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Throughout the Piedmont of the southeastern USA erosion has transported soil from 

ridgeline to lower landscape positions. Variations in the depth-to-argillic horizon created by 

erosion were compared between hillslopes largely undisturbed by agriculture and those with 

agricultural disturbances. Current patterns in the depth-to-argillic were quantified using soil 

boring, tile push probe, and electromagnetic induction. Soil boring and tile push showed 

approximately 40 cm more soil in the lower hillslope on historically farmed land. The depth-to-

argillic horizon was predicted using geophysical outputs and regression kriging with 69 % 

confidence. These data along with saturated hydraulic conductivity measures parameterize 

hillslope models to investigate variation in topsoil thickness on interflow processes and found 

that an increase in topsoil depth in lower slope positions may alter lower slope water storage and 

the hydrologic gradient driving interflow. This research introduces a geophysical method for 

high resolution soil mapping on previously eroded, forested landscapes.    
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CHAPTER 1 

INTRODUCTION AND LITRAETURE REVIEW 

 

This thesis investigates the impacts of erosion in the Piedmont of South Carolina that 

resulted from an era of land clearing and farming that stretched from approximately 1800-1930. 

Here I briefly provide some background for Chapter 2 that focuses on mapping the current depth 

to the argillic horizon that was altered due to this history of erosion and Chapter 3 that endeavors 

to model the impacts of a change in depth to the argillic horizon on hillslope interflow. 

 

Mapping the Depth to the Argillic Horizon 

The southeastern USA Piedmont is approximately 870 miles long and 125 miles wide, 

extending from New Jersey into Alabama and located between the Appalachian mountain range 

and the Atlantic Ocean (Golley, 2015). Prior to European settlement in the 1800s, forests 

dominated this landscape; after settlement, much of the land was largely deforested and 

converted to agriculture (Trimble, 1974). Deforestation and poor agricultural tillage practices 

largely conducted to support cotton farming, degraded soil quality in the Piedmont from 1800 to 

1930. Damaged and exposed subsurface soil led to compaction and hardening of the surface 

horizon, thus altering hydrological processes by reducing infiltration. Reduced infiltration 

coupled with a sloping landscape increased overland flow and promoted soil detachment and 

erosion (Huang et al., 2002). Accelerated erosion during the cotton farming era resulted in 

gullies that covered much of the Piedmont after the 1930s (Galang et al., 2007), which further 
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impacted sediment transportation from upland landscapes to the floodplains and eventually to 

major rivers and waterways. 

Many studies have described the characteristics of elevated sediment transport in the 

Piedmont that occurred in the cotton farming era (Trimble, 1974; Jackson et al., 2005; Walter et 

al., 2008; Wegmann et al., 2012; James, 2013). A sediment budget conducted within the 

Piedmont demonstrated that 12 cm of topsoil was lost from the entire watershed since farming 

began, and 1.6 m of sediment was deposited on the pre-settlement floodplains (Jackson et al., 

2005). These estimates are within the range of other work—using streambank height behind 

abandoned milldams to estimate sediment load—that suggests 3 to 15 cm of topsoil has been 

eroded (Wegmann et al., 2012), and 1 to 5 m of sediment has been deposited in the floodplains 

(Walter et al., 2008; James, 2013). Trimble (1974) estimated that the entire Piedmont region lost 

up to 30 cm of topsoil.  

This redistribution of topsoil has altered the depth to subsurface soil features throughout 

the Piedmont landscape but a quantitative and spatially explicit mapping of surface soil loss and 

present subsurface horizon depth has been difficult. Time and cost limit the extent that direct soil 

sampling (auguring) can be done on large landscapes, which can leave large amounts of 

landscape under-represented. The tile push probe (TPP), often used in agriculture, is a cost-

effective tool that facilitates greater spatial coverage across broader landscapes. In one instance, 

this probe was used to map changes in depth to the argillic horizon in the Piedmont of South 

Carolina where over 800 locations were examined on a 5.7 ha hillslope (Du et al., 2016). 

Although the TPP offers more coverage, this method is still time consuming and, like soil 

sampling, results in point sample data. Resources, such as the Web Soil Survey, offers easily 

retrievable soil classification information that can be accessed by numerical modelers for many 
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types of parameterization for landscape models (i.e. depth to the argillic horizon, soil textural 

classes, bulk density, etc.). Parameterization from soil classification resources my not accurately 

landscapes that have been highly eroded such as those in the Calhoun Critical Zone Observatory. 

A quick and non-invasive technique for determining detailed spatial variations in soil properties 

(i.e., depth of A or depth to B) over large areas that have been highly eroded, therefore, would be 

valuable.  

Geophysical sensing devices such as ground penetrating radar (GPR) and electromagnetic 

induction (EMI) offer non-invasive techniques that have been used in agriculture and natural 

resource mapping since the 1970s (Doolittle et al., 2014). These are popular instruments due to 

their relative cost effectiveness, and they provide insight into subsurface physical properties 

without having to penetrate the soil - giving them the capability to cover large areas within a 

short time frame. Unlike soil sampling and TPP, tens of thousands of measurements can be made 

daily with geophysical devices, leading to a higher resolution of spatial sampling in the 

landscape. The type of geophysical instrument used depends on site characteristics (i.e., relief, 

vegetation coverage, etc.) and the desired depth of investigation. The depth of investigation of a 

particular geophysical instrument is limited by the number, spacing, and frequency of the 

sensors. GPR generally has one sensor that can be set to multiple frequencies increasing the 

depth at which the measurement is taken, but each frequency measures only one depth, requiring 

multiple passes over the same area for deep profile investigation (De Benedetto et al., 2012). 

EMI can offer greater flexibility, due to the number and spacing of sensors such that multiple 

frequencies can be measured in a single pass for integrated measurements of the whole soil 

profile. In contrast to GPR that is typically pulled along the ground, EMI instruments can be held 

above the ground making it easier to navigate through low, thick understory or over fallen trees 
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and is, thus, well suited for forested watersheds. In addition, EMI devices are an indirect 

indicator of soil chemical and physical properties (i.e., clay content), and have primarily been 

used in precision agriculture to map variations in shallow soil properties for optimizing crop 

production (Sudduth et al., 2001; Corwin et al., 2003; Corwin et al., 2005; Grisso et al., 2005; 

Shanahan et al., 2015). Other studies have mapped deeper soil profiles in agricultural fields to 

predicted soil texture (clay content) with depth using EMI (Rhoades et al., 1989; Sudduth et al., 

2003; Sudduth et al., 2010; Heil et al., 2012; White et al., 2012). 

Saey et al. (2011) found that a DUALEM-21S could predict the depth to the top of the 

argillic horizon with 95 % confidence using the cumulative depth response curve (CRC) method 

on a homogenous loess capped argillic horizon in Belgium. In the Piedmont, the absence of a 

distinct and uniform interface between topsoil and subsoil, as in Belgium, may create some 

measurement difficulties of depth to the argillic horizon in these heterogeneous soils (Li et al., 

2010). On the other hand, Sudduth et al. (2013) found that geophysical sensing measurements 

that had large (≥ 3.3 mS/m) standard deviations proved beneficial when fitting a response curve 

and predicting depth-to-clay. Also, it may be possible that the absolute depth of the argillic may 

affect the prediction ability as the response of the geophysical sensing devices generally declines 

with depth (McNeill, 1980). For example, a previous study in the farmlands of the Tertiary hills 

of Southern Germany where clays are surficial (i.e., <50 cm) used linear regression to predict 

clay content with 76 % confidence using electrical conductivity (Heil et al., 2012). In contrast, 

working in deeper Vertisols on floodplains in New South Wales, Australia clay content was only 

32 % correlated with inverse EMI data (Triantafilis et al. 2013a, b). Little work with geophysical 

sensing has been done in upland forested Piedmont landscapes; one study showed that percent 

clay in the top 30 cm was 73 % correlated with geophysical sensing data on Mollisol covered 
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hillslopes of Reynolds Mountain Experimental Watershed in Idaho (Robinson et al., 2008). 

Chapter 2 of this thesis aimed to improve our understanding of erosion on sediment 

redistribution in upland forested Piedmont hillslopes by mapping spatial variations in the depth 

to the argillic horizon. Since the depth to the argillic horizon, within the CCZO and across the 

Piedmont, has been disturbed by agriculture practices, these landscapes may not be accurately 

represented by resources such as the Web Soil Survey. When parameters such as the depth to the 

argillic horizon are extracted from the Web Soil Survey for model parameterization the model 

again may not represent landscapes and lead to error in model estimations. Therefore, the 

potential use of geophysical sensing (specifically EMI) was investigated as an accurate and 

efficient means of measuring the depth to the argillic horizon in this forested landscape. I 

hypothesized that: 1) the mean depth to the argillic horizon would be shallower along the ridges 

and deeper throughout lower slopes in the historically farmed landscapes than in the undisturbed 

reference landscapes, and 2) geophysical sensing using a dual- receiver EMI would be an 

accurate (R2 ≥ 0.60) means for predicting depth to the argillic horizon on upland forested soils 

with a history of farming. I tested these hypotheses by measuring the depth to the argillic using 

direct soil auguring, TPP, and dual- receiver EMI across upland forest soils of the South Carolina 

Piedmont, which contain both land areas that have been previously farmed and a few that, 

although the trees were previously harvested, were relatively undisturbed. 

 

Hillslope Hydrology 

Based on the observed differences in depth to the argillic horizon in reforested and 

reference hillslopes described in Chapter 2 of this thesis I tried to quantify, through model 

simulation, how these differences might influence hillslope hydrology. Hillslope hydrology of 
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the Piedmont typically involves an argillic horizon with low permeability causing high lateral 

flow (on top of or within the argillic horizon) in periods of high precipitation (Dreps, 2011). 

Accelerated erosion in this region has resulted in soil redistribution from upper to lower 

landscape positions (Gabbard et al., 1998), compared to landscapes with minimal agricultural 

disturbance which tend to have a nearly consistent depth of topsoil. Such redistribution is rarely 

accounted for in efforts to model hillslope and watershed hydrology.  

Numerical models of hillslope and watershed hydrology typically have estimated topsoil 

thickness either from soil classification maps (Dialynas et al., 2016) or digital elevation models 

(Quinn et al., 1991; Paniconi et al., 1993), or they have approximated a topsoil thickness parallel 

to the soil surface (O'loughlin, 1981; Jackson et al., 2014). To quantify hillslope interflow, these 

approximations may lack sufficient spatial detail and may not accurately represent non-uniform 

subsoil topographies where different zones of interflow occur on low permeability, argillic 

horizons (Du et al., 2016). Studies have shown that non-parallel topographies of hydraulically 

limiting subsoil can cause variation in water content along the hillslope (i.e. perched water table) 

as opposed to uniform topsoil thicknesses, which creates infrequent interflow events (Chaplot et 

al., 2003; Ali et al., 2011; Du et al., 2016). Therefore, a spatially explicit hillslope model 

containing a non-uniform topsoil thickness could create zones of interflow that are different than 

current estimates that use uniform topsoil thickness to argillic horizons.  

Chapter 3’s objective was twofold. First, I quantified differences in field saturated 

hydraulic conductivity across Piedmont landscapes with evidence of historic farming and erosion 

(non-uniform depth to clay) relative to others that did not show evidence of farming (uniform 

depth-to-clay). Second, I used these measurements as well as other site characteristics (i.e. depth-

to-argillic, root distribution, climate data) to parameterize two HYDRUS 2D computational 
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models, one for each depth-to-clay scenario (uniform and non-uniform). A comparison of the 

hillslope hydrology between uniform and non-uniform models was conducted with particle 

tracking (to visualize interflow pathways), variations in water content, and a water budget at the 

end of a two-year simulation to determine net soil water storage. I hypothesized that interflow 

would be higher in the uniform depth-to-clay hillslope and soil water storage would be lower due 

to the thinner topsoil thickness at the toe-slope, compared to the non-uniform depth-to-clay 

model.  
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MAPPING DEPTH TO THE ARGILLIC HORIZON ON HISTORICALLY FARMED SOIL IN 

THE SOUTHEASTERN USA PIEDMONT¾ 
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Abstract 

The Piedmont region of the southeastern United States experienced a period of 

accelerated erosion in the 1800s. Clear-cutting of the forests coupled with soil tilling and 

inadequate erosion control practices led to substantial soil redistribution and loss. This 

redistribution exposed the subsoil clay (argillic) horizon in many locations and adversely altered 

the hydrologic processes across the landscape. Understanding current hydrologic and 

biogeochemical processes in this landscape requires an accurate assessment of this soil re-

distribution and the current depth to the argillic horizon. To achieve this mapping, the depth to 

the argillic horizon was measured in highly eroded (historically farmed) and undisturbed 

hillslopes (reference areas). In addition to directly measuring the depth to the argillic by soil 

auguring, and tile push probing we made geophysical measurements via electromagnetic 

induction (EMI) to assess our ability to predict the depth to the argillic horizon remotely. 

Combining these measurements with site topographic characteristics (i.e. landscape position, 

aspect, percent slope) we generated predictive models of the depth to the argillic horizon. Direct 

measures indicated that historically farmed watersheds, although reforested since the 1930s, had 

significant soil redistribution present (p-value = 0.0521) in the toe-slope position compared to 

reference landscapes which had fairly consistent depths. Our data suggests geophysical sensing 

is an efficient means of predicting depth-to-clay on previously farmed sites when combined with 

landscapes feature characteristics (R2 = 0.69); however, caution should be used when selecting 

these characteristics, as they may not represent all land use types.



	

14	

Introduction   

The southeastern USA Piedmont is approximately 870 miles long and 125 miles wide, 

extending from New Jersey into Alabama and located between the Appalachian mountain range 

and the Atlantic Ocean (Golley, 2015). Prior to European settlement in the 1800s, forests 

dominated this landscape; after settlement, much of the land was largely deforested and 

converted to agriculture (Trimble, 1974). Deforestation and poor agricultural tillage practices 

largely conducted to support cotton farming, degraded soil quality in the Piedmont from 1800 to 

1930. Damaged and exposed subsurface soil led to compaction and hardening of the surface 

horizon, thus altering hydrological processes by reducing infiltration. Reduced infiltration 

coupled with sloping landscape increased overland flow and promoted soil detachment and 

erosion (Huang et al., 2002). Accelerated erosion during the cotton farming era resulted in 

gullies that covered much of the Piedmont after the 1930s (Galang et al., 2007), which further 

impacted sediment transportation from upland landscapes to the floodplains and eventually to 

major rivers and waterways. 

Many studies have described the characteristics of elevated sediment transport in the 

Piedmont that occurred in the cotton farming era (Trimble, 1974; Jackson et al., 2005a; Walter et 

al., 2008; Wegmann et al., 2012; James, 2013). A sediment budget conducted within the 

Piedmont demonstrated that 12 cm of topsoil was lost from the entire watershed since farming 

began, and 1.6 m of sediment was deposited on the pre-settlement floodplains (Jackson et al., 

2005a). These erosion estimates are within the range of other work—using streambank height 

behind abandoned milldams to estimate sediment load—that suggests 3 to 15 cm of topsoil has 

been eroded (Wegmann et al., 2012), and 1 to 5 m of sediment has been deposited in the 
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floodplains (Walter et al., 2008; James, 2013). Trimble (1974) estimated that the entire Piedmont 

region lost up to 30 cm of topsoil.  

This redistribution of topsoil has altered the depth to subsurface soil features throughout 

the Piedmont landscape but a quantitative and spatially explicit mapping of surface soil loss and 

present subsurface horizon depth has been difficult. Time and cost limit the extent that direct soil 

sampling (auguring) can be done on large landscapes, which can leave large amounts of 

landscape under-represented. The tile push probe (TPP), often used in agriculture, is a cost-

effective tool that facilitates more spatial coverage across broader landscapes. In one instance, 

this probe was used to map changes in depth to the argillic horizon in the Piedmont of South 

Carolina where over 800 locations were examined on a 5.7 ha hillslope (Du et al., 2016). 

Although the TPP offers more coverage, this method is still time consuming and, like soil 

sampling, results in point sample data. A quick and non-invasive technique for determining 

detailed spatial variations in soil properties (i.e., depth of A or depth to B) over large areas, 

therefore, would be valuable.  

Geophysical sensing such as ground penetrating radar (GPR) and electromagnetic 

induction (EMI) offer non-invasive techniques that have been used in agriculture and natural 

resource mapping since the 1970s (Doolittle et al., 2014). These are popular instruments due to 

their relative cost effectiveness, and they provide insight into subsurface physical properties 

without having to physically penetrate the soil - giving them the capability to cover large areas 

within a short time frame. Unlike soil sampling and TPP, tens of thousands of measurements can 

be made daily with geophysical devices, leading to a higher resolution of spatial sampling in the 

landscape. The type of geophysical instrument used depends on site characteristics (i.e., relief, 

vegetation coverage, etc.) and the desired depth of investigation. The depth of investigation of a 
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particular geophysical instrument is limited by the number, spacing, and frequency of the 

sensors. GPR generally has one sensor that can be set to multiple frequencies increasing the 

depth at which the measurement is taken, but each frequency measures only one depth, requiring 

multiple passes over the same area for deep profile investigation (De Benedetto et al., 2012). 

EMI can offer greater flexibility, due to the number and spacing of sensors, such that multiple 

frequencies can be measured in a single pass for integrated measurements of the whole soil 

profile. In contrast to GPR that is typically pulled along the ground, EMI instruments can be held 

above the ground making it easier to navigate through low, thick understory or over fallen trees 

and is, thus, well suited for forested watersheds. In addition, EMI devices are an indirect 

indicator of soil chemical and physical properties (i.e., clay content), and have primarily been 

used in precision agriculture to map variations in shallow soil properties for optimizing crop 

production (Sudduth et al., 2001; Corwin et al., 2003; Corwin et al., 2005; Grisso et al., 2005; 

Shanahan et al., 2015). Other studies have mapped deeper soil profiles in agricultural fields to 

predicted soil texture (clay content) with depth using EMI (Rhoades et al., 1989; Sudduth et al., 

2003; Sudduth et al., 2010; Heil et al., 2012; White et al., 2012) 

This study aimed to improve our understanding of erosion on sediment redistribution in 

upland forested Piedmont hillslopes by mapping spatial variations in the depth to the argillic 

horizon. We sought to assess the potential use of geophysical sensing (specifically EMI) as an 

accurate and efficient means of measuring the depth to the argillic horizon in this forested 

landscape. We hypothesized that: 1) the mean depth to the argillic horizon would be shallower 

along the ridges and deeper throughout lower slopes in the historically farmed landscapes than in 

the undisturbed reference landscapes, and 2) geophysical sensing using a dual- receiver EMI 

would be an accurate (R2 ≥ 0.60) means for predicting depth to the argillic horizon on upland 
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forested soils with a history of farming. We tested these hypotheses by measuring the depth to 

the argillic using direct soil auguring, TPP, and dual- receiver EMI across upland forest soils of 

the South Carolina Piedmont, which contain both land areas that have been previously farmed 

and a few that, although the trees were previously harvested, were relatively undisturbed. 

 

Methods  

Study Site  

The Calhoun Critical Zone Observatory (CCZO) is located within the Sumter National 

Forest, in the Piedmont region of South Carolina (Figure 2.1). The CCZO mission involves a 

collaborative effort to evaluate the influence of past anthropogenic activities on soil degradation 

and how these ecosystems have evolved since agricultural abandonment (Richter et al., 2015). 

The formerly hardwood ecosystem was clear-cut and tilled for agricultural purposes in the early 

1800s, resulting in soil degradation and high erosion rates. Eventually, for a range of natural, 

economic, and social factors, these agricultural lands were abandoned (Coughlan et al., 2017). In 

the 1930s much of the area within the CCZO that was previously degraded by agricultural use 

was abandoned. Since abandonment, natural reforestation has occurred and some areas were 

planted in pine, which currently covers most of the landscapes; these efforts have improved soil 

quality (Richter et al., 2001; Richter et al., 2015).  

Land use history in the CCZO has been partly reconstructed from land deeds and aerial 

photographs (Richter et al., 2001; Coughlan et al., 2017). Some agricultural clearings can be 

identified on 1933 aerial photographs of the CCZO taken near the time of abandonment (circa 

1950) (Brecheisen et al., 2015). Similarly, certain areas of forested hardwoods during that time 

are visible, and combined with recent high-resolution (1 m2) LIDAR (NCALM, 2016) indicate a 
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history lacking agriculture and gulley erosion. From this information, two watersheds 

(Watershed 3 and 4 and hereafter referred to as “historically farmed”) that were previously 

cleared for agriculture and part of an erosion control study in the 1950s (Metz, 1958) and three 

hillslopes (Reference 2, 4, or 9 and hereafter referred to as “references”) that were under 

hardwood forest and have been minimally disturbed were identified for this study. There was an 

absence of terracing in both land use types. The typical soil order for these watersheds is Ultisols 

with minor inclusions of Alfisols, which in an un-eroded state both have a sandy surface horizon 

with a clay subsoil; soil series include Cecil, Madison and Wilkes (Richter et al., 2000).  

 

Soil Sampling  

Soil borings were used to investigate the spatial variations in the depth-to-argillic layer. 

The soil profiles were augured to 200 cm and sampled at seven depth intervals (0-7.5, 7.5-15, 15-

35, 35-60, 60-100, 100-150, and 150-200 cm) based on prior studies within the area or until the 

argillic horizon was reached (Richter et al., 1994; Richter et al., 2000). Soil samples were 

collected along transects following the hillslope profile within reforested and reference 

landscapes. The transects were distributed from north to south and oriented perpendicular to the 

direction of stream flow. Three transects were evaluated in each watershed (upstream, 

midstream, and downstream) with 10 sample locations per transect and three sample locations on 

each reference hillslope (Figure 2.2). In total, 82 cores were collected along the hillslopes within 

each watershed, and 9 from the reference hillslopes. Particle size analysis following the methods 

of Gee et al. (2002) determined clay content for each sample depth collected. Detailed particle 

size data for this research can be found at Ryland (2017). Organic matter was not removed from 

surface soil samples prior to particle size analysis as the removal of organic matter did not 



	

19	

significantly change the samples clay percentage (See APPENDIX A) The depth-to-argillic 

horizon by landscape position was tested for significant differences between land use types by T-

test comparison (JMP®, Version Pro 13.0.0. SAS Institute Inc., Cary, NC, 1989-2007). 

 

Tile Push Probes 

In addition to bored soil samples, the depth-to-argillic layer was determined via TPP at 

223 locations within each watershed and 52 locations in reference areas (Figure 2.2). The TPP 

was calibrated by estimating the depth to the argillic horizon next to all bored soil samples prior 

to augering. The TPP are 1 to 2 m in length and consist of a thin steel rod with a sharpened end. 

Like a penetrometer, the TPP are sensitive to changes in soil density as it is pushed into the 

ground, TPP exert a high resistance when the tip of the probe is at the argillic interface. The TPP 

were pressed into the ground with 3 to 5 replications within an approximately 8.0 cm diameter 

circle, and the deepest probe depth was recorded as the depth to the argillic horizon (Du et al., 

2016). Both the soil borings and push probe data were geo-referenced with an Archer 2 GPS unit 

(Juniper System Inc., Logan, UT, USA) 

 

Electromagnetic Induction Survey and Instrumentation 

Detailed measurements of soil electrical conductivity were taken using an 

electromagnetic induction (EMI) sensor. A Dualem-21S EMI instrument (Dualem Inc., Milton, 

ON, Canada) was utilized to record the apparent electrical conductivity of the soil in each 

watershed and hillslope. Apparent electrical conductivity of bulk soil is a function of many soil 

properties, such as bulk density and cation exchange capacity, but in this environment it is 

primarily responsive to soil moisture and clay content (Weller et al. 2007; Robinson et al., 
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2008). Clay soil contains a higher moisture content than sandier textures, therefore, the electrical 

conductivity will be higher in clay-rich soils. The EMI sensor was carried at a height of 40 cm 

above the ground along transects from ridge to toe-slope at 5 to 7 m contours across the 

watershed (Figure 2.2).  

The Dualem 21S EMI utilizes a transmitter that sends a high frequency (9000Hz) eddy 

current into the soil where it interacts with various soil properties (i.e. texture, moisture, 

temperature, etc.) that induce a secondary current (Doolittle et al., 2014). This secondary current 

is detected by two receivers (i.e., dual-receiver) located at 1.0 m and 2.0 m spacing along the 

instrument’s horizontal axis. Each receiver has two coil orientations, perpendicular geometry (P1 

and P2) and a horizontal co-planar (H1 and H2) geometry. This quadruple configuration allows 

for a high resolution of the apparent electrical conductivity within the soil profile up to 3.0 m in 

depth, depending on instrument height above the ground. The secondary current is detected by 

the receiver(s) as low induction numbers (LIN), which corresponds to the apparent electrical 

conductivity of the soil (McNeill, 1980). LIN data were logged using an Archer 2 GPS unit 

(Juniper System Inc., Logan, UT, U.S.A.) with SensorTrac and handheld Geographic 

Information Systems software (StarPal, Fort Collins, CO, U.S.A.).  

 

Ordinary Kriging and Cross Validation 

Electrical conductivity data, collected by the EMI instrument, was kriged into continuous 

surfaces, this was to ensure overlap between electrical conductivity data and sampling points 

from soil boring and TPP. Electrical conductivity was extracted at each sampling point and later 

used for regression purposes. Prior to kriging, electrical conductivity data generated with the 

EMI were filtered to remove negative values, which represent background interference, as well 
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as high values that are outliers and presumed to be unseen metal (e.g. pin flags, bullet casings). 

The average upper limit for high values was 10.9 mS m-1 but this limit changed slightly with 

each orientation of the EMI sensor (i.e., 3.4 to 27.5 mS m-1). This filtering resulted in the 

removal of 17 % of the raw data before analysis.  

Using these filtered data, the distribution was evaluated for normality and log 

transformed prior to kriging if needed. Twenty ordinary kriged surfaces were created for this 

study, representing the four orientations of the EMI sensors (P1, P2, H1, and H2) in each of the 

five different study areas (Watersheds 3 and 4 and Reference Hillslopes 2, 4 and 9). Ordinary 

kriging of the geophysical sensing data was conducted using the Geostatistical Wizard tool in 

ArcGIS (ESRI, Redlands, CA, USA). Assumptions for ordinary kriging include a spherical semi-

variogram model with anisotropy and directionality. The lag size and lag number varied with 

each prediction map as the size of the study area changed depending on the site. Generally, the 

farthest distance between geophysical sensing transects were determined by the measuring tool 

in ArcGIS, and the lag size was approximately half that distance. Cross validation, using 10 % of 

the geophysical sensing data, of the twenty ordinary kriged surfaces was conducted to test model 

performance. Overall, the ordinary kriging was a good fit, and provided accurate results for 3 of 

the 4 EMI sensor orientations as well 4 of the 5 study sites (APPENDIX B).  

Soil boring and TPP locations were overlaid on these kriged surfaces and electrical 

conductivity values from all orientations were obtained using the extraction tool in ArcGIS. The 

measurements of depth-to-argillic from soil boring and TPP along with the extracted EMI 

measurements formed the basis of the cumulative response curve, multivariate regressions, and 

regression kriging approaches described below. 
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Analysis of Geophysical Sensing 

The depth to the top of the argillic horizon was predicted using a cumulative depth 

response curve (CRC, a power function) that relates the depth to the top of the argillic horizon to 

electrical conductivity measurements (Saey et al., 2011). Parameters 𝛼	and 𝛽	in the power 

function were empirically determined by minimizing the sum of squared differences between the 

observed and predicted depths to the top of the argillic horizon. The cumulative response 

function for the horizontal co-planar (H1 and H2) EMI orientations is shown below: 

 

𝑅, = 𝛼, ∙ 𝑒
012∙(

34567
8 )        Equation 3.1 

 

with 𝑅, representing the response of the electrical conductivity reading above the depth of clay 

(𝑍:;<=) for the horizontal co-planar EMI orientation with instrument spacing 𝑆. Unknown 

exponential parameters 𝛼, and 𝛽, are solved for by an iterative process.  

In addition to the single variate CRC method, a multivariate ordinary least square 

regression (OLS) was utilized for regression kriging purposes (Hengl et al., 2007). In regression 

kriging, as a first step, a multivariate linear regression is developed to explain variation in the 

dependent variable of interest (e.g., depth-to-argillic) based on available independent variables 

(Worsham et al., 2012). In this study, the independent variables included all the EMI orientations 

(i.e., P1, P2, H1, H2) as well as logically derived conductivity variables, in other words deeper 

conductivity measures minus shallower measures (i.e., H1-P1, P2-P1, H2-P1, P2-H1, H2-H1, 

and H2-P2). Finally, slope, aspect, and landscape position (i.e., ridge, shoulder, mid-slope, toe-

slope, and foot-slope) extracted from a DEM (resolution 1 m2) for the measured areas were all 

included in the multivariate regression. 
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Using these variables, a multivariate regression model was developed for each land use 

type: historically farmed watersheds and reference hillslopes. A p-value of ≤ 0.15 was used to 

allow explanatory variables into the model and R2 ≥ 0.60 was the criteria used to suggest a 

model had meaningful predictive utility. Regression equations were determined in the GeoDa 

spatial software package (The University of Chicago, Illinois, U.S.A). Based on the multivariate 

regressions for the different land uses, prediction residuals were obtained for each soil boring or 

TPP measurement within each site. 

  These site and location-specific residuals as well as the other significant explanatory 

variables were imported into ArcGIS (ESRI, Redlands, CA, U.S.A.) and kriged (i.e., residual – 

simple kriging, landscape position – indicator kriging, and EMI outputs – ordinary kriging) to 

create rasters with a cell size of 1 m2 that could be used for prediction. The raster calculator tool 

within ArcGIS was then used to run the multivariate regression model to predict depth-to-argillic 

and then added or subtracted to the residual prediction error to generate a final prediction map 

for each site.   

 

Results 

Soil Sampling and Tile Push Probe 

The depth to the argillic horizon, determined by TPP, correlated strongly with soil boring 

observations for historically farmed watersheds (R2 = 0.74); however, the TPP underestimated 

the depth to the argillic layer whenever the layer was deeper than 100 cm. In reference 

landscapes, a similar relationship exists but with a weaker correlation (R2 = 0.66; Figure 2.3). 

The mean depth to the argillic horizon by landscape position as measured by TPP and observed 

by soil borings in the field for historically farmed watersheds and in reference hillslopes differed 
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(Table 2.1). The depth to the argillic horizon in the historically farmed landscapes ranged from 

26 (± 2.36) to 87 (± 12.38) cm while in the reference hillslopes only ranged from 30 (± 3.09) to 

48 (± 12.50) cm (Table 2.1). The standard deviation in depth to the argillic horizon for 

historically farmed sites increased from ridge to toe-slope. In the reference landscapes, however, 

the standard deviation decreased from ridge to mid-slope and increased again to toe-slope. Soil 

boring and TPP measures indicated that historically farmed watersheds had significantly 

redistributed soil in the mid-slope (p-value = 0.0012) and toe-slope (p-value = 0.0521) landscape 

position compared to reference hillslopes with fairly consistent depths-to-argillic (Figure 2.4).  

 

Analysis of Geophysical Sensing 

The CRC method could not be successfully applied to the reference hillslopes as there 

was minimal variation in the depth to the argillic horizon such that the response curve was flat 

and poorly fit the data. In the historically farmed landscapes, the H2 orientation had the best 

relationship between the geophysical sensing data and depth-to-clay, thus a CRC was created for 

the 2 m horizontal co-planar sensor (H2) (Figure 2.5). The optimal fit for the power function 

parameters, 𝛼, and 𝛽,, from minimizing the sum of squared difference between predicted and 

observed depth to the argillic result in the following CRC function:   

 

𝑅, = 11.006 ∙ 𝑒0D.EFD	∙	(
34567
G )       Equation 3.2 

 

In spite of Equation 3.2 having the best CRC fit, the predicted depths to the top of the argillic 

horizon correlated poorly with the observed depth with an R2 = 0.31 (Figure 2.6). Overall, the 

response function (Equation 3.2) underestimates the depth to the top of the argillic horizon. The 
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CRC method was also applied at the U.S. Department of Energy’s Savannah River Site, 

however, results showed that there was not enough variation in the depth to the argillic horizon 

for the method to be successful (see APPENDIX C). 

In the multivariate approach, land-use was determined to be a significant variable 

(<0.0001) in predicting the depth to the argillic horizon; therefore, a model was created for each 

land use type (Table 2.2 and 2.3). Both land use models (Table 2.2 and 3.3) included other 

significant explanatory variables including slope and landscape position along with geophysical 

sensing data. For Watershed 3 and 4, soil borings and TPP data were originally pooled to predict 

depth-to-clay; however, the resulting regression including other landscape features was not a 

strong predictor (R2 = 0.28). A significant prediction model using soil core data alone (not 

pooled soil core and TPP data), with other landscape features, for Watershed 3 and 4 (n = 54) 

was able to explain 66 % of the variation in the depth-to-argillic horizon (Table 2.2). When this 

model was applied to Watershed 3 and 4 separately the R2 increased to 70 % in both watersheds. 

In the reference hillslopes, the pooled data with the soil boring and TPP data (n = 86) resulted in 

a model that only explained 24 % of the variability in the depth to the argillic horizon (Table 

2.3). When the model was fit to each reference site separately it explained 65, 52, and 20 % of 

the variation for Reference 2, 4, and 9, respectively.  

The final approach in analysis used the residuals from the above multivariate models to 

create site specific residual maps that were used in the regression kriging (RK) process to create 

predicted depth-to-argillic maps (Figures 2.7 and 2.8). The maps generated for the historically 

farmed sites had a larger range in depths (16 to 88 cm) relative to the reference hillslopes (23 to 

39 cm) and showed shallower depths to the argillic horizon along the ridges and deeper in the 

floodplains. The maximum predicted depths using RK for historically farmed and reference sites 
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(88 and 39 cm, respectively) are similar to the average maximum observed depths of 87 ± 12 and 

48 ± 12 cm, respectively (Table 2.1). A cross validation of the observed vs RK predicted depth to 

clay showed a slight increase in prediction accuracy compared to multivariate regression alone in 

reference hillslopes with an R2 = 0.27 but a one percent decrease in prediction accuracy with an 

R2 = 0.69 for previously farmed watersheds (Figure 2.9).  

 

Discussion 

Soil Sampling and Tile Push Probe 

One objective for this research was to quantify the spatial variation in the depth to the 

argillic horizon within landscapes that had and had not been impacted by historical farming. Due 

to the strong correlation (R2 = 0.74) between soil boring and TPP, the combined techniques 

allowed for an extensive investigation of the spatial variation in the depth to the argillic horizon 

along hillslope profiles. Direct measures indicated that historically farmed watersheds, although 

reforested since the 1930s, had a substantially redistributed soil in the mid-slope and toe-slope 

landscape position compared to reference hillslope with fairly consistent depths (Figure 2.4).  

Previous studies investigating the depth to the argillic horizon in different land uses, in 

both the Coastal Plain and Piedmont have found comparable results to our study. For example, a 

study conducted on a first order forested upland watershed with similar soils (Tifton series) 

showed the depth to the argillic horizon in a historically farmed watershed increased towards the 

stream channel with approximately 50 cm of deposited soil, and undisturbed landscapes had an 

average depth to clay of 58 cm (Lowrance et al., 1984). Several studies conducted in the 

Piedmont have shown 1 to 5 m of accumulated sediment present in floodplains of first to third 

order watersheds since the cotton farming era (Trimble, 1974; Jackson et al., 2005b; Walter et 
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al., 2008; James, 2013). Our results support a lower slope deposition of farming era sediment, 

although this study found smaller thicknesses than previous estimations with an average of 40 

cm more sediment in farmed toe-slopes compared to reference hillslopes (Table 2.1).  

 

Analysis of Geophysical Sensing 

A second objective was to determine the potential use of a geophysical sensing technique 

(EMI) as an accurate and efficient means to predict the depth-to-argillic horizon on upland, 

Piedmont landscapes. Clay soil contains a higher moisture content than sandier textures; 

therefore, the clay-rich subsoil should be distinguishable due to an expected higher electrical 

conductivity (Grisso et al., 2005). We questioned if geophysical sensing would be able to 

describe at least 60 % of the variation in the depth to the argillic layer on these soils. Our results 

showed that electrical conductivity alone was not a strong predictor of the depth to the clay layer 

(R2 = 0.31), although the strength of the prediction increased with the addition of other landscape 

features variables (i.e., slope, and landscape position) (R2 = 0.69; Figure 2.6 and 2.9). 

Saey et al. (2011) found that a DUALEM-21S could predict the depth to the top of the 

argillic horizon with 95 % confidence using the CRC method on a homogenous loess capped 

argillic horizon in Belgium. When using the CRC method with our data, however, we predicted 

the clay horizon with 31 % confidence (Figure 2.6). This discrepancy could be explained by the 

heterogeneous nature of the Piedmont soils (Li et al., 2010) and the absence of a distinct 

interface between top and subsoil, an important factor in the CRC method. Another possible 

explanation could be the effect of the geophysical data variability on the fit of the CRC model 

(i.e. power function parameters 𝛼, and 𝛽,). Sudduth et al. (2013) removed geophysical sensing 

measurements that had large (≥ 3.3 mS/m) standard deviations from the dataset, which proved 
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beneficial when fitting the response curve and predicting depth-to-clay; this approach was not 

implemented in this study. It may be possible that depth affects the prediction outcome as the 

response of the geophysical sensing device declines with depth (McNeill, 1980). For example, a 

previous study using linear regression between electrical conductivity and clay content was 

conducted on farmlands within the heterogeneous landscapes of the Tertiary hills of Southern 

Germany where surficial clay (i.e., <50) was predicted with 76 % confidence (Heil et al., 2012).  

In comparison, in deep Vertisols on floodplains of New South Wales, Australia clay content was 

only 32 % correlated with inverse EMI data (Triantafilis et al. 2013a, b). Little work with 

geophysical sensing has been done in upland forested landscapes, although one study showed 

that percent clay in the top 30 cm correlated 73 % with geophysical sensing data on Mollisol 

hillslopes of Reynolds Mountain Experimental Watershed in Idaho (Robinson, 2008). 

Predictions of clay content using geophysical sensing alone varied depending on soil 

type, depth of investigation, and land cover. However, it may be expected that some variation in 

spatial predictions can be improved with additional variables of landscape features (Hengl et al., 

2007). By adding landscape features easily extracted from DEM files to geophysical sensing 

outputs, our models showed an increase in prediction capability of depth to clay from 31 % 

(CRC method, Figure 2.6) to 69 % (RK method) in previously farmed watersheds (Figure 2.9). 

However, this was not observed in reference hillslopes, where a slight increase in prediction 

capability from 24 % (OLS method, Table 2.3) to 21 % (RK method, Figure 2.9) occurred. The 

landscape variables chosen (e.g., slope %) for this study were successful predictors within 

previously farmed watersheds and may reflect the overland flow and erosion process driving soil 

redistribution. However, in the reference hillslopes where there was a relatively constant depth to 

clay other soil properties such as underlying geology or porosity might be better predictors. 
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Correlating soil predictors with land use history was demonstrated in one study that used RK of 

pH with clay content to predicted previous land use (Braimoh et al., 2005).  This study found that 

for predicting pH the variables of clay content, CEC, and soil color were important but only in 

the case of the soil being under native vegetation but not under cropland (Braimoh et al., 2005). 

In the current study, RK did generally perform well in predicting the variation in depth-of-clay, 

which was larger in the historically farmed versus reference values. Additionally, the results of 

the RK predicted maximum depths to the argillic layer that were similar to those reported for 

each land use (Table 2.1).               

 

Conclusion 

We hypothesized that the mean depth to the argillic horizon would be shallower along the 

ridges and deeper throughout floodplains in the historically farmed landscapes than in the 

undisturbed reference landscapes due to poor land use practices in the watersheds (i.e., tilling 

and the lack of erosion control). Our results provide support for a redistribution of soil and 

deposited sediment in lower slopes of previously farmed areas.  This study, however, found 

thinner sediments in lower slopes than previous estimates. Direct depth-to-clay measurements 

are ideal, but they are labor intensive and result in point specific data rather than a continuous 

surface. Although geophysical sensing devices offer more spatial coverage, caution should be 

used when extrapolating to different landscapes, as statistical prediction models may not 

represent all land use types. Use of EMI with the addition of landscape feature characteristics 

(i.e., slope, and landscape position), in this study in the upland Piedmont, appeared limited when 

predicting landscapes with uniform depth-to-clay (reference areas) but suggested geophysical 
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sensing is an efficient means of predicting larger variations in depth-to-clay such as those found 

on previously farmed sites. 
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Table 2.1: Mean depth to the argillic horizon as measured by tile push probe and observed from 
field soil cores (cm) for historically farmed and reference sites by landscape position in the 
Calhoun Critical Zone Observatory, SC. Data is represented as an average ± standard deviation 
(SD).  

Landscape 
Position 

Historically Farmed Watersheds 
  

Reference Hillslopes 
  

 
Push Probe  Soil Cores Push Probe Soil Cores 

N = 223 N = 82 * N = 52 N = 8 ** 
(cm ± SD) (cm ± SD) (cm ± SD) (cm ± SD) 

Ridge 26 ± 2.36 30 ± 3.09 34 ± 1.78 45 ± 12.78 
Shoulder 33 ± 2.18 40 ± 3.54 30 ± 1.23 . 
Mid-slope 44 ± 3.24 43 ± 5.46 30 ± 1.03 37 ± 1.67 
Foot-slope 49 ± 4.42 71 ± 7.34 30 ± 0.86 . 
Toe-slope 59 ± 7.50 87 ± 12.38 34 ± 5.91 48 ± 12.50 

* 19 additional soil cores had no evidence of an argillic horizon to 200 cm.  
** One additional core had no evidence of an argillic horizon to 200 cm.  
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Table 2.2: Ordinary least squared regression used to predict the depth-to-clay (from soil core 
data) for two historically farmed landscapes (Watershed 3 and 4) within the Calhoun Critical 
Zone Observatory, SC. Variables for the model included: slope, landscape positon and 
geophysical output data (EMI), with the addition of site specific residuals for regression kriging 
purposes (R2 = 0.66).   
 

Variable Coefficient Stand. Error 

Constant  42.5371 8.50441 
Slope (%) 1.10412 0.232 

Ridge -29.7855 6.76652 
Shoulder -26.2071 6.50691 

Mid Slope -16.8688 6.13057 
(H2-P2) + 6 1.75754 1.31129 

Residual     
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Table 2.3: Ordinary least squared regression used to predict the depth-to-clay (using soil core 
and tile push probe data) for three reference hillslopes (Reference 2, 4, and 9) in the Calhoun 
Critical Zone Observatory, SC. Variables for the model included: slope, landscape position, 
geophysical output data (EMI), with the addition of site specific residuals for regression kriging 
purposes (R2 = 0.24).  
 

Variable Coefficient Stand. Error 
Constant 33.3001 4.42821 
Slope (%) -0.224102 0.108637 

H2 -1.4439 0.438051 
(H2-H1) +10 -0.625756 0.401208 

Ridge 9.86033 3.10772 
Shoulder 5.88184 3.16284 

Mid Slope 7.5026 2.93936 
Foot Slope 7.48241 3.06812 
Residual     
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Figure 2.1: The Calhoun Critical Zone Observatory research site located within the Sumter 
National Forest, South Carolina USA (GoogleMaps, 2017).  
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Figure 2.2: Soil core and tile push probe locations as well as a digital elevation model (DEM) of 
a) highly eroded, historically farmed watershed showing steep topographical relief and gullying, 
b) DEM for one of three reference hillslopes (Reference 4) with smooth topographical relief, c) 
geophysical sensing (EMI) transects in historically farmed and d) reference landscapes. 
Approximately 30,000 geophysical sensing observation points for historically farmed and 7,000 
for reference hillslopes are presented. 
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Figure 2.3: Comparison of the depth to the argillic horizon measured by tile push probe (y-axis) 
and soil auguring (x-axis) for historically farmed (triangle) R2 = 0.74, and reference hillslopes 
(circle) R2 = 0.66 (the circled measurement was removed before computing correlation). Lines 
indicate 1:1 correlation. 
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Figure 2.4: Depth to the argillic horizon along hillslope profile as observed by soil boring (black) 
and tile push probe (red) in Calhoun Critical Zone Observatory, SC for historically farmed (top, n 
= 275) and reference landscapes (bottom, n = 122). Sample size (n) for each sample at each 
landscape position is located below each boxplot. The flat ridge top is proceeded by the convex 
shoulder in the upper portions of the landscapes, and the concave foot-slope is proceeded by a flat 
toe-slope in the lower portions of the landscapes. 
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Figure 2.5: Cumulative depth response curve (orange) for EMI sensor orientation H2.  Blue dots 
represent extracted EMI values from 2015 measurements at points also measured by soil auger or 
tile push probe. Sampling was from the historically farmed Watershed 3 within the Calhoun 
Critical Zone Observatory, SC.  
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Figure 2.6: Comparison of the depth to the argillic horizon predicted by cumulative response 
curve for EMI sensor orientation H2 (y-axis) and observed depth from soil auguring (x-axis) for 
previously farmed watershed 3. Line indicates 1:1 correlation, best fit line R2 = 0.31.
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Figure 2.7: Predicted depth to the argillic horizon maps created using regression kriging for 
previously farmed watersheds in the CCZO, SC. 
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Figure 2.8: Predicted depth to the argillic horizon maps created using regression kriging for three 
reference hillslopes in the CCZO, SC. Arrows point towards downslope.  
 
 
 
 
 
             
           
 
 
 
 
 
 
 
 
 
 



	

48	

 
Figure 2.9: Comparison of the depth to the argillic horizon predicted by regression kriging (y-
axis) and observed depth from soil auguring (x-axis) for historically farmed (triangle) R2 = 0.69 

and reference hillslopes (circles) R2 = 0.27. Lines indicate 1:1 correlation. 
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CHAPTER 3 

EVALUATION OF ALTERED DEPTHS TO THE ARGILLIC HORIZON DUE TO 

EROSION: WHAT IMPACTS ON HILLSLOPE INTERFLOW?¾ 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                
¾ 1 Ryland R.C., D. Markewitz, and A. Thompson. 2017. To be submitted to Journal of 
Hydrology. 
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Abstract 

Numerical models of hillslope hydrology often use characteristics from soil classification 

maps to parameterize subsurface hydrologic flow paths. These soil maps, however, may lack 

sufficient spatial detail and may not accurately represent landscapes that have been eroded from 

historical farming. Therefore, a spatially explicit model of eroded landscapes, particularly in the 

Piedmont region of the southeast USA, could be valuable. Hillslope hydrology of the Piedmont 

typically involves an argillic horizon with low permeability causing high lateral flow in periods 

of high precipitation. In hillslope models this layer of low permeability is generally parallel to 

the soil surface. Highly eroded landscapes, such as those within South Carolina’s Calhoun 

Critical Zone Observatory, have had a redistribution of surface soil to lower landscape positions 

altering the depth to the low permeable layer and possibly altering patterns of interflow. This 

study aimed to understand variations of topsoil thickness and depth to the argillic horizon on 

hillslope interflow.  Using a two-dimensional simulation model parameterized with site specific 

measurements (i.e., precipitation, 𝐾𝑠𝑎𝑡, etc) topsoil thickness and depth to the argillic were 

altered to compare simulation outputs with uniform and non-uniform thicknesses.  Results 

indicated that the non-uniform depth-to-clay model had lower water content in the topsoil (by 

9.4%) and limiting layer (water content ranged from 25.3 to 37.9 %) but increased water storage 

(4.6%) compared to uniform depth-to-clay, over the two-year simulation period. An increase in 

topsoil depth in lower slope positions from historic erosion may have altered lower slope water 

storage and the hydrologic gradient driving interflow.
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Introduction 

Historical agricultural practices in the Piedmont region of the southeastern USA led to 

accelerated erosion throughout the region from the early 1800s to the 1930s (Trimble, 1974). 

These practices degraded soil quality, altering surface hydrologic processes across the landscapes 

by limiting infiltration and leading to overland flow and erosion (Huang et al., 2002). Hillslope 

hydrology of the Piedmont is strongly influenced by an argillic horizon with low permeability, 

which causes high lateral flow (on top of or within the argillic horizon) in periods of high 

precipitation (Dreps, 2011). Accelerated erosion in this region has resulted in soil redistribution 

from upper to lower landscape positions (Gabbard et al., 1998), compared to landscapes with 

minimal agricultural disturbance that tend to have a nearly consistent depth of topsoil (Figure 

2.4). Such redistribution is rarely accounted for in efforts to model hillslope and watershed 

hydrology in this region.  

Numerical models of hillslope and watershed hydrology typically have estimated topsoil 

thickness either from soil classification maps (Dialynas et al., 2016) or digital elevation models 

(Quinn et al., 1991; Paniconi et al., 1993), or they have approximated a topsoil thickness parallel 

to the soil surface (O'loughlin, 1981; Jackson et al., 2014). To quantify hillslope interflow, these 

approximations may lack sufficient spatial detail and may not accurately represent non-uniform 

subsoil topographies where different zones of interflow occur on low permeability, argillic 

horizons (Du et al., 2016). Studies have shown that non-parallel topographies of hydraulically 

limiting subsoil can cause variation in water content along the hillslope (i.e. perched water table) 

as opposed to uniform topsoil thicknesses, which creates infrequent interflow events (Chaplot et 

al., 2003; Ali et al., 2011; Du et al., 2016). Therefore, a spatially explicit hillslope model 
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containing a non-uniform topsoil thickness could create zones of interflow that are different than 

current estimates that use uniform topsoil thickness to argillic horizons.  

The objective of this research was twofold. First, we quantified differences in field 

saturated hydraulic conductivity across Piedmont landscapes with evidence of historic farming 

and erosion (non-uniform depth to clay) relative to others that did not show evidence of farming 

(uniform depth-to-clay). Second, these measurements as well as other site characteristics (i.e. 

depth-to-argillic, climate data) were used to parameterize two HYDRUS-2D computational 

models, one for each depth-to-clay scenario (uniform and non-uniform). A comparison of the 

hillslope hydrology between uniform and non-uniform models was conducted with particle 

tracking (to visualize interflow pathways), variations in water content, and a water budget at the 

end of a two-year simulation to determine net soil water storage. We hypothesized that interflow 

would be higher in the uniform depth-to-clay hillslope and soil water storage would be lower due 

to the thinner topsoil thickness at the toe-slope, compared to the non-uniform depth-to-clay 

model.  

 

Methods 

Study Site 

The Calhoun Critical Zone Observatory (CCZO) is based in the USDA Forest Service 

Sumter National Forest in the South Carolina Piedmont and incorporates the historical Calhoun 

Experimental Forest (Figure 3.1). Cultivation of cotton, corn, wheat, and other crops led to 

significant soil erosion throughout the Piedmont starting circa 1800 and continued into the early 

twentieth century when the land was abandoned from agriculture (Trimble, 1974; Richter et al., 

2001). The mean annual precipitation is approximately 1260 mm, and the mean annual 
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temperature is approximately 17 °C. Elevation ranges from 113 to 196 m above sea level. Soils 

in this area are mostly highly weathered acidic Ultisol and Inceptisol soils (Richter et al., 2015).  

The depth-to-argillic horizon and hydraulic conductivity measurements for this study 

were conducted at six locations within the CCZO; three previously farmed watersheds that were 

abandoned in the 1940s and three hillslopes undisturbed by agriculture. Histories of land use 

were determined via aerial photograph of the CCZO taken near the time of abandonment of 

agriculture clearings as well as forested hardwoods that can be identified in these 1933 aerial 

photos (Brecheisen et al., 2015).   

The average north facing slope for the two of the historically farmed watersheds 

(watershed 3 and 4) was steeper at 41.0 percent slope than the average south facing slope at 24.1 

percent slope. The length of the slopes, for the two historically farmed watersheds, also differed 

depending on the direction the slopes faced. The north facing slopes on average were 50.1 m, 

and the south facing were on average 91.8 m.  

 

Hydrologic Model Inputs and Structure  

Two hillslope model formulations were designed to simulate daily changes in the vertical 

and horizontal distribution of soil water for 1) uniform topsoil thickness (hillslopes undisturbed 

by agriculture) and 2) non-uniform topsoil thickness (historically farmed hillslopes) using 

HYDRUS 2D version 2.05 (PC-Progress, Prague, Czech Republic). These formulations 

incorporated the site-specific soil characteristics of hydraulic conductivity, depth to the argillic 

horizon, and texture. Values for additional variables: precipitation, evaporation, rooting depth, 

slope and root water uptake, were applied from previous studies conducted either in the CCZO or 

the Piedmont region. All other variables (i.e. water retention curve parameters, initial water 
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content conditions, and boundary conditions) were estimated by using databases within the 

HYDRUS software. The hillslope formulations consisted of a soil system that ranged in depth 

from 5.0 m at the ridgeline to 2.0 m at the toe-slope seepage face. The system contained three 

soil horizons: a sandy topsoil, a clay-rich, low permeability argillic layer, and a sandy sub-

limiting layer. The only differences among the hillslope models was topsoil thickness. Topsoil in 

the non-uniform model was the same depth as the uniform model at the ridge but increased in 

depth at the foot-slope; the uniform model had a consistent topsoil thickness for the entire 

hillslope. The effect of topsoil thickness on soil water storage was estimated through the water 

budget, and interflow was visualized via particle tracking with interflow across the seepage face 

again estimated by changes in water content.  

Originally, the two hillslope formulations consisted of a percent slope and slope length 

(100 m) similar to those found in the study site, however, the large formulations were limited as 

the run time was several hours longs often failing before the simulation period was over. 

Therefore, smaller hillslope formulations were developed with shorter slope lengths (16.5 m) to 

produce shorter run times.     

 

Model Description and Parameterization 

HYDRUS-2D/3D is a computational computer program that simulates water transport 

(Šimůnek et al., 2016). The program numerically solves the Richards (1931) equation for 

saturated and unsaturated water flow and can model varying pressure head boundary conditions. 

Water flow is calculated using a finite element mesh which creates a triangular mesh network of 

nodes throughout the 2D hillslope modeling space.  
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Two hillslope models with near identical parameters, except for the thickness of topsoil, 

were developed. Both hillslope models simulate daily precipitation and evapotranspiration for a 

period of 270 days (initialization period) from March 1958 to December 1958 and an additional 

two years of simulation from December 1958 to December 1960 (total of 1008 days). These two 

years (1959 and 1960) were chosen because of the large amount of precipitation (average 

precipitation for 1959 and 1960 are 156.96 cm), which was expected to cause more interflow and 

storage (Figure 3.2).  Rainfall data were extracted from measurements originally collected from 

1949 – 1962 (average rainfall for 1949 – 1962 was 109.47 cm) by scientists of the USDA-FS 

Southern Experiment Station (Wang et al., 2015). Daily evapotranspiration data from 1958 to 

1960 were obtained from the NOAA National Center of Environmental Information online data 

ordering service (NCEI, 2016) for Station: Union 8S, SC US GHCND: USC00388786 (Elevation 

480 ft. Latitude 34.605 o. Longitude 81.663 o). 

Precipitation and evapotranspiration interact with the hillslope model via the atmospheric 

boundary condition along the soil surface. Infiltration is treated as a negative flux across the 

atmospheric boundary into the hillslope and evaporation a positive flux across the boundary out 

of the hillslope. The groundwater outlet at the bottom of the hillslope along the bank was 

represented as a drainage face (seepage face boundary; Figure 3.3). Drainage from the seepage 

face occurs when the water content of the soil is greater than field capacity. The pressure head 

along the seepage face is equal to zero for the saturated part of the seepage face and the outflow 

is equal to zero for the unsaturated portion of the seepage boundary. A no flux boundary 

condition was used for both the bottom of the modeled space (i.e., bedrock) and below the 

ridgeline at the upper hillslope (i.e., the ridgeline; Figure 3.3).  
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Soil texture and horizon distribution along the hillslope within both model spaces were 

based on pervious data reported (Figure 2.4) and are similar in profile to the Ultisols found at the 

study site with a sandy capped argillic layer. Only the thickness of the topsoil horizon was 

changed depending on the model. The distribution of topsoil thickness is based on the average 

depth of topsoil observed in the field so is not an even re-distribution of the same volume of 

topsoil from the uniform to the non-uniform model. The uniform model had a consistent sandy 

loam topsoil thickness of 40 cm while in the non-uniform model the sandy loam topsoil ranged 

from 40 cm at the ridge to 50 cm at the mid-slope and 80 cm at the lower slope. Both models had 

a 60 cm thick clay impeding layer directly under the topsoil, and a sandy loam subsoil which 

filled the remaining modeled space (Figure 3.4).  

Water retention parameters for both hillslope models are shown in Table 3.1. Saturated 

hydraulic conductivity (𝐾𝑠𝑎𝑡) was measured on site by a compact constant head permeameter 

(Amoozegar, 1989). The residual volumetric water content (𝜃r), saturated volumetric water 

content (𝜃s), and the water retention functions α and n were estimated using the Neural Network 

Prediction option (Schaap et al., 1998) within the soil hydraulic parameters of HYDRUS 2D. 

This option uses the Rosetta Model (Schaap et al., 2001) to predict Van Genuchten’s water 

retention parameters (Van Genuchten, 1987) from textural information.   

 

θ h = LM0LN
[FP(0QR)S]U

+ θW        Equation 4.1 

 

Where α (cm-3), m (dimensionless), and n (dimensionless) are fitted parameters, θ(h) is the 

volumetric water content (cm3 cm-3), θs is the saturated volumetric water content (cm3 cm-3), and 

θr is the residual volumetric water content (cm3 cm-3). Initial water content of the hillslope was 
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set to field capacity for the entire hillslope domain. Field capacity values changed depending on 

the soil texture and were based on databases within the HYDRUS 2D software.  These values 

were -100.91 cm for sandy loam topsoil, -181.783 cm for the clay impeding layer, and -143.698 

for a sandy loam subsoil. This condition was used at the beginning of the model simulation of 

1008 days. 

The root uptake parameters were estimated within the HYDRUS 2D software, where root 

water uptake is modeled as a function of soil water pressure head (Feddes et al., 1978).   

 

S h = α h SZ[\         Equation 4.2 

 

The root water uptake S h  is the volume of water removed from a volume of soil per unit time 

(T-1), 𝛼 is the stress response function of pressure head (-), and SZ[\ is the maximum potential 

water uptake rate (T-1). There are four pressure heads used within the model: h 1, h 2, h 3, and h 4. 

If the pressure head is less than h 4 (wilting point) or greater than h 1 (saturation) then the root 

water uptake is equal to zero. Plant available water was optimal between h 2 and h 3. Values used 

for root water uptake parameters were h 1 = -10 cm, h 2 = -25 cm, h 3 = -300 cm, h 4 = -15000 cm 

and SZ[\ = 0.5 cm d-1 (estimated within HYDRUS 2D).  The root distribution (Figure 3.5) was 

set as an exponential decay gradient from the soil surface to the bottom of the modeled space 

using a root biomass distribution for a pine plantation located within the southeastern Piedmont 

(Qi, 2016).  
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Model Comparison 

To understand the effect of topsoil thickness on interflow, a comparison of the uniform 

and non-uniform models was conducted using three different measures: particle tracking, water 

content, and annual water budget. First, the location and movement of five particles located 

within the topsoil along the atmospheric boundary were overlaid on the simulation run. The flow 

paths created by this particle tracking assist in visually identifying any lateral movement within 

the top two soil horizons. Second, water content (𝜃), detected by an observation node at the 

seepage face boundary, was measured at one location within each soil horizon to estimate water 

flux contributed by that soil horizon over the simulation run. Variations in water content of the 

hillslope profiles was also compared at the end of the simulation run. Third, an annual water 

budget for each topsoil thickness scenario was calculated from January to December for 1959 

and 1960. The water budget was conducted to assess the effect of topsoil thickness on hillslope 

soil water storage.  

 

∆𝑆 = 𝑃 − 𝑅𝑊𝑈 − 𝑆𝑒𝑒𝑝𝑎𝑔𝑒        Equation 4.3 

 

Where ∆𝑆 was the change in soil water storage (cm), 𝑃 was precipitation (note: all precipitation 

infiltrates into the soil; cm), 𝑅𝑊𝑈 was root water uptake (cm), and 𝑆𝑒𝑒𝑝𝑎𝑔𝑒 was the flux of 

ground water from the hillslope out the seepage face boundary (cm). Soil water storage in cm 

was then converted to percentage for comparison.  
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Results 

Hydraulic Conductivity 

Saturated hydraulic conductivity had a nonsignificant depth by land use interaction (p-

value = 0.7906), suggesting that although there was a redistribution of topsoil to the bottom of 

non-uniform hillslopes, the 𝐾𝑠𝑎𝑡 was approximately the same as the uniform hillslopes by depth 

(Figure 3.6). There was an overall significant effect of depth on 𝐾𝑠𝑎𝑡 (p-value = 0.0088); as the 

measurement depth increased 𝐾𝑠𝑎𝑡 decreased in magnitude until approximately 175 cm then 

increased again until 375 cm. This pattern resulted in a quadratic relationship (Equation 4.4) with 

𝐾𝑠𝑎𝑡 in cm hr-1 and 𝐷𝑒𝑝𝑡ℎ in cm.  

Equation 4.4 

𝐿𝑜𝑔 𝐾𝑠𝑎𝑡 = 0.1841585 − 0.0186865 ∗ 𝐷𝑒𝑝𝑡ℎ + 0.0001594 ∗ (𝐷𝑒𝑝𝑡ℎ − 118.678)n 

 

Particle Tracking  

The pathways shown by the particle tracker illustrate the soil water flow over the 

simulation period (1008 days). The flow paths for both models are similar in shape but differ in 

distance traveled (Figure 3.7). Starting from the ridge, the first two particles for both models run 

almost directly down to bedrock with the second particle in the non-uniform model moving 

slightly farther along the bedrock surface towards the seepage face. The shape of the third flow 

path differed from the first two paths for both models, as the particle moved slightly towards the 

ridge due to the hydraulic gradient before moving back towards the bedrock. The third particle 

track path in the uniform model continued for a longer distance along the bedrock than the non-

uniform pathway. The flow paths of the fourth particles were similar for both models, but again 
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the uniform model traveled for a longer distance down slope. Lastly, the fifth particle’s pathway 

for both models had the same shape and length traveled.   

 

Water Flow 

Water content (𝜃) was evaluated for each hillslope model using observation nodes placed 

within each soil horizon along the seepage face boundary. These nodes were used to estimate the 

water content contributed to seepage from the whole horizon thickness summed over 1959 and 

1960 (Table 3.2). The top two soil horizons contributed 78.4 % and 83.3 % of the water content 

over the simulation period for the uniform and non-uniform model, respectively (Table 3.2).  

Variations in the water content (𝜃) of the hillslope profiles were compared at the end of 

the simulation run (Figure 3.7). Water content was highest in the low permeability layer 

compared to the topsoil and subsoil for each model, as expected from clay’s high water holding 

capacity. The low permeability layer in the uniform model had a water content that was 

consistently high (approximately 34.7 to 41.0 %), which contrasted with the non-uniform model 

which that had a lower range of water contents (approximately 25.3 to 37.9 %). Topsoil in both 

models had a similar trend in the argillic layer, with the water content of the uniform topsoil 

being about 9.4 % higher than the non-uniform model topsoil.  

 

Water Budget 

Infiltration (precipitation), root water uptake, and seepage face flux (Figure 3.8) were 

used to estimate the percent change in hillslope water storage by year (i.e., 1959 and 1960; Table 

3.3). During the first year, both uniform and non-uniform models had a positive change in water 

storage of 11.0 and 11.6 %, respectively. In the second year, the uniform model showed a loss of 
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water storage that was two times greater than the amount of storage that had been gained the year 

before (-11.0 %) meaning over the two years there was a net zero storage. The non-uniform 

model had a 7.0 % loss of water storage in the second year, which left a positive net soil water 

storage of 4.6 % over the two-year simulation period.  

 

Discussion 

Typically, modeled hillslope hydrology of the Piedmont involves a hydraulically limited 

layer (argillic horizon) that is parallel to the soil surface that contributes to interflow during 

periods of high rainfall. Interflow in a hillslope with uniform thickness of topsoil may not 

represent landscapes that have been disturbed by agriculture, which has resulted in substantial 

soil redistribution. The objective of this research was to understand the effect of topsoil 

thickness, particularly redistributed soil to lower hillslope positions, on hillslope interflow. Two 

hillslope models, with uniform and non-uniform topsoil thicknesses were parameterized with 

depth to the limiting layer and 𝐾𝑠𝑎𝑡 data quantified from field measurements. Results from 

comparisons conducted on both depth-to-clay scenarios found that our hypothesis was in part 

supported and that topsoil thickness does impact interflow.  

 

Hydraulic Conductivity 

It was expected that historically farmed landscapes (non-uniform model) that had a 

redistribution of the topsoil and a deeper depth to the argillic horizon in the lower landscape 

positions would have low 𝐾𝑠𝑎𝑡 values deeper within the soil profile than the undisturbed 

hillslopes (uniform model), particularly toward lower slopes positions. Results, however, found 

an unexpected similarity in 𝐾𝑠𝑎𝑡 by depth.  This similarity could be attributed to variation in the 
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strength of soil structure throughout the low permeability layer or restoration of soil structure 

during the last 60 years of reforestation (West et al., 2008). Variation or restoration of structure 

in the upper portion of the limiting layer between undisturbed hillslopes and historically farmed 

landscapes could create a similar decrease in 𝐾𝑠𝑎𝑡 (1.60 – 36.17 cm hr-1 to 0.01 to 0.32 cm hr-1 

near 175 cm) at approximately the same depth.  The low 𝐾𝑠𝑎𝑡 data observed in this study was 

similar to a previous study conducted in the Piedmont of Georgia that found 𝐾𝑠𝑎𝑡 of the limiting 

layer to range from 0.30 cm hr-1 in the upper portion of the limiting layer to 0.07 cm hr-1 in the 

lower portion (West et al., 2008).  This variance in 𝐾𝑠𝑎𝑡, as also observed in this study, could 

obscure patterns with depth over the 40 cm change in thickness with lower slope deposition.  

Below the argillic horizon, the measured increase in 𝐾𝑠𝑎𝑡 (0.8 to 19.5 cm hr-1) deeper in 

the profiles likely results from the coarse textured, sandy subsoil (i.e., BC or CB horizon as 

characterized in the field), a subsoil that conducts water at a rate comparable to the surface 

horizon (Figure 3.6). The higher 𝐾𝑠𝑎𝑡 data shown in this study is comparable to another study 

conducted in the Piedmont that found high 𝐾𝑠𝑎𝑡 values for saprolite at depth with as much as 

1.71 cm hr-1 (Vepraskas et al., 1991).  𝐾𝑠𝑎𝑡 measures of saprolite are relatively limited but 

clearly suggest a higher 𝐾𝑠𝑎𝑡 value than those observed in the limiting layer above. 

 

Particle Tracking and Water Flow 

The effect of topsoil thickness on the hydrology of each hillslope, especially interflow, 

was evaluated both qualitatively (particle tracking) and quantitatively (water content). Particle 

track flow paths seemed preferential to vertical rather than lateral flow. Given that the years 

simulated had high rainfall, it was expected that lateral flow would be more prevalent. Although 

this was not the case, it is worth noting that nearly all flow paths indicated that water exited 
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through the subsoil at the very base of the seepage face (Figure 3.7). The final location of each 

particle track is near or on the no-flow bedrock boundary, which suggests that despite the 

presence of a low permeability layer lateral movement downslope was slower than its vertical 

movement. Previous studies have reported similar circumstances where percolation through the 

low permeability, or other macropores (e.g., anomalies created through the limiting layer created 

by roots) may cause interflow to be infrequent contributing more to vertical movement (Jackson 

et al., 2014, Du et al., 2016). 

Quantitative evaluations of interflow from water flow, estimated as a percentage 

contributed by each soil horizon at the seepage face boundary over the two-year simulation 

period, indicated most of the water flux occurred in the top two soil horizons (Table 3.2). This 

result is contrary to the particle tracking flow paths that exited towards the bottom of the seepage 

face. This discrepancy could partly result from simulation error. Error associated with the water 

budgets is apparent in infiltration estimates between the two models despite both models 

receiving the same precipitation. The non-uniform depth-to-clay model estimated 7.0 cm more 

infiltration into the hillslope compared to the uniform topsoil model. These 7.0 cm of infiltration 

missing from the uniform topsoil model is considered to have been runoff.  Possibly as a result of 

this greater infiltration, the non-uniform topsoil experienced a higher water flux than the uniform 

topsoil, contrary to what was hypothesized. This higher flux at the seepage face could be related 

to the greater infiltration and steeper slope of the subsoil topography in the non-uniform model. 

The steeper slope creates less contact time for the infiltrated water to percolate into and through 

the limiting layer and therefore runs over the limiting layer and exits the hillslope through the 

topsoil.  
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In addition to the flux at the seepage face, the water content of the entire hillslope was 

evaluated at the end of the two-year simulation. Assuming the non-uniform topsoil thicknesses 

had interflow running off the top of the limiting layer rather than infiltrating into the horizon, 

less water overall could be stored in the limiting layer (as was seen in the lower ranges of water 

content compared to the uniform hillslope; Figure 3.7). Sloping subsoil in the non-uniform 

model may also impact the residence time of the water content in the topsoil, as most of the 

infiltrated water moved quickly through the sandy topsoil and drained out of the profile seepage 

face compared to the less sloping topsoil in the uniform model. In the uniform model the 

infiltration does percolate into the limiting layer thereby contributing a higher water content 

percentage than the topsoil (Figure 3.7). Residence time of soil water has previously been shown 

to be highly correlated with topography, with lower residence times associated with more sloping 

topography (McGuire et al., 2005). Also, partly as an artifact of our model structure, the 

redistribution of the non-uniform topsoil displaced subsoil from the bottom of the hillslope 

profile, creating an aquifer-like confining layer in the sandy subsoil, which over time fills with 

water that moves back up the hillslope along the bedrock. The uniform hillslope does not have 

this artifact, and more of the water was able to drain out the seepage face which created a dry 

zone below the limiting layer.  

 

Water budget 

Water storage for the first year was similar for both models but may result from different 

processes (Table 3.3). The uniform model had more water stored in the topsoil and limiting layer 

but was dryer in the sandy subsoil than the non-uniform model. The coarse saprolite in the 

Piedmont region has a low water storage capacity (Baloochestani, 2008). Speculatively, the soil 
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water that percolates through the limiting layer of the uniform model will drain quickly through 

coarse subsoil, creating a dry zone below the limiting layer.  Previous studies have shown that 

topography controls water storage, with shallower slopes allowing for more infiltrated water to 

remain in the soil for a longer time than steeper slopes (Boggs et al., 2013).  However, the non-

uniform model contained more water in the “confined aquifer” making the change in storage 

similar. In the second year the non-uniform model had 7.0 cm more infiltration than the uniform 

model; therefore, the higher water storage may have come from the non-uniform model 

experiencing less runoff.  

 

Conclusion 

 We hypothesized that interflow would be lower in a pre-disturbance landscape that has a 

uniform depth-to-clay as well as having less soil water storage due to less topsoil thickness at the 

lower-slope landscape position. Less soil water storage was observed in the uniform model 

simulations but model artifacts could have misrepresented water storage as the non-uniform 

model had “aquifer-like” subsoil water storage. Our hypothesis of less interflow in the uniform 

hillslope model was not supported. Interflow on top of the limiting layer was higher in the non-

uniform model, however, water content within the limiting layer was higher in the uniform 

model. Although these models do not fully represent the complexities of the heterogeneous 

nature of soil, the simplifications did offer some insight on how topsoil thickness affected 

interflow. In our model framework, when topsoil was redistributed (i.e., non-uniform model) 

subsoil topography became steeper allowing less soil water to percolate into the limiting layer 

compared to the uniform topsoil thickness. Further studies comparing hillslopes with soil 

redistribution may find benefit in evaluating interflow using 1) water flowing on top of the 
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limiting layer, 2) water flowing within the limiting layer, and 3) retaining constant argillic 

horizon steepness.



	

67	

References 

 

Ali, G. A., L'Heureux, C., Roy, A. G., Turmel, M.-C., & Courchesne, F. (2011). Linking spatial 
patterns of perched groundwater storage and stormflow generation processes in a 
headwater forested catchment. Hydrological Processes, 25(25), 3843-3857. 
doi:10.1002/hyp.8238 

 
 
Amoozegar, A. (1989). A Compact Constant-Head Permeameter for Measuring Saturated 

Hydraulic Conductivity of the Vadose Zone. Soil Science Society of America Journal, 
53(5), 1356-1361. doi:10.2136/sssaj1989.03615995005300050009x 

 
 
Baloochestani, F. (2008). Estimation of Hydraulic Properties of the Shallow Aquifer System for 

Selected Basins in the Blue Ridge and the Piedmont Physiographic Provinces of the 
Southeastern U.S. Using Streamflow Recession and Baseflow Data. Georgia State 
University College of Art and Sciences Doctoral Dissertation 

 
 
Boggs, J., Sun, G., Jones, D., & McNulty, S. (2013). Effect of soils on water quantity and quality 

in piedmont forested headwater watersheds of North Carolina. Journal of the American 
Water Resources Association, 49(1), 132-150. 

 
 
Brecheisen, Z., Cook, C., & Harmon, M. (2015). US Forest Service Photograph from the 

Photographic Archive of the Calhoun Experimental Forest, 
http://criticalzone.org/calhoun/data/dataset/4324/.  

 
 
Chaplot, V., & Walter, C. (2003). Subsurface topography to enhance the prediction of the spatial 

distribution of soil wetness. Hydrological Processes, 17(13), 2567-2580. 
doi:10.1002/hyp.1273 

 
 
Dialynas, Y. G., Bastola, S., Bras, R. L., Billings, S. A., Markewitz, D., & Richter, D. d. (2016). 

Topographic variability and the influence of soil erosion on the carbon cycle. Global 
Biogeochemical Cycles, 30(5), 644-660. doi:10.1002/2015GB005302 

 
 
Dreps, C. L. (2011). Water Storage Dynamics and Water Balances of Two Piedmont North 

Carolina Headwater Catchments (Master’s Thesis). NC State University, Raleigh, North 
Carolina.  

 



	

68	

Du, E., Jackson, C. R., Klaus, J., McDonnell, J. J., Griffiths, N. A., Williamson, M. F., Greco, J. 
L., & Bitew, M. (2016). Interflow dynamics on a low relief forested hillslope: Lots of fill, 
little spill. Journal of Hydrology, 534, 648-658.  

 
 
Feddes, R. A., Kowalik, P. J., & Zaradny, H. (1978). Simulation of field water use and crop 

yield: Centre for Agricultural Publishing and Documentation. 
 
 
Gabbard, D., Huang, C., Norton, L., & Steinhardt, G. (1998). Landscape position, surface 

hydraulic gradients and erosion processes. Earth Surface Processes and Landforms, 
23(1), 83-93.  

 
GoogleMaps. (2017). Sumter National Forest, 

https://www.google.com/maps/search/sumter+national+forest/@34.1570253,-
83.4621966,7z/data=!3m1!4b1.  

 
 
Huang, C., Gascuel-Odoux, C., & Cros-Cayot, S. (2002). Hillslope topographic and hydrologic 

effects on overland flow and erosion. CATENA, 46(2–3), 177-188. 
doi:http://dx.doi.org/10.1016/S0341-8162(01)00165-5 

 
 
Jackson, C. R., Bitew, M., & Du, E. (2014). When interflow also percolates: downslope travel 

distances and hillslope process zones. Hydrological Processes, 28(7), 3195-3200.  
 
 
McGuire, K. J., McDonnell, J. J., Weiler, M., Kendall, C., McGlynn, B. L., Welker, J. M., & 

Seibert, J. (2005). The role of topography on catchment-scale water residence time. 
Water Resources Research, 41(5), n/a-n/a. doi:10.1029/2004WR003657 

 
 
NCEI. (2016). NOAA National Center of Environmental Information, 

https://www.ncei.noaa.gov/  
 
 
O'loughlin, E. (1981). Saturation regions in catchments and their relations to soil and 

topographic properties. Journal of Hydrology, 53(3-4), 229-246.  
 
 
Paniconi, C., & Wood, E. F. (1993). A detailed model for simulation of catchment scale 

subsurface hydrologic processes. Water Resources Research, 29(6), 1601-1620.  
 
 



	

69	

Qi, J. (2016). Potential Climate Change Effects on Deep Soil Carbon and Hydrology in Loblolly 
Pine Plantations of the Southeast US (Doctoral Dissertation). University of Georgia. 
Athens, GA.  

 
 
Quinn, P., Beven, K., Chevallier, P., & Planchon, O. (1991). The prediction of hillslope flow 

paths for distributed hydrological modelling using digital terrain models. Hydrological 
Processes, 5(1), 59-79.  

 
 
Richards, L. A. (1931). Capillary conduction of liquids through porous mediums. Physics, 1(5), 

318-333.  
 
 
Richter, D. D., Bacon, A. R., Billings, S. A., Binkley, D., Buford, M., Callaham, M. A., Curry, 

A. E., Fimmen, R. L., Grandy, A. S., Heine, P. R., Hofmockel, M., Jacks, J. A., 
LeMaster, E., Li, J., Markewitz, D., Mobley, M. L., Morrison, M. W., Strickland, M. S., 
Waldrop, T., and Wells, C. G., (2015). Evolution of soil, ecosystem, and critical zone 
research at the USDA FS Calhoun Experimental Forest (Vol. 18). 

 
 
Richter, D. D., & Markewitz, D. (2001). Understanding soil change: soil sustainability over 

millennia, centuries, and decades: Cambridge University Press. 
 
 
Schaap, M. G., & Leij, F. J. (1998). Using neural networks to predict soil water retention and soil 

hydraulic conductivity. Soil and Tillage Research, 47(1), 37-42.  
 
 
Schaap, M. G., Leij, F. J., & Van Genuchten, M. T. (2001). ROSETTA: a computer program for 

estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of 
Hydrology, 251(3), 163-176.  

 
 
Šimůnek, J., van Genuchten, M. T., & Šejna, M. (2016). Recent developments and applications 

of the HYDRUS computer software packages. Vadose Zone Journal, 15(7).  
 
 
Trimble, S. W. (1974). Man-induced soil erosion on the southern Piedmont. Soil Conserv. Soc. 

Am., Ankeny, Iowa, 1700-1970.  
 
 
Van Genuchten, M. T. (1987). A numerical model for water and solute movement in and below 

the root zone: United States Department of Agriculture Agricultural Research Service US 
Salinity Laboratory. 

 



	

70	

Vepraskas, M. J., Hoover, M. T., Jongmans, A. G., & Bouma, J. (1991). Hydraulic Conductivity 
of Saprolite as Determined by Channels and Porous Groundmass. Soil Science Society of 
America Journal, 55(4), 932-938. doi:10.2136/sssaj1991.03615995005500040006x 

 
 
Wang, J., Shen, Y., & Shahnaz, S. (2015). Calhoun Experimental Forest-Stream Flow and 

Rainfall  
 
 
West, L. T., Abreu, M. A., & Bishop, J. P. (2008). Saturated hydraulic conductivity of soils in 

the Southern Piedmont of Georgia, USA: Field evaluation and relation to horizon and 
landscape properties. CATENA, 73(2), 174-179. 
doi:https://doi.org/10.1016/j.catena.2007.07.011 



	

71	

Table 3.1.  Soil water retention parameters for hillslope hydraulic models with uniform and non-
uniform topsoil thicknesses. Saturated hydraulic conductivity (𝐾𝑠𝑎𝑡) was measured on site, 
residual volumetric water content (𝜃r), saturated volumetric water content (𝜃s), and the water 
retention functions α and n were estimated in HYDRUS. 
 

Soil Horizon Soil Texture 
𝜃r 	 𝜃s 	 α n  Ks 

(cm/day) (cm3/cm3) (cm3/cm3)  (1/cm) (-) 

Surface Sandy Loam 0.065 0.41 0.075 1.89 530 

Hydrologically 
Limiting Clay 0.095 0.41 0.019 1.31 4 

Sub-Limiting Sandy Loam 0.065 0.41 0.075 1.89 530 
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Table 3.2. Water content contributed by soil horizon for models with uniform and non-uniform 
topsoil thicknesses. Water flow measurements from a single observation point within each 
horizon at the seepage face were used as estimates for the water flow contributed by each 
horizon over the simulation run presented here as each horizon’s percentage of the total. 
 

Soil Horizon Uniform Non-Uniform 
  (%) (%) 

Surface 28.5 42.5 
Hydrologically Limiting 49.9 40.8 

Sub-Limiting 21.6 16.7 
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Table 3.3. Percent hillslope soil water storage for models with uniform and non-uniform topsoil 
thicknesses. Soil water storage was calculated with daily data from January to December for 
1959 and 1960 in the Calhoun Critical Zone Observatory, SC. 
 

 Boundary Flux Uniform Non-uniform 
Year  (cm) (cm) 
1959 Infiltration 143.0 142.5 

 Root Water Uptake 89.2 95.2 
 Seepage Face Flux 38.0 31.1 
 Change in Storage 13.8 16.2 
    
    

1960 Infiltration 130.6 137.5 
 Root Water Uptake 91.4 94.2 
 Seepage Face Flux 53.5 53.7 
 Change in Storage -14.3 -10.4 
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Figure 3.1. Location of the Calhoun Critical Zone Observatory in the Sumter National Forest, 
SC. 
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Figure 3.2. Precipitation (orange) collected from the Calhoun Critical Zone Observatory 
(CCZO), and evapotranspiration (blue) collected from weather station near the CCZO for March 
1958 to December 1960. Years 1958 - 1960 were chosen due to the high precipitation inputs for 
the year. 
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Figure 3.3: Boundary conditions and dimensions for vertical hillslope cross section. The 
ridgeline (along the left-hand side) and bedrock (along the bottom of the modeling space) are 
represented as no flow boundaries (red lines), the atmospheric boundary is along the soil surface 
(green line), and the hillslope drainage occurs at the seepage face (blue line). 
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Figure 3.4: Hillslope soil profile layers for both uniform (top) and non-uniform (bottom) 
thickness of topsoil. The thickness of the sandy topsoil layer (blue) is consistently 40 cm for the 
uniform hillslope and 40 cm at the ridge, 50 cm at the mid-slope, and 80 cm at the toe-slope for 
the non-uniform model. The low permeable clay layer (green) is 60 cm thick for both models, 
and the sandy subsoil (yellow) fills the rest of the modeling space.  Depths of each soil layer 
were determined from Figure 2.4. 
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Figure 3.5: Exponential decrease in rooting distribution for both uniform and non-uniform 
topsoil thickness models. A higher density of roots is located along the soil surface (blue) and 
decreases with depth (red).  
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Figure 3.6: Saturated hydraulic conductivity (𝐾𝑠𝑎𝑡) measured in 2017 in the Calhoun Critical 
Zone Observatory, SC on landscapes with uniform and non-uniform thickness of topsoil.  
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Figure 3.7: Vertical hillslope cross section with particle tracking (grey lines) of interflow, over a 
two-year simulation, for models with uniform (top) and non-uniform (bottom) topsoil 
thicknesses. Background colors represent variations in water content (𝜃) at the end of the 1008-
day simulation. Higher water content has a blue color whereas lower water content has a red 
color. 
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Figure 3.8: Simulated daily infiltration, root water uptake, and seepage face flux used to 
calculate soil water storage for models with uniform and non-uniform topsoil thickness. Data are 
for two years, January 1st to December 30th, 1959 and 1960.  
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CHAPTER 4 

CONCLUSION 

 

Spatial variations in the depth to the argillic horizon as categorized by soil surveys maps, 

may not accurately represent landscapes in the Southeastern Piedmont that have been effected by 

severe erosion. This study found that the depth to the argillic horizon was significantly different 

between landscapes with contrasting land use histories. Landscapes with a history of farming 

experienced soil redistribution form upper to lower landscape positions contributing to 40 cm 

soil on average in the toe-slope than land areas that had not been disturbed by agriculture (having 

a consistent depth to the argillic horizon along the hillslope). The depth to the argillic horizon as 

determined by tile push probe (TPP) and soil boring was not well predicted by regression efforts 

on the undistrubed hillslope with a consistent depth to clay (R2 = 0.24). The TPP, however, did 

correlated strongly with soil boring observations for historically farmed watersheds (R2 = 0.80). 

Combining soil boring and TPP techniques allowed for an extensive investigation of the spatial 

variation in the depth to the argillic horizon along hillslope profiles. 

When assessing the potential use of geophysical sensing (specifically EMI) as a means of 

measuring the depth to the argillic horizon in forested landscape our results showed that 

electrical conductivity alone was not a strong predictor of the depth to the clay layer (R2 = 0.31). 

The strength of the prediction increased, however, with the addition of regression kriging (RK) 

with other landscape features variables (i.e., slope, and landscape position) (R2 = 0.71). These 

improved predictors can be related back to land use history. In general, RK did performed well in 

predicting the variation in depth-of-clay, capturing both the large variation in the historically 
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farmed and the more limited depth in the reference hillslopes. Additionally, the results of the RK 

predicted maximum depths to the argillic layer which were similar to those reported for each 

land use.  

The depth to the argillic horizon is typically parallel to the soil surface in modeled 

hillslope hydrology of the Piedmont, however, watersheds with soil redistributed to lower 

landscape positions are less represented. This study found that topsoil thickness, as modeled by 

uniform and non-uniform depth to the argillic horizon, does impact interflow. Quantitative 

evaluations of interflow as estimated as a percentage contributed by each soil horizon at the 

seepage face boundary indicated most of the water flux occurred in the top two soil horizons, 

with non-uniform topsoil having a higher flux. This higher flux at the seepage face was 

contributed by greater infiltration and steeper slope of the subsoil topography than the uniform 

model. Less soil water storage was observed in the uniform model simulations but model 

artifacts could have misrepresented water storage as the non-uniform model had “aquifer-like” 

subsoil water storage. When topsoil was redistributed, topography became steeper allowing less 

soil water to percolate into the hydrologically limiting layer compared to the uniform topsoil 

thickness. This study also found that saturated hydraulic conductivity (𝐾𝑠𝑎𝑡) was approximately 

the same for both uniform and non-uniform depth-to-clay landscapes by depth. As the 

measurement depth increased, 𝐾𝑠𝑎𝑡 decreased until approximately 175 cm then increased again 

until 375 cm. This similarity could be attributed to variation in the strength of soil structure 

throughout the low permeability layer or restoration of soil structure during the last 60 years of 

reforestation. 

Although these models did not fully represent the complexities of the heterogeneous 

nature of soil, the simplifications did offer some insight on how topsoil thickness affected 
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interflow. Accelerated erosion contributed to soil redistribution and thicker topsoil in lower 

landscape positions due to historical agricultural practices. Time and cost limit the extent of 

direct soil sampling; therefore, landscapes, such as those in the Piedmont region of the 

southeastern USA, that have been altered by historic agricultural land use are often 

misrepresented.  
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APPENDIX A 

ORGANIC MATTER PRETREATMENT 

 

Introduction 

When conducting particle size analysis, organic matter can inhibit complete dispersion of 

the sample and therefore effect the predicted textural class (Jensen et al., 2017).  There are many 

pretreatment methods to remove organic matter including heat and chemical (Gee et al., 1986). 

Heat treatment, however, can cause clay particles to cement when exposed to prolonged heat 

(550°C) creating a texture analysis that is coarser than expected (Vaasma, 2008). Therefore, a 

chemical treatment is preferred. Hydrogen peroxide is a common chemical treatment used when 

removing organic matter and was used here.  

 

Method 

An organic matter removal experiment was conducted on 9 soil samples ranging in depth 

from 0 – 100 cm. Soil samples were collected in watershed 3 and 4 of the Calhoun Experimental 

Forest. Samples were prepared according to method in Chapter 2 methods. Sample were heated 

to approximately 60°C and treated with hydrogen peroxide until frothing ended and soil 

appeared to be bleached (Figure A.1). Texture analysis was then conducted on samples with and 

without organic matter (Gee et al., 2002).  
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Results 

 A 1 to 1 correlation of percent clay in samples, ranging in depth from 0 – 100 cm, with 

and without organic matter removal (Figure A.2). Generally, clay content is under estimated 

when organic matter is present. The root mean squared error of the correlation is 2.122 percent.  

Since the relationship of clay content with and without organic matter was strong, the remaining 

samples collected for the project discussed in Chapter 2 were not pretreated with hydrogen 

peroxide.  
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Figure A.1: Soil sample with organic matter (right) and same sample that has been treated with 
hydrogen peroxide and now appears “bleached” (left).   
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Figure A.2: 1 to 1 correlation of percent clay between samples with organic matter and samples 
without organic matter (n=9).  
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APPENDIX B 

CROSS VALIDATION OF ORDINARY KRIGING FOR GEOPHYSICAL SENSING DATA  

 

Method 

A simple cross validation, using 10 % of the geophysical sensing data (EMI), was 

conducted on the twenty ordinary kriged surfaces, to test performance. Two metrics were 

utilized, mean squared deviation ratio (MSDR)  

 

𝑀𝑆𝐷𝑅 = F
p

{r st 0u(st)}G

wx
G(st)

p
yzF          Equation B.1:  

 

and root mean squared error (RMSE)  

 

𝑅𝑀𝑆𝐸 = [F
p

r st 0u st G

wx
G st

p
yzF ]

|
G        Equation B.2:  

 

to assess the fit and accuracy of the semi-variogram to the geophysical sensing data. Equation 

B.1: 𝑧(𝑥y) is the ith observed geophysical sensing value set aside for cross validation at 𝑥y, 𝑍(𝑥y) 

is the kriged predicted geophysical sensing value at 𝑥y and 𝜎�n(𝑥y) is the mean squared prediction 

error (Oliver et al., 2014). Equation B.2: is the square root of Equation B.1 (De Benedetto et al., 

2012).  
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Results 

Cross validation of the twenty kriged maps created using ten percent of the data showed 

that reference 9 preformed best (Table B.1). Equations B.1 and B.2 were used to test, the fit of 

the variogram model to the data, as well as the accuracy of the kriged maps. Values for MSDR 

and RMSE should be close to one. Ordinary kriging with a spherical variogram model was 

chosen with anisotropy set to true. The range of MSDR and RMSE was 0.084 to 1.988 and 0.291 

to 1.410, respectively. Indicating that the fit of the variogram model and the accuracy of the 

prediction showed large variation in results. H 2 EMI orientations under performed in model fit 

and accuracy with an average MSDR of 0.6915 (±	0.711 SD) and RMSE of 0.665 (±	0.400 SD). 

All other EMI orientations performed well, and H1 performed best with an average MSDR and 

RMSE of 0.895 (±	0.271 SD) and 0.931(±	0.175 SD), respectively. Reference 9 had the best fit 

and accuracy for all EMI orientations with an average MSDR and RMSE or 0.897 (± 0.218 SD) 

and 0.939 (± 0.121 SD), respectively. 

 

Discussion 

Cross validation of measured versus predicted electrical conductivity showed how well 

ordinary kriging (OK) using a spherical variogram, fit the geophysical sensing data for each EMI 

sensor orientation at each study site and the resulting accuracy of that fit. Due to OK being a 

popular choice when interpolating soil properties (Saey et al., 2009; Saey et al., 2011; Heil et al., 

2012; White et al., 2012) it was expected to perform well. Overall, OK was a good fit, and 

provided accurate results for 3 of the 4 EMI orientations as well 4 of the 5 study sites. Reference 

4 underperformed in both fit and accuracy, this may be due to a small sample size, n = 27 

(Reference 2 n = 32, and Reference 9 n = 43). If the sample size where to increase, decreasing 
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lag size, the prediction may increase over shorter-range variation (Oliver et al., 2014).  

Anisotropy may have been a factor as well; again Reference 4 was the smallest of all study sites 

where anisotropy may not have been present, therefore, unnecessary to use in the model (Oliver 

et al., 2014).  
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Table B.1: Cross validation of twenty ordinary kriged surfaces using geophysical sensing data 
(EMI) for historically farmed watersheds and reference hillslopes; Mean Squared Deviation 
Ratio (MSDR) and Root Mean Squared Deviation Ratio (RMSR).  
 

Site EMI Orientation MSDR RMSE 
Watershed 3 H1 1 1 

 P1 1.315 0.847 
 H2 0.144 0.397 
 P2 1.003 0.482 

Watershed 4 H1 1 1 
 P1 0.647 0.419 
 H2 0.239 0.488 
 P2 0.855 0.925 

Reference 2 H1 0.996 0.998 
 P1 0.441 0.664 
 H2 1.988 1.41 
 P2 1.587 1.26 

Reference 9 H1 1.118 1.057 
 P1 0.879 0.937 
 H2 0.55 0.742 
 P2 1.042 1.02 

Reference 4 H1 0.361 0.601 
 P1 1.012 1.005 
 H2 0.084 0.291 
  P2 0.264 0.514 
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APPENDIX C 

SAVANNAH RIVER SITE 

 

Introduction and Site Description 

In addition to research at the Calhoun, calibration of the EMI instrument was also 

conducted at the U.S. Department of Energy’s Savannah River Site (SRS) located in the Coastal 

Plain of South Carolina. This site has Ultisols with a homogenous sandy capped argillic horizon, 

which provides a more discrete textural contrast for calibrating EMI, as the electrical 

conductivity between the two horizons is distinct. Previous research showed success (93 % 

correlation) when predicting the depth to the argillic horizon using electrical conductivity on a 

similar landscape type in Belgium where there is a homogenous loess capped argillic soil (Saey 

et al., 2011).  

 

Method 

The EMI survey for SRS including the soil boring samples, tile push probe (TPP), and 

spatial analysis were measurements and collected using the same method discussed in Chapter 

two methods. Due to thick understory growth, the height at which the EMI was held above the 

ground increased to 80 cm. Using the method discussed in Saey et al. (2011) a cumulative 

response curve was created for the SRS site. However, there was not enough variation in the 

depth to the argillic horizon at the SRS for the Saey’s method to be successful. Therefore, a 

secondary spatial error model was conducted in GeoDa (University of Chicago, IL).  A distance 
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weights matrix was created using the Weights Manager option which found the optimal 

threshold distance based on the dataset.  

 

Results 

The EMI orientation for the shallowest depth of exploration P1 was removed from the 

dataset since the height above the ground was increased the P1 receiver did not measure the soil.  

The SRS model for predicting the depth to the argillic horizon was significant (R2≥60 and 

p≤0.15) as seen in Table C.1. However, it was not significantly different than the spatial models 

for the heterogeneous sandy capped argillic horizon of Calhoun. The average depth to the argillic 

horizon, from soil cores observations, was 42.01 cm ± 6.07 cm.  
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Table C.1: A spatial error model for the Savannah River Site. The dependent variable is depth to 
the argillic horizon determined by soil core investigation (n=5) and tile push probe 
measurements (n=35). The explanatory variables are aspect in degrees, slope in percent, EMI 
sensor orientation H1 and H2 with no transformations.  
 

Depth to Argillic 
Horizon  Estimator  Std. Error P-value     

Intercept 12.7112 2.30413 0   
Aspect -0.022041 0.0081145 0.0066   
Slope 9.27E-06 3.34E-06 0.00554 R2= 0.66 

H2 14.7269 2.77377 0 AIC= 279.83 
H1 2.26407 0.646004 0.00046   

Lambda -0.578018 0.125745 0     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


