (2)). We

then take the difference between the predicted velocity in the counterfactual ball environment

and the predicted velocity in the original batted ball environment (line (3)), this difference is

then added to the observed batted ball velocity (line (4)) to obtain an adjusted exit velocity
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to be used in the counterfactual prediction of the batted ball outcome which is done in line

(5).

(1)VeloPred = LGBM1(Launch Angle,Horizontal Angle,Batter Handedness,Year,Half)

(2)VeloCF = LGBM1(Launch Angle,Horizontal Angle,Batter Handedness,CF Year,CF Half)

(3)Velo Difference = VeloCF − VeloPred

(4)Adjusted Velo = Observed Velocity + Velo Difference

(5)CF Prediction = LGBM2(Adjusted Velo,Launch Angle,Batter Handedness,CF Year,CF Half)

7.4 League-Wide Results

Before looking at its impact on production, we examine the effect of changes in ball environ-

ment on the exit velocity shown in table 7.4.1. Here we plot the velocity adjustments for a

given ball environment when compared to the ball environment from the first of the 2015

season based on the vertical launch angle and the observed exit velocity. Agreeing with the

findings of Nathan [58], we see for the batted ball environments from the second half of 2015

and both halves of 2016 that balls hit in the air display velocity increase of between one and

two miles per hour. Also agreeing with his results, we find that for balls hit on a nearly flat

trajectory there is little to no evidence of an increase in the bounciness of the ball and in fact

exhibits slight evidence of the opposite. Nevertheless, we find strong evidence that the ball

was causing increases in exit velocity for balls hit in the air. In the batted ball environments

from both halves of the 2017 season, we have that exit velocities on balls hit with a launch

angle of above twenty degrees are still elevated when compared to the balls used in the first

half of 2015; however, there is a very strong decrease in exit velocity on balls hit below this

launch angle. The elevated exit velocity on balls hit with higher launch angles continues

to fit with the belief that the ball is juiced, but this drop in velocity for balls hit on flatter
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trajectories is extremely puzzling. It could be a product of the nature of the juiced ball, a

relic of the changes in exit velocity measurement, or it could potentially be a product of more

swings designed to hit the ball in the air. Additional research will be needed to confirm the

source of this result. For now, we will operate under the assumption that it is in some way

connected to the juiced ball.

In Table 7.4.1, we report the predicted xRAA for each batted ball and ball environment

pairs. By moving down the columns, one can examine how the same set of batted balls would

have been projected to have faired in different ball environments. For example, the first

column denotes the batted balls from the first half of 2015 and by moving down the column,

we can see how we would have expected the performance of batters from the first half of

2015 to have faired in other ball environments. By moving across the rows, we can examine

how batted ball performance changed over time while keeping the batted ball environment

fixed. In effect, we can estimate the change in true batting performance by fixing a row

(ball environment) and moving across it. The juiced ball effect can be estimated by fixing a

column (set of batted balls) and then moving down it.

Perhaps the single most interesting juncture in Table 7.4.1 is the change from the first

half of 2015 to the second half. As we know, in reality, there was a dramatic increase in

offensive performance during that time, but how much of that was due to the batters and

how much to a juiced ball? According to the predictions, xRAA in the first half of 2015 with

the first half of 2015 batted ball environment resulted in an xRAA of .0215. However, if those

same set of batted balls had been hit in the batted ball environment from the second half

of 2015 we would have expected an xRAA of .0258. This means that we believe that the

juiced ball contributed an increase of about .004 runs on average which becomes a very large

impact when we consider the total number of batted balls. However, we actually estimate

that the impact in overall offensive performance might have been more strongly influenced

by a change in true underlying batter performance as we estimate that the set of batted balls
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Figure 7.4.1: Velocity Adjustments for Batted Balls with Launch Angles between -10 degrees
and 50 degrees
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from the second half of the 2015 season would have produced an xRAA of .0296 in the batted

ball environment from the first half of 2015. We observe that the sum of these two effects is

less than the observed change in xRAA from the first half of 2015 to the second half of 2015,

possibly a result of batters attempting to take advantage of a more profitable environment

for balls hit in the air and adjusting accordingly.

Returning to the batted balls from the first half of the 2015 season, we can see that they

would have performed best in the ball environments from the 2016 season and would have

faired substantially better than the original batted ball environment in both halves of 2017

season, but not to the same capacity as we would have predicted them to do in 2016. This is

very interesting as it is generally believed that the ball has been at its most “juiced” during

the 2017 season. However, as we saw in figure 7.4.1, we estimate that exit velocity was down

for balls hit at lower launch angles in both of the 2017 ball environments. These factors

combined would serve to explain why it is that we see a substantial drop in xRAA by changing

the batted ball environment from the second half of 2016 to the first half of 2017 for batted

balls from the 2015 and 2016 seasons. However, this same drop off is not observed for batted

balls from the 2017 season as we move from the ball environment from the second half of 2016

to the first half of 2017. We believe this is the result of shifting batter tendencies. By 2017,

the adjustments made by batters attempting to drive the ball in the air and take advantage

of the juiced ball would have let to more balls being hit at the trajectories where exit velocity

was not adversely affected. It is also important to remember that there are multiple sources

of the increased liveliness of the ball. While increased velocity may not have been what it

was during the 2016 season, Arthur’s results [58] suggest that the air resistance of the balls

was at its lowest levels in 2017 which would have contributed to increased carry on balls hit

in the air.

Another conclusion, that can be drawn from Table 7.4.1 is that the best actual offensive

performance occurred during the second half of the 2015 season and during the 2017 season.
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Table 7.4.1: xRAA by Batted Ball/Ball Environment Pairs

Batted Balls First
Half 2015

Batted Balls
Second Half 2015

Batted Balls First
Half 2016

Batted Balls
Second Half 2016

Batted Balls First
Half 2017

Batted Balls
Second Half 2017

Ball Environment
First Half 2015

0.0215 0.0296 0.0265 0.0239 0.0277 0.0297

Ball Environment
Second Half 2015

0.0258 0.0371 0.0327 0.0302 0.0337 0.0360

Ball Environment
First Half 2016

0.0272 0.0381 0.0371 0.0335 0.0364 0.0385

Ball Environment
Second Half 2016

0.0292 0.0399 0.0376 0.0364 0.0383 0.0402

Ball Environment
First Half 2017

0.0252 0.0362 0.0340 0.0313 0.0427 0.0388

Ball Environment
Second Half 2017

0.0256 0.0364 0.0342 0.0313 0.0398 0.0413

Across all of the batted ball environments, these three halves have the best xRAA regardless

of the batted ball environment. By moving across any of the rows, we can observe that there

has been an upward shift in offensive performance across Major League Baseball even after

we have accounted for the effect of the juiced ball. There is a very large spike as we move

from the first half of 2015 into the second half of 2015, a decrease into 2016 albeit to levels

still considerably higher than the first half of 2015, and then another substantial increase

during the 2017 season. It would appear that either the juiced ball or the improvement in

batter performance would have caused a considerable increase offensive performance, but

it is has been the conjunction of the two together that has created the dramatically more

offensive driven game that we observe today.

In Table 7.4.2, we display the results in the same manner as above but where batted balls

have been grouped by year instead of by half in order to present a less overwhelming table.

Once again, we can observe by moving down the columns that there has been a substantial

impact from the juiced ball with effects as large as .0087 for 2015 batted balls, .0116 for

2016 batted balls, .013 for 2017 batted balls. Similarly, we can observe that there has been

a substantial increase in overall batting performance from 2015 to 2016 to 2017. Moving

along the rows, we see that the difference between the predicted performance on batted

balls in 2017 and the batted balls from 2015 has been .0039, .0045, .0059, .0058, .0121,

and .0107 respectively. It is interesting to note that how much better we estimate batted
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Table 7.4.2: xRAA by Year and Ball Environment

Batted Balls 2015 Batted Balls 2016 Batted Balls 2017
Ball Environment
First Half 2015

0.0245 0.0256 0.0284

Ball Environment
Second Half 2015

0.0300 0.0318 0.0345

Ball Environment
First Half 2016

0.0312 0.0359 0.0371

Ball Environment
Second Half 2016

0.0332 0.0372 0.0390

Ball Environment
First Half 2017

0.0293 0.0331 0.0414

Ball Environment
Second Half 2017

0.0296 0.0332 0.0403

ball performance to have improved varies substantially across the ball environment. This is

because the balls that benefit the most from the juiced ball environment are those that are

driven in the air and emphasizing driving the ball in the air has been one of the hallmarks

of the changes in batter approach during the 2015-2017 seasons. Even in the 2015 batted

ball environment, batters would have benefited from trying to hit the ball in the air, but

because of the fact that the balls are flying further as a result of the juiced ball, they are even

more strongly incentivized to hit the ball in the air. It would be interesting to observe the

counterfactual world in which the ball had never been juiced: would the change in approach

in MLB been as strong if it not been further incentivized by the juiced ball?

In particular one of the biggest features of the increased offensive performance during the

2015-2017 seasons has been the dramatic increase in the number of home runs. In Tables

7.4.3, 7.4.4, and 7.4.5, we explore how average home run probabilities and home run totals in

the same fashion as we did for xRAA in the above tables. While the overall conclusions are

very much the same as with xRAA, it is worthwhile to consider the home runs in isolation

as they have been key driver in the overall increase in offensive performance. Perhaps the

most interesting additional contribution from the home run tables is that we have that in
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Table 7.4.3: Avg. Predicted Home Run Probability by Batted Ball/Ball Environment Pairs

Batted Balls First
Half 2015

Batted Balls
Second Half 2015

Batted Balls First
Half 2016

Batted Balls
Second Half 2016

Batted Balls First
Half 2017

Batted Balls
Second Half 2017

Ball Environment
First Half 2015

0.0347 0.0413 0.0395 0.0379 0.0434 0.0429

Ball Environment
Second Half 2015

0.0368 0.0435 0.0416 0.0401 0.0455 0.0452

Ball Environment
First Half 2016

0.0392 0.0462 0.0444 0.0428 0.0483 0.0479

Ball Environment
Second Half 2016

0.0398 0.0468 0.0449 0.0435 0.0489 0.0486

Ball Environment
First Half 2017

0.0392 0.0463 0.0443 0.0426 0.0483 0.0479

Ball Environment
Second Half 2017

0.0392 0.0461 0.0442 0.0423 0.0480 0.0475

terms of impact on home runs it would appear that both the ball environments from the

2016 contributed as strong and potentially a little stronger impact on the average probability

of a home run than 2017. This is in line with what we saw above in Table 7.4.1; however, for

batted balls from the 2015 and 2016 there was an observed substantial drop-off in xRAA

when comparing the second half of the 2016 ball environment with the ball environment from

the 2017 season. This effect is not observed in anywhere near the same magnitude in terms

of the home run probabilities (though a very mild one is still present). This is in line with

the fact that velocity on batted balls hit at lower launch angles was down in 2017 and the

belief that air resistance of the balls was at a lower level in the 2017 season.

As was the case above with xRAA, we can see in 7.4.3 and 7.4.4 that once the effects of the

juiced ball have been accounted for, the second half of the 2015 and both halves of the 2017

season produced the most prolific home run behavior once the juiced ball has been taken

into effect.

Lastly, in Table 7.4.5, we aggregate batted balls based on year and display home run totals

by ball environments in order to display the magnitude of the increase in home runs in a

context for which we have intuition. We see that the ball environment from the second half

of 2015 would have produced between 250-300 more home runs when we consider the batted

balls from the 2015-2017 seasons. We see further evidence for a ball environment that is

becoming progressively more juiced as we see another elevation in home run totals as we
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Table 7.4.4: Total Predicted Home Runs by Batted Ball/Ball Environment Pairs

Batted Balls First
Half 2015

Batted Balls
Second Half 2015

Batted Balls First
Half 2016

Batted Balls
Second Half 2016

Batted Balls First
Half 2017

Batted Balls
Second Half 2017

Ball Environment
First Half 2015

2818 1953 3261 1714 3573 1898

Ball Environment
Second Half 2015

2982 2056 3439 1815 3750 2001

Ball Environment
First Half 2016

3180 2187 3663 1936 3981 2121

Ball Environment
Second Half 2016

3227 2213 3706 1965 4028 2151

Ball Environment
First Half 2017

3177 2189 3660 1925 3973 2120

Ball Environment
Second Half 2017

3177 2180 3650 1915 3950 2105

1 Recall that second half of a season refers to after the All Star Break.

Table 7.4.5: Total Predicted Home Runs by Year and Ball Environment

Batted Balls 2015 Batted Balls 2016 Batted Balls 2017
Ball Environment
First Half 2015

4771 4975 5471

Ball Environment
Second Half 2015

5038 5253 5752

Ball Environment
First Half 2016

5367 5599 6102

Ball Environment
Second Half 2016

5441 5671 6178

Ball Environment
First Half 2017

5366 5585 6093

Ball Environment
Second Half 2017

5357 5564 6055

examine the batted ball environments from 2016 and 2017. We also see the strong evidence

that once ball environments have been accounted for that home run hitting performance has

increased substantially across the league from 2015 to 2017 with estimates somewhere in the

neighborhood of about 700 home runs. Furthermore, we observe that a similar number of

home runs can be attributed the juiced balls for the ball environments from 2017.

The effects of the juiced ball can also be visualized in a very informative manner. In

Figures 7.4.2 and 7.4.3, we plot the difference in predicted xRAA and home run probability

respectively based on launch angle and exit velocity for each ball environment when compared
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to the first half of the 2015 season. In the first plot in both panels, we plot xRAA and home

run probability respectively based on the launch angle and exit velocity to provide context

for the differences displayed in the following plots.

In Figure 7.4.2, we see how the effects of the juiced have increased and changed over time.

In the second plot, we observe the difference between the predicted xRAA for the second

half of the 2015 ball environment and the original 2015 ball environment. We observe a light

purple cluster on the edges of where the original home cluster shown in the first plot. This is

the most prominent area of changes in xRAA as we move from one batted ball environment

to the other. We see for the ball environments in 2016 that these areas expand and darken

indicated a ball environment that displays stronger “juiced” effects. This cluster of increased

xRAA seems to be at its largest in the second half of the 2016 ball environment. When

we predict the outcomes for the 2015 balls under the 2017 ball environments, we have a

differently shaped cluster that is somewhat thinner and focused around a dark center. We

also have the development of prominent strip of decreased xRAA on the bottom edges of

the home run cluster that was somewhat present before but becomes considerably strong in

the 2017 ball environments as a result of the diminished exit velocity on balls hit at lower

launch angles. Both of these same developments are seen in 7.4.3 confirming that they are a

product of changes in home run behavior. The areas of increased home run probability and

xRAA occur in areas that match with our intuition. The thickening of the strip in the 2017

ball environments fit with the hypothesis that the ball was less springy and resulted in less

velocity. Low line drive home runs are dependent on a very high exit velocity to get out of

the park and thus would be less common if the composition of the ball decreased the velocity

of balls contacted in this manner.

In Figure 7.4.4, we present the differences in predicted home run probability for the batted

balls from the first half of 2015 based on their original on field locations. In the first plot, we

display the on-field home run probability under the first half of 2015 ball environment to
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Figure 7.4.2: Counterfactual xRAA for Batted Balls from First Half of 2015
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Figure 7.4.3: Counterfactual Home Run Probability for Batted Balls from First Half of 2015
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provide context for the differences under the other ball environments. For the second half

of 2015 ball environment, we can see that there is the start of a faint purple band in the

deep outfield on the fringes of the high home run probability areas from the initial plot. We

can see this area expand and darken in the both of the 2016 ball environments. There are

balls with a moderate probability of home run that would have been zero under the original

batted ball environment. Under the 2017 ball environment, we once again see areas with

very sharp increases in home run probabilities that would have been fly balls in the original

ball environment. One interesting development is the set of balls right along the left field

line with a considerably decreased home run probability. This corresponds to the area of

diminished home run probabilities at lower launch angles seen in Figure 7.4.3 as a result of

diminished velocity on balls hit at lower launch angles.

7.5 Individual Batter Results

Perhaps even more interesting than examining league-wide effects of the batted ball is looking

at how individual players have been affected by the juiced ball. There have been several

players in recent years who have elevated their game from very good to great, and it is

interesting to see if this is a result of individual improvement or if their batted ball profile

benefited strongly from a juiced ball. Further, it may be possible to identify prospects who

fit the profile of those who most benefit from the juiced ball. Additionally, if a team believes

that a player has achieved success largely as a result of the juiced ball, they may wish to

avoid paying those players at an elite rate if they believe their performance will return to

more pedestrian levels if the ball environment was to revert back to a less juiced ball. On the

reverse, teams may want to target flyball pitchers who have been disproportionately affected

by the juiced ball if they believe that the ball environment will return towards the pre-spike

levels.
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Figure 7.4.4: Counterfactual Home Run Probabilities on Field
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In Table 7.5.1, we report those players from 2017 with at least 200 batted balls who had

the largest increase in AxbRAA as a result of the ball environment from the 2017 season

when compared to a batted ball environment from the first half of the 2015 season. We

present similar results to above in Table 7.5.2 and Table 7.5.3 but for the case of benefit in

total xbRAA and expected home run totals. In Table 7.5.1, we observe that the strongest

beneficiaries gained between .027 and .036 runs per plate appearance as a result of the juiced

ball in 2017 when compared to the first half of 2015. These players benefited more than twice

as much from the juiced ball as the average individual. Perhaps the most interesting name on

this list is Braves first baseman, Freddie Freeman. Freeman beginning in 2016 and extending

to 2017 elevated himself from a very good player to one of the best hitters in all of baseball

largely because of an increase in power, but these results suggest that some of this can be

attributed to a change in the ball environment. One thing worth noticing that is reinforced

in Tables 7.5.2 and 7.5.3 is that none of these players are generally regarded as having elite

tier power (such as players like Aaron Judge, Giancarlo Stanton, and J.D. Martinez who had

differences of .011, .0082, and .014 respectively). This makes sense as the batted balls that

benefit the most from the juiced ball are those that would have come up just a bit short of

a home run in a non-juiced environment. If one has elite power, when you make very solid

contact with a ball, it does not change the outcome of that batted ball much if it goes 410

feet vs. 400 feet. Judge, Stanton and J.D. Martinez had the highest expected home run totals

of 60, 53, and 48 respectively in the 2017 ball environment but were predicted for the same

number, one more, and one less respectively under the first half of 2015 ball environment.

Contrast that below with the results of Table 7.5.3 where players like Joey Votto and Freddie

Freeman gained 6.17 and 5.69 expected home runs. Votto and Freeman are two of the best

hitters in all of baseball in terms of making quality contact but are not prolific power hitters;

however, they benefited from very substantial increases in home run totals based on the fact

that they make a lot of quality contact and drive balls in the air without elite tier power.

Others in the Table 7.5.3 fit a similar billing of having flyball tendencies with good but not
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Table 7.5.1: Largest Average Benefit from Juiced Ball in 2017

Player Batted Balls AxbRAA AxbRAA
CF

AxbRAA
Diff

xbRAA xbRAA
CF

xbRAA
Diff

Aledmys Diaz 245 -0.005 -0.042 0.036 -1.329 -10.186 8.857
Trea Turner 333 0.043 0.010 0.033 14.477 3.492 10.986
Luis Valbuena 246 0.060 0.029 0.031 14.720 7.138 7.581
Freddie Freeman 347 0.132 0.102 0.030 45.803 35.235 10.568
Keon Broxton 240 0.121 0.092 0.029 29.081 22.128 6.953
Willson Contreras 281 0.094 0.065 0.029 26.396 18.341 8.054
Yasmani Grandal 311 0.048 0.020 0.028 15.008 6.297 8.712
Matt Adams 255 0.102 0.074 0.027 25.912 18.970 6.942
Xander Bogaerts 457 0.005 -0.022 0.027 2.311 -10.021 12.331
Kevin Kiermaier 282 0.030 0.003 0.027 8.475 0.947 7.527
1 Mean increase in AxbRAA was .0145
2 CF denotes the counterfactual prediction in ball environment from the first half of 2015

elite tier power and thus benefit the most from the added distance as the result of the juiced

ball.

In Table 7.5.2 are the players who had the greatest total gain from the juiced ball over the

course of the season. With the exception of Lindor who gained 9.9 expected runs above an

average batter, all players gained 10 or more runs above an average batter over the course of

the season and all posted above average benefits on a rate basis. Batters like Altuve, Galvis,

and Merrifield highlight the profile of another set of batters who can strongly benefit from

the juiced ball: those with very good bat to ball skills who put a lot of balls in play without

having a high groundball rate.

7.6 Individual Pitcher Results

In Table 7.6.1 and Table 7.6.2, we look at the pitchers from the 2017 season who had the

strongest adverse effects from the juiced ball. As is expected, both tables are dominated by

pitchers with high average launch angles, with the exception of Trevor Cahill, a groundball

pitcher who appears to have been incredibly unlucky as he posted a home run-to-fly ball ratio
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Table 7.5.2: Largest Total Benefit from Juiced Ball in 2017

Player Batted
Balls

AxbRAA AxbRAA
CF

AxbRAA
Diff

xbRAA xbRAA
CF

xbRAA
Diff

Charlie Blackmon 512 0.090 0.065 0.026 46.33 33.16 13.2
Joey Votto 482 0.092 0.066 0.026 44.23 31.87 12.4
Xander Bogaerts 457 0.005 -0.022 0.027 2.31 -10.02 12.3
Freddy Galvis 501 0.007 -0.016 0.023 3.52 -7.83 11.4
Jose Altuve 510 0.053 0.031 0.022 27.15 15.90 11.2
Trea Turner 333 0.043 0.010 0.033 14.48 3.49 11.0
Freddie Freeman 347 0.132 0.102 0.030 45.80 35.23 10.6
Whit Merrifield 506 0.030 0.010 0.021 15.43 5.04 10.4
Eric Hosmer 501 0.056 0.036 0.020 28.27 18.19 10.1
Francisco Lindor 561 0.056 0.038 0.018 31.38 21.48 9.9
1 Mean increase in AxbRAA was .0145
2 CF denotes the counterfactual prediction in ball environment from the first half of 2015

of 25% this past season when league average is about 9.5%. The fact that fly ball pitchers

have been the most harmed by the fly ball is not surprising. It is balls hit in the air that will

have the most benefits from a ball that carries further, groundballs will be largely unaffected.

The interesting thing to examine is how the breakdown of pitchers in the league will respond

to the juiced ball. If the fly balls continue produce runs at an elevated rate, we will likely

see ground ball pitchers become a more prized commodity both among already established

Major League talent and also with regard to how pitchers are drafted and developed. Like

predator and prey evolving in conjunction with one another, there is a constant co-evolution

between batters and pitchers. In recent years, the hitters have been making adjustments by

trying to hit the ball in the air more and have benefited tremendously from a juiced ball.

The balance of power has shifted dramatically in the batters favor, but as recently the first

half of 2015 the league was described as being in “the new age of mound excellence” [67]

with scoring having dropped to levels not seen since 1981. For baseball fans and analysts

everywhere watching this next step in the evolution of the league will be a fascinating one.
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Table 7.5.3: Largest Total Benefit from Juiced Ball in 2017

Player Batted
Balls

xbRAA xbRAA
CF

xbRAA
Diff

xHR CF xHR xHR Diff

Joey Votto 482 44.2 31.9 12.36 35.5 29.3 6.17
Charlie Blackmon 512 46.3 33.2 13.17 35.6 29.5 6.07
Jay Bruce 419 37.9 28.3 9.57 33.3 27.3 5.97
Freddie Freeman 347 45.8 35.2 10.57 35.9 30.2 5.69
Kyle Seager 474 27.5 18.0 9.53 30.4 25.3 5.12
Eddie Rosario 444 22.6 12.7 9.90 28.2 23.3 4.96
Justin Smoak 434 51.8 45.5 6.27 42.0 37.3 4.64
Curtis Granderson 329 19.5 10.8 8.62 25.7 21.3 4.39
Cody Bellinger 337 41.0 33.5 7.43 36.5 32.2 4.29
Matt Carpenter 377 29.3 22.7 6.58 27.4 23.3 4.11
1 Mean increase in AxbRAA was .0145
2 CF denotes the counterfactual prediction in ball environment from the first half of 2015

Table 7.6.1: Pitchers Most Hurt by the Juiced Ball on Average

Player Batted
Balls

Launch
Angle

AxpRAA AxpRAA
CF

AxpRAA
Diff

xpRAA xpRAA
CF

xpRAA Diff

Trevor Cahill 244 3.57 0.047 0.021 0.026 11.5 5.22 6.30
Dinelson Lamet 285 14.28 0.049 0.024 0.025 13.9 6.88 7.04
Hector Neris 201 16.47 0.053 0.028 0.025 10.6 5.63 4.95
Trevor Williams 455 9.41 0.033 0.009 0.024 15.2 4.27 10.94
Wade LeBlanc 210 11.06 0.065 0.042 0.023 13.6 8.88 4.76
Anibal Sanchez 343 16.67 0.078 0.055 0.022 26.6 18.90 7.72
Chris Tillman 325 12.83 0.098 0.076 0.022 31.8 24.64 7.19
Jason Hammel 602 15.68 0.069 0.048 0.021 41.5 28.61 12.86
Tom Koehler 227 12.86 0.068 0.046 0.021 15.3 10.50 4.85
Daniel Norris 324 13.92 0.074 0.053 0.021 24.0 17.23 6.79
1 Mean increase in AxpRAA was .0134
2 CF denotes the counterfactual prediction in ball environment from the first half of 2015
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Table 7.6.2: Pitchers Most Hurt by Juiced Ball Total

Player Batted
Balls

Avg
Launch
Angle

AxpRAA AxpRAA
CF

AxpRAA
Diff

xpRAA xpRAA
CF

xpRAA Diff

Jason Hammel 602 15.68 0.069 0.048 0.021 41.47 28.61 12.86
Julio Teheran 575 13.55 0.043 0.023 0.020 24.62 13.35 11.27
Jordan Zimmerman 556 16.91 0.071 0.051 0.020 39.56 28.48 11.08
Martin Perez 623 9.69 0.057 0.039 0.018 35.56 24.59 10.96
Trevor Williams 455 9.41 0.033 0.009 0.024 15.21 4.27 10.94
Justin Verlander 553 16.43 0.059 0.040 0.019 32.45 22.17 10.29
Rick Porcello 649 14.15 0.066 0.051 0.015 42.99 33.02 9.97
Ervin Santana 623 15.48 0.013 -0.002 0.016 8.16 -1.52 9.69
Jason Vargas 557 14.80 0.038 0.021 0.017 21.02 11.79 9.23
Kevin Gausman 560 11.65 0.070 0.053 0.016 38.98 29.84 9.14
1 Mean increase in AxpRAA was .0134
2 CF denotes the counterfactual prediction in ball environment from the first half of 2015
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Chapter 8

Conclusion

In conclusion, we began this work by recapping the sabermetric foundations that the rest

of the work was based on. We compared various metrics for both batters and pitchers

highlighting the strengths and weaknesses of each. We also discussed the advantages of

expected statistics. We then summarized the Statcast system and the specific Statcast data

that fueled the analysis done here.

A brief summary of the ideas and theory behind the techniques used here was presented

before introducing the batted ball classifier which serves as the backbone of the analyses done

in the remainder of the work. We evaluated the model performances for the two versions

of the classifiers in both a numeric and visual manner. In the next chapter, we used the

results of batted ball classifier to form expected statistics for evaluating batting and pitching

performance. We demonstrated that these metrics had properties superior to those of many

traditional metrics that make the expected metrics superior in some capacities for evaluating

the performance of MLB players. We also examined some of the best and worst performances

according to these metrics and paid particular attention to how players could potentially

overperform or underperform their expected statistics.

Lastly, we addressed the juiced ball and the fly ball revolution. We first summarized past
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research on the topic before presenting our novel method for predicting batted ball outcomes

in a counterfactual ball environment. We used this technique to evaluate the impact of

the juiced ball and changes in batter philosophy at both the league level and for individual

players.
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