
A Phonetic Summarizer for Sociolinguists: Concordancing by Phonetic

Criteria

by

Justin V. Sperlein

(Under the direction of William A. Kretzschmar, Jr.)

Abstract

PhoSS, a Phonetic Summarizer for Sociolinguists, is a piece of software that accepts

.wav and accompanying .txt transcripts for multiple informants, aligns the files using the

Penn Phonetics Lab Forced Aligner, extracts formants with Praat, normalizes formant values

using R, and summarizes the information in semi-prose output files with KWIC concordances

based on phonetic criteria. PhoSS will compare individuals to a group, directly compare two

individuals, or give descriptive output of just the individuals. Two test cases demonstrate

PhoSS in action on informants from the Roswell Voices corpus. PhoSS makes large-scale

analysis of speech corpora feasible to small research teams and is written using only free and

open-source components.

Index words: Computational Linguistics, Forced Alignment, Formant Extraction,
Linguistics, Open-Source Software, Phonetic Analysis, Sociolinguistics,
Sociophonetics

A Phonetic Summarizer for Sociolinguists: Concordancing by Phonetic

Criteria

by

Justin V. Sperlein

B.A., Brigham Young University, 2008

A Thesis Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Master of Arts

Athens, Georgia

2011

c© 2011

Justin V. Sperlein

All Rights Reserved

A Phonetic Summarizer for Sociolinguists: Concordancing by Phonetic

Criteria

by

Justin V. Sperlein

Approved:

Major Professor: William A. Kretzschmar, Jr.

Committee: Michael A. Covington

Lewis Chad Howe

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

May 2011

Dedication

I dedicate this work first and foremost to my wife, Celeste. She has sacrificed so that I might

finish. I also dedicate this to my children, Phoebe and Mark — to Phoebe, who simply knows

that daddy goes off to school, and to Mark, who is too young to know even that. With all

the love that I possess.

iv

Acknowledgments

I first acknowledge the support of Dr. William Kretzschmar, who has struck the fine balance

between insistence and distance. He has been more than helpful whenever I have come

knocking on his door, and has otherwise left me to work out my project on my own. I

also acknowledge Dr. Mark Liberman for suggesting the forced alignment project that grew

into this thesis and introduced me to automated analysis of speech corpora. Thanks to Dr.

Michael Covington for teaching me how to program and how to write clearly. I hope that I

do his tutelage justice. Thanks to Dr. Chad Howe for being excitedly interested every time I

have talked with him, and for always supplying me with sources to investigate. His direction

shaped many of the key components of this project. Thanks most of all to my wife, children,

and parents, who have done all they could to help me.

v

Table of Contents

Page

Chapter

1 An Introduction to PhoSS . 1

2 Setup Information . 6

3 Literature Review . 16

4 Program Methodology Exhibited in a Comparison of the Vowel

Space of Two Roswellian Peers . 32

5 Future Work and Conclusions . 50

Bibliography . 53

Appendix

A Informant Output Files . 57

B PhoSS Source Code . 87

vi

List of Figures

2.1 Tagging should be correct and consistent throughout. 11

2.2 All text in the transcript will be in the alignment. Pre-processing may be

necessary. 13

4.1 Mixing Praat and Python to handle command line options 36

4.2 The .result file before context is inserted . 37

4.3 Matching vowel tokens to context after sorting 39

vii

Chapter 1

An Introduction to PhoSS

This thesis is the definition and implementation of a phonetic summarizer with sociolin-

guistic and language variation studies in mind. The Phonetic Summarizer for Sociolinguistics

(PhoSS) analyzes speech corpora using less-structured input than most of the current speech

analysis systems do. The design decisions for PhoSS are all based around the ideas of ease-of-

use and cost-efficiency. The user need only input a .wav audio file with an accompanying .txt

transcript, and PhoSS will align the text and audio, extract formants from a user-defined

set of vowels, normalize if the researcher chooses it, and provide the user with both the

raw data and data summaries. PhoSS incorporates an array of options to define the vowel

measurement point and normalization options used at runtime. If informants have been pre-

viously processed, PhoSS recognizes old work and reprocesses only that which is necessary.

Perhaps the greatest added value of PhoSS is its concordancing capability. Both phonetic

and text concordance lines are provided for every vowel instance in the data. Information

representation for phonetic data has traditionally been scatter plots, formant graphs, and

spectrograms. While graphics are able to summarize information in a way words are not,

words are the heart of all corpus studies, whether textual or phonetic.

Prior to PhoSS, there was no single tool to automate vowel summary, although there were

tools that accomplished parts of the task separately from one another. PhoSS is intended in

part to fill a need that Hay and Drager sum up in Sociolinguistics by stating that, “although

variation studies are striving to investigate the social meaning of a variety of phonetic vari-

ables, we should hope to move beyond the focus on the variable and move toward studying

the semantics of patterns of phonetic realization” (Hay and Drager 2007:98). Along a similar

1

2

vein, this concordance approach to phonetic realizations is what William Labov describes in

an article about sociophonetics within the framework of sociolinguistics; “The question of

interest is how information is stored and in what form it is retrieved. The proposal [in Labov’s

paper] is that it is stored in the remembered tokens of actual utterances, and extracted

from those exemplars” (2006). Labov’s statement corresponds with the output of PhoSS.

It will show vowel tokens in both their phonetic and textual environments. Judging by the

statements of these experts in the field, it seems that sociolinguistics will benefit from a

complementary approach to ingesting data that is so often presented in charts and graphs.

There are, closeted away in our collective archives, reels, tapes, and digital recordings that

are essentially “all dressed up with no place to go.” Some of the reason for this has been the

historical cost, in terms of tools, money, and time, of data processing. Until the 1980s the cost

of hardware tools was prohibitive. With the rapid spread of desktop computing throughout

the 1980s, and especially since the advent of more powerful desktop computers in the 1990s,

it is within our grasp to process our stored data on adequate hardware. Software can be a

limiting factor. For linguistic research, there is a plethora of analysis tools. Some of them

are free; some of those are worth using. Most of these tools spawn from a gap in the cheap

or free availability of software suited for linguistics analysis. Thus, over the last decade and

a half, the software problem keeps shrinking. Time, however, is a perpetual limiting factor.

Automation helps to answer some of the time problem, but introduces a whole new set of

concerns and questions. Automation limits human interaction with the data, which feeds

the tendency in some programs to be wary of using computer analysis too much. When it

comes to answering sociolinguistic questions, automated analyses quickly become complex.

Looking for answers often turns into solving multivariate statistical problems. Computers

are well suited to run statistical analyses, but no matter how involved computers are in

data handling, data interpretation is still a human task. Automation, where appropriate,

should have a very specific purpose and specific range. The purpose of automation in PhoSS

is description. Its statistical analyses are intended to be preliminary measures which can

3

confirm or reject initial suspicions without too much investment of time or resources. PhoSS

does not attempt to draw conclusions in and of itself.

The goals for this thesis are mainly methodological. My first methodological goal is to use

the Roswell Voices corpus as a test bed for the Penn Phonetics Lab Forced Aligner (P2FA).

The first published papers that revolve around the performance of P2FA use the SCOTUS

corpus — recordings from Supreme Court rulings (Yuan and Liberman 2008; Yuan, Isard

and Liberman 2008; Evanini, Isard and Liberman 2009). The SCOTUS corpus straddles a

middle ground between word list corpora and interview corpora. It is much more than word

list recordings, but it is still a corpus of semi-scripted speech, and so not a true interview

corpus. It may be viewed as an ideal interview corpus for speaker clarity. There are a very

few speakers, recorded in a controlled environment on good equipment, and there are over

fifty years worth of recordings.

Keelan Evanini, in his University of Pennsylvania Ph.D. dissertation, used the P2FA for

analyzing the merger of /o/ and /oh/ around Erie, Pennsylvania, based on word list readings

and recorded elicitation tasks. I am using the Roswell Voices corpus, which is part of the

University of Georgia Linguistic Atlas Project. I chose an interview corpus over a word

list corpus because successful application of this process to interview corpora will mean

opening the door to automatically processing the material housed in the UGA Linguistic

Atlas Project archives. This thesis is the extension of a pilot study that I conducted in the

winter of 2010, during which I demonstrated that forced alignment of our Roswell Voices

corpus was successful under certain conditions.

The second methodological goal is to join together the existing tools that automate the

processes of forced alignment, formant extraction, vowel normalization and data summary,

while allowing the user to select some program options at the beginning. By necessity, this

becomes an attempt to apply best practices in sociolinguistics and acoustic phonetic analysis.

I will have PhoSS default to what I can justify as the best choices based on published

research. At the same time, I do not want my program to be so narrowly applicable as to

4

be useless to others. I will incorporate a robust array of options where is it feasible, which

will allow the user to specify alternative methods to vowel formant sampling and application

of normalization procedures. These options should make the program useful to researchers

who have interests in speech recognition, or to sociolinguists who have very specific ideas

regarding sampling and normalization for their data sets. For those who want more control

still, the PhoSS code is commented throughout, but especially where a programming linguist

can easily change program behavior.

My last goal, and where I will try to add the most value to current practices, is to show

phonetic data in context of the original text. The current trend with analytical tools is to

produce graphs, plots and tables. While pictures are valuable when summarizing data, they

have limitations just like any other medium. “A picture is worth a thousand words,” but if

given a scatter plot of one thousand words, who can tell where they came from, or what their

meaning is? Who can tell what company they keep? It is impossible without a supplement.

For this reason, PhoSS will present its data summary in prose and semi-prose, accompanied

by key word in context (KWIC) evidence.

Producing this evidence is a five step process. The first step is forced alignment, which

assigns duration boundaries to a phonetic representation of a transcript. Second, I extract

formant values for a user-defined subset of vowels. An optional third step will normalize

the raw frequency measurements in order to reduce variance due to vocal-tract differences

if the researcher desires normalization. The PhoSS default is no normalization. Fourth, the

data are analyzed, summarized, and supported with KWIC examples. Fifth and finally, the

summary is written to an output file.

Chapter 2 will cover all of the software and hardware requirements for implementing this

system. It is a good reference for implementing quality forced alignment using only free tools.

Chapter 3 will evaluate previous and current work in the areas of forced alignment, acoustic

phonetic analysis, with focus on formant sampling practices, normalization procedures, and

statistical methods in the context of sociolinguistics and existing corpus methods. Chapter

5

4 will explain parts of the PhoSS code, and will demonstrate PhoSS in action analyzing

two speakers from the Roswell Voices corpus. Chapter 5 will discussion the results of the

demonstration along with ways to improve and extend PhoSS, and offer suggestions for

future research.

Chapter 2

Setup Information

Modern hardware will be well-equipped to run PhoSS, along with all of its components. I

developed PhoSS on a netbook with a 1.66 GHz Atom N280 processor and 1 GB RAM,

and on a desktop computer with a 2.4 GHz Intel Core 2 Quad processor and 8 GB RAM.

The netbook was sufficient to run the P2FA, which is the most time-intensive portion of the

process, although lengthy alignments (I define lengthy as any sound file over ten minutes in

duration) take a very long time to process. Alignment of a twenty minute audio file ran for

over three and a half hours on the netbook, and for two and a half hours on the desktop, but

both ran to completion. Shorter sound files (five minutes or less) align significantly faster.

The netbook completes a five minute alignment in twenty minutes, and the desktop in just

over ten minutes. This scaling difference is likely due to the increased effort it takes the forced

aligner to assign sound models to larger numbers of sound tokens. Variation in the tokens

will mean lower probability scores for matching Hidden Markov Models (HMMs) to sound

segments, and consequently more work for the aligner to sort out the variation. Evidently,

any computer with a 1.6 GHz single-core processor and 1GB RAM will be sufficient to run

PhoSS, but the alignment portion should be run on a faster computer when possible. If a

faster computer is not accessible, it is a good idea to run the alignment overnight, or as an

extended-break task.

All of the software components for PhoSS are free and open-source software (FOSS) avail-

able for internet download. PhoSS is designed to run only on Linux and Linux-like systems.

I developed and tested PhoSS on Ubuntu 10.10, Maverick Meerkat, and in an Ubuntu 10.10

6

7

virtual machine on Windows Vista. PhoSS does use some Linux specific commands, and is

not designed to run natively in Windows.

Cygwin, a Linux API for Windows, is also a viable alternative if all of the dependencies

compile. I was not able to get RPy2 to install properly under Cygwin, although I have read

that it is possible. It occasionally happens that Cygwin packages are not available through

a regular Cygwin mirror. When a package is unavailable through Cygwin, it may be listed

at http://cygwinports.org. Cygwinports uses a sourceware mirror where additional packages

not bundled with the official Cygwin releases reside. There are special instructions to install

packages through Cygwinports available on their main page. Working with Cygwin will

necessitate downloading and compiling the Linux source code for some dependencies. Linux

binaries will not run on Cygwin, but programs that are compiled from source within Cygwin

will run just like any other native Linux program. After setting up a suitable environment,

there are several software packages that are required to run PhoSS.

The first requirement is an installation of Python 2.6 or newer. I use some os.path com-

mands that are new to Python 2.6, so attempts to use PhoSS with Python 2.5 or earlier will

fail. Most of the Python modules that I include are in the basic Python installation. I use the

os, sys, subprocess, fileinput, and fnmatch modules for the main functions, and the pprint

module for some debug output. All of those modules are included as part of the base Python

installation. The one exception is RPy2, which is a module that calls and manipulates R

objects directly from a Python script.

PhoSS is written in Python since Python is very flexible, and since it has a shallow

learning curve when compared with other computer programming languages. It has a large

number of ready-to-use modules, and promotes programming in easy-to-read and easy-to-

maintain code. Python also, and very importantly to this particular application, interfaces

well with other programs. Through the use of some of its built-in modules, Python can

execute and communicate with subprocesses — a capability that I will exploit to interface

with both Praat and R. I have found that Python is especially kind for human language

8

processing tasks. It has a string data type that some other languages lack. The string data

type is good for handling raw text, like transcripts. Python lists and classes, on the other

hand, are good for defining phonetic sets and organizing informant information. Users who

plan to make additions or changes to the PhoSS code will need to have some proficiency

with Python.

The HTK toolkit (HTK 2009) is a dependency for the P2FA and, by extension, PhoSS.

The HTK toolkit is a speech recognition toolkit that was used for building the Hidden Markov

Models for the sounds included with the P2FA. Hidden Markov Models are probability

functions for sequences of events, in this case sounds (Manning and Schütze 1999:317). The

HMMs included with the P2FA use “GMM-based monophone HMM acoustic models with

32 mixture components on 39 PLP coefficients trained on 25.5 hours of speech from the

SCOTUS corpus (Supreme Court oral arguments)” (Evanini 2009:52).

It is possible to use the HTK with existing aligned corpora to train new HMMs. This

makes the HTK, and subsequently the P2FA, suitable for investigating languages other than

English. The HTK is a free download, but users are required to register in order to download

the source code. The version of the HTK that is specified in the P2FA documentation is not

available as a direct download from the HTK website. In order to get version 3.4 instead of

version 3.4.1, it will be necessary to copy the download link into a web browser’s address

bar, and delete the .1 in the address. The source will need to be compiled after downloading

version 3.4.

The second dependency for P2FA is SoX, Sound Exchange, which is an easy install on

Ubuntu, but will need to be compiled from source in Cygwin. SoX is an audio file manipu-

lation tool. P2FA uses it to handle audio resampling, amongst other things. Unless specified

otherwise at the command line, all .wav files are resampled to 11025 Hz prior to alignment.

11025 Hz is a low sampling rate. Audio CDs are sampled at 44100 Hz, and high definition

DVD audio recordings are 96000 Hz. The Library of Congress stores archived audio from

the UGA Linguistic Atlas Project sampled at 96000 Hz. With a low sample rate, there is

9

a potential for lost phonetic detail, since reducing the sampling rate reduces variation in

the sound. Yuan and Liberman justify their design decision by testing seven sampling rates,

from 2000 Hz to 44100 Hz. They report the highest alignment accuracy, 98.0%, for audio

recordings sampled at 11025 Hz. Incrementally lower sampling negatively impacts alignment

accuracy, but stepping up to higher sampling rates shows an even more dramatic negative

effect than stepping down to lower sampling rates (Yuan and Liberman 2008). This means

that the P2FA is likely to align telephony with higher accuracy than archival quality record-

ings. This may be due in part to the sound models the P2FA used for testing. Sound models

built on high-sampled training data may show better prerformance aligning higher-sampled

audio.

The P2FA comes with a distribution of the Carnegie Mellon University (CMU) pro-

nunciation dictionary. The CMU pronunciation dictionary contains headword with phonetic

pronunciation entries for over 125,000 words of American English. The pronunciations are

transcribed in a variant of the ARPAbet, which is an ASCII representation of the IPA. The

P2FA uses the HMMs built with the HTK along with the CMU phonetic pronunciation

dictionary to:

1. Generate a phonetic transcription of a plain text transcript through dictionary look-up.

2. Use the resulting phonetic transcript, along with the sound models to probabilistically

assign start and end times to the phones in the transcript.

3. Output a two-tier Praat TextGrid with start and end times that correspond to time

in the audio file for each phone and word in the phonetic transcript.

It will likely be necessary to run forced alignment more than once on a new file pair.

When the P2FA encounters a word that is not in the dictionary, it gives a SKIPPING WORD

warning. All of the skipped words should be reviewed and added to the dictionary, along with

phonetic pronunciations. If they are not, then they are simply omitted from the phonetic

transcript and from the TextGrid, resulting in a functionally useless alignment.

10

This is a good point at which to give a few words of warning regarding transcription for the

purposes of forced alignment. Users should transcribe all words the speaker utters including

disfluencies, self repairs, and verbal pauses. Users should tag instances of laughter, coughs,

external noises and other non-linguistic sounds. Forced alignment is a probabilistic process.

Every millisecond of every sound file will be classified as part of some phone. Whether a sec-

tion of the audio gets correctly attributed to a phone or separated from that phone depends

greatly on the detail of the transcription. Along with HMMs for the complete American

English sound set, the P2FA comes with HMMs for laughter, cough, and short pause. The

short pause is not of any concern for transcription. It gets automatically inserted at run-

time. Why include the short pause, then? Yuan simply states in the P2FA README that,

“The acoustic model includes a robust short-pause (‘sp’) HMM inserted optionally between

words which greatly improves alignment accuracy.” Laughter, coughs, and all other non-

speech noise should be written into the transcriptions with the appropriate tags. Figure 2.1

shows the importance of properly annotating laughter in the transcription. The alignment

in figure 2.1a is from a transcription that combines transliterating laughter (“HA HA”) and

tagging laughter using the P2FA {LG} tag. The result is an alignment that represents one

sequence of laughter disjointedly between two segments. The sound model for the {LG} tag

accounts for the erratic noise that is part of laughter. Transliteration will try to match the

phones HH and AA1 to the sound wave, which it may only tenuously represent. Figure 2.1b is

the same alignment using only one convention. The laughter is aligned, and the automatically

inserted {sp} tag begins when the laughter ceases to fit the {LG} sound model.

XML encoding or otherwise tagging transcriptions is not discouraged, as long as they are

preprocessed and P2FA tags are inserted. If they are not, then all of the non-speech sounds

that are present in the audio will become part of some surrounding speech sound. Not

taking extra-linguistic sounds into account will cause alignment accuracy to degrade. The

P2FA will right itself eventually. That is, even with incorrect alignment through a portion of

untranscribed non-speech, the alignment will right itself once more if it encounters another

11

(a) Misalignment from using transliterated
laughter together with the {LG} tag

(b) Correct alignment using the {LG} tag

Figure 2.1: Tagging should be correct and consistent throughout.

stretch of continuous speech. However, for the portion where the P2FA is trying to match

non-speech sounds to phones, the accuracy is severely penalized. Users should transcribe all

words and parts of words and assign pronunciations to the parts of words in the lexicon. The

headwords for phonetic dictionaries are not always recognizable whole words. Users should

transcribe disfluencies, self repairs, verbal pauses, and tag all extra-linguistic sounds. This

will produce the best alignment results for speech corpora.

Special symbols, like punctuation, can be included in transcriptions. They are removed

during file processing and do not affect performance. Users should, however, take care to

transcribe disfluencies and audible pauses as best as possible. It is good practice to make

transcription guides or format checkers part of large-scale transcription projects in addition

to random quality control checks. Transcription is such an expensive process that transcripts

should be designed to have a long life cycle.

The Roswell Voices transcription was carried out long before I began trying to perform

forced alignment on the files. This required systematically reworking the transcripts to be

consistent with one another and usable with the P2FA. All of our transcripts were typed

using Microsoft Word, which uses Microsoft’s smart punctuation. The forced aligner does not

handle non-ASCII characters, including smart punctuation. I verified that extended ASCII

characters are not supported by processing a French text with accented characters. When

12

the P2FA processes unrecognizable characters, the skip list will display a list of all of the

words with those characters in them. The initial skip lists were full of words like “you�re”

and “don�t”. Weeding through all of the entries to see which are misspellings and which

are actual missing words will take human eyes. In addition to dealing with unrecognizable

characters, numerals will appear in the list. It is possible to automatically respell numerals

as words, but because of the many ways numerals may be spoken, it is not good practice.

The best option is to consult the audio, find out how the informant spoke the numeral, and

manually edit the transcript.

It may be the case that even after the dictionary is in order, the transcripts will still need

work. Transcription is a purpose-driven task. For the Roswell Voices transcripts, lots of the

transcript “problems” were just a result of the transcription being done without alignment in

mind. When I looked at the first alignments with Praat, I saw that all of the speaker names

were included in the alignment, and were throwing off the segmentation. The aligner does

not have a mechanism for intelligently ignoring text or tags, so anything in the transcript

files will become part of the alignment. I created a set of processed transcription files for the

aligner that existed alongside the original transcription files.

I used our transcription guide to write a script that found and replaced our tags and

markers with P2FA standard tags, or to remove them when there was no equivalent tag.

What I found, however, was that transcriptionists took liberties with commenting, using

whitespace, organizing header information, and marking speaker turns. The transcripts did

not all fit into one mold, so I could not fix them in one pass. I wrote a normalization script

that tested for smart punctuation and non-standard tags and rewrote them to their ASCII

equivalents. Linux command line tools like grep and sed, or a powerful text editor like Vim

or Emacs, may be invaluable for bringing order to the system, since they support robust

regular expression find-and-replace. I used the results of the regular expression tests in the

normalization script to output status messages, alerting me to the types of changes that had

been made to each file. Repurposing our transcripts for alignment was, without a doubt, the

13

(a) An unprocessed transcript may produce
erroneous alignment.

(b) The same segment is accurately aligned
after processing.

Figure 2.2: All text in the transcript will be in the alignment. Pre-processing may be neces-
sary.

most time consuming portion of the setup phase. Figure 2.2 demonstrates the dangers of

using improperly formatted transcripts for alignment. Figure 2.2a is an alignment performed

with an unprocessed transcript that had each turn labeled with the speaker name. Figure 2.2b

is the same segment after pre-processing the transcript.

The next dependency is Praat, the well-known Phonetic Analysis tool developed by Paul

Boersma and David Weenink at the University of Amsterdam. It is a freeware program,

written in C, which is a robust phonetic analysis tool and a standard amongst linguists

doing phonetics research. Its most prominent features are its LPC spectrum window, and

formant and pitch trackers. With a .wav file, and TextGrid (with word and phone tiers),

Praat displays a spectrogram with word and phone tiers underneath, making sounds easily

isolable for hand-checking alignment results.

It will be necessary to have a knowledge of Praat’s built-in scripting language in order to

modify the formant extraction routine in PhoSS. Praat’s subroutines are tied very closely to

its GUI, including the spaces and ellipses in the subroutine names. This can make the Praat

scripts hard to decipher and to write. When using Praat at the command line, scripts have

to be called using “form” parameters, if there are any. It can be useful to base new Praat

scripts on existing examples. The Praat script built by PhoSS is loosely based on Mietta

14

Lennes’ formant extraction script (2003). It outputs a file that is ready to be interpreted by

the NORM vowels.R package.

R is an open-source statistical and graphing package that has gained popularity over the

last decade. The R project, which is patterned after the S statistical package, has devel-

oped into a very powerful terminal-based statistical tool. Harald Baayen gives an accessible

introduction to processing linguistic data in R (2008). Jonathan Harrington also uses R and

an EMU-R library in conjunction with a suite of phonetic corpora in Phonetic Analysis of

Speech Corpora (2010). R is becoming a standard tool amongst quantitative linguists since

it is much more powerful than the black-box routines available elsewhere. Pairing R with

another programming language can produce very powerful tools. R can handle language

data directly, but not always elegantly. Python, on the other hand, handles language well

and benefits from being paired with a dedicated statistics package.

There is a steep learning curve to R, but in order just to use PhoSS, no proficiency with

R is required. Changing the R routines that PhoSS uses will require some experience with

R and RPy2. The syntaxes for Python and R are not very far from one another, and using

RPy2 should be fairly intuitive for Python programmers. At the very least it should be

decipherable. As with Python, there is no shortage of R tutorials and user-made libraries.

Most of the R code in PhoSS is part of the vowels.R library.

For Cygwin environments, R is not available through the main Cygwin mirrors, but it is

available through Cygwinports. Cygwinports uses the latest version of R currently available,

version 2.12.1. Linux users should have no problem obtaining the latest releases of R.

The vowels.R library is a product of the Sociolinguistic Archive and Analysis Project

(SLAAP), headquartered at North Carolina State University. Its authors are Tyler Kendall

and Eric Thomas. Vowels.R is a well-put-together and well documented library of R func-

tions for vowel normalization. The installation instructions for vowels.R are contained in

the header of the file vowels.R. There are five main normalization routines, with options

to control their variants. The vowels.R package is the back-end for the NORM project

15

web form. The web form accepts a formatted spreadsheet or tab-delimited text file of

un-normalized formant frequency data, normalizes it, and plots a graph of the results.

The results are downloadable as a .zip or .tar.gz file. Users may process their own data

and take advantage of the NORM graphing functions by using the NORM web form at

http://ncslaap.lib.ncsu.edu/tools/norm/norm1.php.

Chapter 3

Literature Review

PhoSS blends the results of research in text-based corpus linguistics, sociolinguistics, and

computational phonetics. Within sociolinguistics, research tends to stress either social factors

in language production or the phonetic particularities of speech (Hay and Drager 2007).

Stress on the phonetic side has given rise to a sub-branch of sociolinguistics that has been

dubbed sociophonetics. PhoSS strives to make quick work of a tedious but necessary step

in most sociophonetic research — formant extraction and normalization — with the added

value of extracting exemplars in context. This literature review will highlight the relevant

research in each of these fields in an effort to clarify the position of PhoSS in a sociolinguistic

venue.

Sociolinguistics, as a field, is a relatively young one. It began in earnest in the early 1960s

with William Labov’s famous “Martha’s Vineyard” and “fourth floor” studies (Labov 1963,

Labov 1966). From that time, social motivation for language variation has featured more

prominently in the education of new linguists. One of the pervading methods for studying

the rate of language change is applying the apparent time hypothesis to variation studies. The

apparent time hypothesis, as summed up by Hay and Drager, asserts that “[an] individual’s

phonological systems and accents remain stable throughout their adulthood. For this reason,

any observed differences between younger and older speakers recorded at the same time

are generally considered to be indicative of changes in progress” (2007:91). This particular

theory is interesting from a speech corpus perspective because diachronic speech corpus

study can help to illuminate this question. Jonathan Harrington has tested the apparent

time hypothesis through a diachronic corpus study of Queen Elizabeth II’s yearly Christmas

16

17

addresses. Harrington demonstrated that the Queen’s vowel space has been shifting away

from typical RP norms and in the same direction as change within the general population.

The evident vowel change that the Queen has exhibited throughout adulthood runs contrary

to the apparent time hypothesis. The implication of the study is that language change in the

adult population as a whole is greater than was postulated. This sort of generalization can be

dangerous, but further research may prove that this trend holds, and that the apparent time

hypothesis is incorrect. This would only mean that language change happens more quickly

than the theory currently supposes. Having tools to perform vowel analysis on unstructured

speech corpora makes more information such as this easily attainable.

Analyzing speech corpora for sociolinguistic research is a case for applying extended

methods used in traditional corpus linguistics. All phonetic corpora, by necessity, have a

textual component and fall under the umbrella of corpus linguistics. The textual component

is one layer of the corpus, and text corpora have been studied for a much longer time than

the audio component. The audio component is a newer investigative dimension for corpus

linguistics in which the text becomes a means to an end — the analysis of sound quality that

is corollary to the sorts of analyses text-based corpus linguists perform on words. Analysis of

phonetic corpora benefits from the history of corpus linguistics, since there are established

methods for handling text corpora.

Computer-based corpus linguistics began in the late 1940s with Father Roberto Busa,

who created a concordance of the works of Saint Thomas Aquinas. His pilot endeavor proved

that using computers for large scale text processing was possible. The 1960s and beyond

showed that it was not only possible, but very promising. Francis and Kučera published the

Brown corpus in 1963. The Brown corpus was the first “mega corpus,” which was composed

of just over one million words — five hundred two-thousand word samples in fifteen categories

of material published in the United States in 1961. The Brown corpus was the first corpus

that was really available for wide study. It became the focus of many early English language

18

studies and sparked the creation of the LOB corpus, which is a British parallel to the Brown

corpus (Kennedy 1998).

The earliest corpus language studies revolved around word and sentence length. It was

supposed that word and sentence length could be used as stylometric measures. This idea,

however, proved simplistic and soon gave way to more complex studies of stylometry. The

most famous of these is the 1964 paper by Mosteller and Wallace, “Inference in an Authorship

Problem: A comparative study of discrimination methods applied to the authorship of the

disputed Federalist papers.” Mosteller and Wallace showed how authors’ language varies at

the subconscious level, and how that can be shown using proper statistical methods. Even

more important than demonstrating the presence of seemingly unconscious function word

variation amongst authors, they showed how important it is to apply appropriate statistics to

language problems (Oakes 1998:208-212). The next twenty years in corpus linguistics became

the time for methods development and solidification.

Through growing corpus study, it became apparent that words attract other words and

kinds of words. J. R. Firth noted it best when he said, “You shall know a word by the company

it keeps.” Researchers like John Sinclair and Michael Stubbs took corpus linguistics through

the 1970s and 1980s by studying and measuring collocational attraction, lexical profiles, and

register variation. The Collins Cobuild dictionary, first published in 1987, was the first corpus-

driven dictionary, built by defining words in terms of typical collocational contexts, rather

than in contrived carrier sentences. Meanwhile, Biber was quantifying variation across speech

and writing through the use of multivariate statistics (Biber 1988). The British National

Corpus also appeared around this time. The BNC is a more modern corpus of 100 million

words divided into five broad categories.

By the end of the 1990s Stubbs (1996), Biber (1998), and Kennedy (1998) had all written

Corpus Linguistics handbooks which review many of the same methodological approaches

to corpus study. Naturally, they cover the same major historical material in corpus linguis-

tics. By the end of fifty years, corpus linguistics had gone from non-existence through its

19

experimental phase, into an era of established methodologies. All the while, linguists and

computer scientists had been developing tools to automate text processing. Today, the focus

of corpus linguistics is on size, since most words are very rare objects. The corpora of Mark

Davies are the most widely available large corpora. The Corpus of Contemporary American

English, patterned after the BNC, is presently at over 400 million words, with about twenty

million words of text being added annually (Davies 2008). Garrison Bickerstaff, a recent

UGA PhD, composed a six billion word bounded virtual corpus using LexisNexis (2010).

Solid methodological foundations in text-based corpus linguistics have led to the ability to

process text data on significantly larger scales than researchers not so very long ago.

Phonetic corpus linguistics is currently at a similar state to text corpus linguistics in

the 1990s. In exactly the same way that text corpus linguistics has grown, phonetic corpus

linguistics is growing. There has been foundational work. There are some tools available,

and it is an area of growing interest. We are even starting to see some of the first dedicated

handbooks for analyzing speech corpora (Harrington 2010). As it stands, however, there are

not very many tools available for the processing of unstructured speech corpora. The current

practice is to hop from tool to tool for each stage of the corpus analysis. Alignment is often

carried out by hand using Praat, and formant extraction is performed with Praat, WaveSurfer

or TF32. Data is often analyzed on spreadsheet tool or in R, and word investigation is done

nearly exclusively in WordSmith Tools.

The Akustyk package (Plichta 2011) for Praat comes close to being an all-purpose tool

for exploring speech corpora. It is an add-on that modifies the Praat executable, offering

automated analysis of specific vowel sets along with graphing capabilities that are much more

like what R offers. It offers four normalization methods but does not perform alignment. It

can also measure vowel formant trajectories, voicing, intensity, nasalization, and voice quality,

which are all features that PhoSS does not offer. Akustyk also offers discriminant analysis,

which is good for separating a mass of values into two or three groups based on likeness

measures.

20

There are some stand-alone tools, like the EMU speech database, which is a tool that

interfaces with both Praat and R. It uses the EMU query language and is the tool used in

Harrington 2010. Harrington demonstrates EMU on Australian and German speech corpora,

but user corpora may be formatted for use with the EMU speech database. It incorporates all

of the functionality of R and all of the speech-centric functionality of Praat, and looks very

useful for users who are willing to spend the time to become proficient in the EMU query

language. By far, the most cited corpus-independent tools for analyzing speech corpora are

Praat and R, used separately.

While corpus-specific tools are usually the first types of corpus analysis tools to be pro-

duced, they are typically not the best tools to use. They invariably lack the ability to answer

every question that researchers will ask of a corpus, and cannot always be cajoled into

answering questions they were not designed to address. For this reason, PhoSS is designed

to be corpus unspecific. All of the file formatting is handled within the program, so that the

user has to spend as little time as possible structuring the input.

In general, there are vastly fewer speech corpora than text corpora that are publicly

available. This is in part due to privacy agreements, and in part due to the cost of producing

speech corpora. The process of recording, transcribing, and segmenting speech corpora is

exceedingly labor intensive and very expensive. The Switchboard and TIMIT corpora are

perhaps the best known available corpora for studying American English. There are sections

of the ANAE (Labov, Ash, and Boberg 2006) that have been annotated, but the files are

not available for public download. There are also a number of telephony corpora, but these

are geared towards training speech recognition systems, and their audio quality is lower than

ideal for phonetic analysis (Yuan and Liberman 2008). The quality of automated phonetic

analysis begins with the quality of the alignment.

Forced Alignment is the process of computationally assigning time values on an audio

track to the beginning and ending points for the segments of a phonemic-level transcription.

Keelan Evanini wrote his 2009 University of Pennsylvania dissertation using the P2FA and

21

automated vowel analysis to analyze the vowel mergers around the area of Erie, Pennsylvania.

I am employing many of the same practices that he uses since they are designed around

research using the P2FA, and since they are mostly in accordance with popular practice. I

will note deviations from Evanini’s methods.

All of the phonetic analysis is dependent upon the accuracy of the forced alignment.

Attention to detail in the transcription is the one major user-controllable variable for

improving alignment accuracy. Even with the best transcription, the alignment process is

prone to some error. For this reason forced alignment will have to perform well in order to

be useful as a sociolinguistc tool.

To make sure that the P2FA is worth using, Evanini offers research into the performance of

the P2FA. Evanini discusses the performance of the P2FA in comparison with human aligned

corpus segments of his dissertation corpus. In that sample of 324 primary stressed vowels,

the forced aligner marks the onset for two-thirds of the vowels within a twenty millisecond

absolute difference of hand measurements for the same set. Nearly half of the vowels are

segmented within 10ms of the hand measured onset times, and the worst performance is a

difference of 50ms, which is the case in only one example out of the 324 vowels. The offset

times performed a little bit worse than the onset times, but Evanini was not concerned, since

measurement points are most often selected closer to the onset time of the vowel, and since

vowel gestures are most often separated by short pauses or consonants. That being said,

offset times were almost two-thirds within twenty milliseconds and eighty-five percent were

within fifty milliseconds.

Yuan and Liberman report similar results, and all parties find the margin of error to be

within acceptable tolerance. Evanini does give the caveat that performance will likely drop for

interview data. His dissertation corpus is a word-list-style corpus, so his alignments are less

likely to encounter laughter or disfluencies as often as in an interview corpus. This is proper

warning for use of the Roswell Voices corpus, since it is an interview style corpus. There are

elicitation tasks in the corpus, but I am not using them for my examples. There are two

22

safeguards in place for PhoSS against misalignments. The first is noted by Evanini, namely

the law of large numbers. The larger the sample, the less a few erroneous measurements

will affect the overall outcome. The other safeguard is the vowel summary using concordance

lines. Misalignments that result in outlier measurements will be noted in the output. Through

this mechanism, PhoSS alerts the researcher to erroneous measurements.

Utterly critical in regards to this project is determining where to measure vowels. It is a

subject, much like English grammar, that has guidelines, fluid rules, passionate preferences,

but few hard and fast directions. By far, the most popular practice in both phonetics and

sociolinguistics is to measure vowels at their midpoints. The midpoint, apart from being a

very convenient place to measure a vowel, is reasoned to be the point that is least affected

by the surrounding sounds. In theory, it is far enough from the onglide to be away from

perseverative affects and not yet influenced by anticipatory articulation.

Evanini reviews Hildebrand et al. (2005) to find out where humans mark vowels for

measurement during hand-annotation. The two judges in Hildebrand mark all vowels at

an average of less than one-third total duration. In the Atlas of North American English

corpus(Labov, Ash, and Boberg 2006), hand selection was consistently close to one-third of

the duration of the vowel (Evanini 2009). The ANAE results are probably a better indicator

for measurement point selection, since Hildebrand’s results are based on an informant reading

a list of isolated hVd words, and lack lots of the transition effects one would expect to see

in natural speech. The ANAE runs the whole gamut of vowels, so it accounts for the effects

of a wider range of sound transitions on the measurement points.

Evanini, to be very thorough, also compares the performance of several different auto-

mated measurement point methods to hand-selected measurement points. He uses ANAE log

files, which contain timestamps for F1 and F2 measurements for over 110,000 vowel tokens,

aligns the files, and finds where within a phone the measurement was taken. Consistently,

the measurement point is around one third the duration of the vowel, further supporting his

decision to sample the vowels at the one-third point, and not at the customary midpoint.

23

Cox 2006 works with a similarly constructed corpus to Evanini’s. In her study of aspects

of teenagers’ pronunciation of Southern Australian English, she manually aligns seventy-two

elicitations of stressed vowels in the hVd context for sixty males and sixty females. The vowels

are then separated into onglide, target and offglide for monophthongs and onglide, target

one, transition, target two and offglide for diphthongs. With this detailed information, Cox

analyzes average formant frequencies for males versus females, as well as vowel trajectories

from onglide through offglide. The most relevant aspects to my work are her measurements

of the relative durations of each of the component parts of the vowel. With the exception

of /i:/, the vowel onset is not more than twenty percent of the vowel duration, and the

average is around thirteen percent. The end of the vowel target averages sixty-five percent of

the vowel duration. That places the center of the vowel target between twenty-six and forty

percent of the vowel duration.

Another alternative to measuring at some proportion of the vowel is to measure at the

vowel steady state. Sampling at very small increments throughout the sound wave and finding

the rate of change from sample point to sample point in the sound wave will reveal a portion

of the vowel that has the least amount of variation throughout the vowel duration. This

portion of the vowel is the steady state. It would then be customary to measure at the center

of the steady state, since this would best represent the point least affected by surrounding

sounds. I have not included steady state measures in PhoSS because of the complexity

of implementing steady state measurement in the Praat script, and the positive results

reported by Cox and Evanini. If a study of vowel measurement points for interview corpora

demonstrated that Evanini’s findings do not hold, then steady state measurement would be

a worthwhile alternative.

The customary midpoint measurement does not appear to be the most accurate approx-

imation of the vowel’s target. Indeed, according to Cox, the midpoint for the vowel target of

[u] is right at the beginning of the vowel offglide. Cox and Evanini agree that the midpoint

24

of the vowel target most often ranges from twenty-five to forty percent through the vowel

for monophthongs.

When it comes to measuring diphthongs, procedures are less uniform. Evanini decides

that there is no significant accuracy gain by measuring diphthongs twice, and dispenses

with it. To him, all vowels are best measured at one point. This assumes that a single F1,

F2 measurement is the most important characteristic of a vowel, as opposed to the vowel

contour, or formant trajectory. While the most important characteristic of the vowel is a

matter of theoretical debate, the practice leans heavily toward selecting a single measurement

point. Cox 2006 measures single points in both vowel targets for diphthongs. According to

her measurements, one-third through a diphthong is, in all but one case, already in the

transition between targets. The midpoint of the first target is between fifteen and twenty

percent through the vowel, and the second target is very near the end, at about eighty

percent of the duration (Cox 2006). Thus, a simplistic measurement of diphthongs may not

be the best course of action. I can accommodate multiple sampling for diphthongs in PhoSS

by adding a diphthong option. Using Cox’s results as a template, and verifying with Yang

(1996), I believe it will be safe to sample diphthongs first at fifteen percent and again at

eighty percent overall duration.

Similar to Cox, Cho (2008) and Deterding (2000) handle sampling diphthongs differently

than sampling monophthongs. While Deterding samples diphthongs at the beginning and

end of the segment frames, he is working with a manually aligned corpus, which is less prone

to inaccurate time stamps. I will sample diphthongs at fifteen and eighty percent of their

durations. Using this method, I hope to approximate the best position for vowel formant

measurement for each of the target gestures. Sampling part way into the vowel should help

to mitigate any inaccuracy introduced during the alignment, while the ending measurement

point I have selected should be a good approximation of the vowel’s second target.

When diphthongs are sampled multiple times, they are subject to formant transition

measurement. Rate-of-change (ROC) measurements are perhaps the most common kind of

25

diphthong analytic. The ROC method samples a diphthong twice, once at the beginning

of the segment, and again at the end. The ROC is computed by subtracting the end F1

frequency from the beginning F1 frequency and dividing by the duration of the diphthong,

yielding a measurement in Hz/sec. Positive ROC indicates a rising formant, while negative

ROC indicates a falling formant.

Vocal-tract normalization is the process of removing the effects of physiological differ-

ences between speakers from the sound wave, while preserving relevant linguistic variation.

The definition of “relevant,” however, is heavily biased by the researcher’s goals and con-

ceptions of phonological theory. The two main fields of interest for vocal-tract normalization

are speech recognition and sociolinguistics. Each lends itself to a different set of normaliza-

tion procedures. The two main groups of vowel normalization procedures are vowel-intrinsic

and vowel-extrinsic procedures. Normalization may improve vowel patterning by filtering

the effects of anatomy on sound, but it also means that the sound loses some of its orig-

inal qualities. Kretzschmar, Dunn, and Kim (2011) demonstrate that unnormalized formant

values pattern well amongst varied speakers, supporting the use of unnormalized data. PhoSS

makes no assumption about the researcher’s intentions regarding normalization procedures,

and defaults to no normalization.

Vowel-intrinsic procedures are so-called because they normalize vowel formants based

solely on the information contained within one vowel token. There is no reliance on other

tokens of the same type of vowel, or on other vowels at all. The unnormalized measurement

scales — most commonly Hertz and less frequently Mel, Bark, and ERB scales — are all

vowel-intrinsic measurements. The Mel, Bark and ERB scales seek to quantify sound waves

based on a perceptual scale rather than as a linear measurement, like Hertz does.

Other vowel-intrinsic methods that are more than measurement scales are the Wakita

method (1977) and the Bark-Difference Method, often called the Syrdal and Gopal Bark-

Difference Metric (1986). Vowel-intrinsic methods have been demonstrated to be best suited

for speech recognition and speech synthesis applications (Adank et al. 2004).

26

The early normalization studies, Wakita (1977) among them, were interested in normal-

ization for speech recognition purposes. They were often funded by the military, which was

most interested in language study for automated speech recognition and translation. By com-

paring the estimated vocal-tract length with a control case created from a length of tube in his

laboratory, Wakita created a normalization formula which mitigates the effects of vocal-tract

length differences between speakers. Using available speech recognition methods, synthesized

vowels using his normalized formant frequencies were recognizable between eighty-four and

ninety percent of the time. Some of incorrect vowel classification, he reports, was the effect

of speaker “mispronunciation,” by which he means regional accent. In sociolinguistics, this

is just the kind of variation that should be preserved after normalization. Of the ten vowel

types Wakita sampled, only one showed any distinction between male and female speakers

after normalization. Such high recognition accuracy as far back as 1977 (for speech recogni-

tion that is very far back) showed that vowel normalization did not destroy the information

that makes a vowel unique, and did not completely hide language variation, but at the same

time it could mask selected speaker differences.

The Syrdal and Gopal Bark Difference metric, first published in 1986, is a vowel-intrinsic

procedure that normalizes using the Bark scale. Hertz measurements are converted into

Bark units before normalization. The Bark scale was first proposed by Eberhard Zwicker in

1961, and is a sound scale based on subjective loudness. Just like resonance in a tube or a

musical instrument, the basilar membrane has points of maximized and minimized resonance

at different frequencies. These sections of the basilar membrane can be divided into critical

bands, or ranges, of hearing. The band centers correspond to frequencies that are the most

perceptually prominent. As frequencies move to the edge of a band, the sounds are less

perceptually distinctive. Zwicker does not expound his experimental methods in his 1961

paper, except to say that “These bands have been directly measured in experiments on the

threshold for complex sounds, on masking, on the perception of phase, and most often on

the loudness of complex sounds” (Zwicker 1961:248). The Bark scale is measured from 1

27

to 24, with 24 equating to about 15 kHz. The Syrdal and Gopal Bark Difference Metric

normalizes by calculating the differences between Bark values for F1, F2, and F3. While

the original Syrdal and Gopal formula uses F0 values in its calculation, the NORM project

implements an alternative which calculates the differences between F1, F2, and F3. According

to Adank et al. (2004), the Bark Difference metric was one of four methods that reduced the

physiological differences for gender to chance level. It was the only vowel-intrinsic method to

do so. One of the major advantages to the Syrdal and Gopal method is that its performance

is affected neither by the number of vowel types, nor the phonological inventory of the sound

system in question. It is, however, “heavily dependent on F3” (NORM: Methods), and is not

recommended for speakers who have unusual F3 values due to anatomy or chance (Syrdal

and Gopal 1986).

The other group of normalization procedures is vowel-extrinsic. Normalization using

vowel-extrinsic methods requires aligned corpora, since it uses aggregated information on

all vowel tokens from one or more speakers in order to calculate normalized formant values.

The side-effect of these methods is that variation within a type is taken into account while

analyzing a token of that type, and more broad information about variation is preserved.

Adank et al. (2004) report that vowel-extrinsic methods perform best at reducing vocal-tract

influence, while preserving sociolinguistic variation. The main drawback to vowel-extrinsic

methods is that they are easily skewed based on the vowel subset being investigated. PhoSS

includes two of the vowel-extrinsic procedures tested by Adank et al., Lobanov 1971 and

Nearey 1977, as well as two more vowel-extrinsic methods: Watt and Fabricius 2002 and

Labov 2006.

Lobanov is the oldest of the vowel-extrinsic methods, but it performs consistently amongst

the best in Adank et al. (2004) and Disner (1980) for reducing gender differences, pre-

serving phonological distinction, and preserving sociolinguistic variation. Disner reports

that Lobanov performed worse than Nearey (1977 method) at preserving subtle distinc-

tions between vowels from different languages, like the English /u/ and the Japanese /W/.

28

The Lobanov method does have some drawbacks. Apart from being poor for comparing

fine-grained cross-language distinctions, the performance of Lobanov is dependent upon the

range of vowels in the data set. Calculating the normalized values takes all types and tokens

into account for any given formant. The formula for Lobanov as provided by NORM is:

FN
n[V] = (Fn[V] −meann)/Sn (3.1)

“Where FN
n[V] is the normalized value for Fn[V] (i.e., for formant n of vowel V). meann is the

mean value for formant n for the speaker in question and Sn is the standard deviation for

the speaker’s formant n” (NORM: methods). The normalized values are not in the Hertz

scale, so they are not readily comparable with raw Hertz values. The drawbacks of the

Lobanov method are common to all vowel-extrinsic methods, namely that its results are

heavily influenced by the vowels included in the study. Despite this common drawback, the

Lobanov method consistently performed amongst the top two normalization methods tested

by Adank et al.

The other high-ranking vowel-extrinsic procedure, which performed right alongside

Lobanov in both Disner and Adank et al., is the Nearey 1977 method, which Adank et al.

labels Nearey1. The greatest difference between the Lobanov and Nearey methods is that

Nearey uses log-mean values where Lobanov does not. Nearey published a revised method,

which Adank calls Nearey2, that uses a scale factor across all formants for all vowels, instead

of scaling each formant for each vowel separately as in Nearey1. Likely because of this,

Nearey2 performs summarily worse than the original. For this reason it is not offered in

PhoSS. The implementation of Nearey1 takes the form:

FN
n[V] = antilog

[
log(Fn[V])−mean(log(Fn))

]
(3.2)

“Where FN
n[V] is the normalized value for Fn[V], formant n of vowel V , and mean(log(Fn))

is the log-mean of all Fns for the speaker in question” (NORM: methods). In some cases

Nearey performs better than Lobanov, but they are so close as to be nearly equal.

29

Watt and Fabricius (2002) developed their method because of the insufficiency of the

Bark-transformation scale when comparing formant values in Bark units. The Bark conver-

sion compresses high Hertz ranges, which are typical of women’s and children’s speech, into

lower ranges so that they should be perceptually more similar to men’s formant values. Say

Watt and Fabricius, “We make no criticism of the use of Bark-transformed data, nor the

validity of the scale itself, except to say that it does not in fact fully permit direct compar-

ison of one speaker’s vowel sample with another speaker’s vowel sample in the way we would

wish” (Watt and Fabricius 2002: 161). Their intuition was correct, according to Adank et

al. The Bark-transform performed at 94% recognizability on a gender identification test,

which indicates nearly absolute failure of the Bark scale to mask gender in perceptual tests.

Their answer works by measuring Bark-converted vowels in relation to an S-transform, or

centroid mean, for all vowels. The S-transform is calculated using the high front, high back,

and lowest vowel in the set as the corners of a feature triangle. Watt and Fabricius origi-

nally developed this method for analyzing British English, which has one clear lowest vowel.

American English, on the other hand, quickly reveals a shortcoming of Watt and Fabricius’

method that can skew normalized results. The American English vowel system has two low

vowels whose F2 values are roughly parallel to one another. The lowest value in a case like

that can skew the results towards fronting, in the case of a low F1 value at F2min, or backing

if the F1 value is high at F2min. The implementation of Watt and Fabricius in vowels.R

accounts for these kinds of sound sets. The top front corner is set to F1min, whether or

not it is F1 of [i]. The bottom corner of the triangle becomes F1max. The top back corner

is F1max,F2max, or [u] in English. Using English vowels as examples, the S-transforms, or

centroid values, for F1 and F2 are calculated using the following two formulae:

S(F1) = ([i]F1 + [æ]F1 + [u]F1)/3 (3.3)

S(F2) = ([i]F2 + [æ]F2 + [u]F2)/3 (3.4)

Normalized values are then calculated by dividing a vowel’s mean F1 and F2 by the appro-

priate S-transform.

30

The Labov method is a variation on Nearey’s method, which was used on the ANAE.

It normalizes using log-mean values, but it has a means of incorporating scaling into the

normalization procedure. A log-mean value for all speakers in the study serves as a center

point to make a scaling constant. The formant values are then multiplied by the scaling

factor, giving a Hertz-like value (note that Nearey values are not in Hertz-like values). The

drawback to this method is that the log-mean center shifts with the addition of new speakers.

Labov et al. (2006) report that the center does not change significantly after 345 informants.

The scaling constant calculated from the ANAE is the default scaling constant for NORM

and, by extension, PhoSS. It can be overridden by supplying another scaling constant as a

named variable in the Labov section of the normalization module.

Each of the vowel normalization methods, whether vowel-intrinsic or extrinsic, have their

advantages and disadvantages. The options included in PhoSS are what previous research

shows are the most reliable options. Where normalization is appropriate, the normalization

method should be chosen to fit the purpose of the study.

PhoSS outputs a .csv of normalized values (or raw values in the case of no normaliza-

tion) which is compatible with spreadsheet programs and offers individual or comparative

summaries where appropriate. Both summaries are centered on descriptive statistics, in par-

ticular on vowel space comparison. The individual summary looks for unusual tokens within

a speaker. This may be useful for examining situational language differences, such as accent

shift between home and work, or home and educational environments. The individual sum-

mary describes the overall speaker vowel space, and then gives a vowel-by-vowel report with

similar information. The vowel summaries include concordance examples of exemplars that

exhibit certain phonetic characteristics. For example, all vowels that fall within X standard

deviations of the vowel mean are grouped together. X increases by one-half standard devi-

ation increments until there are no more exemplars. This should lay bare any trends in the

context for exemplars that are grouped together by phonetic quality.

31

The comparative result measures an individual against a population. That population

may be as small as one other individual, or it may be a large group. The comparative

summary uses the same statistics as the individual summary, but removes the informant

from the population and compares him to group averages, instead of to his own averages.

I focus on formant means and standard deviations since they are capable of giving insight

into the vowel spread, the presence of outliers, etc. Simple statistics that are informative and

pertinent to most research questions are the most important statistics for this initial effort.

In all of the design decisions for PhoSS, I have tried to pattern my choices after current,

respected, published research.

Chapter 4

Program Methodology Exhibited in a Comparison of the Vowel Space of

Two Roswellian Peers

There are seven modules that make up the PhoSS source code. There is a main module, a

TextGrid parser, and one module for each of the five main steps required to complete sound

summary: alignment, formant extraction, normalization, statistical summary and output. I

will explain the program methodology through an example case that compares the vowel

space and corner vowels of two Roswellian peers.

I prepared the transcripts and .wav files for this example by making sure that all num-

bers were properly transcribed, laughter tags were inserted, speaker names were removed,

and that verbal static was transcribed. I have partially processed the files for the second

informant in order to show how PhoSS behaves when it encounters repeated material. The

audio segments for this example are short — approximately two minutes each, and the

interviewers have minimal input. A short example is sufficient, however, to demonstrate the

program. I am looking at vowel space by comparing the four primary stressed corner vowels

for American English, which are represented in the IPA as [i], [æ], [u], and [a], and by the

CMU pronunciation dictionary as IY1, AE1, UW1, and AA1 respectively. I will process the

data both with no normalization and using the Lobanov normalization procedure.

The PhoSS main module controls the program execution. It calls upon other modules to

populate the main data structure, an instance of the Speakers class called InformantList.

PhoSS uses the Python OptionParser module to parse command line options and arguments.

The result of parsing the command line is a pair of variables, opts and args which contain

the program options and arguments respectively. The options set methods for determining

32

33

the vowel measurement point and the normalization methods to use on the formant data.

PhoSS supports selecting multiple normalization methods in one command. In the case

of multiple normalizations, PhoSS writes an output file with the normalization method in

the file extension. PhoSS also supports specifying a separate set of diphthongs, which are

processed differently than the vowel set. For example, the option -p "AY1 AW1" will add AY1

and AW1 to the diphthongs list. Formants are sampled twice for diphthongs, and all of the

summaries that are performed for monophthongs are performed for each of the diphthong

targets.

PhoSS arguments may be any number of directories, ended by a quoted string of comma-

separated vowels. For this two-informant case where I am performing a direct comparison

of two speakers, examining the corner vowels with both Lobanov normalization and no

normalization, the command to run PhoSS is:

python phoss.py -rlg ./test_one/informant_one/ ./test_one/informant_two/

"IY1, AE1, UW1, AA1"

PhoSS interprets every directory argument as a new speaker. Each speaker becomes an

instance of the Informant class, which is added to the InformantList.speakers list. The

organization is InformantList.speakers[Informant,Informant], where each Informant

contains all of the information relevant to one actual human speaker. This organization

makes it easy to perform one operation at a time for all informants by iterating over the

InformantList.speakers list.

The last argument, the vowel list, is checked for accurate syntax and interpreted as

a Python list. If the user forgets to include a vowel list, PhoSS prints a reminder mes-

sage, Use a comma-delimited vowel set as last argument! Example: "AE1 AH0",

and exits the program.f Since the example command is well formed, the program pro-

ceeds.

34

The minimum contents of an informant directory are a .wav file and a .txt transcript.

A .TextGrid is optional; however, its absence prompts the user to perform alignment using

p2fa.

No TextGrid found in ../testfiles/test_one/informant_one/

Run alignment on selected audio and transcript? (y/n) y

In order to run alignment PhoSS must first find the p2fa alignment script. The p2fa align-

ment script does not have a predetermined installation directory. PhoSS checks customary

Linux installation locations for p2fa/align.py. When PhoSS locates p2fa, it keeps the location

in memory in case it has to run multiple alignments. PhoSS uses the .wav file name as the

basis for all other file names created throughout the program (including the .TextGrid when

there is not already one). Once PhoSS has found the alignment script it displays the p2fa

calling command so that the user may visually verify that all of the directories are correct.

PhoSS then runs the p2fa as a subprocess and waits to continue until the subprocess has

completed.

Searching for p2fa/align.py...

Found p2fa/align.py...

Calling p2fa with path: python /usr/local/p2fa/align.py

/home/user/testfiles/test_one/informant_one/informant_one.wav

/home/user/testfiles/test_one/informant_one/informant_one.txt

/home/user/testfiles/test_one/informant_one/informant_one.TextGrid}

The initial run of the alignment produces a string of p2fa warning messages:

SKIPPING WORD CRABAPPLE

SKIPPING WORD DADDIE'S

SKIPPING WORD EBENEZER

SKIPPING WORD BETRACTED

These particular warning messages indicate words that are not present in the aligner’s

lexicon. The user has to enter the words manually into the CMU dictionary, found at

p2fa/model/dict. The SKIPPING WORD messages are often interesting objects for study in

35

their own right. The words that are likely to be in the skipped word list are either not real

words (typos, etc.), or are uncommon enough to be left out of large dictionaries. For inter-

view corpora, these are often place names or colloquialisms, as shown in this example. The

communities of Crabapple and Ebenezer are towns in Georgia, like Roswell. DADDIE'S is a

misspelling of DADDY'S. BETRACTED is a colloquialism, akin to a revival meeting. An internet

search for “betracted meeting” produced only one correct match in a book published by the

University of Georgia Press, whose author was born in Tennessee in 1893. This small investi-

gation together with knowing the informant’s age make it reasonably clear that “betracted”

is a rare term that enjoyed some vogue in the South around the turn of the twentieth century

and meant “revival meeting.” The SKIPPING WORD list will not be useful for finding unique

meanings of common words, but it is a good source for studying unique lexis.

After adding the missing words to the dictionary and restarting PhoSS, it shows the p2fa

update messages, but no p2fa warning messages. PhoSS alerts the user when the alignments

completes.

Resampling wav file from 48000 to 11025...

sox WARN sox: effect `polyphase' is deprecated; see sox(1) for an alternative

./tmp/sound.wav -> ./tmp/tmp.plp

Alignment complete for informant_one

Alignment previously completed for informant_two

Following the completed alignments, PhoSS writes a Praat script for each informant.

There is not a way to interface with Praat directly from Python, as the RPy2 module

does for R. Instead, I used a combination of Python loops, substitution strings and hard

coded Praat script lines to write a Praat script to a file. This allowed me to circumvent

some of the idiosyncrasies of the Praat scripting language. One of the benefits of combining

Python and Praat was the ability to use command line options to specify formant extraction

points. The default measurement point is one-third the duration of the vowel. There is a

midpoint selection option, since that is another common practice, as well as a diphthong

option that samples twice — once at fifteen percent and once at eighty percent of the vowel

36

for n in xrange(len(vowelset)):

if options.midpoints == True:

sampletype = "midpoint"

formula = "(beg + end) / 2"

if n == 0:

praat_script.append("if lab$ = `%s'\n" % vowelset[n])

else:

praat_script.append("elif lab$ = `%s'\n" % vowelset[n])

praat_script.append("\tbeg = Get starting point... 1 `j'\n")

praat_script.append("\tend = Get end point... 1 `j'\n")

praat_script.append("\t%s = %s\n" % (sampletype,formula))

praat_script.append("\tselect Formant `name$'\n''')

praat_script.append("\tf1 = Get value at time... 1 `%s' \

Hertz Linear\n" % sampletype)

praat_script.append("\tf2 = Get value at time... 2 `%s' \

Hertz Linear\n" % sampletype)

praat_script.append("\tf3 = Get value at time... 3 `%s' \

Hertz Linear\n" % sampletype)

Figure 4.1: Mixing Praat and Python enables writing Praat routines by selecting command
line options.

duration. The measurement point options call different Python loops that write the Praat

vowel measurement point routine. With this combination I could incorporate options without

trying to force Praat to interpret them. Figure 4.1 is an example of one of those Python loops.

Python checks for the option that specifies midpoint selection and writes an if-loop for each

of the vowels in the vowel set. I use Python to perform string substitution where the Praat

script requires it. The tab characters are not necessary, but they are included to logically

indent the Praat script. After PhoSS writes the Praat script, it calls Praat as a subprocess

and runs the script, extracting formants at the locations the user specifies for the vowels in

the vowel set. Writing the Praat script is a very quick process, so PhoSS overwrites existing

.praat files and prints the message, Wrote Praat script for informant_one. Formant

37

extraction takes several seconds, so it may not be desirable to overwrite the .result file every

time. When no result file exists, PhoSS automatically runs formant extraction.

Executing Praat script for informant_one because result file does not exist.

A result file exists for informant_two

Execute Praat script to overwrite existing? (y/n) y

Executing Praat script for informant_two because you said yes.

Running the Praat script yields a .result file. The .result is properly formatted input for

vowels.R and the NORM web form; however, the context column is empty. Empty columns

are permitted in the context and glide columns of the .result file as long as there are tabs

for all empty fields. The only side effect is that all empty fields are replaced with ‘NA’ when

the file is read into an R dataframe. There was no comfortable way to reconstruct context

within the Praat script, so I decided to reconstruct it as a separate step before normalization.

When there are multiple informants, PhoSS sorts and merges the .result files and writes a

.commonresult file. The vowel types must be sorted by speaker and by vowel to be usable with

vowels.R. The .commonresult is necessary for speaker-extrinsic normalization procedures

whose normalized values factor in all speakers in the data set. Setting the --no-compare

option prevents the .commonresult file from being written. When a .result file already exists,

PhoSS alerts the user and asks whether to overwrite it. The user may desire to overwrite

existing .*result files after hand-correcting the TextGrid in the case of erroneous formant

measurement or inaccurate time stamps. Figure 4.2 is an excerpt from the .result file for

informant two which shows the data organization before context is added.

speaker vowel/frame context F1 F2 F3 gl F1 gl F2 gl F3

druck_test AA1 374.8208611634132 2212.8631765128216 3391.9695808521774

druck_test AA1 511.77337024711585 1004.3139704774767 2859.977220223504

druck_test AA1 548.5045116991059 834.0718681201741 2472.3925796903054

Figure 4.2: The .result file after formant extraction and before context is inserted

While there are empty fields for the context at this point, they will not remain empty.

Context in all of the NORM website example files is represented as a carrier word like CAR

38

for all instances of AA1, or YOU for all instances of UW1. PhoSS takes for granted the fact

that phonetic context influences the realization of the phone, and is designed to investigate

whether textual context also influences phonetic realization. Having one arbitrarily selected

carrier word is insufficient to represent context as I wish to show it. There may be trends to

the phonetic and textual context that can be revealed by concordancing based on phonetic

criteria.

The TextGrid parser reconstructs the textual and phonetic context for each vowel token

for each informant. The TextGrid parser works by populating two lists, the phone_list and

the word_list with instances of the pList and wList classes. The TextGrid parser reads

through the TextGrid in chunks and extracts the phones and words in order. Each phone

becomes an instance of a pList in the phone_list (phone_list[pList,pList,...]). Each

pList instance contains the beginning and ending times for the phone, its index in the

phone_list and a context window with two phones to either side of it. The TextGrid parser

gathers similar information about each of the words in the transcript — beginning and ending

times, index in the word_list and the range of indices of phones from the phone_list that

make up the word.

In order to associate the correct context with the correct vowel token, PhoSS needs

to index the .result file sorting that took place earlier. PhoSS uses the phone_list for

constructing a similar but simplified list to the one used for sorting the .result file. After

sorting that list, PhoSS matches the ending time stamps of its elements to elements in

the phone_list. Matches return the phone_list element index. PhoSS uses the post-sort

element indices together with the phone_list.index to correctly dereference context from

the phone_list. Figure 4.3 shows part of a list with the sorted vowel token, the ending

time stamp, the phone_list index and the post-sort index. For the first element in that list,

whose index is 0, the vowel context for that AA1 is the phone_list.context of phone_list

element 14.

39

[('AA1', '1.18979591837', 14, 0),

('AA1', '107.009297052', 981, 1),

('AA1', '110.212018141', 1026, 2)...]

Figure 4.3: Vowel tokens are matched with context by phone list and post-sort indices

PhoSS matches words to phones by using the word_list.phonerange. If a vowel has a

phone_list.index that is in the word_list.phonerange for a word, then it is part of the

node word. PhoSS collects four words to either side of the node word in order to recreate

the textual context. PhoSS combines the phonetic and textual context into one list, which is

translated into an R factor vector that replaces the previously empty context column of the

dataframe with both the correct phonetic and textual context for each vowel instance. With

the context in place, all of the informant information is complete and ready for normalization

and summary.

PhoSS is designed to handle multiple normalization flags during one program call. Since

this example includes the options for both no normalization and Lobanov normalization,

PhoSS first calls the normalization module with the ‘No Normalization’ option. The nor-

malization module copies the unnormalized dataframe to informant.normed_data_frame,

which is what all of the summary functions reference. In the case of multiple normalizations,

the informant.data_frame must remain unchanged so that R can normalize from it to other

methods and store the results, one after the other, in informant.normed_data_frame. The

informant.sub_data_frame for each informant is the section of the normalized dataframe

that pertains to only that informant. Extracting subtables from the dataframe after nor-

malization preserves the integrity of normalized values for speaker-extrinsic and formant-

extrinsic normalization procedures.

PhoSS passes the entire InformantList object to the output module. If there are multiple

speakers, then PhoSS carries out a comparative summary by default. If the --no-compare

40

flag has been set, PhoSS will not compare speakers. It instead writes an individual summary

for each informant. As may be apparent, calling PhoSS with only one informant triggers

the individual summary. Since this example uses the -g option, the output module calls the

direct comparison summary. This differs from the default comparative summary in that the

informant is removed from the group in order to make direct comparison of two individuals,

or comparison of an individual to another population possible. The default comparative

summary calculates group means based on the entire population. The final output files

follow the pattern informant name.normalizationmethod.phoss. If no normalization is speci-

fied, then the output file will have the nonormalization.phoss extension. As each summary

is completed, PhoSS prints an update message to stdout. Once all normalization methods

have been processed, PhoSS exits.

Summary for informant_one using Lobanov written to

../testfiles/test_one/informant_one/

Summary for informant_two using Lobanov written to

../testfiles/test_one/informant_two/

Summary for informant_one using No Normalization written to

../testfiles/test_one/informant_one/

Summary for informant_two using No Normalization written to

../testfiles/test_one/informant_two/

Both the comparative and individual summaries write some preliminary information

about the speaker and vowel set. The file header includes the summary type, normalization

method, speaker name, vowel set, and the main informant files.

PhoSS , A Phonetic Summarizer for Sociolinguists

Direct Comparison

No Normalization

Speaker: informant_one

Vowel Set: [IY1 , UW1 , AA1 , AE1]

Audio File: /home/user/testfiles/test_one/informant_one/informant_one.wav

Transcript: /home/user/testfiles/test_one/informant_one/informant_one.txt

TextGrid: /home/user/testfiles/test_one/informant_one/informant_one.TextGrid

41

The first step of real summary is describing the overall vowel space for the individual.

Harrington’s studies of the Queen’s Christmas addresses relied heavily on vowel space com-

parisons from one decade to the next. Just by comparing the absolute vowel space for infor-

mants one and two it is clear that informant two has a narrower F1 range and a wider F2

range than informant one. Ladefoged notes that F1 is inversely related to vowel height, while

F2 is directly related to vowel backness (2006:188). The minimum and maximum F1 and F2

values reveal that informant one has both the lowest and the highest vowels in the group,

and that informant two has the most front and the most back vowels. Figure 4.4 shows the

unnormalized vowel plots for speakers one and two.

F1 vowel space for informant_one has a range of 1264.135 units,

from 267.492 to 1531.628.

F2 vowel space for informant_one has a range of 1539.232 units,

from 994.377 to 2533.609.

F1 vowel space for informant_two has a range of 827.290 units,

from 334.256 to 1161.546.

F2 vowel space for informant_two has a range of 1771.553 units,

from 834.072 to 2605.625.

Next, PhoSS compares one informant to another vowel-by-vowel. The UW1 for infor-

mant one follows the trend of the speakers’ aggregate vowel space. Informant one occupies

more vertical space for UW1. Informant one shows generally higher and more front UW1s

than informant two. Informant two occupies a vertically smaller, but wider F2 vowel space,

corresponding to more front-back variation.

Summary for UW1

F1 vowel space for UW1 has a range of 881.948 units, from 302.065

to 1184.013.

F2 vowel space for UW1 has a range of 1040.933 units, from 1492.676

to 2533.609.

UW1 for informant_one centers at (F1 518.605, F2 1732.065), which is 0.313

standard deviations from the average F1 and 0.442 standard deviations from

the average F2.

42

2500 2000 1500 1000

1
5

0
0

1
0

0
0

5
0

0

Individual vowel formant values

non−normalized

X.F2.

X
.F

1
.

"informant_one"

"AA1" "AA1"

"AA1"

"AA1"

"AA1""AA1"

"AA1"
"AA1"

"AA1"

"AA1"

"AA1"

"AA1"
"AA1"

"AA1"
"AA1" "AA1""AA1" "AA1"

"AA1"
"AA1""AA1"

"AA1"

"AE1"

"AE1"

"AE1"
"AE1"

"AE1""AE1"
"AE1"

"AE1""AE1"
"AE1"

"AE1"
"AE1""AE1" "AE1""AE1""AE1""AE1" "AE1""AE1" "AE1""AE1" "AE1""AE1""AE1" "AE1"

"AE1" "AE1""AE1"

"AE1""AE1"

"AE1"
"AE1"

"AE1"

"AE1""AE1"
"AE1"

"IY1"
"IY1" "IY1""IY1" "IY1""IY1""IY1" "IY1" "IY1""IY1""IY1""IY1""IY1""IY1" "IY1""IY1""IY1"

"IY1"

"IY1"
"IY1"

"IY1"

"UW1"

"UW1""UW1"
"UW1" "UW1"

"UW1""UW1""UW1""UW1""UW1""UW1""UW1""UW1" "UW1"

"UW1"

"UW1"

"UW1"

"UW1"

(a) Vowel space for informant one is taller.

2500 2000 1500 1000

1
2

0
0

1
0

0
0

8
0

0
6

0
0

4
0

0

Individual vowel formant values

non−normalized

X.F2.

X
.F

1
.

"informant_two"

"AA1"

"AA1"

"AA1"
"AA1"
"AA1"

"AA1""AA1"
"AA1" "AA1"

"AA1""AA1""AA1""AA1"
"AA1"

"AA1"
"AA1"

"AA1"

"AA1"

"AE1"

"AE1""AE1"
"AE1""AE1"

"AE1""AE1"
"AE1""AE1" "AE1" "AE1""AE1"

"AE1"
"AE1""AE1""AE1"

"AE1""AE1""AE1""AE1""AE1""AE1""AE1" "AE1""AE1" "AE1"
"AE1"

"AE1""AE1""AE1"
"AE1"

"AE1"
"AE1"

"AE1" "AE1""AE1""AE1" "AE1"
"AE1"

"AE1""AE1""AE1"
"AE1"

"AE1"

"AE1"

"IY1"

"IY1" "IY1""IY1" "IY1""IY1" "IY1""IY1" "IY1""IY1" "IY1""IY1" "IY1"
"IY1""IY1" "IY1" "IY1" "IY1""IY1""IY1" "IY1""IY1" "IY1""IY1""IY1""IY1"
"IY1""IY1"

"IY1"

"IY1"

"IY1"

"UW1"

"UW1"

"UW1" "UW1""UW1" "UW1""UW1""UW1" "UW1"
"UW1""UW1" "UW1" "UW1"

"UW1"
"UW1""UW1"

"UW1"

"UW1"

"UW1"

(b) Vowel space for informant two is wider.

Figure 4.4: Individual vowel plots for informants one and two

The rest of the group's average for UW1 occupies vowel space centered at

(F1 462.863, F2 1556.242) with an F1 standard deviation of 178.257 and

an F2 standard deviation of 397.572.

Summary for UW1

F1 vowel space for UW1 has a range of 827.290 units, from 334.256

to 1161.546.

F2 vowel space for UW1 has a range of 1567.448 units, from 1038.176

to 2605.625.

UW1 for informant_two centers at (F1 462.863, F2 1556.242), which is 0.219

standard deviations from the average F1 and 0.705 standard deviations from

the average F2.

The rest of the group's average for UW1 occupies vowel space centered at

(F1 518.605, F2 1732.065) with an F1 standard deviation of 254.855 and

an F2 standard deviation of 249.396.

It is evident from the comparing this information with figure 4.4 that there are some

incorrect formant measurements which may affect the mean values. For example, the UW1

token for informant two at 1161, 2605 is at the complete opposite corner from the rest of

43

the UW1 vowels. That is likely the product of a misalignment. In order to find vowel tokens

that differ from the group, the summary module calculates the euclidean distance from the

group’s mean vowel center, and determines the number of standard deviations each of the

informant’s vowels is from that center. Vowels are grouped by distance from the center in

one-half standard deviation increments, and displayed in context.

informant_one

17 of 18 instances are less than one half standard deviation from the mean

vowel center.

There are 1 instances between 1 and 1.5 standard deviations from the average

vowel center:

S K UW1 L IH1 : SEE WHEN I STARTED SCHOOL IT WAS UH A

informant_two

18 of 19 instances are less than one half standard deviation from the mean

vowel center.

There are 1 instances between 0.5 and 1 standard deviations from the average

vowel center:

T Y UW1 IH2 M : LEAVES THAT'S NOT WHAT YOU HIM I FORGET WHAT

The vowel that shows the greatest variation between the two speakers is AA1. Informant

one displays seven vowel tokens between one-half and one standard deviation from the group

mean and one token between one and one and one-half standard deviations. They have a

tendency to occur when the following phone is either [ô], or a stop. Ladefoged notes that lip

rounding has a tendency to lower second and third formants (2006). If there is any degree

of rounding on the AA1s preceding the [ô], that may explain those results. However, I find

lip rounding highly unlikely before stop consonants. Informant one typically has a lower and

more back AA1 than informant two. Looking at the size of a standard deviation reveals that

informant two’s AA1s have a tighter F1 grouping than informant two, while informant two’s

AA1s exhibit a slightly closer F2 grouping. This interpretation is confirmed by the vowel

plot.

44

AA1

Summary for AA1

F1 vowel space for AA1 has a range of 919.445 units, from 267.492

to 1186.937.

F2 vowel space for AA1 has a range of 1142.936 units, from 994.377

to 2137.313.

AA1 for informant_one centers at (F1 780.990, F2 1502.321), which

is 1.411 standard deviations from the average F1 and 1.176 standard

deviations from the average F2.

The rest of the group's average for AA1 occupies vowel space centered at

(F1 627.192, F2 1150.991) with an F1 standard deviation of 109.032 and

an F2 standard deviation of 298.868.

14 of 22 instances are less than one half standard deviation from the mean

vowel center.

There are 7 instances between 0.5 and 1 standard deviations from the average

vowel center:

K L AA1 K AH0 : OH AND AT TEN O'CLOCK IN THE MORNING EVERYBODY

D M AA1 R CH : UP SINGLE FILE AND MARCHED OVER TO CHURCH THEY

IY1 G AA1 T SH : WORDS LIKE HERE WE GOT SHEET ROCK ON BOTH

T R AA1 K AA1 : HERE WE GOT SHEET ROCK ON BOTH SIDES UP

AA1 K AA1 N B : WE GOT SHEET ROCK ON BOTH SIDES UP THERE

S T AA1 R T : SCHOOL UNTIL THE COTTON STARTED GETTING READY TO PICK

AH0 V AA1 G AH0 : THE THIRD WEEK OF AUGUST WAS A LITTLE CHURCH

There are 1 instances between 1 and 1.5 standard deviations from the average

vowel center:

S T AA1 R T : THEN SEE WHEN I STARTED SCHOOL IT WAS UH

There are only two vowel tokens that occur between one-half and one standard deviation

from the mean for informant two, and they are both followed by either an R or a stop

consonant, which holds with the findings for informant one.

Summary for AA1

F1 vowel space for AA1 has a range of 499.908 units, from 374.821

to 874.729.

F2 vowel space for AA1 has a range of 1378.791 units, from 834.072

to 2212.863.

AA1 for informant_two centers at (F1 627.192, F2 1150.991), which

is 0.676 standard deviations from the average F1 and 1.330 standard

deviations from the average F2.

The rest of the group's average for AA1 occupies vowel space centered at

45

(F1 780.990, F2 1502.321) with an F1 standard deviation of 227.582 and

an F2 standard deviation of 264.112.

16 of 18 instances are less than one half standard deviation from the

mean vowel center.

There are 2 instances between 0.5 and 1 standard deviations from the

average vowel center:

S N AA1 T HH : THAT THE LEAVES THAT'S NOT WHAT YOU HIM I

S T AA1 R T : ON THE DAY WE STARTED THE SCHOOL OH MY

After PhoSS writes similar summaries for the rest of the vowels in the vowelset, it repeats

the process for the next normalization method. All of the summary comparisons are the same

for each normalization method, but the concordance results for are different due to the fact

that vowel patterning differs for each normalization procedure. Figure 4.5 shows the same

data as in figure 4.4 after having been normalized with the Lobanov method. There are

drastic changes in the summary, especially for AE1.

3 2 1 0 −1 −2 −3

4
3

2
1

0
−

1

Individual vowel formant values

Lobanov normalized

F*2

F
*1

"informant_one"

"AA1" "AA1"

"AA1"

"AA1"

"AA1""AA1"

"AA1"
"AA1"

"AA1"

"AA1"

"AA1"

"AA1"
"AA1"

"AA1"
"AA1" "AA1""AA1" "AA1"

"AA1"
"AA1""AA1"

"AA1"

"AE1"

"AE1"

"AE1"
"AE1"

"AE1""AE1"
"AE1"

"AE1""AE1"
"AE1"

"AE1"
"AE1""AE1" "AE1""AE1""AE1""AE1" "AE1""AE1" "AE1""AE1" "AE1""AE1""AE1" "AE1"

"AE1" "AE1""AE1"

"AE1""AE1"

"AE1"
"AE1"

"AE1"

"AE1""AE1"
"AE1"

"IY1"
"IY1" "IY1""IY1" "IY1""IY1""IY1" "IY1" "IY1""IY1""IY1""IY1""IY1""IY1" "IY1""IY1""IY1"

"IY1"

"IY1"
"IY1"

"IY1"

"UW1"

"UW1""UW1"
"UW1" "UW1"

"UW1""UW1""UW1""UW1""UW1""UW1""UW1""UW1" "UW1"

"UW1"

"UW1"

"UW1"

"UW1"

(a) Poor patterning for AE1 is revealed in the
concordance.

2 1 0 −1 −2

4
3

2
1

0
−

1
−

2

Individual vowel formant values

Lobanov normalized

F*2

F
*1

"informant_two"

"AA1"

"AA1"

"AA1"
"AA1"
"AA1"

"AA1""AA1"
"AA1" "AA1"

"AA1""AA1""AA1""AA1"
"AA1"

"AA1"
"AA1"

"AA1"

"AA1"

"AE1"

"AE1""AE1"
"AE1""AE1"

"AE1""AE1"
"AE1""AE1" "AE1" "AE1""AE1"

"AE1"
"AE1""AE1""AE1"

"AE1""AE1""AE1""AE1""AE1""AE1""AE1" "AE1""AE1" "AE1"
"AE1"

"AE1""AE1""AE1"
"AE1"

"AE1"
"AE1"

"AE1" "AE1""AE1""AE1" "AE1"
"AE1"

"AE1""AE1""AE1"
"AE1"

"AE1"

"AE1"

"IY1"

"IY1" "IY1""IY1" "IY1""IY1" "IY1""IY1" "IY1""IY1" "IY1""IY1" "IY1"
"IY1""IY1" "IY1" "IY1" "IY1""IY1""IY1" "IY1""IY1" "IY1""IY1""IY1""IY1"
"IY1""IY1"

"IY1"

"IY1"

"IY1"

"UW1"

"UW1"

"UW1" "UW1""UW1" "UW1""UW1""UW1" "UW1"
"UW1""UW1" "UW1" "UW1"

"UW1"
"UW1""UW1"

"UW1"

"UW1"

"UW1"

(b) AE1 patterning is slightly better for infor-
mant two.

Figure 4.5: Vowel plots of normalized results using the Lobanov method

The summaries for Lobanov normalization are significantly longer than the summaries

with no normalization. The AE1 for informant one only has one exemplar within half of a

46

standard deviation of the group’s mean vowel center. Informant one’s wide-spread pattern

for AE1 is much more pronounced once the data have been normalized.

The concordance list shows a shift in the R1 phone context as the distance from the mean

grows. The vowel tokens closer to the mean are followed primarily by nasals and voiceless

fricatives. Between one and one and one-half standard deviations from the mean the context

changes to nasals and stops, fricatives falling out almost entirely. The tokens that are farthest

from the mean all have sounds from the aforementioned manners of articulation in both the

R1 and R2 positions.

Summary for AE1

F*1 values for informant_one's AE1 is 4.914, from -1.071 to 3.843.

F*2 values for informant_one's AE1 is 3.103, from -1.327 to 1.776.

The rest of the group's average for AE1 occupies vowel space centered at

(F*1 0.653, F*2 -0.051) with an F*1 standard deviation of 0.705 and a F*2

standard deviation of 0.570.

AE1 for informant_one centers at (F*1 0.093, F*2 0.346), which is 0.794

standard deviations from the average F*1 and 0.696 standard deviations from

the average F*2.

1 of 36 instances are less than one half standard deviation from the mean

vowel center.

There are 5 instances between 0.5 and 1 standard deviations from the average

vowel center:

OW1 V AE1 N D : YEAH BIG WOOD STOVE AND THEN AND THEY UH

P L AE1 N AH0 : AFTER WE GET EVERYTHING PLANTED AND THEN BY THE

D HH AE1 V S : FINISHED THEN WE WOULD HAVE SCHOOL UNTIL THE COTTON

OW1 B AE1 K T : PICKED THEN YOU'D GO BACK TO SCHOOL AND THEN

AH0 HH AE1 F AH0 : UP THERE ABOUT A HALF A MILE FROM SCHOOL

There are 8 instances between 1 and 1.5 standard deviations from the average

vowel center:

S F AE1 M L : THE WINTER TIME THIS FAMILY WOULD FURNISH WOOD FOR

IY1 HH AE1 D AH0 : OTHER FAMILY AND WE HAD A WATER BUCKET SIT

D R AE1 NG K : IN IT AND EVERYBODY DRANK OUT OF THE SAME

D Z AE1 N D : DOWN IN THE WOODS AND DID Y'ALL HAVE A

L HH AE1 V AH0 : WOODS AND DID Y'ALL HAVE A WOOD STOVE YEAH

V Y AE1 B IH1 : HAVE A WOOD STOVE YEAH BIG WOOD STOVE AND

UW1 L AE1 N D : GO BACK TO SCHOOL AND THEN THE THIRD WEEK

EY1 HH AE1 D W : WEEK IN AUGUST THEY HAD WHAT THEY CALL REVIVAL

47

There are 6 instances between 1.5 and 2 standard deviations from the average

vowel center:

D DH AE1 T W : THEY JUST JUST AND THAT WAS THE OLD FOLKS

DH EY1 AE1 D AH0 : ROOMS AND THEN THEY ADDED A THIRD ROOM BUT

EY1 HH AE1 D B : SIDES UP THERE THEY HAD BOARDS ON ONE SIDE

AY1 D AE1 N D : BOARDS ON ONE SIDE AND NOTHING ELSE ON THE

D IY0 AE1 N D : UH TWENTY NINE THIRTY AND THIRTY ONE WE HAD

ER0 F AE1 M L : NEXT WEEK THE OTHER FAMILY AND WE HAD A

There are 6 instances between 2 and 2.5 standard deviations from the average

vowel center:

K R AE1 B AH0 : I MEAN WHERE HEARTS CRAB AND KING CROSSES THERE

D HH AE1 V IH1 : LIKE THIS CHURCH WOULD HAVE IT THIRD WEEK IN

D DH AE1 T CH : WEEK IN JULY AND THAT CHURCH WOULD HAVE THEIRS

DH EY1 AE1 D AH0 : ROOM AND THEN THEY ADDED TWO ROOMS AND THEN

IY1 HH AE1 D AH1 : AND THIRTY ONE WE HAD UH THREE ROOMS AND

lg HH AE1 D T : THE SAME DIPPER {LG} HAD TO GO TO SOMEBODY'S

There are 10 instances greater than 2.5 standard deviations from the average

vowel center:

T R AE1 K T : NOW THEY CALLED IT TRACTED MEETING OH AND AT

NG OW1 AE1 N D : IT TRACTED MEETING OH AND AT TEN O'CLOCK IN

N D AE1 T T : TRACTED MEETING OH AND AT TEN O'CLOCK IN THE

T B AE1 K T : AND THEN THEY MARCHED BACK TO SCHOOL WHAT WAS

Z DH AE1 T K : TO SCHOOL WHAT WAS THAT CALLED WHAT KIND OF

T R AE1 K T : WHAT KIND OF MEETING BETRACTED MEETING OH IT WAS

D HH AE1 V DH : AND THAT CHURCH WOULD HAVE THEIRS THERE WERE REVIVALS

AH0 Z AE1 K SH : SAYING BUT IT WAS ACTUALLY A REVIVAL

DH ER0 AE1 N D : ELSE ON THE OTHER AND UH ORIGINALLY IN UH

R T AE1 F T : TIME IT WOULD START AFTER WE GET EVERYTHING PLANTED

The AE1 for informant two exhibits many of the same contexts as informant one. The

closest vowel tokens to the group mean are followed directly by stops, nasals and fricatives.

Stops continue to dominate the R1 position through the rest of the concordance, even though

the vowels furthest from the mean do not exhibit the same R1, R2 contexts that informant

one shows. One interesting point from informant two is that the one-half to one standard

deviation range has a disproportionate number of fricatives in the L1 position to the rest of

the concordance.

48

Summary for AE1

F*1 values for informant_two's AE1 is 3.375, from -0.703 to 2.672.

F*2 values for informant_two's AE1 is 2.284, from -1.257 to 1.027.

The rest of the group's average for AE1 occupies vowel space centered at

(F*1 0.093, F*2 0.346) with an F*1 standard deviation of 0.937 and a F*2

standard deviation of 0.714.

AE1 for informant_two centers at (F*1 0.653, F*2 -0.051), which is 0.598

standard deviations from the average F*1 and 0.556 standard deviations from

the average F*2.

9 of 45 instances are less than one half standard deviation from the mean

vowel center.

There are 18 instances between 0.5 and 1 standard deviations from the average

vowel center:

Z DH AE1 T S : CORN THAT THE LEAVES THAT'S NOT WHAT YOU HIM

L DH AE1 T EH1 : FORGET WHAT YOU CALL THAT ANYWAY THAT WAS HAY

EY2 DH AE1 T W : YOU CALL THAT ANYWAY THAT WAS HAY AND THAT

D DH AE1 T AO1 : THAT WAS HAY AND THAT ALL IN THIS ROOM

Z DH AE1 T W : BUT UH THAT WAS THAT WAS I'LL I'LL SAY

EY1 DH AE1 T W : WAS I'LL I'LL SAY THAT WAS ONE OF MY

AE1 D AE1 N D : GOSSIPING ABOUT HER MAD AND EVERYTHING SO UH LUVIT

IY1 HH AE1 D DH : THE BOARD AND WE HAD THIS SCHOOL AT CRABAPPLE

K R AE1 B AE1 : HAD THIS SCHOOL AT CRABAPPLE AND EBENEZER AND ONE

AE1 B AE1 P AH0 : HAD THIS SCHOOL AT CRABAPPLE AND EBENEZER AND ONE

AH0 L AE1 N D : THIS SCHOOL AT CRABAPPLE AND EBENEZER AND ONE OTHER

T HH AE1 V EH1 : BUT UH THEY DIDN'T HAVE ANYBODY TO GO TO

T HH AE1 V EH1 : WERE THEY THEY WOULDN'T HAVE ANYBODY FROM CRABAPPLE CAUSE

AE1 B AE1 P AH0 : WOULDN'T HAVE ANYBODY FROM CRABAPPLE CAUSE THEY WERE MAD

ER0 M AE1 D DH : CRABAPPLE CAUSE THEY WERE MAD THAT OH MY GOODNESS

N S AE1 T ER0 : TO A MEETING ON SATURDAY MORNING HE CALLED ME

T HH AE1 V AH0 : THE MONEY AND DIDN'T HAVE ANOTHER JOB SO AND

K R AE1 B AE1 : GET THE SCHOOL IN CRABAPPLE AND YOU KNOW HOW

There are 8 instances between 1 and 1.5 standard deviations from the average

vowel center:

IH0 NG AE1 NG SH : MEAN UH CHILDREN BEING ANXIOUS TO LEARN

K R AE1 B AE1 : WOULDN'T HAVE ANYBODY FROM CRABAPPLE CAUSE THEY WERE MAD

AE1 B AE1 P AH0 : GET THE SCHOOL IN CRABAPPLE AND YOU KNOW HOW

S OW1 AE1 N D : HAVE ANOTHER JOB SO AND WE DIDN'T HAVE A

OW1 DH AE1 T W : NINETEEN HUNDRED THIRTY SO THAT WAS UH DURING THE

AH0 N AE1 N D : UH DURING THE DEPRESSION AND UH WE WALKED SIX

L Z AE1 F T : WE WALKED SIX MILES AFTER CHURCH THAT DAY WE

CH DH AE1 T D : SIX MILES AFTER CHURCH THAT DAY WE LIVED AT

49

There are 6 instances between 1.5 and 2 standard deviations from the average

vowel center:

N S AE1 T IH2 : HE CALLED ME ON SATURDAY AFTERNOON AND WANTED TO

T HH AE1 V AH0 : SO AND WE DIDN'T HAVE A CAR WE WE

V D AE1 T K : THAT DAY WE LIVED AT CRABAPPLE WE WENT DOWN

K R AE1 B AE1 : DAY WE LIVED AT CRABAPPLE WE WENT DOWN TO

AE1 B AE1 P AH0 : DAY WE LIVED AT CRABAPPLE WE WENT DOWN TO

AY1 D AE1 D IY0 : MILES TO GET MY DADDY'S CAR SO I COULD

There are 3 instances between 2 and 2.5 standard deviations from the average

vowel center:

AW1 DH AE1 T W : AND YOU KNOW HOW THAT WORKS THESE OTHER PEOPLE

L S AE1 T ER0 : GOING OVER THERE UNTIL SATURDAY SO WE DID NOTHING

IH0 NG AE1 N D : TO THE SCHOOL BUILDING AND FODDER YOU KNOW WHAT

There are 1 instances greater than 2.5 standard deviations from the average

vowel center:

Z DH AE1 T S : KNOW WHAT FODDER IS THAT'S THE CORN THAT THE

While future GUIed versions of PhoSS may be able to perform positional sorting, like

WordSmith Tools does, sorting is not strictly required to be able to find trends in the data.

The trends are there, and just need to be described and presented in a way that human eyes

can digest the information. The entirety of the output files for both informants are included

as Appendix A.

Chapter 5

Future Work and Conclusions

I have been writing PhoSS as a beginning to a tool that is somewhere in between WordSmith

Tools and Praat. Sociolinguistics has its moorings in text analysis since the days of Labov’s

New York and Martha’s Vineyard studies, and it will always have an inherantly text-based

dimension. For that reason, text display and text visualization are necessary facilities for

a tool that is useful for sociolinguistic studies. PhoSS and text-centric output, along with

the graphing facilities of NORM’s vowels library makes for a tool that can handle both of

the main venues for data representation in sociolinguistics and in corpus linguistics. PhoSS

would benefit first and foremost from a GUI. This would necessitate some redesigning of the

code, but I believe that many of the modules would function much the same as they do now.

Redesigning the PhoSS internal data structures may be necessary in order to make PhoSS

a much larger program. A dedicated computer scientist could improve on the current program

design with plans to make it extensible.

A GUI with menus would also make user-defined options in PhoSS much easier to control

than in its command line state, where command line flags and program interruptions for user

input are the main sources of customization. My vision for future work in computational

sociolinguistics is to see PhoSS grow into a full-featured piece of software that fills the niche

for sociolinguistic research of unstructured speech corpora in the same way that WordSmith

Tools fills the niche for text analysis and that Praat fills the need for phonetic analysis. I

believe that PhoSS is a beginning. I have striven to make PhoSS adhere to the current best

practices, but in order to make it grow into a larger, widely-used program, it would need to

50

51

go through a user test phase, where linguists would try to carry out their own experiments

and respond with their research needs.

Apart from design and aesthetic improvements to PhoSS, I have wanted several pieces of

information throughout this project. The best study that I could want is an in-depth exami-

nation of alignment accuracy on the University of Georgia Linguistic Atlas Project corpora.

I have noted earlier Keelan Evanini’s alignment accuracy results from his dissertation. His

dissertation corpus was not an interview corpus, so it is closer to the ideal case for align-

ment accuracy. The Linguistic Atlas Project contains more than enough recordings to turn

region-by-region testing into a dissertation. The results, along with investigating methods for

improving alignment accuracy on interview corpora would be of academic interest as well as

industry concern. Not all commercial voice recognition systems are able to distinguish and

accurately process multiple speakers on one recording (which is always the case for interview

corpora). While alignment is possible, and where I have checked it visually, it is accurate,

I would have liked to have numbers to support using interview corpora, or to let me know

whether it is a problematic endeavor.

I would also like to have been able to train sound models using audio sampled at either

41000 or 96000 Hz in order to test my hypothesis that higher-sampled training data would

lead to higher alignment accuracy on high-sampled audio. The results of comparative testing

took up only a small section of one paper in Yuan and Liberman 2008, but the amount of

work that goes into creating, checking, and running the training data to make sound models

is substantial. I believe that answering this question would make a worthy thesis, since

improving the P2FA accuracy at higher sampling rates would mean alignments improve

with increased levels of phonetic detail, instead of decreased detail.

Another study of some interest, perhaps less related to the rest of the areas for improve-

ment, would be a study of the SCOTUS corpus that parallels Jonathan Harrington’s exami-

nation of vowel shift in the Queen’s English. His results are widely published, and his method-

ology should be easy enough to replicate. Having this parallel study would be something akin

52

to publishing the LOB after the Brown corpus had been created. It could ultimately help

to clarify the validity of the apparent time hypothesis. It is apparent, with or without the

hypothesis, that pronunciation changes over time. Disproving the apparent time hypothesis

just means that language change happens faster than the hypothesis suggests.

Ultimately, I want to help sociolinguistics, and especially the analysis of speech corpora

to continue to develop, just as text-based corpus study has done. It will take new tools,

and new ideas for visualization and information representation. I believe that the analysis

of speech corpora is in the “CD phase”. The 1990s corpus vogue was to release a corpus

on CD. The CD included some proprietary tool for searching the corpus, which invariably

lacked functionality critical to someone’s research questions. That is no longer the goal. Text

corpora are easily distributable via the internet, so the focus has shifted to tools that allow

processing and analyzing unstructured text. As tool development continues, speech corpus

analysis can progress to better processing of less structured and unstructured speech corpora.

Bibliography

[1] Adank, Patti; Smits, Roel; and van Hout, Roeland (2004) A Comparison of Vowel

Normalization Procedures for Language Variation Research. Journal of the Acoustical

Society of America. 116.5:3099-3107.

[2] Baayen, R.H. (2008) Analyzing Linguistic Data: A Practical Introduction to Statistics

using R. Cambridge University Press: New York.

[3] Biber, Douglas (1988) Variation Across Speech and Writing. Cambridge: Cambridge

University Press.

[4] Biber, Douglas (1998) Corpus Linguistics: Investigating Language Structure and Use.

United Kingdom: Cambridge University Press.

[5] Bickerstaff, Garrison E., Jr. (2010) Construction and application of Bounded

Virtual Corpora of British and American English. University of Georgia.

http://purl.galileo.usg.edu/uga etd/bickerstaff garrison e 201012 phd.

[6] Boersma, Paul, and Weenink, David (2010) Praat: Doing phonetics by computer (version

5.1). Technical report, University of Amsterdam, http://www.praat.org/.

[7] Cho, Yun Jeong (2008) The Acoustic Characteristics of American English Diphthongs

by Native Speakers and Korean Learners. Language and Linguistics. 42:197-223.

[8] Cox, Felicity (2006) The Acoustic Characteristics of /hVd/ Vowels in the Speech of

some Australian Teenagers. Australian Journal of Linguistics. 22.2:147-179.

[9] Davies, Mark. (2008) The Corpus of Contemporary American English (COCA): 410+

million words, 1990-present. Available online at http://www.americancorpus.org.

53

54

[10] Deterding, D. (2000) Measurements of the /eI/ and the /@U/ vowels of young English

speakers in Singapore. In A. Brown, D. Deterding and E. L. Low eds., The English

Language in Singapore: Research on Pronunciation, 93-99. Singapore: Singapore Asso-

ciation for Applied Linguistics.

[11] Disner, S.F. (1980) Evaluation of vowel normalization procedures. Journal of the Acous-

tical Society of America. 67.1:253-261.

[12] Evanini, Keelan (2009) The Permeability of Dialect Boundaries: A Case Study of the

Region Surrounding Erie, Pennsylvania. Publicly accessable Penn Dissertations. Paper

86. http://repository.upenn.edu/edissertations/86.

[13] Evanini, Keelan; Isard, Stephen; Liberman, Mark (2009) Automatic formant extrac-

tion for sociolinguistic analysis of large corpora. Proceedings of Interspeech 2009.

http://www.evanini.com/papers/evanini INTERSPEECH09b.pdf

[14] Fabricius, Anne; Watt, Dominic; Johnson, Ezra (2009) A comparison of three speaker-

intrinsic vowel formant frequency normalization algorithms for sociophonetics. Language

Variation and Change 21:413-435.

[15] Harrington, Jonathan; Palethorpe, Sallyanne; and Watson, Catherine (2000). Vowel

change in Received Pronunciation: evidence from the Queen’s English [Abstract]. Pro-

ceedings of the 7th Australian International Conference on Speech Science and Tech-

nology.

[16] Harrington, Jonathan; Palethorpe, Sallyanne; and Watson, Catherine (2005). Deep-

ening or lessening the divide between diphthongs? An analysis of the Queen’s annual

Christmas Broadcasts. In W. J. Hardcastle and J. M. Beck, eds., A Figure of Speech: A

Festchrift for John Laver, 227-262. New Jersey: Lawrence Erlbaum Associates.

[17] Harrington, Jonathan (2010) Phonetic Analysis of Speech Corpora. Malaysia: Wiley-

Blackwell.

55

[18] Hay, Jennifer, and Drager, Katie (2007) Sociophonetics Annual Review of Anthropology.

36:89-103.

[19] (2009) Hidden Markov Model Toolkit (HTK). University of Cambridge.

http://htk.eng.cam.ac.uk/.

[20] Kennedy, Greame (1998) An Introduction to Corpus Linguistics. Harlow: Addison

Wesley Longman.

[21] Kučera, Henry, and Francis, W. Nelson (1964) Brown University Standard Corpus of

Present-Day English.

[22] Kretzschmar, William A., Jr., and Dunn, Josh (2011) Implicational Scaling in Southern

Speech Features. ADS/LSA, Pittsburgh.

[23] Labov, William (1963) The Social Motivation of a Sound Change. Word. 19:273-309.

[24] Labov, William (1966) The Social Stratification of English in New York City. Wash-

ington, D. C.: Center for Applied Linguistics.

[25] Labov, William (2006) A Sociolinguistic Perspective on Sociophonetic Research. Journal

of Phonetics. 34.4:500-515.

[26] Labov, William; Ash, Sharon; and Boberg, Charles (2006) Atlas of North American

English: Phonetics, Phonology and Sound Change. Germany: Mouton de Gruyter.

[27] Ladefoged, Peter (2006) A Course in Phonetics. USA: Thomson Wadsworth.

[28] Lennes, Mietta (2003) collect formant data from files.praat. Available

http://www.helsinki.fi/˜lennes/praat-scripts/public/collect formant data from files.praat.

[29] Manning, Chris, and Schütze, Hinrich (1999) Foundations of Statistical Natural Lan-

guage Processing. Cambridge, MA: MIT Press.

56

[30] Mosteller, Frederick, and Wallace, David L. (1963) Inference in an Authorship Problem.

Journal of the American Statistical Association. 58.302:275-309.

[31] Nearey, Terrance M. (1977) Phonetic Feature Systems for Vowels. Dissertation. Univer-

sity of Alberta.

[32] Oakes, Michael P. (1998) Statistics for Corpus Linguistics. Edinburgh University Press.

[33] Plichta, Bartek (2011) Akustyk. Online Resource:

http://bartus.org/akustyk/documentation.php.

[34] Stubbs, Michael (1996). Text and Corpus Analysis: Computer Assisted Studies of Lan-

guage and Culture. Oxford: Wiley-Blackwell.

[35] Thomas, Erik R., and Kendall, Tyler (2007) NORM: The vowel normalization and

plotting suite. Online Resource: http://ncslaap.lib.ncsu.edu/tools/norm/

[36] Wakita, Hisashi (1977) Normalization of Vowels by Vocal-Tract Length and Its Appli-

cation to Vowel Identification. IEEE Transactions on Acoustics, Speech, and Signal

Processing. ASSP-25.2:183-192.

[37] Watt, Dominic and Fabricius, Anne (2002) Evaluation of a Technique for Improving the

Mapping of Multiple Speakers’ Vowel Spaces in the F1-F2 Plane. Leeds Working Papers

in Linguistics and Phonetics. 9:159-173.

[38] Yang, Byunggon (1996) A Comparative Study of American English and Korean Vowels

Produced by Male and Female Speakers. Journal of Phonetics. 24:245-261.

[39] Yuan, J., Liberman, M., (2008) Speaker identification on the SCOTUS corpus. Proceed-

ings of Acoustics 2008, 5687-5690.

[40] Zwicker, Eberhard (1961) Subdivision of the Audible Frequency Range into Critical

Bands (Frequenzgruppen). The Journal of the Acoustical Society of America, 33:248.

Appendix A

Informant Output Files

Listing A.1: Output file for informant one with no normalization

PhoSS , A Phonetic Summarizer for Sociolinguists

Comparative Summary

No Normalization

Speaker: informant_one

Vowel Set: [’IY1 ’, ’UW1 ’, ’AA1 ’, ’AE1 ’]

Diphthongs: [’AY1 ’]

Audio File: /home/justin/Dropbox/Thesis/testfiles/school_case/

informant_one/informant_one.wav

Transcript: /home/justin/Dropbox/Thesis/testfiles/school_case/

informant_one/informant_one.txt

TextGrid: /home/justin/Dropbox/Thesis/testfiles/school_case/

informant_one/informant_one.TextGrid

F1 vowel space for informant_one has a range of 1264.135 units , from

267.492 to 1531.628.

F2 vowel space for informant_one has a range of 1539.232 units , from

994.377 to 2533.609.

Summary for IY1

57

58

F1 vowel space for IY1 has a range of 333.777 units , from 332.876

to 666.653.

F2 vowel space for IY1 has a range of 1094.711 units , from

1242.770 to 2337.481.

IY1 for informant_one centers at (F1 413.040 , F2 1966.119) , which

is 0.107 standard deviations from the average F1 and 0.172

standard deviations from the average F2.

The group average for IY1 occupies vowel space centered at (F1

421.256 , F2 2011.573) with an F1 standard deviation of 76.924

and an F2 standard deviation of 264.997.

All 21 instances of IY1 for informant_one are less than one half

standard deviation from the mean vowel center.

Summary for UW1

F1 vowel space for UW1 has a range of 881.948 units , from 302.065

to 1184.013.

F2 vowel space for UW1 has a range of 1040.933 units , from

1492.676 to 2533.609.

UW1 for informant_one centers at (F1 518.605 , F2 1732.065) , which

is 0.132 standard deviations from the average F1 and 0.265

standard deviations from the average F2.

The group average for UW1 occupies vowel space centered at (F1

489.981 , F2 1641.777) with an F1 standard deviation of 217.616

and an F2 standard deviation of 341.087.

17 of 18 instances are less than one half standard deviation from

the mean vowel center.

59

There are 1 instances between 0.5 and 1 standard deviations from

the average vowel center:

S K UW1 L IH1 : SEE WHEN I STARTED SCHOOL IT WAS UH A

Summary for AA1

F1 vowel space for AA1 has a range of 919.445 units , from 267.492

to 1186.937.

F2 vowel space for AA1 has a range of 1142.936 units , from 994.377

to 2137.313.

AA1 for informant_one centers at (F1 780.990 , F2 1502.321) , which

is 0.350 standard deviations from the average F1 and 0.481

standard deviations from the average F2.

The group average for AA1 occupies vowel space centered at (F1

711.781 , F2 1344.223) with an F1 standard deviation of 197.674

and an F2 standard deviation of 328.373.

20 of 22 instances are less than one half standard deviation from

the mean vowel center.

There are 2 instances between 0.5 and 1 standard deviations from

the average vowel center:

S T AA1 R T : THEN SEE WHEN I STARTED SCHOOL IT WAS UH

D M AA1 R CH : UP SINGLE FILE AND MARCHED OVER TO CHURCH THEY

Summary for AE1

F1 vowel space for AE1 has a range of 1203.624 units , from 328.003

to 1531.628.

60

F2 vowel space for AE1 has a range of 900.722 units , from 1403.876

to 2304.598.

AE1 for informant_one centers at (F1 613.109 , F2 1889.452) , which

is 0.136 standard deviations from the average F1 and 0.556

standard deviations from the average F2.

The group average for AE1 occupies vowel space centered at (F1

636.590 , F2 1748.710) with an F1 standard deviation of 172.773

and an F2 standard deviation of 253.119.

35 of 36 instances are less than one half standard deviation from

the mean vowel center.

There are 1 instances between 0.5 and 1 standard deviations from

the average vowel center:

T R AE1 K T : NOW THEY CALLED IT TRACTED MEETING OH AND AT

For target one of AY1:

F1 vowel space for AY1 has a range of 751.590 units , from 499.209

to 1250.799.

F2 vowel space for AY1 has a range of 924.277 units , from 1108.934

to 2033.211.

AY1 for informant_one centers at (F1 755.709 , F2 1519.747) , which

is 0.287 standard deviations from the average F1 and 0.491

standard deviations from the average F2.

The group average for AY1 occupies vowel space centered at (F1

699.880 , F2 1416.238) with an F1 standard deviation of 194.244

and an F2 standard deviation of 210.600.

61

All 21 instances of AY1 for informant_one are less than one half

standard deviation from the mean vowel center.

For target two of AY1:

gl.F1 vowel space for AY1 has a range of 964.290 units , from

551.582 to 1515.872.

gl.F2 vowel space for AY1 has a range of 658.564 units , from

1280.457 to 1939.021.

AY1 for informant_one centers at (gl.F1 894.595 , gl.F2 1624.599) ,

which is 0.466 standard deviations from the average gl.F1 and

0.507 standard deviations from the average gl.F2.

The group average for AY1 occupies vowel space centered at (gl.F1

785.293 , gl.F2 1488.784) with an gl.F1 standard deviation of

234.540 and an gl.F2 standard deviation of 267.948.

20 of 21 instances are less than one half standard deviation from

the mean vowel center.

There are 1 instances between 0.5 and 1 standard deviations from

the average vowel center:

EH1 N AY1 S T : BUT THEN SEE WHEN I STARTED SCHOOL IT WAS

62

Listing A.2: Output file for informant two with no normalization

PhoSS , A Phonetic Summarizer for Sociolinguists

Comparative Summary

No Normalization

Speaker: informant_two

Vowel Set: [’IY1 ’, ’UW1 ’, ’AA1 ’, ’AE1 ’]

Diphthongs: [’AY1 ’]

Audio File: /home/justin/Dropbox/Thesis/testfiles/school_case/

informant_two/informant_two.wav

Transcript: /home/justin/Dropbox/Thesis/testfiles/school_case/

informant_two/informant_two.txt

TextGrid: /home/justin/Dropbox/Thesis/testfiles/school_case/

informant_two/informant_two.TextGrid

F1 vowel space for informant_two has a range of 827.290 units , from

334.256 to 1161.546.

F2 vowel space for informant_two has a range of 1771.553 units , from

834.072 to 2605.625.

Summary for IY1

F1 vowel space for IY1 has a range of 333.827 units , from 339.678

to 673.504.

F2 vowel space for IY1 has a range of 1098.217 units , from

1358.834 to 2457.051.

IY1 for informant_two centers at (F1 426.822 , F2 2042.365) , which

is 0.072 standard deviations from the average F1 and 0.116

standard deviations from the average F2.

63

The group average for IY1 occupies vowel space centered at (F1

421.256 , F2 2011.573) with an F1 standard deviation of 76.924

and an F2 standard deviation of 264.997.

All 31 instances of IY1 for informant_two are less than one half

standard deviation from the mean vowel center.

Summary for UW1

F1 vowel space for UW1 has a range of 827.290 units , from 334.256

to 1161.546.

F2 vowel space for UW1 has a range of 1567.448 units , from

1038.176 to 2605.625.

UW1 for informant_two centers at (F1 462.863 , F2 1556.242) , which

is 0.125 standard deviations from the average F1 and 0.251

standard deviations from the average F2.

The group average for UW1 occupies vowel space centered at (F1

489.981 , F2 1641.777) with an F1 standard deviation of 217.616

and an F2 standard deviation of 341.087.

18 of 19 instances are less than one half standard deviation from

the mean vowel center.

There are 1 instances between 0.5 and 1 standard deviations from

the average vowel center:

T Y UW1 IH2 M : LEAVES THAT ’S NOT WHAT YOU HIM I FORGET WHAT

Summary for AA1

64

F1 vowel space for AA1 has a range of 499.908 units , from 374.821

to 874.729.

F2 vowel space for AA1 has a range of 1378.791 units , from 834.072

to 2212.863.

AA1 for informant_two centers at (F1 627.192 , F2 1150.991) , which

is 0.428 standard deviations from the average F1 and 0.588

standard deviations from the average F2.

The group average for AA1 occupies vowel space centered at (F1

711.781 , F2 1344.223) with an F1 standard deviation of 197.674

and an F2 standard deviation of 328.373.

17 of 18 instances are less than one half standard deviation from

the mean vowel center.

There are 1 instances between 0.5 and 1 standard deviations from

the average vowel center:

S N AA1 T HH : THAT THE LEAVES THAT ’S NOT WHAT YOU HIM I

Summary for AE1

F1 vowel space for AE1 has a range of 514.679 units , from 448.642

to 963.320.

F2 vowel space for AE1 has a range of 923.911 units , from 1148.343

to 2072.255.

AE1 for informant_two centers at (F1 655.375 , F2 1636.116) , which

is 0.109 standard deviations from the average F1 and 0.445

standard deviations from the average F2.

The group average for AE1 occupies vowel space centered at (F1

636.590 , F2 1748.710) with an F1 standard deviation of 172.773

and an F2 standard deviation of 253.119.

65

All 45 instances of AE1 for informant_two are less than one half

standard deviation from the mean vowel center.

For target one of AY1:

F1 vowel space for AY1 has a range of 572.554 units , from 405.476

to 978.031.

F2 vowel space for AY1 has a range of 755.973 units , from 1014.011

to 1769.984.

AY1 for informant_two centers at (F1 646.588 , F2 1317.435) , which

is 0.274 standard deviations from the average F1 and 0.469

standard deviations from the average F2.

The group average for AY1 occupies vowel space centered at (F1

699.880 , F2 1416.238) with an F1 standard deviation of 194.244

and an F2 standard deviation of 210.600.

All 22 instances of AY1 for informant_two are less than one half

standard deviation from the mean vowel center.

For target two of AY1:

gl.F1 vowel space for AY1 has a range of 538.649 units , from

406.010 to 944.660.

gl.F2 vowel space for AY1 has a range of 1233.676 units , from

976.282 to 2209.958.

AY1 for informant_two centers at (gl.F1 680.958 , gl.F2 1359.143) ,

which is 0.445 standard deviations from the average gl.F1 and

0.484 standard deviations from the average gl.F2.

66

The group average for AY1 occupies vowel space centered at (gl.F1

785.293 , gl.F2 1488.784) with an gl.F1 standard deviation of

234.540 and an gl.F2 standard deviation of 267.948.

21 of 22 instances are less than one half standard deviation from

the mean vowel center.

There are 1 instances between 0.5 and 1 standard deviations from

the average vowel center:

T R AY1 NG T : OF THE BIG ONES TRYING TO GET THE SCHOOL

67

Listing A.3: Output file for informant one with Lobanov normalization

PhoSS , A Phonetic Summarizer for Sociolinguists

Comparative Summary

Lobanov

Speaker: informant_one

Vowel Set: [’IY1 ’, ’UW1 ’, ’AA1 ’, ’AE1 ’]

Diphthongs: [’AY1 ’]

Audio File: /home/justin/Dropbox/Thesis/testfiles/school_case/

informant_one/informant_one.wav

Transcript: /home/justin/Dropbox/Thesis/testfiles/school_case/

informant_one/informant_one.txt

TextGrid: /home/justin/Dropbox/Thesis/testfiles/school_case/

informant_one/informant_one.TextGrid

F*1 vowel space for informant_one has a range of 4.842 units , from

-1.397 to 3.445.

F*2 vowel space for informant_one has a range of 5.374 units , from

-2.640 to 2.734.

Summary for IY1

F*1 vowel space for IY1 has a range of 1.278 units , from -1.146 to

0.132.

F*2 vowel space for IY1 has a range of 3.821 units , from -1.772 to

2.049.

IY1 for informant_one centers at (F*1 -0.839, F*2 0.753) , which is

0.148 standard deviations from the average F*1 and 0.262

standard deviations from the average F*2.

68

The group average for IY1 occupies vowel space centered at (F*1

-0.896, F*2 0.956) with an F*1 standard deviation of 0.385 and

an F*2 standard deviation of 0.775.

12 of 21 instances are less than one half standard deviation from

the mean vowel center.

There are 6 instances between 0.5 and 1 standard deviations from

the average vowel center:

N S IY1 W EH1 : BUT THEN SEE WHEN I STARTED SCHOOL

D M IY1 T IH0 : THEY CALLED IT TRACTED MEETING OH AND AT TEN

D M IY1 T IH0 : KIND OF MEETING BETRACTED MEETING OH IT WAS UH

T SH IY1 T R : LIKE HERE WE GOT SHEET ROCK ON BOTH SIDES

T W IY1 K AO1 : EVERYBODY GOT EVERYTHING WHAT WE CALLED LAID BY

ITS

D W IY1 K AH0 : AND THEN THE THIRD WEEK OF AUGUST WAS A

There are 2 instances between 1 and 1.5 standard deviations from

the average vowel center:

IY1 W IY1 K S : ABOUT TWO OR THREE WEEKS UNTIL EVERYBODY GOT

THEIR

D W IY1 K AH0 : WHAT IN THE THIRD WEEK IN AUGUST THEY HAD

There are 1 instances between 2 and 2.5 standard deviations from

the average vowel center:

D W IY1 K IH1 : WOULD HAVE IT THIRD WEEK IN JULY AND THAT

Summary for UW1

69

F*1 vowel space for UW1 has a range of 3.378 units , from -1.264 to

2.114.

F*2 vowel space for UW1 has a range of 3.634 units , from -0.900 to

2.734.

UW1 for informant_one centers at (F*1 -0.435, F*2 -0.064), which

is 0.131 standard deviations from the average F*1 and 0.032

standard deviations from the average F*2.

The group average for UW1 occupies vowel space centered at (F*1

-0.573, F*2 -0.094) with an F*1 standard deviation of 1.056 and

an F*2 standard deviation of 0.924.

10 of 18 instances are less than one half standard deviation from

the mean vowel center.

There are 7 instances between 0.5 and 1 standard deviations from

the average vowel center:

S K UW1 L W : THEY MARCHED BACK TO SCHOOL WHAT WAS THAT CALLED

N R UW1 M AH0 : ORIGINALLY WAS A ONE ROOM AND THEN THEY ADDED

D T UW1 R UW1 : AND THEN THEY ADDED TWO ROOMS AND THEN THEY

T T UW1 ER0 TH : OF SCHOOL FOR ABOUT TWO OR THREE WEEKS UNTIL

N Y UW1 D G : THEIR COTTON PICKED THEN YOU ’D GO BACK TO SCHOOL

S K UW1 L AE1 : YOU ’D GO BACK TO SCHOOL AND THEN THE THIRD

S K UW1 L W : HALF A MILE FROM SCHOOL WHAT IN THE THIRD

There are 1 instances between 2 and 2.5 standard deviations from

the average vowel center:

S K UW1 L IH1 : SEE WHEN I STARTED SCHOOL IT WAS UH A

Summary for AA1

70

F*1 vowel space for AA1 has a range of 3.522 units , from -1.397 to

2.125.

F*2 vowel space for AA1 has a range of 3.991 units , from -2.640 to

1.351.

AA1 for informant_one centers at (F*1 0.570 , F*2 -0.866), which is

0.128 standard deviations from the average F*1 and 0.143

standard deviations from the average F*2.

The group average for AA1 occupies vowel space centered at (F*1

0.468, F*2 -0.987) with an F*1 standard deviation of 0.796 and

an F*2 standard deviation of 0.848.

11 of 22 instances are less than one half standard deviation from

the mean vowel center.

There are 7 instances between 0.5 and 1 standard deviations from

the average vowel center:

K L AA1 K AH0 : OH AND AT TEN O’CLOCK IN THE MORNING EVERYBODY

D M AA1 R CH : UP SINGLE FILE AND MARCHED OVER TO CHURCH THEY

IY1 G AA1 T SH : WORDS LIKE HERE WE GOT SHEET ROCK ON BOTH

T R AA1 K AA1 : HERE WE GOT SHEET ROCK ON BOTH SIDES UP

AA1 K AA1 N B : WE GOT SHEET ROCK ON BOTH SIDES UP THERE

AH0 K AA1 T AH0 : HAVE SCHOOL UNTIL THE COTTON STARTED GETTING

READY TO

AH0 V AA1 G AH0 : THE THIRD WEEK OF AUGUST WAS A LITTLE CHURCH

There are 4 instances between 1 and 1.5 standard deviations from

the average vowel center:

S T AA1 R T : THEN SEE WHEN I STARTED SCHOOL IT WAS UH

EY1 M AA1 R CH : OVER AND THEN THEY MARCHED BACK TO SCHOOL WHAT

71

T W AA1 Z AH1 : BETRACTED MEETING OH IT WAS UH IT WAS JUST

AH0 N AA1 N AO1 : THERE WERE REVIVALS GOING ON ALL SUMMER BUT

THEY

Summary for AE1

F*1 vowel space for AE1 has a range of 4.610 units , from -1.165 to

3.445.

F*2 vowel space for AE1 has a range of 3.145 units , from -1.210 to

1.935.

AE1 for informant_one centers at (F*1 -0.073, F*2 0.485) , which is

0.400 standard deviations from the average F*1 and 0.336

standard deviations from the average F*2.

The group average for AE1 occupies vowel space centered at (F*1

0.258, F*2 0.259) with an F*1 standard deviation of 0.827 and

an F*2 standard deviation of 0.673.

1 of 36 instances are less than one half standard deviation from

the mean vowel center.

There are 12 instances between 0.5 and 1 standard deviations from

the average vowel center:

DH EY1 AE1 D AH0 : ROOMS AND THEN THEY ADDED A THIRD ROOM BUT

S F AE1 M L : THE WINTER TIME THIS FAMILY WOULD FURNISH WOOD FOR

ER0 F AE1 M L : NEXT WEEK THE OTHER FAMILY AND WE HAD A

IY1 HH AE1 D AH0 : OTHER FAMILY AND WE HAD A WATER BUCKET SIT

D R AE1 NG K : IN IT AND EVERYBODY DRANK OUT OF THE SAME

D Z AE1 N D : DOWN IN THE WOODS AND DID Y’ALL HAVE A

L HH AE1 V AH0 : WOODS AND DID Y’ALL HAVE A WOOD STOVE YEAH

OW1 V AE1 N D : YEAH BIG WOOD STOVE AND THEN AND THEY UH

72

P L AE1 N AH0 : AFTER WE GET EVERYTHING PLANTED AND THEN BY THE

D HH AE1 V S : FINISHED THEN WE WOULD HAVE SCHOOL UNTIL THE

COTTON

OW1 B AE1 K T : PICKED THEN YOU ’D GO BACK TO SCHOOL AND THEN

AH0 HH AE1 F AH0 : UP THERE ABOUT A HALF A MILE FROM SCHOOL

There are 8 instances between 1 and 1.5 standard deviations from

the average vowel center:

D DH AE1 T W : THEY JUST JUST AND THAT WAS THE OLD FOLKS

EY1 HH AE1 D B : SIDES UP THERE THEY HAD BOARDS ON ONE SIDE

AY1 D AE1 N D : BOARDS ON ONE SIDE AND NOTHING ELSE ON THE

D IY0 AE1 N D : UH TWENTY NINE THIRTY AND THIRTY ONE WE HAD

IY1 HH AE1 D AH1 : AND THIRTY ONE WE HAD UH THREE ROOMS AND

V Y AE1 B IH1 : HAVE A WOOD STOVE YEAH BIG WOOD STOVE AND

UW1 L AE1 N D : GO BACK TO SCHOOL AND THEN THE THIRD WEEK

EY1 HH AE1 D W : WEEK IN AUGUST THEY HAD WHAT THEY CALL REVIVAL

There are 7 instances between 1.5 and 2 standard deviations from

the average vowel center:

Z DH AE1 T K : TO SCHOOL WHAT WAS THAT CALLED WHAT KIND OF

T R AE1 K T : WHAT KIND OF MEETING BETRACTED MEETING OH IT WAS

D HH AE1 V IH1 : LIKE THIS CHURCH WOULD HAVE IT THIRD WEEK IN

D DH AE1 T CH : WEEK IN JULY AND THAT CHURCH WOULD HAVE THEIRS

DH EY1 AE1 D AH0 : ROOM AND THEN THEY ADDED TWO ROOMS AND THEN

DH ER0 AE1 N D : ELSE ON THE OTHER AND UH ORIGINALLY IN UH

lg HH AE1 D T : THE SAME DIPPER {LG} HAD TO GO TO SOMEBODY ’S

There are 5 instances between 2 and 2.5 standard deviations from

the average vowel center:

73

K R AE1 B AH0 : I MEAN WHERE HEARTS CRAB AND KING CROSSES THERE

NG OW1 AE1 N D : IT TRACTED MEETING OH AND AT TEN O’CLOCK IN

T B AE1 K T : AND THEN THEY MARCHED BACK TO SCHOOL WHAT WAS

AH0 Z AE1 K SH : SAYING BUT IT WAS ACTUALLY A REVIVAL

R T AE1 F T : TIME IT WOULD START AFTER WE GET EVERYTHING PLANTED

There are 3 instances greater than 2.5 standard deviations from

the average vowel center:

T R AE1 K T : NOW THEY CALLED IT TRACTED MEETING OH AND AT

N D AE1 T T : TRACTED MEETING OH AND AT TEN O’CLOCK IN THE

D HH AE1 V DH : AND THAT CHURCH WOULD HAVE THEIRS THERE WERE

REVIVALS

For target one of AY1:

F*1 vowel space for AY1 has a range of 2.879 units , from -0.509 to

2.370.

F*2 vowel space for AY1 has a range of 3.227 units , from -2.240 to

0.987.

AY1 for informant_one centers at (F*1 0.473 , F*2 -0.805), which is

0.003 standard deviations from the average F*1 and 0.076

standard deviations from the average F*2.

The group average for AY1 occupies vowel space centered at (F*1

0.470, F*2 -0.761) with an F*1 standard deviation of 0.916 and

an F*2 standard deviation of 0.577.

9 of 21 instances are less than one half standard deviation from

the mean vowel center.

74

There are 8 instances between 0.5 and 1 standard deviations from

the average vowel center:

IH0 V AY1 V AH0 : WELL THEY CALL IT REVIVAL NOW THEY CALLED IT

L L AY1 N D : MORNING EVERYBODY IN SCHOOL LINED UP SINGLE FILE

AND

L F AY1 L AH0 : SCHOOL LINED UP SINGLE FILE AND MARCHED OVER TO

T K AY1 N D : WAS THAT CALLED WHAT KIND OF MEETING BETRACTED

MEETING

R L AY1 K DH : WHERE ONCE A YEAR LIKE THIS CHURCH WOULD HAVE

IY0 N AY1 N TH : ORIGINALLY IN UH TWENTY NINE THIRTY AND THIRTY

ONE

AH0 T AY1 M EH1 : AND THEN BY THE TIME EVERYBODY GOT EVERYTHING

WHAT

AH0 M AY1 L F : ABOUT A HALF A MILE FROM SCHOOL WHAT IN

There are 4 instances between 1 and 1.5 standard deviations from

the average vowel center:

EH1 N AY1 S T : BUT THEN SEE WHEN I STARTED SCHOOL IT WAS

IH0 V AY1 V AH0 : HAD WHAT THEY CALL REVIVAL WELL THEY CALL IT

IY0 V AY1 V AH0 : HAVE THEIRS THERE WERE REVIVALS GOING ON ALL

SUMMER

AO1 S AY1 M IY1 : KING ROAD AND CROSS I MEAN WHERE HEARTS CRAB

For target two of AY1:

F*1 gl vowel space for AY1 has a range of 3.693 units , from -0.308

to 3.385.

F*2 gl vowel space for AY1 has a range of 2.299 units , from -1.641

to 0.658.

75

AY1 for informant_one centers at (F*1 gl 0.473 , F*2 gl -0.805),

which is 0.003 standard deviations from the average F*1 gl and

0.076 standard deviations from the average F*2 gl.

The group average for AY1 occupies vowel space centered at (F*1 gl

0.470, F*2 gl -0.761) with an F*1 gl standard deviation of

0.916 and an F*2 gl standard deviation of 0.577.

9 of 21 instances are less than one half standard deviation from

the mean vowel center.

There are 8 instances between 0.5 and 1 standard deviations from

the average vowel center:

IH0 V AY1 V AH0 : WELL THEY CALL IT REVIVAL NOW THEY CALLED IT

L L AY1 N D : MORNING EVERYBODY IN SCHOOL LINED UP SINGLE FILE

AND

L F AY1 L AH0 : SCHOOL LINED UP SINGLE FILE AND MARCHED OVER TO

T K AY1 N D : WAS THAT CALLED WHAT KIND OF MEETING BETRACTED

MEETING

R L AY1 K DH : WHERE ONCE A YEAR LIKE THIS CHURCH WOULD HAVE

IY0 N AY1 N TH : ORIGINALLY IN UH TWENTY NINE THIRTY AND THIRTY

ONE

AH0 T AY1 M EH1 : AND THEN BY THE TIME EVERYBODY GOT EVERYTHING

WHAT

AH0 M AY1 L F : ABOUT A HALF A MILE FROM SCHOOL WHAT IN

There are 4 instances between 1 and 1.5 standard deviations from

the average vowel center:

EH1 N AY1 S T : BUT THEN SEE WHEN I STARTED SCHOOL IT WAS

IH0 V AY1 V AH0 : HAD WHAT THEY CALL REVIVAL WELL THEY CALL IT

76

IY0 V AY1 V AH0 : HAVE THEIRS THERE WERE REVIVALS GOING ON ALL

SUMMER

AO1 S AY1 M IY1 : KING ROAD AND CROSS I MEAN WHERE HEARTS CRAB

77

Listing A.4: Output file for informant two with Lobanov normalization

PhoSS , A Phonetic Summarizer for Sociolinguists

Comparative Summary

Lobanov

Speaker: informant_two

Vowel Set: [’IY1 ’, ’UW1 ’, ’AA1 ’, ’AE1 ’]

Diphthongs: [’AY1 ’]

Audio File: /home/justin/Dropbox/Thesis/testfiles/school_case/

informant_two/informant_two.wav

Transcript: /home/justin/Dropbox/Thesis/testfiles/school_case/

informant_two/informant_two.txt

TextGrid: /home/justin/Dropbox/Thesis/testfiles/school_case/

informant_two/informant_two.TextGrid

F*1 vowel space for informant_two has a range of 5.273 units , from

-1.524 to 3.749.

F*2 vowel space for informant_two has a range of 4.431 units , from

-1.928 to 2.503.

Summary for IY1

F*1 vowel space for IY1 has a range of 2.128 units , from -1.490 to

0.638.

F*2 vowel space for IY1 has a range of 2.747 units , from -0.616 to

2.131.

IY1 for informant_two centers at (F*1 -0.934, F*2 1.094) , which is

0.099 standard deviations from the average F*1 and 0.178

standard deviations from the average F*2.

78

The group average for IY1 occupies vowel space centered at (F*1

-0.896, F*2 0.956) with an F*1 standard deviation of 0.385 and

an F*2 standard deviation of 0.775.

16 of 31 instances are less than one half standard deviation from

the mean vowel center.

There are 12 instances between 0.5 and 1 standard deviations from

the average vowel center:

R P IY1 P AH0 : STORING IT IN THERE PEOPLE JUST DIFFERENT PEOPLE

HAD

AY1 M IY1 N AH1 : AS UH TEACHERS I MEAN UH CHILDREN BEING ANXIOUS

D W IY1 HH AE1 : ON THE BOARD AND WE HAD THIS SCHOOL AT

AH0 N IY1 Z ER0 : ANYBODY TO GO TO EBENEZER SCHOOL BECAUSE THEY

WERE

OW1 SH IY1 K AO1 : OH MY GOODNESS SO SHE CALLED ME ON WE

D M IY1 AA1 N : GOODNESS SO SHE CALLED ME ON WE WENT TO

EY1 W IY1 L IH1 : AFTER CHURCH THAT DAY WE LIVED AT CRABAPPLE WE

L W IY1 W EH1 : WE LIVED AT CRABAPPLE WE WENT DOWN TO WALKED

TH M IY1 AH0 N : MY HUSBAND WENT WITH ME AND SEE I DIDN ’T

D S IY1 AY1 D : WENT WITH ME AND SEE I DIDN ’T KNOW I

S DH IY1 Z AH1 : KNOW HOW THAT WORKS THESE OTHER PEOPLE THEY WERE

NG W IY1 G AA1 : SO WE DID NOTHING WE GOT TO THE SCHOOL

There are 3 instances between 1 and 1.5 standard deviations from

the average vowel center:

R W IY1 HH AE1 : IN THIS ROOM WHERE WE HAD TO CLEAR OUT

D W IY1 D IH1 : ANOTHER JOB SO AND WE DIDN ’T HAVE A CAR

AH1 L IY1 V Z : THE CORN THAT THE LEAVES THAT ’S NOT WHAT YOU

79

Summary for UW1

F*1 vowel space for UW1 has a range of 5.273 units , from -1.524 to

3.749.

F*2 vowel space for UW1 has a range of 3.921 units , from -1.418 to

2.503.

UW1 for informant_two centers at (F*1 -0.705, F*2 -0.122), which

is 0.125 standard deviations from the average F*1 and 0.030

standard deviations from the average F*2.

The group average for UW1 occupies vowel space centered at (F*1

-0.573, F*2 -0.094) with an F*1 standard deviation of 1.056 and

an F*2 standard deviation of 0.924.

10 of 19 instances are less than one half standard deviation from

the mean vowel center.

There are 8 instances between 0.5 and 1 standard deviations from

the average vowel center:

T Y UW1 K AO1 : HIM I FORGET WHAT YOU CALL THAT ANYWAY THAT

S R UW1 M HH : THAT ALL IN THIS ROOM WHERE WE HAD TO

S K UW1 L OW1 : DAY WE STARTED THE SCHOOL OH MY GOODNESS THAT ’S

S K UW1 L HH : THE SUMMER THAT BUT SCHOOL HOUSE BUT UH THAT

OW1 T UW1 EH2 B : HAVE ANYBODY TO GO TO EBENEZER SCHOOL BECAUSE

THEY

T T UW1 AH0 M : ME ON WE WENT TO A MEETING ON SATURDAY

ER0 N UW1 N AH0 : CALLED ME ON SATURDAY AFTERNOON AND WANTED TO

KNOW

D Y UW1 N OW1 : SCHOOL IN CRABAPPLE AND YOU KNOW HOW THAT WORKS

80

There are 1 instances greater than 2.5 standard deviations from

the average vowel center:

T Y UW1 IH2 M : LEAVES THAT ’S NOT WHAT YOU HIM I FORGET WHAT

Summary for AA1

F*1 vowel space for AA1 has a range of 3.187 units , from -1.266 to

1.921.

F*2 vowel space for AA1 has a range of 3.449 units , from -1.928 to

1.521.

AA1 for informant_two centers at (F*1 0.343 , F*2 -1.135), which is

0.157 standard deviations from the average F*1 and 0.175

standard deviations from the average F*2.

The group average for AA1 occupies vowel space centered at (F*1

0.468, F*2 -0.987) with an F*1 standard deviation of 0.796 and

an F*2 standard deviation of 0.848.

13 of 18 instances are less than one half standard deviation from

the mean vowel center.

There are 4 instances between 0.5 and 1 standard deviations from

the average vowel center:

AW1 T AA1 N DH : HAD TO CLEAR OUT ON THE DAY WE STARTED

S T AA1 R T : ON THE DAY WE STARTED THE SCHOOL OH MY

D F AA1 D ER0 : THE SCHOOL BUILDING AND FODDER YOU KNOW WHAT

FODDER

T F AA1 D ER0 : FODDER YOU KNOW WHAT FODDER IS THAT ’S THE CORN

There are 1 instances between 1.5 and 2 standard deviations from

the average vowel center:

81

S N AA1 T HH : THAT THE LEAVES THAT ’S NOT WHAT YOU HIM I

Summary for AE1

F*1 vowel space for AE1 has a range of 3.280 units , from -0.795 to

2.485.

F*2 vowel space for AE1 has a range of 2.311 units , from -1.142 to

1.169.

AE1 for informant_two centers at (F*1 0.522 , F*2 0.078) , which is

0.319 standard deviations from the average F*1 and 0.269

standard deviations from the average F*2.

The group average for AE1 occupies vowel space centered at (F*1

0.258, F*2 0.259) with an F*1 standard deviation of 0.827 and

an F*2 standard deviation of 0.673.

9 of 45 instances are less than one half standard deviation from

the mean vowel center.

There are 9 instances between 0.5 and 1 standard deviations from

the average vowel center:

IY1 HH AE1 D T : THIS ROOM WHERE WE HAD TO CLEAR OUT ON

S DH AE1 T S : SCHOOL OH MY GOODNESS THAT ’S SO FUNNY THEY ’D BEEN

L HH AE1 D Y : PEOPLE JUST DIFFERENT PEOPLE HAD USED THAT HOUSE

DURING

D DH AE1 T HH : DIFFERENT PEOPLE HAD USED THAT HOUSE DURING THE

SUMMER

AH1 DH AE1 T W : SCHOOL HOUSE BUT UH THAT WAS THAT WAS I’LL

AE1 D AE1 N D : GOSSIPING ABOUT HER MAD AND EVERYTHING SO UH

LUVIT

82

K R AE1 B AE1 : WOULDN ’T HAVE ANYBODY FROM CRABAPPLE CAUSE THEY

WERE MAD

ER0 M AE1 D DH : CRABAPPLE CAUSE THEY WERE MAD THAT OH MY

GOODNESS

T HH AE1 V AH0 : THE MONEY AND DIDN ’T HAVE ANOTHER JOB SO AND

There are 15 instances between 1 and 1.5 standard deviations from

the average vowel center:

L DH AE1 T EH1 : FORGET WHAT YOU CALL THAT ANYWAY THAT WAS HAY

EY2 DH AE1 T W : YOU CALL THAT ANYWAY THAT WAS HAY AND THAT

HH EY1 AE1 N D : ANYWAY THAT WAS HAY AND THAT ALL IN THIS

D DH AE1 T AO1 : THAT WAS HAY AND THAT ALL IN THIS ROOM

Z DH AE1 T W : BUT UH THAT WAS THAT WAS I’LL I’LL SAY

EY1 DH AE1 T W : WAS I’LL I’LL SAY THAT WAS ONE OF MY

AE1 B AE1 P AH0 : WOULDN ’T HAVE ANYBODY FROM CRABAPPLE CAUSE THEY

WERE MAD

N S AE1 T ER0 : TO A MEETING ON SATURDAY MORNING HE CALLED ME

K R AE1 B AE1 : GET THE SCHOOL IN CRABAPPLE AND YOU KNOW HOW

AE1 B AE1 P AH0 : GET THE SCHOOL IN CRABAPPLE AND YOU KNOW HOW

S OW1 AE1 N D : HAVE ANOTHER JOB SO AND WE DIDN ’T HAVE A

OW1 DH AE1 T W : NINETEEN HUNDRED THIRTY SO THAT WAS UH DURING

THE

AH0 N AE1 N D : UH DURING THE DEPRESSION AND UH WE WALKED SIX

L Z AE1 F T : WE WALKED SIX MILES AFTER CHURCH THAT DAY WE

CH DH AE1 T D : SIX MILES AFTER CHURCH THAT DAY WE LIVED AT

There are 8 instances between 1.5 and 2 standard deviations from

the average vowel center:

Z DH AE1 T S : CORN THAT THE LEAVES THAT ’S NOT WHAT YOU HIM

83

IH0 NG AE1 NG SH : MEAN UH CHILDREN BEING ANXIOUS TO LEARN

N S AE1 T IH2 : HE CALLED ME ON SATURDAY AFTERNOON AND WANTED TO

T HH AE1 V AH0 : SO AND WE DIDN ’T HAVE A CAR WE WE

V D AE1 T K : THAT DAY WE LIVED AT CRABAPPLE WE WENT DOWN

K R AE1 B AE1 : DAY WE LIVED AT CRABAPPLE WE WENT DOWN TO

AE1 B AE1 P AH0 : DAY WE LIVED AT CRABAPPLE WE WENT DOWN TO

AY1 D AE1 D IY0 : MILES TO GET MY DADDY ’S CAR SO I COULD

There are 2 instances between 2 and 2.5 standard deviations from

the average vowel center:

AW1 DH AE1 T W : AND YOU KNOW HOW THAT WORKS THESE OTHER PEOPLE

IH0 NG AE1 N D : TO THE SCHOOL BUILDING AND FODDER YOU KNOW WHAT

There are 2 instances greater than 2.5 standard deviations from

the average vowel center:

L S AE1 T ER0 : GOING OVER THERE UNTIL SATURDAY SO WE DID NOTHING

Z DH AE1 T S : KNOW WHAT FODDER IS THAT ’S THE CORN THAT THE

For target one of AY1:

F*1 vowel space for AY1 has a range of 3.649 units , from -1.070 to

2.579.

F*2 vowel space for AY1 has a range of 1.891 units , from -1.478 to

0.413.

AY1 for informant_two centers at (F*1 0.466 , F*2 -0.719), which is

0.004 standard deviations from the average F*1 and 0.073

standard deviations from the average F*2.

The group average for AY1 occupies vowel space centered at (F*1

0.470, F*2 -0.761) with an F*1 standard deviation of 0.916 and

an F*2 standard deviation of 0.577.

84

8 of 22 instances are less than one half standard deviation from

the mean vowel center.

There are 9 instances between 0.5 and 1 standard deviations from

the average vowel center:

OW1 M AY1 G UH1 : STARTED THE SCHOOL OH MY GOODNESS THAT ’S SO

FUNNY

AY1 L AY1 L S : WAS THAT WAS I’LL I’LL SAY THAT WAS ONE

V M AY1 B EH1 : THAT WAS ONE OF MY BEST YEARS AS FAR

ER0 Z AY1 M IY1 : FAR AS UH TEACHERS I MEAN UH CHILDREN BEING

T R AY1 NG T : OF THE BIG ONES TRYING TO GET THE SCHOOL

T M AY1 D AE1 : SIX MILES TO GET MY DADDY ’S CAR SO I

S OW1 AY1 K UH1 : MY DADDY ’S CAR SO I COULD DRIVE THE NEXT

D R AY1 V DH : CAR SO I COULD DRIVE THE NEXT MORNING TO

L M AY1 HH AH1 : MORNING TO SCHOOL WELL MY HUSBAND WENT WITH ME

There are 4 instances between 1 and 1.5 standard deviations from

the average vowel center:

X M AY1 P R : MY PRINCIPLE WAS ONE OF

IH2 M AY1 F ER0 : NOT WHAT YOU HIM I FORGET WHAT YOU CALL

AA1 Z AY1 L AY1 : THAT WAS THAT WAS I’LL I’LL SAY THAT WAS

S IY1 AY1 D IH1 : WITH ME AND SEE I DIDN ’T KNOW I WAS

There are 1 instances between 1.5 and 2 standard deviations from

the average vowel center:

N OW1 AY1 W AA1 : SEE I DIDN ’T KNOW I WAS GOING OVER THERE

For target two of AY1:

85

F*1 gl vowel space for AY1 has a range of 3.434 units , from -1.067

to 2.367.

F*2 gl vowel space for AY1 has a range of 3.085 units , from -1.572

to 1.513.

AY1 for informant_two centers at (F*1 gl 0.466 , F*2 gl -0.719),

which is 0.004 standard deviations from the average F*1 gl and

0.073 standard deviations from the average F*2 gl.

The group average for AY1 occupies vowel space centered at (F*1 gl

0.470, F*2 gl -0.761) with an F*1 gl standard deviation of

0.916 and an F*2 gl standard deviation of 0.577.

8 of 22 instances are less than one half standard deviation from

the mean vowel center.

There are 9 instances between 0.5 and 1 standard deviations from

the average vowel center:

OW1 M AY1 G UH1 : STARTED THE SCHOOL OH MY GOODNESS THAT ’S SO

FUNNY

AY1 L AY1 L S : WAS THAT WAS I’LL I’LL SAY THAT WAS ONE

V M AY1 B EH1 : THAT WAS ONE OF MY BEST YEARS AS FAR

ER0 Z AY1 M IY1 : FAR AS UH TEACHERS I MEAN UH CHILDREN BEING

T R AY1 NG T : OF THE BIG ONES TRYING TO GET THE SCHOOL

T M AY1 D AE1 : SIX MILES TO GET MY DADDY ’S CAR SO I

S OW1 AY1 K UH1 : MY DADDY ’S CAR SO I COULD DRIVE THE NEXT

D R AY1 V DH : CAR SO I COULD DRIVE THE NEXT MORNING TO

L M AY1 HH AH1 : MORNING TO SCHOOL WELL MY HUSBAND WENT WITH ME

There are 4 instances between 1 and 1.5 standard deviations from

the average vowel center:

86

X M AY1 P R : MY PRINCIPLE WAS ONE OF

IH2 M AY1 F ER0 : NOT WHAT YOU HIM I FORGET WHAT YOU CALL

AA1 Z AY1 L AY1 : THAT WAS THAT WAS I’LL I’LL SAY THAT WAS

S IY1 AY1 D IH1 : WITH ME AND SEE I DIDN ’T KNOW I WAS

There are 1 instances between 1.5 and 2 standard deviations from

the average vowel center:

N OW1 AY1 W AA1 : SEE I DIDN ’T KNOW I WAS GOING OVER THERE

Appendix B

PhoSS Source Code

Listing B.1: PhoSS Main Module

1 ## phoss . py

2 ## Copyright J u s t i n S p e r l e i n 2011

3 ## Written f o r p a r t i a l comple t ion o f Master ’ s degree

4

5 import os , sys , subprocess , fnmatch , ppr int

6 import phossal ignment , phoss formantextract ion , phossnorm ,

tgparse r , phosssummary , phossoutput

7 from optparse import OptionParser

8

9

10 def main (argv) :

11 usage = ’ usage : %prog [−hdcmblnvwr] d i r s ”phone s e t ” ’

12 par s e r = OptionParser (usage = usage)

13 par s e r . add opt ion (’−d ’ , ’−−debug ’ , a c t i on=’ s t o r e t r u e ’ ,

des t=” debug ” , d e f a u l t=’ s t o r e f a l s e ’ , he lp=’ d i sp l ay

debug output ’)

14 par s e r . add opt ion (’−c ’ , ”−−no−compare” , a c t i on=’ s t o r e t r u e ’

, des t=” no compare ” , d e f a u l t=’ s t o r e f a l s e ’ , he lp=’

perform only i n d i v i d u a l summaries f o r a l l informants ,

and no comparative summaries ’)

87

88

15 par s e r . add opt ion (’−g ’ , ’−−d i r e c t−comparison ’ , a c t i on=’

s t o r e t r u e ’ , des t=’ d i rec t compare ’ , d e f a u l t=’ s t o r e f a l s e

’ , he lp=’ d i r e c t l y compare two speaker s or one speaker to

a separa te group ’)

16 par s e r . add opt ion (’−p ’ , ’−−dipthongs ’ , type=’ s t r i n g ’ , des t=

’ diphthongs ’ , d e f a u l t=’ ’ , he lp=’ sample diphthongs one−

th i rd and two−t h i r d s o f the way through the vowel ’)

17 par s e r . add opt ion (’−m’ , ’−−midpoints ’ , a c t i on=’ s t o r e t r u e ’ ,

des t=’ midpoints ’ , d e f a u l t=’ s t o r e f a l s e ’ , he lp=’ sample

a l l vowels at t h i e r midpoints ’)

18 par s e r . add opt ion (’−b ’ , ’−−b a r k d i f f e r e n c e ’ , a c t i on = ’

s t o r e t r u e ’ , des t=’ b a r k d i f f e r e n c e ’ , d e f a u l t=’

s t o r e f a l s e ’ , he lp=” normal ize us ing Syrdal and Gopal ’ s

bark−d i f f e r e n c e method”)

19 par s e r . add opt ion (’− l ’ , ’−−lobanov ’ , a c t i on=’ s t o r e t r u e ’ ,

des t=’ lobanov ’ , d e f a u l t=’ s t o r e f a l s e ’ , he lp=’ normal ize

us ing the Lobanov method ’)

20 par s e r . add opt ion (’−n ’ , ’−−nearey ’ , a c t i on=’ s t o r e t r u e ’ ,

des t=’ nearey ’ , d e f a u l t=’ s t o r e f a l s e ’ , he lp=” normal ize

us ing Nearey ’ s 1977 method”)

21 par s e r . add opt ion (’−v ’ , ’−−labov ’ , a c t i on=’ s t o r e t r u e ’ ,

des t=’ labov ’ , d e f a u l t=’ s t o r e f a l s e ’ , he lp=” normal ize

us ing Labov ’ s r e v i s i o n o f the Nearey method”)

22 par s e r . add opt ion (’−w ’ , ’−−w a t t a n d f a b r i c i u s ’ , a c t i on=’

s t o r e t r u e ’ , des t=’ w a t t a n d f a b r i c i u s ’ , d e f a u l t=’

s t o r e f a l s e ’ , he lp=’ normal ize us ing the Watt and

Fabr i c iu s method ’)

89

23 par s e r . add opt ion (’−r ’ , ’−−raw ’ , a c t i on=’ s t o r e t r u e ’ , des t=

’ raw ’ , d e f a u l t=’ s t o r e f a l s e ’ , he lp=’ summarize vowels

us ing no norma l i za t i on . ’)

24 (opt ions , a rgs) = par s e r . p a r s e a r g s ()

25

26 i f l en (args) < 2 :

27 print par s e r . p r i n t h e l p ()

28 sys . e x i t (1)

29

30 # Sort s p e a k e r s l i s t . This comes in handy f o r p u t t i n g

c o n t e x t t o g e t h e r wi th informant

31 # in the proper order .

32 s p e a k e r s l i s t = args [: −1]

33 s p e a k e r s l i s t = so r t ed (s p e a k e r s l i s t)

34

35 # Since I ’ ve t r i p p e d over i t so many times , I ’m a c c e p t i n g

comma separa ted vowel s e t s as w e l l .

36 i f ’ , ’ in args [−1] :

37 # Remove l e a d i n g and t r a i l i n g whi t e space from vowels ,

then s p l i t on comma . . .

38 vowe l se t = [vow . s t r i p () for vow in args [−1] . s p l i t (’ , ’)]

39 else :

40 # . . . or s p l i t on whi te space .

41 vowe l se t = args [−1] . s p l i t ()

42

43 # I f the user command f o r g e t s the vowel se t , then t h i s w i l l

t r i g g e r the message .

90

44 i f os . path . e x i s t s (vowe l se t [0]) :

45 print ’ Use a space−de l im i t ed vowel s e t as l a s t argument

! Example : ”AE1 AH0” ’

46 sys . e x i t (2)

47

48 i f ’ , ’ in opt ions . diphthongs :

49 dips = opt ions . diphthongs . s p l i t (’ , ’)

50 else :

51 dips = opt ions . diphthongs . s p l i t ()

52

53 # the user may s e l e c t more than one norma l i za t ion method .

54 # PhoSS performs summary wi th each method .

55 norm options = phossnorm . n o r m o p t i o n s l i s t (opt ions)

56

57 # I n i t i a l i z i n g the Speakers o b j e c t , which i s the main data

s t r u c t u r e f o r PhoSS .

58 In formantLi s t = Speakers ()

59 # add each informant to s p e a k e r s l i s t

60 for person in s p e a k e r s l i s t :

61 In formantLi s t . addSpeaker (person)

62

63 # add a l l vowe l s to the vowel s e t and d iph thongs to t h e i r

own l i s t

64 for in formant in In formantLi s t . speaker s :

65 in formant . diphthongs = dips

66 for vowel in vowe l se t :

67 in formant . addVowel (vowel)

91

68

69 i f opt ions . debug == True :

70 print ’ opt i ons ’ , opt ions

71 print ’ a rgs ’ , a rgs

72 print ’ Informant Objects : ’ , In formantLi s t . speaker s

73 print ’ Vowel Set : ’ , In formantLi s t . speaker s [0] . VowelSet

74 ppr int . ppr int (\

75 [(’ D i r ec tory : ’ + each . in formantd i r , each . FileGroup)

for each in In formantLi s t . speaker s])

76

77 # Check t h a t t h e r e are the minimum r e q u i r e d f i l e s in the

informant d i r e c t o r i e s .

78 for in formant in In formantLi s t . speaker s :

79 i f in formant . a u d i o f i l e == ’ ’ :

80 print ’ Miss ing audio in ’ , informant . in fo rmantd i r

81 print ’Make sure . wav audio f i l e i s in %s and try

again . ’ % informant . in fo rmantd i r

82 sys . e x i t (1)

83 e l i f in formant . t r a n s c r i p t f i l e == ’ ’ :

84 print ’ Miss ing t r a n s c r i p t in ’ , informant .

in fo rmantd i r

85 print ’Make sure . txt t r a n s c r i p t i s in %s and try

again . ’ % informant . in fo rmantd i r

86 sys . e x i t (1)

87

88

89 # ALIGNMENT

92

90 # Check f o r TextGrid f o r each speaker . Prompt f o r a l ignment

i f i t i s not t h e r e .

91 for in formant in In formantLi s t . speaker s :

92 i f in formant . TextGrid == ’ ’ :

93 print ”No TextGrid found in ” , informant .

in fo rmantd i r

94 a n s a l i g n = raw input (”Run al ignment on s e l e c t e d

audio and t r a n s c r i p t ? (y/n) ”)

95 i f a n s a l i g n . lower () . s t r i p () == ”y” or a n s a l i g n .

lower () . s t r i p () == ” yes ” :

96 # add t e x t g r i d a f t e r a l ignment

97 in formant . TextGrid = phossal ignment .

run al ignment (informant , In formantLi s t)

98 e l i f a n s a l i g n . lower () . s t r i p () == ”n” or a n s a l i g n .

lower () . s t r i p () == ”no” :

99 print usage

100 sys . e x i t (1)

101 else :

102 print ”Not a v a l i d opt ion ”

103 print usage

104 sys . e x i t (2)

105 e l i f not in formant . TextGrid == ’ ’ :

106 print ’ Alignment p r e v i o u s l y completed f o r %s ’ %

informant . name

107

108

109 # FORMANT EXTRACTION

93

110 # Write a praat s c r i p t f o r each speaker , and run i t .

111 # Merge r e s u l t f i l e s .

112 for in formant in In formantLi s t . speaker s :

113 phoss fo rmantext rac t ion . w r i t e p r a a t s c r i p t (informant ,

opt ions)

114 print ”Wrote s c r i p t f o r ” , informant . name

115

116 for in formant in In formantLi s t . speaker s :

117 i f os . path . e x i s t s (informant . r e s u l t f i l e) :

118 print ”A r e s u l t f i l e e x i s t s f o r %s ” % informant .

name

119 an s p ro c e s s = raw input (”Execute Praat s c r i p t to

ove rwr i t e e x i s t i n g ? (y/n) ”)

120 i f an s p ro c e s s . lower () . s t r i p () == ”y” or

an s p ro c e s s . lower () . s t r i p () == ” yes ” :

121 print (” Executing praat s c r i p t f o r %s because

you sa id yes . ” % informant . name)

122 phoss fo rmantext rac t ion . r u n p r a a t s c r i p t (

informant)

123 # At t h i s point , the r e s u l t f i l e has the

necessary informaion

124 # to be used wi th NORM, but the f i l e needs to

be s o r t e d .

125 # Tokens o f l i k e t y p e s must be t o g e t h e r , so

they are s o r t e d thus .

126 e l i f an s p ro c e s s . lower () . s t r i p () == ”n” or

an s p ro c e s s . lower () . s t r i p () == ”no” :

94

127 pass

128 else :

129 print ”Not a v a l i d opt ion . ”

130 sys . e x i t (2)

131 e l i f not os . path . e x i s t s (informant . r e s u l t f i l e) :

132 print ” Executing Praat s c r i p t f o r %s because r e s u l t

f i l e does not e x i s t . ” % informant . name

133 phoss fo rmantext rac t ion . r u n p r a a t s c r i p t (informant)

134 # At t h i s point , the r e s u l t f i l e has the necessary

informaion

135 # to be used wi th NORM, but the f i l e needs to be

s o r t e d .

136 # Tokens o f l i k e t y p e s must be t o g e t h e r , so they

are s o r t e d thus .

137

138 # Sort the r e s u l t s by vowel by speaker

139 for in formant in In formantLi s t . speaker s :

140 phoss fo rmantext rac t ion . s o r t f i l e (informant)

141

142 # Merge the r e s u l t f i l e s and w r i t e a copy to each informant

d i r e c t o r y

143 i f opt ions . no compare == True :

144 pass

145 else :

146 phoss fo rmantext rac t ion . m e r g e r e s u l t f i l e s (In formantLi s t

)

147

95

148 # Create a data frame f o r each informant . At t h i s point , i t

i s unnormalized

149 for in formant in In formantLi s t . speaker s :

150 phossnorm . import d f (informant , opt ions)

151

152 i f opt ions . debug == True :

153 #change t h i s so i t ’ s the i n d i v i d u a l data frame

154 # g e t s changed in norm

155 print in formant . data frame

156

157 # TEXTGRID PARSER

158 # Add Contexts to dataframe by c r e a t i n g a f a c t o r v e c t o r

159 # f o r the speaker from a l i s t o f c o n t e x t s .

160 # Add the d iph thongs to the VowelSet to g e t c o r r e c t c o n t e x t

.

161 for in formant in In formantLi s t . speaker s :

162 in formant . VowelSet += informant . diphthongs

163 t gpa r s e r . g e t i n f o rmant cont ex t (informant , opt ions)

164

165 # c o n t e x t s are s t o r e d s e p a r a t e l y f o r each informant , so I

need another f u n c t i o n

166 # to combine them , and another to i n s e r t the c o n t e x t i n t o

the dataframes .

167 i f opt ions . debug == True :

168 print l en (informant . c o n t e x t l i s t)

169 print in formant . c o n t e x t l i s t

170

96

171 # Note to s e l f : This f u n c t i o n shou ld be indented t h i s way

172 # because o f how PhoSS b u i l d s the c o n t e x t v e c t o r . I t i s not

a mistake .

173 t gpa r s e r . i n s e r t c o n t e x t (In formantLi s t)

174 # Dataframe i s complete wi th unnormalized v a l u e s and wi th

c o n t e x t .

175

176 i f opt ions . debug == True :

177 for in formant in In formantLi s t . speaker s :

178 print in formant . data frame

179

180 #phossoutput . output (informant)

181 i f norm options == [] :

182 norm options . append (’No Normal izat ion ’)

183

184 for norm opt in norm options :

185 for in formant in In formantLi s t . speaker s :

186 # NORMALIZATION

187 # Apply norma l i za t ion rou t ines , i f any

188 phossnorm . normal ize (norm opt , informant)

189 # . . . and e x t r a c t subdataframes .

190 phossnorm . ex t rac t sub data f r ame (informant ,

norm opt)

191

192 # OUTPUT

193 #

194 phossoutput . output (InformantList , opt ions , norm opt)

97

195

196

197 ########################

198 #End PhoSS Main

199 ########################

200 #PhoSS Class d e f i n i t i o n s

201 ########################

202 # The Speakers o b j e c t i s i n s t a n t i a t e d as In formantLis t t h r o u g h t

the main loop .

203 class Speakers (ob j e c t) :

204

205 def i n i t (s e l f) :

206 s e l f . speaker s = []

207 s e l f . p 2 f a l o c a t i o n = ’ ’

208

209 # Speakers c l a s s methods

210 def addSpeaker (s e l f , i n fo rmantd i r) :

211 s e l f . i n fo rmantd i r = os . path . abspath (in fo rmantd i r)

212 s e l f . speaker s . append (Informant (in fo rmantd i r))

213

214 def in formants (s e l f) :

215 print s e l f . name . speaker s

216

217

218 # Informant o b j e c t s are e lements o f the l i s t a t Speakers .

s p e a k e r s

219 class Informant (ob j e c t) :

98

220 def i n i t (s e l f , i n fo rmantd i r) :

221

222 s e l f . VowelSet = []

223 s e l f . diphthongs = []

224

225 # A l l f i l e s c r e a t e d or used throughout the program .

226 s e l f . i n fo rmantd i r = in fo rmantd i r

227 s e l f . p h o s s f i l e s d i r = in fo rmantd i r + ’ / phoss / ’

228 s e l f . a u d i o f i l e = ’ ’

229 s e l f . t r a n s c r i p t f i l e = ’ ’

230 s e l f . TextGrid = ’ ’

231 s e l f . p r a a t f i l e = ’ ’

232 s e l f . r e s u l t f i l e = ’ ’

233 s e l f . c o m m o n r e s u l t f i l e = ’ ’

234 s e l f . o u t p u t f i l e = ’ ’

235

236 for f i l e in os . l i s t d i r (s e l f . i n fo rmantd i r) :

237 i f fnmatch . fnmatch (f i l e , ’ ∗ . tx t ’) :

238 s e l f . t r a n s c r i p t f i l e = os . path . j o i n (os . path .

abspath (s e l f . i n fo rmantd i r) , f i l e)

239 e l i f fnmatch . fnmatch (f i l e , ’ ∗ . wav ’) :

240 s e l f . a u d i o f i l e = os . path . j o i n (os . path . abspath (

s e l f . i n fo rmantd i r) , f i l e)

241 e l i f fnmatch . fnmatch (f i l e , ’ ∗ . TextGrid ’) :

242 s e l f . TextGrid = os . path . j o i n (os . path . abspath (

s e l f . i n fo rmantd i r) , f i l e)

243 e l i f fnmatch . fnmatch (f i l e , ’ ∗ . praat ’) :

99

244 s e l f . p r a a t f i l e = os . path . j o i n (os . path . abspath (

s e l f . i n fo rmantd i r) , f i l e)

245 e l i f fnmatch . fnmatch (f i l e , ’ ∗ . r e s u l t ’) :

246 s e l f . r e s u l t f i l e = os . path . j o i n (os . path . abspath

(s e l f . i n fo rmantd i r) , f i l e)

247 e l i f fnmatch . fnmatch (f i l e , ’ ∗ . commonresult ’) :

248 s e l f . c o m m o n r e s u l t f i l e = os . path . j o i n (os . path .

abspath (s e l f . i n fo rmantd i r) , f i l e)

249 e l i f fnmatch . fnmatch (f i l e , ’ ∗ . phoss ’) :

250 s e l f . o u t p u t f i l e = os . path . j o i n (os . path . abspath

(s e l f . i n fo rmantd i r) , f i l e)

251

252 s e l f . FileGroup = (s e l f . a u d i o f i l e , s e l f . t r a n s c r i p t f i l e

, \

253 s e l f . TextGrid , s e l f . p r a a t f i l e , s e l f . r e s u l t f i l e , \

254 s e l f . o u t p u t f i l e , s e l f . c o m m o n r e s u l t f i l e)

255

256 #############beyond the f i l e s p o r t i o n#############

257 # The name i s what R uses to i d e n t i f y the speaker .

258 s e l f . name = os . path . s p l i t e x t (os . path . basename (s e l f .

a u d i o f i l e)) [0]

259 # R data frames

260 s e l f . data frame = ’ ’

261 s e l f . normed data frame = ’ ’

262 s e l f . sub data f rame = ’ ’

263

264 # L i s t s used w h i l e r e c o n s t r u c t i n g c o n t e x t

100

265 s e l f . p h o n e l i s t = []

266 s e l f . w o r d l i s t = []

267 s e l f . c o n t e x t l i s t = []

268

269 # Informant c l a s s methods

270 def addVowel (s e l f , vowel) :

271 s e l f . vowel = vowel

272 s e l f . VowelSet . append (vowel)

273

274 def addDiphthong (s e l f , diphthong) :

275 s e l f . diphthong = diphthong

276 s e l f . diphthongs . append (diphthong)

277

278 def pL i s t In s t ance (s e l f , phone , s t a r t , end , index , context=’ ’) :

279 s e l f . p h o n e l i s t . append (pLi s t (phone , s t a r t , end , index ,

context=’ ’))

280

281 def wLis t Ins tance (s e l f , word , s t a r t , end , index , phonerange = []) :

282 s e l f . w o r d l i s t . append (wList (word , s t a r t , end , index ,

phonerange =[]))

283

284 def addContext (s e l f , phone contex t s t r ing ,

wo rd con t ex t s t r i ng) :

285 s e l f . c o n t e x t l i s t . append ((phone con t ex t s t r i ng +’ : ’+

word con t ex t s t r i ng))

286

287 class pLi s t :

101

288 def i n i t (s e l f , phone , s t a r t , end , index , context=’ ’) :

289 s e l f . phone = phone

290 s e l f . s t a r t = s t a r t

291 s e l f . end = end

292 s e l f . index = index

293 s e l f . s o r t ed index = ’ ’

294 s e l f . context = context

295

296 class wList :

297 def i n i t (s e l f , word , s t a r t , end , index , phonerange = []) :

298 s e l f . word = word

299 s e l f . s t a r t = s t a r t

300 s e l f . end = end

301 s e l f . index = index

302 s e l f . phonerange = phonerange

303

304 ###############

305

306 i f name == ” main ” :

307 main (sys . argv [1 :])

102

Listing B.2: Alignment Module

1 import os , subproces s

2

3 def run al ignment (informant , In formantLi s t) :

4 # l o c a t e p2fa a l i g n . py

5 # run a s u b p r o c e s s to do the a l ignment .

6 # name the TextGrid the same t h i n g as the audio

7 # c r e a t e a d i c t i o n a r y l o g f o r l a t e r a d d i t i o n s

8

9 # check t h a t the TextGrid I ’m t r y i n g to make doesn ’ t e x i s t .

10 in formant . TextGrid = os . path . s p l i t e x t (informant . a u d i o f i l e)

[0] + ’ . TextGrid ’

11

12 # save the p2fa i n s t a l l a t i o n path once you f i n d i t because

13 # you only need to f i n d i t once .

14 i f In formantLi s t . p 2 f a l o c a t i o n == ’ ’ :

15 print ” Search ing f o r p2fa / a l i g n . py . . . ”

16 # f i n d the p2fa / a l i g n . py s c r i p t .

17 # Add some checks j u s t in case i t ’ s not in / usr /

18 f i n d a r g s = [’ f i n d ’ , ’ / usr / l o c a l / p2fa / ’ , ’−name ’ , ’

a l i g n . py ’]

19 p = subproces s . Popen (f i n d a r g s , s tdout=subproces s . PIPE)

20 a l i gn pa th = p . communicate () [0] . s t r i p () # a l i g n . py

a b s o l u t e path

21 In formantLi s t . p 2 f a l o c a t i o n = a l i gn pa th

22 print ”Found p2fa / a l i g n . py . . . ”

23 else :

103

24 a l i gn pa th = InformantLi s t . p 2 f a l o c a t i o n

25 # the c a l l path i s what

26 c a l l p a t h = ”python ” + \

27 a l i gn pa th + ” ” + \

28 in formant . a u d i o f i l e + ” ” + \

29 in formant . t r a n s c r i p t f i l e + ” ” + \

30 in formant . TextGrid

31

32 print ” Ca l l i ng p2fa with path : %s ” % c a l l p a t h + ”\n”

33

34 os . system (”python ” + \

35 a l i gn pa th + ” ” + \

36 in formant . a u d i o f i l e + ” ” + \

37 in formant . t r a n s c r i p t f i l e + ” ” + \

38 in formant . TextGrid)

39

40 print ”Alignment complete f o r %s ” % informant . name

41 return

104

Listing B.3: Formant Extraction Module

1 import f i l e i n p u t , os , sys , subprocess , ppr int

2

3 def main (informant , opt ions) :

4 vowe l se t = informant . VowelSet

5 dir , name = os . path . s p l i t (informant . a u d i o f i l e)

6 d i r = os . path . r e l pa th (d i r)

7

8 name sans ext = os . path . s p l i t e x t (name) [0]

9 p r a a t s c r i p t = []

10

11 p r a a t s c r i p t . append (’ ’ ’ name$ = ”%s ”\n ’ ’ ’ % name sans ext)

12 p r a a t s c r i p t . append (’ ’ ’ d i r$ = ” . . / . . / % s ”\n ’ ’ ’ % d i r)

13 #S p e c i f y the name o f the output f i l e

14 p r a a t s c r i p t . append (’ ’ ’ o u t f i l e $ = name$ + ”. r e s u l t ”\n ’ ’ ’)

15 #I f the output f i l e a l r e a d y e x i s t s , d e l e t e i t

16 p r a a t s c r i p t . append (’ ’ ’ f i l e d e l e t e ’ d i r$ ’/ ’ o u t f i l e $ ’\n ’ ’ ’)

17 #In output f i l e , add a l i n e wi th name , durat ion , F1 , F2

v a l u e s

18 p r a a t s c r i p t . append (’ ’ ’ f i l e a p p e n d ’ d i r$ ’/ ’ o u t f i l e $ ’ speaker

’ tab$ ’ vowel / frame ’ tab$ ’ c o n t e x t ’ tab$ ’F1 ’ tab$ ’F2 ’ tab$ ’F3 ’

tab$ ’ g l F1 ’ tab$ ’ g l F2 ’ tab$ ’ g l F3 ’ newl ine$ ’\n ’ ’ ’)

19 p r a a t s c r i p t . append (’ ’ ’ Read from f i l e . . . ’ d i r$ ’/ ’ name$ ’ . wav

\n ’ ’ ’)

20 p r a a t s c r i p t . append (’ ’ ’ s e l e c t Sound ’name$ ’\n ’ ’ ’)

21 p r a a t s c r i p t . append (’ ’ ’To Formant (burg) . . . 0 .01 5 5500

0.025 50\n ’ ’ ’)

105

22 p r a a t s c r i p t . append (’ ’ ’ Read from f i l e . . . ’ d i r$ ’/ ’ name$ ’ .

TextGrid\n ’ ’ ’)

23 p r a a t s c r i p t . append (’ ’ ’ n In terv = Get number o f i n t e r v a l s . . .

1\n ’ ’ ’)

24 p r a a t s c r i p t . append (’ ’ ’ f o r j from 1 to ’ nIn terv ’\n ’ ’ ’)

25 p r a a t s c r i p t . append (’ ’ ’ s e l e c t TextGrid ’name$ ’\n ’ ’ ’)

26 p r a a t s c r i p t . append (’ ’ ’ l a b$ = Get l a b e l o f i n t e r v a l . . . 1 ’ j

’\n ’ ’ ’)

27

28 for n in xrange (l en (vowe l se t)) :

29 i f opt ions . midpoints == True :

30 sampletype = ” midpoint ”

31 formula = ” (beg + end) / 2”

32 i f n == 0 :

33 p r a a t s c r i p t . append (’ ’ ’ i f l a b$ = ”%s ”\n ’ ’ ’ %

vowel se t [n])

34 else :

35 p r a a t s c r i p t . append (’ ’ ’ e l i f l a b$ = ”%s ”\n ’ ’ ’ %

vowel se t [n])

36

37 p r a a t s c r i p t . append (’ ’ ’ \ t b e g = Get s t a r t i n g p o i n t

. . . 1 ’ j ’\n ’ ’ ’)

38 p r a a t s c r i p t . append (’ ’ ’ \ tend = Get end p o i n t . . . 1 ’

j ’\n ’ ’ ’)

39 p r a a t s c r i p t . append (’ ’ ’ \ t%s = %s\n ’ ’ ’ % (sampletype

, formula))

106

40 p r a a t s c r i p t . append (’ ’ ’ \ t s e l e c t Formant ’name$ ’\n

’ ’ ’)

41 p r a a t s c r i p t . append (’ ’ ’ \ t f 1 = Get v a l u e at time . . .

1 ’%s ’ Hertz Linear\n ’ ’ ’ % sampletype)

42 p r a a t s c r i p t . append (’ ’ ’ \ t f 2 = Get v a l u e at time . . .

2 ’%s ’ Hertz Linear\n ’ ’ ’ % sampletype)

43 p r a a t s c r i p t . append (’ ’ ’ \ t f 3 = Get v a l u e at time . . .

3 ’%s ’ Hertz Linear\n ’ ’ ’ % sampletype)

44 p r a a t s c r i p t . append (’ ’ ’ \ t f i l e a p p e n d ’ d i r$ ’/ ’

o u t f i l e $ ’ ’name$ ’ ’ tab$ ’ ’ l a b$ ’ ’ tab$ ’ ’ tab$ ’ ’ f 1 ’ ’

tab$ ’ ’ f 2 ’ ’ tab$ ’ ’ f 3 ’ ’ tab$ ’ ’ tab$ ’ ’ tab$ ’ ’ tab$ ’ ’ tab$

’ ’ tab$ ’ ’ newl ine$ ’\n ’ ’ ’)

45

46 else :

47 sampletype = ” t h i r d p o i n t ”

48 formula = ”beg + ((end − beg) / 3) ”

49 i f n == 0 :

50 p r a a t s c r i p t . append (’ ’ ’ i f l a b$ = ”%s ”\n ’ ’ ’ %

vowel se t [n])

51 else :

52 p r a a t s c r i p t . append (’ ’ ’ e l i f l a b$ = ”%s ”\n ’ ’ ’ %

vowel se t [n])

53

54 p r a a t s c r i p t . append (’ ’ ’ \ t b e g = Get s t a r t i n g p o i n t

. . . 1 ’ j ’\n ’ ’ ’)

55 p r a a t s c r i p t . append (’ ’ ’ \ tend = Get end p o i n t . . . 1 ’

j ’\n ’ ’ ’)

107

56 p r a a t s c r i p t . append (’ ’ ’ \ t%s = %s\n ’ ’ ’ % (sampletype

, formula))

57 p r a a t s c r i p t . append (’ ’ ’ \ t s e l e c t Formant ’name$ ’\n

’ ’ ’)

58 p r a a t s c r i p t . append (’ ’ ’ \ t f 1 = Get v a l u e at time . . .

1 ’%s ’ Hertz Linear\n ’ ’ ’ % sampletype)

59 p r a a t s c r i p t . append (’ ’ ’ \ t f 2 = Get v a l u e at time . . .

2 ’%s ’ Hertz Linear\n ’ ’ ’ % sampletype)

60 p r a a t s c r i p t . append (’ ’ ’ \ t f 3 = Get v a l u e at time . . .

3 ’%s ’ Hertz Linear\n ’ ’ ’ % sampletype)

61 p r a a t s c r i p t . append (’ ’ ’ \ t f i l e a p p e n d ’ d i r$ ’/ ’

o u t f i l e $ ’ ’name$ ’ ’ tab$ ’ ’ l a b$ ’ ’ tab$ ’ ’ tab$ ’ ’ f 1 ’ ’

tab$ ’ ’ f 2 ’ ’ tab$ ’ ’ f 3 ’ ’ tab$ ’ ’ tab$ ’ ’ tab$ ’ ’ tab$ ’ ’ tab$

’ ’ tab$ ’ ’ newl ine$ ’\n ’ ’ ’)

62

63 # This i n c l u d e s d i p t h o n g s in the s e t o f phones to

sample

64 for j in xrange (l en (informant . diphthongs)) :

65 sampletype1 = ” f i f t e e n p e r c e n t ”

66 sampletype2 = ” e i gh type r c en t ”

67 formula1 = ”beg + ((end − beg) ∗ 0 . 15) ”

68 formula2 = ”beg + ((end − beg) ∗ 0 . 80) ”

69 n = len (informant . VowelSet)

70 i f n == 0 :

71 p r a a t s c r i p t . append (’ ’ ’ i f l a b$ = ”%s ”\n ’ ’ ’ %

informant . diphthongs [j])

72 else :

108

73 p r a a t s c r i p t . append (’ ’ ’ e l i f l a b$ = ”%s ”\n ’ ’ ’ %

informant . diphthongs [j])

74

75 p r a a t s c r i p t . append (’ ’ ’ \ t b e g = Get s t a r t i n g p o i n t

. . . 1 ’ j ’\n ’ ’ ’)

76 p r a a t s c r i p t . append (’ ’ ’ \ tend = Get end p o i n t . . . 1 ’

j ’\n ’ ’ ’)

77 p r a a t s c r i p t . append (’ ’ ’ \ t%s = %s\n ’ ’ ’ % (

sampletype1 , formula1))

78 p r a a t s c r i p t . append (’ ’ ’ \ t%s = %s\n ’ ’ ’ % (

sampletype2 , formula2))

79 p r a a t s c r i p t . append (’ ’ ’ \ t s e l e c t Formant ’name$ ’\n

’ ’ ’)

80 p r a a t s c r i p t . append (’ ’ ’ \ t f 1 = Get v a l u e at time . . .

1 ’%s ’ Hertz Linear\n ’ ’ ’ % sampletype1)

81 p r a a t s c r i p t . append (’ ’ ’ \ t f 2 = Get v a l u e at time . . .

2 ’%s ’ Hertz Linear\n ’ ’ ’ % sampletype1)

82 p r a a t s c r i p t . append (’ ’ ’ \ t f 3 = Get v a l u e at time . . .

3 ’%s ’ Hertz Linear\n ’ ’ ’ % sampletype1)

83 p r a a t s c r i p t . append (’ ’ ’ \ t f 1 g = Get v a l u e at time

. . . 1 ’%s ’ Hertz Linear\n ’ ’ ’ % sampletype2)

84 p r a a t s c r i p t . append (’ ’ ’ \ t f 2 g = Get v a l u e at time

. . . 2 ’%s ’ Hertz Linear\n ’ ’ ’ % sampletype2)

85 p r a a t s c r i p t . append (’ ’ ’ \ t f 3 g = Get v a l u e at time

. . . 3 ’%s ’ Hertz Linear\n ’ ’ ’ % sampletype2)

86 p r a a t s c r i p t . append (’ ’ ’ \ t f i l e a p p e n d ’ d i r$ ’/ ’

o u t f i l e $ ’ ’name$ ’ ’ tab$ ’ ’ l a b$ ’ ’ tab$ ’ ’ tab$ ’ ’ f 1 ’ ’

109

tab$ ’ ’ f 2 ’ ’ tab$ ’ ’ f 3 ’ ’ tab$ ’ ’ f 1 g ’ ’ tab$ ’ ’ f 2 g ’ ’ tab$

’ ’ f 3 g ’ ’ newl ine$ ’\n ’ ’ ’)

87

88 p r a a t s c r i p t . append (’ ’ ’ e n d i f \n ’ ’ ’)

89 p r a a t s c r i p t . append (’ ’ ’ endfor \n ’ ’ ’)

90 p r a a t s c r i p t . append (’ ’ ’ s e l e c t TextGrid ’name$ ’\n ’ ’ ’)

91 p r a a t s c r i p t . append (’ ’ ’ p l u s Sound ’name$ ’\n ’ ’ ’)

92 p r a a t s c r i p t . append (’ ’ ’ p l u s Formant ’name$ ’\n ’ ’ ’)

93 p r a a t s c r i p t . append (’ ’ ’ Remove\n ’ ’ ’)

94

95 i f opt ions . debug == True :

96 ppr int . ppr int (p r a a t s c r i p t)

97

98 return p r a a t s c r i p t

99

100 ## s o r t f i l e Code adapted from : h t t p :// code . a c t i v e s t a t e . com/

r e c i p e s /440612/

101 ## Adaptat ion by J u s t i n Sper l e in , 2011

102 def s o r t f i l e (informant) :

103 l i n e s =[] # g i v e l i n e s v a r i a b l e a type o f l i s t

104 for l i n e in f i l e i n p u t . F i l e Input (informant . r e s u l t f i l e ,

i n p l a c e =1) :

105 l i n e s . append (l i n e . r s t r i p ())

106 p r e s o r t e d = l i n e s

107 f i r s t = [l i n e s [0]] # keep the header l i n e s e p a r a t e from the

data l i n e s

108 r e s t = l i n e s [1 :]

110

109 r e s t . s o r t ()

110 for each in r e s t :

111 f i r s t . append (each)

112 f = open (informant . r e s u l t f i l e , ”w”)

113 for l i n e in f i r s t :

114 f . wr i t e (l i n e + ’\n ’)

115 return

116

117 def w r i t e p r a a t s c r i p t (informant , opt ions) :

118 # F i l l in the p r a a t f i l e i f i t doesn ’ t e x i s t y e t

119 in formant . p r a a t f i l e = os . path . s p l i t e x t (informant .

a u d i o f i l e) [0] + ” . praat ”

120 f = open (informant . p r a a t f i l e , ’w ’)

121 f . w r i t e l i n e s (main (informant , opt ions))

122 f . c l o s e ()

123 in formant . r e s u l t f i l e = os . path . s p l i t e x t (informant .

a u d i o f i l e) [0] + ” . r e s u l t ”

124 return

125

126 def r u n p r a a t s c r i p t (informant) :

127 i f sys . p lat form == ’ cygwin ’ :

128 subproces s . Popen ([’ praatcon ’ , informant . p r a a t f i l e]) .

wait ()

129 e l i f sys . p lat form == ’ l inux2 ’ :

130 subproces s . Popen ([’ praat ’ , informant . p r a a t f i l e]) . wait

()

131

111

132 def m e r g e r e s u l t f i l e s (In formantLi s t) :

133 l i s t o f r e s u l t f i l e s = []

134 for in formant in In formantLi s t . speaker s :

135 l i s t o f r e s u l t f i l e s . append (informant . r e s u l t f i l e)

136

137 # Read whole o f f i r s t f i l e

138

139 f = open (l i s t o f r e s u l t f i l e s [0] , ’ r ’)

140 common result = f . r e a d l i n e s ()

141 f . c l o s e ()

142

143 for f i l e in l i s t o f r e s u l t f i l e s [1 :] :

144 f = open (f i l e , ’ r ’)

145 common append = f . r e a d l i n e s () [1 :]

146 for l i n e in common append :

147 common result . append (l i n e)

148

149 for in formant in In formantLi s t . speaker s :

150 in formant . c o m m o n r e s u l t f i l e = os . path . s p l i t e x t (

informant . a u d i o f i l e) [0] + ’ . commonresult ’

151 f = open (informant . common re su l t f i l e , ’w ’)

152 f . w r i t e l i n e s (common result)

153 f . c l o s e ()

154 # I am w r i t i n g the merged f i l e to both d i r e c t o r i e s because

I though t w r i t i n g to pwd was weird .

155 # Also , t h e r e i s no h i e r a r c h y or p r e f e r e n c e shown to a

member o f an informant group .

112

Listing B.4: TextGrid Parser

1 import os , sys , ppr int

2 import rpy2 . r o b j e c t s as r o b j e c t s

3

4 # TextGrid parser

5 # perhaps making a c l a s s d e f i n i t i o n would be bes t , but I ’m not

t h a t good wi th c l a s s e s . They ’ re new to me

6 # I ’m going to use a ’ r e a d l i n e s ’ approach

7 def main (informant) :

8 f = open (informant . TextGrid)

9 g = f . r e a d l i n e s ()

10 f . c l o s e ()

11

12 g = remove textg r id header (g)

13 phone t i e r = s e p a r a t e p h o n e t i e r (g)

14 #p r i n t p h o n e t i e r

15 word t i e r = s e p a r a t e w o r d t i e r (g)

16 #p r i n t w o r d t i e r

17 c l e a n s t r i n g s (phone t i e r)

18 c l e a n s t r i n g s (word t i e r)

19

20 p o p u l a t e p h o n e l i s t (informant , ph one t i e r)

21 p o p u l a t e w o r d l i s t (informant , word t i e r)

22

23 match words with phones (informant)

24 only phones = l i s t p h o n e s o n l y (informant) # to more e a s i l y

g e t the c o n t e x t o f phones .

113

25 f i l l p h o n e c o n t e x t (informant , only phones)#comple tes f i l l i n g

out a l l o f the c l a s s c h a r a c t e r i s t i c s

26 #see word and pron (informant)

27 return

28

29 # clean up the s t r i n g s

30 def c l e a n s t r i n g s (t i e r) :

31 for each in xrange (l en (t i e r)) :

32 t i e r [each] = t i e r [each] . s t r i p ()

33 t i e r [each] = t i e r [each] . s t r i p (’ ” ’)

34 return

35

36 # loop to g e t the p e r t i n e n t i n f o f o r the phones

37 # phone , s t a r t , end , index , c o n t e x t

38

39 def p o p u l a t e p h o n e l i s t (informant , phone t i e r) :

40 i=0

41 while phone t i e r :

42 i f phone t i e r [2] in [’ sp ’] :

43 pass

44 else :

45 in formant . pL i s t In s t ance (phone t i e r [2] , pho ne t i e r

[0] , phone t i e r [1] , i)

46 i = i + 1

47 phone t i e r = pho ne t i e r [3 :]

48 return

49

114

50 def p o p u l a t e w o r d l i s t (informant , word t i e r) :

51 i=0

52 while word t i e r :

53 i f word t i e r [2] in [’ sp ’] :

54 pass

55 else :

56 in formant . wLi s t Ins tance (word t i e r [2] , wo rd t i e r [0] ,

wo rd t i e r [1] , i)

57 i = i + 1

58 word t i e r = word t i e r [3 :]

59 return

60

61 def r emove textg r id header (g) :

62 return g [1 2 :] # r e a l d i r t y , but I know the format o f the

TextGrid the p2fa puts out

63 #p r i n t g [0 : 3] # and the phone s t a r t t imes beg in at l i n e 13

64

65 # s e p a r a t e i n t o the phone t i e r

66 def s e p a r a t e p h o n e t i e r (g) :

67 w o r d t i e r s t a r t = g . index (’ ” I n t e r v a l T i e r ”\n ’)

68 phone t i e r = g [: w o r d t i e r s t a r t]

69 # p r i n t l e n (p h o n e t i e r)

70 # p r i n t g [: l e n (p h o n e t i e r)]

71 return phone t i e r

72

73 def r e m o v e s e c o n d a r y i n t e r v a l t i e r h e a d e r (w t i e r) :

74 return w t i e r [5 :]

115

75

76 # s e p a r a t e out the word t i e r

77 def s e p a r a t e w o r d t i e r (g) :

78 w o r d t i e r s t a r t = g . index (’ ” I n t e r v a l T i e r ”\n ’)

79 word t i e r = g [w o r d t i e r s t a r t :]

80 word t i e r = r e m o v e s e c o n d a r y i n t e r v a l t i e r h e a d e r (word t i e r)

81 # p r i n t w o r d t i e r

82 return word t i e r

83

84 def match words with phones (informant) :

85 # match the s t a r t and end t imes f o r phones wi th t h o s e o f

words , thus g e t t i n g the i n d i c e s o f phones per word

86 a = 0

87 b = 0

88 phoneo f f s e t = 0

89 #p r i n t [phone . index f o r phone in informant . p h o n e l i s t]

90 # p r i n t l e n (informant . p h o n e l i s t)

91 for word in in formant . w o r d l i s t :

92 #p r i n t word . word

93 for phone in in formant . p h o n e l i s t :

94

95 #i f word . s t a r t == phone . s t a r t :

96 # a = phone . index

97 i f word . end == phone . end :

98 a = phoneo f f s e t

99 b = phone . index + 1

116

100 # because python s l i c e s go up to but not

i n c l u d i n g the f i n a l index o f a s l i c e

101 word . phonerange = (a , b)

102 phoneo f f s e t = b

103 i f b < a :

104 print ”WHOA! Theres something wrong here ! ”

105 print word . word

106 print word . s ta r t , phone . s t a r t

107 print word . end , phone . end

108 print a , b

109 sys . e x i t (−1)

110 # wrd = informant . p h o n e l i s t [word . phonerange [0] : word .

phonerange [1]]

111 # p r i n t (word . word , word . phonerange [0] , [each . phone f o r

each in wrd] , word . phonerange [1])

112 #p r i n t [(each . word , each . phonerange) f o r each in w o r d l i s t]

113 return

114

115 def l i s t p h o n e s o n l y (informant) :

116 only phones = [each . phone for each in in formant . p h o n e l i s t]

117 for i in range (2) :

118 only phones . i n s e r t (0 , ’X ’)

119 only phones . append (’X ’)

120 return only phones

121

122 def f i l l p h o n e c o n t e x t (informant , only phones) :

123 #p r i n t p h o n e l i s t

117

124 for each in in formant . p h o n e l i s t :

125 i = 0

126 j = 5

127 pwindow = only phones [i : j] # c o n t e x t window

128 each . context = pwindow

129 del only phones [0] #

130 return

131

132 def see word and pron (informant) :

133 for word in in formant . w o r d l i s t :

134 wrd = informant . p h o n e l i s t [word . phonerange [0] : word .

phonerange [1]]

135 print (word . word , word . phonerange [0] , [each . phone for

each in wrd] , word . phonerange [1])

136

137 def ge t in f o rmant cont ex t (informant , opt ions) :

138 main (informant)

139 #p p r i n t . p p r i n t ([(each . phone , each . end , each . index) f o r each

in informant . p h o n e l i s t i f each . phone in informant .

VowelSet])

140 i = 0

141 unsorted = []

142 for each in in formant . p h o n e l i s t :

143 i f each . phone in in formant . VowelSet :

144 # unsorted . append ((each . phone , each . end , each . index

, each . contex t , i))

118

145 unsorted . append ((each . phone , each . end , each . index ,

i))

146 i += 1

147 # unsorted = [(each . phone , each . end , each . index) f o r each in

informant . p h o n e l i s t i f each . phone in informant . VowelSet

]

148 so r td = unsorted [:]

149 so r td . s o r t ()

150 #p p r i n t . p p r i n t (unsorted)

151 #p p r i n t . p p r i n t (s o r t d)

152 # make an u n s o r t i n g key t h a t con ta ins 2− t u p l e s o f the

i n d i c e s f o r (unsorted , s o r t e d)

153 decoder = []

154 in formant . c o n t e x t l i s t = []

155 sortedrow = 0

156 for each in so r td :

157 # the f i r s t i s the p h o n e l i s t . index , and the second i s

the s o r t e d element index

158 decoder . append ((informant . p h o n e l i s t [each [−2]] . index ,

sortedrow))

159 sortedrow += 1

160 # p r i n t (informant . p h o n e l i s t [each [−3]] . phone , each [0])

161 #p p r i n t . p p r i n t (decoder)

162 #p r i n t l e n (decoder)

163 # the decoder i s matching up the c o r r e c t e lements .

164

165 for (unpl , so) in decoder :

119

166 phone context = informant . p h o n e l i s t [unpl] . context

167 phoneindex = informant . p h o n e l i s t [unpl] . index

168 word con t ex t s t r i ng = ’ ’

169 phone con t ex t s t r i ng = ’ ’

170 for word in in formant . w o r d l i s t :

171 i f phoneindex in range (word . phonerange [0] , word .

phonerange [1]) :

172 i f word . index − 4 < 0 :

173 word context = [word . word for word in

in formant . w o r d l i s t [: word . index +5]]

174 e l i f (word . index + 4) > l en (informant . w o r d l i s t

) :

175 word context = [word . word for word in

in formant . w o r d l i s t [word . index −4 :]]

176 else :

177 word context = [word . word for word in

in formant . w o r d l i s t [word . index −4:word .

index +5]]

178 for e l t in phone context :

179 phone con t ex t s t r i ng += e l t + ’ ’

180 for e l t in word context :

181 word con t ex t s t r i ng += e l t + ’ ’

182 in formant . addContext (phone contex t s t r ing ,

wo rd con t ex t s t r i ng)

183 return

184

185 def i n s e r t c o n t e x t (In formantLi s t) :

120

186 contex tvec to r = []

187 # Concatenate the c o n t e x t l i s t s f o r the informants .

188 for in formant in In formantLi s t . speaker s :

189 contex tvec to r += informant . c o n t e x t l i s t

190 # Convert t h a t l i s t i n t o an R S t r i n g Vector

191 # (StrVectors g e t conver ted to Factor v e c t o r s in data

frames by rpy2)

192 c o n t e x t f a c t o r v e c t o r = r o b j e c t s . StrVector (contex tvec to r) .

f a c t o r ()

193 # I n s e r t c o n t e x t i n t o each informant ’ s data frame

194 for in formant in In formantLi s t . speaker s :

195 in formant . data frame [2] = c o n t e x t f a c t o r v e c t o r

196

197 i f name == ” main ” :

198 main (sys . argv [−1]) # when c a l l e d as stand a lone wi th on ly

the TextGrid as argument

121

Listing B.5: Normalization Module

1 import rpy2 . r o b j e c t s as r o b j e c t s

2 from rpy2 . r o b j e c t s . packages import importr

3 V = importr (’ vowels ’)

4

5 def import d f (informant , opt ions) :

6 i f opt ions . no compare == True :

7 in formant . data frame = V. load vowe l s (informant .

r e s u l t f i l e)

8 else :

9 in formant . data frame = V. load vowe l s (informant .

c o m m o n r e s u l t f i l e)

10 return

11

12 def n o r m o p t i o n s l i s t (opt ions) :

13 norm options = []

14 i f opt ions . b a r k d i f f e r e n c e == True :

15 norm options . append (’ Bark D i f f e r e n c e ’)

16 i f opt ions . nearey == True :

17 norm options . append (’ Nearey ’)

18 i f opt ions . l abov == True :

19 norm options . append (’ Labov ’)

20 i f opt ions . w a t t a n d f a b r i c i u s == True :

21 norm options . append (’Watt and Fabr i c iu s ’)

22 i f opt ions . lobanov == True :

23 norm options . append (’ Lobanov ’)

24 i f opt ions . raw == True :

122

25 norm options . append (’No Normal izat ion ’)

26 return norm options

27

28 def normal ize (norm opt , informant) :

29 #p r i n t norm opt

30 i f norm opt == ’ Bark D i f f e r e n c e ’ :

31 #p r i n t ’ Normaliz ing f o r %s us ing the %s method . . . ’ % (

informant . name , norm opt)

32 normed resu l t s = V. norm bark (informant . data frame)

33

34 e l i f norm opt == ’ Nearey ’ :

35 #p r i n t ’ Normaliz ing f o r %s us ing the %s method . . . ’ % (

informant . name , norm opt)

36 normed resu l t s = V. norm nearey (informant . data frame ,

f o rmant in t=True , u s e f 3=False)

37

38 e l i f norm opt == ’ Labov ’ :

39 #p r i n t ’ Normaliz ing f o r %s us ing the %s method . . . ’ % (

informant . name , norm opt)

40 normed resu l t s = V. norm labov (informant . data frame ,

u s e f 3=False , geomean=True)

41

42 e l i f norm opt == ’Watt and Fabr i c i u s ’ :

43 #p r i n t ’ Normaliz ing f o r %s us ing the %s method . . . ’ % (

informant . name , norm opt)

44 normed resu l t s = V. norm watt fabr i c iu s (informant .

data frame , norm means=False , mod WF=False)

123

45

46 e l i f norm opt == ’ Lobanov ’ :

47 #p r i n t ’ Normaliz ing f o r %s us ing the %s method . . . ’ % (

informant . name , norm opt)

48 normed resu l t s = V. norm lobanov (informant . data frame)

49

50 e l i f norm opt == ’No Normal izat ion ’ or norm opt == ’ ’ :

51 #p r i n t ’%s used f o r %s summary . ’ % (norm opt , informant

. name)

52 normed resu l t s = informant . data frame

53

54 in formant . normed data frame = normed resu l t s

55 return

56

57 def ex t ra c t sub data f r ame (informant , norm opt) :

58 i f norm opt == ’ Bark D i f f e r e n c e ’ \

59 or norm opt == ’ Lobanov ’ \

60 or norm opt == ’ Labov ’ \

61 or norm opt == ’Watt and Fabr i c i u s ’ \

62 or norm opt == ’ Nearey ’ :

63 speaker = ” Speaker ”

64 vowelframe = ”Vowel”

65 else :

66 speaker = ” speaker ”

67 vowelframe = ”vowel . frame”

124

68 in formant . sub data f rame = informant . normed data frame . rx (

informant . normed data frame . rx2 (speaker) . ro == informant

. name , True)

69 #p r i n t informant . sub da ta f rame

70

71

72 in formant . sub data f rame . t o c s v f i l e (informant . in fo rmantd i r+

’ subdataframe . csv ’ , sep=’\ t ’ , row names=False)

73 in formant . normed data frame . t o c s v f i l e (informant .

in fo rmantd i r+’ dataframe . csv ’ , sep=’\ t ’ , row names=False)

74 return

125

Listing B.6: Output Module

1 import os , phosssummary

2

3 def output (InformantList , opt ions , norm opt) :

4 # lower () and ’ ’ . j o i n () words from norm opt to make a norm

f i l e e x t e n s i o n

5 nopt = ’ ’ . j o i n (norm opt . lower () . s p l i t ())

6 norm ext = ’ . ’ + nopt

7 for in formant in In formantLi s t . speaker s :

8 # add norma l i za t ion e x t e n t i o n in the case o f m u l t i p l e

n o r m a l i z a t i o n s

9 in formant . o u t p u t f i l e = os . path . s p l i t e x t (informant .

a u d i o f i l e) [0] + norm ext + ’ . phoss ’

10

11 i f l en (In formantLi s t . speaker s) > 1 :

12 # w r i t e i n d i v i d u a l output f o r a l l in formants i f you don

’ t want to compare them

13 i f opt ions . no compare == True :

14 for in formant in In formantLi s t . speaker s :

15 iSummary (informant , opt ions , norm opt)

16 # or you make a d i r e c t comparison , so the informant i s

not in the group

17 e l i f opt ions . d i r ec t compare == True :

18 gSummary(InformantList , opt ions , norm opt)

19 # o t h e r w i s e do a comparison o f the informant to the

group .

20 else :

126

21 cSummary(InformantList , opt ions , norm opt)

22 # Write i n d i v i d u a l output i f t h e r e ’ s j u s t one .

23 else :

24 iSummary (In formantLi s t . speaker s [0] , opt ions , norm opt)

25

26

27 def iSummary (informant , opt ions , norm opt) :

28 # The normal header and informant in format ion

29 phosssummary . wr i t e heade r (informant , ” I n d i v i d u a l Summary” ,

norm opt)

30 phosssummary . in fo rmant in fo rmat ion (informant)

31 # Abso lu te vowel space

32 f l a b e l 1 , f l a b e l 2 = tup l e (informant . normed data frame .

colnames) [3 : 5]

33 phosssummary . ab so lu t e vowe l space (informant , f l a b e l 1 ,

norm opt)

34 phosssummary . ab so lu t e vowe l space (informant , f l a b e l 2 ,

norm opt)

35 # Vowel−by−vowel summary

36 for vowel in in formant . VowelSet :

37 phosssummary . vowel header (informant , vowel)

38 # The F1 and F2 column names change by norma l i za t ion

method . This keeps i t s t r a i g h t

39 f l a b e l 1 , f l a b e l 2 = tup l e (informant . normed data frame .

colnames) [3 : 5]

40

41 # what are the maximum and minimum v a l u e s f o r f1 and f2

127

42 phosssummary . max and min f values (informant , vowel ,

f l a b e l 1 , norm opt)

43 phosssummary . max and min f values (informant , vowel ,

f l a b e l 2 , norm opt)

44 # the group average f o r vowel X occup ie s the vowel

space centered here and ranging from X to Y.

45 phosssummary . i nd iv vowe l spac e (informant , vowel ,

f l a b e l 1 , f l a b e l 2 , norm opt)

46 phosssummary . i n d i v e u c (informant , vowel , f l a b e l 1 ,

f l a b e l 2 , norm opt)

47

48 # note to s e l f : j u s t remember , you have to do

e v e r y t h i n g doub le .

49 for diphthong in in formant . diphthongs :

50 t a r g e t o n e f 1 , t a r g e t o n e f 2 = tup l e (informant .

normed data frame . colnames) [3 : 5]

51 t a r g e t t w o f 1 g l , t a r g e t t w o f 2 g l = tup l e (informant .

normed data frame . colnames) [6 : 8]

52 # Summarize f i r s t vowel t a r g e t

53 phosssummary . max and min f values (informant , diphthong ,

t a r g e t o n e f 1 , norm opt , dtarg=”one”)

54 phosssummary . max and min f values (informant , diphthong ,

t a r g e t o n e f 2 , norm opt ,)

55 phosssummary . i nd iv vowe l spac e (informant , diphthong ,

t a r g e t o n e f 1 , t a r g e t o n e f 2 , norm opt , dtarg=”one”)

56 phosssummary . i n d i v e u c (informant , diphthong ,

t a r g e t o n e f 1 , t a r g e t o n e f 2 , norm opt , dtarg=”one”)

128

57 # Summarize second diphthong t a r g e t

58 phosssummary . max and min f values (informant , diphthong ,

t a r g e t t w o f 1 g l , norm opt , dtarg=”two”)

59 phosssummary . max and min f values (informant , diphthong ,

t a r g e t t w o f 2 g l , norm opt ,)

60 phosssummary . i nd iv vowe l spac e (informant , diphthong ,

t a r g e t t w o f 1 g l , t a r g e t t w o f 2 g l , norm opt , dtarg=

”two”)

61 phosssummary . i n d i v e u c (informant , diphthong ,

t a r g e t t w o f 1 g l , t a r g e t t w o f 2 g l , norm opt , dtarg=

”two”)

62 # Then do r a t e o f change

63 #phosssummary . r a t e o f c h a n g e (informant , diphthong ,

norm opt , t a r g e t o n e f 1)

64

65 print ”Summary f o r %s us ing %s wr i t t en to %s ” % (informant .

name , norm opt , informant . in fo rmantd i r)

66

67

68

69

70 def gSummary(InformantList , opt ions , norm opt) :

71 for in formant in In formantLi s t . speaker s :

72 # w r i t e header to the f i l e

73 phosssummary . wr i t e heade r (informant , ” Di rec t Comparison

” , norm opt)

74 # w r i t e informant in format ion

129

75 phosssummary . in fo rmant in fo rmat ion (informant)

76

77 # what a b s o l u t e vowel space does the speaker occupy ?

78 f l a b e l 1 , f l a b e l 2 = tup l e (informant . normed data frame .

colnames) [3 : 5]

79 phosssummary . ab so lu t e vowe l space (informant , f l a b e l 1 ,

norm opt)

80 phosssummary . ab so lu t e vowe l space (informant , f l a b e l 2 ,

norm opt)

81

82 # vowel by vowel comparison

83 for vowel in in formant . VowelSet :

84 phosssummary . vowel header (informant , vowel)

85 # The F1 and F2 column names change by

norma l i za t ion method . This keeps i t s t r a i g h t

86 f l a b e l 1 , f l a b e l 2 = tup l e (informant .

normed data frame . colnames) [3 : 5]

87

88 # what are the maximum and minimum v a l u e s f o r f1

and f2

89 phosssummary . max and min f values (informant , vowel ,

f l a b e l 1 , norm opt)

90 phosssummary . max and min f values (informant , vowel ,

f l a b e l 2 , norm opt)

91

92 # the group average f o r vowel X occup ie s the vowel

space centered here and ranging from X to Y.

130

93 phosssummary . gvowel space (informant , vowel , f l a b e l 1

, f l a b e l 2 , norm opt)

94 phosssummary . geuc examples (informant , vowel ,

f l a b e l 1 , f l a b e l 2 , norm opt)

95

96 # note to s e l f : j u s t remember , you have to do

e v e r y t h i n g doub le .

97 i f in formant . diphthongs != ’ ’ :

98 for diphthong in in formant . diphthongs :

99 t a r g e t o n e f 1 , t a r g e t o n e f 2 = tup l e (informant .

normed data frame . colnames) [3 : 5]

100 i f norm opt == ”Nearey” or norm opt == ”Labov”

or norm opt == ”Watt and Fabr i c iu s ” or

norm opt == ”Lobanov” : #Nearey

101 t a r g e t t w o f 1 g l , t a r g e t t w o f 2 g l = tup l e (

informant . normed data frame . colnames)

[5 :]

102 else :

103 t a r g e t t w o f 1 g l , t a r g e t t w o f 2 g l = tup l e (

informant . normed data frame . colnames)

[6 : 8]

104 # Summarize f i r s t vowel t a r g e t

105 phosssummary . max and min f values (informant ,

diphthong , t a r g e t o n e f 1 , norm opt , dtarg=”

one”)

106 phosssummary . max and min f values (informant ,

diphthong , t a r g e t o n e f 2 , norm opt)

131

107 phosssummary . gvowel space (informant , diphthong ,

t a r g e t o n e f 1 , t a r g e t o n e f 2 , norm opt ,

dtarg=”one”)

108 phosssummary . geuc examples (informant , diphthong

, t a r g e t o n e f 1 , t a r g e t o n e f 2 , norm opt ,

dtarg=”one”)

109 # Summarize second diphthong t a r g e t

110 phosssummary . max and min f values (informant ,

diphthong , t a r g e t t w o f 1 g l , norm opt , dtarg

=”two”)

111 phosssummary . max and min f values (informant ,

diphthong , t a r g e t t w o f 2 g l , norm opt)

112 phosssummary . gvowel space (informant , diphthong ,

t a r g e t t w o f 1 g l , t a r g e t t w o f 2 g l ,

norm opt , dtarg=”two”)

113 phosssummary . geuc examples (informant , diphthong

, t a r g e t t w o f 1 g l , t a r g e t t w o f 2 g l ,

norm opt , dtarg=”two”)

114 print ”Summary f o r %s us ing %s wr i t t en to %s ” % (

informant . name , norm opt , informant . in fo rmantd i r

)

115

116

117

118

119 def cSummary(InformantList , opt ions , norm opt) :

120 for in formant in In formantLi s t . speaker s :

132

121 # w r i t e header to the f i l e

122 phosssummary . wr i t e heade r (informant , ”Comparative

Summary” , norm opt)

123 # w r i t e informant in format ion

124 phosssummary . in fo rmant in fo rmat ion (informant)

125

126 # what a b s o l u t e vowel space does the speaker occupy ?

127 f l a b e l 1 , f l a b e l 2 = tup l e (informant . normed data frame .

colnames) [3 : 5]

128 phosssummary . ab so lu t e vowe l space (informant , f l a b e l 1 ,

norm opt)

129 phosssummary . ab so lu t e vowe l space (informant , f l a b e l 2 ,

norm opt)

130

131 # vowel by vowel comparison

132 for vowel in in formant . VowelSet :

133 phosssummary . vowel header (informant , vowel)

134 # The F1 and F2 column names change by

norma l i za t ion method . This keeps i t s t r a i g h t

135 f l a b e l 1 , f l a b e l 2 = tup l e (informant .

normed data frame . colnames) [3 : 5]

136

137 # what are the maximum and minimum v a l u e s f o r f1

and f2

138 phosssummary . max and min f values (informant , vowel ,

f l a b e l 1 , norm opt)

133

139 phosssummary . max and min f values (informant , vowel ,

f l a b e l 2 , norm opt)

140

141 # the group average f o r vowel X occup ie s the vowel

space centered here and ranging from X to Y.

142 phosssummary . vowel space (informant , vowel , f l a b e l 1 ,

f l a b e l 2 , norm opt)

143 phosssummary . euc examples (informant , vowel , f l a b e l 1

, f l a b e l 2 , norm opt)

144

145 # note to s e l f : j u s t remember , you have to do

e v e r y t h i n g doub le .

146 i f in formant . diphthongs != ’ ’ :

147 for diphthong in in formant . diphthongs :

148 t a r g e t o n e f 1 , t a r g e t o n e f 2 = tup l e (informant .

normed data frame . colnames) [3 : 5]

149 i f norm opt == ”Nearey” or norm opt == ”Labov”

or norm opt == ”Watt and Fabr i c iu s ” or

norm opt == ”Lobanov” : #Nearey

150 t a r g e t t w o f 1 g l , t a r g e t t w o f 2 g l = tup l e (

informant . normed data frame . colnames)

[5 :]

151 else :

152 t a r g e t t w o f 1 g l , t a r g e t t w o f 2 g l = tup l e (

informant . normed data frame . colnames)

[6 : 8]

153 # Summarize f i r s t vowel t a r g e t

134

154 phosssummary . max and min f values (informant ,

diphthong , t a r g e t o n e f 1 , norm opt , dtarg=”

one”)

155 phosssummary . max and min f values (informant ,

diphthong , t a r g e t o n e f 2 , norm opt)

156 phosssummary . vowel space (informant , diphthong ,

t a r g e t o n e f 1 , t a r g e t o n e f 2 , norm opt ,

dtarg=”one”)

157 phosssummary . euc examples (informant , diphthong ,

t a r g e t o n e f 1 , t a r g e t o n e f 2 , norm opt ,

dtarg=”one”)

158 # Summarize second diphthong t a r g e t

159 phosssummary . max and min f values (informant ,

diphthong , t a r g e t t w o f 1 g l , norm opt , dtarg

=”two”)

160 phosssummary . max and min f values (informant ,

diphthong , t a r g e t t w o f 2 g l , norm opt)

161 phosssummary . vowel space (informant , diphthong ,

t a r g e t t w o f 1 g l , t a r g e t t w o f 2 g l , norm opt

, dtarg=”two”)

162 phosssummary . euc examples (informant , diphthong ,

t a r g e t t w o f 1 g l , t a r g e t t w o f 2 g l ,

norm opt , dtarg=”two”)

163 # Then do r a t e o f change

164 #phosssummary . r a t e o f c h a n g e (informant ,

diphthong , norm opt , t a r g e t o n e f 1)

135

165 print ”Summary f o r %s us ing %s wr i t t en to %s ” % (

informant . name , norm opt , informant . in fo rmantd i r

)

136

Listing B.7: Summary Module

1 import rpy2 . r o b j e c t s as R

2 from rpy2 . r o b j e c t s . packages import importr

3 from math import s q r t

4

5 V = importr (’ vowels ’)

6

7 def wr i t e heade r (informant , summary type , norm opt) :

8 f = open (informant . o u t p u t f i l e , ’w ’)

9 f . wr i t e (”PhoSS , A Phonetic Summarizer f o r S o c i o l i n g u i s t s \n”

)

10 f . wr i t e (”%s\n” % summary type)

11 f . wr i t e (”%s\n” % norm opt)

12 f . wr i t e (”\n”)

13 f . c l o s e ()

14

15 def i n f o rmant in fo rmat ion (informant) :

16 # There i s not a need at t h i s p o i n t to have d iph thongs

t o g e t h e r wi th

17 # monophthongs . Remove them in order to summarize them

s e p a r a t e l y .

18 for dip in in formant . diphthongs :

19 i f dip in in formant . VowelSet :

20 in formant . VowelSet . remove (dip)

21

22 f = open (informant . o u t p u t f i l e , ’ a ’)

23 f . wr i t e (” Speaker : %s\n” % informant . name)

137

24 f . wr i t e (”Vowel Set : %s\n” % informant . VowelSet)

25 i f in formant . diphthongs != [] :

26 f . wr i t e (”Diphthongs : %s\n” % informant . diphthongs)

27 f . wr i t e (”Audio F i l e : %s\n” % informant . a u d i o f i l e)

28 f . wr i t e (” Transc r ipt : %s\n” % informant . t r a n s c r i p t f i l e)

29 f . wr i t e (”TextGrid : %s\n” % informant . TextGrid)

30 f . wr i t e (”\n”)

31 f . c l o s e ()

32

33 def vowel header (informant , vowel) :

34 f = open (informant . o u t p u t f i l e , ’ a ’)

35 f . wr i t e (”Summary f o r %s\n” % vowel)

36 f . c l o s e ()

37

38 def abso lu t e vowe l space (informant , f l a b e l , norm opt) :

39 i f f l a b e l == informant . normed data frame . colnames [3] :

40 fn = 3

41 e l i f f l a b e l == informant . normed data frame . colnames [4] :

42 fn = 4

43 # e x t r a c t a s u b t a b l e o f a l l vowe l s f o r the curren t speaker

44 i f norm opt == ’ Bark D i f f e r e n c e ’ \

45 or norm opt == ’ Lobanov ’ \

46 or norm opt == ’ Labov ’ \

47 or norm opt == ’Watt and Fabr i c i u s ’ \

48 or norm opt == ’ Nearey ’ :

49 speaker = ” Speaker ”

50 vowelframe = ”Vowel”

138

51 else :

52 speaker = ” speaker ”

53 vowelframe = ”vowel . frame”

54 vowe l subse t = informant . normed data frame . rx (informant .

normed data frame . rx2 (speaker) . ro == informant . name ,

True)

55

56 fmaxindex = (R. r [’ which . max ’] (vowe l subse t [fn]) [0]) − 1

57 fmax = vowe l subset [fn] [fmaxindex]

58 fmaxctxindex = (vowe l subse t [2] [fmaxindex]) − 1

59 fmaxcontext = vowe l subse t [2] . l e v e l s [fmaxctxindex]

60

61

62 fminindex = (R. r [’ which . min ’] (vowe l subse t [fn]) [0]) −1

63 fmin = vowe l subset [fn] [fminindex]

64 fminctx index = (vowe l subse t [2] [fminindex]) − 1

65 fmincontext = vowe l subse t [2] . l e v e l s [fminctx index]

66

67 f t o t a l = fmax − fmin

68

69 f = open (informant . o u t p u t f i l e , ’ a ’)

70 f . wr i t e (”%s vowel space f o r %s has a range o f %.3 f uni ts ,

from %.3 f to %.3 f .\n” % (f l a b e l , informant . name , f t o t a l ,

fmin , fmax))

71 i f fn == 4 :

72 f . wr i t e (”\n”)

73 f . c l o s e ()

139

74 return

75

76

77

78 # f i n d maximum and minimum f1 and f2 v a l u e s f o r a vowel f o r a

speaker

79 def max and min f values (informant , vowel , f l a b e l , norm opt ,

dtarg=””) :

80 i f f l a b e l == informant . sub data f rame . colnames [3] :

81 fn = 3

82 e l i f f l a b e l == informant . sub data f rame . colnames [4] :

83 fn = 4

84 e l i f f l a b e l == informant . sub data f rame . colnames [5] :

85 fn = 5

86 e l i f f l a b e l == informant . sub data f rame . colnames [6] :

87 fn = 6

88 e l i f f l a b e l == informant . sub data f rame . colnames [7] :

89 fn = 7

90 # e x t r a c t a s u b t a b l e f o r the vowel from the VowelSet

91 i f norm opt == ’ Bark D i f f e r e n c e ’ \

92 or norm opt == ’ Lobanov ’ \

93 or norm opt == ’ Labov ’ \

94 or norm opt == ’Watt and Fabr i c i u s ’ \

95 or norm opt == ’ Nearey ’ :

96 speaker = ” Speaker ”

97 vowelframe = ”Vowel”

98 else :

140

99 speaker = ” speaker ”

100 vowelframe = ”vowel . frame”

101 vowe l subse t = informant . sub data f rame . rx (informant .

sub data f rame . rx2 (vowelframe) . ro == vowel , True)

102

103 fmaxindex = (R. r [’ which . max ’] (vowe l subse t [fn]) [0]) − 1

104 fmax = vowe l subset [fn] [fmaxindex]

105 fmaxctxindex = (vowe l subse t [2] [fmaxindex]) − 1

106 fmaxcontext = vowe l subse t [2] . l e v e l s [fmaxctxindex]

107

108

109 fminindex = (R. r [’ which . min ’] (vowe l subse t [fn]) [0]) −1

110 fmin = vowe l subset [fn] [fminindex]

111 fminctx index = (vowe l subse t [2] [fminindex]) − 1

112 fmincontext = vowe l subse t [2] . l e v e l s [fminctx index]

113 # ’ range ’ m i s s p e l l e d because i t i s a Python r e s e r v e d word

114 rnge = fmax − fmin

115

116 f = open (informant . o u t p u t f i l e , ’ a ’)

117 i f dtarg == ”one” or dtarg == ”two” :

118 f . wr i t e (”For t a r g e t %s o f %s :\n” % (dtarg , vowel))

119 f . wr i t e (” %s vowel space f o r %s has a range o f %.3 f uni ts ,

from %.3 f to %.3 f .\n” % (f l a b e l , vowel , rnge , fmin ,

fmax))

120 return

121

122

141

123

124

125 def vowel space (informant , vowel , l abe l 1 , l abe l 2 , norm opt ,

dtarg=””) :

126 # The group shou ld be the dataframe wi thout the informant

in i t .

127 # In the case o f two informants , t h i s w i l l mean the group

i s the o ther informant .

128 i f norm opt == ’ Bark D i f f e r e n c e ’ \

129 or norm opt == ’ Lobanov ’ \

130 or norm opt == ’ Labov ’ \

131 or norm opt == ’Watt and Fabr i c i u s ’ \

132 or norm opt == ’ Nearey ’ :

133 speaker = ” Speaker ”

134 vowelframe = ”Vowel”

135 else :

136 speaker = ” speaker ”

137 vowelframe = ”vowel . frame”

138 # the o t h e r d f i s the dataframe with everyone in i t .

139 othe rd f = informant . normed data frame

140

141 # c a l c u l a t e c e n t e r o f vowel f o r the group

142 gmeandf = V. compute means (o the rd f)

143 gv = gmeandf . rx (gmeandf . rx2 (”Vowel”) . ro == vowel , True)

144 i f dtarg == ”two” and not (norm opt == ”Nearey” or norm opt

== ”Labov” or norm opt == ”Watt and Fabr i c iu s ” or

norm opt == ”Lobanov”) :

142

145 gmean1 = gv [6] [0] # column 6

146 gmean2 = gv [7] [0] # column 7

147 else :

148 gmean1 = gv [3] [0] # column 3

149 gmean2 = gv [4] [0] # column 4

150 # c e n t e r o f the average vowel space

151 gvowelcenter = (gmean1 , gmean2)

152

153 # standard d e v i a t i o n s f o r the group v a l u e s

154 gsdsd f = V. compute sds (o the rd f)

155 sdv = gsdsd f . rx (gsdsd f . rx2 (”Vowel”) . ro == vowel , True)

156 i f dtarg == ”two” and not (norm opt == ”Nearey” or norm opt

== ”Labov” or norm opt == ”Watt and Fabr i c iu s ” or

norm opt == ”Lobanov”) :

157 vsds1 = sdv [6] [0] # F1 g l column standard d e v i a t i o n f o r

the o t h e r d f

158 vsds2 = sdv [7] [0] # F2 g l column standard d e v i a t i o n f o r

the o t h e r d f

159 else :

160 vsds1 = sdv [3] [0] # F1 column standard d e v i a t i o n f o r

the o t h e r d f

161 vsds2 = sdv [4] [0] # F2 column standard d e v i a t i o n f o r

the o t h e r d f

162

163 # vowel c e n t e r f o r i n d i v i d u a l

164 imeandf = V. compute means (informant . sub data f rame)

165 i v = imeandf . rx (imeandf . rx2 (”Vowel”) . ro == vowel , True)

143

166 i f dtarg == ”two” and not (norm opt == ”Nearey” or norm opt

== ”Labov” or norm opt == ”Watt and Fabr i c iu s ” or

norm opt == ”Lobanov”) :

167 imean1 = iv [6] [0]

168 imean2 = iv [7] [0]

169 else :

170 imean1 = iv [3] [0]

171 imean2 = iv [4] [0]

172 i v owe l c en t e r = (imean1 , imean2)

173 #g e t informant min averages and max averages ? s

174

175 d i f f 1 = abs (imean1 − gmean1)

176 d i f f 2 = abs (imean2 − gmean2)

177

178 label1sdsfrommean = d i f f 1 / vsds1

179 label2sdsfrommean = d i f f 2 / vsds2

180

181

182 f = open (informant . o u t p u t f i l e , ’ a ’)

183 #i f d targ == ”one” or d targ == ”two ” :

184 # f . w r i t e (” For t a r g e t %s o f %s :\n” % (dtarg , vowel))

185

186 f . wr i t e (” %s f o r %s c e n t e r s at (%s %.3 f , %s %.3 f) , which

i s %.3 f standard d e v i a t i o n s from the average %s and %.3 f

standard d e v i a t i o n s from the average %s .\n” % (vowel ,

informant . name , l abe l1 , i vowe l c en t e r [0] , l abe l2 ,

144

ivowe l c en t e r [1] , label1sdsfrommean , l abe l1 ,

label2sdsfrommean , l a b e l 2))

187 f . wr i t e (” The group average f o r %s occup i e s vowel space

cente red at (%s %.3 f , %s %.3 f) with an %s standard

dev i a t i on o f %.3 f and an %s standard dev i a t i on o f %.3 f .\

n” % (vowel , l abe l1 , gvowelcenter [0] , l abe l 2 ,

gvowe lcenter [1] , l abe l 1 , vsds1 , l abe l 2 , vsds2))

188 f . wr i t e (’\n ’)

189 f . c l o s e ()

190

191

192

193

194 def gvowel space (informant , vowel , l abe l 1 , l abe l 2 , norm opt ,

dtarg=””) :

195 # The group shou ld be the dataframe wi thout the informant

in i t .

196 # In the case o f two informants , t h i s w i l l mean the group

i s the o ther informant .

197 i f norm opt == ’ Bark D i f f e r e n c e ’ \

198 or norm opt == ’ Lobanov ’ \

199 or norm opt == ’ Labov ’ \

200 or norm opt == ’Watt and Fabr i c i u s ’ \

201 or norm opt == ’ Nearey ’ :

202 speaker = ” Speaker ”

203 vowelframe = ”Vowel”

204 else :

145

205 speaker = ” speaker ”

206 vowelframe = ”vowel . frame”

207 # the o t h e r d f i s the dataframe with everyone e x c e p t the

curren t informant in i t .

208 othe rd f = informant . normed data frame . rx (informant .

normed data frame . rx2 (speaker) . ro != informant . name ,

True)

209

210 # c a l c u l a t e c e n t e r o f vowel f o r the group

211 gmeandf = V. compute means (o the rd f)

212 gv = gmeandf . rx (gmeandf . rx2 (”Vowel”) . ro == vowel , True)

213 i f dtarg == ”two” and not (norm opt == ”Nearey” or norm opt

== ”Labov” or norm opt == ”Watt and Fabr i c iu s ” or

norm opt == ”Lobanov”) :

214 gmean1 = gv [6] [0] # column 6

215 gmean2 = gv [7] [0] # column 7

216 else :

217 gmean1 = gv [3] [0] # column 3

218 gmean2 = gv [4] [0] # column 4

219 # c e n t e r o f the average vowel space

220 gvowelcenter = (gmean1 , gmean2)

221

222 # standard d e v i a t i o n s f o r the group v a l u e s

223 gsdsd f = V. compute sds (o the rd f)

224 sdv = gsdsd f . rx (gsdsd f . rx2 (”Vowel”) . ro == vowel , True)

146

225 i f dtarg == ”two” and not (norm opt == ”Nearey” or norm opt

== ”Labov” or norm opt == ”Watt and Fabr i c iu s ” or

norm opt == ”Lobanov”) :

226 vsds1 = sdv [6] [0] # F1 g l column standard d e v i a t i o n f o r

the o t h e r d f

227 vsds2 = sdv [7] [0] # F2 g l column standard d e v i a t i o n f o r

the o t h e r d f

228 else :

229 vsds1 = sdv [3] [0] # F1 column standard d e v i a t i o n f o r

the o t h e r d f

230 vsds2 = sdv [4] [0] # F2 column standard d e v i a t i o n f o r

the o t h e r d f

231

232 # vowel c e n t e r f o r i n d i v i d u a l

233 imeandf = V. compute means (informant . sub data f rame)

234 i v = imeandf . rx (imeandf . rx2 (”Vowel”) . ro == vowel , True)

235 i f dtarg == ”two” and not (norm opt == ”Nearey” or norm opt

== ”Labov” or norm opt == ”Watt and Fabr i c iu s ” or

norm opt == ”Lobanov”) :

236 imean1 = iv [6] [0]

237 imean2 = iv [7] [0]

238 else :

239 imean1 = iv [3] [0]

240 imean2 = iv [4] [0]

241 i v owe l c en t e r = (imean1 , imean2)

242 #g e t informant min averages and max averages ? s

243

147

244 d i f f 1 = abs (imean1 − gmean1)

245 d i f f 2 = abs (imean2 − gmean2)

246

247 label1sdsfrommean = d i f f 1 / vsds1

248 label2sdsfrommean = d i f f 2 / vsds2

249

250

251 f = open (informant . o u t p u t f i l e , ’ a ’)

252 #i f d targ == ”one” or d targ == ”two ” :

253 # f . w r i t e (” For t a r g e t %s o f %s :\n” % (dtarg , vowel))

254

255 f . wr i t e (” %s f o r %s c e n t e r s at (%s %.3 f , %s %.3 f) , which

i s %.3 f standard d e v i a t i o n s from the average %s and %.3 f

standard d e v i a t i o n s from the average %s .\n” % (vowel ,

informant . name , l abe l1 , i vowe l c en t e r [0] , l abe l2 ,

i vowe l c en t e r [1] , label1sdsfrommean , l abe l1 ,

label2sdsfrommean , l a b e l 2))

256 f . wr i t e (” The r e s t o f the group ’ s average f o r %s occup i e s

vowel space cente red at (%s %.3 f , %s %.3 f) with an %s

standard dev i a t i on o f %.3 f and an %s standard dev i a t i on

o f %.3 f .\n” % (vowel , l abe l1 , gvowelcenter [0] , l abe l 2 ,

gvowe lcenter [1] , l abe l 1 , vsds1 , l abe l 2 , vsds2))

257 f . wr i t e (’\n ’)

258 f . c l o s e ()

259

260

261

148

262

263 def i nd i v vowe l spac e (informant , vowel , l abe l 1 , l abe l2 ,

norm opt , dtarg=””) :

264 i f norm opt == ’ Bark D i f f e r e n c e ’ \

265 or norm opt == ’ Lobanov ’ \

266 or norm opt == ’ Labov ’ \

267 or norm opt == ’Watt and Fabr i c i u s ’ \

268 or norm opt == ’ Nearey ’ :

269 speaker = ” Speaker ”

270 vowelframe = ”Vowel”

271 else :

272 speaker = ” speaker ”

273 vowelframe = ”vowel . frame”

274 # use the speaker sub data frame and i s o l a t e the vowel we ’

re l o o k i n g at .

275 voweldf = informant . sub data f rame . rx (informant .

sub data f rame . rx2 (vowelframe) . ro == vowel , True)

276 i s d s = V. compute means (voweldf)

277 i f dtarg == ”two” :

278 f1mean = i s d s [6] [0]

279 f2mean = i s d s [7] [0]

280 else :

281 f1mean = i s d s [3] [0] # F1 mean

282 f2mean = i s d s [4] [0] # F2 mean

283

284 f s d s = V. compute sds (voweldf)

285 i f dtarg == ”two” :

149

286 f 1 s d s = f s d s [6] [0]

287 f 2 s d s = f s d s [7] [0]

288 else :

289 f 1 s d s = f s d s [3] [0]

290 f 2 s d s = f s d s [4] [0]

291

292 # V. compute medians (v o w e l d f)

293

294 f = open (informant . o u t p u t f i l e , ’ a ’)

295 f . wr i t e (” The average %s and %s va lue s f o r %s are %.3 f ,

%.3 f , with an %s standard dev i a t i on o f %.3 f and an %s

standard dev i a t i on o f %.3 f .\n” % (labe l1 , l abe l2 , vowel ,

f1mean , f2mean , l abe l1 , f1 sds , l abe l 2 , f 2 s d s))

296 f . wr i t e (’\n ’)

297

298

299

300

301

302 def euc examples (informant , vowel , l abe l 1 , l abe l 2 , norm opt ,

dtarg=””) :

303 z e r o t o o n e h a l f = []

304 o n e h a l f t o o n e = []

305 o n e t o o n e a n d h a l f = []

306 one and ha l f t o two = []

307 two to two and ha l f = []

308 g t two and ha l f = []

150

309

310 i f norm opt == ’ Bark D i f f e r e n c e ’ \

311 or norm opt == ’ Lobanov ’ \

312 or norm opt == ’ Labov ’ \

313 or norm opt == ’Watt and Fabr i c i u s ’ \

314 or norm opt == ’ Nearey ’ :

315 speaker = ” Speaker ”

316 vowelframe = ”Vowel”

317 else :

318 speaker = ” speaker ”

319 vowelframe = ”vowel . frame”

320 # o t h e r d f i s the dataframe f o r the whole group , i n c l u d i n g

the current informant .

321 # I f you want to make a d i r e c t comparison and remove the

informant from the df , use the −g f l a g .

322 othe rd f = informant . normed data frame

323

324 # f i n d c e n t e r o f the group ’ s vowel space .

325 gmeandf = V. compute means (o the rd f)

326 gv = gmeandf . rx (gmeandf . rx2 (”Vowel”) . ro == vowel , True)

327 i f dtarg == ”two” and not (norm opt == ”Nearey” or norm opt

== ”Labov” or norm opt == ”Watt and Fabr i c iu s ” or

norm opt == ”Lobanov”) :

328 gmean1 = gv [6] [0] # column 3

329 gmean2 = gv [7] [0] # column 4

330 else :

331 gmean1 = gv [3] [0] # column 3

151

332 gmean2 = gv [4] [0] # column 4

333 # c e n t e r o f the average vowel space

334 gvc = (gmean1 , gmean2)

335

336 # standard d e v i a t i o n s f o r the group v a l u e s

337 gsdsd f = V. compute sds (o the rd f)

338 sdv = gsdsd f . rx (gsdsd f . rx2 (”Vowel”) . ro == vowel , True)

339 i f dtarg == ”two” and not (norm opt == ”Nearey” or norm opt

== ”Labov” or norm opt == ”Watt and Fabr i c iu s ” or

norm opt == ”Lobanov”) :

340 sdcoord = (sdv [6] [0] , sdv [7] [0])

341 else :

342 sdcoord = (sdv [3] [0] , sdv [4] [0])

343 # the Eucl idean d i s t a n c e o f one standard d e v i a t i o n

344 sded = s q r t (((gvc [0] − sdcoord [0]) ∗∗2) + ((gvc [1] −

sdcoord [1]) ∗∗2))

345

346 #g e t the subframe with the r i g h t vowel i n s t a n c e s in i t

347 vf = informant . sub data f rame . rx (informant . sub data f rame .

rx2 (vowelframe) . ro == vowel , True)

348 for row in vf . i t e r r o w () :

349 i f dtarg == ”two” and not (norm opt == ”Nearey” or

norm opt == ”Labov” or norm opt == ”Watt and

Fabr i c iu s ” or norm opt == ”Lobanov”) :

350 i c oo rd = (row [6] [0] , row [7] [0])

351 else :

352 i c oo rd = (row [3] [0] , row [4] [0])

152

353 context = row [2] . l e v e l s [0]

354 # the Eucl idean d i s t a n c e o f each vowel from the group

mean vowel c e n t e r

355 ed = s q r t (((gvc [0] − i c oo rd [0]) ∗∗2) + ((gvc [1] −

i c oo rd [1]) ∗∗2))

356

357 sdsfromgvc = ed / sded

358

359 i f sdsfromgvc < 0 . 5 :

360 z e r o t o o n e h a l f . append ((sdsfromgvc , context))

361 e l i f 0 .5 < sdsfromgvc < 1 :

362 o n e h a l f t o o n e . append ((sdsfromgvc , context))

363 e l i f 1 < sdsfromgvc < 1 . 5 :

364 o n e t o o n e a n d h a l f . append ((sdsfromgvc , context))

365 e l i f 1 .5 < sdsfromgvc < 2 :

366 one and ha l f t o two . append ((sdsfromgvc , context))

367 e l i f 2 < sdsfromgvc < 2 . 5 :

368 two to two and ha l f . append ((sdsfromgvc , context))

369 else :

370 g t two and ha l f . append ((sdsfromgvc , context))

371

372 f = open (informant . o u t p u t f i l e , ’ a ’)

373

374 #i f l e n (z e r o t o o n e h a l f) > 0 :

375 # f . w r i t e (” There are %d i n s t a n c e s between 0 and 0.5

standard d e v i a t i o n s from the average vowel c e n t e r :\n” %

l e n (z e r o t o o n e h a l f))

153

376 # [f . w r i t e (” %s\n” % ex [1]) f o r ex in z e r o t o o n e h a l f]

377 i f l en (z e r o t o o n e h a l f) == len (v f [0]) :

378 f . wr i t e (” Al l %d i n s t a n c e s o f %s f o r %s are l e s s than

one h a l f standard dev i a t i on from the mean vowel

c en te r .\n” % (l en (z e r o t o o n e h a l f) , vowel ,

informant . name))

379 f . wr i t e (’\n ’)

380

381 else :

382 f . wr i t e (” %d o f %d i n s t a n c e s are l e s s than one h a l f

standard dev i a t i on from the mean vowel c en te r .\n” %

(l en (z e r o t o o n e h a l f) , l en (v f [0])))

383 f . wr i t e (’\n ’)

384

385 i f l en (o n e h a l f t o o n e) > 0 :

386 f . wr i t e (” There are %d i n s t a n c e s between 0 .5 and 1

standard d e v i a t i o n s from the average vowel c en te r :\n

” % len (o n e h a l f t o o n e))

387 [f . wr i t e (” %s\n” % ex [1]) for ex in o n e h a l f t o o n e]

388 f . wr i t e (’\n ’)

389

390 i f l en (o n e t o o n e a n d h a l f) > 0 :

391 f . wr i t e (” There are %d i n s t a n c e s between 1 and 1 .5

standard d e v i a t i o n s from the average vowel c en te r :\n

” % len (o n e t o o n e a n d h a l f))

392 [f . wr i t e (” %s\n” % ex [1]) for ex in

o n e t o o n e a n d h a l f]

154

393 f . wr i t e (’\n ’)

394

395 i f l en (one and ha l f t o two) > 0 :

396 f . wr i t e (” There are %d i n s t a n c e s between 1 .5 and 2

standard d e v i a t i o n s from the average vowel c en te r :\n

” % len (one and ha l f t o two))

397 [f . wr i t e (” %s\n” % ex [1]) for ex in

one and ha l f t o two]

398 f . wr i t e (’\n ’)

399

400 i f l en (two to two and ha l f) > 0 :

401 f . wr i t e (” There are %d i n s t a n c e s between 2 and 2 .5

standard d e v i a t i o n s from the average vowel c en te r :\n

” % len (two to two and ha l f))

402 [f . wr i t e (” %s\n” % ex [1]) for ex in

two to two and ha l f]

403 f . wr i t e (’\n ’)

404

405 i f l en (g t two and ha l f) > 0 :

406 f . wr i t e (” There are %d i n s t a n c e s g r e a t e r than 2 .5

standard d e v i a t i o n s from the average vowel c en te r :\n

” % len (g t two and ha l f))

407 [f . wr i t e (” %s\n” % ex [1]) for ex in g t two and ha l f]

408 f . wr i t e (’\n ’)

409

410 f . c l o s e ()

411 return

155

412

413

414

415

416 def i n d i v e u c (informant , vowel , l abe l 1 , l abe l 2 , norm opt , dtarg

=””) :

417 z e r o t o o n e h a l f = []

418 o n e h a l f t o o n e = []

419 o n e t o o n e a n d h a l f = []

420 one and ha l f t o two = []

421 two to two and ha l f = []

422 g t two and ha l f = []

423

424 i f norm opt == ’ Bark D i f f e r e n c e ’ \

425 or norm opt == ’ Lobanov ’ \

426 or norm opt == ’ Labov ’ \

427 or norm opt == ’Watt and Fabr i c i u s ’ \

428 or norm opt == ’ Nearey ’ :

429 speaker = ” Speaker ”

430 vowelframe = ”Vowel”

431 else :

432 speaker = ” speaker ”

433 vowelframe = ”vowel . frame”

434 # s e p a r a t e j u s t the vowel

435 voweldf = informant . sub data f rame . rx (informant .

sub data f rame . rx2 (vowelframe) . ro == vowel , True)

436

156

437 # Find the vowel c e n t e r

438 imean = V. compute means (voweldf)

439 i f dtarg == ”two” :

440 meancoord = (imean [6] [0] , imean [7] [0])

441 else :

442 meancoord = (imean [3] [0] , imean [4] [0])

443

444 # Standard d e v i a t i o n s

445 f s d s = V. compute sds (voweldf)

446 i f dtarg == ”two” :

447 sdscoord = (f s d s [6] [0] , f s d s [7] [0])

448 else :

449 sdscoord = (f s d s [3] [0] , f s d s [4] [0])

450

451 # the Eucl idean d i s t a n c e o f one standard d e v i a t i o n

452 # t h i s w i l l be the y a r d s t i c k f o r a l l vowel i n s t a n c e s

453 sded = s q r t (((meancoord [0] − sdscoord [0]) ∗∗2) + ((

meancoord [1] − sdscoord [1]) ∗∗2))

454

455 for row in voweldf . i t e r r o w () :

456 i f dtarg == ”two” :

457 # icoord i s the c o o r d i n a t e o f a vowel i n s t a n c e

458 i c oo rd = (row [6] [0] , row [7] [0])

459 else :

460 i c oo rd = (row [3] [0] , row [4] [0])

461 context = row [2] . l e v e l s [0]

462

157

463 # the Eucl idean d i s t a n c e o f each vowel from the i n d i v

vowel c e n t e r

464 ed = s q r t (((meancoord [0] − i c oo rd [0]) ∗∗2) + ((

meancoord [1] − i c oo rd [1]) ∗∗2))

465

466 sdsfrommean = ed / sded

467

468 i f sdsfrommean < 0 . 5 :

469 z e r o t o o n e h a l f . append ((sdsfrommean , context))

470 e l i f 0 .5 < sdsfrommean < 1 :

471 o n e h a l f t o o n e . append ((sdsfrommean , context))

472 e l i f 1 < sdsfrommean < 1 . 5 :

473 o n e t o o n e a n d h a l f . append ((sdsfrommean , context))

474 e l i f 1 .5 < sdsfrommean < 2 :

475 one and ha l f t o two . append ((sdsfrommean , context))

476 e l i f 2 < sdsfrommean < 2 . 5 :

477 two to two and ha l f . append ((sdsfrommean , context))

478 else :

479 g t two and ha l f . append ((sdsfrommean , context))

480

481 f = open (informant . o u t p u t f i l e , ’ a ’)

482 i f l en (z e r o t o o n e h a l f) == len (voweldf [0]) :

483 f . wr i t e (” Al l %d i n s t a n c e s o f %s f o r %s are l e s s than

one h a l f standard dev i a t i on from the mean vowel

c en te r .\n” % (l en (z e r o t o o n e h a l f) , vowel ,

informant . name))

484 f . wr i t e (’\n ’)

158

485

486 else :

487 f . wr i t e (” %d o f %d i n s t a n c e s are l e s s than one h a l f

standard dev i a t i on from the mean vowel c en te r .\n” %

(l en (z e r o t o o n e h a l f) , l en (v f [0])))

488 f . wr i t e (’\n ’)

489

490 i f l en (o n e h a l f t o o n e) > 0 :

491 f . wr i t e (” There are %d i n s t a n c e s between 0 .5 and 1

standard d e v i a t i o n s from the average vowel c en te r :\n

” % len (o n e h a l f t o o n e))

492 [f . wr i t e (” %s\n” % ex [1]) for ex in o n e h a l f t o o n e]

493 f . wr i t e (’\n ’)

494

495 i f l en (o n e t o o n e a n d h a l f) > 0 :

496 f . wr i t e (” There are %d i n s t a n c e s between 1 and 1 .5

standard d e v i a t i o n s from the average vowel c en te r :\n

” % len (o n e t o o n e a n d h a l f))

497 [f . wr i t e (” %s\n” % ex [1]) for ex in

o n e t o o n e a n d h a l f]

498 f . wr i t e (’\n ’)

499

500 i f l en (one and ha l f t o two) > 0 :

501 f . wr i t e (” There are %d i n s t a n c e s between 1 .5 and 2

standard d e v i a t i o n s from the average vowel c en te r :\n

” % len (one and ha l f t o two))

159

502 [f . wr i t e (” %s\n” % ex [1]) for ex in

one and ha l f t o two]

503 f . wr i t e (’\n ’)

504

505 i f l en (two to two and ha l f) > 0 :

506 f . wr i t e (” There are %d i n s t a n c e s between 2 and 2 .5

standard d e v i a t i o n s from the average vowel c en te r :\n

” % len (two to two and ha l f))

507 [f . wr i t e (” %s\n” % ex [1]) for ex in

two to two and ha l f]

508 f . wr i t e (’\n ’)

509

510 i f l en (g t two and ha l f) > 0 :

511 f . wr i t e (” There are %d i n s t a n c e s g r e a t e r than 2 .5

standard d e v i a t i o n s from the average vowel c en te r :\n

” % len (g t two and ha l f))

512 [f . wr i t e (” %s\n” % ex [1]) for ex in g t two and ha l f]

513 f . wr i t e (’\n ’)

514

515 f . c l o s e ()

516 return

517

518

519

520

521 def geuc examples (informant , vowel , l abe l 1 , l abe l2 , norm opt ,

dtarg=””) :

160

522 z e r o t o o n e h a l f = []

523 o n e h a l f t o o n e = []

524 o n e t o o n e a n d h a l f = []

525 one and ha l f t o two = []

526 two to two and ha l f = []

527 g t two and ha l f = []

528

529 i f norm opt == ’ Bark D i f f e r e n c e ’ \

530 or norm opt == ’ Lobanov ’ \

531 or norm opt == ’ Labov ’ \

532 or norm opt == ’Watt and Fabr i c i u s ’ \

533 or norm opt == ’ Nearey ’ :

534 speaker = ” Speaker ”

535 vowelframe = ”Vowel”

536 else :

537 speaker = ” speaker ”

538 vowelframe = ”vowel . frame”

539 # s e p a r a t e i n d i v i d u a l from the group

540 othe rd f = informant . normed data frame . rx (informant .

normed data frame . rx2 (speaker) . ro != informant . name ,

True)

541

542 # f i n d c e n t e r o f the group ’ s vowel space .

543 gmeandf = V. compute means (o the rd f)

544 gv = gmeandf . rx (gmeandf . rx2 (”Vowel”) . ro == vowel , True)

161

545 i f dtarg == ”two” and not (norm opt == ”Nearey” or norm opt

== ”Labov” or norm opt == ”Watt and Fabr i c iu s ” or

norm opt == ”Lobanov”) :

546 gmean1 = gv [6] [0] # column 3

547 gmean2 = gv [7] [0] # column 4

548 else :

549 gmean1 = gv [3] [0] # column 3

550 gmean2 = gv [4] [0] # column 4

551 # c e n t e r o f the average vowel space

552 gvc = (gmean1 , gmean2)

553

554 # standard d e v i a t i o n s f o r the group v a l u e s

555 gsdsd f = V. compute sds (o the rd f)

556 sdv = gsdsd f . rx (gsdsd f . rx2 (”Vowel”) . ro == vowel , True)

557 i f dtarg == ”two” and not (norm opt == ”Nearey” or norm opt

== ”Labov” or norm opt == ”Watt and Fabr i c iu s ” or

norm opt == ”Lobanov”) :

558 sdcoord = (sdv [6] [0] , sdv [7] [0])

559 else :

560 sdcoord = (sdv [3] [0] , sdv [4] [0])

561 # the Eucl idean d i s t a n c e o f one standard d e v i a t i o n

562 sded = s q r t (((gvc [0] − sdcoord [0]) ∗∗2) + ((gvc [1] −

sdcoord [1]) ∗∗2))

563

564 #g e t the subframe with the r i g h t vowel i n s t a n c e s in i t

565 vf = informant . sub data f rame . rx (informant . sub data f rame .

rx2 (vowelframe) . ro == vowel , True)

162

566 for row in vf . i t e r r o w () :

567 i f dtarg == ”two” and not (norm opt == ”Nearey” or

norm opt == ”Labov” or norm opt == ”Watt and

Fabr i c iu s ” or norm opt == ”Lobanov”) :

568 i c oo rd = (row [6] [0] , row [7] [0])

569 else :

570 i c oo rd = (row [3] [0] , row [4] [0])

571 context = row [2] . l e v e l s [0]

572 # the Eucl idean d i s t a n c e o f each vowel from the group

mean vowel c e n t e r

573 ed = s q r t (((gvc [0] − i c oo rd [0]) ∗∗2) + ((gvc [1] −

i c oo rd [1]) ∗∗2))

574

575 sdsfromgvc = ed / sded

576

577 i f sdsfromgvc < 0 . 5 :

578 z e r o t o o n e h a l f . append ((sdsfromgvc , context))

579 e l i f 0 .5 < sdsfromgvc < 1 :

580 o n e h a l f t o o n e . append ((sdsfromgvc , context))

581 e l i f 1 < sdsfromgvc < 1 . 5 :

582 o n e t o o n e a n d h a l f . append ((sdsfromgvc , context))

583 e l i f 1 .5 < sdsfromgvc < 2 :

584 one and ha l f t o two . append ((sdsfromgvc , context))

585 e l i f 2 < sdsfromgvc < 2 . 5 :

586 two to two and ha l f . append ((sdsfromgvc , context))

587 else :

588 g t two and ha l f . append ((sdsfromgvc , context))

163

589

590 f = open (informant . o u t p u t f i l e , ’ a ’)

591

592 #i f l e n (z e r o t o o n e h a l f) > 0 :

593 # f . w r i t e (” There are %d i n s t a n c e s between 0 and 0.5

standard d e v i a t i o n s from the average vowel c e n t e r :\n” %

l e n (z e r o t o o n e h a l f))

594 # [f . w r i t e (” %s\n” % ex [1]) f o r ex in z e r o t o o n e h a l f]

595 i f l en (z e r o t o o n e h a l f) == len (v f [0]) :

596 f . wr i t e (” Al l %d i n s t a n c e s o f %s f o r %s are l e s s than

one h a l f standard dev i a t i on from the mean vowel

c en te r .\n” % (l en (z e r o t o o n e h a l f) , vowel ,

informant . name))

597 f . wr i t e (’\n ’)

598

599 else :

600 f . wr i t e (” %d o f %d i n s t a n c e s are l e s s than one h a l f

standard dev i a t i on from the mean vowel c en te r .\n” %

(l en (z e r o t o o n e h a l f) , l en (v f [0])))

601 f . wr i t e (’\n ’)

602

603 i f l en (o n e h a l f t o o n e) > 0 :

604 f . wr i t e (” There are %d i n s t a n c e s between 0 .5 and 1

standard d e v i a t i o n s from the average vowel c en te r :\n

” % len (o n e h a l f t o o n e))

605 [f . wr i t e (” %s\n” % ex [1]) for ex in o n e h a l f t o o n e]

606 f . wr i t e (’\n ’)

164

607

608 i f l en (o n e t o o n e a n d h a l f) > 0 :

609 f . wr i t e (” There are %d i n s t a n c e s between 1 and 1 .5

standard d e v i a t i o n s from the average vowel c en te r :\n

” % len (o n e t o o n e a n d h a l f))

610 [f . wr i t e (” %s\n” % ex [1]) for ex in

o n e t o o n e a n d h a l f]

611 f . wr i t e (’\n ’)

612

613 i f l en (one and ha l f t o two) > 0 :

614 f . wr i t e (” There are %d i n s t a n c e s between 1 .5 and 2

standard d e v i a t i o n s from the average vowel c en te r :\n

” % len (one and ha l f t o two))

615 [f . wr i t e (” %s\n” % ex [1]) for ex in

one and ha l f t o two]

616 f . wr i t e (’\n ’)

617

618 i f l en (two to two and ha l f) > 0 :

619 f . wr i t e (” There are %d i n s t a n c e s between 2 and 2 .5

standard d e v i a t i o n s from the average vowel c en te r :\n

” % len (two to two and ha l f))

620 [f . wr i t e (” %s\n” % ex [1]) for ex in

two to two and ha l f]

621 f . wr i t e (’\n ’)

622

623 i f l en (g t two and ha l f) > 0 :

165

624 f . wr i t e (” There are %d i n s t a n c e s g r e a t e r than 2 .5

standard d e v i a t i o n s from the average vowel c en te r :\n

” % len (g t two and ha l f))

625 [f . wr i t e (” %s\n” % ex [1]) for ex in g t two and ha l f]

626 f . wr i t e (’\n ’)

627

628 f . c l o s e ()

629 return

630

631

632

633 # NOTE: Incomplete . This would need to i n c l u d e the d u r a t i o n s as

a column in the dataframe (That cou ld be assembled at the

same time as the c o n t e x t) , and the d u r a t i o n s need to be

i n c l u d e d to make sure t h a t ROC i s d i v i d e d over dura t ion f o r

each i n s t a n c e .

634 def r a t e o f c h a n g e (informant , diphthong , norm opt , f l a b e l 1) :

635 r o c l i s t = []

636 i f norm opt == ’ Bark D i f f e r e n c e ’ \

637 or norm opt == ’ Lobanov ’ \

638 or norm opt == ’ Labov ’ \

639 or norm opt == ’Watt and Fabr i c i u s ’ \

640 or norm opt == ’ Nearey ’ :

641 speaker = ” Speaker ”

642 vowelframe = ”Vowel”

643 else :

644 speaker = ” speaker ”

166

645 vowelframe = ”vowel . frame”

646 vowe l subse t = informant . sub data f rame . rx (informant .

sub data f rame . rx2 (vowelframe) . ro == diphthong , True)

647 # s u b t r a c t the beg inn ing f1 from the ending f1

648 for row in vowe l subse t . i t e r r o w () :

649 roc = row [6] [0] − row [3] [0]

650 context = row [2] . l e v e l s [0]

651 r o c l i s t . append ((roc , context))

652 p o s i t i v e r o c = [e l t for e l t in r o c l i s t i f e l t [0] >= 0]

653 n e g a t i v e r o c = [e l t for e l t in r o c l i s t i f e l t [0] < 0]

654 p o s i t i v e r o c . s o r t (r e v e r s e=True)

655 n e g a t i v e r o c . s o r t (r e v e r s e=True)

656 f = open (informant . o u t p u t f i l e , ’ a ’)

657 f . wr i t e (”%s Rate o f Change f o r %s\n” % (f l a b e l 1 , diphthong)

)

658 for proc in p o s i t i v e r o c :

659 f . wr i t e (” %.3 f , %s\n” % (proc [0] , proc [1]))

660 for nroc in n e g a t i v e r o c :

661 f . wr i t e (” %.3 f , %s\n” % (nroc [0] , nroc [1]))

662 f . wr i t e (’\n ’)

