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Abstract

A data-driven method of generalized adaptive ridge (gar) for an automatic yet adaptive

regression shrinkage and selection was proposed as the first part of this dissertation. In theory,

gar was proved to be equivalent to adaptive- lasso, ridge regression and elastic net

under appropriate conditions. Simulation results indicated gar performs either better or

equivalent to these methods, in terms of both prediction accuracy and computational speed

due to its flexibility of our newly developed algorithm.

The second part of this dissertation is on a general adaptive L2-regularized optimization

problem for a general loss function, `. This adaptive L2 penalty term was proved to be

equivalent to adaptive L1 penalty, adaptive L2 penalty, and combined adaptive L1 and

L2 penalty with appropriate choice of parameters and assuming ` is differentiable. Two

algorithms using Newton-Raphson method for the case of the number of predictors (p) less

than the number of sample size (n), and sequential minimal optimization (SMO) method

for the case p > n and correlated data were developed. The efficacy of this approach was

illustrated by simulations, comparisons with other methods and real data analysis.

The last part of this dissertation is about adaptive three-way decomposition (ATWD)

which combines the adaptive approach in the first part of this dissertation and popular

three-way decomposition (TWD) in chemical sciences to analyze nuclear magnetic resonance



(NMR) data. This method can be used to reduce the effects of signal noises and dimension-

ality of the spectral data, provide efficient estimates of spectral components, interpret all

the signals retrieved from NMR data, and translate structural information efficiently. Its

effective usefulness were illustrated in both simulation studies and real data analysis.
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Chapter 1

Introduction and literature review

1.1 Introduction

Since early 1970s, there has been considerable literature on variable selection. Variable selec-

tion has become an essential part of statistical analysis and has received more and more

attention in recent years. For instance, often in bioinformatics or longitudinal studies, there

are many variables measured. In order to enhance model predictability and model parsimony,

it is common in practice to include only a subset of important variables in the model. We

will give a short overview on some representative methods.

In section 1.2.1, we focus on variable selection methods for the linear model and mainly

on methods based on penalized least squares approach. In section 1.2.2, we review vari-

able selection methods for generalized linear models. In section 1.2.3 we give some detail

on typical backward and forward algorithms. Microarray, as a new technology to investi-

gate expression levels of thousands of genes simultaneously, has brought many statistical

problems. One of them is to reduce the dimension of microarray data and select important

variables such as types of genes. Many statistical methods have been developed to solve this

problem. In section 1.2.4, we give a short overview of variable selection methods related to

microarray data analysis. Nuclear Magnetic Resonance (NMR), as a powerful technique to

provide information on structural and chemical properties of molecules, has become a new

area which draws more attention of statisticians. NMR data also has high dimensions. Signal

noises sometimes can affect analysis results significantly. To find the true structures of chem-

icals, dimension reduction and variable selection methods will be useful tools to achieve that

goal. In section 1.2.5, we present a review on typical methods related to NMR data analysis

1
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proposed. Finally, in section 1.2.6 we outline our proposed dissertation of developing new

variable selection methods and applications on microarray data and NMR data.

1.2 Literature Review

Throughout this presentation, we denote Yi as the scalar response collected from the ith

(1 ≤ i ≤ n) subject and let Xi = (Xi1, · · · , Xip)
> ∈ Rp be the associated p-dimensional

predictor and pre-normalized with mean zero and unit variance.

1.2.1 Variable selection for linear model

In this section, we summarize some penalized least square methods for variable selection. To

model the regression relationship between Yi and Xi, the following linear regression model

is typically considered

Yi = X>
i β + εi, (1.1)

where β = (β1, · · · , βp)
> ∈ Rp is the regression coefficient vector and εi is the random noise.

To obtain a sensible estimator for β, the following ordinary least squares (ols) estimator

has been extensively used

β̂ols = argminβ‖Y −Xβ‖2,

where Y = (Y1, · · · , Yn)> ∈ Rn is the response vector, X = (X1, · · · , Xn)> ∈ Rn×p is the

design matrix, and ‖ · ‖ stands for the typical L2 norm.

However, as noted by many researchers, the ols estimator β̂ols suffers quite a number

of important limitations. For example, its finite sample variance can be very large if the

design matrix X suffers from the problem of multi-collinearity. Furthermore, it is not directly

applicable if the predictor dimension p is larger than the sample size n. As a simple yet neat

solution, Hoerl and Kennard (1970a,b) proposed the following ridge estimator

β̂ridge
λ = argminβ

{
‖Y −Xβ‖2 + λ‖β‖2

}
,
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where λ > 0 is a tuning parameter, which controls the amount of the penalty applied

to the regression coefficient. As one can see, the ridge estimator β̂ridge
λ is nothing but

a L2-penalized least squares estimator. Furthermore, it is also a Bayesian estimator with

a multivariate Gaussian prior placed on the regression coefficient β. Hoerl and Kennard

(1970a, b) showed that there always exist a λ value so that the ridge estimator β̂ridge
λ

is more accurate than the ols estimator β̂ols in terms of the mean squared error (MSE).

Consequently, β̂ridge
λ has been well recognized for its high prediction accuracy. In addition

to that, one can find that β̂ridge
λ is computable even if the design matrix X is singular (e.g.,

severe multi-collinearity or too large predictor dimension p À n). All those merits together

make β̂ridge
λ a practically very useful regression estimator.

Nevertheless, the ridge estimator β̂ridge
λ also suffers some limitations. In particular,

it does not have the capability to permit variable selection. The reason is that β̂ridge
λ ,

similar to the ols estimator β̂ols, cannot produce parsimonious solution for the estimated

regression coefficient. As a result, many irrelevant predictors are included in the model, which

naturally deteriorates the prediction accuracy and hurts the practical interpretability. As a

nice solution, Tibshirani (1996) proposed the lasso (least absolute shrinkage and selection

operator) estimator, which is given by

β̂lasso
γ = argminβ

{
‖Y −Xβ‖2 + γ|β|

}
,

where γ > 0 is once again the tuning parameter and |β| is defined to be |β| =
∑ |βj|. As

one can see, the lasso estimator β̂lasso
γ is nothing but a L1-penalized estimator. The major

strength of the lasso estimator is that β̂lasso
γ has the capability to produce parsimonious

solutions in its estimated regression coefficient. Consequently, those variables associated with

the parsimonious solutions are automatically identified as relevant variables. By doing so,

β̂lasso
γ elegantly combines parameter estimation and variable selection as one unified task.

Unfortunately, lasso also suffers its own limitations. In particular, lasso cannot handle

situations with serious multi-collinearity or p À n satisfactorily (Zou and Hastie, 2005).

Although it has been repeatedly observed that lasso can indeed improve the estimation
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efficiency (hence, prediction accuracy), such an improvement is mainly due to the fact that

irrelevant variables are detected and removed. In an extreme situation (for example), where

βj > 0 for every 1 ≤ j ≤ p, it can be shown easily that, with probability tending to one,

the lasso estimator β̂lasso
γ can be expressed as β̂lasso

γ = β̂ols + γ × 1 (Efron, Hastie,

Johnstone and Tibshirani 2004; Zou, Hastie and Tibshirani 2007), where 1 = (1, · · · , 1) ∈ Rp

is a constant vector. Such a simple formula reveals immediately that β̂lasso
γ produces even

worse estimation efficiency than β̂ols. This is because β̂lasso
γ shares the same variance as

β̂ols but suffers an extra bias due to the γ×1 term. However, it is noteworthy to remark that

this is a situation for which the ridge estimator β̂ridge
λ can help, particularly if X suffers

the problem of multi-collinearity (Zou and Hastie, 2005). Thus, a natural yet interesting

question arises: can we combine the strengths of the ridge regression and lasso methods

together?

As an elegant solution, Zou and Hastie (2005) proposed the method of elastic net,

which estimate the regression coefficient by

β̂enet
θ = argminβ

{
‖Y −Xβ‖2 + λ‖β‖2 + γ|β|

}
,

where θ = (λ, γ) is the tuning parameter vector. Compared with the ridge estimator β̂ridge
λ ,

the elastic net estimator β̂enet
θ is able to do variable selection. Compared with the lasso

estimator β̂lasso
γ , the elastic net estimator β̂enet

θ can deal with multi-collinearity and

p À n problems. For such a reason, the β̂enet
θ has achieved quite a success in both theory

and application.

1.2.2 Variable selection for generalized linear model

Usually, parameter estimation for generalized linear models is based on a likelihood function.

The idea of penalized least square method can be extended to penalized likelihood and can

be extended to any loss function naturally. A general form of penalized likelihood proposed
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by Fan and Li (2001) can be formulated as follows:

`(β) + n

p∑
j=1

pλ(|β|), (1.2)

where ` is a loss function and pλ(|β|) is a penalty function. The loss function could be in

least-squares form or in likelihood form. The forms of penalty functions are also diverse.

They could be L1 penalty, L2 penalty, L1 and L2 combinations, functions of L1 or L2 and

higher order penalty. Selecting a suitable penalty function can help statisticians to improve

the predictive ability of the model and engineers to distinguish signals from noises.

1.2.3 Algorithms for variable selection

There are two types of algorithms for variable selection: backward and forward. Among them

we discuss three representative backward and three representative forward algorithms. For

backward algorithms,the first one is β̂lasso
γ (Tibshirani, 1996), the second one is shooting

algorithm (Fu, 1998) and the third one is unified algorithm (Fan and Li, 2001). For forward

algorithms, three representatives are LARS (Efron et al., 2004), elastic net (Zou and

Hastie, 2005), and GLM paths (Park and Hastie, 2007).

Algorithm for lasso

Let SR(β) =‖ Y−Xβ ‖2, let γi, i = 1, 2, · · · , 2p be the p-tuples of the form (±1,±1, · · · ,±1),

set R = {i, γiβ = t} and T = {i, γiβ < t}. Here t ≥ 0 is a tuning parameter. The algorithm

proposed by Tibshirani (1996) can be summarized in the following steps.

1. Get OLS estimates β̂0 with full model, let i0 = sign(β0) and R = {i0}.

2. Obtain β̂ by minimizing SR(β) with the constraint Rβ ≤ t1. Here 1 is the one vector.

3. If
∑p

j=1 |βj| ≤ t, then Stop. Otherwise go to next step.

4. Put i = sign(β̂) into R and repeat the process from step 2.
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This algorithm performs as a variable selection operator and also keeps the stability of

ridge regression. Due to the diversity of penalty functions, it is necessary to develop an

algorithm which can be applied to all types of penalty functions.

Shooting algorithm

Another algorithm proposed by Fu (1998) is a general approach which is applicable to any

conditions with γ ≥ 1. For a linear model (2.1) with penalty function as λ
∑p

j=1 |βj|γ, let

RSS be the residual sum of squared errors and Dj(β, X, y) = ∂RSS/∂βj. Then the shooting

algorithm can be summarized as follows.

1. Use ˆβols as β̂0.

2. At step n, let D0 = Dj(0, ˆβ−j, X, y), for each j = 1, · · · , p. If D0 = 0, then β̂j = 0. For

lasso type penalty (γ = 1), each β̂j can be calculated as follows.

β̂j =
λ−D0

2xT
j xj

, if D0 > λ; β̂j =
−λ−D0

2xT
j xj

, if D0 < −λ; β̂j = 0, if |D0| ≤ λ,

where xj is the jth column of design matrix of X. Then obtain new estimates β̂n. For

lasso type penalty (γ > 1), each β̂j is calculated via Newton-Raphson method.

3. Repeat step 2 until convergence is reached.

Although the two algorithm above are illustrated with residual sum of squares as the

index, they can be extended naturally to deal with likelihood index. Therefore, these two

algorithms can be applied to generalized linear model via the iterative reweighted least

square (IRLS) procedure. The common points which these algorithms share are that the

penalty terms are transformed into two possible conditions for each βj (negative or positive).

Parameter estimations are based on transformed penalty term.

Unified algorithm

Instead of considering the sign of each βj, the penalty term can be locally approximated by

a quadratic function as in the algorithm by Fan and Li (2001). That is,
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pλ(|βj|) ≈ pλ(|βj0|) +
1

2
p
′
λ(|βj0|)(β2

j − β2
j0), (1.3)

where βj is close to βj0. This approximation is true under the assumption that pλ(|βj|) is

differentiable except at the point zero. Further, the loss function is assumed to be smooth

with respect to β so that it can be locally approximated by a quadratic function. Once loss

function and penalty function are approximated by quadratic functions, the optimization

problem can be easily solved by Newton-Raphson method.

It should be noted that λ is a tuning parameter in each algorithm and usually estimated

by cross validation methods. All three of the algorithms above are backward process and

start with full-model. Since the number of variables being deleted in each step may be

greater than one, the running speed of these algorithms may be faster. However, if data is

high-dimensional, it is hard to start with full model especially when the number of predictors

are much larger than the number of observations. Next, we discuss three forward algorithms

for variable selections.

LARS

Given a huge data set with a large collection of covariates, LARS is an efficient algorithm

to find coefficients for the parsimonious model selected and improve the predictability of

the model. In addition, LARS can also provide exact piecewise linear coefficients paths. The

detailed algorithm for LARS can be addressed as follows. Here model 2.1 is used as an

example for explanation of this algorithm.

1. Start with βj = 0 for j = 1, · · · , p.

2. Find xj1 which is most correlated with response variable y.

3. In the direction of xj1, take largest step possible to find another predictor, say xj2,

which is most correlated with current residual.
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4. Proceed at the direction equiangular between these two predictors to find another

predictor, say xj3, which is most correlated with current residual.

5. Continue in the ”Least Angle Direction”, until all variables selected.

At each step, the parameter estimates are obtained by minimizing the least square term with

a L1 penalty |β| = ∑p
j=1 |βj|.

ELASTIC NET

ELASTIC NET was developed directly based on LARS. Instead of using only an L1 penalty

as in LARS, an L2 penalty is combined with the L1 penalty in ELASTIC NET. Although

some modifications were made to improve the speed for high-dimensional data (p À n)

analysis and to handle group effects efficiently, the basic procedure is the same as with

LARS.

GLM Path

The predictor-corrector algorithm is implemented in GLM path. This algorithm has been

used in mathematics to implement numerical continuation. In order to elaborate this algo-

rithm, the objective function is defined as

z(β, λ) = −L(y; β) + λ|β|, (1.4)

where L(y; β) is the likelihood function. Further, let H(β, λ) = ∂`
∂β

, and assume that any

component of β is nonzero and the objective function is differentiable with respect to β. The

algorithm can be elaborated as follows.

1. Start with all βj = 0 for j = 1, · · · , p and λ0 = λmax.

2. At step k, select new predictors by decreasing λk to λk+1 and calculate β̂k+ = β̂k +

(λk+1 − λk)
∂β
∂λ

.
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3. Obtain β̂k+1 by optimizing the objective function `(β, λk+1) and with β̂k+ as starting

values.

4. Check if nonzero elements of β̂k+1 (active set) increases. If active set is augmented,

then repeat the process. Otherwise, all process stops.

All of the three algorithms elaborated above start with all parameter estimates set at

zero. Significant predictors are selected into active sets by different criteria. In this way,

handling huge matrixes for high-dimensional data is avoided. Therefore, these algorithms

have shown high efficiency in microarray data analysis.

1.2.4 Microarray expression data analysis

Microarray expression data analysis is a broad topic. Here we focus on dimension reduction

of microarray expression data. Some statistical multivariate analysis methods have been

applied to dimension reduction of microarray expression data. The classical methods include

principal component analysis and singular value decomposition (Alter et al. 2000; West et

al. 2000). Recently, penalized logistic regression methods (Zhu and Hastie, 2004; Park and

Hastie, 2007) have been developed. In addition, penalized logistic regression methods have

powerful predicability and can be easily extended to multiple classification cases.

Optimization algorithms for microarray data analysis

Traditionally, maximum likelihood and Newton-Raphson algorithm are often used to solve

penalized likelihood problems. One of the limitations of the Newton-Raphson method is the

difficulty of inverting a p by p matrix at each iteration step. The cost of computation is huge

where n ¿ p. In order to make the computation feasible, an algorithm called sequential

minimal optimization (SMO) was provided by Platt (1998). One advantage of SMO is that

the inversion of the huge matrix can be avoided. This algorithm has been extensively used

in microarray data analysis.



10

Variable selection methods used for microarray data analysis

Predictor variables in microarray expression data are usually expression levels for each gene.

Therefore, variable selection is equivalent to gene selection. Ideal variable selection methods

for microarray data analysis should satisfy following criteria.

1. Make gene selections or group genes selections efficiently.

2. Handle high dimensional matrix and make computation feasible.

The most well-known miroarray expression data were provided by Golub (1999). This is

a leukaemia cancer data set. There are 7129 genes and 72 samples observed. Zhu and Hastie

(2004) used a penalized logistic regression method to analyze this data for gene classification

and selection; Zou and Hastie (2005) used ELASTIC NET to analyze the same data for

important genes related to leukaemia cancer considering genes working the same pathway;

Park and Hastie (2007) used GLM path to analyze the same data again for the similar

purpose. Comparisons between these methods have been enumerated in the literature (Zou

and Hastie, 2005; Park and Hastie, 2007). In terms of group gene selections, the ELASTIC

NET method is the best for this data set. However, considering the cost of computation,

GLM path has an absolute advantage due to the implementation of the SMO algorithm.

1.2.5 NMR data analysis

Usually, NMR data analysis starts with raw time-domain NMR data which is also called free

induction decay (FID). FID represents the primary recording of the NMR data in the time

domain and consists of a list of positive or negative numbers as a function of time. Time is

often regularly spaced. Data values are presented as two types: real and imaginary. First, FID

will be processed with multiplication by a multiplier or window function. To increase digital

resolution, zeros will be added to the end of the FID. The goal of NMR data analysis is to

obtain a spectrum which provides information on molecular structures, dynamic interactions
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between atoms, etc.. Typically, time domain data will be transformed into frequency domain

data via Fourier Transforms.

There are several typical methods used in NMR data processing. Among them, we discuss

linear prediction, maximum entropy reconstruction, and three-way decomposition (TWD)

in detail.

Linear prediction (LP)

The principle which the LP extrapolation method relies on is that future signal values can

be derived as linear combination of observed data values (Stephenson, D.S., 1988). The

coefficients used in LP extrapolation are estimated from measured FID. The direction of

extrapolation can be either forward or backward. Backward extrapolation is used while

the beginning of FID is damaged; forward extrapolation is used while data is truncated at

the end of FID. Followed by Fourier Transform, the NMR data in the time domain can

be transformed into data in the frequency domain. Frequency peaks derived after Fourier

Transform can be used to characterize systems in a molecular scale.

Suppose a FID signal sampled at time intervals regularly spaced, Fk, has property as

follows. Fk =
∑M

i=1 αiFk−i, where M is the number of components and αi is the ith forward

prediction coefficients. Similarly, we have Fk =
∑M

i=1 βiFk+i, where βi is the ith backward

prediction coefficients. LP method has been widely used to make spectral improvements in

case of defective or incomplete time domain data.

Maximum entropy reconstruction

Maximum entropy reconstruction method is another popular method in NMR data analysis.

Consider a simple model for one dimensional NMR data.

y(t) =
M∑
i=j

Aj exp(
−t

Tj

)(cos(ωjt) + i sin(ωjt)) + εt, (1.5)

where y(t) is the signal observed at time t, M is the number of components, A is amplitude

of the signal, T is the parameter related to decay rate, ω is frequency and ε is the noise.
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Via the conventional forward Fourier Transform, equation (1.5) has an exact formal inverse

assuming T and ω are same for each signal, and it is given by:

Aj = (1/M)
M∑
t=1

y(t) exp(
t

T
)(cos(ωt) + i sin(ωt))−1 + ε

′
t, (1.6)

where ε
′
t is transformed error at time t. Further, the entropy is defined as

S = −
M∑

j=1

pj log pj, (1.7)

where pj = Aj/
∑M

i=1 Aj.

The procedure of this method can be summarized as follows.

1. Construct trial spectra and compute the hypothetical time domain data which can

produce that spectra. Here, trial spectra refers to all possible spectra with a degree

freedom for each frequency. Corresponding to each trial spectra, there is a hypothetical

time domain data which is also called trial data, ŷ(t).

2. Test if hypothetical data is consistent with experimental data by computing a χ2

statistic. That is,

χ2 =
M∑
i=1

| y(t)− ŷ(t) |2 /σ2, (1.8)

where σ is the standard deviation of expected noise.

3. Collect consistent trial spectra which has level of disagreement less than noise level.

4. Select the trial spectra with maximum entropy.

This method is robust and can deal with data without high quality (Schmieder, et al.,

1993). There is no assumption related to the shape of signal and no restriction on sampling

time. Since a set of candidate spectra data needs to be constructed first, this method requires

a huge amount of calculation. Here the entropy function need to be optimized to find best

fit spectra. If L1 or L2 penalty terms can be induced into entropy functions, then the effects

of noise will be significantly reduced.
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Three-way decomposition (TWD)

TWD method (Orekhov, et al., 2003) is much more effective in interpretation of three-

dimensional or higher dimension NMR data. There are two principles on which TWD relies.

The first is that a signal in multi-dimensional FID can be presented as products of one-

dimensional vectors. It can be expressed as shown in the following equation:

Y (i, j, k) =
R∑

l=1

Al
lF1l

iF2l
jF3l

k + εi,j,k, (1.9)

where Y (i, j, k) is one element of three-dimensional experimental data matrix Y with size

(I, J,K) and i = 1, 2...I; j = 1, 2...J ; k = 1, 2...K. R is the number of components. F1l,

F2l, and F3l are one-dimensional functions and called shapes. Another principle is that the

method of decomposition is unique at least within the three dimensions. Least-square mini-

mization has been used to estimate individual shapes and amplitudes of the R components.

That procedure can be written as follows:

MINF1,F2,F3,A,R

∑

i,j,k

(Y (i, j, k)−
R∑

l=1

Al
lF1l

iF2l
jF3l

k)
2. (1.10)

A penalized least square method has also been proposed by Orekhov (2003):

MINF1,F2,F3,A,R

∑

i,j,k

(Y (i, j, k)−
R∑

l=1

Al
lF1l

iF2l
jF3l

k)
2 + λ

R∑

l=1

(Al
l)

2. (1.11)

Here, λ is regularization factor. The algorithm used to solve this high-dimensional minimiza-

tion problem is PARAFAC provided by Harshman and Lundy (1984). The TWD method

can be applied to non-uniformly sampled data. Therefore, this method can improve the

sensitivity of analysis by sampling on data points with higher signal-to-noise ratio.

1.2.6 Summary

Variable selection methods distinguish from each other by different penalty functions. The

loss functions used in variable selection are most often least square errors and likelihood
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functions. The algorithms used to optimize objective functions are basically divided into

two types: forward and backward type as described previously. My dissertation will focus on

variable selection for linear model and generalized linear model with a general loss function

including likelihood. The first part, detailed in chapter 2, is to develop a new dynamic

approach using only L2 penalty term for linear model. This method is a data driven approach

which is equivalent to lasso, ridge regression, and elastic net. The second part,

detailed in chapter 3, is to extend the approach derived in the first part to general loss

functions. Therefore, this approach can be applied to generalized linear models and also

to microarray data analysis. The third part, detailed in chapter 4, is to apply the newly

developed statistical variable selection methods to NMR data as well as to investigate some

new methods that are particularly useful for NMR data analysis.



Chapter 2

Generalized Adaptive Ridge: a Data Driven Approach1

1Qiu, J., Yin, X., Wang, H. Submitted to Technometrics, 4/2008.

15
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Abstract

In this article we proposed a data-driven method of generalized adaptive ridge (gar)

for an automatic yet adaptive regression shrinkage and selection. We show that, in

theory, gar can be equivalent to adaptive lasso, adaptive ridge regression and

adaptive elastic net under appropriate conditions. Specifically, if the regression param-

eters truly enjoy a sparse representation, gar performs like the most recently pro-

posed adaptive lasso (Zou, 2006), hence, is able to identify relevant predictors con-

sistently. If the regression parameters are not that sparse, gar performs like the adaptive

ridge regression, which is well-known for its high prediction accuracy and reliability

against the multi-collinearity problem. If the predictor dimension is much larger than the

sample size, and the parameters are sparse, gar performs like adaptive elastic net which

is newly suggested in this paper and an extension from elastic net. Due to its flexibility,

gar performs either better or equivalent to these methods, in terms of prediction accuracy.

Simulation results confirm its competitive performance.

Key Words: adaptive lasso; elastic net; generalized adaptive ridge; lasso;

ridge regression

2.1 Introduction

Let Yi be the scalar response collected from the ith (1 ≤ i ≤ n) subject and Xi =

(Xi1, · · · , Xip)
> ∈ Rp be the associated p-dimensional predictor. The following linear regres-

sion of Yi on Xi is typically considered:

Yi = X>
i β + εi, (2.1)

where β = (β1, · · · , βp)
> ∈ Rp is the regression coefficient vector and εi is the random noise

with zero mean and unit variance. The ordinary least squares (ols) estimator has been

extensively used to estimate β.

β̂ols = argminβ‖Y −Xβ‖2,
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where Y = (Y1, · · · , Yn)> ∈ Rn is the response vector, X = (X1, · · · , Xn)> ∈ Rn×p is the

design matrix, and ‖ · ‖ stands for the typical L2 norm.

However, the ols estimator β̂ols suffers a number of limitations. For example, its finite

sample variance can be very large if the design matrix X suffers from the problem of multi-

collinearity. And it is not directly applicable if p > n. Hoerl and Kennard (1970a,b) then

proposed the following ridge estimator

β̂ridge
λ = argminβ

{
‖Y −Xβ‖2 + τ1‖β‖2

}
,

where τ1 > 0 is a tuning parameter, which controls the amount of the penalty applied to

the regression coefficient. They showed that there always exist a τ1 value so that the ridge

estimator β̂ridge
λ is more accurate than the ols estimator β̂ols in terms of the mean

squared error (MSE). Consequently, β̂ridge
λ has been well recognized for its high prediction

accuracy. In addition, β̂ridge
λ is computable even if the design matrix X is singular (e.g.,

severe multi-collinearity or too large predictor dimension p À n). All those merits together

make β̂ridge
λ a practically very useful regression estimator.

However, the ridge estimator β̂ridge
λ also suffers its own limitation. In particular, it does

not have the capability to do variable selection. The reason is that β̂ridge
λ , similar to the

ols estimator β̂ols, cannot produce sparse solution for the estimated regression coefficient.

Thus many irrelevant predictors are included in the model, which naturally deteriorates the

prediction accuracy and hurts the practical interpretability. To overcome this, Tibshirani

(1996) proposed the least absolute shrinkage and selection operator (lasso) estimator

β̂lasso
γ = argminβ

{
‖Y −Xβ‖2 + τ2|β|

}
,

where τ2 > 0 is the tuning parameter and |β| is defined to be |β| = ∑ |βj|. The main strength

of the lasso estimator is that β̂lasso
γ has the capability to produce sparse solutions in

its estimated regression coefficient. Consequently, only those variables associated with the

response are automatically identified as important variables. On the other hand, Fan and Li

(2001) first noted that the traditional lasso estimator also suffers a number of limitations.
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Specifically, it cannot guarantee a consistent identification of the finite dimensional true

model. Furthermore, its estimator cannot be as efficient as the oracle (i.e., the unpenalized

estimator obtained under the true model). Such a conjecture are then formally confirmed by

Leng, Lin and Wahba (2006), Zou (2006), Yuan and Lin (2007), and Zhao and Yu (2007).

As a solution, Zou (2006) then proposed the following adaptive lasso estimator

β̂alasso
γ = argminβ

{
‖Y −Xβ‖2 + τ3

p∑
j=1

wj|βj|
}

,

where τ3 > 0 and wj’s are nonnegative weights for j = 1, ..., p. Similar idea was also inde-

pendently developed for the least absolute deviation regression (Wang, Li and Jiang, 2007),

regression with autoregressive errors (Wang, Li and Tsai, 2007), and Cox’s proportional

hazard model (Zhang and Lu, 2007). The key idea of the adaptive lasso is to allow for dif-

ferent amount of shrinkage for different coefficients. Intuitively, if larger amounts of shrinkage

is used for irrelevant predictors and smaller amount is used for relevant ones, an estimator

with better efficiency can be obtained.

Nevertheless, adaptive lasso and lasso cannot handle the situation with serious

multi-collinearity and p À n. As an elegant solution, Zou and Hastie (2005) proposed the

following method of elastic net

β̂enet
θ = argminβ

{
‖Y −Xβ‖2 + τ1‖β‖2 + τ2|β|

}
,

where θ = (τ1, τ2) with nonnegative τ1 and τ2 is the tuning parameter vector. Compared

with the ridge estimator β̂ridge
λ , the elastic net estimator β̂enet

θ is able to do variable

selection. Compared with the lasso estimator β̂lasso
γ , the elastic net estimator β̂enet

θ can

deal with multi-collinearity and p À n problems. For such a reason, the β̂enet
θ has achieved

quite a success in both theory and application.

However, for any given data one may have to try each of above methods individually to

select the best estimate. In this paper, we propose a new method, generalized adaptive ridge

(gar), unifying adaptive ridge regression, adaptive lasso and adaptive elastic net

which is newly proposed in this paper. The paper is organized as the following: Section
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2.2 describes the gar method; Section 2.3 compares the results among the methods using

simulations and real data. Section 2.4 presents a short discussion. The proof is given in

the Appendix. For simplicity, the response variables are centered and the predictors are

standardized.

2.2 Generalized adaptive ridge

We now propose our method: general adaptive ridge (gar). Suppose wj ≥ 0 for j = 1, · · · , p

are the weights and W = diag(wj), Λ = diag{λ1, · · · , λp}, with λj > 0 for 1 ≤ j ≤ p, and

λ > 0 is a predefined value. Under the constraint
∑p

j=1
1
λj

wj = p,

β̂gar
λ = arg min

β,Λ
‖ Y −Xβ ‖2 +λβ>ΛWβ. (2.2)

Grandvalet (1998) discussed an adaptive ridge regression which is a special case of gar

with wj = 1 for j = 1, · · · , p. To interpret the λj’s, one may think that the Bayes prior

distribution for βj is a centered normal distribution with variance proportional to 1/(λλj).

The constraint is a link between the p prior distributions so that their weighted mean is

proportional to 1/λ, because 1
p

∑p
j=1

1
λλj

wj = 1
λ
.

Let c =
∑p

j=1
1

λ0+λλj
wj, for λ0, λ ≥ 0,

‖ Y −Xβ ‖2 +λ0β
>Wβ + λβ>ΛWβ, (2.3)

can be written by re-parameterization as ‖ Y − Xβ ‖2 +λ∗β>Λ∗Wβ, where Λ∗ =

{λ∗1, · · · , λ∗p}, λ∗ = p
c

and λ∗j = c(λ0 + λλj)/p. Then
∑p

j=1
1
λ∗j

wj = p. Hence (2.3) is a

special case of gar in (2.2).

Shortly we will see that the solution of equation (2.3) is equivalent to a new method of

adaptive elastic net which is described as the solution of β minimizing the following:

‖Y −Xβ‖2 + λ0β
>Wβ + τ

p∑
j=1

wj|βj|, (2.4)

where λ0, τ ≥ 0 are predefined tuning parameters. The adaptive elastic net reduces to

the elastic net (Zou and Hastie, 2005) if W is an identity matrix. Hence, it is a balance
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between adaptive ridge regression and adaptive lasso. Specifically, if τ = 0, it is

adaptive ridge regression; If λ0 = 0, it is adaptive lasso. If λ0 and λ are chosen

properly, this new penalization method will represent a balance in terms of power between

adaptive ridge regression and adaptive lasso. Hence alternative elastic net is

an adaptive elastic net solution.

We now state the following main result whose proof is in the Appendix A1.

Proposition 1. Suppose that wj’s for j = 1, · · · , p are fixed, then for a given λ ≥ 0 there

exists a τ ≥ 0 such that the solutions of the minimization problems of (2.3) and (2.4) are

the same, and vice versa.

Proposition 1 and the fact that (2.3) is a special case of (2.2) imply that adaptive

elastic net is a special case of gar. On the other hand, if λ0 = 0, Proposition 1 shows that

gar is equivalent to adaptive lasso. Hence, gar can deal with correlated data or data

with p >> n, and do variable selection as adaptive lasso does. On the other hand, because

of the ridge type formulation, gar can be solved by simple iterative ridge regression

algorithm. These features indicated that gar is a unified method of all three. That is, if

the regression parameters truly enjoy a sparse representation, gar performs like the most

recently proposed adaptive lasso (Zou, 2006), hence, is able to identify relevant predic-

tors consistently. If the regression parameters are not that sparse, gar performs like the

adaptive ridge regression, which is well-known for its high prediction accuracy and reli-

ability against the multi-collinearity problem. If the predictor dimension is much larger than

the sample size, and the parameters are sparse, gar performs like adaptive elastic net.

Therefore, it is a data-driven method.

For a given data (Y, X), and specified λ, Λ and W , gar in (2.2) has a unified solution:

β = (X>X + λΛW )−1X>Y. (2.5)
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Hence, the important thing is how to choose proper W and λ, as well as how to find the

optimized Λ satisfying the constraint
∑

j=1
1
λj

wj = p for our final solution, which will be

dealt with in the next section.

2.2.1 Algorithm for gar

Adaptive weights: we follow the idea of Zou (2006) and use his suggestion of W =

diag{|β̂ols
j |−ν} where ν ≥ 0 for n > p, and replace β̂ols by the ridge regression

estimate with tiny tuning parameter for n < p. One may use trial and error to select ν as

suggested by Zou (2006). In this paper we use ν = 0, 0.5, 1 for the purpose of comparison.

Using this way we set the initial weights (W (0)) and update the weights dynamically instead

of fixed weights in the iteration of our algorithm below.

Initial choice of parameters: we suggest MGCV (Wood, 2000) to estimate Λ initially by

minimizing

V (Λ(0)) =
‖y − A(Λ(0))y‖2/n

[Trace(I − A(Λ(0)))/n]2
, (2.6)

where A(Λ(0)) = X(X>X+Λ(0))−1X> is called influence matrix for the model. This method is

efficient in estimation of multiple tuning parameters corresponding to multiple penalizations.

If n > p, we directly use above MGCV method; If n < p, we automatically enlarge the data

by adding an identity p × p matrix to X and p × 1 zero vector to y so that the artificial

data has sample size bigger than p. This is allowed because we only use it to obtain initial Λ

which will be updated in the algorithm anyway. Using Wood’s MGCV algorithm by sending

the proper data matrix and setting trivial parameters of 1’s to obtain solutions Λ̂(0) and β̂(0).

We then construct λ(0)Λ(0) = Λ̂(0)diag{(β̂(0)
j )−2}, where Λ(0) satisfies

∑p
j=1

1

λ
(0)
j

w
(0)
j = p.

Based on the description of the iterative scheme in Appendix A2, we have suggested the

following algorithm: For fixed λ = λ(0) and the accuracy δ > 0 and δ1 > 0,

1. Set initials p0 = p, W (0), Λ(0) and s = 0. Use (2.5) to obtain β(s).
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2. For j = 1, · · · , ps, calculate b
(s)
j =

|β(s)
j |

∑ps
j=1 w

(s)
j |β(s)

j | . If b
(s)
j < δ, delete jth variable; if

b
(s)
j ≥ δ, keep it.

3. Let ps+1 be the number of remain predictors in the model. For these variables, update

W (s+1) by obtaining new ols or ridge regression estimates, and update Λ(s+1) by

λ
(s+1)
j = (

p|β(s)
j |

∑ps+1
j=1 w

(s+1)
j |β(s)

j |)
−1.

4. Update β(s+1) by equation (2.5) for the reduced variables, and calculate max
|β(s)

j −β
(s+1)
j |

1+|β(s+1)
j | .

If it is less than δ, stop; otherwise, go to step 2 and update until it stops.

We call this algorithm gar.

Remark 1. In the algorithm, once variable is deleted, it never enters again. In this way,

the computation becomes much more efficient. Also step 3 indicates that the constraint on

Λ is satisfied automatically.

Remark 2. This algorithm is only a ’typical’ ridge estimator, thus gar provides an efficient

and alternative approach for elastic net (when W = I). The convergence criterion is

δ1 = 10−6.

Remark 3. If ν = 0, then W = I throughout the algorithm. That is the same to set

weights to be equal all the time in the algorithm, thus we refer it as gar with equal weights.

Our limited simulation later show that generally gar with equal weights seems good enough

for this method.

Our algorithm may be further improved by using the idea in Hawkins and Yin (2002),

and Turlach (2006). However, the simulations and data analysis in section 2.3 seem show that

the above algorithm is already effective enough. The R code for the algorithm is available

from the authors.

2.2.2 Choice of parameters

In our algorithm, the accuracy δ is needed. Because as described in Appendix A2, a βk = 0

will force |βk|∑p
j=1 wj |βj | to be zero in the iteration between βk’s and λk’s. Therefore, practically,
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a small |βk|∑p
j=1 wj |βj | may indicates the respective βk = 0. Hence we need a threshold δ > 0. For

fixed tuning parameter λ, the results will be affected by the accuracy δ.

Unlike other algorithms, in our case, we set 0 < δ ≤ 1. The tuning parameter λ ∈ (0, ∆],

where ∆ is an integer (∆ = 100 in our simulations). We select a series of λ and a series of δ in

the respective intervals. Our algorithm finds the solution for each pair of (λ, δ) in a matrix.

And finally, we select the pair of (λ, δ) with the smallest of either AIC (Akaike, 1973), BIC

(Schwarz, 1978) or RIC (Shi and Tsai, 2002):

AICδ(λ) = n log(‖Y −Xβδ(λ)‖2/n) + 2pδ(λ)

BICδ(λ) = n log(‖Y −Xβδ(λ)‖2/n) + log(n)pδ(λ)

RICδ(λ) = (n− pδ(λ)) log(‖Y −Xβδ(λ)‖2/(n− pδ(λ))) + pδ(λ)(log(n)− 1) + 4/(n− pδ(λ)− 2)

We first note that from our limited simulations in selecting tuning parameters, AIC, BIC and

RIC give very similar results when n > p, and AIC and BIC give very similar results when

n < p, although the respective curves of the parameters may be different (Plot of criterion

vs. λ marked by δ such as in Figures 2.1 and 2.2). Thus we only report the BIC criterion in

this paper.

We find that when n > p across λ, there is a certain range of δ which is the same for the

corresponding BIC criterion such that the values of them in each column of λ are among

the smallest and stable, respectively. For instance, in Figure 2.1 for Model 1 in section 2.3.1,

for all λ’s, the BIC curves are the same for δ = .01, ..., 1. These selected δ will produce the

same result. On the other hand, across δ, there is a certain range of λ which is the same for

the corresponding BIC criterion such that the values of them in each row of δ are among

the smallest and stable, respectively. For example, in Figure 2.1 BIC values are the smallest

and stable for 0 < λ < .5. One may choose any value for λ in this range. Within the range,

again different values produce the same results. However, in our limited simulations and data

analysis, the λ = λ(0) that is selected by MGCV method in the previous section, is always

in this range of λ. For model 1, the vertical line (close to .05) is the MGCV for λ. Thus we

use λ = λ(0) as the selected tunning parameter. When n < p, the selected λ by MGCV may
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not be the best as in Figure 2.2 where the MGCV λ is the vertical line which is closed to 4.

The best values of λ is in between 0 and .2. However, the results by using MGCV λ and the

best λ have little difference.

The tuning parameter selection for Model 3 has a similar figure to the Figure 2.1 of model

1, while the figure for Model 4 is very similar to Figure 2.2 of model 2. We find that our

selection method for tuning parameters is very useful and efficient in the simulations.

2.3 Numerical studies

In this section, we shall compare the results among gar, adaptive lasso, lasso,

ridge regression and elastic net via a small simulation study as well as one data

set. All elastic net and lasso are performed in R package, using 10-fold cross-validation

method to select the best tuning parameters. And adaptive lasso is performed by using

Zou’s code (through personal communication).

2.3.1 Simulations

In this simulation part, we consider our algorithm with weights. The weight vector was set

as ŵ = 1/|β̂|ν (Zou, 2006), where β̂ is ols estimate for (n > p) and β̂ is ridge estimate for

(n <= p). For comparison purpose we fixed ν = 0, .5, 1 as did in Zou (2006). When ν = 0,

this is our special case of equal weight. Four models are considered.

Model 1. This model is called inconsistent lasso path (Zou, 2006), which was used to

make comparison with adaptive lasso developed by Zou (2006). The model is defined as

y = X>β + N(0, σ2), where β = (5.6, 5.6, 5.6, 0), Xi, i = 1, ..., n are iid N(0, C) and C is a

4× 4 symmetric matrix. The 3× 3 block matrix C11 = (1− ρ1)I + ρ1J , where I is the 3× 3

identity matrix, J is the 3 × 3 matrix of 1’s and ρ1 = −.39. The 3 × 1 block vectors are,

C>
21 = C12 = ρ2

−→
1 , where

−→
1 is the 3× 1 vector of 1’s and ρ2 = .23. Finally, C22 = 1.

Table 2.1 presents a simulation with combinations of n, σ and ν using the way in Zou

(2006). We generated 100 datasets for each set up. We obtained solution by the respective
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method for each dataset, then reported the percentage of the 100 solutions selecting the

true model. ridge regression is not performed since it selects all the variables. Since

gar is equivalent to adaptive lasso, as expected, gar can perform a consistent variable

selection. In fact its results are comparable with adaptive lasso when n = 60, and better

when n = 120, 300. Note that weights seem not so critical for the results, which may be

due to the dynamic update of the weights in our algorithm. Confirming with Zou’s report,

lasso performs worse than that of adaptive lasso, and also in this set up, elastic net

is expected to perform as lasso does. In detailed results, we find that elastic net and

lasso often overfit the model.

For the next three comparisons, we consider the following model:

Y = β>X + σεε,

where X ∼ Np(0, Σ), ε ∼ N(0, 1), β is p× 1 vector and n is the sample size.

Model 2. All elements of β are .86’s, and Σ = I, σε = .5, n = 50, p = 100. We replicate

100 data sets. For this model, ridge regression should be the best method.

Table 2.2 reports the means and standard errors for the absolute difference |β −
β̂|, the correlation coefficient between β>X and β̂>X for different methods. Although

ridge regression seems outperform gar a little, both difference and correlation showed

that the results are almost equivalent. Which means that gar doesn’t lose power to

ridge regression even in case that ridge regression is the best method for the model.

With increase of weight ν, absolute difference |β − β̂| for gar increases. But the differ-

ence seems not so big. And the respective correlation coefficients seems unchanged. In this

case, gar seems not very sensitive to weight. On the other hand, gar again outperforms

elastic net. lasso and adaptive lasso are not proper methods, due to the set-up of

n < p.

In the next two models, we report the way similar to that of Wang, Li and Tsai (2007). We

define ST = {j : βj 6= 0}, the true model, and Se = {j : β̂j 6= 0}, the estimated model. Thus

the sets of {e : Se 6⊃ ST}, {e : Se = ST} and {e : Se ⊃ ST and Se 6= ST}, are the underfitted,
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correctly fitted and overfitted models, respectively. We report the rate of these models over

the total number of models. Furthermore, in the overfitted case, we also reported the rate of

how many parameters are overfitted. The average of 0 coefficients is also reported, in which

the column labeled ”C” presents the average restricted only to the true zero coefficients, and

the column labeled ”I” depicts the average of coefficients erroneously set to 0. The model

error is defined as

ME(β̂) = E(x>β̂ − x>β)2 = (β̂ − β)>E(x>x)(β̂ − β),

and the relative model error is defined as ME(β̂)/ME(β̂o) where β̂0 is the usual OLS fit for

model 3, and ME(β̂)/ME(β̂r) where β̂r is the ridge regression fit (using Wood’s ridge

code with default tuning parameter) for model 4, respectively. We report the median of the

relative model error (MRME) over 1000 simulated datasets.

Model 3. This model is originally used by Tibshirani (1996), with p = 8, β> =

(3, 1.5, 0, 0, 2, 0, 0, 0). But each element of Σ is ρ|i−j| for all i and j and σε = 1, with n = 200,

and ρ = 0.25 and 0.5. lasso should be the best method in terms of variable selection.

Table 2.3 shows that all the methods are equally good in terms of variables selection in that

they all correctly select the models all the time. However, in terms of prediction errors via

MRME, gar is the best, adaptive lasso is closely the second best. Because their respec-

tive MRMEs are close. Equal weight of gar seems work well again. As expected, lasso and

elastic net performed similarly. But their prediction errors are much bigger. The result

of lasso seems different from what Fan and Li (2001) reported. However, in their report

lasso overfitted model, thus has smaller MRME. We also find that the MRME reduces to

what they had, if lasso overfitted the model in our study. But with sample size of n = 200,

lasso correctly fits the model.

Model 4. The same model as model 3, except p = 100 and n = 50 with additional

ρ = .75. While the first eight elements of β is (3, 1.5, 0, 0, 2, 0, 0, 0), the rest are zeros.

elastic net should be the best method. We don’t perform ridge regression because
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it doesn’t select variables. gar with equal weights seems the best method here, the differ-

ences among using weights seem not that significant. gar identifies more correct zeros than

elastic net does. Although gar occasionally underfits the model, its MRME is signifi-

cantly smaller than that of elastic net. On the other hand, elastic net seems overfit

the model more often. gar consistently outperforms that of elastic net in this model.

Note that in our comparisons of these models, it appears there is a ’clear winner’ for each

model, and not all the methods are suitable for each model. In fact, gar and elastic net

are the only methods that are suitable for across all the models among these methods.

However, in all suitable comparisons, gar is very comparable with the ’winner’ method

in each case: in model 1 with adaptive lasso but better than lasso and elastic net,

and in model 2 with ridge regression but better than elastic net; or better than the

’winners’ lasso and adaptive lasso in model 3 and elastic net in model 4. The limited

simulations seem suggest that regardless of the data type, gar works well and also gar with

equal weights does a great job.

2.3.2 A diabetes data

To demonstrate the usefulness of the gar method on real dataset, we revisit the famous

diabetes study data (Efron, Hastie, Johnstone and Tibshirani 2004). The predictors are age,

sex, body mass index (bmi), mean arterial pressure (map), and six serum measurements (tc,

ldl, hdl, tch, ltg, glu). The response variable is a quantitative measure of disease progression.

There are 442 diabetes patients involved in this study.

We randomly select half of the data to select the tuning parameters and then use the other

half to select the model. We do this 100 times, and Table 2.5 reports the results. Weights

again have little effect for gar which agrees with the performance in our simulations. It seems

that elastic net and lasso tend to select variables similarly, which agrees with Efron et

al.’s (2004) report for lasso. On the other hand, adaptive lasso and gar tend to agree

more than that of gar and elastic net, supporting the conclusion from simulations in
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models 1 and 3. We don’t know the true model in the dataset. However, this dataset may

be a type of model 1 or model 3 or a combination of these twos, since n > p. In such a case,

adaptive lasso and gar may have better ability to select variables. On the other hand,

we may look at the prediction errors. Table 2.6 reports the comparison of the performance

of those methods in terms of the two average mean squared errors (MSE). The in-sample

MSE is the MSE for the sample that is used to fit the model, the out-sample is the MSE for

the other sample. For in-sample MSE, gar seems a little bit smaller than that of all others

which again agrees what we conclude in model 3. For those of out-sample MSEs, gar with

weights (ν = .5, 1) have the two smallest prediction errors. The three methods of lasso,

gar with equal weights, and elastic net have produced similar errors. However, lasso

and elastic net did select more variables. The two adaptive lasso also have relative big

errors. Overall if the dataset is indeed a combination of models 1 and 3, then the conclusion

from variable selection and prediction error is that gar may be the best method. Because

gar selects the smallest number of variables with smallest prediction errors.

We further looked at details for the data. First we randomly select half of the data to

choose the tuning parameters. Then we use the whole data to select important variables. gar

with equal weights selects three variables (NO. 3, 4 and 9: bmi, map and ltg, respectively);

gar with weights ((ν) = 0.5 and 1) selects two variables (NO. 3 and 9: bmi and ltg, respec-

tively); elastic net selects four variables (NO. 3, 4, 7, 9: bmi,map,hdl, ltg, respectively);

lasso selects four variables (NO. 3, 4, 7, 9: bmi,map,hdl, ltg, respectively); Adaptive lasso

with weight equal 0.5 selects four variables (NO. 3, 4, 7, 9: bmi,map,hdl, ltg, respectively);

Adaptive lasso with weight equal 1 selects four variables (NO. 3, 4, 5, 9: bmi,map,tc, ltg,

respectively); These results support Table 2.5.

2.4 Discussion

In this article, we showed that in theory data-driven gar is a flexible and automatic method

for (adaptive-) ridge regression, lasso and elastic net. Our limited simulations show
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that the adaptiveness in gar seems not so important, thus equal weights in gar is efficient.

This may be due to the algorithm that dynamically updates weights in each step. In com-

paring with ridge regression, lasso and elastic net, our performance is essentially

equivalent or better. The overall performance of numerical efficiency of gar may be due to

its flexibility in the algorithm.
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Appendix: Justification

A1. Proposition 2. Define γj =
√

λjβj; cj =
√

1
λj

, for j = 1, · · · , p, then γjcj =

βj and
∑p

j=1 wjc
2
j = p. Equation (2.3) then becomes

β̂gar
λ = arg min

n∑
i=1

(yi −
p∑

j=1

γjcjxij)
2 + λ0

p∑
j=1

wjγ
2
j c

2
j + λ

p∑
j=1

wjγ
2
j , under

p∑
j=1

wjc
2
j = p.

To solve this minimization problem, we have the Lagrangian

β̂gar
λ = arg min

n∑
i=1

(yi −
p∑

j=1

γjcjxij)
2 + λ0

p∑
j=1

wjγ
2
j c

2
j + λ

p∑
j=1

wjγ
2
j + m(

p∑
j=1

wjc
2
j − p).

By taking derivatives with respect to ck and γk , we have three equations:

γkTk + λ0wkγ
2
kck = −mwkck, ckTk + λ0wkγkc

2
k = −λwkγk, and

p∑
j=1

wjc
2
j = p,

where Tk =
∑n

i=1 xik(
∑p

j=1 γjcjxij − yi) =
∑n

i=1 xik(
∑p

j=1 βjxij − yi). We have two cases:

Case (1), γk = 0 leading to βk = 0;

Case (2), γk 6= 0 , multiple the first equation by ck and second one by γk, we have

mwkc
2
k = λwkγ

2
k , which by the way defined for for γk and ck leads to

γk

ck

=

√
m

λ
sign(βk) (2.7)

Divide the first two equations by wkγk and wkck, respectively, we have

Tk

wk

+ λ0βk = −m
ck

γk

;
Tk

wk

+ λ0βk = −λ
γk

ck

. (2.8)
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Multiple the two equations, we have ( Tk

wk
+ λ0βk)

2 = λm, which is a constant and denoted

by T 2
0 where T0 = Tk

wk
+ λ0βk. From the first equation , we have

γkT0 = −mck, wkckγkT0 = −mwkc
2
k, wkβkT0 = −mwkc

2
k, wk|βk||T0| = mwkc

2
k,

using the fact that
∑p

j=1 wjc
2
j = p, we have |T0|

∑p
j=1 wj|βj| = mp. And similarly, from

the second equation, we have |T0|p = λ
∑p

j=1 wj|βj|. The ratio of these two equations leads

to m =
λ(

∑p
j=1 wj |βj |)2

p2 . Put this and (2.7) into the second equation in (2.8), we have Tk +

λ0wkβk + wk
λ
p
sign(βk)

∑p
j=1 wj|βj| = 0. That is, the solutions of case (2) satisfies

n∑
i=1

xik(

p∑
j=1

βjxij − yi) + λ0wkβk + wk
λ

p
sign(βk)

p∑
j=1

wj|βj| = 0. (2.9)

However, βk = 0 and (3.14) are the the solution of the following minimization problem:

β̂ = arg min
n∑

i=1

(yi −
p∑

j=1

βjxij)
2 + λ0β

>Wβ +
λ

p
(

p∑
j=1

wj|βj|)2,

which is equivalent to β̂ = arg min
∑n

i=1(yi−
∑p

j=1 βjxij)
2+λ0β

>Wβ, under λ
p
(
∑p

j=1 wj|βj|)2 <

t′; which is then equivalent to

β̂ = arg min
n∑

i=1

(yi −
p∑

j=1

βjxij)
2 + λ0β

>Wβ (2.10)

under
∑p

j=1 wj|βj| < t for t =
√

pt′/λ. But (2.10) is equivalent to (2.4). Hence the proof is

complete. .

A2. Algorithm background. Using the notation in the proof of Proposition 2, and define

Dc = diag{c1, · · · , cp} and γ> = (γ1, ..., γp). By this re-parameterization, the solution can

be obtained from Dc and γ. Thus for giving λ and W , if Dc is given, then

γ = (DcX
>XDc + λW )−1DcX

>Y. (2.11)

If γ is given, from the proof, c2
k = γ2

k
λ
m

=
γ2

kp2

(
∑

wj |βj |)2 , by the constraint
∑

wjc
2
j = p, we have

c2
k =

pγ2
k∑

wjγ2
j

(2.12)
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Thus an alternating algorithm can be developed by using (2.11) and (2.12).

However, one can easily see that (2.11) is the same as (2.5). And furthermore, c2
k =

γ2
kp2

(
∑

wj |βj |)2 implies that c4
k =

γ2
kc2kp2

(
∑

wj |βj |)2 =
β2

kp2

(
∑

wj |βj |)2 . Hence c2
k = p|βk|∑

wj |βj | . Thus

λk =
1

c2
k

= (
p|βk|∑
wj|βj|)

−1, (2.13)

where the constraint on Λ is automatically satisfied. Therefore, an equivalent algorithm can

be developed iteratively between (2.5) and (3.15). That is, for given λk’s, find β by (2.5);

check c2
k or c2

k/p = |βk|∑
wj |βj | if it is smaller than a threshold, delete the respective βk; otherwise

keep it there. Then for the remain variables, update the respective λk by (3.15). Proceed

this scheme iteratively until it is convergent. .
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Table 2.1: Model 1: comparisons among elastic net, lasso, adaptive lasso and gar: the
percentage of selecting the true model

Method n = 60, σ = 9 n = 120, σ = 5 n = 300, σ = 3
elastic net .49 .50 .48
lasso .46 .50 .38
adaptive lasso(ν = .5) .56 .65 .90
adaptive lasso(ν = 1) .67 .89 1
gar(ν = 0) .54 .93 .97
gar(ν = .5) .55 .95 1
gar(ν = 1) .59 .97 1

The tuning parameters for gar are MGCV λ and δ = .1 as in Figure 1.

Table 2.2: Model 2: comparison among ridge regression, elastic net and gar

Mean absolute difference (se) Mean correlation coefficients (se)
Pairs β VS βr β VS βgar βgar VS βr β vs. βr β vs βgar βgar vs βr
ν = 0 .5045(.3436) .5404(.3479) .0881(.0809) .996(.0011) .997(.0011) .999(.0005)
ν = 0.5 .5045(.3436) .5414(.3421) .0934(.0921) .996(.0011) .997(.0013) .999(.0007)
ν = 1 .5045(.3436) .5423(.3451) .1171(.1062) .996(.0011) .997(.0015) .999(.0007)
Pairs β VS βet βet VS βr βgar VS βet β vs. βet βet vs βr βgar vs βet
ν = 0 .6045(.3458) .5828(.3396) .2482(.2626) .995(.0015) .994(.0016) .998(.0011)
ν = 0.5 .6045(.3458) .5828(.3396) .2461(.2630) .995(.0015) .994(.0016) .999(.0012)
ν = 1 .6045(.3458) .5828(.3396) .2583(.3012) .995(.0015) .994(.0016) .999(.0012)

βr is the ridge regression estimate, βgar is the gar estimate and βet is the
elastic net estimate. The tuning parameters for gar are λ = .1 and δ = .1 as in Figure

2. While for ridge regression, the tuning parameter is selected by the typical GCV
method.
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Table 2.3: Model 3: Simulation results for n>p

Method σε n ρ under correctly overfitted Avg. No. of zeros MRME
fitted fitted 1 2 ≥ 3 I C

gar(ν = 0) 1 200 0.25 0 1 0 0 0 0 5 0.3521
gar(ν = 0.5) 1 200 0.25 0 1 0 0 0 0 5 0.3422
gar(ν = 1) 1 200 0.25 0 1 0 0 0 0 5 0.3499
lasso 1 200 0.25 0 1 0 0 0 0 5 1.3844
Adaptive lasso(ν = 0.5) 1 200 0.25 0 1 0 0 0 0 5 0.4167
Adaptive lasso(ν = 1) 1 200 0.25 0 1 0 0 0 0 5 0.3551
elastic net 1 200 0.25 0 1 0 0 0 0 5 1.3757
gar(ν = 0) 1 200 0.50 0 1 0 0 0 0 5 0.3213
gar(ν = 0.5) 1 200 0.50 0 1 0 0 0 0 5 0.3500
gar(ν = 1) 1 200 0.50 0 1 0 0 0 0 5 0.3240
lasso 1 200 0.50 0 1 0 0 0 0 5 1.3749
Adaptive lasso(ν = 0.5) 1 200 0.50 0 1 0 0 0 0 5 0.4044
Adaptive lasso(ν = 1) 1 200 0.50 0 1 0 0 0 0 5 0.3603
elastic net 1 200 0.50 0 1 0 0 0 0 5 1.3698

Table 2.4: Model 4: Simulation results for n<p

Method σε n ρ under correctly overfitted Avg. No. of zeros MRME
fitted fitted 1 2 ≥ 3 I C

gar(ν = 0) 1 50 0.25 0.045 0.954 0.001 0.00 0.00 0.045 96.99 0.05087
gar(ν = 0.5) 1 50 0.25 0.01 0.96 0.03 0.00 0.00 0.01 96.97 0.05001
gar(ν = 1) 1 50 0.25 0.00 0.90 0.01 0.09 0 0.00 96.89 0.06146
elastic net 1 50 0.25 0 0 0 0 1 0 94 0.33570
gar(ν = 0) 1 50 0.50 0.009 0.990 0.001 0 0 0.009 96.98 0.04967
gar(ν = 0.5) 1 50 0.50 0.01 0.93 0.06 0 0 0.01 96.94 0.04890
gar(ν = 1) 1 50 0.50 0.00 0.95 0.04 0.01 0.00 0.00 96.94 0.04415
elastic net 1 50 0.50 0 0 0 0.001 0.999 0 94.001 0.25344
gar(ν = 0) 1 50 0.75 0.01 0.96 0.03 0 0 0.01 96.97 0.04501
gar(ν = 0.5) 1 50 0.75 0.01 0.96 0.03 0.00 0 0.01 96.93 0.04321
gar(ν = 1) 1 50 0.75 0.02 0.94 0.04 0 0 0.02 96.93 0.04239
elastic net 1 50 0.75 0 0 0.009 0.002 0.989 0 94.02 0.18091
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Table 2.5: Diabetes data: percentage of variable selected over 100 runs by elastic net and
gar

Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8 Var9 Var10
elastic net 0.01 0.46 1.00 1.00 0.00 0.02 0.97 0.21 1.00 0.33
lasso 0.01 0.51 1.00 1.00 0.02 0.04 0.99 0.06 1 0.37
Adaptive lasso(ν = 0.5) 0.00 0.09 1.00 0.99 0.46 0.02 0.43 0.01 1.00 0.00
Adaptive lasso(ν = 1) 0.00 0.03 1.00 1.00 0.81 0.00 0.12 0.04 1.00 0.00
gar(ν = 0) 0.00 0.00 0.95 0.82 0.13 0.11 0.40 0.09 0.91 0.02
gar(ν = 0.5) 0.00 0.00 0.94 0.80 0.12 0.09 0.38 0.08 0.89 0.01
gar(ν = 1) 0.00 0.00 0.93 0.79 0.10 0.08 0.37 0.06 0.88 0.01

Table 2.6: Diabetes data: comparison between elastic net and gar

MSE in-sample MSE out-sample
elastic net 3025.62(196.53) 3124.50(203.34)
lasso 3017.97(214.92) 3141.46(181.62)
Adaptive lasso(ν = 0.5) 3072.38(169.06) 3165.31(170.70)
Adaptive lasso(ν = 1) 3018.75(181.98) 3160.19(189.08)
gar(ν = 0) 2954.62(236.72) 3132.85(257.07)
gar(ν = 0.5) 2796.35(167.00) 3057.86(192.57)
gar(ν = 1) 2802.55(164.84) 3059.02(189.82)
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Figure 2.1: Tuning parameters selection (BIC) for Model I; The legend is for parameter δ.
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Figure 2.2: Tuning parameters selection for Model II; The legend is for parameter δ.
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A general adaptive L2-regularization method1
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Abstract

We consider a general adaptive L2-regularized optimization problem β̂(λ) = arg minβ,Λ `(y, β)+

λβT ΛWβ, where ` is a loss function, Λ and W are two diagonal matrices. We show that

with appropriate choice of λ and Λ, if ` is differentiable, then the above adaptive L2 penalty

term is equivalent to adaptive L1 penalty, adaptive L2 penalty, and combined adaptive

L1 and L2 penalty. Therefore, this method is a data-driven method, which automatically

choose a penalty among the three penalty terms. We consider details when ` is a negative

log-likelihood function which covers generalized linear model, and develop two algorithms

using Newton-Raphson method for the general approach, and sequential minimal optimiza-

tion (SMO) method for the case p >> n. The efficacy of our approach is illustrated by

simulations, comparisons with other methods and real data analysis.

Key Words: Generalized linear model; Penalized likelihood; Variable selection;

Penalization

3.1 Introduction

A general regularization optimization problem can be written as

β̂(λ) = arg min
β

`(y, β) + Jλ(β), (3.1)

where ` is a loss function and J is a penalty term with respect to the given data {(xi, yi) : xi ∈
Rp, yi ∈ R, i = 1, · · · , n}. For squared error loss, the most well-known penalized methods

are ridge regression regression (Hoerl and Kennard, 1970a, b) which can deal correlated

data and the case of n << p; the lasso (Tibshirani, 1996) for variable selection; and the

elastic net (Zou and Hastie, 2005) for simultaneously dealing with correlated data or

n << p and variable selection. Zou (2006) proposed Adaptive lasso for squared loss to

improve the lasso. Both lasso and adaptive lasso have been used in other loss functions,

for instance Cox’s model (Tibshirani, 1997; Zhang and Lu, 2007), Proportion odds model
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(Lu and Zhang, 2007). ridge regression type method also has been extended to logistic

regression (Le Cessie and Houwelingen, 1992; Zhu and Hastie, 2004). Different penalty (Fan

and Li, 2001; Tibshirani, Saunders, Rosset, Zhu and Knight, 2005), negative log-likelihood

of ` (Fan and Li, 2001; Park and Hastie 2007, Wang, Li and Tsai 2007, Wang and Leng,

2007) as well as better algorithms (Rosset and Zhu, 2007; Park and Hastie, 2007) also have

been studied.

In this paper, we consider a general loss of differentiable `, and a particular form of

Jλ(β) = λβT ΛWβ, where λ is a tuning parameter, Λ is a constraint matrix and W is a

weighted matrix of a user’s choice. Note that the differentiable ` is very general and has

a wide scope of coverage including the aforementioned squared error loss and negative log-

likelihood. Shortly we will see that the particular form of Jλ(β) is not limited either. In

Section 3.2 we will show that the optimization problem with this form has an equivalent

solution for using the aforementioned (adaptive) L1 penalty such as in (adaptive) lasso,

(adaptive) L2 penalty such as (adaptive) ridge regression, and (adaptive) combined L1

and L2 penalty such as (adaptive) elastic net. Thus it is a very flexible and data-oriented

method for using either one of the three penalties. In Section 3.3, we give an unified solution

for this problem with methods for estimating the covariance of the estimate and selection

of the tuning parameters. In Section 3.4, we propose a unified algorithm for the negative

log-likelihood of ` when n > p and n << p or correlated data, and a sequential minimal

optimization (SMO) algorithm to avoid the computations of an inverse of a huge matrix.

In Section 3.5, we present a small simulation study to demonstrate the usefulness of our

method, and in Section 3.6 we use datasets to illustrate the efficacy of our method. Finally,

we present a short discussion in Section 3.7. We delay the proofs in the appendix.
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3.2 The equivalent penalty for L1, L2 and their combination

Our proposed method is the following adaptive L2-regularization problem: Suppose λ ≥ 0,

Λ = diag{λi}, W = diag{wi}, and λi, wi > 0 with
∑p

i=1
1
λi

wi = p,

β̂λ = arg min
β,Λ

`(y, β) + λβT ΛWβ. (3.2)

In order to establish the equivalence, we first note that the following set up:

`(y, β) + λ0β
T Wβ + λβT ΛWβ. (3.3)

can be written as (3.2) by re-parameterization. That is, let c∗ =
∑p

j=1
1

λ0+λλj
wj, λ∗ = p/c∗

and λj∗ = c∗(λ0 + λλj)/p. Then
∑p

j=1
1

λj∗
wj = p. With Λ∗ = diag{λj∗} (3.3) becomes

`(y, β) + λ∗βT Λ∗Wβ, which is a special case of (3.2).

We now establish the main result below, whose proof is in the Appendix.

Proposition 2. Suppose that ` is differentiable, then for any given λ, there exists a γ such

that the solution, β̂λ,λ0, in the minimization problem of (3.3) over β and Λ is the same as

that of

β̂γ,λ0 = arg min
β

`(y, β) + λ0β
T Wβ + γ

p∑
j=1

wj|βj|, (3.4)

and vice versa.

The formulation (3.4) in Proposition 2 is interesting because if ` is a least square loss, and

W = I, then it reduces to elastic net (Zou and Hastie 2005). If ` is negative likelihood as

in GLM and W = I, then it reduces to Park and Hastie (2007). Thus in either case, (3.4)

is a generalization of elastic net type of penalty in that it incorporates adaptiveness (the

weights W ). Proposition 2 also shows that if λ0 = 0, then (3.2) is equivalent to adaptive

L1 penalty. On the other hand, Proposition 2 and the fact that (3.3) is a special case of

(3.2) illustrate that a general adaptive L2 penalty as in (3.2) unifies an adaptive L1 penalty,

adaptive L2 penalty as well as the adaptive elastic net penalty types. Thus this general

adaptive L2 penalty method can deal with n >> p or correlated data with variable selection.

Hence it is a data-driven approach.
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In the next section, we will derive a unified solution of the above optimization problem

using quadratic approximation to the loss of ` by assuming that ` is twice differentiable.

This assumption is generally not restrictive. For instance in likelihood approach, see, Zhang

and Lu (2007) and Lu and Zhang (2007). When the loss is squared error (exactly quadratic),

Qiu, Yin and Wang (2007) developed an efficient algorithm, which covered adaptive- lasso,

ridge regression as well as elastic net.

3.3 A unified solution

Suppose that the true parameter is β0. For given yi, xi, λ, Λ and W , let Λ∗ = 2λΛW , the

solution of (3.2) can be approximately derived by the solution of a quadratic formula below

(in obvious notation to suppress y in `).

`(β0) +5`(β0)
T (β − β0) +

1

2
(β − β0)

T 52 `(β0)(β − β0) +
1

2
βT Λ∗β, (3.5)

where 5`(β0) = ∂`(β0)
∂β

, 52`(β0) = ∂`2(β0)
∂β∂βT , and Λ∗ = 2λΛW .

Then, the minimization of (3.5) is

β1 = β0− (52`(β0)+Λ∗)−1(5`(β0)+Λ∗β0) = (52`(β0)+Λ∗)−1(52`(β0)β0−5`(β0)). (3.6)

An iteration algorithm such as Newton-Raphson method can be used here to find the final

solution β̂. Using techniques similar to those of Fan and Li (2001), we can approximate the

covariance matrix of β̂ by the following sandwich formula:

Ĉov(β̂) = (52`(β̂) + Λ̂∗)−1Ĉov(5`(β̂))(52`(β̂) + Λ̂∗)−1, (3.7)

where Λ̂∗ is the estimate of Λ∗ at β = β̂.

In the next section, we will develop two algorithms and suggest the choices of λ, Λ and

W .

3.4 Two Algorithms

In this section, we will propose two algorithms for our method: a unified algorithm (UA)

and a general SMO algorithm (GSMOA). The unified algorithm shall work as long as we can
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calculate the `, such as negative log-likelihood for Cox’ model (Tibshirani, 1997), proportional

odds and hazard models (Lu and Zhang, 2007; Zhang and Lu, 2007), or generalized linear

model (Park and Hastie, 2007). The general SMO algorithm is developed for avoiding the

inversion of a huge matrix. We illustrate the UA approach with generalized linear model, and

GSMOA approach for a logistic regression. Conditioning on xi, yi, a density is fi(yi|g(xT
i β)),

where g is a known link function. Thus the loss function, which is the conditional negative

log-likelihood of yi, is `i = − log fi, and `(β) =
∑n

i=1 `i(g(XT
i β), yi).

3.4.1 Unified algorithm

Adaptive weights: Set W = diag{wj} where wj = |β̂j|−ν for some ν ≥ 0 and β̂j is the GLM

estimate. The choice of ν can follow from Zou (2006), and we use ν = 0, 0.5, 1 in this paper

for the purpose of comparison. Note that if ν = 0, then W = I throughout the algorithm,

thus we refer it as the UA with equal weights.

Initial choices of the parameters: The initial tuning parameter can be selected by using

MGCV (Wood, 2000) method. At convergence for given W , the MGCV-type statistic is

constructed as

MGCV(Λ̃) =
`(β̂)

n[1− p(Λ̃)/n]2
, (3.8)

where p(Λ̃) = trace[(52`(β̂) + Λ̃W )−1 52 `(β̂)], and Λ̃ = 2λΛ.

If n > p, one can run GLM to obtain initial estimate of β; otherwise, when n < p, we

enlarge the data by adding an identity p× p matrix for x and p× 1 of zeros to y, so that the

artificial data has sample size bigger than p, and we then run GLMPATH in R with λ1 = 0 to

obtain the initial estimate of β. This is allowed because we only use it for obtaining the initials

of Λ̃, W and β which will be updated in the algorithm. Use the data (modified as described

above if necessary), and set W = I, then obtain β̂ by GLM and use MGCV to get ˆ̃Λ. Thus

set initial weights as w
(0)
j = |β̂j|−ν . Solve for λ = λ(0) and Λ(0) from 2λ(0)Λ(0) = ˆ̃Λ diag{β̂−2

j },
where Λ(0) = diag{λ(0)

j } and
∑p

j=1
1

λ
(0)
j

w
(0)
j = p. Based on Appendix A2, we propose the

following algorithm for fixed λ = λ(0), accuracy δ and convergence criterion δ0 = 10−6.
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Unified Algorithm (UA).

1. Start s = 0, p0 = p, Λ(s) = Λ(0), W (s) = W (0) and β(−1) = β̂. Set Λ∗ = 2λΛ(s)W (s) and

β0 = β(s−1), find solution β(s) by equation (3.6) for ps predictors.

2. For j = 1, · · · , ps, calculate b
(s)
j =

|β(s)
j |

∑
w

(s)
j |β(s)

j | . If b
(s)
j < δ, delete jth variable; if b

(s)
j ≥ δ,

keep it.

3. Let ps+1 be the number of predictors the remain in the model. For those variables,

update W (s+1) = diag{w(s+1)
j } for j = 1, ..., ps+1, by w

(s+1)
j = 1/|β̂(s+1)

j |ν for ν ≥ 0. For

n > ps+1, β̂
(s+1)
j is the GLM estimate, while for n < ps+1, β̂

(s+1)
j is updated by GLM-

PATH in R with λ1 = 0 with reduced data. Update Λ(s+1) by λ
(s+1)
j = (

p|β(s)
j |

∑
w

(s+1)
j |β(s)

j |)
−1.

4. Update β(s+1) by equation (3.6) for the reduced variables, based on β0 = β(s) and

Λ∗ = 2λΛ(s+1)W (s+1).

5. Calculate max
|β(s)

j −β
(s+1)
j |

1+|β(s+1)
j | . If it is less than δ0, stop; otherwise, go to Step 2 until it is

convergent.

In the procedure of UA, once variable is deleted, it never enters again. This way, the

computation becomes much more efficient. This unified method is robust and can be applied

to either correlated predictors, n > p or n < p case.

For fixed tuning parameter λ, the results will be affected by the accuracy δ. It is important

to select δ as well as the tuning parameter λ. We set 0 < δ ≤ 1. The tuning parameter λ

∈ (0, ∆], where ∆ is an integer (∆ = 200 in our simulations). We select a series of λ and a

series of δ in the respective intervals. Our algorithm finds the solution for each pair of (δ, λ)

in a matrix. And finally, we select the best parameter pairs of (δ, λ) that has the minimum

of BIC-type selection criterion (Schwarz, 1979):

BICδ(λ) = 2`(βδ(λ) + log(n)pδ(λ),

where pδ(λ) is the number of nonzero coefficients in βδ(λ), a simple estimate for the degrees

of freedom (Zou, Hastie and Tibshirani 2007).
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Figures 3.1 and 3.2 show typical BIC plots for model 1 with cases n > p and n < p,

respectively; while Figures 3.3 and 3.4 show the typical BIC plots for model 2 with cases

n > p and n < p, respectively. Note that the vertical line is the λ = λ(0) that is selected by

MGCV method in the previous section, which seems always close to the best λ. Thus we use

λ = λ(0) as the selected tunning parameter for λ and it works well in our limited simulations.

Our choice of initials for Λ seems work well and stable. Nevertheless we tried different

initials as constant λ
(0)
j =

∑
wj/p, and λ

(0)
j = 1/w

(0)
j . They do not affect the final results in

our simulations and data analysis.

Note that without loss of generality and to be consistent with the literature in the area,

we can standardize the variable of xi’s for i = 1, ..., p to have mean 0 and variance 1. In the

previous sections, we don’t have an ’intercept’ parameter (β0) in linear combination of X.

However, with the intercept, one can easily adopt the same proofs and solutions by having

a constant variable of x0 = 1 with fixed weight of 0. Our algorithm works with intercept.

3.4.2 A general SMO algorithm

Nevertheless, when p is in thousands such as in microarray data analysis, an inverse of a

huge matrix with dimension p×p need to be calculated. This computation is prohibitive. To

avoid handling such cases, we adopted a Sequential Minimal Optimization (SMO) method

used by Zhu and Hastie (2004) for logistic regression. Let X be a n× p data matrix for the

predictors, and a be a n× 1 vector. Based on the general SMO derivation in Appendix A3,

we have

β = Λ∗(−1)XT a. (3.9)

For illustrative purpose, we use logistic regression, although our general SMO algorithm can

be easily adapted to other generalized liner models. In such a case,

`a = −
n∑

i=1

[(yi + ai) log(yi + ai) + (1− yi − ai) log(1− yi − ai)].



47

Thus we also need constraint to have appropriate `a,

0 < yi + ai < 1 (3.10)

Hence, the general SMO algorithm is modified accordingly as follows.

General SMO Algorithm (GSMOA).

1. Choose a0 satisfying conditions (3.18) and (3.10). Set W (0) = Λ(0) = I, β(−1) = I,

r = s = 0, and p0 = p, but fix λ.

2. (a) If ar satisfies (3.19), obtain β(s) by (3.9), denote as = ar, and go to step 3.

(b) If not, update ar+1 = ã(t) with ar = a according to (7.8)-(7.10), where t minimizes

the dual f(a) in the Appendix A3. Go back to step (a).

3. For j = 1, · · · , ps, calculate b
(s)
j =

|β(s)
j |

∑
w

(s)
j |β(s)

j | . If b
(s)
j < δ, delete jth variable; if b

(s)
j ≥ δ,

keep it. W (s) = diag{w(s−1)
j } and w

(s)
j = |β(s−1)

j |ν for ν ≥ 0.

4. Let ps+1 be the remain variables in the model. Update W (s+1) and Λ(s+1), where λ
(s+1)
j =

(
|β(s)

j |
∑

w
(s+1)
j |β(s)

j |)
−1.

5. With updated X, Λ∗(s+1) = 2λΛ(s+1)W (s+1), go to step 2 with ar = as to obtain β(s+1).

6. Calculate max
|β(s)

j −β
(s+1)
j |

1+|β(s+1)
j | . If it is less than δ0, stop; otherwise, go to step 3 and update.

The tuning parameters are selected by the same BIC-type criterion in UA. Note that the

GSMOA algorithm can not be used to estimate the intercept, β0. Thus once we have the

estimate for β with reduced data, we can call UA to have the respective estimates of β0, β

as well as the covariance matrix.

3.5 Simulations

In this section, we consider two representative examples for comparing different penalty

methods: lasso type, adaptive lasso type (LSA; Wang and Leng, 2007) and the combina-

tion of lasso and ridge type (PH; Park and Hastie, 2007). The two examples are logistic
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regression and Poisson log-linear example. To measure the prediction error of any fitted

model, we compute the model error (ME)

ME(β̂) = E[g(β̂T X)− g(βT X)]2,

where g is the respective mean function for the models. For instance, if it is the logistic model,

we have ME(β̂) = E[exp(β̂T X)/{1 + exp(β̂T X)} − exp(βT X)/{1 + exp(βT X)}]2. The ME

is estimated via 1000 Monte Carlo simulations. The median relative model error (MRME)

is reported by the median of the ratio of the model error of the fitted model against that of

MLE for n > p, and that of ridge type (with L2 penalty only) for n < p, respectively. We also

report the number of correct zero coefficients which present truly unimportant variables, and

the number of incorrect zeros which present important variables erroneously left-out by the

procedure. In addition, the median absolute deviation divided by .6745, denoted by SD, of

the respective estimated coefficients can be regarded as the true standard error. The median

of the respective estimated standard errors by formula (3.7), denoted by SDm, and the

median absolute deviation error of the respective standard errors divided by .6745, denoted

by SDmad, measure the overall performance of the standard error from the sandwich formula.

Example 1. The logistic regression model is used by Fan and Li (2001).

Y ∼ Bernoulli(g(xT β)), (3.11)

where g is a link function and g(u) = exp(u)/(1+ exp(u)). We consider two cases: n > p and

n < p.

For n > p, set n = 200 and p = 8. Let β = (3, 1.5, 0, 0, 2, 0, 0, 0)T . The first six components

of x follow from N6(0, Σx) where each element of Σx is ρ|i−j| for all i and j, with ρ = 0.5.

The last two components of x follow from Bernoulli distribution with probability of success

0.5 and they are independent to each other.

For n < p, set n = 50. Let p = 100 by adding 92 zeros to the β in n > p case. The first

eight x variables are the same as in case of n > p. The additional 92 components of x follow

Bernoulli distribution with probability of success 0.5.
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Table 3.1 reports the performance of UA approach with that of lasso, LSA and PH in

terms of MRME, the average number of correct zeros and the average number of incorrect

zeros. For n > p, all UA (with different weights) have smaller MRME and bigger number of

correct zero than all other three methods. Although UA has some positive incorrect zeros, it

seems not significant. When n < p, PH is the only other method that is applicable. Again we

conclude the same conclusion. It seems that UA with equal weights is the best method. To

test the accuracy of formula (3.7), Table 3.2 reports the respective results. For n > p, all UA

are rather accurate. For n < p, the results get a little bit worse, nevertheless the comparison

between the true and estimate are within one stand deviation. Again UA with equal weights

seems the best method.

Example 2. The Poisson log linear model provided by Fan and Li (2001) is

Y ∼ Poisson(λ(xT β)), (3.12)

where λ is a link function and λ(u) = exp(u). X is same as in example 1 except β =

(1.2, 0.6, 0, 0, 0.8, 0, 0, 0)T . The n and p are the same as in example 1 for both cases respec-

tively.

Table 3.3 indicates that in both n > p and n < p, all UAs with different weights beat other

applicable methods while UA having equal weights is the best method. Table 3.4 reports the

accuracy of the sandwich formula, again UA with equal weights is the best method, while

others do have reasonable estimates. Overall UA with equal weights is the best method

confirming our findings in example 1.

3.6 Two datasets

In this section, we illustrate our method via breast cancer data and microarray data.

A breast cancer data. A breast cancer biopsy data downloaded from R package MASS

was used to test the methods among LAS, PH and UA. This data set was originally obtained

from he University of Wisconsin Hospitals, Madison from Dr. William H. Wolberg. The
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predictors are clump thickness, uniformity of cell size, uniformity of cell shape, marginal

adhesion, single epithelial cell size, bare nuclei (16 values are missing), bland chromatin,

normal nucleoli, and Mitoses. The response variable is class of tumor which has two levels

”benign” or ”malignant”. There are 699 patients involved in this study. However, 16 values

are missing for variable bare nuclei, these observations are not involved in the later analysis.

Thus, we only use 683 observations in the analysis below.

The breast cancer data were randomly divided into two roughly equal parts. The first

part were used to do model fitting and tuning parameter selection by tenfold CV or MGCV

and carry out LSA, PH and UA. The second part is validation part. Errors-in-sample was

calculated with first part of data and errors-out-sample was calculated with second part of

data. We repeated the procedure for 100 times.

Table 3.5 shows that in terms of errors, UA with equal weights and UA with weight of

ν = .5 are the best method, UA with weight of ν = 1 is the second best, and all three

outperform PH and LSA. The results confirm the finding in our simulations. Table 3.6 shows

the variable selections, LSA seems choose the important variables very differently from PH

and UAs. While PH and UAs are pretty much agree with each other. Particularly for PH

and UA with equal weights.

Combing the information from both tables, we think UA with equal weights provides an

important procedure.

Leukaemia cancer data. Leukaemia cancer gene expression data by Golub et al.(1999)

has been analyzed by Park and Hastie (2007) with L1-regulation path algorithm. There are

72 observations on 7129 gene expression measurements and an indicator variable of type of

genes. The data has been divided into validating set (38) and testing set (34). To make a

comparison between UA with SMO algorithm and previous methods (Golub et al. 1999);

Tibshirani et al. (2005); Zhu and Hastie (2004); Park and Hastie (2007), cross-validation

error, test error and number of gene selected are calculated. Table 3.7 indicates that UA

yielded the best cv error and the best test error along with PH and Zhu and Hastie (2004).



51

The number of selected genes are 24, only one more than PH but 2 less than Zhu and Hastie

(2004). Overall again this dataset demonstrates that UA is a useful method.

3.7 Discussion

In this paper, we extended generalized adaptive ridge regression to a general loss set up. We

proved the equivalence between adaptive L1 and constrained adaptive L2 penalties in the

general loss minimization problems, and developed a unified algorithm as well as a generalized

SMO algorithm for avoiding the inversion of a huge matrix. The basic equivalence also can be

extended to other setting such as Wang and Leng (2007), which may improve their algorithm

as well. The simulations as well as data analysis seem illustrate that our approach provides

an important alternative for some available methods.

Appendix: Justification

A1. Proof of Proposition 2. Define for j = 1, · · · , p, cj =
√

λjβj; bj =
√

1
λj

, we have
∑p

j=1 wjb
2
j = p, and cjbj = βj. Write `(β) =

∑n
i=1 `i(β), Equation (3.3) then becomes

n∑
i=1

`i(c1b1, ..., cjbj, ..., cpbp) + λ0

p∑
j=1

wjc
2
jb

2
j + λ

p∑
j=1

wjc
2
j ,

under
∑p

j=1 wjb
2
j = p. To solve this minimization problem, we have

n∑
i=1

`i(c1b1, ..., cjbj, ..., cpbp) + λ0

p∑
j=1

wjc
2
jb

2
j + λ

p∑
j=1

wjc
2
j + m(

p∑
j=1

wjb
2
j − p).

Let Sk =
∂

∑n
i=1 `i(c1b1,...,cjbj ,...,cpbp)

∂(ckbk)
, by taking derivatives with respect to ck and bk, we have

the following equations:

ckSk + 2λ0wkc
2
kbk = −2mwkbk, bkSk + 2λ0wkckb

2
k = −2λwkck.

We have either ck = 0 which leads to βk = 0; or ck 6= 0. In the latter case, the two equations

become

Sk + 2λ0wkckbk = −2mwkbk/ck, Sk + 2λ0wkckbk = −2λwkck/bk.
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The product of these two equations leads to (Sk+2λ0wkckbk)2

w2
k

= 4λm = S2
0 , where S0 = (Sk +

2λ0wkckbk)/wk. Hence, the first equation leads to ckS0 = −2mbk. Multiple both sides by

wkbk, we have wkbkckS0 = −2mwkb
2
k which leads to wkβkS0 = −2mwkb

2
k. Thus wk|βk||S0| =

2mwkb
2
k, by the fact that

∑p
j=1 wjb

2
j = p, we have |S0|

∑p
j=1 wj|βj| = 2mp. And similarly for

the other equation, we have |S0|p = 2λ
∑p

j=1 wj|βj|. Thus

m =
λ(

∑p
j=1 wj|βj|)2

p2
. (3.13)

The fact that the left hand sides of the two equations are the same, and by the definitions

of ck and bk, we have

bk

ck

=

√
λ

m
sign(βk).

Put it into Sk+2λ0wkckbk = −2mwk
bk

ck
, we have Sk+2λ0wkβk+2mwk

√
λ
m

sign(βk) = 0. Using

(3.13) we have Sk + 2λ0wkβk + 2wk
λ
p
sign(βk)

∑p
j=1 wj|βj| = 0. That is, the final solutions

satisfy either βk = 0, or

Sk + 2λ0wkβk + 2wk
λ

p
sign(βk)

p∑
j=1

wj|βj| = 0, (3.14)

which however, is the solution of the following minimization problem:

β̂ = arg min
n∑

i=1

`i(β) + λ0β
T Wβ +

λ

p
(

p∑
j=1

wj|βj|)2,

which is equivalent to β̂ = arg min
∑n

i=1 `i(β) + λ0β
T Wβ under λ

p
(
∑p

j=1 wj|βj|)2 < t′, which

is then equivalent to β̂ = arg min
∑n

i=1 `i(β) + λ0β
T Wβ under

∑p
j=1 wj|βj| < t for some

positive t. The last minimization problem is equivalent to (3.4) for some γ. Hence we proved

that the two solutions are the same.

A2. Algorithm background. Using the notation in the proof of Proposition 2, from the

proof, b2
k = c2

k
λ
m

=
c2kp2

(
∑

wj |βj |)2 , implies that b4
k =

b2kc2kp2

(
∑

wj |βj |)2 =
β2

kp2

(
∑

wj |βj |)2 . Hence b2
k = p|βk|∑

wj |βj | .

Thus

λk =
1

b2
k

= (
p|βk|∑
wj|βj|)

−1, (3.15)
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where the constraint on Λ is automatically satisfied. Therefore, an equivalent algorithm can

be developed iteratively between (3.6) and (3.15). That is, giving λ, W , and initial β0, if

λk’s are given, find β by (3.6); check b2
k or b2

k/p = |βk|∑
wj |βj | if it is smaller than a threshold,

delete the respective βk; otherwise keep it there. Then for the remain variables, update the

respective λk by (3.15). Proceed this scheme iteratively until it is convergent. .

A3. Derivation of SMO formula. Note that our general minimization can be written as

n∑
i=1

`(ξi) +
1

2
βT Λ∗β, under ξi = β0 + XT

i β.

The Lagrangian of this problem is

L =
n∑

i=1

`(ξi) +
1

2
βT Λ∗β +

n∑
i=1

ai(ξi − β0 −XT
i β).

Thus the optimization equations with XT = (XT
1 , ..., XT

n ) and aT = (a1, ..., an) are `′(ξi) +

ai = 0;
∑n

i=1 ai = 0; Λ∗β = XT a. Thus,

ξi = `′(−1)(−ai) (3.16)

β = Λ∗(−1)XT a. (3.17)
n∑

i=1

ai = 0; (3.18)

And thus,

L =
n∑

i=1

`(`′(−1)(−ai))− 1

2
βT Λ∗β +

n∑
i=1

ai`
′(−1)(−ai).

Finally, apply the Wolfe duality theory, we have to minimize

f(a) = `a +
1

2
aT XΛ∗(−1)XT a, under (3.18)

where `a = −∑n
i=1[`(`

′(−1)(−ai)) + ai`
′(−1)(−ai)], and `′(.) is the respective derivative. Once

a solution of a is obtained, β can be obtained via (3.17).

The Lagrangian for the new optimization problem becomes

L̃ = f(a)− τ

n∑
i=1

ai.
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Let ei be the unit vector with ith element being 1; otherwise, 0. Define

Fi =
∂`a(ai)

∂ai

+ aT XΛ∗(−1)XTei.

Then the optimality condition is ∂L̃
∂ai

= Fi − τ = 0, i = 1, ..., n; which is equivalent to

max
i

Fi = min
i

Fi. (3.19)

Let iu = arg max Fi and il = arg min Fi. Then if (3.19) doesn’t hold, then define

ãiu(t) = aiu + t, (3.20)

ãil(t) = ail − t, (3.21)

ãi(t) = ai, if i 6= iu, il. (3.22)

and

∂f(a(t))

∂t
= Fiu − Fil

where Fiu and Fil are evaluated at ã(t), which is not 0 at t = 0. A decrease in f is possible

by choosing t suitably away from 0.
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Table 3.1: Simulation results for logistic regression of Example 1

Method MRME(%) Avg. No. of 0 coeff. MRME(%) Avg. No. of 0 coeff.
correct incorrect correct incorrect

lasso 53.14 3.76 0
LSA 50.4 4.82 0
PH 54.4 4.73 0 42.13 95.55 0.0
UA(ν = 0) 26.32 4.99 0.02 37.63 96.75 0.05
UA(ν = 0.5) 33.07 4.85 0 36.09 96.15 0.4
UA(ν = 1) 33.18 4.88 0.01 34.03 96.4 0.3

The left part in the table is for n > p, the right part in the table is for n < p.

Table 3.2: Standard deviations of estimators for logistic regression of Example 1

β̂1 β̂2 β̂5

Method SD SDm(SDmad) SD SDm(SDmad) SD SDm(SDmad)
lasso 0.310 0.379(0.037) 0.285 0.284(0.019) 0.244 0.287(0.019)
UA(ν = 0) 0.449 0.443(0.064) 0.321 0.320( 0.035) 0.308 0.343(0.055)
UA(ν = 0.5) 0.480 0.494(0.078) 0.381 0.357( 0.050) 0.372 0.370( 0.058)
UA(ν = 1) 0.543 0.503(0.097) 0.448 0.370(0.070) 0.373 0.385( 0.064)

UA (ν = 0) 0.962 0.911( 0.313) 0.886 0.894( 0.373) 0.820 0.740( 0.249)
UA(ν = 0.5) 1.370 1.238( 0.478) 0.932 0.640( 0.464) 1.168 0.902( 0.258)
UA(ν = 1) 1.854 1.418( 0.924) 1.206 1.185( 0.560) 1.267 1.092( 0.298)

The upper part in the table is for n > p, the lower part in the table is for n < p.
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Table 3.3: Simulation results for Poisson regression of Example 2

Method MRME(%) Avg. No. of 0 coeff. MRME(%) Avg. No. of 0 coeff.
correct incorrect correct incorrect

LSA 50.2 4.79 0
lasso 59.92 3.68 0
PH 55.6 4.84 0 31.06 94.75 0.58
UA(ν = 0) 19.64 5 0 11.14 96.95 0.5
UA(ν = 0.5) 29.80 5 0 12.57 96.90 0.5
UA(ν = 1) 31.05 5 0 32.96 96.80 0.85

The left part in the table is for n > p, the right part in the table is for n < p.

Table 3.4: Standard deviations of estimators for poisson regression of Example 2

β̂1 β̂2 β̂5

Method SD SDm(SDmad) SD SDm(SDmad) SD SDm(SDmad)
lasso 0.086 0.078(0.013) 0.101 0.082(0.069) 0.083 0.074(0.017)
UA(ν = 0) 0.039 0.037(0.007) 0.038 0.036(0.007) 0.026 0.024 (0.007)
UA(ν = 0.5) 0.039 0.032( 0.006) 0.040 0.044( 0.009) 0.031 0.040( 0.006)
UA(ν = 1) 0.037 0.035( 0.007) 0.043 0.037( 0.005) 0.040 0.031( 0.007)

UA(ν = 0) 0.119 0.076( 0.049) 0.093 0.082 (0.014) 0.120 0.108( 0.018)
UA(ν = 0.5) 0.178 0.096( 0.087) 0.163 0.109( 0.069) 0.142 0.111( 0.043)
UA(ν = 1) 0.201 0.150( 0.098) 0.203 0.167( 0.084) 0.189 0.136( 0.062)

The upper part in the table is for n > p, the lower part in the table is for n < p.

Table 3.5: Cancer data: comparison among LSA, PH and UA

Errors in-sample Errors out-sample
LSA 20/342 23/341
PH 16/342 20/341
UA(ν = 0) 10/342 12/341
UA(ν = 0.5) 10/342 12/341
UA(ν = 1) 11/342 13/341
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Table 3.6: Cancer data: percentage of variable selected over 100 runs by LSA, PH and UA

Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8 Var9
LSA 0.4 0.1 0.3 0.3 0.05 0.6 0.35 0.1 0
PH 0.9 0.5 0.95 0.75 0.75 1 0.85 0.85 0.5
UA(ν = 0) 1 0.15 0.85 0.75 0.1 1 0.8 0.55 0.6
UA(ν = 0.5) 0.6 0.15 0.55 0.5 0.05 0.6 0.6 0.45 0.35
UA(ν = 1) 0.8 0.15 0.6 0.7 0.25 0.85 0.7 0.55 0.65

Table 3.7: Leukemia data: comparison between previous methods and UA

Methods CV error test error selected genes
Golub et al.(1999) 3/38 4/34 50
Tibshirani et al. (2002) 2/38 2/34 21
Zhu et al. (2004) 2/38 1/34 26
Park et al. (2007) 2/38 1/34 23
UA(ν = 0) 2/38 1/34 24
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Chapter 4

A variable selection approach to multi-dimensional NMR spectra

interpretation1

1Qiu, J., Yin, X. and Tian, F. To be Submitted to Journal of Magnetic Resonance.
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Abstract

Three-way decomposition (TWD) is a very versatile analysis tool with applications in a

variety of protein nuclear magnetic resonance (NMR) fields. It has been used to extract struc-

tural data from 3D NOESYs, to determine relaxation rates in a large proteins, to identify

ligand binding in screening for lead compounds, and to complement non-uniformly recorded

(sparse) spectra. For instance, multi-dimensional NMR spectra interpretation (MUNIN)

(Orekhov et al., 2001) is a method based on TWD, for the automated interpretation of

three-dimensional NMR spectra. An NMR spectra is decomposed into sum of components,

with each component corresponding to one or a group of peaks. Each component is defined

as the direct product of three one dimensional shapes. A consequence is reduction in dimen-

sionality of the spectral data used in further analysis. The decomposition may be applied to

frequency-domain or time-domain data or mixture of them. MUNIN has good features, how-

ever, improvements still can be done via the study of accuracy and robustness by introducing

a penalty term of quadratic form (Luan et al., 2005). Nevertheless, both methods don’t have

statistical approach to estimate the number of true terms in the decomposition. In the spirit

of recently developed generalized adaptive ridge (GAR), we propose a new method by com-

bining GAR and TWD to form an adaptive three-way decomposition (ATWD) for analyzing

NMR data. The general penalty term makes the methods developed by Luan et al. (2005)

and MUNIN as special cases of ATWD. In addition, ATWD inherits the good features of

MUNIN as well as statistically estimate the number of true terms. Thus ATWD improves

both previous methods. The applications of this method were illustrated in both simulation

studies and real data analysis.

Key Words: Generalized adaptive ridge; MUNIN; NMR; Penalization;

Relaxation; Three-way decomposition; Variable selection
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4.1 Introduction

NMR plays an important role in chemistry and other sciences. The appearance of Fourier

transform and multi-dimensional NMR makes this tool more valuable for studies on com-

plex chemicals, especially biological macromolecules (Malmodin and Billeter, 2005). With

the development of hardware, experimental techniques and advances in protein studies, the

complexity of NMR data has been increasing (Stern et al., 2002). NMR spectroscopy is a

concept which decomposes experimental input, raw time-domain data, into components that

correspond to a single peak or a group of peaks. The estimation of features including fre-

quencies and amplitudes is the key to separate peaks in an NMR spectrum. Basically, there

are two steps to obtain a NMR spectroscopy (Orekhov et al., 2001). The first step is to apply

discrete Fourier transform (DFT) to the raw time-domain NMR data. The second step is to

identify the individual signals via interactive or automated peak picking procedures.

Even though DFT is a well-established method which is fast and robust, it has some

drawbacks while being applied to multi-dimensional NMR spectroscopy. DFT requires exper-

imental data input to be sampled at regular time intervals. That means to optimize data

sampling in terms of sensitivity and resolution for a given duration of a NMR experiment is

impossible. DFT is most powerful for peak separation if frequency differences are the major

concern. However, if line shapes influenced mainly by relaxation decay or by J-coupling,

DFT is powerless (Orekhov et al., 2001).

Linear prediction prior to Fourier transformation (Koehl, 1999) has been widely used

to extrapolate and reconstruct the measured signal. Another modern but less widely

used spectra analysis method is maximum-entropy reconstruction (Hoch and Stern, 1996;

Schmieder et al., 1997). Comparisons between these methods were made in terms of accu-

racy and precision. In most cases, maximum-entropy method performs better than linear

prediction, with respect to accuracy of spectra, sensitivity and resolution, and false-negative

peaks. In addition, maximum-entropy method relies on few assumptions, handles data sam-

pled irregularly and data with missing values. However, peak shapes could be distorted and
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peak intensity could be changed by maximum-entropy method. All of the methods discussed

above can process in practice only one- or two-dimensional NMR data sets at any given

time.

TWD is a mathematical concept (Carroll and Chang, 1970; Harshamn, 1970) and it is

a popular tool for analyzing various types of NMR data sets (Luan et al., 2005). TWD

is also called parallel factor analysis (PARAFAC) or canonical decomposition (Carroll and

Pruzansky, 1984). Before TWD is applied to NMR spectroscopy (Orekhov et al., 2001; Luan

et al., 2005), it has been applied in fields like chemometrics or psychometrics (Harshman and

Lundy, 1984). A method called Multi-dimensional NMR spectra interpretation (MUNIN)

was developed by combining the concept of TWD and a simple model for NMR spectra

(Orekhov et al., 2001). MUNIN can group signals found in NMR spectrum into subsets

called components. MUNIN can resolve overlapped signals efficiently. This approach tries

to avoid inclusion of noise and certain artifacts into the components to some extent and

let them collected in residual terms. One of advantages for MUNIN is that it dose not

require any assumptions on signal shapes. In that way, MUNIN can handle signals with

different shapes equally well. In addition, different shape types along various dimensions

of multidimensional spectra can be combined arbitrarily. MUNIN analysis results are very

helpful for structure analysis. MUNIN method has also been applied to relaxation studies

and reconstruction of time-domain data sets from sparse experimental data. MUNIN can be

treated as a complement to traditional spectra data analysis method for high-dimensional

spectra data. MUNIN is also very efficient for reducing the dimensions of multi-dimensional

data sets.

Although MUNIN using TWD is very useful, statistically, it uses the least squares formula

to estimate parameters. Hence, improvements using penalty terms can be applied. In fact,

based on ridge regression idea, Luan et al. (2005) proposed a new approach which includes a

quadratic penalty term into the objective function for minimization. The penalty term can

ensure that amplitudes of all components are of comparable size. In addition, simulation
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results indicated that TWD method with a quadratic penalty term tends to improve pre-

cisions and accuracies even under the conditions of weak signals, higher overlap and lower

signal noise ratio. This method has power to handle overlapped signals and data with low

signal noise ratio to some extend. Nevertheless, a typical ridge type penalty may improve

accuracy but may not be able to help selecting the correct number of signals (the number of

terms in the decomposition). Therefore, further improvements can be made by using vari-

able selection ideas. In this paper, we use a general adaptive quadratic penalty idea that was

studied by Qiu, Yin and Wang (2008) to improve accuracy as well as select the number of

signals. Our method includes both MUNIN and the method proposed by Luan et al. (2005) as

special cases. Therefore, it is more general. The exact form of the general adaptive quadratic

penalty term is determined by the experimental data used in the analysis, making this novel

method a data driven approach. We will use simulations to demonstrate the efficacy of our

approach adopting the comparison scheme that was used by Luan et al. (2005), and one real

data to illustrate its usefulness.

4.2 Method

In this section, we first review some similar existing methods, then we propose our approach.

4.2.1 One-dimensional NMR data analysis

Suppose that one-dimensional NMR data y(t) is observed, and assume that the shape of

signal y(t) is exponentially decaying sinusoids. Therefore, each one-dimensional NMR data

point can be decomposed into a sum of one dimensional signals as follows.

y(t) =
M∑

j=1

AjF1j + εt, (4.1)

where y(t) is the signal observed at time t, M is the number of components, A is amplitude

of the signal, F1 is the shape of signal and εt is the noise which is assumed to follow standard

normal distribution. Furthermore, by assuming the shape of signal as exponentially decaying
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sinusoids, F1j = exp(−t
Tj

)(cos(ωjt) + i sin(ωjt)), equation (4.1) can be rewritten as

y(t) =
M∑

j=1

Aj exp(
−t

Tj

)(cos(ωjt) + i sin(ωjt)) + εt, (4.2)

where Tj is the parameter related to decay rate and ωj is frequency. Assume that the number

of component M is known, the parameters in equation (4.1) can be estimated by least-square

minimization (Orekhov et al., 2001). That is,

MIN(A,F1,M)

R∑
t=1

(y(t)−
M∑
i=j

AjF1j)
2, (4.3)

where R is the number of sampling.

Least squares minimization optimization also can be used for estimating the parameters

in equation (4.2). That is,

MIN(A,T,ω,M)

R∑
t=1

(y(t)−
M∑

j=1

Aj exp(
−t

Tj

)(cos(ωjt) + i sin(ωjt)))
2. (4.4)

This method is simple as long as M is known. However, practically one has to estimate

M . Due to the noise in real data, the estimated number of components M̂ with ordinary

least square method may be bigger than the number of signals. Thus, in order to reduce the

effects of noise, accurately estimate the parameters including correctly identify M , dimension

reduction or variable selection methods can be used to reduce the inflation of number of

signals.

4.2.2 Multi-dimensional NMR data analysis

One-dimensional NMR data analysis as we discussed in the previous section cannot handle

complex systems such as proteins and DNA, because experimental data are usually multi-

dimensional. However, the estimation idea can be adopted for multi-dimensional NMR data

analysis.

Suppose there is a three-dimensional NMR data y(i, j, k). Without any assumption on

the shapes of signals at each dimension, the observed NMR spectra is decomposed into the

sum of all signals plus some measurement error. That is,
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Y (i, j, k) =
M∑

l=1

Al
lF1l

iF2l
jF3l

k + ε(i,j,k), (4.5)

where Y (i, j, k) is one observation of three-dimensional experimental data matrix Y with

size (I, J,K) and i = 1, 2...I; j = 1, 2...J ; k = 1, 2...K. M is the number of components.

F1m, F2m, and F3m are one-dimensional functions and called shapes while ε(i,j,k) is the

error. Orekhov et al. (2001) developed MUNIN based on this three-way decomposition.

Although their method is widely used for NMR data analysis, amplitudes of signals at

various dimensions may not be of comparable size (Luan et al., 2005). The reason could be

that amplitude differences between components tend to increase to some extend after a series

of iteration so that they are not comparable. Luan et al. (2005) then improved their method

by introducing L2 penalty term to the least-square minimization. The new procedure can be

written as follows.

MINF1,F2,F3,A,M

R∑
t=1

(
∑

i,j,k

(Y (i, j, k)−
M∑

l=1

Al
lF1l

iF2l
jF3l

k))
2 + λ

M∑

l=1

(Al
l)

2, (4.6)

where λ is the tuning parameter. The algorithm used to solve this high-dimensional min-

imization problem is PARAFAC provided by Harshman and Lundy (1984). This method

is efficient in terms of amplitudes estimation and resolve overlapped signals. As comparing

ridge regression to ordinary least squares approach, this method is better than MUNIN in

terms of accuracy of the estimation. However, the L2 penalty term in the objective func-

tion (4.6) may not be efficient in terms of components selection whereas the ratio of signal

and noise is small. Since the penalty can be adjusted based on the components left after

each selection step. Also the penalty term doesn’t do variable selection. That is, a statistical

criterion on selecting a correct M is still needed.

We thus propose a new penalized minimum least square method so that the proposed

method not only has accurate estimates as Luan et al’s method does but also selecting the

correct M . Therefore, based on the result of Qiu, Yin and Wang (2008), instead of L2 penalty,
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we propose a general adaptive penalty term to equation (4.6). That is,

MINF1,F2,F3,A,M

R∑
t=1

(
∑

i,j,k

(Y (i, j, k)−
M∑

l=1

Al
lF1l

iF2l
jF3l

k))
2 + AT λΛWA. (4.7)

Here W = diag(W1, · · · ,WM) is a diagonal weight matrix with lth diagonal element

Wl = 1
|Al

l|γ
with γ being a pre-chosen value, λ ≥ 0 is the tuning parameter and Λ =

diag(λ1, · · · , λM) is a diagonal matrix with positive elements such that
∑M

l=1
1
λl

Wl = M .

This adaptive penalty term can improve the efficiency of components selection. The weight

matrix can be adjusted based on selected components so that component selection procedure

becomes much more efficient. The parameter matrix Λ is also updated during the process.

Once one component is deleted, it will never enter again. In this way, this method is very

efficient of components selection.

Note that if λ = 0, then this method is reduced to MUNIN, a TWD method; if W = IM

is fixed as an identity matrix, then this method is reduced to the approach provided by

Luan et al. (2005). On the other hand, demonstrated by Qiu, Yin and Wang (2008), even

if it appears a general adaptive ridge, it is in fact equivalent to a combination of L1 and L2

penalty terms for some nonnegative parameters λ∗0 and λ∗1 as follows:

MINF1,F2,F3,A,M

R∑
t=1

(
∑

i,j,k

(Y (i, j, k)−
M∑

l=1

Al
lF1l

iF2l
jF3l

k))
2

+λ∗0A
T WA + λ∗1

M∑

l=1

Wl|Al
l|.

Thus with L1 penalty, this method can effectively select variables, achieving the estimation

of M ; while with L2 penalty, the method can improve the accuracy. Finally, a statistical

criterion of BIC is used to select the tuning parameter λ.

4.3 Algorithm for ATWD

As discussed previously, the limitation of minimum least square method is that the parameter

estimation is not reliable sometime. Noises and true signals cannot be distinguished from
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each other. The method developed by Luan et al. (2005) enhanced the MUNIN so that it can

pick true signals out and delete noises even when the ratio of noises and signals is relatively

big. ATWD including a more general adaptive data-driven parameters shall improve both

aforementioned methods by further estimating the correct number of components. Below is

our algorithm.

1. Guess number of component M (Typically, to be conservative big M is used) and set

W (where initial Al
l’s are from TWD with γ being fixed number of 0, .5 or 1 based

on Qiu, Yin and Wang (2008)). Set Λ̃ = λΛ with diagonal elements equal to 1, from

which an initial λ is obtained under the constraint on Λ.

2. Reduce the array Y to a matrix S by concatenation of the second and third dimensions.

3. Find initial F1(s) which is constructed from upper largest singular vector of matrix S.

Here s is step index.

4. Construct matrix D(l)
(s)
Jxk =

∑
i Yi,j,kF1(l)

(s)
i .

5. Obtain A(s), F
(s)
2 and F

(s)
3 by single value decomposition of matrix D(l)(s). They are

corresponding to largest singular value, the left and right singular vectors.

6. Update each shape matrix by fixing other two shape matrices via solving a least square

problem with quadratic penalty terms (Orekhov et al., 2001).

7. Update diagonal matrix A(s) by normalizing each shape matrix.

8. For j = 1, · · · ,Ms (where for the initial step Ms = M), calculate a
(s)
l =

|Al(s)
l |

∑
W

(s)
l |Al(s)

l | . If

a
(s)
l < C, delete lth component; if a

(s)
l ≥ C, keep it. Here C is selection criteria.

9. Update W (s+1) with TWD method for the remaining components. Update Λ(s+1) with

the remaining components by λ
(s+1)
l = (M |Al(s)

l |/[∑Ms+1

l=1 W
(s+1)
l |Al(s)

l |])−1.

10. Update A(s+1) by going through steps 2 to 7. If max |Al(s+1)
l −A

l(s)
l |/[1+A

l(s+1)
l ] is less

than 10−6, then it is converged; otherwise go to step 8.



73

Parameter C and the tuning parameter λ affect selection results. The range of C is from

0 to 1 and the range of λ is from 0 to 200. The best C and λ values are determined by BIC

criterion for sample size n which can be described as follows.

BIC = n ∗ ln(
(Y − Ŷ (C, λ))T (Y − Ŷ (C, λ))

n
) + M(C, λ) ∗ ln(n), (4.8)

where to emphasize the dependence on C and λ, Ŷ (C, λ) is the estimated values of Y at C

and λ and M(C, λ) is the estimated M at C and λ, when convergence is reached. Figures

4.1 and 4.2 show typical BIC plots for relaxation studies and 3D NOESYs data analysis.

4.4 Simulation studies

In this section, we want to test the efficiency of this algorithm in handling the influence

of noise and peak overlap. The accuracy and precision of estimated parameters such as

relaxation times will be evaluated with or without adaptive penalization. Although this

algorithm is robust in terms of line shapes, the ideal shapes were used to simulate input

spectrum. In this way, peak overlap can be controlled easily so that the accuracy of estimated

parameters can be determined. Following Luan et al. (2005), it is assumed that shapes in

two frequency domains are absorption Lorentzian line-shapes:

f(Ω) = W
α

1 + α2(Ω− Ω0)2
, (4.9)

where line width is determined by the inverse of α which is nonnegative, the center of each

peak corresponds to the value of Ω0 and W is a normalization parameter such that integration

of equation (4.9) is unity. Further, we assume the time dimension can be described by an

exponential function with normalization factor A and relaxation time T 0:

g(t) = Aexp(−t/T 0). (4.10)

In each frequency dimension, 40 points obtained by applying equation (4.9) were used to

construct the frequency planes. In each frequency dimension, there were two peaks and they

are located on the diagonal of the frequency plane. The initial intensity (i.e., amplitude) of
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strong peak relative to weak peak is 3:2. The value of Ω0 is adjusted to control the overlap of

two peaks. The values of Ω0’s for two peaks were set at (20,12), (18,12), (18,14), (15,15) and

the value of α is 1/4. In the time dimension, the values of t were set to be 0, 1, 2, 3, 5, 8, 13,

18, 25, 32, 40, 50, 60, 70 ms. Then, an input data with 14 planes were simulated with equation

(4.5), equation (4.9) and equation (4.10). Furthermore, the relaxation time Ω0 of two peaks

were set at 30 and 50ms. The signal noise ratio was defined as the ratio of amplitudes for

signals and noises. The values of the signal noise ratio are set at 10, 30, 50, 70 and 90. As

frequency planes, a pool of 600 frequency planes was constructed. Then 14 frequency planes

were randomly selected for each of 50 repeated runs. The ATWD algorithm was applied to

various simulated spectra corresponding to different combination of signal overlap (i.e., 4

pairs shown before) and signal noise ratio (i.e., 5 values shown before). Relaxation times (T)

were estimated from ATWD output by a least square fit of the output. Then the accuracy

and precision of the 50 estimated parameters for each combined conditions was calculated

with the following formula:

log(acc) = log

√∑
(Ti − T 0)2

50(T 0)2
, (4.11)

where T 0 is the true value of T in equation (4.10), Ti is the estimated values of T at ith time

(i = 1, · · · , 50.) and acc is an abbreviation of accuracy.

log(prec) = log(
vari

T 0
), (4.12)

where vari is the estimated values of variance at ith time for errors and prec is an abbreviation

of precision.

4.5 NMR spectroscopy

The 3D HNCO data was acquired on a NESG target from Pyrococcus furious, PF0385 on

Varian Inova600. 900, 32, and 30 complex points were collected along 1H, 13C and 15N
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dimensions with the acquisition time 90, 15.2 and 16.7 ms, respectively. Two scans were

collected for each fid with a recycle delay 1s. A 13C and 15N labeled protein sample at 1.5

mM in 20 mM TRIS-MOPS, 50 mM KCl, 5 mM DTT and pH 7.0 was employed for the data

collection. The spectral widths for the three dimensions were 10, 2.11 and 1.80 kHz. More

detail information about this data can be obtained from the authors.

Only 640 out of 900 one-dimensional 1H, which are amide proton chemical shift region,

was Fourier transformed one by one using NMRPipe software with square sine-bell weighting

functions. In order to reduce data and number of components, cubic regions (64*60*100)

were extracted by taking points from 300 to 399 (33.33pm to 44.33ppm) in 1H dimension.

The position of this region was corresponding to a crowded region of the spectrum along

hydrogen dimension including 5-8 components. The exact number of components can not

be determined due to signal overlap. Note that only 1H dimension was Fourier transformed,

while the dimensions 13C and 15N remained in time domain. After ATWD calculation

for spectrum reconstruction, 1D Fourier transform in the 13C and 15N dimensions were

performed.

To sample the data set irregularly, 75 out of 100 planes were selected and removed

randomly. The remaining planes (3, 5, 8, 11, 14, 17, 20, 23, 25, 28, 31, 33, 36, 39, 42, 45,

47, 50, 53, 58, 60, 63, 87, 93, 98; odd and even numbers represents the real and imaginary

planes), representing 25% of the data, were collected and referred as the reduced data set

that was actually used in the section 6.2.

4.6 Results

4.6.1 Simulation studies

As described in section 4.4, input spectra consisting of 14 planes were constructed via varying

the two parameter values (i.e., signal overlap and signal noise ratio). Overlaps between two

peaks were changed from separation to total overlap. The extent of overlaps between two

peaks for four simulations of relaxation data are displayed in Fig. 4.3. From Fig. 4.3.A.
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to Fig. 4.3.D., separation in each dimension of the peak centers is 8, 6, 4, 0 spectral points

respectively. In this figure, only first plane (t = 0) was displayed. Logarithms of average mea-

surement accuracy as a function of signal noise ratio under calculation conditions without

(thick solid line) and with penalty (thin dash line) were reported in Fig. 4.4 (weight param-

eter γ = 0) and Fig. 4.5 (weight parameter γ = 1). These two figures display similar patterns.

That is, with the extent of overlap between two peaks increasing, improvement of accuracy

calculated with penalty increases. In addition, accuracy for strong peak is a little bit higher

than weak peak. Based on these results, weights do not affect parameter estimation signif-

icantly. Fig. 4.6 (weight parameter γ = 0) and Fig. 4.7 (weight parameter γ = 1) reported

logarithms of average measurement precisions as a function of signal noise ratio under cal-

culation conditions without (thick solid line) and with penalty (thin dash line). Precisions

follow similar pattern of accuracy in terms of different peak overlap, signal noise ratio and

amplitude of peaks. For each simulation, a series of number of components as initial M (i.e.,

2, 5, 10, 15) are considered and 5 was actually used in later simulations. The results with

equal weights (i.e., γ = 0) indicate that initial number of components M more than 2, the

estimated values of M end up in 2 with 70 out of 100 times of simulations. The left 30 esti-

mated values of M are more than 2. The results with unequal weights (i.e., γ = 1) indicate

that initial number of components M more than 2, the estimated values of M end up in 2

with 71 out of 100 times of simulations. The left 29 estimated values of M are more than 2.

Weights seem not affect component selection significantly. In all, ATWD method tends to

overestimate the number of components, but never misses components.

4.6.2 Decomposition of a 3D HNCO spectrum

Using the ATWD procedure, a spectral region of a 3D HNCO spectrum, as described in

the previous section, was decomposed into 20 (= M̂) components with bigger initial guesses

(M=30). Fig. 4.8 (weight parameter γ = 0) and Fig. 4.9 (weight parameter γ = 1) show

the 1H-dimensional shapes of the two components from raw experimental data. These two
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figures are very similar to each other. Therefore, weights do not make big impact on spec-

trum reconstruction. The 1H dimension has been Fourier transformed before the spectrum

was processed by ATWD. 1H projections from the 3D HNCO spectrum reconstructed with

reduced data (25% of raw data) are shown in Fig. 4.10 (weight parameter γ = 0) and Fig.

4.11 (weight parameter γ = 1). Clearly, these two figures are very similar to each other. Inter-

estingly, the spectrum reconstructed from the ATWD with reduced data are very similar to

the spectrum reconstructed with full data.

We also randomly select 25% of the raw data for 100 times to produce 100 different

reduced data. For each reduced data, a series of number of components as initial M (i.e.,

20, 30, 40, 50) is used. The results with equal weights (γ = 0) and unequal weights (γ = 1)

indicate that using initial number of components M = 30 , the estimated values of M end

up in 20 (= M̂) with 77 and 80 out of 100, respectively. The remaining 23 or 20 estimated

values of M are more than 20. Therefore, ATWD method tends to overestimate the number

of components but again never misses the components.

4.7 Conclusion

In this paper, we proposed a new method of ATWD which includes both MUNIN (A TWD

approach) and the methodprovided by Luan et al. (2005) as its special cases, thus it inherits

advantages of both methods. In addition, ATWD can statistically estimate the number of

components in the decomposition. The method has been applied to simulated relaxation

data and real data. The accuracy and precision of ATWD method have been tested based

on simulated relaxation data. The results indicate its usefulness not only in accuracy and

precision but also in providing a good estimate of the number of components. The 3D HNCO

data was used to test the efficiency of ATWD for spectrum reconstruction. In conclusion,

ATWD method is an efficient method for spectrum reconstruction. Extension of ATWD to

NMR data with dimensions more than 3 may be possible.
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Figure 4.3: The extent of overlap of two peaks for four different simulations of relaxation
data sets when t = 0. Two axis represent the centers of peaks (Ω0). From A to D, the values
of Ω0’s for two peaks are set at (20,12), (18,12), (18,14), (15,15).
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Figure 4.4: Accuracy as a function of signal noise ratio for various overlap conditions. The
panels on the left side labeled ”strong” correspond to results for the strong peak in the
overlap situations A-D. The panels on the right side, labeled ”weak” correspond to weal
peak in the overlap situations A-D. The amplitude ratio between strong and weak peaks are
3:2. The dash and solid lines correspond to ATWD calculations with penalty term (γ = 0)
and without penalty.



83

20 40 60 80

−
0.

65

A−Strong

S/N

lo
g(

ac
c)

20 40 60 80

−
0.

70

A−Weak

S/N

lo
g(

ac
c)

20 40 60 80

−
0.

56

B−Strong

S/N

lo
g(

ac
c)

20 40 60 80
−

0.
60

B−Weak

S/N

lo
g(

ac
c)

20 40 60 80

−
0.

50

C−Strong

S/N

lo
g(

ac
c)

20 40 60 80

−
0.

56

C−Weak

S/N

lo
g(

ac
c)

20 40 60 80

−
0.

50

D−Strong

S/N

lo
g(

ac
c)

20 40 60 80

−
0.

55

D−Weak

S/N

lo
g(

ac
c)

Figure 4.5: Accuracy as a function of signal noise ratio for various overlap conditions. The
panels on the left side labeled ”strong” correspond to results for the strong peak in the
overlap situations A-D. The panels on the right side, labeled ”weak” correspond to weal
peak in the overlap situations A-D. The amplitude ratio between strong and weak peaks are
3:2. The dash and solid lines correspond to ATWD calculations with penalty term (γ = 1)
and without penalty term.
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Figure 4.6: Precision as a function of signal noise ratio for various overlap conditions. The
panels on the left side labeled ”strong” correspond to results for the strong peak in the
overlap situations A-D. The panels on the right side, labeled ”weak” correspond to weal
peak in the overlap situations A-D. The amplitude ratio between strong and weak peaks are
3:2. The dash and solid lines correspond to ATWD calculations with penalty term (γ = 0)
and without penalty term.
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Figure 4.7: Precision as a function of signal noise ratio for various overlap conditions. The
panels on the left side labeled ”strong” correspond to results for the strong peak in the
overlap situations A-D. The panels on the right side, labeled ”weak” correspond to weal
peak in the overlap situations A-D. The amplitude ratio between strong and weak peaks are
3:2. The dash and solid lines correspond to ATWD calculations with penalty term (γ = 1)
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Figure 4.8: Normalized one-dimensional shapes of 2 (out of 20) estimated components recon-
structed by ATWD using γ = 0 with raw data are referred to as component 1 (heavy lines)
and component 2 (thin lines).
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Figure 4.9: Normalized one-dimensional shapes of 2 (out of 20) estimated components recon-
structed by ATWD using γ = 1 with raw data are referred to as component 1 (heavy lines)
and component 2 (thin lines).



88

34 36 38 40 42 44

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1H ppm

Figure 4.10: Normalized one-dimensional shapes of 2 (out of 20) estimated components recon-
structed by ATWD using γ = 0 with reduced data are referred to as component 1 (heavy
lines) and component 2 (thin lines).
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Figure 4.11: Normalized one-dimensional shapes of 2 (out of 20) estimated components recon-
structed by ATWD using γ = 1 with reduced data are referred to as component 1 (heavy
lines) and component 2 (thin lines).
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