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ABSTRACT 

In this simulation study, the precision and accuracy of two different methods for modeling net 

nitrogen mineralization data have been compared. Method 1 represents one traditional approach 

found in the soil science literature that does not account for the temporal autocorrelation present 

in the data. Method 2, based on the recent advancements in methods and software for nonlinear 

mixed effects models that account for this autocorrelation, has proven to be more precise than the 

traditional approach under a variety of different scenarios. 
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CHAPTER 1 

INTRODUCTION 

The estimation of the soil potential capability of releasing available nitrogen is important for 

the efficient use of fertilizer and prevention of ground water pollution in agricultural and 

intensively managed forest ecosystems. The main aim of this work is to demonstrate that it is 

relevant to consider temporal autocorrelation when fitting net nitrogen mineralization data. 

Considering such autocorrelation allows one to obtain better estimates and inferences (e.g. 

unbiased standard errors) on soil potentially mineralizable nitrogen (N0) and decomposition rate 

constant (k). N0 and k parameters are commonly estimated by considering either the cumulative 

or the incremental amount of available nitrogen obtained after laboratory incubations repeated 

over time (Stanford and Smith, 1972). In most cases, two sub-samples (pseudo-replicates) are 

extracted for each soil type, at regular intervals under controlled conditions of temperature and 

moisture (Stanford and Smith, 1972; Cabrera and Kissel, 1988; Maimone et al., 1991). The 

average value of available nitrogen (AN) is computed each time. Incremental AN or cumulative 

AN data (sum of all increments obtained at different time intervals) for each sample is then 

modeled as a function of time without considering the temporal autocorrelation, assuming there 

is independence between the repeated measures on the same soil sample. Most authors have 

focused their attention on using models that account for measurement errors intrinsic to this 

laboratory technique. In their review of N0 modeling approaches, Cabrera and Kissel (1994) 

suggest that one of the most precise methods for fitting net nitrogen mineralization data (NNM) 

data is the use of nonlinear regression procedures to fit incremental models, as proposed by Ellert 
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and Bettany (1988). These authors have found that using incremental rather than cumulative data 

has the advantage of reducing the interdependence between each observation without 

accumulating possible measurement errors. 

Nevertheless, to my knowledge, no author has ever fitted a model to an entire data set, 

composed of all series of repeated measures obtained from a particular experiment, accounting 

for the within-run temporal autocorrelation. The need to consider autocorrelation when using 

longitudinal data has been discussed in other studies on soil respiration (Hess and Schmidt, 

1995) and microbial ecology studies (Robinson, 1985). Several models have been compared to 

better represent the biological process underlying NNM as discussed by Cabrera and Kissel 

(1994). Most studies have focused on finding the best model for individual runs, and computing 

an average of the obtained parameter estimates for a certain set of soil (Stanford and Smith, 

1972; Molina et al., 1980; Talpaz et al. 1981; Deans et al. 1986; Cabrera and Kissel, 1988). 

Analogously to what Hall and Bailey describe in their study about modeling and predicting forest 

growth (Hall and Bailey, 2001), this approach is a somewhat crude method of obtaining an 

estimate of the parameter for a certain soil type population. A better approach is available 

through the use of nonlinear mixed effects NNM curves. Such models include both fixed 

regression parameters (fixed effects) that describe the shape of the typical NNM curve over the 

entire population and which account for differences across common soil grouping factors, 

experimental treatments and other covariate effects, and random regression coefficients (random 

effects) that individualize the curve to the different levels of grouping or clustereing present 

among the experimental units. The major advantage of fitting a model to the entire data set is that 

it will allow better statistical inference, resulting in unbiased parameter standard errors and valid 

tests and confidence intervals. 
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This advanced statistical technique is often applied when using repeated measures or 

longitudinal data (Lindstrom and Bates, 1990). The increasing popularity during recent years of 

nonlinear mixed effects models (NLMMs) is due to their flexibility in modeling the within-group 

correlation often present in grouped data, their handling of balanced and unbalanced data in a 

unified framework, and the availability of reliable and efficient software for fitting them 

(Lindstrom and Bates, 1990; Pinheiro and Bates, 2000). 

In this simulation study, data are generated from a known model to compare the performance 

of nonlinear mixed effects models that account for temporal auto-correlation relative to models 

that assume there is no temporal dependence among observations. Also as an application, I fit the 

Stanford and Smith data (SSD) set to show that there is indeed correlation when considering data 

sets grouped by run. 

In this work I perform a simulation study based on data generated from a known model, rather 

than just comparing models on a single set of data, and I consider the advantage of a more 

complete evaluation under a variety of possible different scenarios. Knowing exactly what the 

underlying chosen model generating the data is, or in other words, what the population 

parameters we are trying to estimate are, affords us the opportunity to better judge the accuracy 

and precision of a specific model for parameter estimation.
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CHAPTER 2 

MATERIALS AND METHODS 

In order to judge whether or not it is relevant to consider temporal autocorrelation when 

fitting NNM data, a simulation study was structured following a factorial design. An S-PLUS 

program was developed and adapted assuming different initial conditions for each simulated 

scenario. The program performs a series of iterations to generate and fit data sets under different 

conditions. The main structure includes one basic loop (1) to generate at the ith iteration a single 

subset of data, composed of 6 observations (ni=6), defined as a run. Loop 1 is repeated 40 times 

(K=40) to create a data set composed of 40 independent runs. A secondary loop (2) repeats this 

process (1) 500 times. During each simulation, data are generated and then fitted with two 

different methods: 1) without considering any correlation in the data and assuming independence 

among the model errors using weighted nonlinear least squares, and 2) accounting for the 

temporal autocorrelation using a nonlinear mixed effects model.

Initial Conditions and Data Generation 

To compare methods 1 and 2 with respect to different data sets, two model functions with the 

same design, three (N0,k) parameter combinations, and four possible different variance-

covariance structures were combined in a 2×3×2×2 factorial design (Table 1). The choice of the 

different parameters was based on the data obtained from figure 1 and table 2 of the SSD 

(Stanford and Smith, 1972).
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Expectation function ƒ1 is the single exponential function for the ith run of the form: 

(1)  E(Nij)=N0⋅(1-ek⋅tij), i=1, . . ., K,  j=1, . . .,ni, 

to fit cumulative data (Cabrera et al., 1994). Expectation function ƒ2 is a modified version of: 

(2)  E(∆ij)=N0⋅e-k⋅tij⋅(ek⋅dij-1), i=1, . . ., K,  j=1, . . .,ni, 

to fit incremental data, proposed by Ellert and Bettany (1988). Nij (mg Kg-1) is the cumulative 

nitrogen mineralized in the ith run at time tij. N0 is the population potentially mineralizable N 

parameter, and k the population rate constant of mineralization (Fig. 1). The quantity ∆ij is the 

simulated incremental amount of N released during the interval dij, preceding time tij. Each of the 

ith runs is composed of ni extraction dates corresponding to time tij’s as considered by Cabrera 

and Kissel (1988). For all possible cases it is always assumed K=40 and ni=10, with exactly the 

same extraction dates: 2, 4, 8, 12, 16, 20, 24, 28, 32, and 36 weeks since the incubation start. In 

vector form t=(2, 4, 8, 12, 16, 20, 24, 28, 32, 36)T. Therefore the corresponding dij lags are 

respectively: 2, 2, 4, 4, 4, 4, 4, 4, 4, and 4 weeks or d=(2, 2, 4, 4, 4, 4, 4, 4, 4, 4)T. In this study 

two correlation coefficients were considered, ρ=0.9 and ρ=0, to represent respectively the 

scenarios with and without error autocorrelation. The 0.9 value was selected in order to obtain 

the desired autocorrelation structure given the number of observation of each run. 

In the homoskedastic scenarios the variance was assumed to be 1.44 for both the cumulative 

and incremental function. An exponential variance function of time was used for the more 

complex heteroskedastic scenarios, similar to the general form described by Pinheiro and Bates 

(2000): (3)  Var(εij) =  σp
2⋅exp(υij) ≡ σij

2  i=1, . . ., Kj; j=1, . . .,ni, where σp
2 is the population 

variance assumed to be 1.44, as for the homoskedastic scenarios.
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I used  υij=  -(1-tij/36) and υij=  +(1-tij/36), respectively, for the cumulative and incremental 

scenarios to create appropriate transformations in the “heterogeneous AR(1)” type variance 

covariance-structure (Littel et al., 1996) to represent the biological process of NNM. 

The elements of the variance-covariance matrix ∑ are given by: 

(4)   σij⋅σik ρ |j-k|, j=1, . .,10; k=1, . . .,10, 

where j is the row and k column index for the variance-covariance matrix ∑. In the 

cumulative case σij, j=1, . . ., ni exponentially increases from its minimum at ti1=2, σi1=1.2⋅exp(1-

(2/36)) ≈ 0.47, reaches its maximum value at ti10=36, σi10=1.2. The corresponding σi vector 

containing the different values in time is: 

(5)  σi =(0.46, 0.49, 0.55, 0.62, 0.69, 0.77, 0.86, 0.96, 1.07, 1.2)T, i , j=1, . . .10 

In the incremental case instead σij, j=1, . . .,ni, exponentially decreases from its maximum at 

ti1=2, σi =1.2⋅exp((4/36)-1) ≈ 3.08, reaches its minimum value at ti10=36, σi10=1.2. The 

corresponding σi vector containing the different values in time is: 

(6) σi =(3.08, 2.92, 2.61, 2.34, 2.091, 1.87, 1.67, 1.49, 1.34, 1.2)T, i , j= 1, . . .10. In 

general the cumulative data is obtained by adding the single incremental observations, Iij’s. 

Being Iij=ƒ2+εij, the corresponding cumulative model is given by:  (7)  ∑∑∑ +=
ni

1
ij

ni

1
2

ni

1
ij εI f . 

The corresponding variance can be computed as 

(8)    ∑∑∑∑∑ σ==+=
ni

1
ij

2
ni

1
ij

ni

1
ij

ni

1
2

ni

1
ij νε(Var)ε(Var)I(Var )f  

The ith and jth elements of ∑ are arranged in a manner, that determines an increasing and 

decreasing variance with time, respectively, for the cumulative and incremental model 

(Appendix A).



7 
 

As a simplified example, considering six extraction dates temporally spaced as t=(4, 8, 12, 16, 

22, 30)T and being R the within-run correlation matrix, the ith and jth elements of ∑ are obtained 

as follows: 

∑=diag(σi) R diag(σi)= 

σ1 0 0 0 0 0  ρ0 ρ4 ρ8 ρ12 ρ18 ρ26  σ1 0 0 0 0 0 
0 σ2 0 0 0 0  ρ4 ρ0 ρ4 ρ8 ρ12 ρ18  0 σ2 0 0 0 0 
0 0 σ3 0 0 0  ρ8 ρ4 ρ0 ρ8 ρ12 ρ18  0 0 σ3 0 0 0 
0 0 0 σ4 0 0  ρ12 ρ8 ρ4 ρ0 ρ4 ρ8  0 0 0 σ4 0 0 
0 0 0 0 σ5 0  ρ18 ρ12 ρ8 ρ4 ρ0 ρ4  0 0 0 0 σ5 0 
0 0 0 0 0 σ6  ρ26 ρ18 ρ12 ρ8 ρ4 ρ0  0 0 0 0 0 σ6

 

 σ1⋅σ1 ρ0⋅ σ1⋅σ2 ρ4 σ1⋅σ3 ρ8 σ1⋅σ4 ρ12 σ1⋅σ5 ρ18 σ1⋅σ6 ρ26 
 σ2⋅σ1 ρ4 σ2⋅σ2 ρ0 σ2⋅σ3 ρ4 σ2⋅σ4 ρ8 σ2⋅σ5 ρ12 σ2⋅σ6 ρ18 
= σ3⋅σ1 ρ8⋅ σ3⋅σ2 ρ4 σ3⋅σ3 ρ0⋅ σ3⋅σ4 ρ4 σ3⋅σ5 ρ8 σ3⋅σ6 ρ12 
 σ4⋅σ1 ρ12 σ4⋅σ2 ρ8 σ4⋅σ3 ρ4 σ4⋅σ4 ρ0 σ4⋅σ5 ρ4 σ4⋅σ6 ρ8 
 σ5⋅σ1 ρ18 σ5⋅σ2 ρ12 σ5⋅σ3 ρ8 σ5⋅σ4 ρ4 σ5⋅σ5 ρ0 σ5⋅σ6 ρ4 
 σ6⋅σ1 ρ26 σ6⋅σ2 ρ18 σ6⋅σ3 ρ12 σ6⋅σ4 ρ8 σ6⋅σ5 ρ4 σ6⋅σ6 ρ0 

 

In general an autoregressive first order AR(1) process can be written as (Wei, 1989) (9): 

Zt=φ1Zt-1+at, where at is a series of uncorrelated random variables from a well-defined 

distribution with mean µa, usually assumed to be zero, and variance Var(at)=σa
2. The quantity, 

φ1, is the partial autocorrelation coefficient between the two series Zt and  Zt-1. In an AR1(1) 

process the value of the series Zt is completely determined by the knowledge of Zt-1, the one unit 

apart process. Given this formulation, it follows that the autocorrelation function (ACF) becomes 

ρk=φ1ρk-1=φk
1, k≥1 (10), where k is the number of units apart from Zt. The corresponding partial 

autocorrelation function (PACF) is (11): φkk=ρ1=φ1, when k=1. φkk=0, k≥2. If we represent these 

functions graphically, we can say that for a stationary AR(1) process the ACF tails off and the 

PACF cuts off after lag 1. 
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As a result of these initial assumptions four different variance-covariance matrices for each 

function type (i.e. cumulative and incremental) were used in this study. For example, in scenarios 

1 through 3, when ρ=0, or in other words when errors are independent and identically distributed 

(Homoskedasticity and Independence), ∑ corresponds to the 10×10 matrix ∑C1=1.44 I10, with 

1.44 in all along diagonal and 0 in all off-diagonal positions for the cumulative case. Similarly 

for the corresponding incremental scenarios (1-3) ∑I1= 1.44 I10. The specific residuals pattern 

deriving from the use of the two model functions and four variance-covariance type are 

presented in figures A-1 through A-8 of Appendix A. 

The choice of the (N0, k) parameter combination was based on information obtained from the 

SSD. After fitting the 39 soil-data set as cumulative data using nonlinear least squares via the    

S-PLUS nlsList function, three parameter values (pairs) were arbitrarily selected to represent a 

soil with low (150, 0.09), medium (200, 0.07), and high (300, 0.08) capacities for supplying 

available nitrogen (AN). The different curves of this study were generated by varying only the k 

parameter according to a uniform distribution within ± 0.5 k to obtain a variability resembling 

that present in the SSD. 

Data were computer generated using S-PLUS based on the theory regarding the generation of 

multivariate normal vectors (Stapleton, 1995). Based on this result given Z, a n-vector of 

standard normal random variables, then (12): X=BZ+µ where µ is the desired expectation 

function and B is the triangular decomposition of ∑ (or Choleski’s factor) such that BB’=∑, and 

X is the vector of simulated values with the desired distribution (Stapleton, 1995). 

I applied this result to my programming effort as follows: I defined the expectation function ƒ 

and the desired variance-covariance matrix ∑ of the specific model. I generated for the ith 

iteration a 10×1 vector ei of independent random normal values with mean 0 and standard 
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deviation 1 using the rnorm function. I determined the Choleski’s factor ∑1/2 such that the 

corresponding model error vector satisfies (13): εi=∑1/2 ei. Finally, I added the computed value of 

either ƒ1 or ƒ2, representing the fixed component of the data, to the corresponding random vector 

εi. 

Fitting the Data 

At each iteration in loop (1), the run is fitted using Method 1. When a complete set of data 

composed of 40 runs is produced, a simple average of the parameter values is calculated. The 

same entire data set is also fitted using Method 2. In this case there is no need to take any 

average, because Method 2 model fits all of the simulated data at the same time, as one data set. 

The two pairs of resulting values (M.1average and M.2 direct estimate) are saved and a new 

iteration (2) is performed. For each of the 24 possible scenarios, 500 iterations (i.e. 500 

generated data sets) were performed. At the end of each simulation, summary statistics are 

computed on the resulting matrix of parameter estimates, composed of 500 rows corresponding 

to each iteration, and 4 columns containing the two parameter estimates and the corresponding 

standard errors for N0 and k calculated by methods 1 and 2. The N0 parameter root mean squared 

error (RMSE) were computed for both methods as follows: 

Method 1             Method 2 

21

500

1p

2
40

1i
0pi0

N 500

)])
40
N

[(
RMSE

0

/

N
ˆ


















−

= ∑
∑

=

=     
21

500

1p

2
0p

N 500
)-N(

RMSE
0

/

0Nˆ












= ∑

=
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The quantity ∑i is the sum over i and ∑p over p with i=1, . . ., 40 and p=1,...,500. In method 1 

pi0N̂  is N0 fitted value during the ith iteration of loop (1) and the pth iteration of loop (2). In 

method 2, p0N̂ is the N0 fitted value during the pth iteration of loop (2). Ν0 and κ are the 

population parameters used in the model to generate the different data sets. 

Method 1: Separate Fits by Run 

This method doesn’t account for the within run temporal correlation, instead assuming that all 

the observations are independent of one another. It is the most commonly used by authors in the 

soil science literature to fit NNM data and therefore the most appropriate to be compared 

(Cabrera and Kissel, 1994). The considered expectation functions and design are 

(14)  E(Nj)=N0⋅(1-e-k⋅tj) + εj, 

(15)  E(∆j)=N0⋅e-k⋅tj⋅(ek⋅dj-1) + εj,  j=1, . . .,10. 

Similar to (1) and (2), Nj (mg Kg-1) is the cumulative nitrogen mineralized at the jth extraction 

date for an individual run. N0 is an initial estimate of potentially mineralizable N, and k the 

corresponding rate constant of mineralization. For the different scenarios, the initial parameter 

values were always set equal to the corresponding population N0 and k used in the models to 

simulate the data sets [(1) and (2)] to facilitate the convergence of the algorithm. The quantity ∆j 

is the incremental amount of N released at the jth extraction date, and dj is the interval preceding 

time tj. As for equations (1) and (2), t=(2, 4, 8, 12, 16, 20, 24, 28, 32, 36)T and d=(2, 2, 4, 4, 4, 4, 

4, 4, 4, 4)T. For both model functions, the variance covariance matrix is ∑=σ2I10. The NLS 

function was used to fit the simulated individual runs for both (14) and (15) using, respectively, 

cumulative and incremental simulated data.
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This function uses nonlinear least squares estimation performing iterations via the Gauss 

Newton (GN) algorithm. I decided to use this procedure with numerical solution (i.e. without 

specifying the model derivatives) and independence was assumed when using this function. 

The Geometry of Nonlinear Least Square Estimation 

In this section I give a description of the basic concepts regarding the NLS method commonly 

being used by authors in the soil science literature for fitting NNM data (Molina et al., 1980, 

Deans et al. 1986). 

To fully understand the NLS function, the structure of the GN algorithm, and more 

importantly the theoretical foundations of methods 1 and 2, I recall some important concepts of 

linear least squares geometry that are applied to the fitting algorithms of this work. 

Based on Stapleton (1995), in general for a linear model written in the form 

(16)   Y=Xβ+ε, 

where Y is a vector of response variables, X the model matrix, and ε the vector of 

corresponding errors, we assume the following assumptions to be valid: 

1) (Additive error) Xβ is the unknown mean of Y and ε is an unobserved random vector with 

mean 0. 

2) (Linearity) Xβ= β1x1+. . .+βkxk where β1,. . ., βk are unknown parameters. This 

assumptions says that E(y) = Xβ ∈ V=C(X) lies in the column space of X. i.e., it is a linear 

combination of explanatory vectors x1, . . .,xk with coefficients the unknown parameters 

β=(β1, . . ., βk)T. 

3) var(y)=σ2Ιn, i.e., y has a spherical variance-covariance matrix. 

4) (Normality) ε∼Ν(0, σ2Ιn).
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The principle of least squares estimation (LSE) minimizes the sum of squared errors for 

y- Xβ, (17) SSE=||y-Xβ||2. 

Given these assumptions and if x1, . . .,xk are linearly independent, then we estimate β as 

(18) β̂ =(XTX)-1XTy. 

These basic assumptions for a linear model determine an important series of considerations to 

approach and solve the problem of parameter estimation in nonlinear model theory. . The 

assumption var(є)=σ2I indicates that the distance between y and Xβ is an Euclidean distance and 

the linearity assumption implies that the expectation surface η(β) is a P-dimensional subspace of 

N-dimensional Euclidean space which can be written as Xβ, β being  a P-dimensional parameter 

vector and X an N×P derivative matrix. The fitting of the model involves a two step process: 

obtain the possible response vector η(β)= Xβ and then calculate the squared distance ||y-η(β)||2. 

All the possible vectors η(β) form a P-dimensional expectation surface, called expectation plane 

in the linear model. The minimizer η̂  of the least squares criterion ||y-η(β)||2 is the closest point 

on the expectation plance, which implies that the residual vector y- η̂  will be normal to the 

expectation plane. This can be also expressed by the so called normal equation: XT(y-X β̂ )=0. 

This theory and results are applied to the Gauss-Newton method for the nonlinear case where 

the vector of coefficients β is now indicated as θ. It performs the following two steps: 1) find on 

the expectation surface η(θ) the closest η̂  to y. In other words, we replace η(θ) by the closest 

plane (planar assumption). 2) Using a linear coordinate system Vk(θ-θk), defined below, find the 

parameter vector θ which is closest to the point η̂ .
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These two objectives are obtained by considering the Taylor expansion up to the first 

derivative around θ0 (the initial set of parameter values) as follows: 

(19)  ƒ(xn,θ) ≈ ƒ(xn,θ0)+vn1(θ1-θ1
0)+vn2(θ2-θ2

0)+ . . . +vnP(θP-θP
0) 

where vnp = ∂ƒ(xn,θ)/∂θp |θ0  and p=1,2, . . ., P. 

Considering all N cases we can write: η(θ)≈η(θ0)+V0(θ-θ0) where V0 is the N×P derivative 

matrix with elements {vn1}. This is equivalent to approximating the residuals, z(θ)=y-η(θ), by 

z(θ)≈y-[η(θ0)+V0δ]=z0-V0δ where z0 =y-η(θ0) and δ=θ-θ0. The next step is to calculate the 

Gauss increment δ0 that minimizes the approximate residual sum of squares, 

(20)  RSS=||z0-V0δ||2. This expression is equivalent to (17) for the LSE of a linear model. 

Therefore in the nonlinear model, (18) becomes: (21) δ0={(V0)TV0}-1(V0)Tz0. 

The model matrix X is now replaced by the derivative matrix V0. At this point the Gauss 

increment δ0 can be computed in two different ways. One is to use the QR decomposition and the 

other is to solve (18) directly for the LSE. With the QR decomposition, the model matrix X is 

expressed as X=QR, with the N×N matrix Q and the N×P matrix R constructed so that Q is 

orthogonal (i.e: QTQ=QQT=I) and R is zero below the main diagonal. Geometrically, the 

columns of Q define an orthonormal basis for the response space, with the property that the first 

P columns span the expectation plane as defined in Bates and Watts (1988). As presented by 

these two authors, because of these properties and transformations, we can compute δ0 without 

involving any matrix inverse operation. This has two major advantages in performing the 

algorithm: 1) it reduces the computational time 2) increases its stability. The S-plus NLME 

functions implement methods based on the QR decomposition. Assuming we have computed the 

Gauss increment δ0 using (18), we can now compute θ1 = θ0+δ0, and find a value η̂ 1 that should 

be closer to y than η(θ0). We can now proceed to perform another iteration by calculating new 
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residuals z1 = y-η(θ1), a new derivative matrix V1, and a new increment. This process is repeated 

until convergence, when the current increment is small enough to have no significant change on 

the parameter vector (Bates and Watts, 1988). In order to avoid the situation where the requested 

increment exceeds the region for which the linear approximation is valid, so that 

(22)  S(θ1)<S(θ0), 

the step factor λ was introduced (Box, 1960; Hartley, 1961) and used to create: 

(23)  θ1 = θ0+λδ0. 

The-step halving factor, λ, is initially set to 1, but can be reduced so that (22) is satisfied. The 

description of the GN algorithm presented here apply only to the case where there is a 

homoskedastic and independent model error structure.
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Example 1. 

To show an application of the GN method, I compute the first two iterations of the GN 

algorithm following the theoretical steps introduced above. In this example, I use the cumulative 

model ƒ1 to fit one individual run. For this example, we consider the data for the Amarillo soil 

series taken from the SSD with tT=(4,8,12,16,22,30) and NT=yT = (15.8,32,47.7,63.1,78.2,92.6) 

and use as initial starting values N0=92.2 and k=0.03. Using the Bates and Watts formulation, we 

have θ0=(92.2,0.03)T and N=N0⋅(1-e--kt) + ε  with ε∼Ν(0, σ2Ι6). 

Step 0 (Table 4): θ0=(92.2,0.03)T 

Given ∂N/∂N0=1-e-kt and ∂N/∂k=N0⋅t⋅e-2kt , V=(V01 | V02), and performing the following 

matrix operations in S-plus we calculate: δ0={(V0)TV0}-1(V0)TZ0=(65.05, 0.00079)T 

Generally the algorithm starts with λ=1 in (23) and then halves it until (22) is satisfied. Now 

we can compute the new parameter value, 

θ1 = θ0+λδ0=(92.2,0.03)T+(65.05, 0.00079)T=(157.05, 0.03079)T, assuming λ=1. 

Step 1 (Table 5): θ1=(157.05, 0.03079)T 

From S-plus output we obtain δ1={(V1)TV1}-1(V1)TZ1=(0.1327, -0.000364)T 

θ2 = θ1+λδ1=(157.05, 0.03079)T+(0.1327, -0.000364)T=(157.18, 0.030428)T. To verify that 

these results are the same as these obtained by the S-PLUS NLS function, I have computed these 

two iterations using the NLS function with the trace=TRUE specification and have obtained 

exactly the same results. 

 Single Level Linear Mixed Effects Model 

In order to present the NLMMs applied to this specific case study, I first introduce the theory 

of linear mixed effects models to create a background necessary to extend the same concepts and 
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notations to the nonlinear case. To motivate the use of LMM to this study related to NNM, we 

can consider that each soil sample being repeatedly leached over time is not of interest in itself, 

but as a representative of a broader population of soils, for example the taxonomic unit “Ultisol”, 

a soil group with well defined chemical and physical properties different from other groups. 

Each set of repeated AN measures on a specific soil tube varies randomly around the population 

mean and thus should properly be considered as dependent measures on one another that share 

the same random specific effect. 

To provide an example of a simple linear mixed effects model that may be appropriate for 

data as our NNM data, consider the one-way random effects model. 

That is, (24)  yij=µ+bi+εij, i=1, . . ., K, j=1, . . ., ni with bi random effect parameter 

specific for the ith run, εij~Ν(0, σ2), and b1,...,bk~ Ν(0,σ2
β). This model is a special case of the 

more general model 

(25)  y=Xβ+Zb+ε, b ~ Ν(0,Ψ),   ε ~ Ν(0,σ2Λ), 

with X being the model matrix of β vector of fixed effects coefficients, Z the random effects 

design matrix of size (K×ni)×K, b is the K×1-dimensional vector of random effects normally 

distributed with mean 0 and variance-covariance matrix Ψ, and ε the (K×ni) ×1 error vector. The 

errors ε are assumed to be independent and also independent of the random effects bi’s. Λ is a 

positive-definite matrix parameterized by a fixed, generally small, set of parameters λ. (In the 

next section I provide a detailed description about the estimation process of Λ).  

Note that model (25) implies 

corr(yij,yi,j+1)=cov(yij, yi,j+1)/ [var(yij) var(yi,j+1)]1/2 

=cov(µ+bi+εij, µ+bi+1+ε i,j+1)/( σ2
β+σ)=σ2

β/( σ2
β+σ) and var(yij)=var(µ+bi+εij)=var(bi+εij)= 

σ2
β+σ, for i,j values. These results indicate the general utility of LMMs particularly in modeling 



17 
 

data that are: 1) subject to multiple sources of error (or randomness or heterogeneity), since the 

variance of the response is assumed to come from multiple sources and 2) are correlated. For 

example, if we consider a data set of K independent runs each having ni=6 observations and 

given the results above, we can formulate the symmetric variance-covariance matrix of the 

vector of responses on the same ith run, yi=(y1,. . .,yni)T, 

(26) σ2
β+σ σ2

β σ2
β σ2

β σ2
β σ2

β 
  σ2

β+σ σ2
β σ2

β σ2
β σ2

β 
Var(yi) =   σ2

β+σ σ2
β σ2

β σ2
β 

    σ2
β+σ σ2

β σ2
β 

     σ2
β+σ σ2

β 
      σ2

β+σ 
To estimate β, the mixed model (31) can be written as a weighted least-squares model. Let 

(27)  V≡var(y)=var(Xβ+Zb+ε)=var(Zb+ε)=ZDZT+R. 

If V were known, then generalized least squares (GLS) estimation theory could be applied to 

this specific case obtaining $β  as a solution of the equation 

(28)  XTV-1Xβ=XTV-1y 

Knowing $β , we can then proceed and calculate the so called best linear unbiased predictor 

(BLUP) of b. In other words we compute (Rencher, 2000): (29)  $β=(XTV-1X)-XTV-1y 

b=DZTV-1(y-X $β ) where V=ZDZT+R. Equivalently we can say that to fit the LMM we need to 

solve the following mixed model equations: 

(30) 

XTR-1X XTR-1Z β = XTR-1  

ZTR-1X D-1+ZTR-1Z b  ZTR-1y  

However, since V, in most cases, is unknown, it is necessary to use other methods such as the 

maximum likelihood estimation (MLE) within an iterative approach. 
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Example 2. 

Assuming V is known, we fit LMM to a smaller data set similar to the SSD, with only 3 runs 

and each composed of 2 observations or measurements, yij, of AN. We assume that a linear 

mixed effects model (LMM) can be fitted to our data having a one level structure, with each 

observation grouped by run. Each run shares the same common random effect bi. As before, we 

consider a one-way random effects model. We suppose that after each extraction, a certain 

amount of available nitrogen (AN) is measured, representing the corresponding mineralized 

nitrogen over a specific length of time (incremental approach). In this case our model can be 

formulated as: (31)  yij=µ+bj+εij,  i=1,2,3.  j=1,2, where ε11, . . ., ε32∼ iid Ν(0, σ2), b1, 

b2, b3 ∼ iid Ν(0, σβ
2) and the bj’s and εij’s are assumed uncorrelated. At the end of this 

experiment, we obtain the following values of AN, yT=( y11 ,y12 ,y21 ,y22 ,y31 

,y32)=(29,34,27,25,18,23), and we assume that σ2=1 and σβ
2=2. For example, during the first 

extraction of the second run we obtain AN=27. In matrix form model (31) can be formulated as: 

 y11  1 1 0    1 0 0    ε11  
 y12  1 1 0  µ  1 0 0  b1  ε12  

 y21 1 1 0  α1 + 0 1 0  b2 + ε13  

 y22 

 
= 1 0 1  α2  0 1 0  b3  ε21  

 y31  1 0 1    0 0 1    ε22  

 y32  1 0 1    0 0 1    ε23  

 y   X     Z   b  ε  

 

To find the best linear unbiased estimator, BLUE, we use generalized least squares estimation 

and compute first V using (29).
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We know that D=σβ
2I3, and 

 1 0 0   σβ
2 0 0   σ2 0 0 0 0 0 

 1 0 0  D= 0 σβ
2 0   0 σ2 0 0 0 0 

Z= 0 1 0   0 0 σβ
2  R= 0 0 σ2 0 0 0 

 0 1 0        0 0 0 σ2 0 0 
 0 0 1        0 0 0 0 σ2 0 
 0 0 1        0 0 0 0 0 σ2 

 

V=ZDZT+R 

 1 0 0  2 0 0  1 1 0 0 0 0   
 1 0 0  0 2 0  0 0 1 1 0 0   
V= 0 1 0  0 0 2  0 0 0 0 1 1  + 
 0 1 0              
 0 0 1              
 0 0 1              
                 
 1 0 0 0 0 0   3 2 0 0 0 0   
 0 1 0 0 0 0   2 3 0 0 0 0   
+ 0 0 1 0 0 0 =  0 0 3 2 0 0   
 0 0 0 1 0 0   0 0 2 3 0 0   
 0 0 0 0 1 0   0 0 0 0 3 2   
 0 0 0 0 0 1   0 0 0 0 2 3   

 

We now can compute directly $β=(XTV-1X)-XTV-1y. A calculator returns: $β=(17.3,10.9,6.4). 

The run specific random effects can be now computed as: 

b=DZTV-1(y-X $β )= (2.57, 0, -2.57).
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Method 2: Single Level Nonlinear Mixed Effects Model 

In the nonlinear settings model (25) can be rewritten as: 

(32)  yi=ƒi(θi, xi)+εi,  θi=Aiβ+Bibi for i= 1, . . ., K, 

where yi=(yi1, . . ., yini)T, θi=(θi1, . . ., θini)T, εi=(εi1, . . ., εini)T, 

ƒi(θi, xi)= [ƒi(θi1, xi1), . . ., ƒi(θini, xini)]T, xi=(xi1, . . ., xini)T, 

Ai=(Ai1, . . ., Aini)T, Bi=(Bi1, . . ., Bini)T, assuming b1, . . .,bK ~ iid Nq (0, ψ), 

and εi ~ Νni (0,σ2Λni). More specifically the corresponding models applied in method 2 can in 

general be represented as 

(33)  Nij=N0ij⋅[1-exp(-kij⋅tij)] + εij 

(34)  ∆ij=N0ij⋅exp(-kij⋅tij)⋅[exp(kij⋅dij)-1] + εij,   i=1, . . ., K, j=1, . . .,ni, 

where 

N0ij = 1 0 N0 + 0 ( bki ) 
kij  0 1 k  1  
        
φij  Aij  β  Bij bi 

 

bi=bi is a scalar and b1, . . ., bK ~iid N(0, σ2
b). In this case, the coefficients N0 and k are 

indexed for convenience as i and j but they don’t actually vary with time tij and / or lag dij. N0 is 

the initial estimate of potentially mineralizable-N, k is a fixed effect parameter representing the 

rate constant of mineralization. In this case, 0 and ψ are 1×1 matrixes, and ∆ij is the incremental 

amount of N released during the interval dij, preceding time tij. As was the case for method 1, 

each of the ith runs is composed of ni=10 extraction dates t=(2, 4, 8, 12, 16, 20, 24, 28, 32, 36)T, 

and there are K=40 runs. 
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During the actual simulation, either models (33) or (34) were fitted to the simulated data set 

using the NLME function, specifying an AR(1) within-run correlation structure with the variance 

specification 

  weights=varExp(~Time/36-1 ) and weights=varExp(~1-Time/36), respectively, for 

the cumulative and incremental scenarios. To provide a graphical description of the 

autocorrelation and heteroskedasticity present in the simulated data sets I fitted NLME M0 using 

both the incremental and cumulative functions in scenarios 1, 4, 8, and 12. These are displayed 

as figures A-1, A-2, A-3, A-4, A-5, A-6, A-7, and A-8, respectively, in Appendix A. 

Considering all of the yi, we can write in a more general vector form y (Lindstrom and Bates, 

1990): 

y | b ∼ N(ƒ(φ,x), σ2Λ), φ=Aβ + Bb. 

This derives from knowing that the conditional density p(y | b; β, σ2, D) given b is a normal 

density because the error vector εi is normal. p(y | b; β, σ2, D) is given by a multivariate normal 

density with mean ƒ(φ) and variance-covariance matrix σ2Λ. 

b ~ N(0, σ2 ~D ), where B= diag(B1, B2, . . ., BK), b=(b1,b2, . . ., bK)T, A=(A1,A2, . . .,AK)T. and 

Bij are the model matrices respectively for the fixed and random effects. 

Estimation of β and b 

Using this estimation method, we try to incorporate the estimation of the nonlinear mixed 

effects into the context of the linear case. In fact, when the variance components Λ and D are 

known and ƒ is a linear function of β and b, the standard estimators of β and b are respectively 

the generalized least squares (GLS) estimators  

[cf. (29)]  $β=(XTV-1X)-1XTV-1y ,  b=DZTV-1(y-X $β ) where V=ZDZT+R. 
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These estimates are those that maximize the log likelihood 

(35)  l(β, b | y) = -(1/2)σ-2(y-Xβ-Zb)TΛ-1(y-Xβ-Zb)-(1/2)σ-2bT ~D -1b. 

We can, for example, fix β to obtain the profile loglikelihood of Λ, ~D , which is the marginal 

density of b. Vice-versa, we can fix b and obtain the log-likelihood function for β. The two terms 

in (35) are a sum of squares and a quadratic term in b. By transforming the quadratic term in b to 

an equivalent sum of squares term, we then can treat the optimization purely as a least squares 

problem, which can be adapted in the nonlinear setting. This is done by augmenting the data 

vector with “pseudo-data” of the form 

  ỹ= ~X β+ ~Z b + ~ε , 

where 

           
ỹ = Λ-1/2y  ~X = Λ-1/2X  ~Z = Λ-1/2Z   ~ε ~N(0,σ2I), 
 0   0   ~D -1/2    
           

where ~D -1/2=diag(L-T, L-T, . . ., L-T), and L is the Cholesky’s factor of D (D=LTL and L is 

upper-triangular). Similarly, Λ-1/2 contains the Cholesky factor of Λi. Expression (35) can now be 

rewritten as: 

(36)  l(β, b | y) = -(1/2)σ-2(y-ƒ(Aβ-Bb)TΛ-1(y-ƒ(Aβ-Bb))-(1/2)σ-2bT ~D -1b 

The $βwhich maximizes the objective function in (36) is the maximum likelihood estimate 

relative to an approximate marginal distribution of y commonly defined as the profile likelihood 

function.
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Assuming that we have obtained an estimate $φ =A $β+B $φ  by using this procedure, we can 

then proceed and calculate y as before by augmenting the data with “pseudo-data”.  

  ỹ = ~f (A $β+B $b )+ ~ε , 

where 

ỹ = Λ-1/2y  ~ε ~N(0,σ2I) ~f (A $β+B $b ) = Λ-1/2ƒ(A $β+B $b )

 0    ~D -1/2 $b  

Estimation of θ 

Our goal in this case is to use the maximum likelihood function of y | β,b, as stated before. 

The general relationship between a marginal density p(y, b; β, σ2, D) and a conditional one is of 

the form: 

   p(y, b; β, σ2, D) = ∫ p(y| b; β, σ2, D) p(b,D)db 

a multidimensional integral with respect to b. Because ƒ(β,b) is nonlinear this integral has no 

closed-form expression and to solve this problem we approximate the conditional distribution of 

y | β, b using the Taylor’s expansion as follows. 

Taking the first-order linear Taylor approximation of ƒ(β,b) about $b , a predictor of b, 

(37)  ƒ(Aiβ+Bibi) ≈ ƒ(Aiβ +Bi $b i )+ Ẑ  bi- Ẑ i $b i  

where Ẑ i=∂ηi/∂bi
T| $β i, $b i, Ẑ i is a function of $φ i=Ai

$β i+Bi $b i because $β i and $b i too are 

functions of $φ i. By treating $b i, as fixed we now calculate the expected value of (37) as: 

E[ƒ(Aiβi+Bibi)] ≈ ƒ(Aiβi +Bi $b i)+ Ẑ i bi- Ẑ i $b i ≈ ƒ(Aiβi +Bi $b i)- Ẑ i $b i
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Considering that bi~Ν(0, D) and εi~Ν(0, σ2Λi), we have 

Var(ƒ(Aiβi +Bi $b i)+ Ẑ ibi + ei)= Var( Ẑ ibi+ ei), with 

ƒ(Aiβi +Bi $b i) being a fixed component. Then, Var( Ẑ i bi + ei)= Ẑ iD Ẑ i T+σ2Λi. To ease the 

computation we decompose D as D=σ2∆-1(∆-1)T and we can write 

  Var( Ẑ i bi + ei)= Ẑ i σ2∆-1(∆-1)T Ẑ i T+σ2Λ=σ2( Ẑ i ∆-1(∆-1)T Ẑ i T+Λ)=σ2Σi∆i 

by letting Σi= ( Ẑ i ∆i
-1(∆i

-1)T Ẑ i T+Λi)/σi
2∆i. 

The likelihood corresponding to the approximate marginal distribution in (35) can now be 

expressed as: 

∏K(2πσ2)-ni/2||∑(∆)||-1/2×exp[-1/(2σ2){yi-+ Ẑ i
$b i-η(β, $b i )}TΣi(∆)-1{yi-+ Ẑ i

$b i -η(β, $b i)}], 

with K representing as before the total number of runs. 

By taking the log this product quantity is transformed into a sum, representing the 

corresponding log-likelihood function: 

-(1/2)∑M[ni×log(2πσ2)+log||∑(∆i)||+{ yi-+ Ẑ i
$b i-η(β, $b i )}TΣi(∆)-1{ yi-+ Ẑ i

$b i -η(β, $b i)] 

This loglikelihood is maximized through a series of iterations, alternating between a step to 

estimate β and obtain the predictor $b i, for fixed ∆ and a step to estimate ∆ for fixed values of β 

and $b i. 

Iteration Main Structure 

In this section I provide a brief explanation on how the different calculations presented merge 

together in one iteration. In step 1, also defined the linear mixed effects model (LME) step of one 

iteration, we estimate β and update the predictor $b i. By ignoring the dependence of ∑(∆) on β, 
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we obtain these quantities by maximizing the log-likelihood function with respect to β and $b i 

with i=1, . . .,K. The objective function in (36) becomes 

∑K{ yi-+ Ẑ i
$b i-η(β, $b i )}TΣi(∆)-1{ yi-+ Ẑ i

$b i-η(β, $b i )}==∑K[||(yi-η(β, $b i)||2+||∆ $b i ||2] 

The first part ∑M[||(yi-η(β, $b i)||2 can be viewed as the component present in the nonlinear 

least squares (NLS) function. Instead the term ||∆ $b i||2 represents a sort of added “penalty” and 

for this reason step 2 called the penalized least squares (PNLS) criterion. 

In the PNLS step, we first substitute our estimate $β (∆), the estimator of β based on the 

current ∆, into the log-likelihood function. By substitution we obtain: 

  -(1/2)∑M[ni×log(2πσ2)+log|∑(∆i)-1|+{wi- $X iβ}TΣi∆i{ wi- $X iβ}]β=β(∆) 

where iΧ̂ =∂ƒi(β, $b i)/∂βT, and wi=yi-ƒi(β, $b i). 

The obtained objective function is the log likelihood of a linear mixed effects model with: 

w=(w1
T, . . .,wM

T)T the response vector, and $X =( $X 1, . . ., $X M)T and     

Ẑ =( Ẑ 1, . . ., Ẑ M) respectively, being the design matrices for the fixed and the random 

effects. This part of one iteration is then solved using the standard techniques for a linear mixed-

effects model. Therefore a residual sum of squared errors is computed each time. 

These two steps are repeated until convergence.
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Example 3. Fitting one simulated data set in scenario 12. 

In this example, I fit two different models to a simulated data set of 40 runs in scenario 12 

(i.e., N0=300, k=0.08, ρ=0.9) for the cumulative function (ƒ1). Initially I use the NLME-M0cum 

function without any particular specification about the structure of the variance-covariance 

matrix (Appendix A, figures A4 and A8). M0 is not satisfactory because of the presence of 

autocorrelation and heteroskedasticity (Figure 2.1). I then fit NLME-M1cum (Figure 2.2) with 

the appropriate variance-covariance structure: an AR1 type and heteroskedastic transformation 

(3). M2 improves the previous fit, eliminating the significant autocorrelation and reducing the 

presence of heteroskedasticity. 

Preliminary Analyses of the SSD 

To gather some preliminary information about the presence or absence of autocorrelation in 

the SSD, I initially fitted a series of 20 arbitrarily selected runs independently using the 

cumulative approach (14) similar to the approach used in other studies (Molina et al., 1980; 

Talpaz et al., 1981; Deans et al. 1986). Successively using the NLME function without any 

particular variance-covariance specification, I fitted model M0 only to the “Ultisol” data grouped 

by run (this data consists of 9 runs) for both the incremental and cumulative approach.  
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CHAPTER 3 

RESULTS AND DISCUSSION 

The Ultisol Soil Order in the SSD 

As a result of this preliminary investigation when modeling SSD by run, no significant 

autocorrelation was found for the 20 selected soil series at a significance level α=0.05 (the 

autocorrelation was significant at α=0.1) in agreement with the results and modeling 

assumptions of other authors (Molina et al., 1980; Deans et al. 1986; Talpaz et al. 1981; Cabrera 

and Kissel, 1988; Maimone et al. 1991). 

When fitting M0 to the Ultisol group as a unique data set there was significant autocorrelation 

(α=0.05) and presence of heteroskedasticity as is shown in the M0cum ACF, residual, and QQ-

plot (Figure 3). Because of the violation of the assumptions regarding error homoskedasticity and 

independence, M0cum doesn’t adequately fit the data as presented in the fixed- and random-

effect curve plot. 

Similar results have been found when fitting the corresponding M0inc (Figure 4). There is 

significant autocorrelation at different lags and heteroskedasticity, resulting in a poor fit of the 

data. The residuals plot suggests that this model is inappropriate to fit this data set. The purpose 

of this analysis is to show evidence of autocorrelation in the SSD and underscore that it is 

necessary to account for the temporal autocorrelation when modeling NNM data.
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When correlation is present it is necessary to introduce new parameters into the model to be 

estimated (e.g the partial autocorrelation coefficients of the AR(1)). Hess and Schimdt (1995), 

testing different models on soil respiration data, have found that fitting incremental data rather 

than the corresponding cumulative can reduce the presence of autocorrelation, avoiding the 

estimation of additional correlation parameters. In fact, using cumulative rather than incremental 

data induces serial correlation of the residuals. However these authors recognize that choosing 

the appropriate model function (i.e. the incremental rather than cumulative model) doesn’t 

necessarily eliminate the presence of autocorrelation if the observations are indeed correlated. 

The “Ultisol” data example, whether modeled as cumulative or incremental data, shows a 

significant correlation. Because the same soil sample is being repeatedly measured over time, 

these measures should properly be considered as dependent upon one another. When fitting a 

larger sample size, the present autocorrelation becomes more evident than when modeling 

individual runs. In using NLMMs there is the advantage of introducing new parameters into the 

model to account for autocorrelation without as drastic a loss in terms of degrees of freedom as 

when using individual run models based on a much smaller sample. 

Autocorrelation 

The choice of a run composed of 10 observations such as used in the Cabrera’s and Kissel’s 

study (1988) rather than just 6 as in the SSD was for convenience in obtaining the desired AR(1) 

residual autocorrelation pattern varying with lag in the simulated data. In fact, when the number 

of lags was small (i.e. 6) it was impossible to produce the characteristic ACF tailing off after lag 

1. As a consequence, fitting an AR(1) model was not a satisfactory choice for many 6 

observation-data sets, having a different and not well-defined autocorrelation structure. The 

appropriateness of fitting an AR(1) model to the 10 observation-simulated data was evident 
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when considering runs composed of 100 observations. These simulations were performed to 

check if indeed fitting an AR(1) model to the simulated data was the most appropriate choice.  

Heteroskedasticity and Homoskedasticity 

Based on these considerations, the variance-covariance structure for the different 

heteroskedastic scenarios was assumed to increase with time as if the measurement (laboratory) 

errors were “summed up” [as in (6)] over time in the cumulative data (Appendix A: figures C8 

and C12 show a right-opening megaphone shape). 

The opposite variance transformation has been used for the incremental heteroskedastic 

scenarios, in the attempt of describing the biological processes involved (Appendix A, figures I8 

and I12: a left-opening megaphone shape). During the initial phases of the incubation the 

variance is larger because of large flushes of AN due to the decomposition of the so called 

“light” organic fraction. As other authors have reported when modeling NNM data, it is 

necessary to account for these initial flushes due to the most labile organic matter pool (Deans et 

al., 1986; Ellert and Bettany, 1988). 

Based on the results reported by Hess and Schimdt (1995) for soil respiration data, a 

homoskedastic residual pattern is most likely an appropriate choice to represent the residual 

distribution for an incremental model. To my knowledge, no author has ever discussed the 

problem of estimating the variability associated with NNM incremental models. The initial 

choice of creating different curves for both model functions by varying the k parameter and 

maintaining a relatively small variance (1.44), was driven by the necessity of generating realistic 

data sets in all possible cases. Larger variance values (e.g. 16-25) would generate decreasing 

patterns in the cumulative (i.e. final extraction date values smaller than previous and adjacent 

one) and negative values in the incremental case. This limitation in the choice of the variance 
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was mainly for the cumulative function. Given this result, a second set of simulations was 

performed with σ2=4 only for the incremental scenarios, with the intent of investigating whether 

a larger population variance determines any difference compared to the other case.  

Method 1 versus Method 2 

Under the heteroskedastic and correlated scenarios, modeling the individual runs separately 

can be acceptable, but the fitted parameters are not the best unbiased estimators of the population 

parameters, as shown by the results contained in Tables 2 and3. The same results are 

summarized in Figure 5, representing the regression of RMSE of the estimated N0 using method 

2 versus the corresponding values of method 1-RMSE for all the 24 simulations. The diagonal 

represents the line for which there is a 1:1 correspondence (correlation coefficient r=1) between 

root mean squared error for method 2 (RMSE_2) and the corresponding computed with method 1 

(RMSE_1). In other words points on this line would represent simulations for which there was 

no difference in RMSE between method 1 and method 2. Points below this line in the lower 

triangle are simulations for which RMSE_2 is greater than RMSE_1, and vice-versa for the dots 

above the r=1-line in the upper triangle. It is evident for both the cumulative and  incremental 

cases that RMSE_2 is lower than RMSE_1 (Figure 5), indicating that the error in estimating N0 

is greater when using method 1. Overall, RMSE for the incremental cases is larger than the 

corresponding cumulative RMSE. It has the smallest values in the homoskedastic and 

uncorrelated scenarios (1, 2, and 3) and largest in scenario 11. The incremental scenarios 10-12 

are those with the largest error. These results agree in that scenarios 1-3 represent the simplest 

conditions to compare the two methods, while 10-12 are the most complex. Considering the 

same variance for cumulative and incremental scenarios induces a relatively larger variation in 

the simulated data for this second case, because the fixed component of the generated data with 
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the incremental approach is relatively lower than the corresponding cumulative one with respect 

to time. Based on Tables 2, 3, and Figure 5, both methods produce N0 parameter estimates very 

close to the population target. However method 2 is relatively more precise and accurate than 

method 1. 

In creating the different data sets, particular attention was given to generating curves very 

different from one another as in a real experiment, maintaining the parameter of major interest 

N0 as the fixed target. The k parameter was forced to vary according to a uniform distribution, to 

avoid possible biases towards the mixed effects model that assumes a random normal 

distribution of errors and random effects. Method 1 has proven to be highly precise and accurate 

in parameter estimation, but the use of NLMMs allow for even a relatively greater precision and 

accuracy. In absolute terms, estimating N0 with either method is approximately the same. 

Differences in terms of a decimal g of N Kg-1 soil are not very meaningful to the soil scientist, 

considering the large variability associated with this laboratory technique. However the major 

advantage of using method 2 as opposed to 1 is in obtaining unbiased estimates of the standard 

error (i.e. root mean squared error). 
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The larger and biased root mean squared errors of method 1 depend on the unaccounted 

temporal dependency. Method 2 accounts for this factor and produces unbiased standard errors to 

form confidence intervals around the N0 parameter. No dependence was found between the 

overestimation of the N0 parameter and increasing the population variance: in fact the resulting 

N0 estimates and corresponding RMSEs of the additional simulations for the incremental 

scenarios were very similar to those obtained during the first set of simulations.
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CHAPTER 4 

CONCLUSIONS 

This simulation study has proven the importance of accounting for the presence of 

autocorrelation to obtain better parameter estimates when modeling NNM data under a variety of 

possible scenarios including independence, correlation, and heteroskedasticity in the observed 

data. 

The use of nonlinear mixed effects models offers the opportunity to formulate models 

relatively more precise and accurate then those commonly applied in these studies, obtaining 

parameter estimates based on unbiased standard errors. When fitting models based on wrong 

assumptions, we reduce the precision of our estimation and in general over estimate the true N0 

parameter value. This study has proven that when we do not consider important model 

assumptions our standard error estimation (or root mean squared error) is biased. Whether or not 

NLMMs offer an improvement in absolute terms in estimating N0, there is not any valid reason 

for not accounting for the temporal autocorrelation in one’s modeling effort when it is indeed 

present. 
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Table 1. Simulation study factorial design applied to both the cumulative (ƒ1) and incremental 

model function (ƒ2). 

Scenario N0 , k‡ Var-Cov. Structure 

  ρ† Var. structure type 

1 150, 0.09 0 Homosk; σ2=1.44§ 
2 200, 0.07 0 Homosk; σ2=1.44 

3 300, 0.08 0 Homosk; σ2=1.44 

4 150, 0.09 0.9 Simple AR(1); σ2=1.44 

5 200, 0.07 0.9 Simple AR(1); σ2=1.44 

6 300, 0.08 0.9 Simple AR(1); σ2=1.44 

7 150, 0.09 0 Heteroskedasticity 

8 200, 0.07 0 Heteroskedasticity 

9 300,0.08 0 Heteroskedasticity 

10 150, 0.09 0.9 AR(1) Hybrid* 

11 200, 0.07 0.9 AR(1) Hybrid 

12 300,0.08 0.9 AR(1) Hybrid 

 

‡ Parameter combination. † Correlation coefficient. § The variance term of the variance-

covariance matrix was always set to be 1.44. * The chosen ∑ determines an increasing and 

decreasing variance with time respectively for the cumulative and incremental model. 
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Table 2. N0 parameter estimates and root mean squared errors (RMSE) of the 12 cumulative (C) 

simulations computed with the two different methods. 

Scenario  § 0N̂  (1) †RMSE1 
0N̂  (2) RMSE2 

C1  150.0191 0.23069 150.0187 0.166243 
C2  200.0265 0.34137 200.0203 0.223958 
C3  300.0093 0.27475 300.0065 0.18886 
C4  150.0589 0.332593 150.0404 0.246543 
C5  200.0847 0.483374 200.047 0.320241 
C6  300.0414 0.389002 300.0219 0.273713 
C7  150.0093 0.188665 150.0075 0.122127 
C8  200.0128 0.27485 200.0069 0.163821 
C9  300.0035 0.223529 300.002 0.139132 
C10  150.0275 0.264404 150.0231 0.189416 
C11  200.2305 0.94813 200.1608 0.639929 
C12  300.0195 0.306163 300.0145 0.212916 

 

§ Estimated N0 parameter computed with both method (1) and (2). † Corresponding RMSE for 

N0.
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Table 3. N0 parameter estimates and root mean squared errors (RMSE) of the 12 incremental (I) 

simulations computed with method 1 (M1) and method 2 (M2). 

Scenario § 0N̂  (1) †RMSE1 
0N̂  (2) RMSE2 

I1 150.1586 0.780077 150.1507 0.694976 
I2 200.2112 0.980798 200.1587 0.816116 
I3 300.1166 0.850686 300.0989 0.73615 
I4 150.3999 1.485588 150.3674 1.211657 
I5 200.5203 1.829722 200.436 1.465213 
I6 300.2775 1.582531 300.2603 1.28368 
I7 150.3235 1.28835 150.2659 1.22012 
I8 200.4664 1.509959 200.1806 1.3101 
I9 300.2379 1.335408 300.1461 1.243283 
I10 150.7982 2.446561 151.0108 2.330947 
I11 201.1309 2.861787 200.8644 2.484665 
I12 300.5401 2.471982 300.6257 2.285935 

 

§ Estimated N0 parameter computed with both method (1) and (2). † Corresponding RMSE for 

N0 computed using (13). 
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Table 4. Step by step calculations in iteration 1 of the Guass-Newton algorithm fitting the 

Amarillo soil series data of SSD. 

    V01 V02 
η(θ0) N0⋅(1-e-kt) z0 =y-η(θ0) z0 1- -kte  t⋅ -2kte  
10.4 92.2⋅(1-e-(0.03)(4)) 15.8-10.4 5.4 0.11 326.4 
19.7 92.2⋅(1-e-(0.03)(8)) 32-19.7 12.3 0.21 578.9 
27.9 92.2⋅(1-e-(0.03)(12)) 47.7-27.9 19.8 0.30 770.2 
35.1 92.2⋅(1-e-(0.03)(16)) 63.1-35.1 27.9 0.38 910.8 
44.5 92.2⋅(1-e-(0.03)(22)) 78.2-44.5 33.6 0.48 1046.1 
54.7 92.2⋅(1-e-(0.03)(30)) 92.6-54.7 37.9 0.59 1122.1 
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Table 5. Step by step calculations in iteration 2 of the Guass-Newton algorithm fitting the 

Amarillo soil series data of SSD. 

   V11 V12 
η(θ1) 0N ⋅(1- -kte ) z1 1- -kte  t⋅ -2kte  
18.2 157.05⋅(1-e-(0.03079) (4)) -2.4 0.11 555.4 
34.3 157.05⋅(1-e-(0.03079) (8)) -2.3 0.21 982.1 
48.5 157.05⋅(1-e-(0.03079) (12)) -0.8 0.31 1302.4 
61.1 157.05⋅(1-e-(0.03079) (16)) 2.0 0.38 1535.3 
77.3 157.05⋅(1-e-(0.03079) (22)) 0.9 0.49 1754.9 
54.7 157.05⋅(1-e-(0.03079) (30)) 37.9 0.60 1870.5 
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Fig. 1. Plot of cumulative (N) versus time and of incremental nitrogen (∆) versus time 

based on simulated data for the three selected parameter combinations with only six 

observations similarly to the SSD. 
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 Fig 2.1. Diagnostic plots for NLME-M0cum fitted to a simulated data set under scenario 

12. The ACF plot indicates the presence of significant autocorrelation (α=0.1) at lag 1. 

The QQ- and residuals plot shows the presence of increasing variance with time. 
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Fig 2.2. Diagnostic plots for NLME-M1cum fitted to the same simulated data set as for 

M0 under scenario 12. NLME-M1 eliminates the presence of significant autocorrelation 

(α=0.1) at lag 1 and reduces the presence of heteroskedasticity. 
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Fig 3. Diagnostic plots and fitted value curves for M0cum. Significant ACF for almost all 

lags and presence of heteroskedasticity, indicated by the poor fit of the random specific 

effect curves individualized for each individual run in the Ultisol group. 
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Fig 4. Diagnostic plots and fitted value curves for M0inc. The significant ACF and 

presence of heteroskedasticity indicates the inappropriateness of this model. 
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Figure 5. Comparison of the relationships between root mean squared errors for the estimate of 

N0 parameter considering all possible simulation scenarios using the r=1-line. Each dot 

represents one specific simulation scenario for the cumulative and incremental functions. 
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APPENDIX A 

DIAGNOSTIC PLOTS OF MODEL M0 

Diagnostic plots of model M0 (nonlinear mixed effects model without any particular 

specification regarding the autocorrelation and heteroskedasticity structure) fitted to four 

possible scenarios of this study for both the incremental and cumulative model. Model M0 is a 

nonlinear mixed effects model that fits the entire simulated data set during each iteration of the 

program. The header of each individual plot specifies the simulation scenario as described in 

Tab. 1 for either the cumulative (A-1 to A-4) or the incremental (A-5 to A-8) approach. In each 

case the autocorrelation function, residuals, and standardized residuals are presented to detect the 

presence of autocorrelation and/or heteroskedasticity in the simulated data sets. 
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Figure A-1: Cumulative scenario 1. 
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Figure A-2: Cumulative scenario 4. 
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Figure A-3: Cumulative scenario 8. 
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Figure A-4: Cumulative scenario 12. 
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Figure A-5: Incremental scenario 1. 
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Figure A-6: Incremental scenario 4. 
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Figure A-7: Incremental scenario 8. 
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Figure A-8: Incremental scenario 12. 
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