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ABSTRACT 

Cognitive Continuum Theory (Hammond et al., 1987) posits that differing task 
characteristics in multiple cue probability learning environments can induce either 
analytical or intuitive cognition. The different modes of cognition are in turn associated 
with differing patterns of performance, including the ability to declare how one combines 
information when making judgments (termed insight). Insight is thus largely a state 
phenomenon, or one that is constrained or fostered by task characteristics. Conversely, 
metacognition (one aspect of which involves the ability to declare how one has enacted a 
strategy) is often thought of as an individual difference. Eight different environments in 
two experiments were constructed to induce either analytical or intuitive cognition. The 
environments were varied along several different dimensions, including whether the 
relationship between cues and criterion values was linear or nonlinear. In addition to 
completing a judgment task in one of these eight conditions, all participants completed 
two standard measures of metacognition. In this manner, the contributions of both task 
characteristics and individual differences to performance were assessed.  Results 
indicated that both task characteristics and individual differences were related to 
performance. 
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CHAPTER 1 

INTRODUCTION 

Terminology 

 Throughout this paper, the initial usage of each term is italicized. Terms are 

discussed in the main body of the paper in nontechnical language. More formal 

definitions of all italicized terms are given in Appendix A. All definitions are paraphrased 

from Cooksey (1996). 

Probabilistic Functionalism 

 One of the basic goals of research in judgment and decision making is that of 

specifying general rules which describe the decision making process. However, much of 

the early psychological research on judgment has been criticized for focusing on the 

environment at the expense of the organism (Doherty, 2001).  The concept of 

probabilistic functionalism (Hammond, 1966; Brunswik, 1956a) epitomizes this concern 

with the interaction between an organism and its environment.   

Probabilistic functionalism focuses on decision making in environments that are 

more typical of everyday ecologies. For example, judgments are often based on 

information that is less than perfectly predictive of some event of interest. In such 

situations, one earmark of adaptive behavior is the ability to base judgments upon 

information to the extent that the information is predictive (Brunswik, 1943). Further, 
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judgments are often based upon multiple pieces of information.  (An extended discussion 

of probabilistic functionalism is given in Appendix B.)  

Multiple Cue Probability Learning 

Out of the concept of Probabilistic Functionalism arose the paradigm of Multiple 

Cue Probability Learning (MCPL). In a typical MCPL task, an organism is given several 

pieces of information (known as cues). The organism learns, in a trial-by-trial fashion, to 

utilize the cues to estimate some characteristic of the environment (known as the 

criterion).  There are two kinds of feedback typically used in an MCPL experiment: 

outcome feedback, and cognitive feedback.  

Outcome feedback is given on a per-trial basis, and consists of nothing more than 

supplying the correct criterion value that accompanies some set of values, following an 

estimation of that criterion value by the organism. Cognitive feedback, in contrast, occurs 

at the end of a block of training trials. Cognitive feedback is sometimes numerical in 

nature, such as providing the means and standard deviations of an organism’s judgments 

across a block of training trials, accompanied by the mean and standard deviation of the 

correct criterion values across that block of trials.  

More effective, however, are graphs which illustrate aspects of the ecology as 

well as the manner in which the cues were utilized by the organism. For example, it is 

common to show graphs depicting the relationships between cue values and criterion 

values. It is also common to show graphs depicting the relationships between cue values 

and judgments made (Balzer, Doherty, & O’ Connor, 1989; Doherty & Balzer, 1988).  

(More detailed findings from the MCPL literature are given in Appendix C.) 
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The Lens Model Equation 

The Brunswikian concern with the necessity of a symmetrical emphasis evolved 

into the Lens Model Equation (LME). The LME is depicted graphically in Figure 1. The 

mathematical underpinnings of the LME revolve around ordinary least squares 

regression. The symmetrical emphasis placed upon the organism and the ecology can be 

seen in the analogous regressions applied to both (Hammond, 1955). The choice of 

regression and correlation was deliberate, because both statistical concepts involve 

inevitable uncertainty. In this manner the probabilistic nature of decision making is 

incorporated in the LME.  

The left hand side of the LME figure represents the ecology. There were a total of 

eight ecologies across the two experiments, corresponding to the eight experimental 

conditions. When the observed criterion values were regressed upon the cue values 

(generating the ecological regression model), a set of predicted criterion values was 

generated. The multiple correlation between the observed criterion values and the cue 

values expressed the predictability in an environment. The higher the predictability of an 

environment, therefore, the smaller the discrepancy between the observed and predicted 

criterion values.  

The right side of the column represents the judgment processes of an organism. 

Regressing the judgments made by the organism upon the cues yielded the organism’s 

policy. The computation of a policy allowed for the generation of a set of predicted 

judgments, in the same fashion that computation of the ecological regression model 

allowed for the generation of a set of predicted criterion values.  
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Out of this process, three LME performance indices were created. The first was 

that of achievement. Achievement is the simple Pearson correlation between the 

judgments made by an organism, and the observed criterion values. It is thus a measure 

of empirical accuracy. The second performance index created was that of cognitive 

control (Hammond & Summers, 1972). This is the correlation between the judgments 

made by an individual and the predicted judgments generated resulting from the 

individual’s policy. Higher levels of cognitive control indicate greater consistency in the 

application of a policy. The final performance index was that of matching, which is the 

correlation between the predicted criterion values and the predicted judgments of an 

organism. Higher levels of matching indicate greater correspondence between the correct 

rule for a task and the policy enacted by an individual. (For a more detailed explication of 

the Lens Model Equation, see Appendix D.) 

Cognitive Continuum Theory 

 Philosophers and psychologists have long held the view that analysis and intuition 

were two disparate modes of cognition (Kahneman & Tversky, 1982). However, the 

manner in which analysis and intuition have been defined is problematic. While analysis 

has been fairly well described, intuition has often been described as something that was 

not analysis (Brooks, 1978; Beach & Mitchell, 1978).  

 In contrast, Cognitive Continuum Theory (CCT) builds upon Brunswik’s thesis 

that analysis and intuition are not disparate modes of cognition, but rather opposing poles 

of a continuum (Brunswik, 1956b). CCT contributes to the research in this area by, 

firstly, specifying the types of tasks that should give rise to analytical or intuitive 
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cognition. Secondly, CCT defines the differing patterns of performance that should 

accompany analytical or intuitive cognition.  

 The characteristics that differentiate between intuitive and analytical tasks are 

listed in Table 1. These characteristics can be used to assign a condition a Task 

Continuum Index (TCI) score. Higher TCI scores indicate a more analytical task. In this 

fashion, CCT allows for the a priori classification of tasks as more analytical or more 

intuitive.  

 Of equal importance are the differences in performance that arise due to 

engagement in either analysis or intuition. These differences are shown in Table 2. The 

difference involving insight, or degree of correspondence between an organism’s stated 

policy and statistically captured policy, is of major theoretical importance, and its 

conceptual link to metacognition is explored in the next section in detail. Insight has been 

measured in various ways. However, the most commonly used method for measuring 

insight was inappropriate in the current study. Therefore, another method of measuring 

insight was used (see Appendix E for details).  
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Table 1. Task Characteristics in Cognitive Continuum Theory 

Task Characteristics Intuition Inducing Analysis Inducing 

Number of cues 
 
Cue intercorrelation 
 
Degree of predictability 
 
Cue-Criterion Relationships 
(a.k.a. function forms) 
 
Variation among beta scores 

Large (greater than 5) 
 
High 
 
Low 
 
Linear 
 
 
Smaller 

Small (2-4) 
 
Low 
 
High 
 
Nonlinear 
 
 
Larger 
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Table 2. Cognitive Mode Differences in Cognitive Continuum Theory 

Intuitive Cognition Analytical Cognition 

Low Insight 
 
High confidence in performance 
 
Low confidence in insight 
 
Rapid information processing 
 
Errors are normally distributed 
 
Low cognitive control 
 
High achievement unlikely 
 

High Insight 
 
Low confidence in performance 
 
High confidence in insight 
 
Slow information processing 
 
Errors are few and large 
 
High cognitive control 
 
High achievement likely 
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Figure 1. Lens Model Equation
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CHAPTER 2  

METACOGNITION AND INSIGHT 

Metacognition has been defined in various ways by various researchers. It has 

been defined as “…awareness of how one learns, when one does and does not 

understand, and the assessment of progress both during and after performance” (Gourgey, 

1998), and “….an individual’s conscious awareness and control of the cognitive 

processes involved in attending to and focusing on processing, comprehending, and 

remembering information” (Schmitt & Baumann, 1986). One early definition proposed 

by Flavell (1979), while the broadest, is perhaps the best: he defined metacognition as 

“knowledge and cognition about cognitive phenomena; metacognitive knowledge 

consists primarily of knowledge or beliefs about what factors or variables act and interact 

in what ways to affect the course and outcome of cognitive enterprises”.   

 Central to most of the definitions of metacognition is the conception of 

metacognition as an ability, greater amounts of which allow one to more accurately 

assess performance. This assessment may be of a predictive nature, such as spending 

greater amounts of time studying materials that are not well understood (Bisanz, 

Vesonder, & Voss, 1978), or of a post-hoc nature, such as the degree of confidence one 

expresses in the ability to subsequently recall learned material (Nelson & Dunlosky, 

1991; Flavell, Freidrichs, & Hoyt, 1970; Maki, Foley, Kaijer, & Thompson, 1990). 

 Sometimes self-ratings of the extent to which individuals engage in metacognitive 
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behaviors (i.e., comprehension checking during performance, assessment of strategy 

success) are utilized. One such measure is the Metacognitive Awareness Inventory 

(Schraw, 1994). In other cases, the extent to which individuals can display declarative 

knowledge is used as an indication of metacognition (Coleman & Shore, 1991; Swanson, 

1990; Artzt & Armour-Thomas, 1996). Declarative knowledge involves being able to 

state what strategy one is using and to articulate the steps to others.  

 Perhaps the most commonly used method to assess metacognition, however, is the 

ability to reflect upon an answer that has been chosen and assign a level of confidence in 

the correctness of that answer (Schraw & Roedel, 1994; Schaefer, Williams, Goodie, & 

Campbell, 2002).  Higher levels of metacognition are indicated by smaller discrepancies 

between average confidence and average performance (known as accuracy scores, which 

are difference scores reflecting absolute magnitude of difference; Morris, 1990). 1 

Metacognition in MCPL Tasks 

 There has been at least one explicit link made between the metacognition and 

MCPL literatures. A well-established finding in the metacognition literature is the “hard-

easy” effect (Lichtenstein & Fischoff, 1977).  Greater levels of metacognition are seen 

when individuals are said to be well calibrated; that is, there is little or no difference 

between average confidence and average performance (Suantak, Bolger, & Ferrell, 1996).  

However, factors that affect performance more than confidence will result in 

miscalibration. It has been found that, as test items become more difficult, performance 

drops and overconfidence results; that is, confidence exceeds performance (Schraw & 

Roedel, 1994). Conversely, as test items become normatively easier, performance 

                                                 
1 This means that accuracy scores should be negatively correlated with performance. However, for ease of 
interpretation, the valence of all accuracy score correlations was reversed.  
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increases and underconfidence results (Schraw, Potenza, and Nebelsick-Gullet, 1993).  

The normative difficulty of the test items imposes a ceiling effect upon 

performance. Within an MCPL task, an analogous manipulation can be accomplished by 

raising or lowering the predictability of the task ecology. If predictability (the amount of 

variance in the criterion explained by cue variance) is raised, the environment becomes 

easier in that the appropriate rule, once learned, explains more variance. Conversely, 

when predictability is lowered, the environment becomes more difficult. Not only is it 

harder for an individual in such a situation to extract the appropriate rule for combining 

and utilizing cue information, but the extent to which such utilization will yield correct 

answers has been minimized.  

Just such an experiment was conducted by Doherty, Brake, and Kleiter (2001). 

Individuals in an MCPL experiment were asked to make a series of judgments. Following 

each judgment, individuals were asked to indicate how confident they were that they had 

chosen correctly. When predictability in the task ecology was lowered, the “hard” effect 

was seen. Namely, overconfidence increased. When predictability was increased, the 

“easy” effect appeared: underconfidence was seen. 

The examination of metacognition and performance within the MCPL paradigm 

appears to offer several advantages over traditional methods of examining the 

relationships between metacognition and performance. For example, although some 

authors (Koriat, 1997) have speculated about the role that cues play in metacognition, 

cues in traditional metacognition research are thought to be largely idiosyncratic (e.g., 

subjective familiarity with a cue; Metcalfe, Schwartz, & Joaquim, 1993) and therefore 

not easily amenable to manipulation and description.  
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However, in an MCPL task the extent to which individuals utilize cue information 

(i.e., weighing cues that are weighed more in the task ecology) can be directly examined, 

as the cues are made explicit. In addition, MCPL tasks carried out within the Brunswikian 

tradition allow for the derivation of several indices of performance, such as the extent to 

which answers correspond with criterion values, the extent to which the rule utilized by 

an individual corresponds to the correct one for that ecology, and how consistently a 

strategy is applied by an individual. 

Finally, as been noted elsewhere, metacognition and Brunswikian LME research 

are a good fit: “Calibration research is, in a fundamental way, akin to research based on 

Brunswik’s Lens Model. In both lines of research, the focus is on empirical accuracy, or 

correspondence between judgments and environmental outcomes” (Doherty, Brake, & 

Kleiter, 2001, p. 317). For Brunswik, an earmark of adaptive  behavior was the utilization 

of cues to the extent to which they were predictive of some event (Brunswik, 1943). The 

consideration of metacognition as a potentially relevant individual difference variable 

underscores the attention paid to the organism as well as the environment in LME 

research. 

Metacognition and Insight 

Although insight is an important aspect of Cognitive Continuum Theory, at times 

the argument for its existence has been circular. It seems that it has often been argued as 

having been demonstrated because cognitive control was high, and that because cognitive 

control was high, so was insight (Hammond & Summers, 1972).  

Furthermore, when insight has been measured, it has usually been done outside 

the context of CCT research. More common is the examination of insight in tasks that 
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would be considered primarily intuitive (e.g., positive linear function forms, less-than-

perfectly predictable environments; Reilly & Doherty, 1992; Brehmer, 1977; Reilly & 

Doherty, 1989; Reilly, 1996) with little systematic manipulation of task factors thought to 

induce the modes of cognition at the poles. Rather, one variable was manipulated and 

performance between conditions compared (e.g., predictability; Doherty, Brake, & 

Kleiter, 2001; Gray, 1979).  

One recent exception is that of Haarbauer (1996). Unfortunately, the main 

prediction of CCT that insight would be higher for persons in an analytical task was not 

borne out, although insight was significantly correlated with performance in both the 

analytical and intuitive tasks. Haarbauer suggested that part of the problem might be that 

many studies of this sort are within-subjects in nature, and that a between-subjects design 

might not achieve the same results unless possibly relevant individual difference 

information were also collected. In addition, Haarbauer did not manipulate the degree to 

which the cue-criterion relationships (a.k.a. function forms) were linear or nonlinear. 

There are grounds for positing that insight and metacognition are similar 

constructs, and hence metacognition may be put forward as one such potentially relevant 

individual difference. Insight is essentially a measure of the ability to describe the process 

by which one combined information to make a set of judgments. In metacognition, one of 

the most prominent concepts is declarative knowledge, or the ability to verbalize the 

process by which one is completing some task (e.g., solving physics problems; Coleman 

& Shore, 1991).  

Insight into the process by which one integrates cue information and makes 

judgments is thought to be related to the ability to benefit from feedback (Hammond, 
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1996). That is, the ability to reflect in some fashion upon both what one has been doing 

and what one should be doing allows one to minimize the discrepancy between the two 

behaviors. Insight is also theoretically related to the ability to consistently apply a policy 

(i.e., exhibit high cognitive control; Hammond, 1990). Similarly, a major assumption of 

metacognitive theory is that declarative knowledge also underlies the ability to both 

consistently apply a strategy (Manning & Payne, 1996) and to benefit from feedback 

(Pressley & Ghatala, 1990; Butler & Winne, 1996).  

Finally, the research literature indicates that the relationship between 

predictability and metacognition may parallel that posited by CCT to exist between 

predictability and insight. For example, Doherty and Kleiter (2001) found that, as a task 

was made less predictable, metacognition became less accurate. Similarly, CCT predicts 

that insight should drop as predictability is lowered, because the task becomes more 

intuitive as predictability is minimized. 
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CHAPTER 3 

EXPERIMENT ONE 

Purposes and Rationale 

 The purposes of the first experiment were to examine the relationships between 

performance in MCPL tasks, cue-criterion function form, insight, and metacognition.  

CCT and Function Forms 

 Although the manipulation of function forms is theoretically important for CCT, 

like insight it has not often been examined. The more common approach has been to 

utilize linear function forms for both analytical and intuitive tasks while manipulating the 

other task characteristics that are thought to induce either analytical or intuitive cognition. 

Further, in the one experiment that examined nonlinear function forms (Hammond, 

Hamm, Grassia, & Pearson, 1987), the nonlinear function form was merely described as 

“a stochastic function” with no further details as to the nature of the function.  

 Function forms are theoretically important because CCT posits that linear cue 

usage (i.e., intuitive cognition) is the default mode for humans. Linear models describe 

many activities in the animal kingdom quite well (see Appendix F for a more detailed 

discussion of linear models of judgment).  These models are almost invariably, however, 

concerned with the processing of positive linear relationships.  For example, it has been 

found that positive linear relations are much easier to learn than negative linear ones 

(Bjorkmann, 1965). 
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Further, there is also reason to assume that the type of nonlinear relationship 

affects performance. As noted in the discussion of MCPL research (see Appendix C), 

there appears to be a definite hierarchy of complexity when it comes to cue-criterion 

relationships. Although CCT predicts that nonlinear cue-criterion relationships should 

result in analytical cognition and, hence, higher levels of performance, MCPL research 

indicates that individuals have an easier time learning linear cue-criterion relationships.   

More specifically, it appears that individuals find the cue-criterion function forms, 

from easiest to most difficult, to be: positive linear, negative linear, U-shaped quadratic, 

inverted U-shaped quadratic (see Appendix C). Hammond (1996) has argued that the 

“automatic” nature of linear processing in humans can be contrasted to the “controlled” 

process necessary when learning nonlinear function forms. If this is correct, then it made 

sense to utilize the inverted-U shaped cue-criterion relationship for the nonlinear tasks, as 

well as the positive linear cue-criterion relationship for the linear tasks. In essence, it was 

expected that the largest difference in performance would occur between these two 

function forms.  

CCT, Metacognition, and Insight 

 It has been argued that metacognition and insight are similar constructs in that 

both are thought to be correlated with performance, and both are measures of declarative 

knowledge. However, the manner in which metacognition was measured in the current 

study is dissimilar in that of the aforementioned Doherty and Kleiter (2001) study.  There 

were several reasons for this dissimilarity.  

 Firstly, measuring metacognition within an MCPL task was problematic for the 

current study, which was attempting to draw a comparison between the constructs of 
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insight and metacognition. This was because inserting questions into a task has been 

shown to increase metacognitive activity (Stimson, 1998). Therefore, measuring 

metacognition in such a manner might artificially inflate metacognition and/or insight.  

 Secondly, the use of standard measures of metacognition allowed for the 

placement of the findings within the metacognition literature. It is normally the case that 

scores on standard metacognition measures are elicited from participants, and the 

relationships between those scores and various measures of performance (e.g., GPA) are 

examined. That is, the measurement of metacognition is usually not task specific.  

Thirdly, the use of standard measures also allowed for some current concerns 

within metacognition research to be addressed. For example, a recent goal has been the 

examination of the extent to which metacognition, as measured on such standard 

measures, is either a domain-general or a domain-specific phenomenon (Schraw, Dunkle, 

Bendixen, & Roedel, 1995; Schraw, 1997; Schraw & Nietfield, 1998).  The manner in 

which metacognition was measured in the present study attempted to extend the 

examination of metacognition to a type of task not examined in such a way before.  

 Further, investigations concerning the domain-generality or domain-specificity of 

metacognition have been largely concerned with more “academic” domains such as 

history (Schraw & Nietfield, 1998), or knowledge of computer programming (Veenman, 

Elshout, & Meijer, 1997). Conversely, many judgment researchers claim that MCPL 

tasks are much more akin to tasks in “everday life”  than many other tasks used to study 

decision making (Hammond, 2001). If this claim is correct, then the examination of how 

metacognition  is correlated with performance in such domains would be an important 

generalization. 
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 Fourthly, the measurement of metacognition in such a manner allowed for the 

independent assessment of the contributions to performance accrued from insight and 

metacognition. It also allowed for an assessment of the relationship between the two 

constructs of metacognition and insight. The difference between how the two constructs 

were measured can be couched in terms of trait versus state.  

Essentially, metacognition as it was measured was as a trait (within-subjects) 

construct, one that was independent of the task characteristics. This was accomplished by 

assessing metacognition via standard individual difference measures before the judgment 

task began. Conversely, insight within the context of CCT is unavoidably a state 

(between-subjects) phenomenon. That is, CCT specifically predicts that task 

characteristics will affect the level of insight exhibited by an individual. Finally, the 

manner in which metacognition and insight were measured allowed for a more stringent 

test of the proposed relationships among the measures of performance, insight and 

metacognition.  The manner in which these proposed relationships were tested is 

described in the next section.  

Hypotheses 

In accordance with CCT, insight was predicted to differ from condition to 

condition. The more analytical the task, the higher the level of insight should be. Based 

upon the characteristics listed in Table 2, Task Continuum Index (TCI) scores were 

computed for all four tasks. The TCI scores for the four tasks are given in Table 3. A 

higher TCI score indicated a more analytical task. The TCI scores were used to guide all 

hypotheses.  

Similar usage of TCI scores has been able to predict quite accurately at least the 
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order of effects (Hammond, Hamm, Grassia, & Pearson, 1987). However, the 

aforementioned article did not test the null hypothesis but merely the order of effects. 

Therefore, it was possible that while significant differences may not result, the order of 

correlational magnitude would be in the direction proposed (i.e., there will be a 

significant positive rank-order correlation between performance and the TCI scores).  

This reflects an underlying limitation of the TCI, which claims to be ordinal but 

not interval in nature; that is, just because two tasks with TCI scores of 2 and 4 might 

display significant differences in performance, it does not necessarily follow that tasks 

with TCI scores of 4 and 6 would also do so. Therefore, supplemental analyses included 

Spearman-rho rank-order correlations between TCI scores and the dependent variables.  

Further, the TCI contained no means by which to weight differentially the factors 

that contribute to analytical cognition induction. That is, the factors of beta weight 

variability, average cue intercorrelations, number of cues, and cue-criterion function 

forms are equally weighted. Hammond, Hamm, Grassia, and Pearson (1987) have stated 

that this was done to underscore the compensatory nature of Brunswikian decision 

making (see Appendix D for a discussion of the LME as a compensatory model).  

However, it was plausibly the case that function forms would be more important 

in the induction of analytical cognition than indicated by the TCI. This was especially so 

because, as mentioned earlier, CCT research has seldom manipulated the nonlinearity of 

function forms. Conversely, MCPL research has shown that function forms constitute an 

important variable.  

The TCI scores, shown in Table 3, guided the hypotheses. In each hypothesis, the 

order of means could be restated to say that a significant main effect was predicted in 
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each case for the task type, in which analytical tasks are expected to result in higher 

performance than intuitive tasks (with TCI means of 9.22 versus 6.46, respectively). 

Similarly, quadratic tasks should result in higher performance than linear tasks (with TCI 

means of 11.38 versus 2.15, respectively). Finally, for each hypothesis, there was no 

predicted interaction effect. There were 11 hypotheses tested in the current experiment. 

The influence of insight and metacognition upon the Lens Model Equation 

performance indices of matching, accuracy, and cognitive control were explored utilizing 

correlations and, when appropriate, simultaneous regression equations. Because the 

operating assumption was that performance would be affected by insight and 

metacognition, the MANOVA results were used as a “gateway” analysis to indicate 

which conditions would be so examined. For example, if a significant effect was seen for 

function form, the differing correlational patterns between performance, insight, and 

metacognition in the linear and nonlinear tasks would be examined.   

Hypothesis 1 
 
 
 
 
 

It was predicted that performance 
(achievement, matching, & cognitive 
control) would be, from highest to lowest, 
in the following order: analytical-
quadratic (A-Q), intuitive-quadratic (I-Q) 
analytical-linear (A-L), and intuitive-
linear (I-L) 
 

Hypothesis 2 It was predicted that insight would be, 
from highest to lowest, in the following 
order:  A-Q, I-Q, A-L, I-L.  
 

Hypothesis 3 It was predicted that the difference scores 
between insight and performance 
(achievement, matching, & cognitive 
control)  would be, from smallest to 
largest, in the following order: A-Q, I-Q, 
A-L, I-L  
 

Hypothesis 4 It was predicted that the difference scores 
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between metacognition and performance 
(achievement, matching, cognitive 
control) would be, from smallest to 
largest, in the following order: A-Q, I-Q, 
A-L, I-L 
 

Hypothesis 5 It was predicted that the difference scores 
between metacognition and insight would 
be, from smallest to largest, in the 
following order: A-Q, I-Q, A-L, I-L 

 

H1: CCT predicted that as task properties became more and more likely to induce 

analytical cognition, performance indices would increase. Since TCI scores were 

computed to indicate the extent to which task properties were more (or less) likely to 

induce analytical cognition, the rank order of the TCI scores and the performance indices 

should be the same. Thus, it was predicted that the Spearman-rho rank-order correlations 

between the TCI scores and the performance indices would be significant and positive. 

MANOVA results were predicted to indicate that performance was higher in the 

analytical than intuitive conditions, and higher in the quadratic than linear conditions. 

H2: CCT predicted that insight would be fostered as tasks became more analytical 

and suppressed as tasks became more intuitive. The rank order of the TCI scores and 

insight should be the same; therefore, the Spearman-rho rank-order correlation between 

the TCI scores and insight should be significant and positive.  

H3: CCT predicted that insight would be suppressed in more intuitive task 

conditions. This essentially should result in a truncation of range for insight scores as 

tasks become more intuitive. This in turn should result in an increasing discrepancy 

between insight and measures of performance; that is, less positive correlations between 

insight and measures of performance as tasks become more intuitive (i.e., have lower TCI 
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scores).  This can be expressed in the following manner: as tasks become more intuitive, 

the correlation between insight and performance indices becomes smaller and smaller. 

Simultaneously, the difference scores between each should become larger. The 

Spearman-rho rank-order correlations between TCI scores and the difference scores were 

predicted to be significant and negative. 

H4:  Because metacognition may be more properly conceived of as a trait as 

measured here (i.e., independently of task effects) and participants were randomly 

assigned to conditions, there was no predicted significant difference for metacognition 

scores by task condition.  However, there was a predicted significant difference in the 

pattern of correlations between the metacognition scores and the performance indices.  

Specifically, performance should be suppressed as tasks became more intuitive in 

orientation. However, as tasks became more analytical in nature, metacognition (and/or 

its proposed conceptual sibling insight) can be brought to bear and the correlation 

between metacognition and the performance indices should strengthen. This can be 

expressed in the following manner: as tasks become more intuitive, the correlation 

between metacognition and performance indices becomes smaller and smaller. 

Simultaneously, the difference scores between each should become larger. The 

Spearman-rho rank-order correlations between TCI scores and difference scores were 

predicted to be significant and negative. 

H5: Finally, it was also predicted that the correlational pattern between insight 

and metacognition would follow the pattern of results predicted for the other independent 

variables. This reflected the nature of the “trait” vs “state” assignations that have been 

given to metacognition versus insight. Namely, metacognition was independent of the 
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suppressing effects of intuitive tasks, at least as measured here. However, insight was not. 

As the task ecology allowed insight to exhibit a larger and larger presence (i.e., the tasks 

became more and more analytical), the similarity of the two sets of scores should have 

increased. Simultaneously, the difference scores between the two measures should 

decrease. The Spearman-rho rank-order correlation between TCI score and the difference 

scores were predicted to be significant and negative. 

Methods 

Design 

 The design was a between-subjects Task Type (analytical vs. intuitive) x Function 

Form (linear vs. quadratic) design. Three of the five dependent measures were the 

traditional Lens Model Equation performance indices of achievement, matching, and 

cognitive control. In addition, insight and metacognition were measured. The 

correlational patterns between the dependent variables were also analyzed. 

Participants 

 Because the expected effect size was unknown, a power analysis based upon pilot 

data was conducted.  A power level of .80 is usually considered reasonable (Chase & 

Tucker, 1976).  Initial power analysis (based upon Cohen’s f statistic) indicated that 20 

individuals per cell were optimal. However, power analysis is usually used for designs in 

which individuals are observed once. Stability of measurement in the current design, 

which revolves around summary statistics calculated across a series of responses, 

achieves power with fewer participants.  

Power analyses in such situations, therefore, are often treated as an upward 

boundary (Cooksey, 1996). Post-hoc power analyses indicated that n=15 in each cell 
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were sufficient. Therefore, sixty college students from the University of Georgia 

Psychology research pool were recruited for this study. Students were given class credit 

for their participation.  

Experimental Scenario 

 Participants first completed two measures of metacognition, the Metacognitive 

Awareness Inventory and a general knowledge test questionnaire consisting of multiple 

choice questions and confidence ratings (described above). The Metacognitive 

Awareness Inventory is a subjective self-questionnaire which measures engagement in 

behaviors associated with higher levels of metacognition. 

All questions on the general knowledge test questionnaire asked for a comparison 

of population size between states in the U.S.A. All 75 of the questions were generated via 

a random pairing procedure, following the recommendations of Juslin and colleagues 

(Juslin, Winman, & Olsson, 2000). By calculating the absolute difference between 

average confidence and average performance (percent correct) across all 75 questions, an 

accuracy score for each participant was generated.  

 Participants were subsequently trained in one of four experimental scenarios 

(analytical-linear; analytical-quadratic; intuitive-linear; intuitive-quadratic). Successful 

learning of the task was indicated by a matching index that was positive and significantly 

different from zero. Participants were told that they were going to learn to assess the 

threat level of an incoming aircraft, based upon the cues shown to them onscreen. The 

correct answers to the first two blocks of trials would be supplied by a highly trained 

expert. 

The cue-criterion function-form in the linear conditions was a positive function, 
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and the cue-criterion function-form in the quadratic conditions was an inverted U-shape. 

Each participant was given 2 blocks of 60 training trials. Each trial was followed by 

immediate outcome feedback (the correct answer). The judgment analysis software used 

to present the information to the participants was POLICY PC. 

At the end of each block of trials, each participant was also given cognitive 

feedback. Cognitive feedback consisted both of numerical information, such as the mean 

and standard deviation of their judgments as compared to those of the correct criterion 

values,  as well as scatterplots showing both the overall function between cues and 

judgments they made, and the overall function between cues and criterion values. Finally, 

participants saw bar graphs showing both how much relative weight a cue was given in 

the ecology and in their judgments. Thus, participants saw if they were over or under 

weighting any given cue.  

Following the training, participants completed a block of 80 more trials, absent 

any feedback. Once the block of trials was completed, participants filled out an insight 

measure requesting them to subjectively weight the cues as they had been used in the 

preceding block of trials. Participants also filled out a questionnaire assessing their levels 

of confidence in their performance (a.k.a. “answer confidence”) versus confidence in 

their level of insight (a.k.a. “method confidence”). Finally, participants were asked to 

indicate how well they thought they had performed in the outcome-free block of trials. 

Manipulation Check 

 Just as CCT provides a list of characteristics that allow for the a priori 

classification of tasks as more analytical or more intuitive (i.e., generation of TCI scores), 

so too does CCT provide some characteristics that should allow for the differentiation of 
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performance arising from engagement in analytical or intuitive cognition.  

One such characteristic is the difference between confidence in performance and 

confidence in insight. This questionnaire was used to generate difference scores. Greater 

confidence in performance than insight should be associated with more intuitive 

cognition (and hence poorer performance). Conversely, greater confidence in insight than 

performance should be correlated with more analytical cognition and hence higher levels 

of performance. That is, “(s)ince method confidence is expected to be high in analysis 

and answer confidence to be high in intuition, the greater the difference between these 

measures, the more analytic the subject’s cognitive activity” (Hammond et al., 1987, p. 

759).  

Results 

 All results reported below are from the MANOVA. Descriptive statistics from this 

analysis are shown in Table 4.  

Hypothesis 1 

 Contrary to predictions, achievement was higher in the linear than in the quadratic 

condition, F (1, 56) = 121.43, p < .001. Also contrary to prediction, achievement was  

higher in the intuitive than the analytical condition F (1, 56) = 6.40, p < .01. Also 

contrary to prediction, matching was higher in the linear than the quadratic conditions, F 

(1, 56) = 121.38, p < .001. There was no significant effect for task type. Also contrary to 

prediction, cognitive control was significantly higher in the linear than the quadratic 

conditions, F (1, 56) = 632.95, p < .001. Further, cognitive control was higher in the 

intuitive than the analytical conditions, F (1, 56) = 10.63, p < . 01.  

Hypothesis 2 
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 Contrary to prediction, insight was higher in the linear than the quadratic 

conditions, F (1, 56) = 29.58, p < .001. Also contrary to prediction, insight was higher in 

the intuitive than the analytical conditions, F (1, 56) = 12.65, p < .01.  

Correlational Hypotheses 

To investigate the general correlational pattern between insight, metacognition, 

and the three remaining LME performance indices, the zero-order correlations across 

conditions are shown in Table 5. There were several things worthy of noting.  

The first is that the proposed relationship between insight and the LME 

performance indices appeared to be supported. Insight was highly and positively 

correlated with matching, achievement, and cognitive control.  Further, the objective 

metacognition measure (the accuracy scores) appeared to be positively and significantly 

related to both cognitive control and insight. Therefore, the thesis that insight and 

metacognition are similar constructs receives some support.  However, this support had to 

be qualified because the subjective measure of the metacognition (the MAI scores) 

exhibited no significant correlations at all. Therefore, the difference scores for H3 

through H5 were constructed utilizing only accuracy scores. 

Hypothesis 3 

 Contrary to prediction, the Spearman correlation between the TCI scores and the 

insight-achievement difference scores was significant and positive, r = +.56, p < .001. 

The correlation between the TCI scores and the insight-matching difference scores was 

not significant. Finally, contrary to prediction, the correlation between the TCI scores and 

the insight-cognitive control difference scores was significant and positive, r = +.29, p < 

.05. 
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Hypothesis 4 

 The Spearman correlation between the TCI scores and the metacognition-

achievement difference scores was not significant. Contrary to predictions, the correlation 

between the TCI scores and the metacognition-matching difference scores was significant 

and positive, r = +.31, p < .05. Finally, the correlation between the TCI scores and the 

metacognition-cognitive control difference scores was not significant.  

Hypothesis 5 

 Finally, contrary to prediction, the Spearman correlation between TCI scores and 

metacognition-insight difference scores was significant and positive, r = +.25, p < .01. 

Contributions of Insight and Metacognition to Performance 

 Although the correlations across all four conditions between the five dependent 

measures were informative, it was still considered useful to explore how such patterns 

varied from condition to condition. This was essentially the case because the correlational 

magnitudes were expected to vary from condition to condition. Because there were no 

significant interaction effects from the MANOVA, there was no rationale for examining 

the correlational patterns from cell to cell. Rather, the two levels of the function form IV 

were compared to each other in terms of correlational patterns, as were the two levels of 

the task type variable. 

Correlational Patterns in Linear and Quadratic Conditions 

 The relevant correlational matrices for the linear and quadratic conditions are 

shown in Table 6.  An interesting pattern emerged when examining the pattern of 

correlations for accuracy scores and insight (because MAI scores were not correlated in 

the omnibus correlation matrices, only the accuracy score measures were examined 
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further). In the linear conditions, only insight predicted performance. However, in the 

quadratic conditions, both insight and metacognition appeared to predict performance. 

The accuracy scores were significantly correlated with two of the LME indices of 

performance, and very nearly so (p=.053) with the third.  Likewise, insight was 

significantly correlated with two of the three LME indices. The extent to which insight 

and metacognition predicted unique variance in the quadratic conditions was assessed by 

computing two partial correlation matrices. Both are displayed in Table 7. 

 The first partial correlation matrix examined the correlations between accuracy 

scores and the three LME performance indices with insight partialled out. The second 

partial correlation matrix examined the correlations between insight and the three LME 

indices with the accuracy scores partialled out. It appeared that insight alone explained 

unique performance variance in the linear conditions, and that accuracy scores alone 

explained performance variance in the quadratic conditions. 

 However, the extent to which insight and metacognition jointly contributed to 

performance variance in the quadratic conditions was still to be assessed.  As indicated in 

Table 7, both accuracy scores and insight were significantly correlated with achievement 

and cognitive control. Therefore, two simultaneous regression equations were computed 

with accuracy scores and insight as the predictors: one with achievement as the 

dependent variable, and one with cognitive control as the dependent variable. The results 

of these regressions are displayed in Table 8. In both instances, the accuracy scores were 

more predictive than insight.  

Correlational Patterns in Intuitive and Analytical Tasks 

 Because task type yielded significant main effects in the MANOVA, the 
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correlational patterns among the five dependent measures was also explored. The relevant 

correlational matrices are displayed in Table 9. Unlike the function form IV, there did not 

appear to be a different role played by metacognition and insight in the intuitive and 

analytical tasks. In both instances, insight alone appeared to predict performance.  

Manipulation Check 

 An examination of the differential confidence scores revealed no significant 

difference between the intuitive and the analytical conditions, F (1, 58) = 3.28, p = .07. A 

closer examination of the difference scores revealed a (marginally non-significant) 

tendency for individuals in the intuitive conditions to express more confidence in insight 

than in performance. This pattern is, according to CCT, more characteristic of analytical 

cognition than intuitive. 

 However, an examination of the differential confidence scores did reveal a 

significant difference between the linear and quadratic conditions, F (1, 58) = 5.63, p < 

.05. The difference scores were significantly larger in the linear than the quadratic 

condition, indicating that individuals in the linear condition expressed more confidence in 

insight than in performance. In other words, contrary to CCT, the linear conditions 

triggered more analytical cognition than did the nonlinear conditions. 

Experiment One Summary 

 In almost all cases, Cognitive Continuum Theory was contradicted. Performance 

indices tended to be higher in the linear than quadratic conditions, and the linear 

conditions triggered more analytical cognition than did the nonlinear conditions. Further, 

performance tended to be higher in the intuitive than the analytical conditions. There was 

also a nonsignificant tendency for analytical cognition to be engaged in slightly more 
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often by persons in the intuitive rather than the analytical conditions. 

 The failure of task type (analytical versus intuitive) to generate effects consistent 

with CCT is puzzling, but there is one plausible hypothesis. CCT posits that predictability 

(discussed below) is just one of several equally important factors that differentiate 

intuitive from analytical tasks. Predictability, however, was not manipulated in the 

current study due to software limitations. (POLICY PC does not allow for the easy 

manipulation of predictability. When predictability was manipulated in the current 

experiment, POLICY PC generated inconsistent cognitive feedback regarding the 

relationship between cue and criterion values from trial block to trial block.) 

The finding that performance was consistently higher in the linear rather than the 

quadratic conditions is also contrary to CCT. It also appeared that function form 

(quadratic vs. linear) had more of an impact than did task type. This can be shown in 

several different ways.  

One is the observation that the function form manipulation resulted in a greater 

difference in modes of cognition than did task type, as indicated by the manipulation 

check results. Further, the average partial eta-squared value associated with the four 

function form effects was .49, compared to an average partial eta-squared value of .11 

associated with the task type manipulation. That is, on average the function form 

manipulation explained approximately 5 times as much variance as did the task type 

manipulation. There was also some indication that metacognition and insight played 

different roles in the linear and quadratic tasks. It appeared that the only time that 

metacognition explained unique performance variance was in the quadratic conditions. 

The finding that nonlinear cue-criterion relationships results in lower performance 
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was more consistent with the findings of Brehmer and associates, who proposed a 

function form hierarchy hypothesis (see Appendix C and pp. 16 for further discussion).  

This hypothesis compares two types of linear functions to two types of nonlinear 

functions. Could the overall pattern of results from the first experiment be replicated, 

when the positive linear function was replaced with a negative one, and the inverted U-

shaped quadratic function replaced with a U-shaped one? Finally, could the results from 

both experiments be mapped onto the function form hierarchy hypothesis of Brehmer et. 

al?  
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Table 3. TCI Scores by Experimental Condition.  
 

                Function Form 

Quadratic Linear Row Means 

 

 

Task Type 

 

 

Analytical 

Intuitive 

Column Means 

6.32 

5.06 

11.38 

2.9 

1.4 

2.15 

9.22 

6.46 

 

 33 



Table 4. Descriptive Statistics Experiment 1, H1-H2. 
 

Descriptive Statistics

.8493 .29659 15
1.0747 .23712 15
.9620 .28765 30
.1819 .24343 16
.2900 .23716 14
.2323 .24264 30
.5048 .43087 31
.6959 .46202 29
.5972 .45273 60

1.6900 .52896 15
1.7013 .48879 15
1.6957 .50045 30
.3156 .43163 16
.4464 .38005 14
.3767 .40684 30
.9806 .84332 31

1.0955 .77058 29
1.0362 .80422 60
.9913 .34424 15

1.3333 .38381 15
1.1623 .39821 30
.7450 .30509 16
.9200 .10806 14
.8267 .24752 30
.8642 .34278 31

1.1338 .35108 29
.9945 .36973 60
.8800 .31491 15

1.1260 .27856 15
1.0030 .31778 30
.5594 .19010 16
.7614 .15427 14
.6537 .19968 30
.7145 .30146 31
.9500 .29021 29
.8283 .31664 60

Task Type
analytical
intuitive
Total
analytical
intuitive
Total
analytical
intuitive
Total
analytical
intuitive
Total
analytical
intuitive
Total
analytical
intuitive
Total
analytical
intuitive
Total
analytical
intuitive
Total
analytical
intuitive
Total
analytical
intuitive
Total
analytical
intuitive
Total
analytical
intuitive
Total

Function Form
linear

quadratic

Total

linear

quadratic

Total

linear

quadratic

Total

linear

quadratic

Total

achievement

matching

cognitive control

insight

Mean Std. Deviation N
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Table 5. Zero-order Correlations for Experiment 1.  
Correlations

1 .871** .718** .790** .166 .220
. .000 .000 .000 .205 .091

60 60 60 60 60 60
.871** 1 .416** .559** .114 .150
.000 . .001 .000 .385 .252

60 60 60 60 60 60
.718** .416** 1 .791** .133 .310*
.000 .001 . .000 .309 .016

60 60 60 60 60 60
.790** .559** .791** 1 .126 .294*
.000 .000 .000 . .336 .023

60 60 60 60 60 60
.166 .114 .133 .126 1 .084
.205 .385 .309 .336 . .522

60 60 60 60 60 60
.220 .150 .310* .294* .084 1
.091 .252 .016 .023 .522 .

60 60 60 60 60 60

Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N

achievement

matching

cognitive control

insight

MAI

Accuracy Scores

achievement matching
cognitive
control insight MAI

Accuracy
Scores

Correlation is significant at the 0.01 level (2-tailed).**. 

Correlation is significant at the 0.05 level (2-tailed).*. 
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Table 6. Correlation Matrices for Linear and Quadratic Conditions, Experiment 1. 

Correlations (Linear Conditions)

1 .359 .944** .885** .282
. .051 .000 .000 .131

30 30 30 30 30
.359 1 .083 .187 .128
.051 . .663 .322 .500

30 30 30 30 30
.944** .083 1 .859** .267
.000 .663 . .000 .154

30 30 30 30 30
.885** .187 .859** 1 .318
.000 .322 .000 . .087

30 30 30 30 30
.282 .128 .267 .318 1
.131 .500 .154 .087 .

30 30 30 30 30

Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N

achievement

matching

cognitive control

insight

accuracy scores

achievement matching
cognitive
control insight

accuracy
scores

Correlation is significant at the 0.01 level (2-tailed).**. 
 

 
 
 

Correlations (Quadratic Conditions)

1 .063 .163 .384* .476**
. .740 .389 .036 .008

30 30 30 30 30
.063 1 .971** .266 .357
.740 . .000 .155 .053

30 30 30 30 30
.163 .971** 1 .363* .398*
.389 .000 . .049 .029

30 30 30 30 30
.384* .266 .363* 1 .347
.036 .155 .049 . .060

30 30 30 30 30
.476** .357 .398* .347 1
.008 .053 .029 .060 .

30 30 30 30 30

Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N

cognitive control

matching

achievement

insight

Accuracy Scores

cognitive
control matching achievement insight

Accuracy
Scores

Correlation is significant at the 0.05 level (2-tailed).*. 

Correlation is significant at the 0.01 level (2-tailed).**. 
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Table 7. Partial Correlation Matrices for Quadratic Conditions, Experiment 1 
 
Controlling for Insight 
 
  CC  Match     Ach     AccScor 
 
 
CC          1.0000     -.0439      .0276      .3960 
             (    0)    (   27)    (   27)    (   27) 
             P= .       P= .821    P= .887    P= .033 
 
Match       -.0439     1.0000      .9737      .2925 
             (   27)    (    0)    (   27)    (   27) 
             P= .821    P= .       P= .000    P= .124 
 
Ach          .0276      .9737     1.0000      .3117 
             (   27)    (   27)    (    0)    (   27) 
             P= .887    P= .000    P= .       P= .100 
 
AccScor        .3960      .2925      .3117     1.0000 
             (   27)    (   27)    (   27)    (    0) 
             P= .033    P= .124    P= .100    P= . 
 
 
Controlling for AccScor 
 
  CC  Match     Ach    Insight 
 
CC            1.0000     -.1299     -.0328      .2658 
             (    0)    (   27)    (   27)    (   27) 
             P= .       P= .502    P= .866    P= .163 
 
Match         -.1299     1.0000      .9675      .1624 
             (   27)    (    0)    (   27)    (   27) 
             P= .502    P= .       P= .000    P= .400 
 
Ach          -.0328      .9675     1.0000      .2613 
             (   27)    (   27)    (    0)    (   27) 
             P= .866    P= .000    P= .       P= .171 
 
Insight       .2658      .1624      .2613     1.0000 
             (   27)    (   27)    (   27)    (    0) 
             P= .163    P= .400    P= .171    P= . 
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Table 8. Simultaneous Regression Equations in Quadratic Conditions, Experiment 1 

ANOVAb

.369 2 .184 3.721 .037a

1.338 27 .050
1.707 29

Regression
Residual
Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), insight, Accuracy Scoresa. 

Dependent Variable: achievementb. 
 

Coefficientsa

.154 .187 .822 .419

1.275E-02 .007 .310 1.705 .100

.310 .221 .256 1.406 .171

(Constant)
Accuracy Scores

insight

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardi
zed

Coefficien
ts

t Sig.

Dependent Variable: achievementa. 
 

 

ANOVAb

.500 2 .250 5.287 .012a

1.277 27 .047
1.777 29

Regression
Residual
Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), insight, Accuracy Scoresa. 

Dependent Variable: cognitive controlb. 
 

Coefficientsa

.785 .183 4.287 .000

1.637E-02 .007 .390 2.241 .033

.309 .216 .249 1.433 .163

(Constant)
Accuracy Scores

insight

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardi
zed

Coefficien
ts

t Sig.

Dependent Variable: cognitive controla. 
 

 

 38 



Table 9. Correlation Matrices for Analytical and Intuitive Conditions, Experiment 1. 
 
 

Correlations (Intuitive)

1 .466* .800** .813** .221
. .011 .000 .000 .250

29 29 29 29 29
.466* 1 .861** .588** .197
.011 . .000 .001 .306

29 29 29 29 29
.800** .861** 1 .791** .208
.000 .000 . .000 .278

29 29 29 29 29
.813** .588** .791** 1 .318
.000 .001 .000 . .093

29 29 29 29 29
.221 .197 .208 .318 1
.250 .306 .278 .093 .

29 29 29 29 29

Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N

cognitive control

matching

achievement

insight

Accuracy Scores

cognitive
control matching achievement insight

accuracy
scores

Correlation is significant at the 0.05 level (2-tailed).*. 

Correlation is significant at the 0.01 level (2-tailed).**. 
 

 

Correlations (Analytical)

1 .381* .607** .707** .340
. .034 .000 .000 .062

31 31 31 31 31
.381* 1 .899** .566** .104
.034 . .000 .001 .576

31 31 31 31 31
.607** .899** 1 .779** .195
.000 .000 . .000 .292

31 31 31 31 31
.707** .566** .779** 1 .232
.000 .001 .000 . .210

31 31 31 31 31
.340 .104 .195 .232 1
.062 .576 .292 .210 .

31 31 31 31 31

Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N

cognitive control

matching

achievement

insight

Accuracy Scores

cognitive
control matching achievement insight

Accuracy
Scores

Correlation is significant at the 0.05 level (2-tailed).*. 

Correlation is significant at the 0.01 level (2-tailed).**. 
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CHAPTER 4 

EXPERIMENT TWO 

Purposes and Rationale 

 The purposes of the second experiment were to 1) replicate and extend the 

findings of the first experiment and 2) examine the extent to which type of nonlinear and 

linear function forms affect performance.  

Cue-Criterion Function Forms 

 The hierarchy of cue-criterion function forms discussed earlier consisted of two 

linear (positive, negative) and two nonlinear (U-shaped, inverted U-shaped) functions. 

The first experiment utilized a positive linear and an inverted U-shaped function form. 

The second experiment replaced the positive linear function with a negative linear 

function, and the inverted U-shaped function with a U-shaped function.   

TCI Scores 

 One way of examining the extent to which type of linear and type of nonlinear 

function forms can impact decision making in MPCL environments, as well as to 

simultaneously highlight how CCT does not consider this in the construction of TCI 

scores, was to construct tasks with the same TCI score but different function form. 

Therefore, the linear tasks in Experiment 2 utilized the same cue sets as the linear tasks in 

Experiment 1. All other factors were held constant so that the TCI scores for the linear 

conditions were the same across both experiments. Similarly, the nonlinear tasks in 
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Experiment 2 utilized the same cue sets as the nonlinear tasks in Experiment 1, while 

holding all other factors constant so that the same TCI scores were assigned.  

Hypotheses and Methods 

 The same 5 hypotheses assessed in the first experiment were examined in the 

second experiment. In addition, the correlational patterns between insight, metacognition, 

and the three Lens Model Equation performance indices were explored in the same 

fashion as before. In all respects except for function forms, the second experiment was 

identical to the first.  

Results 

 All descriptive statistics from the MANOVA analysis are listed in Table 10. 

Hypothesis 1 

 Contrary to predictions, achievement was significantly higher in the linear than 

the quadratic conditions, F (1, 56) = 63.01, p <.001. There was no significant effect for 

task type.  Also contrary to prediction, matching was significantly higher in the linear 

than the quadratic conditions, F (1, 56) = 284.32, p < .001. There was no significant 

effect for task type.  Finally, neither function form nor task type significantly impacted 

cognitive control.  

Hypothesis 2 

 Contrary to prediction, insight was significantly higher in the linear than the 

quadratic conditions, F (1, 56) = 4.23, p < .05. There was no significant effect for task 

type.  

Correlational Hypotheses 

 To investigate the general correlational pattern between insight, metacognition, 
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and the three remaining LME performance indices, the zero-order correlations across 

conditions are shown in Table 11. There were several things worthy of noting. 

The first was that the proposed relationship between insight and the LME 

performance indices appeared to be supported. Insight was significantly correlated with 

two of the three LME performance indices.   

Further, the subjective metacognition measure (the MAI scores) appeared to be 

positively and significantly related to two of the three LME performance indices, as well 

as insight.  Therefore, the thesis that insight and metacognition are similar constructs 

received some support.  However, this support was qualified because the objective 

measure of metacognition (the accuracy scores) exhibited no significant correlations at 

all. Therefore, the difference scores for H3 through H5 were constructed utilizing only 

the MAI scores.  

Hypothesis 3 

 The Spearman correlation between the insight-achievement difference scores and 

the TCI scores was not significant. Contrary to predictions, the Spearman correlation 

between the insight-matching difference scores and the TCI scores was significant and 

positive, r = +.52, p < .001. The Spearman correlation between the insight-cognitive 

control and the TCI scores was not significant.  

Hypothesis 4 

 Contrary to prediction, the Spearman correlation between the metacognition-

achievement difference scores and the TCI scores was significant and positive, r = +.36, p 

< .01. Also contrary to prediction, the Spearman correlation between the metacognition-

matching difference scores and the TCI scores was significant and positive, r = +.53, p < 
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.001. Finally, the Spearman correlation between the metacognition-cognitive control and 

the TCI scores was not significant. 

Hypothesis 5 

 The Spearman correlation between the metacognition-insight difference scores 

and the TCI scores was not significant.  

Contributions of Insight and Metacognition to Performance 

Because only the function form IV yielded significant differences with regards to 

the MANOVA results, only the linear and quadratic condition correlational patterns were 

compared to one another.  

Correlational Patterns in Linear and Quadratic Conditions 

 The relevant correlational matrices for the linear and quadratic conditions are 

shown in Table 12.  The same general pattern seen in Experiment 1 was replicated here. 

In the linear conditions, only insight predicted performance. However, in the quadratic 

conditions, both insight and metacognition appeared to predict performance. The extent 

to which insight and metacognition predicted unique variance in the quadratic conditions 

was assessed by computing two partial correlation matrices. Both are displayed in Table 

13. 

 The first partial correlation matrix examined the correlations between the MAI 

scores and the three LME performance indices with insight partialled out. The second 

partial correlation matrix examined the correlations between insight and the three LME 

indices with the MAI scores partialled out. It appeared that insight alone explained 

unique performance variance in the linear conditions, but that both insight and MAI 

scores explained performance variance in the quadratic conditions. 
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 However, the extent to which insight and metacognition jointly contribute to 

performance variance in the quadratic conditions had still to be assessed.  As indicated in 

Table 11, both the MAI scores and insight were significantly correlated with achievement 

and matching. Therefore, two simultaneous regression equations were computed with the 

MAI scores and insight as the predictors: one with achievement as the dependent 

variable, and one with matching as the dependent variable. The results of these 

regressions are displayed in Table 14. In both instances, insight was more predictive than 

the MAI scores. 

Manipulation Check 

 An examination of the differential confidence scores revealed no significant 

difference between the intuitive and the analytical conditions, F (1, 58) = 1.96, p = .10. 

Further, an examination of the differential confidence scores revealed no significant 

difference between the linear and quadratic conditions, F (1, 58) = 2.05, p > .05.  

Experiment Two Summary 

 In general, the second experiment was a successful replication of the first. The 

CCT predictions were overwhelmingly rejected. The linear conditions displayed 

significantly higher values for three of the four traditional LME performance indices. 

Further, it appeared that, once again, metacognition explained unique variance only in the 

quadratic conditions. Conversely, in the linear conditions insight alone explained 

performance variance.  Once again, the function form manipulation appeared to be 

driving the differences observed. In all four cases, the function form manipulation effects 

were highly significant, compared with no significant effects for the task type 

manipulation. In addition, the average partial eta-squared value for the function form 
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manipulation was approximately ten times as large as the average partial eta-squared 

value for task type (.31 and .03, respectively). 

 The findings were thus consistent those of the first experiment. However, the 

extent to which the function forms effects seen in both experiments mapped onto the 

function form hierarchy hypothesis remained to be explored.  
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Table 10. Descriptive Statistics for Experiment Two, H1-H2. 

Descriptive Statistics

.8333 .22906 15

.9847 .37395 15

.9090 .31426 30

.3713 .29181 15

.2493 .25260 15

.3103 .27525 30

.6023 .34877 30

.6170 .48801 30

.6097 .42060 60
1.7467 .66629 15
1.6800 .46098 15
1.7133 .56396 30

.6400 .48206 15

.4047 .40736 15

.5223 .45455 30
1.1933 .80202 30
1.0423 .77675 30
1.1178 .78646 60

.9907 .28599 15
1.1387 .37707 15
1.0647 .33733 30

.8093 .57517 15

.9673 .24218 15

.8883 .44099 30

.9000 .45574 30
1.0530 .32334 30

.9765 .39928 60
1.6253 .89521 15
1.7220 .58536 15
1.6737 .74479 30
1.6707 .58031 15

.9907 .43559 15
1.3307 .61136 30
1.6480 .74161 30
1.3563 .62876 30
1.5022 .69734 60

Task Type
analytical
intuitive
Total
analytical
intuitive
Total
analytical
intuitive
Total
analytical
intuitive
Total
analytical
intuitive
Total
analytical
intuitive
Total
analytical
intuitive
Total
analytical
intuitive
Total
analytical
intuitive
Total
analytical
intuitive
Total
analytical
intuitive
Total
analytical
intuitive
Total

Function Form
linear

quadratic

Total

linear

quadratic

Total

linear

quadratic

Total

linear

quadratic

Total

Achievement

matching

cognitive control

insight

Mean Std. Deviation N
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Table 11. Zero-order Correlations for Experiment 2. 
 

Correlations

1 .310* .595** .063 .095 .026
. .016 .000 .630 .469 .842

60 60 60 60 60 60
.310* 1 .892** .303* .576** -.018
.016 . .000 .018 .000 .892

60 60 60 60 60 60
.595** .892** 1 .295* .485** -.100
.000 .000 . .022 .000 .445

60 60 60 60 60 60
.063 .303* .295* 1 .381** .168
.630 .018 .022 . .003 .199

60 60 60 60 60 60
.095 .576** .485** .381** 1 -.103
.469 .000 .000 .003 . .434

60 60 60 60 60 60
.026 -.018 -.100 .168 -.103 1
.842 .892 .445 .199 .434 .

60 60 60 60 60 60

Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N

cognitive control

matching

achievement

MAI

insight

accuracy scores

cognitive
control matching achievement MAI insight

accuracy
scores

Correlation is significant at the 0.05 level (2-tailed).*. 

Correlation is significant at the 0.01 level (2-tailed).**. 
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Table 12. Correlation Matrices for Linear and Quadratic Conditions, Experiment 2. 
 

Correlations (Linear Conditions)

1 .220 .808** .074 -.155
. .243 .000 .699 .415

30 30 30 30 30
.220 1 .660** .302 .622**
.243 . .000 .104 .000

30 30 30 30 30
.808** .660** 1 .331 .341
.000 .000 . .074 .065

30 30 30 30 30
.074 .302 .331 1 .480**
.699 .104 .074 . .007

30 30 30 30 30
-.155 .622** .341 .480** 1
.415 .000 .065 .007 .

30 30 30 30 30

Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N

cognitive control

matching

achievement

MAI

insight

cognitive
control matching achievement MAI insight

Correlation is significant at the 0.01 level (2-tailed).**. 
 

 
 

Correlations (Quadratic Conditions)

1 .237 .518** .049 .228
. .208 .003 .798 .225

30 30 30 30 30
.237 1 .914** .564** .614**
.208 . .000 .001 .000

30 30 30 30 30
.518** .914** 1 .453* .615**
.003 .000 . .012 .000

30 30 30 30 30
.049 .564** .453* 1 .356
.798 .001 .012 . .054

30 30 30 30 30
.228 .614** .615** .356 1
.225 .000 .000 .054 .

30 30 30 30 30

Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N

cognitive control

matching

achievement

MAI

insight

cognitive
control matching achievement MAI insight

Correlation is significant at the 0.01 level (2-tailed).**. 

Correlation is significant at the 0.05 level (2-tailed).*. 
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Table 13. Partial Correlation Matrices for Quadratic Conditions, Exp 2. 
 
Controlling for Insight 
 
            CC          Match      Ach        MAI 
 
CC           1.0000      .1256      .4925     -.0356 
             (    0)    (   27)    (   27)    (   27) 
             P= .       P= .516    P= .007    P= .855 
 
Match        .1256     1.0000      .8619      .4687 
             (   27)    (    0)    (   27)    (   27) 
             P= .516    P= .       P= .000    P= .010 
 
Ach          .4925      .8619     1.0000      .3176 
             (   27)    (   27)    (    0)    (   27) 
             P= .007    P= .000    P= .       P= .093 
 
MAI         -.0356      .4687      .3176     1.0000 
             (   27)    (   27)    (   27)    (    0) 
             P= .855    P= .010    P= .093    P= . 
 
 
Controlling for MAI 
 
   CC  Match     Ach     Insight 
 
CC           1.0000      .2538      .5573      .2261 
             (    0)    (   27)    (   27)    (   27) 
             P= .       P= .184    P= .002    P= .238 
 
Match         .2538     1.0000      .8947      .5362 
             (   27)    (    0)    (   27)    (   27) 
             P= .184    P= .       P= .000    P= .003 
 
Ach           .5573      .8947     1.0000      .5453 
             (   27)    (   27)    (    0)    (   27) 
             P= .002    P= .000    P= .       P= .002 
 
Insight       .2261      .5362      .5453     1.0000 
             (   27)    (   27)    (   27)    (    0) 
             P= .238    P= .003    P= .002    P= . 
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Table 14. Simultaneous Regression Equations in Quadratic Conditions, Experiment 2.  
 

ANOVAb

3.082 2 1.541 14.295 .000a

2.910 27 .108
5.992 29

Regression
Residual
Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), Insight, MAIa. 

Dependent Variable: matchingb. 
 

Coefficientsa

-.826 .305 -2.704 .012
.182 .066 .396 2.757 .010
.352 .107 .474 3.301 .003

(Constant)
MAI
Insight

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardi
zed

Coefficien
ts

t Sig.

Dependent Variable: matchinga. 
 

 

ANOVAb

.970 2 .485 10.670 .000a

1.227 27 .045
2.197 29

Regression
Residual
Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), Insight, MAIa. 

Dependent Variable: achievementb. 
 

Coefficientsa

-.362 .198 -1.824 .079
7.477E-02 .043 .268 1.740 .093

.234 .069 .520 3.380 .002

(Constant)
MAI
Insight

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardi
zed

Coefficien
ts

t Sig.

Dependent Variable: achievementa. 
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CHAPTER 5 
 

GENERAL DISCUSSION 

Function Forms 

Because there were no significant interactions between the task type and the 

function form independent variables in either experiment, the data from both experiments 

were collapsed across task type so that just the effects of function form were examined. 

This was done to allow for the examination of the extent to which the results could be 

explained via the function form hierarchy hypothesis. The results from this MANOVA 

are displayed in Table 15.  All significant differences were explored via Bonferroni t-

tests, the results of which are displayed in Table 16.   

Lens Model Equation Performance Indices 

It appeared that the level of insight was significantly different between the kinds 

of nonlinear tasks. Similarly, the level of insight was significantly different in the types of 

linear tasks. Further, there was at least one instance in which the type of linear and 

nonlinear functions chosen when examining cognitive control could affect the outcome. 

For instance, the difference between the levels of cognitive control in a positive linear 

task and a U-shaped function was statistically significant. However, this was not the case 

when comparing cognitive control levels between a U-shaped function and a negative 

linear task.   

This pattern of results would be expected if the function form hierarchy 

hypothesis was true, because the positive linear and U-shaped function forms are the first 

 51 



and third functions in the hierarchy, and are thus farther apart than the negative linear and 

U-shaped function forms, which are the second and third, respectively. This rationale is 

also consistent with the observation that the level of achievement in an inverted U-shape 

quadratic task was not significantly different from the U-shape, but became increasingly 

significant as one approached the positive linear function. This pattern indicates a 

shortcoming of CCT, which considers only linearity and nonlinearity of function form. 

A clearer indication of how the findings map onto the function form hierarchy 

hypothesis would be indicated by a trend analysis. Unfortunately, an F-test of linear trend 

was inappropriate because the assumptions of the test (quantitative variable, evenly 

spaced intervals) were not met. However, a rough indication of the extent to which the 

results for all four LME performance indices corresponded with placement in the 

function form hierarchy was given by assigning values of 1 to 4 to the inverted U-shape, 

U-shape, negative linear, and positive linear function forms, respectively.  

The resulting correlations are shown in Table 17, and bar graphs of the 

relationships underlying these correlations are shown in Figure 2. In all four cases, the 

Spearman correlations between hierarchy position and the four LME performance indices 

(accuracy, matching, cognitive control, insight) were positive and highly significant. 

These results are consistent with the hierarchy hypothesis. 

Manipulation Check Difference Scores 

CCT predicted that higher levels of performance should be associated with greater 

confidence in insight than performance. Although CCT incorrectly predicted which 

conditions would result in greater difference scores, it was the case that higher 

performance covaried positively with the magnitude of the difference scores. 
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Interestingly, however, the pattern of the confidence scores was also consistent with the 

hierarchy hypothesis.  

The hierarchy hypothesis would predict that the differences observed in the first 

experiment, which contrasted the first and fourth position members, should result in 

overall greater differences than the second experiment, which contrasted the second and 

the third position members. This pattern did emerge in that the confidence scores in the 

first experiment were significantly different between the linear and quadratic conditions, 

but not so (although in the correct direction, i.e., linear higher than quadratic) in the 

second experiment. 

Effect Size Estimates 

The hierarchy hypothesis would also predict that the effect sizes for function form 

in the first experiment would be larger than those for function form in the second 

experiment. This rests upon the fact that the first experiment contrasted the first and 

fourth members of the hierarchy, whereas the second contrasted the second and third. 

Results were consistent with this prediction, with an average partial eta-squared value for 

function form in the first experiment of .49, as contrasted with an average partial eta-

squared value of .31 for function form in the second experiment.  

Metacognition, Insight, and Performance 

The manner in which metacognition and insight contributed to performance in the 

linear and quadratic conditions could, it is argued, also have been seen as moving along a 

continuum paralleling that of the function form hierarchy.  In the positive linear 

condition, insight alone explained unique performance variance.  In the negative linear 

condition, once again only insight explained performance variance. In the U-shaped 
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function form, both insight and metacognition explained unique performance variance. 

However, in the inverted U-shaped function form, metacognition alone explained unique 

variance. It appeared that as tasks became more difficult, metacognition became more 

salient, and insight less so.  

The position that metacognition and insight are similar constructs was somewhat 

supported. As noted above, there appeared to be a “dissociation” between metacognition 

and insight. As tasks became more difficult (e.g., were placed higher in the the function 

form hierarchy), metacognition became more predictive of performance, and insight 

became less so. Further, as tasks became more difficult, the correlation between 

metacognition and insight decreased.  

Task Type 

The task variable exhibited three significant effects in the first experiment, but 

none in the second. Thus, there appeared to be mixed evidence concerning the extent to 

which task type drives performance, at least in the absence of lowered predictability. The 

present evidence appeared to suggest that when task type significantly impacted 

performance, intuitive tasks led to higher performance than analytical tasks. This is 

contrary to CCT, which predicts higher performance in analytical tasks. One possible 

explanation for this finding revolves around the concept of predictability. 

As mentioned above, a commonly manipulated factor in CCT research is lower 

predictability for intuitive environments. However, in the assignation of Task Continuum 

Index (TCI) scores, CCT places no more emphasis upon predictability than it does the 

other factors listed in Table 1. Therefore, according to CCT it is possible to make up for 

similarity of predictability by increasing the discrepancy between the other task factors. 
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However, MCPL research indicates that predictability is strongly and positively related to 

performance (Dudycha &  Naylor, 1966; Brehmer, 1974b).   

The fact that the pattern of results normally seen in CCT is reversed when 

predictability is not manipulated suggests that the driving force behind the differing 

performance profiles of intuitive and analytical tasks may be largely due to the lower 

predictability of intuitive tasks. This hypothesis is indirectly supported by the observation 

that the pilot study, which did manipulate predictability, yielded results consistent with 

CCT (i.e., positive correlations between performance indices and the TCI scores; 

significantly greater performance in the nonlinear than linear conditions; significantly 

greater performance in the analytical than the intuitive tasks).  

Limitations and Future Experiments 

One important limitation of the current experiment concerns predictability. Due to 

the nature of the software, predictability was not manipulated. As indicated, however, 

predictability may in fact be more important a factor than acknowledged by CCT. One 

manner of examining whether or not predictability is the main factor driving the lower 

performance usually seen in intuitive conditions would be to construct analytical and 

intuitive tasks which varied in a similar fashion along a predictability continuum (e.g., 

both types of task at .20, .40, .60, and .80 levels of predictability). If predictability is 

indeed the major factor, it should be possible to show that more predictable analytical 

tasks result in higher performance levels than do less predictable intuitive tasks. More 

convincingly, it could also be shown that more predictable intuitive tasks exhibit higher 

performance indices than do less predictable analytical tasks.  
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The finding that metacognition was more predictive of performance in tasks of 

greater difficulty is intriguing. There are two possible explanations for this finding.  

The first is simply that when tasks are easier, it is not necessary to possess high levels of 

metacognition to do well. The more difficult the task becomes, the more dependent 

performance is upon metacognition. If the relationship between metacognition and 

performance is indeed driven by task difficulty, there are many avenues of exploration 

suggested.2 For example, lowerering predictability (i.e., greater difficulty, a. k. a. the 

“hard” effect) might also be expected to increase the correlation between metacognition 

and performance.  Imposing increasingly stringent time constraints upon the task might 

serve the same purpose. 

The second possible explanation involves a shortcoming of POLICY PC. 

POLICY PC is a software package that is self-paced in nature, and does not allow for the 

measurement of response rate. Therefore, it is possible that more metacognitive 

individuals would, when completing a more difficult task, engage in greater amounts of 

monitoring behavior (pondering an answer, spending more time assessing strategies, 

etc.). 

If this were the case, then two things should be observed. Firstly, a positive 

correlation should be seen between the amount of time spent on a block of trials and 

measures of metacognition. Secondly, imposing increasingly stringent time constraints 

would, presumably, attenuate this correlation if the relationship is in fact due to the 

application of time and resource demanding strategies. This is rather elegant, in that the 

                                                 
2 This is not the same argument underlying the hard-easy effect. In general, the hard-easy effect measures 
discrepancies between performance and confidence ratings elicited within a task. The current argument 
concerns itself with the relationship between metacognition measured independent of a task. Further, the 
application of metacognitive measures to MCPL tasks is fairly new. 
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same manipulation (increasing time constraints) should lead to one outcome or the other 

depending upon which explanation is correct.   Further, it would be of interest to see if 

the correlation between metacognition and performance holds true when there is little 

time for application of resource-demanding strategies.  

Finally, the observation that there was an inconsistent relationship between the 

two measures of metacognition and insight is problematic. In the first experiment, only 

the accuracy scores were correlated with performance and insight. In the second 

experiment, only the MAI scores were correlated with performance and insight. When the 

zero-order correlations between performance and the two measures of metacognition are 

examined across the pooled data from both experiments3 (see Table 21), the MAI scores 

alone predicted performance and insight (although the correlation between achievement 

and accuracy scores approaches significance, p = .07). Further, the metacognitive scores 

were themselves not correlated with each other.  

Taken together, these two findings suggest that the inconsistent pattern may be 

due to the fact that insight is more correlated with some aspects of metacognition than 

others. That is, the metacognitive measures may not have been correlated with each other 

because they were measuring different aspects of the same construct. Further, it is 

plausible that insight correlates more highly with some aspects of metacognition than 

others. This is sensible because the foundation underlying the argument for conceptual 

similarity between insight and metacognition rested upon the conceptualization of insight 

as a measure of declarative knowledge. Declarative knowledge, however, is only one of 

                                                 
3 Although there is little doubt that the four function forms utilized in the current project do not exhaust the 
universe of possibilities, there is ample evidence that the four function forms do approximate a meaningful 
continuum in terms of what humans can learn. It has been found, in other words, that utilizing more 
complex predictor terms than simple quadratic ones in computing policies adds little in terms of 
explanatory power (Cooksey, 1996).  
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several important aspects of metacognition. In other words, it may be that measures of 

declarative knowledge would correlate more highly with insight than other measures of 

metacognition. 

There is, however, another possible explanation for the correlations seen between 

insight and metacognition. This is known as methods variance. Essentially, methods 

variance is an acknowledgment that the manner in which constructs are measured can 

sometimes inflate or attenuate a correlation between the constructs. For example, the 

correlations between similar constructs are sometimes greater when both are measured in 

a similar fashion (e.g., paper and pencil) than when measured in different fashions (e.g., 

paper and pencil versus a computer administered questionnaire). In more extreme cases, 

it is possible that similar methods of measurement can result in significant correlations 

between different constructs.  

This speculation is germane to the current paper because insight and 

metacognition were both measured via paper and pencil questionnaires. 4 Therefore, a 

fruitful avenue of exploration would seek to answer both questions: to what extent does 

insight correlate with various aspects of metacognition, and how are those correlations 

affected by method of measurement?  

Both questions indicate the potential usefulness of an approach known as 

multitrait-multimethod (MTMM; Campbell & Fiske, 1959). MTMM allows for the 

examination of both traits (e.g., insight and metacognition in its various aspects) as well 

as methods of measurement (paper and pencil, verbalizations, computer based 

questionnaires, etc.) as sources of variance. Measuring different aspects of metacognition 

                                                 
4 However, the judgment task was administered via computer. Therefore, it could also be argued that the 
correlations seen between insight and performance (as well as those between metacognition and 
performance) might have been lessened due to methods variance.  
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via several methods, as well as insight via the same methods, would help illuminate the 

possibilities discussed above.   
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Table 15. MANOVA Results for Hierarchy Position Hypothesis 

Univariate Tests

2.166 3 .722 5.469 .001
15.315 116 .132
47.574 3 15.858 67.435 .000
27.278 116 .235
13.367 3 4.456 56.376 .000
9.168 116 7.903E-02

17.217 3 5.739 21.467 .000
31.011 116 .267

Contrast
Error
Contrast
Error
Contrast
Error
Contrast
Error

Dependent Variable
cognitive control

matching

achievement

insight

Sum of
Squares df Mean Square F Sig.

The F tests the effect of hierarchy position. This test is based on the linearly independent pairwise
comparisons among the estimated marginal means.
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Table 16. Post-hoc Bonferroni Tests for Hierarchy Position Hypothesis. 

Multiple Comparisons

Bonferroni

.0977 .09382 1.000 -.1542 .3495

.2740* .09382 .025 .0222 .5258

.3357* .09382 .003 .0838 .5875
-.0977 .09382 1.000 -.3495 .1542
.1763 .09382 .376 -.0755 .4282
.2380 .09382 .075 -.0138 .4898

-.2740* .09382 .025 -.5258 -.0222
-.1763 .09382 .376 -.4282 .0755
.0617 .09382 1.000 -.1902 .3135

-.3357* .09382 .003 -.5875 -.0838
-.2380 .09382 .075 -.4898 .0138
-.0617 .09382 1.000 -.3135 .1902
-.0177 .12521 1.000 -.3538 .3184
1.1733* .12521 .000 .8372 1.5094
1.3190* .12521 .000 .9829 1.6551
.0177 .12521 1.000 -.3184 .3538

1.1910* .12521 .000 .8549 1.5271
1.3367* .12521 .000 1.0006 1.6728

-1.1733* .12521 .000 -1.5094 -.8372
-1.1910* .12521 .000 -1.5271 -.8549

.1457 .12521 1.000 -.1904 .4818
-1.3190* .12521 .000 -1.6551 -.9829
-1.3367* .12521 .000 -1.6728 -1.0006

-.1457 .12521 1.000 -.4818 .1904
.0530 .07259 1.000 -.1418 .2478
.6517* .07259 .000 .4568 .8465
.7297* .07259 .000 .5348 .9245

-.0530 .07259 1.000 -.2478 .1418
.5987* .07259 .000 .4038 .7935
.6767* .07259 .000 .4818 .8715

-.6517* .07259 .000 -.8465 -.4568
-.5987* .07259 .000 -.7935 -.4038
.0780 .07259 1.000 -.1168 .2728

-.7297* .07259 .000 -.9245 -.5348
-.6767* .07259 .000 -.8715 -.4818
-.0780 .07259 1.000 -.2728 .1168
-.6707* .13350 .000 -1.0290 -.3123
-.3277 .13350 .094 -.6860 .0307
.3493 .13350 .060 -.0090 .7077
.6707* .13350 .000 .3123 1.0290
.3430 .13350 .069 -.0153 .7013

1.0200* .13350 .000 .6617 1.3783
.3277 .13350 .094 -.0307 .6860

-.3430 .13350 .069 -.7013 .0153
.6770* .13350 .000 .3187 1.0353

-.3493 .13350 .060 -.7077 .0090
-1.0200* .13350 .000 -1.3783 -.6617

-.6770* .13350 .000 -1.0353 -.3187

(J) combo
neg lin
U-shape
Inv U shape
pos lin
U-shape
Inv U shape
pos lin
neg lin
Inv U shape
pos lin
neg lin
U-shape
neg lin
U-shape
Inv U shape
pos lin
U-shape
Inv U shape
pos lin
neg lin
Inv U shape
pos lin
neg lin
U-shape
neg lin
U-shape
Inv U shape
pos lin
U-shape
Inv U shape
pos lin
neg lin
Inv U shape
pos lin
neg lin
U-shape
neg lin
U-shape
Inv U shape
pos lin
U-shape
Inv U shape
pos lin
neg lin
Inv U shape
pos lin
neg lin
U-shape

(I) combo
pos lin

neg lin

U-shape

Inv U shape

pos lin

neg lin

U-shape

Inv U shape

pos lin

neg lin

U-shape

Inv U shape

pos lin

neg lin

U-shape

Inv U shape

Dependent Variable
cognitive control
Fisher's r to z

matching Fisher's r to z

achievement Fisher's r
to z

insight_match_r

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
95% Confidence Interval

Based on observed means.
The mean difference is significant at the .05 level.*. 

 

 61 



Table 17. Spearman Correlations Between Hierarchy Position and Performance. 

 Cognitive 
Control 

Matching Achievement Insight 

Hierarchy 
Position 

.36*** .75*** .74*** .33*** 

***Correlation is significant at the .001 level.  
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Table 18. Zero-order Correlations Across Experiments 1 and 2. 

Correlations

1 .359** .654** .096 .230* .165
. .000 .000 .295 .012 .071

120 120 120 120 120 120
.359** 1 .880** .209* .478** .070
.000 . .000 .022 .000 .448
120 120 120 120 120 120

.654** .880** 1 .229* .465** .070

.000 .000 . .012 .000 .448
120 120 120 120 120 120

.096 .209* .229* 1 .244** .041

.295 .022 .012 . .007 .659
120 120 120 120 120 120

.230* .478** .465** .244** 1 .029

.012 .000 .000 .007 . .754
120 120 120 120 120 120

.165 .070 .070 .041 .029 1

.071 .448 .448 .659 .754 .
120 120 120 120 120 120

Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N

cognitive control

matching

achievement

MAI

insight

accuracy scores

cognitive
control matching achievement MAI insight

accuracy
scores

Correlation is significant at the 0.01 level (2-tailed).**. 

Correlation is significant at the 0.05 level (2-tailed).*. 
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Figure 2. Function Form Hierarchy Relationships 
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APPENDIX A 

DEFINITIONS 

Achievement: the degree of correlation between a judge's responses to sets of cues and the 

observed criterion values that accompany those sets of cues. 

Cognitive control: a measure of the similarity between a judge's responses in a judgment 

task and the predictions of those responses made by a specific model. It is measured by 

the multiple correlation between judgments and the predictions of those judgments by the 

judge's policy equation. Higher levels of cognitive control indicate more consistent 

application of an individual's policy. 

Criterion: this term is used to refer to the value or state within the ecology which the 

judge is attempting to achieve when making a judgment.  

Cues: any numerical, graphical, verbal, pictorial, or other sensory information which is 

available to a judge for potential use in forming a judgment for a specific case and/or 

which is available in the ecology for making predictions about some criterion. 

Cue redundancy: the extent to which cues covary. Usually expressed as the average 

intercorrelation of the cues. 

Ecological regression model: term used to refer to the model that represents the 

relationship between cues (as the predictor variables) and the criterion (as the predicted 

variable).  

Ecological validity: correlation between the values a particular cue takes on and the 

values a criterion takes on. 
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Ecology: the totality of cues, criterion, and all of their interrelationships. 

Functional validity: the correlation between the values a particular cue takes on and the 

values judgments take on. 

Function form: the mathematical relationship between the values of a cue and the values 

of judgments. Function forms may be linear or nonlinear. Function forms are usually 

graphically depicted. 

Judgments: an explicit indication of a judge's appraisal of a set of cue values with respect 

to some dimension of interest (the criterion). 

Matching: a concept used to refer to the extent to which predictions from the judge's 

captured policy are correctly related to the predictions made by the model of the ecology. 

It is defined by the correlation between the predicted values of policy (predicted 

judgments) and ecology (predicted criterion values). 

Predictability: a measure of the similarity between the observed criterion values in an 

ecology and the prediction of those values made by a specific model. It is measured by 

the multiple correlation between observed criterion values and predictions of those values 

by the regression model of the ecology. 

Probabilistic Functionalism: a term used to refer to Brunswik’s concern with the 

probabilistic (as opposed to deterministic) view of the ecology within which most 

organisms operate. The term functionalist indicates his stress upon the utilitarian, 

adjustment centered idea of behavior. 

Policy: a term used to indicate the model used to represent the judgment process of a 

judge. Typically this refers to the multiple regression equation fitted to a person's 
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judgments. The cues are entered as predictor variables and the judgments as the predicted 

variable.  

Subjective weights: relative weights derived from importance ratings assigned to cues by 

participants. Correspondence between subjective weights and regression weights is one 

measure of insight. 
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APPENDIX B 

PROBABILISTIC FUNCTIONALISM 

 Probabilistic functionalism examines functioning in an uncertain environment in a 

variety of ways. One way is to draw a distinction between true states of nature and 

information about those true states that reach our sensory organs. These true states of 

nature are referred to as criteria, and the information that reach our sensory organs are 

known as cues. The extent to which a given cue is predictive of the criterion is known as 

the cue’s ecological validity. Conversely, the extent to which a series of judgments is 

based upon a cue is known as the functional validity of the cue. 

 Any given cue is always a less-than-perfect representation of a criterion. The 

relationship between cue and criteria are, rather, of a probabilistic nature. Some cues are 

more predictive than other cues. Adaptive behavior is defined as the extent to which the 

ecological validities and the functional validities of a cue correspond to each other.  

 Another important feature of probabilistic functionalism is the fact that, although 

early psychological research on judgment utilized cues that were constrained to be 

orthogonal, cues in everyday decisions often exhibit cue redundancy (Brunswik, 1939; 

Brunswik, 1952).  
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APPENDIX C 

MCPL RESEARCH 

Feedback 

 MCPL research indicates that outcome feedback alone is of minimal efficacy,  

restricted to fairly simple tasks involving cue-criterion relationships that are positive and 

linear in form (Lidnell, 1976; Steinmann, 1974; Wigton & Hoellerich, 1984). Nonlinear 

cue-criterion relationships require many more trials if outcome feedback alone is 

provided (Wigton, Patil, & Hoellerich, 1986).  

Cue-Criterion Relationships 

 Although individuals can learn to utilize cues that are related to a criterion in a 

nonlinear fashion (Brehmer, 1969), individuals learn the relationship between cues and 

the criterion more easily if it is linear in nature (Brehmer, 1976; Brehmer & Svensson, 

1976; Naylor & Clark, 1968; Bjorkmann, 1965). The most commonly used nonlinear 

relationship has been a quadratic one (de Klerk & Oppe, 1972; de Klerk & Vroon, 1974; 

Cooksey, 1996). 

More specifically, it appears that individuals find it easiest to learn a task that is 

positive and linear in nature. Negative linear tasks are more difficult, followed by 

nonlinear cue usage (Brehmer, 1971; Eisler & Spolander, 1970). When learning a 

quadratic function, individuals learn a U-shaped function more readily than an inverted 

U-shaped function (Brehmer, 1974a; Sniezek, 1986; Sniezek & Naylor, 1978; Sawyer, 

1991). In fact, it appears that even when individuals are aware that the relationship 
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between the criterion values and cue values is best expressed as a quadratic one, 

individuals focus initially on learning the linear portion (Earle, 1973; Sheets & Miller, 

1974; Summers, Summers, & Karkau, 1969). 

Cue Redundancy and Predictability 

Another factor that appears to impact performance is cue redundancy, or the 

degree to which cues are intercorrelated. In general, the greater the degree of 

intercorrelation among the cues, the greater the performance (Naylor & Schenck, 1968; 

Schenck, 1969). However, it should be noted that the relationship between cue 

intercorrelation and performance is dependent upon the factor of predictability.  

Predictability may be thought of as the amount of variance among criterion values 

that are predicted by variance among cue values (the R2 of the regression model 

expressing the task ecology). In a highly predictable task, greater performance is seen 

when cue redundancy is low than when it is high (Uhl, 1963; Schmitt & Dudycha, 1975). 
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APPENDIX D 

LENS MODEL EQUATION 

Cognitive Control and Predictability 

 The parallel between cognitive control and predictability helps to underscore the 

symmetrical emphasis placed upon the ecology and the organism in the LME. Cognitive 

control may be thought of as analogous to predictability in that, in both instances, the 

correlation between a set of actual and predicted values expresses both measures. 

However, the important distinction is that while predictability is a descriptive statistic of 

an ecology, cognitive control arises out of a mental process.  

 Therefore, while predictability is invariant for a given experimental condition, 

there are as many measures of cognitive control for an experimental conditions as there 

are participants in that condition. Cognitive control is so named because it reflects the 

extent to which an individual consistently combines cue information in the same manner. 

If, for example, an individual integrated the cues with perfect cognitive control across all 

trials, there would be a 1.00 correlation between the predicted judgments and the actual 

judgments.  

Achievement versus Matching 

Cognitive control variance drives the difference between achievement and 

matching values. The familiar distinction between noise and signal is illustrative. The 

difference in the way that cues are related to observed criterion values and predicted 

criterion values revolves around the amount of noise, or unexplained variability, present 
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in both relationships. The regression equation removes any noise from the situation and, 

through perfectly consistent application, generates a set of values in such a way that the 

relationship between the cues and predicted criterion values is a relationship of pure 

signal.  

 This situation is mirrored in the participant part of the lens model as well.  In 

many situations, especially in the current circumstance where predictability in all of the 

ecologies was nearly perfect, the major source of noise is low cognitive control. That is, 

participants usually have some amount of signal (explained variance) present, but there is 

also a large amount of noise (unexplained variance) due to inconsistent application of a 

strategy. A higher cognitive control value indicates a greater amount of signal, and a 

lesser amount of noise.   

 Because matching is the correlation between the predicted criterion values of the 

ecology and the predicted judgments of an organism, matching is an indication of how 

correct the participant’s policy would be, if the environment were perfectly predictable, 

and if the participant’s policy were enacted with perfect consistency (i.e., cognitive 

control of 1.00).  

Interdependence of LME Indices 

It should be noted that these performance indices are not totally independent. For 

example, there is one instance in which, of necessity, the matching and achievement 

indices will be precisely the same. This occurs when achievement is 1.00; that is, when 

an individual's judgments are exactly the same as the observed criterion values.  

In such a circumstance, the ecological regression model and the participant's 

policy will be exactly the same. The predictor values are the same in any case, because 
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both the participant's judgments and observed criterion values are regressed upon the 

same cue values.  When the judgments and observed criterion values are the same, and 

both are being regressed upon the same cue values, then naturally the predicted 

judgments and predicted criterion values will also be the same. Thus, when achievement 

is 1.00, so too is matching. 

 However, because humans are often inconsistent in their application of a policy 

(i.e., have low cognitive control), there is almost always a discrepancy between matching 

and achievement. In fact, a common finding in the literature is that utilizing the policy of 

a judge rather than the judge her or himself to make subsequent decisions often results in 

greater accuracy than utilizing the judge him or herself because of the removal of human 

inconsistency (Bowman, 1963; Cooke, 1967; Libby, 1976; Camerer, 1981b). A couple of 

examples may help clarify this distinction between matching and achievement. 

It is perfectly plausible, for example, for participant A to have a matching index 

that is higher than participant B, but for participant B to have an achievement index that 

is higher than participant A. This could arise because the policy of participant A was 

closer to that of the ecological regression model than the policy of participant B, but 

participant B enacted his policy with greater cognitive control. In more common 

language one could say that when participant A combined cues in a systematic fashion, 

he did so more accurately than when participant B combined cues systematically. 

However, the majority of the time participant A combined cues in a nonsystematic way. 

Therefore, having the correct policy alone is not enough: one must also apply it 

consistently to attain higher levels of achievement. 
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 Conversely, it is also possible that low cognitive control can be advantageous if a 

wildly incorrect policy is being used.  For example, participants A and B might be 

utilizing cues in a positive linear fashion when the cues are in fact inversely related to 

some criterion of interest. Assuming that participant A is still enacting his policy with 

less cognitive control than participant B, what will happen? 

In such a situation, it is possible that the reverse situation emerges. That is, the 

participant who is enacting a policy with less cognitive control might exhibit higher 

achievement than the participant enacting a policy with greater cognitive control. After 

all, if a policy is wildly incorrect, perfect cognitive control in its application will result in 

wildly inaccurate judgments. Both of these examples serve to illustrate the compensatory 

nature of Brunswikian decision making, in which high values on one performance index 

can partially compensate for low values on another. 
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APPENDIX E 

INSIGHT 

Common Measures of Insight 

 Insight has been measured in diverse ways. Some studies have utilized  think-

aloud protocols in which experts described their policy by declaring, during the judgment 

process, what cues were important and how they were utilizing them (Ericsson & Simon, 

1993; Einhorn, Kleinmuntz, & Kleinmuntz, 1979; Armelius & Armelius, 1975a; 

Armelius & Armelius, 1975b). In some cases, individuals are shown a matrix of linear 

regressions expressing judgment policies and are asked to indicate which one is their own 

(Reilly & Doherty, 1992).  

 However, the most common way to measure insight recently has been to require 

individuals to rate, on a likert scale, how important they think that various cues were 

when integrating and predicting criterion values (Gray, 1979; Brehmer, 1977; Reilly & 

Doherty, 1989; Reilly, 1996). These weights are known as subjective weights. Insight is 

often expressed as the similarity (sometimes a correlation) between the subjective 

weights derived from the subject and the statistically captured regression weights from 

their policy. 

Limitations of Insight in Likert Scale Subjective Weights 

 However, the process by which these subjective weights are normally rendered 

comparable to standardized beta weights is only appropriate when the task ecology is 

linear (Hammond, Stewart, Brehmer, & Steinmann, 1975; see also Cooksey, 1996, pp. 
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177, for a discussion of how weight and function forms interact with each other) As noted 

by other researchers (Haarbauer, 1996), this is especially troublesome for CCT. CCT 

posits that nonlinear cue-criterion function forms should result in greater levels of insight, 

because nonlinear cue usage is associated with more analytical tasks (see Tables 1 and 2). 

However, it is quite possible that insight per se would not be affected by utilizing the 

standard method of comparing subjective weights to the standardized beta weights, but 

that violation of the linearity assumption would result in greater disparity between the 

two sets of weights. 

 Hence, the most common way of measuring insight was inappropriate in the 

current experiment, wherein one half of all conditions were nonlinear (quadratic) in 

nature. Therefore, another method of examining insight was utilized that allowed for the 

assessment of subjective weights in nonlinear environments.  

Current Measurement of Insight 

The traditional method of comparing subjective weights to statistically captured 

weights was inappropriate for the current experiment However, the judgment analysis 

software package utilized in the proposed experiment (POLICY PC) allows for 

specification of the cue-judgment function forms as well as assignation of relative 

weights. 

While this avoided the problem of confounding the cue weights with the cue-

criterion (or in this case cue-judgment) function forms, it raised another issue of concern. 

For participants to correctly utilize this method would require specification of the mean 

and standard deviation of the last set of judgments, as well as correct specification of the 

judgment-criterion function form.  
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This would place more of a burden upon these subjects than participants in 

previous experiments that utilized the likert scale method of eliciting subjective cue 

weights. Therefore, the researcher utilized Policy PC to specify the cue-judgment 

function form that best expressed the participant’s policy, specified the correct indicators 

of central tendency for the participants’ judgments, and entered the participant elicited 

relative weights. Policy PC then generated a set of predicted judgments from that process, 

which were then correlated with the participant’s predicted judgments.  

This rationale is consistent with that underlying the computation of the matching 

index of performance. Both involve constructing a metric for expressing the similarities 

of rules. Both also take into account the inconsistency with which such a rule might be 

applied by fallible human subjects (Camerer, 1981b). 
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APPENDIX F 

LINEAR MODELS OF JUDGMENT 

Generality of Linear Models of Judgment 

Linear models describe many judgment activities quite well, whether one is 

measuring group communication among apes (Byrne, 1995) or pheasant mate selection 

(Von Schantz, Gorannson, Anderson, Froberg, Grahn, Helgee, & Witzell, 1989).  

Hammond (2001) has argued vigorously that there is ample evidence across species for 

processing in a linear, equal weights fashion. 

Robustness of Linear Models  

 There are also several possible advantages to the use of such a model. The first is 

that of cognitive economy: an equal weighting model would presumably take up fewer 

resources than one that requires disparate weighting (Camerer, 1981b). In addition, when 

cross-validation occurs, equal weights models are not as subject to shrinkage in R2 as are 

regression models with disparate cue weightings. Thus, equal weights models would have 

an advantage as a cross-domain judgment policy. 

 Further, Hammond (1996) has noted that humans often create such models 

(linear, multiple fallible cues probabilistically related to a criterion) to make judgments 

and express variation in the environment. Reilly & Doherty (1992) have noted that the 

finding that individuals can often recognize their judgment policies when described by a 

linear equation is in itself a roundabout argument that their decision processes were 

sufficiently captured by a linear regression model (Wiggins & Hoffman, 1968; Camerer, 
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1981b; Camerer & Johnson, 1997; Hoffman, Slovic & Rorer, 1968).  

 This evidence is consistent with Hammond’s contention that because humans 

hardwired to process things in a linear, equal-weights fashion, it is possible to do so with 

little or no insight as to one’s actual judgment policy (Hammond, 1996). That is, decision 

making in such an environment is something akin to an automatic process.  

However, encountering situations in which the cue-criterion function form is 

nonlinear requires more of a controlled process, and thus also requires a higher level of 

insight for consistent application. This is often phrased in terms of difficulty or 

complexity: the more difficult (i.e., nonlinear) a task is, the greater the amount of 

conscious control that is necessary for better performance.  
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