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Abstract

High or ultrahigh dimensional data set with group structure emerge in a wide range of

scientific research and applications nowadays. However, sparsity may exist in this high or

ultrahigh dimensional data with such group form. In such case, our primary goal is to

select the important groups that are significantly correlated with outcome. In particular,

grouped variable selection plays a critical role in selecting groups and estimating the nonzero

coefficients for these covariates within these important groups. Nevertheless, in the presence

of ultra-high dimensional data consisting of grouped variables, many algorithms for grouped

variable selection may fail to converge or yield insensible results. Even if the algorithm

works, it will suffer from a rather intensive computation load.

In this dissertation, we propose a two-stage procedure, grouped variable screening and se-

lection, to solve those challenging issues. At the first stage, grouped variable screening is

applied to reduce the dimensionality of data by filtering out the unimportant groups that

have no contribution to outcome. A sure screening property is established to ensure an over-

whelming probability of retaining all important groups after the screening procedure under

suitable conditions. This work will mainly focus on four grouped variable screening criteria.



At the second stage, since the data have been reduced from ultra-high dimensionality to the

moderate one or even lower than sample size, grouped variable selection methods are able

to select the important groups effectively and estimate the nonzero coefficients accurately.

Meanwhile, the computation can be decreased dramatically in terms of running time and

complexity when executing the grouped variable selection. The performance of the proposed

two-stage procedure is evaluated by various simulated examples and a real data set in genetic

analysis. An R package called grpss is developed to incorporate the two-stage procedure

into real applications.

Index words: grouped variables, grouped variable selection, grouped variable
screening, marginal correlation learning, penalized regression, random
permutation, sure screening property
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Chapter 1

Introduction

With the rapid development and great aid of modern technology, large and complex data

sets with tens of thousands of variables are easily accessible and collected nowadays with

fairly low or even no costs. In a wide range of scientific research and applications, such as

micro-arrays, genomics and brain images, quantitative measurements are used to study the

connections between outcomes and explanatory variables. In many cases, the explanatory

variables are naturally grouped because they are similar in some behaviors, or have similar

effects, or have a high correlation between each other within groups. Groups can be even

specified from the experts’ knowledge. Another scenario is that researchers wish to accelerate

the analysis process or to improve the analysis accuracy under the consideration of group

structure. The groups of explanatory variables can be formed by an ad-hoc k-means cluster-

ing method or some other clustering methods in the case there is no any prior information

of the groups. The subsequent analysis can take advantage of this prior knowledge of group

structure and gives rise to a more meaningful and interpretable result. Common examples

of using grouped variables can be seen in multifactor analysis of variance and nonparametric

additive regression. In ANOVA problem, a multiple-level factor can be expressed into a

group of dummy variables. In nonparametric additive model, each additive component can
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be represented by a linear combination of a series of basis functions such as polynomial basis,

B-spline basis or Fourier basis. Another concrete example includes the statistical applica-

tions in biological study, where genes can form groups based on their pathway they belong

to or some other biological characteristics. In these modeling problems, we can essentially

improve the interpretability and accuracy of the models by taking the group structure into

account.

Consider a linear regression model with p predictors. Suppose the predictors can be naturally

divided into J non-overlapping groups. The linear model can be then written as

Y =
J∑
j=1

Xjβj + ε =
J∑
j=1

pj∑
k=1

Xjkβjk + ε, (1.1)

where Y = (y1, · · · , yn)T is an n × 1 vector of response, Xj = (Xj1, · · · , Xjpj) is an n × pj

design matrix of the pj predictors in the j-th group, βj = (βj1, · · · , βjpj)T ∈ Rpj is the pj × 1

vector of regression coefficients of the j-th group and ε = (ε1, · · · , εn)T is the independent

and identically distributed (i.i.d) random errors with mean 0 and variance σ2, i.e., E(ε) =

0, E(ε2) = σ2In. Note that the total number of variables is the sum of the number of

variables in each group, i.e., p =
∑J

j=1 pj. Without the imposed group structure, model

(1.1) can be expressed as Y = Xβ + ε which is a classical multiple linear regression, where

X = (X1, · · · ,XJ) and β = (βT1 , · · · ,βTJ ). In effect, the linear model with p individual

predictors can be regarded as a special case of the model with J groups with single predictor

if p1 = p2 = · · · = pJ = 1, resulting in J = p. The predictors X can be either categorical

values including their interactions as in ANOVA or continuous values as in nonparametric

additive model, or even the mixture of categorical and continuous values as well. If Y is a

categorical or discrete response, (1.1) becomes a classification model or logistic regression

model with appropriate transformations on Y , which will be addressed elsewhere.

In the statistical research and practice, we often encounter ultrahigh dimensional data sets
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in which the number of variables p far exceeds the number of observations n. By ultrahigh

dimensionality, we loosely refer to the definition log(p) = O(na) for some positive constant

a ∈ (0, 1/2), which is also called non polynomial (NP) dimensionality, compared to poly-

nomial dimensionality equivalent to high dimensionality defined as p = O(na), see Fan and

Song (2010). The dimensionality can be ultrahigh because researchers often like to obtain a

large number of potential variables in order to retain the possibly important and necessary

connections between predictive factors X and the outcome Y . However, some variables may

be useless or redundant, and hence extracting useful and necessary information from these

ultrahigh dimensional data is a critical issue and indispensable task in many research fields.

Without considering the group structure, this problem is called “large p, small n” and has

brought a lot of challenges in the statistical analysis and applications. In most typical cases,

nevertheless, only a small number of predictors are supposed to be truly relevant to the

response Y , which corresponds to the assumption of sparse structure of the coefficient vector

β. The sparse structure means that only a small portion of the coefficients are nonzero in

model (1.1). That is, we have βjk = 0 for which the predictor has no any connections with

Y , which amounts to eliminating the redundant variable Xjk, j = 1, . . . , J , k = 1, . . . pj, from

the model (1.1). In the presence of high dimensional data sets where p > n, the classical

least squares method is not applicable due to the rank deficiency of the matrix XTX and

the lack of degrees of freedom in the fitting process. In such cases, dimension reduction or

a selection of significant variables with nonzero coefficients is an essential task and central

theme of high dimensional data analysis. Dropping the useless variables enables us to im-

prove the accuracy of predictions as well as reduce the variability of models by using some

well-developed methods for low dimensional data. Statisticians usually use stepwise deletion

and subset selection that are practically useful and intuitively simple in conjunction with the

information criteria such as AIC or BIC, but they all suffer from several severe drawbacks

such as ignoring stochastic errors, and lack of stability as discussed by Breiman (1995), and
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their computation time is huge for large problems. In particular, they are infeasible when

the computational cost is another primary concern, especially in the case of high or even

ultrahigh dimensional data sets since the number of candidate models grows exponentially as

the number of variables increases. Also, their solutions are locally but not globally optimal

because they do not consider all variables at the same time. To handle these issues, under the

assumption of sparsity, a large number of variable selection approaches have been proposed

to select the significant variables automatically and estimate the sparse model simultaneously

by imposing a continuous penalty on the coefficients in model (1.1), see, for example, the

nonnegative garrote in Breiman (1995); Lasso in Tibshirani (1996); the smoothly clipped ab-

solute deviation (SCAD) in Fan and Li (2001); the least angle regression algorithm (LARS)

in Efron, et al., (2003); adaptive Lasso in Zou (2006); minimax concave penalty (MCP) in

Zhang (2007), etc. Those methods mentioned above can reduce the dimensionality effec-

tively as well as maintain the sparsity of the model efficiently under the constraint that the

dimension p is smaller than or even fairly but not much larger than the sample size n.

In the ultrahigh dimensional problems where p� n, however, the aforementioned individual

variable selection methods are not consistent for model selection under a general condition

discussed in Leng et al., (2006) and Zhao and Yu (2006). They also suffer from the com-

putational complexity in these high or ultrahigh dimensional problems, which brings us the

simultaneous challenges of statistical accuracy, algorithmic stability and computational ex-

pediency as discussed by Fan, et al., (2009). To address these challenges, Fan and Lv (2008)

proposed a marginal correlation learning method called sure independence screening (SIS)

and iterated sure independence screening (ISIS, a refined version of SIS) to reduce the di-

mensionality prior to applying the individual variable selection methods in the context of

linear model with sparse structure. They used the marginal Pearson correlation as a criterion

that measures the strength of relationship between each predictor and response in order to

screen out the important predictors, equivalently, remove the unimportant predictors. An
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remarkable virtue is that SIS can reduce the dimensionality significantly while preserving

the true model with large probability under suitable assumptions. Also, the SIS is compu-

tationally simple, practically useful and theoretically appealing. Motivated by these ideas,

various screening methods and their extensions have been developed to efficiently rule out the

unimportant variables under the different settings of true model and assumptions thereafter,

see, for example, Wang (2009, 2012); Zhu, et al., (2011); Fan and Fan (2008); Fan, et al.,

(2009); Fan, et al., (2011); Wang and Leng (2013). All of these methods were used for the

case of individual variables, without considering their group structure. Most of them were

established based on marginal correlation learning that studies the relationship between each

predictor and response separately. However, marginal correlation learning is unable to tackle

the case where predictors are marginally uncorrelated but jointly correlated with response.

This means the marginal correlation may be a misleading measurement in some situations.

To this end, Wang and Leng (2013) proposed a method called the high-dimensional ordinary

least-squares projector (HOLP) for screening individual variables. The main advantage of

HOLP is to accommodate the drawbacks of SIS or other marginal correlation learning meth-

ods by relaxing the assumption of marginal correlation condition as it is easily violated in the

ultrahigh dimensional data sets where predictors are often correlated. Also, the screening

criterion of HOLP can be easily calculated and HOLP has the sure screening property, which

makes HOLP attractive by its theoretical support and simple computation for the case of

ungrouped variables.

Similar challenges and concerns discussed above can arise in the context of high dimensional

data set that is composed of grouped variables, where the number of groups J can be

also much larger than the sample size n. In the meanwhile, there also exists the sparse

structure of the linear model for the case in which the predictors are grouped. Consequently,

a selection of significant groups or even the significant members within these groups becomes

more and more important for high dimensional data analysis. By significant group we
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mean that there are at least one significant variable with nonzero coefficients within the

group. In this sense, setting βj = 0 is equivalent to removing the entire variables in the

j-th group Xj, j = 1, . . . , J . Compared with the individual variable selection, grouped

variable selection has a completely different framework. The individual variable selection

methods may perform inefficiently and the subsequent analysis may be inappropriate by

ignoring the group information, especially under the strong group sparsity and a group sparse

eigenvalue condition, see Huang and Zhang (2010). Therefore, to solve these problems, there

are a fair amount of grouped variable selection methods that arise from individual variables

selection and yield the sparse solution at the group level, or even at the within-group level.

In greater details, Yuan and Lin (2006) proposed the group Lasso, in which the penalty

function is comprised of L2-norm of the coefficients with respect to the grouped variables.

This is a natural extension of the Lasso (Tibshirani, 1996) for individual variable selection.

Meier, et al., (2008) studied the group Lasso for logistic regression and presented an efficient

algorithm. Kim, et al., (2006) extended the group Lasso by using the same L1 penalty

but more general loss functions. Zhao, et al., (2006) considered a generalization of the

group Lasso by utilizing composite absolute penalty. Although the Lasso penalty function

performs very well in selecting the significant variables, it is not consistent in terms of variable

selection and tends to over-shrink large coefficients producing large bias as discussed in Fan

and Li (2001). Such inconsistency and over-shrinkage are thus inherited by the group Lasso

regardless of the types of the model. To overcome those drawbacks, Wang, et al., (2007)

proposed group SCAD and Breheny, et al., (2009) proposed group MCP respectively, both

of which possess the oracle property referring to that the probability of selecting the right

set of variables with nonzero coefficients converges to one. On the other hand, we are also

interested in selecting the variables within the groups in many situations. Zhou and Zhu

(2010) proposed a group hierarchical Lasso and Huang, et al., (2009) proposed a group

bridge for the grouped variable selection. Both of them along with group MCP are called
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bi-level selection, meaning that they are able to select the groups as well as the individual

members within a group simultaneously. The bi-level selection is achieved by combining

penalties at the group and individual variables levels. However, group bridge suffers from

several computational shortcomings that limit its applicability in practice due to the fact that

the bridge penalty is not everywhere differentiable. To solve this problem, Breheny (2014)

proposed a new method called the group exponential lasso that performs better than group

bridge in terms of the computation speed as well as the estimation accuracy. The various

group selection methods stated above have desirable performances for “small J , large n”

problems under suitable assumptions, but they are not ideal for the large problems in terms

of the computation and accuracy. We will provide more technical details of group Lasso,

group SCAD and group MCP that are commonly used in practice among others in Chapter

3.

Likewise, similar challenges and difficulties for grouped variable selection can emerge in the

case of ultrahigh dimensional data sets consisting of grouped variables. In this work, we

consider the ultrahigh dimensional data with group structure, which is referred to the def-

inition log(J) = O(na) for some positive constant a ∈ (0, 1/2), which certainly indicates

log(p) = O(na). That is, we focus on the number of total groups instead of total variables.

When the number of groups J grows much faster than the sample size n, the algorithm

of grouped variable selection may fail to converge, especially at low value of regularization

parameter where the model is nonidentifiable or nearly singular. Even if the algorithm does

converge in the setting of “large J , small n”, the estimated coefficients may be the ones that

are not globally optimal solutions which are not interesting for us at all. For these reasons,

we feel that there is a need for new screening methods that can reduce the dimensionality of

data significantly before selecting the important groups and variables within these groups.

This idea is motivated by the scheme used for the linear model without considering the group

structure in which we reduce the number of predictors, whereas we reduce the number of
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groups in the linear model with group structure. To our best knowledge, almost none have

been working on the grouped variable screening so far. Although Li, et al., (2012) proposed

a feature screening via distance correlation learning and pointed out that the distance cor-

relation can be used for the grouped variable screening, they only showed a rather simple

simulated example without giving much details. Also, their assumptions and sure screening

property were all established for the individual explanatory variable cases. In addition, the

distance correlation learning is exactly the same as SIS under the framework of linear re-

gression with normally distributed predictors and random error. In this case, the distance

correlation learning still strongly relies on the marginal correlation between individual pre-

dictors and response. Lastly, since we have to doubly centralize the corresponding matrices

in the calculation of distance correlation, the computational load will be overwhelmingly

heavy for large sample and large group sizes as shown in the simulation study in Chapter 4.

Nevertheless, the SIS and HOLP are primarily designed to screen out the important indi-

vidual variables. When directly applied to the variables with group structure, they tend

to make selection based on the strength of individual variables rather than that of grouped

variables. This often results in selecting less groups than necessary for a given threshold

due to using the replicated groups that contains several top correlation values. In this dis-

sertation work, we extend the individual variable screening methods SIS and HOLP to the

grouped variable screening by taking one simple step further with the incorporation of the

grouped structure. More specially, we take the L1-norm of the vector of screening criterion

values preliminarily estimated by SIS or HOLP with the adjustment of group size for each

group and use them as a new screening criterion. This motivation is similar to the case

where group Lasso is extended from standard Lasso. We also re-explore the group version of

distance correlation learning from Li, et al., (2012) and then compare their performances in

practice, where we observe the above weaknesses. To use the possible marginal information

of groups, we investigate another screening method by fitting a group-wise regression and
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making use of the adjusted R2 that naturally measures the strength of correlation between

each group and response. The adjusted R2 can be used as a new screening criterion and is

somewhat parallel to SIS method in the sense of marginal correlation learning. We introduce

a framework and conduct simulations that shed light on the behavior of these methods. As

the data set is reduced accurately from ultrahigh to moderate or even low dimension, we can

apply the sophisticated grouped variable selection methods to achieve good estimation of the

model without the influence of computational complexity. As a result, we not only reduce

the computational burden, but also gain the algorithmic stability and accurate estimation

by implementing this two-stage procedure.

In this dissertation, we will first introduce four screening methods for the case of grouped

variables under the assumption of linear model in Chapter 2, and briefly outline three widely

used grouped variable selection methods for the estimation at the second stage in Chapter 3.

To examine performance of the proposed methods, we conduct intensive numerical studies

in Chapter 4 and apply the proposed methods to analyze a real data set in Chapter 5. An

R package grpss will be described in Chapter 6. The technical proofs of sure screening

property of four screening approcahes will be given in the Appendix.
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Chapter 2

Grouped Variable Screening

In this chapter, we describe four grouped variable screening techniques in great details.

Without loss of generality, we assume that the random error ε in linear model (1.1) follows

a normal distribution N (0, σ2). We also centralize the response such that we can ignore

the intercept and express the linear model as equation (1.1) and standardize all predictors

such that each predictor has mean 0 and standard deviation 1, i.e., E(Xjk) = 0,Var(Xjk) =

1, j = 1, . . . , J, k = 1, . . . , pj. The main goal of grouped variable screening is to screen out

the important groups, each of which has at least one nonzero coefficients of predictors in

model (1.1). Since the screening procedure aims to seek the important groups, we do not

need to estimate the coefficients of predictors within groups accurately but maintain the

ranks of importance of groups ideally. Thus, we wish to recover the strength of underlying

relationship between each group and response as much as possible. The issue of accurate

estimation of coefficients will be taken care of at the second stage of analysis by the methods

described in Chapter 3. In the subsequent sections, we will discuss four grouped variable

screening methods: group SIS, group HOLP, group-wise adjusted R2 and group-wise distance

correlation (gSIS, gHOLP, gAR2, gDC for short, respectively). The first three methods are

constructed under the assumption of linear model in (1.1) but the last one does not require

10



Figure 2.1: The similarities and differences among gSIS, gHOLP, gAR2 and gDC from two
perspectives. Red solid circle focuses on the estimation of criteria (i.e., estimate coefficients
[left solid circle] vs. correlation [right solid circle]), and the blue dash circle on the used
information (i.e., use joint [left dash circle] vs. marginal information [right dash circle]).

this assumption. More specifically, gSIS and gHOLP are extensions from SIS and HOLP to

the settings of grouped variables under linear model and will be described in section 2.1 and

2.2, respectively. The gAR2 is a newly proposed screening method and will be introduced

in section 2.3. The gDC was originally used in Li, et al., (2012) and will be reinvestigated

for the settings of grouped variables in section 2.4. Figure 2.1 shows the similarities and

differences among gSIS, gHOLP, gAR2 and gDC. That is, the commonality of the gSIS,

gAR2, gDC is that they all strongly rely on the marginal information of correlation between

predictors of groups and response, but gHOLP is built on the joint relationship between

response and all predictors. In one word, gHOLP is the joint correlation learning while the

others are the marginal correlation learning. This is visualized in Figure 2.1 by dashed blue

circles in terms of the used information. From the point of view on the criterion marked

by solid red circles in Figure 2.1, gSIS and gHOLP focus on the magnitude of estimated

regression coefficients, while the gAR2 and gDC emphasize the strength of correlation.

The gSIS and gHOLP will outperform the individual variable screening methods SIS and

HOLP due to the fact that they consider all predictors in each group simultaneously. When

variables are grouped, ignoring the group structure and directly applying SIS in (2.1) or
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HOLP in (2.3) may be suboptimal or even yield an insensible final model. Additionally, the

gSIS and gHOLP do not add too much computational complexity contrast to SIS and HOLP.

The gAR2 and gDC are very similar under the linear model settings, but gDC can also handle

the situation where the relationship between predictor and response is nonlinear. However,

the gDC is not recommended to use for the large problems because of the complicate or even

exceedingly computation of distance correlation.

A dimensionality reduction method is desirable if it possesses the sure screening property that

all the important groups survive with probability tending to 1 after applying grouped variable

screening as the sample size becomes large enough. This means the screening procedure can

retain all important grouped variables with overwhelming probability. The sure screening

property is very important and indispensable to all screening methods because otherwise it

is nonsense to filter out the useful information that can be used for later analysis. We let

Mg
S = {Xj : βj 6= 0, 1 ≤ j ≤ J} or S = {1 ≤ j ≤ J : βj 6= 0} be the set of true sparse

model with non-sparsity group size s = |S| = |Mg
S| � J and the selected submodel by a

grouped variable screening beMg
D with non-sparsity group size d = |Mg

D| < J , in which d is

a threshold and can be manually chosen as an integer from [1, J ] depending on the problem

of interest, and satisfies s < d, or automatically selected by random permutation method

discussed in section 2.5. Without ambiguity, we use Mg
D as a notation of submodel with

group size d for grouped variable case andMD for individual variable case in the subsequent

sections. By sure screening property, we have the probability Pr(Mg
S ⊆M

g
D) going to 1 as

n → ∞ for some given threshold d ≥ s. A sure screening property of gSIS, gHOLP, gAR2

and gDC will be established in Theorem 2.1, 2.2, 2.3, 2.4, respectively. It is obvious that

larger d implies larger probability of including the true model Mg
S in the final model Mg

D

but may bring more complex computations at the second stage of analysis. In some sense,

the threshold controls the tradeoff between the complexity of computations and the accuracy

of estimation. Without giving too much computational complexity, we set the threshold to
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be the sample size in the numerical simulation for the purpose of comparison. The issue of

choosing data-driven threshold d will be addressed in section 2.5. In particular, we can adopt

the random permutation idea in Zhao and Li (2010) to determine a data-driven threshold.

It is worthwhile noting that in the feature screening process, there is a situation where some

groups are known to be truly related to the response from experts’ knowledge or experience

in advance. Therefore, we want to preserve them in the final model and do not wish to

include them in the variable screening as well as selection procedure. In other words, we let

the predictors from these groups participate in the estimation procedure directly.

2.1 Group Sure Independence Screening (gSIS)

Fan and Lv (2008) introduced a new framework of variable screening via marginal correlation

learning and suggested to fit a component-wise regression between predictors and response

using ordinary least squares to obtain the SIS screening criterion ω̂ = (ω1, · · · ,ωJ) defined

as

ω̂ = XTY, (2.1)

where ωj = (ωj1, · · · , ωjpj), j = 1, . . . , J , is the marginal coefficient vector for the j-th group.

Each element of ω̂ is also equivalent to the marginal pearson correlation between each pre-

dictor and response, rescaled by the standard deviation of the response. To see this, recalling

the definition of correlation corr(Xjk, Y ) = cov(Xjk, Y )/(sXjk × sY ), one has

ωjk =
n∑
i=1

xijkyi =
n−1

∑n
i=1 xijkyi

n−1
∑n

i=1 x
2
ijk

=
cov(Xjk, Y )sY

sXjksY
= corr(Xjk, Y )sY ,

following by corr(Xjk, Y ) ∝ ωjk, where xijk is the i-th observation of the k-th variable in

the j-th group, X̄jk = n−1
∑n

i=1 xijk = 0, Ȳ = n−1
∑n

i=1 yi = 0 and s2
Xjk

= n−1
∑n

i=1 x
2
ijk = 1

by the assumptions of the predictors and response, s2
Y = n−1

∑n
i=1 y

2
i . We then sort the
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magnitude of ω̂ in a decreasing order and select the submodel MD,SIS using the following

rule.

MD,SIS = {Xjk : |ωjk| are among the largest d of all ωjk’s},

which is a straightforward way to shrink the full model M := {Xjk : j = 1, . . . , J ; k =

1, . . . , pj} with ultrahigh dimensionality p down to a submodel MD,SIS with moderate or

small dimensionality d that is much smaller than p, i.e., d� p.

To incorporate the group information, we only need to move a step forward based on the

SIS by taking the L1-norm of the ω̂ defined in (2.1) for each ωj of group coefficient vector,

j = 1, 2, . . . , J . Specially, we define a new criterion ω̂g = (ωg1 , · · · , ω
g
J) for grouped variable

screening, where

ωgj = p−1
j ‖ωj‖1 := p−1

j

(
|ωj1|+ · · ·+ |ωjpj |

)
, (2.2)

in which ‖ ·‖1 is the L1-norm of a vector. Certainly, we can use L2 or L∞-norm on the vector

ωj but L1-norm has theoretically attractive advantages as shown in the proofs. Note that

pj is the number of variables in the j-th group and used to compensate for the size of each

group. Thus, the submodel can be chosen as

Mg
D,SIS = {Xj : ωgj are among the largest d of all ωgj ’s}, d ≤ J .

We call this new screening method group SIS (gSIS) which represents the sure independence

screening modified for grouped variables.

The following Theorem 2.1 states the sure screening property of gSIS that we can retain the

truly important groups with overwhelming probability under some conditions.

Theorem 2.1 (Sure screening property of gSIS). Assume that (A1)-(A4) that are stated

in Appendix A hold. If we choose γn such that

γn
n1−κ → 0, and

γn
√

log (n)

n1−κ →∞,
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then for some constant C, we have

Pr

(
max
j /∈S

ωgj < γn < min
j∈S

ωgj

)
= 1−O

{
exp

(
−Cn

1−2κ−2τ−ν−γ

2 log (n)

)}
.

This means if we choose a submodel Mg
D,SIS with d > s, we have

P
(
Mg

S ⊆M
g
D,SIS

)
= 1−O

{
exp

(
−Cn

1−2κ−2τ−ν−γ

2 log (n)

)}
.

Theorem 2.1 implies that there is a clear separation of the strength of ωgj between the

important groups j ∈ S and unimportant groups j /∈ S. These two sets of groups can be

easily identified when the separation is sufficiently large. A more useful of implication is that

a model selection consistency result can be derived under the assumptions (A1) - (A4). This

theorem also indicates the dimensionality of groups can be exponentially high. A similar and

general conclusion can be obtained from the following sure screening properties of gHOLP,

gAR2 and gDC and will be omitted thereby.

2.2 Group High-dimensional Ordinary Least-squares

Projection (gHOLP)

Although gSIS is computationally simple, it adopted the marginal correlation learning mean-

ing that the screening result will be affected by the predictors that are marginally uncorre-

lated but jointly correlated with the response. In theoretical proofs of Fan and Lv (2008),

a condition was imposed to rule out the aforementioned situation. Another disadvantage

of SIS is that the unimportant predictors with high correlation with important predictors

have higher probability to be selected than the other important predictors with relatively

weak correlation with the response. We should expect that the gSIS would perform poorly
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or fail completely when these situations occur as shown in simulation studies. To this end,

Wang and Leng (2015) proposed a new screening criterion called High-dimensional Ordinary

Least-squares Projector (HOLP) that can well address the case where the predictors are

marginally uncorrelated but jointly correlated with response.

The HOLP in Wang and Leng (2015) was primarily proposed to screen out the important

individual variables before the second stage of refined analysis such as the regression analysis.

They showed that the performance of HOLP was at least competitive or even superior to

SIS due to taking the joint correlation structure of all predictors into account, rather than

the marginal correlation information. The submodel MD,HOLP is chosen according to the

magnitude of estimated coefficients defined as

β̂ = XT (XXT )−1Y, (2.3)

where β̂ = (β̂1, · · · , β̂J), in which β̂j = (β̂j1, · · · , β̂jpj), j = 1, . . . , J . In fact, the estimated

coefficients (2.3) can be written as β̂ = X+Y , where X+ ≡ XT (XXT )−1 and is termed as

Penrose-Moore inverse. This leads to the estimator β̂ being the same calculation form as ω̂

defined in (2.1). We then use the same strategy as SIS, so the submodel MD,HOLP can be

chosen as

MD,HOLP = {Xjk : |β̂jk| are among the largest d of all β̂jk’s}, d ≤ p,

in which j = 1, . . . , J, k = 1, . . . , pj. Similar to the procedure of gSIS from SIS, the

grouped version of HOLP can proceed in the same fashion from HOLP. Denote a vector

β̂
g

= (β̂g1 , · · · , β̂
g
J) with J elements representing the new criterion values, which can be com-

puted by

β̂gj = p−1
j ‖β̂j‖1 := p−1

j

(
|β̂j1|+ · · ·+ |β̂jpj |

)
, (2.4)

and then the submodel can be chosen as
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Mg
D,HOLP = {Xj : β̂gj are among the largest d of all β̂gj ’s}, d ≤ J ,

which is named as group HOLP (gHOLP), the HOLP for grouped variables.

Comparing equations (2.1) and (2.3), we can observe that the latter has one more term

(XXT )−1 which accounts for the joint information among predictors. If the predictors are

orthonormal, i.e., XXT = In, the HOLP (resp., gHOLP) coincides with the SIS (resp.,

gSIS). Therefore, SIS (resp., gSIS) agrees with HOLP (resp., gHOLP) when, for instance,

predictors are mutually independent or uncorrelated. On the other hand, HOLP (resp.,

gHOLP) is invariant to the scale of the signal defined by XT (XXT )−1Xβ, while SIS (resp.,

gSIS) is not scale-invariant to the signal defined by XTXβ. The implication of this property

is that the gSIS may be severely affected by the way of scaling variables but the gHOLP is

robust to it. Therefore, it is recommended to scale the predictors before using gSIS. Another

significant insight can be seen that XT (XXT )−1X is more diagonally dominating than XTX

for some cases. Accordingly, gHOLP is more likely to maintain the true order of important

groups than gSIS.

Similar to Theorem 2.1, we can also establish the sure screening property of gHOLP present

in Theorem 2.2 as follows.

Theorem 2.2 (Sure screening property of gHOLP). Assume that (B1)-(B4) that are

stated in Appendix B hold. If we choose γn such that

pγn
n1−τ ′−κ → 0,

pγn
√

log (n)

n1−τ ′−κ →∞,

then for some C1 specified in Assumption (B1), we have

Pr

(
min
j∈S

β̂gj > γn > max
j /∈S

β̂gj

)
= 1−O

{
exp

(
−C1

n1−2κ−5τ ′−ν−γ

2 log (n)

)}
.
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This means if we choose a submodel Mg
D,HOLP with d > s we have

P
(
Mg

S ⊆M
g
D,HOLP

)
= 1−O

{
exp

(
−C1

n1−2κ−5τ ′−ν−γ

2 log (n)

)}
.

2.3 Groupwise adjusted R-squared (gAR2)

We now introduce a new screening criterion which is complementary to gSIS but is more

sophisticated and can better take advantage of the information between groups and response.

That is, we propose another screening criterion called group-wise adjusted R2 (gAR2) which

utilizes the marginal information like gSIS but also naturally incorporates the whole contri-

bution of group information that L1-norm of ωj may lose in gSIS. In greater details, we fit a

multiple linear model between the response y and the predictors Xj = (Xj1, · · · , Xjpj) of the

j-th group for each j = 1, . . . , J separately. The adjusted R2 can be interpreted as a multi-

ple correlation that measures the relationship between the response and multiple predictors

in each group. For notation at ease, the adjusted R2 is denoted to be R̄2
j calibrating the

relationship between the j-th group Xj and response Y , j = 1, . . . , J , and can be calculated

by

R̄2
j =

n− 1

n− pj − 1
R2
j −

pj
n− pj − 1

, (2.5)

where R2
j is the multiple correlation and defined as R2

j = 1−
∑n

i=1(ŷi,j − yi)2/
∑n

i=1(yi− ȳ)2,

in which ŷi,j is the fitted value for the i-th observation in the j-th group by the group-wise

linear regression, i = 1, . . . , n; j = 1, . . . , J . The new criterion is defined as R = (R̄2
1, · · · , R̄2

J)

and the submodel can be selected as

Mg
D,AR2 = {Xj : R̄2

j are among the largest d of all R̄2
j ’s}, d ≤ J ,

and this screening procedure is referred to gAR2. It is worthwhile pointing out that the

group size pj should be smaller than the sample size n for all j = 1, . . . , J so that the R̄2
j is
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meaningful for multiple linear regression. In effect, there is another simple way to calculate

the multiple correlation R2
j instead of fitting a multiple linear regression. The multiple

correlation R2
j can be computed by

R2
j = γ̂Tj R̂

−1

Xj
γ̂j,

where γ̂Tj = (γ̂j1, · · · , γ̂jpj), γ̂jk = ĉor(Xjk, Y ), and R̂Xj
is the estimator of inner-correlation

matrix of Xj. By the assumptions of predictors and response, one can easily obtain that

R2
j = s−2

y ρ̂
T
j Ŝ
−1

Xj
ρ̂j ∝ ρ̂

T
j Ŝ
−1

Xj
ρ̂j,

where now ρ̂Tj = (ρ̂j1, · · · , ρ̂jpj), ρ̂jk = ĉov(Xjk, Y ), and ŜXj
is the estimator of inner-

covariance matrix ΣXj
of Xj. Under the constrain pj ≤ n and λmax(ΣXj

) is bounded

away from infinity, ŜXj
is always positive definite and thus invertible.

Theorem 2.3 states the sure screening property of gAR2. Although we impose an assumption

of maximum eigen values of covariance as in Assumption (A4) to rule out the situation of

strong collinearity, adjusted R2 can still accurately quantifies the linear relationship between

response and predictors in practice because these global statistics do not depend on individual

parameters and their standard errors. In this sense, the proposed gAR2 should be comparable

with or even better than gSIS due to making better use of the entire group information and

also being able to overcome the effect of strong collinearity within groups. Furthermore, as

R̄2
j is not affected by the scale of the data, the gAR2 is also invariant to the scale of the

predictors and the results will be robust to the way of scaling.

Theorem 2.3 (Sure screening property of gAR2). Assume that (A1)-(A4) that are
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stated in Appendix A hold. If we choose γn such that

γn
n2−2κ−τ+γ′′

→ 0 and
γn log (n)

n2−2κ−τ+γ′′
→∞.

then for some constant C, we have

Pr

{
max
j /∈S

R2
j < γn < min

j∈S
R2
j

}
= 1−O

{
exp

(
−Cn

1−2κ−3τ−ν−γ′′

log (n)

)}
,

This means if we choose a submodel Mg
D,AR2 with d > s, we have

P
(
Mg

S ⊆M
g
D,AR2

)
= 1−O

{
exp

(
−Cn

1−2κ−3τ−ν−γ′′

log (n)

)}
.

2.4 Groupwise distance correlation (gDC)

The screening criteria mentioned above are all used to measure the magnitude of linear

relationship between groups and response. A possible problem comes to the situation where

the relationship is nonlinear. Fortunately, Sźekely, et al., (2007) proposed distance correlation

(DC) to measure the dependence between two random vectors. The important property of

DC is that the DC of two random vectors is zero if and only if these two random vectors

are independent. The advantage of DC is that it is not only capable of capturing the linear

relationship as the pearson correlation or multiple correlation does, but also the nonlinear

dependence between two random vectors. Based on these aspects, Li, et al., (2012) advocated

using the DC for measuring the strength of correlation between response and predictors

without assuming the linear structure defined in (1.1). To be precise, the DC between the j-

th grouped predictor Xj and response Y is defined as follows. We first compute the pairwise

distances

ai,h = ‖Xij −Xhj‖2, bi,h = |yi − yh|2,
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where ‖·‖2 denotes the L2-norm of a vector and Xij,Xhj are the i-th and k-th observations

of Xj, i, h = 1, . . . , n, j = 1, . . . , J . Let A = {ai,h}ni,h=1 and B = {bi,h}ni,h=1, both of which are

n×n matrices. Note that A and B are both symmetric matrices and are called the distance

matrices. Secondly, we doubly center all columns and rows of matrices A and B. That is,

let

Ai,h = ai,h − āi. − ā.h + ā.., Bi,h = bi,h − b̄i. − b̄.h + b̄..,

where āi., b̄i. are the i-th row means, āh., b̄h. are the k-th column means, and ā.., b̄.. are the

grand means of the distance matrices A and B. The matrices A and B are then updated by

A = {Ai,h}ni,h=1 and B = {Bi,h}ni,h=1. The distance correlation between Xj and y is defined

as

dCor(Xj, Y ) =
dCov(Xj, Y )√

dVar(Xj) dVar(Y )
, (2.6)

where dCov(Xj, Y ) is the distance covariance of Xj and Y , simply defined as the arithmetic

average of the products Ai,h and Bi,h, i.e., dCov2(Xj, Y ) = n−2
∑n

i,h=1 Ai,hBi,h. Similar

definitions can be applied for the distance variances of dVar(Xj) and dVar(Y ), respectively.

Namely, dVar2(Xj) = n−2
∑n

i,h=1 A
2
i,h, dVar2(Y ) = n−2

∑n
i,h=1B

2
i,h. For simplicity, we let

Dj = dCor2(Xj, Y ), j = 1, . . . , J . Note that Dj ∈ [0, 1]. Thus, the screening criterion by DC

is defined as D = (D1, · · · ,DJ) and the submodel can be chosen as

Mg
D,DC = {Xj : Dj are among the largest d of all Dj’s}, d ≤ J .

As pointed out by Sźekely, et al., (2007), the DC of two univariate normal random variables

is a strictly increasing function of their absolute value of Pearson correlation. In this case, the

DC agrees with the SIS for individual variable screening under the assumption of linear model

with normal covariates. This is also the special case of grouped variable screening by using

groupwise distance correlation when every group has only one variable of normal distribution.

Since we calculate the distance correlation for each group separately, the assumption of

strongly marginal correlation is still needed and shown in the assumption (D2) of Appendix.
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On the other hand, another major downside of distance screening criterion is that since we

apply a three-step procedure, it may require intensive computation to obtain the distance

correlation, especially in the case where the sample size and number of groups are large.

Thus, it would make the distance correlation screening impractical for large problems. Sim-

ulation results in Chapter 4 show that the computation load increases rather quickly as the

sample size and number of groups increase.

Theorem 2.4 (Sure screening property for gDC). Under assumptions (D1) and (D2)

stated in the Appendix D, if the size of selected submodel d ≥ s, we have

Pr(Mg
S ⊆M

g
D,DC) = 1−O(s[exp(−c′5n1−2(κ′+γ′)) + n exp(−c′6nγ

′
)])

for the screening criteria of groupwise distance correlation, where c′5 and c′6 are positive

constants.

Note that if we choose γ′ = (1− 2κ′)/3, Theorem 2.4 becomes

Pr
(
Mg

S ⊆M
g
D,DC

)
= 1−O

(
s(n+ 1) exp

(
−c′5n(1−2κ′)/3

))
= 1−O

(
s exp

{
−c′5n(1−2κ′)/3 + log(n+ 1)

})
.

2.5 Data-driven threshold

To achieve the sure screening property, Fan and Lv (2008) suggested taking the threshold

d = n− 1 or d = bn/ log(n)c which is below the sample size n, where bac denotes the integer

part of a number a. However, the choices are subjective and usually conservative in the sense

that many unimportant variables would be included in the screened submodel. Although

larger threshold d implies larger probability of containing all important variables, more

unimportant variables will also be contained. This leads to a larger false positive rate, the
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proportion of unimportant variables incorrectly included in submodel Mg
d and increase the

computation load in the further analysis. To solve this issue, Zhao and Li (2010) proposed

a practical method to choose a threshold while achieving the sure screening property as

well as controlling the false positive rate and computation complexity. Fan, et al. (2011)

implemented this idea to determine a data-driven threshold in nonparametric independence

screening for sparse ultra-high dimensional additive models and called it random permutation

approach.

The idea of random permutation works as follows. Let Xi· = (Xi1, ...,XiJ) be the i-th

observation of X, i = 1, ..., n. Given data of the form {(Xi·, yi), i = 1, ..., n}, we decouple

Xi· and yi by a random permutation of index 1, ..., n such that we obtain new data of the

form {(Xπ(i)·, yi), i = 1, ..., n}, where π(1), ..., π(n) are random permutation of the index

1, ..., n. The resulting data {(Xπ(i)·, yi), i = 1, ..., n} then follows a null model in which the

predictors have no correlation with response. As we know that under a null model, a set of

genetic variants has absolutely no effect on the outcome. For the newly permuted data, we

recompute the values of grouped screening criterion. For simplicity, we outline the algorithm

of random permutation for gSIS as follows. The other grouped screening criteria can proceed

in the same way.

(i). For every j ∈ (1, ..., J) and original data (X, Y ) we find the values of grouped screening

criterion ω̂g = (ωg1 , · · · , ω
g
J) calculated by equations (2.1) and (2.2). Randomly permute

the rows of X, yielding X∗ = (X∗1, ...,X
∗
J) and let α(q) be the q-th quantile of ω̂g∗ =

(ω̂g∗1 , ..., ω̂
g∗
J ), where

ω̂g∗j = p−1
j ‖ω∗j‖1

and

ω∗j = X∗Tj y.
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We select the groups in the submodel

Mg
D = {Xj : ωgj ≥ α(q), j = 1, ..., J},

where d = |D| is not a pre-specified constant, but is determined by α(q) such that

d = #{1 ≤ j ≤ J : ωgj ≥ α(q)}.

(ii). Apply penalized likelihood estimation described in Chapter 3 on the screened submodel

Mg
D to obtain a final model that contains the selected grouped variables with nonzero

coefficients.

The quantile q in step (i) controls the number of unimportant groups that enter the submodel

Mg
D. As suggested by Fan, et al. (2011), we take somewhat aggressive q = 1 which means to

taking the maximum value of the empirical criterion of the permuted estimates. This choice

also implies we do not allow any unimportant groups to enter the submodel Mg
D.

To see the rationale behind the random permutation idea, we let M̄g
S,SIS be the com-

plement of the true model Mg
S,SIS. Note that the false positive rate can be written as∣∣M̄g

S,SIS ∩M
g
d,SIS

∣∣ / ∣∣M̄g
S,SIS

∣∣. Then the expected false positive rate can be expressed as

E

(∣∣M̄g
S,SIS ∩M

g
d,SIS

∣∣∣∣M̄g
S,SIS

∣∣
)

=
1

J − s
∑

j∈M̄g
S,SIS

Pr(ωgj ≥ αn),

where αn is a pre-specified constant. Suppose the values of screening criterion ωgj has the

cumulative distribution function F , we can see that the αn controls the expected false positive

rate at 2{1 − F (αn)}. Thus, if we choose αn = α(q) with q = 1, the expected false positive

rate would be zero as F (α(q)) = 1. More importantly, using such strategy can also maintain

the sure screening property, see Theorem 5 in Zhao and Li (2010). Similar explanation can

be given to the other screening criteria.
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Chapter 3

Grouped Variable Selection

As the grouped variable screening is able to accurately reduce the original dimensionality J of

dataset to a relatively moderate or small dimension d lower than the sample size, the grouped

variable selection method can be then applied to estimate the sparse model without the

inherently computational complexity any more. Furthermore, the grouped variable screening

can be used iteratively until the reduced dimension d is desirable if necessary. This strategy

has been used in Fan and Lv (2008). The scheme of screening and selection is shown in Figure

3.1 and is typically a two-stage procedure. The first stage is to reduce the dimensionality

from J to d by grouped variable screening, and the second stage is to perform the grouped

variable selection that further reduces dimensionality from d to s. After the first stage, the

Figure 3.1: The schematic diagram of feature screening. The J, d, s are dimensions satisfying
J � d > s.

original problem of estimating large J βj’s in model (1.1) simplifies to estimating smaller d
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βj’s, leading to the reduced linear model

Y =
∑
j∈D

Xjβj + ε, (3.1)

where D is the indices set of the obtained submodel Mg
D with size d. It is obvious that the

process of grouped variable selection can be speeded up dramatically as the dimensionality

has been reduced significantly while significant variables are all retained, especially when

the original dimension J is reasonably high or even ultrahigh. At the second stage, the

problem of interest generally involves estimating a series of vectors of coefficients βj, j ∈ D

by minimizing an objective function that consists of a loss function and a penalty function.

In the following we briefly review several commonly used grouped variable selection tech-

niques that can estimate the sparse model in (3.1). These approaches include the group Lasso

in Yuan and Lin (2006), the group smoothly clipped absolute deviation (group SCAD) in

Wang, et al., (2007) and the group minimax concave penalty (group MCP) of Breheny and

Huang (2009), among others. Note that the parameters estimated by group Lasso do not

achieve the consistency resulting from using the convex penalized loss function while group

SCAD and group MCP gain the unbiased estimators by using the concave penalized loss

function. Furthermore, group MCP is able to select the targets at both the group and

within-group individual levels. For this reason, group MCP is always called bi-level selection

method. Whether we want to select the within-group individual variables depends on the

situation of interest. For example, as the individual variables are represented by a set of

basis functions that are artificially constructed in nonparametric additive model, selecting

the important members in a group is not necessary. On the contrary, it is important to select

both the important genes and within-group individual SNPs in gene expression study.

To obtain the estimates of the coefficients, we implement the group descent algorithms

in Breheny and Huang (2011) that is much faster and more stable than the local linear
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or quadratic approximation, even for the large datasets, and have been implemented in

R package grpreg. Whereas the group descent algorithms can estimate the sparse model

rapidly for high dimensional data sets, the simulation shows the feature screening prior

to selection improves the computational expediency drastically, and is not an redundant

procedure at all.

3.1 Group Lasso

For a column vector u ∈ Rk, k ≥ 1, and a positive definite matrix C, we define ‖u‖C =

(u′Cu)1/2. The solution of parameters using regularization method is generally achieved by

minimizing the penalized loss function, which follows the solution β̂j(λ)’s of group Lasso in

Yuan and Lin (2006) are denoted to be a minimizer of an objective function Q(β) defined

as

Q(β) =
1

2n

∥∥∥∥∥Y −∑
j∈D

Xjβj

∥∥∥∥∥
2

2

+ λ
∑
j∈D

√
pj‖βj‖Cj , (3.2)

where λ is the regularization parameter and Cj’s are pj × pj positive definite matrices, and

√
pj attempts to adjust for the group size. An critical issue in (3.2) is the choice of the

positive definite matrices Cj’s, j ∈ D. Yuan and Lin (2006) originally suggested using

Cj = Ipj for orthonormal Xj with X′jXj/n = Ipj , j ∈ D. However, this is not always

the case since the scales of the predictors may not be the same. Huang, et al., (2012)

recommended taking Cj = X′jXj/n regardless of the scales of predictors. This amounts to

standardizing the predictors at the group level that we assumed at the beginning of Section

2.1. The standardization also ensures that the penalty is invariant to the scale. Thus, group

Lasso imposed the Lasso penalty on the L2-norm of coefficients of each group, leading to

the sparsity and variable selection at the group level. Due to the nature of L1 penalty

on the group norm of coefficients, group Lasso tends to over-shrink the large coefficients,

yielding more important groups than necessary in order to compensate this over-shrinkage.
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This also leads to relatively high false positive rates. Thus, the group Lasso tends to select

a larger model than the true one, causing the caution to use group Lasso. Some popular

tuning methods can be applied to choose the optimal λ, such as AIC, BIC, and generalized

cross-validation.

3.2 Group SCAD

Fan and Li (2001) defined a more general penalty function called smoothly clipped absolute

deviation (SCAD) that was singular at the origin resulting in the sparse coefficient estima-

tors. It also produces continuous estimators and possessed the oracle property under certain

reasonable conditions and a proper choice of the regularization parameter. Wang, et al.,

(2007) extended SCAD to fit a linear regression for microarray time course gene expression

data. More specially, they proposed the group SCAD whose solutions to βj’s are obtained

by minimizing the penalized loss function Q(β) as follows.

Q(β) =
1

2n

∥∥∥∥∥Y −∑
j∈D

Xjβj

∥∥∥∥∥
2

2

+
∑
j∈D

ρλ,a(‖βj‖2), (3.3)

where ρλ,a(·) is the SCAD penalty with regularization parameters λ, a and is defined as

ρλ,a(|x|) =


λ|x|, if |x| ≤ λ

−(|x|2 − 2aλ|x|+ λ2)/(2(a− 1)), if λ < |x| < aλ

(a+ 1)λ2/2, if |x| > aλ.

The penalty function ρλ,a(|x|) is a quadratic spline function with two knots at λ and aλ.

Following the suggestion in Fan and Li (2001), we also take the extra regularization parameter

a = 3.7 for group variable selection case.
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3.3 Group MCP

As group Lasso can only select the variables at the group level, Breheny and Huang (2009)

proposed another method called group minimax concave penalty (grMCP) which can also

select the individual variables within a group at the same time. The original MCP in Zhang

(2007) is a nonconcave penalty that has the same motivation with SCAD in Fan and Li

(2001) but faster rate of penalization for some situations. Like SCAD penalty function,

MCP is also a piecewise function and defined as

fλ,a(x) =

 λx− x2/2a, if x ≤ aλ

aλ2/2, if x > aλ,

for λ > 0, in which a, λ are two regularization parameters. Observe that the first derivative of

MCP function is f ′λ,a(x) = λ−x/a if x ≤ aλ and 0 otherwise with respect to x. This implies

that the rate of penalization drops to 0 when x > aλ, obtaining the unbiased estimation of

the large coefficients that is greater than aλ. To accomplish the bi-level selection, the group

MCP in Breheny and Huang (2009) places an outer MCP on a sum of inner MCP for each

group, which yields the following objective function

Q(β) =
1

2n

∥∥∥∥∥Y −∑
j∈D

Xjβj

∥∥∥∥∥
2

2

+
∑
j∈D

fλ,a

(
pj∑
k=1

fλ,b(|βjk|)

)
,

where b is the regularization parameter for inner penalty function and is typically chosen

to be pjaλ/2 to ensure that the group level penalty attains its maximum. This choice also

simplifies three regularization parameters a, b and λ into two, which makes the selection

procedure simpler. Breheny and Huang (2009) recommended a = 3 that works well in

practice if the variables have been initially standardized. We ultimately have only one

regularization parameter λ to choose, similar to group Lasso and group SCAD.
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Chapter 4

Numerical Studies

In this chapter, we carry out the intensive simulations to evaluate the finite sample perfor-

mance of gSIS, gHOLP, gAR2 and gDC. We first examine the screening accuracy at the

first stage in section 4.1, and compare the performance of grouped variable selection at the

second stage after screening in section 4.2. The simulation settings of the first three mod-

els are very similar to those in Yuan and Lin (2006), except that we generate much larger

number of p (or equivalently, J) predictors. That is, Yuan and Lin (2006) only considered

the “small J , large n” case but we focus on the reverse situation now. Also, we consider two

special models: Model IV and VII which are sparse within groups and a nonlinear model,

respectively. Finally, Model VI and V are used to check the effect of severe collinearity

among groups and the weakly marginal but strongly joint correlation between groups and

response, respectively. We expect the screening methods by marginal correlation learning

would fail on these two models. We examine the performance of these methods mentioned

in section 2.1 for the cases where (n, J) = (200, 2000) and (800, 5000), respectively. More

specifically, the simulation settings are described as follows. The error term ε for all models

follows a normal distribution N (0, σ2), where σ2 is set such that R2 = Var(XTβ)/Var(Y )

is equal to 0.3, 0.5, 0.9 for checking the performance of screening criteria in the presence of
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low, moderate, and high signal-to-noise ratio, respectively.

� Model I: J latent variables Z1, . . . , ZJ are first generated from the multivariate normal

distribution with zero mean vector and covariance between Zi and Zj being 0.5|i−j|.

Then the covariates Z1, . . . , ZJ are discretized to 0, 1, 2 by Φ−1(1/3) and Φ−1(2/3)

leading to Xj = (I(Zj = 0), I(Zj = 1), I(Zj = 2)), j = 1, . . . , J . The response Y is

obtained from the model

Y =
∑
j∈S

βjXj + ε,

where S is the indices set randomly selected from 1, . . . , J with s = 4 different indices in

it, e.g., S = {3, 21, 34, 59}, and let βj = (βj1, βj2, 0)T . We set βj3 = 0 here to avoid the

perfect collinearity. Following Fan and Lv (2008), βj1, βj2 are simulated independently

from β = (−1)U(a + |z|) for j ∈ S, where a = 4 log(n)/
√
n, U ∼ Bernoulli(0.4) and

z ∼ N (0, 1), leading to the model

Y =
∑
j∈S

[βj1I(Zj = 0) + βj2I(Zj = 1)] + ε.

� Model II : Random variables Z1, . . . , ZJ are generated from the same way as in Model

I. The new covariates Xj are defined as Xj = (Zj +W )/
√

2, where W independent of

Zj is generated from standard normal distribution. Each of X1, . . . , XJ are expanded

through a third order orthogonal polynomial, i.e., Xj = (Xj, X
2
j , X

3
j ), and only main

effects of them are considered. The response and the index S of true groups are

generated in the same way as in Model I, except that βj3 is also generated from β =

(−1)U(a+ |z|), leading to βj1, . . . , βj3 6= 0, j ∈ S. Specifically, the model is written as

Y =
∑
j∈S

(
βj1Xj + βj2X

2
j + βj3X

3
j

)
+ ε.
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Note that the number of true important groups is s = 4.

� Model III : This model contains both continuous and categorical group variables. For

simplicity, we generate bJ/2c continuous group covariates in the same fashion as in

Model II, and J − bJ/2c categorical group variables in the same fashion as in Model

I, so that the total number of groups is still J . However, the number of true impor-

tant groups for continuous covariates is still s1 = 4 with indices set S1 chosen from

{1, . . . , bJ/2c} and the s2 = 1 with index set S2 chosen from {J − bJ/2c + 1, · · · , J}

for categorical covariates case such that the total number of true important groups

is s = s1 + s2 = 5 and S = S1 ∪ S2. Note that S1 ∩ S2 = ∅. The coefficients for

continuous covariates are generated exactly the same as in Model II. The coefficient

vector for categorical covariates in j2-th group is set to be (2, 1, 0)T , j2 ∈ S2. Thus, the

response Y is generated by

Y =
∑
j1∈S1

(
βj11Xj1 + βj12X

2
j1

+ βj13X
3
j1

)
+ 2I(Xj21 = 0) + I(Xj22 = 0) + ε.

� Model IV : We consider a linear model that is sparse within groups. The covariates

Xj and response Y are generated in the same manner as in Model III, except that

the coefficients vector for group j1 ∈ S1 with continuous covariates are set to be 0 in

the second entry, i.e., βj12 = 0, and the coefficients for group j2 ∈ S2 with categorical

covariates are also set to be 0 in the second entry, i.e, (2, 0, 0). Then the model is

expressed as

Y =
∑
j1∈S1

(
βj11Xj1 + βj13X

3
j1

)
+ 2I(Xj21 = 0) + ε.

Note that the number of true important groups is s = 5.

� Model V : In this model we examine the case where two groups are marginally uncorre-

lated but jointly correlated with the response. Specifically, we first generate J random
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variables Z1, . . . , ZJ from multivariate normal distribution with zero mean vector and

covariance Σ = (σij)J×J , where σii = 1, i = 1, . . . , J and σij = 0.5, i 6= j. This im-

plies that all Zj’s have the same correlation strength ρ = 0.5 between each other. In

each group with size pj = 4, each predictor xjpj is generated from Zj + εjpj , where

εjpj ∼ N (0, 1), j = 1, . . . , J . The response is then generated from

Y = 5X1 + 5X2 −
10

3
X3 −

10

3
X4 + ε,

in which 5 = (5, 5, 5, 5),10/3 = (10/3, 10/3, 10/3, 10/3). Note that the true important

group S = {1, 2, 3, 4} with size s = 4. Clearly, X3,X4 are marginally uncorrelated

(i.e., checking cov(Y,X3) = 0, cov(Y,X4) = 0) but jointly correlated with response Y

due to the nonzero coefficients in the model.

� Model VI : To check the effect of strong correlation between groups, we now generate all

predictors X from multivariate normal distribution with mean vector 1 and covariance

Σ = (σij)4J×4J , where σii = 1, i = 1, . . . , 4J and σij = 0.8, i 6= j, i.e., X ∼ N (1,Σ), in

which 1 is a 1×4J vectors with all entries 1. The true important groups index and the

coefficients are taken the same as in Model V and Model I, respectively. Consequently,

the model is

Y = β1X1 + β2X2 + β3X3 + β4X4 + ε,

where βj = (βj1, . . . , βj4) are generated from β = (−1)U(a + |z|) independently as in

Model I, and j ∈ S = {1, 2, 3, 4}.

� Model VII : We finally examine the performance of the proposed group screening meth-

ods for nonlinear model. As gDC is model-free screening criterion, we expect it would

stand out in this example in terms of the screening accuracy. The grouped covariates

Xj ∼ N (0.5v1,Σj), j = 1, . . . , J where v is a random number from [0, 1] and 1 is a
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1 × pj vector, and Σj = (σik)pj×pj is a pj × pj covariance matrix that have the same

values as in Model VI, i.e., σii = 1, i = 1, . . . , pj and σik = 0.8, i 6= k, k = 1, . . . , pj.

The coefficients are also generated from the same settings as Model VI, except that

the response Y now becomes

Y =
∑
j∈S

pj∑
k=1

2βjk sin2 (Xjk) + ε,

in which S = [1, 2, 3, 4] and group size pj = 4 for all j = 1, . . . , J .

4.1 Screening accuracy

For each model, the threshold d is chosen as the sample size n for the purpose of comparison.

We record the proportion of recovering the number of true important groups from the selected

submodelsMg
D. By proportion of recovering the number of true important groups we mean

a proportion that equals the number of true important groups covered by Mg
D divided by

the number of true important groups s, the true size ofMg
S. For example, suppose the true

important group indices in Mg
S is {1, 2, 3, 4} and the selected group indices by screening

in Mg
D is {1, 3, 4, 5, 7, 8}. Because the selected groups recover three true important groups

{1, 3, 4}, the proportion of coverage of true important groups is 3/4 = 0.75. Table 4.1 and

Table 4.2 show the mean proportion of recovering the number of true important groups

(Proportion Coverage) for each screening criterion based on 100 repetitions for (n, J) =

(200, 2000) and (n, J) = (800, 5000), respectively. Meanwhile, we also report the mean

proportion of recovering the exact number of true important groups (Exact Coverage) base

on the 100 replications in Table 4.1 for (n, J) = (200, 2000) and 4.2 for (n, J) = (800, 5000).

For the example given above, proportion 0.75 means the selected submodels recover all true

important groups {1, 2, 3, 4} exactly 75 times out of 100 simulations. In other words, there
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are 75 screened submodels Mg
d containing all the true important groups {1, 2, 3, 4} in these

100 selected submodels.

The common phenomena from Table 4.1 and 4.2 is that the performance is getting better

as the signal-to-noise ratio is increasing. It is sensible because higher signal-to-noise ratio

leads to more contribution of predictors to response or outcome. We can also observe that

gSIS, gHOLP, gAR2 and gDC are competitive in terms of the coverage rate for the linear

model with independent predictors within groups and weak correlation between groups (e.g.,

Model I, II, III, IV), but gAR2 may be slightly better than the others due to the fact that

the R̄2 is able to measure the relationship between multiple predictors and response more

naturally, and is much more stable than the estimation of coefficients that gSIS needs to do,

regardless of the within-group correlation of predictors. In a word, gAR2 better takes into

account for the group structure than gSIS does. In Model V, as the X3 and X4 are marginally

uncorrelated but jointly correlated with response, the gSIS, gAR2 and gDC that rely on the

assumption of strongly marginal correlation will fail to screen out these two groups modulo

the random guess, and are only able to discover the first two true groups, resulting in only

50% coverage as expected showing in Table 4.1 and 4.2 even if the signal-to-noise ratio is

high, but gHOLP performs rather well and stands out in this case. When there exists severe

collinearity between groups or even within groups as in Model VI, gSIS, gAR2 and gDC will

still suffer from this problem, leading to poor performance in the screening, but gAR2 is

still superior to the gSIS and gDC because it is more robust to the collinearity. Meanwhile,

gHOLP still performs the best. Finally, for the nonlinear model in Model VII, gDC is the

only method that can successfully screen out the important groups. Note that it is flexible

to adjust the submodel size d to increase the coverage depending on the situation of interest.

For example, we can enlarge d to the twice sample size 2n, which can certainly improve the

screening accuracy but also increase the computation load as well as the false positive rate.

We can use random permutation idea discussed in section 2.5 to determine d if we only focus
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on one specific screening criterion and do not intent to compare the performance of different

methods.

Table 4.1: The proportion of recovering the number of true important groups when (n, J) =
(200, 2000) based on 100 replications.

Model R2 Proportion Coverage Exact Coverage
gSIS gHOLP gAR2 gDC gSIS gHOLP gAR2 gDC

Model I
0.3 0.903 0.900 0.903 0.878 0.690 0.660 0.680 0.600
0.5 0.988 0.870 0.983 0.968 0.950 0.880 0.930 0.880
0.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Model II
0.3 0.945 0.938 0.948 0.863 0.790 0.760 0.790 0.540
0.5 0.988 0.990 0.990 0.980 0.950 0.960 0.960 0.920
0.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Model III
0.3 0.608 0.610 0.650 0.636 0.090 0.070 0.090 0.090
0.5 0.800 0.814 0.846 0.792 0.320 0.320 0.390 0.270
0.9 0.934 0.954 0.950 0.906 0.680 0.770 0.760 0.580

Model IV
0.3 0.440 0.446 0.518 0.510 0.000 0.000 0.000 0.030
0.5 0.570 0.568 0.656 0.624 0.000 0.020 0.060 0.100
0.9 0.780 0.804 0.856 0.808 0.210 0.260 0.390 0.270

Model V
0.3 0.578 0.935 0.558 0.558 0.070 0.750 0.010 0.020
0.5 0.553 0.988 0.543 0.553 0.030 0.950 0.000 0.020
0.9 0.535 1.000 0.523 0.533 0.010 1.000 0.000 0.020

Model VI
0.3 0.285 0.465 0.450 0.273 0.010 0.120 0.080 0.000
0.5 0.365 0.645 0.640 0.370 0.020 0.310 0.190 0.000
0.9 0.498 0.985 0.860 0.590 0.020 0.950 0.510 0.020

Model VII
0.3 0.205 0.205 0.163 0.443 0.000 0.000 0.000 0.030
0.5 0.240 0.248 0.190 0.575 0.010 0.000 0.000 0.060
0.9 0.293 0.298 0.273 0.685 0.010 0.000 0.000 0.180

4.2 Selection accuracy

The scheme of screening in Figure 3.1 reveals the two-stage procedure that variable screen-

ing is followed by variable selection. In this section, we investigate this two-stage procedure

strategy by comparing the performance of grouped variable selection without and with ap-

plying screening at the first stage. Precisely, “None” screening is defined as a one-stage
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Table 4.2: The proportion of recovering the number of true important groups when (n, J) =
(800, 5000) based on 100 replications.

Model R2 Proportion Coverage Exact Coverage
gSIS gHOLP gAR2 gDC gSIS gHOLP gAR2 gDC

Model I
0.3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Model II
0.3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Model III
0.3 0.664 0.674 0.698 0.704 0.300 0.300 0.300 0.400
0.5 0.792 0.794 0.832 0.804 0.500 0.300 0.500 0.400
0.9 0.934 0.954 0.952 0.904 0.700 0.700 0.800 0.700

Model IV
0.3 0.488 0.486 0.548 0.558 0.200 0.100 0.200 0.200
0.5 0.616 0.606 0.672 0.642 0.400 0.300 0.400 0.400
0.9 0.742 0.782 0.792 0.854 0.400 0.500 0.700 0.800

Model V
0.3 0.540 1.000 0.540 0.533 0.100 1.000 0.100 0.000
0.5 0.528 1.000 0.525 0.523 0.030 1.000 0.000 0.000
0.9 0.508 1.000 0.505 0.508 0.010 1.000 0.000 0.000

Model VI
0.3 0.490 0.855 0.790 0.535 0.000 0.700 0.600 0.100
0.5 0.558 0.948 0.860 0.588 0.100 0.900 0.600 0.100
0.9 0.615 1.000 0.930 0.663 0.200 1.000 0.800 0.200

Model VII
0.3 0.413 0.380 0.358 0.788 0.000 0.000 0.000 0.400
0.5 0.478 0.468 0.450 0.858 0.000 0.000 0.100 0.500
0.9 0.575 0.563 0.555 0.923 0.000 0.000 0.100 0.900

procedure and means that the grouped variable selection is used directly for the original

datasets, without applying any screening methods. The others are two-stage procedure with

utilizing different screening methods. As the grouped variable selection can be only used for

linear model, we only consider the first six linear models with the fixed R2 = 0.9 for sim-

plicity. To choose the regularization parameter λ in group Lasso, group SCAD and group

MCP, we make use of 10-fold cross-validation method at certain grid points. To accomplish

the aim of selection, we employ the R package grpreg with cv.grpreg function to choose
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the optimal regularization parameter λ and use grpreg to conduct the grouped variable

selection as well as the parameter estimation. The default method of cv.grpreg is 10-fold

cross-validation. To compare the performance of these methods, we record the following

measurements:

� #FNG: the average number of false negative groups.

� #FPG: the average number of false positive groups.

� Coverage: the average proportion of including the true models from selected models.

� Exact: the average proportion of selecting models being equal to the true models

exactly.

� Error: the average estimation error defined as ‖β̂ − β‖2.

� Size: the average size (nonzero groups) of the selected model.

� Time: the average computation time in seconds.

Note that all measurements are calculated from 100 replications (i.e., 100 datasets for each

model). Since gSIS, gAR2 and gDC are all marginal correlation learning and have very

similar performances in terms of the measurements above, we only display the results of

gHOLP and gAR2 in Tables 4.3 and 4.4 to save space.

Table 4.3 and Table 4.4 show the commonly used measurements of accuracy for (n, J) =

(200, 2000) and (n, J) = (800, 5000) based on 100 replications. One can observe that the

two-stage procedure is fairly competitive or even superior to the one-stage procedure in which

the grouped variable selection is applied directly, in terms of the accurate measurements of

estimations. Even if in some cases the two-stage procedure is slightly worse than one-stage

procedure, it does not lose much efficiency. However, if we compare the computation time

on an ordinary PC with Intel Core i5 1.60 GHz processor and 6.0 GB RAM, the two-stage
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procedures with incorporation of gSIS, gHOLP, gAR2 are remarkably faster than the one-

stage procedure, which can be seen in Figures 4.1 and 4.2. Since the computation time for

six simulated models are very similar, we only display the bar chart of computation time for

the first two models in Figures 4.1 and 4.2. We can see that the only exception is that the

two-procedure by gDC screening is not superior or even worse than the one-stage procedure

in terms of the computation time due to the fact that the gDC costs a lot of time to compute

the distance correlation with three complex steps, especially in situations where the sample

size and group size are large. It is concluded that screening procedures by gSIS, gHOLP

and gAR2 not only maintain or even improve the estimation accuracy of grouped variable

selection, but also boost the computation speed. We need to keep in mind that the gDC

may make the situation worse if the sample size or group size is large. The simulation results

also show that the performance of grLasso is slightly worse than the other grouped variable

selection methods in terms of the false positive groups due to its biased estimation.
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Table 4.3: Accuracy of grouped variable selection for linear models I - VI with (n, J) =
(200, 2000) based on 100 replications.

Model Screening Selection #FNG #FPG Coverage Exact Size Error

Model I

None
grLasso

1.91 8.07 0.52 0.07 10.16 5.24
gHOLP 1.90 15.07 0.53 0.07 17.17 5.26
gAR2 1.92 14.52 0.52 0.07 16.60 5.26
None

grSCAD
1.92 5.67 0.52 0.07 7.75 5.03

gHOLP 1.92 9.19 0.52 0.07 11.27 5.11
gAR2 1.93 9.23 0.52 0.07 11.30 5.11
None

grMCP
1.94 5.50 0.52 0.07 7.56 5.10

gHOLP 1.89 9.04 0.53 0.07 11.15 5.13
gAR2 1.92 8.38 0.52 0.07 10.46 5.11

Model II

None
grLasso

1.45 14.93 0.64 0.17 17.48 7.71
gHOLP 1.46 23.73 0.64 0.17 26.27 7.71
gAR2 1.46 22.75 0.64 0.17 25.29 7.71
None

grSCAD
1.53 10.42 0.62 0.18 12.89 7.64

gHOLP 1.64 16.05 0.59 0.17 18.41 7.69
gAR2 1.67 15.15 0.58 0.17 17.48 7.69
None

grMCP
1.62 7.67 0.60 0.17 10.05 7.66

gHOLP 1.77 12.18 0.56 0.16 14.41 7.74
gAR2 1.90 12.91 0.53 0.14 15.01 7.75

Model III

None
grLasso

1.83 15.36 0.63 0.06 18.53 7.95
gHOLP 1.76 15.83 0.60 0.06 18.81 7.74
gAR2 1.79 18.55 0.60 0.05 21.53 7.76
None

grSCAD
1.86 10.70 0.63 0.06 13.84 7.79

gHOLP 1.75 10.11 0.60 0.06 13.10 7.61
gAR2 1.81 12.19 0.59 0.05 15.15 7.63
None

grMCP
1.96 7.13 0.61 0.06 10.17 7.82

gHOLP 1.79 8.83 0.59 0.06 11.78 7.63
gAR2 1.85 9.19 0.58 0.05 12.11 7.66

Model IV

None
grLasso

2.08 13.36 0.58 0.06 16.28 6.52
gHOLP 1.58 14.74 0.48 0.01 17.13 5.76
gAR2 1.68 17.22 0.49 0.00 19.65 5.86
None

grSCAD
2.12 9.05 0.58 0.06 11.93 6.36

gHOLP 1.62 11.07 0.47 0.00 13.42 5.63
gAR2 1.70 11.80 0.48 0.00 14.21 5.73
None

grMCP
2.13 6.75 0.57 0.06 9.62 6.35

gHOLP 1.61 8.10 0.47 0.01 10.46 5.64
gAR2 1.71 8.88 0.48 0.01 11.28 5.75

Model V

None
grLasso

2.00 27.49 0.50 0.00 29.49 6.24
gHOLP 2.00 30.47 0.50 0.00 32.47 7.11
gAR2 0.09 29.91 0.50 0.00 31.91 14.44
None

grSCAD
2.00 18.33 0.50 0.00 20.33 9.11

gHOLP 2.00 19.05 0.50 0.00 21.05 9.88
gAR2 0.09 12.20 0.50 0.00 14.20 26.71
None

grMCP
2.00 8.74 0.50 0.00 10.74 10.17

gHOLP 2.00 10.45 0.50 0.00 12.45 13.06
gAR2 0.09 10.82 0.50 0.00 12.82 33.07

Model VI

None
grLasso

1.31 30.64 0.67 0.50 33.33 6.15
gHOLP 1.32 50.17 0.66 0.44 52.79 6.67
gAR2 1.09 37.73 0.59 0.20 40.08 6.01
None

grSCAD
1.94 14.10 0.52 0.10 16.16 6.27

gHOLP 1.97 23.93 0.49 0.09 25.90 6.91
gAR2 1.49 17.86 0.49 0.08 19.81 6.52
None

grMCP
2.12 7.08 0.47 0.04 8.96 6.15

gHOLP 2.11 13.52 0.46 0.06 15.35 8.53
gAR2 1.66 10.85 0.45 0.05 12.63 7.24
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Table 4.4: Accuracy of grouped variable selection for linear models I - VI with (n, J) =
(800, 5000) based on 100 replications.

Model Screening Selection #FNG #FPG Coverage Exact Size Error

Model I

None
grLasso

2.06 1.08 0.49 0.03 3.02 3.84
gHOLP 2.05 1.58 0.49 0.04 3.53 3.84
gAR2 2.05 1.35 0.49 0.04 3.30 3.84
None

grSCAD
2.03 0.81 0.49 0.04 2.78 3.75

gHOLP 2.04 0.92 0.49 0.04 2.88 53.75
gAR2 2.04 0.75 0.49 0.04 2.71 3.75
None

grMCP
2.02 1.30 0.50 0.04 3.28 3.75

gHOLP 2.04 1.68 0.49 0.04 3.64 3.75
gAR2 2.04 1.46 0.49 0.04 3.42 3.75

Model II

None
grLasso

1.35 12.65 0.66 0.22 15.30 6.08
gHOLP 1.35 19.47 0.66 0.22 22.12 6.08
gAR2 1.35 19.38 0.66 0.22 22.03 6.08
None

grSCAD
1.35 9.51 0.66 0.22 12.16 6.06

gHOLP 1.35 14.05 0.66 0.22 16.70 6.06
gAR2 1.35 13.94 0.66 0.22 16.59 6.06
None

grMCP
1.35 9.90 0.66 0.22 12.55 6.06

gHOLP 1.35 14.01 0.66 0.22 16.66 6.07
gAR2 1.35 13.21 0.66 0.22 15.86 6.07

Model III

None
grLasso

1.99 1.57 0.60 0.11 4.58 6.45
gHOLP 1.84 1.09 0.57 0.05 3.92 6.27
gAR2 1.89 1.20 0.57 0.05 4.03 6.30
None

grSCAD
2.01 0.84 0.60 0.11 3.83 6.40

gHOLP 1.86 0.45 0.56 0.05 3.26 6.21
gAR2 1.91 0.48 0.56 0.05 3.29 6.24
None

grMCP
2.01 0.75 0.60 0.11 3.74 6.39

gHOLP 1.86 0.38 0.56 0.05 3.19 6.20
gAR2 1.91 0.42 0.56 0.05 3.23 6.23

Model IV

None
grLasso

2.37 1.25 0.53 0.04 3.88 5.30
gHOLP 1.70 0.86 0.42 0.00 2.98 4.71
gAR2 1.77 1.01 0.43 0.00 3.14 4.75
None

grSCAD
2.35 0.96 0.53 0.04 3.61 5.27

gHOLP 1.73 0.48 0.42 0.00 2.57 4.68
gAR2 1.77 0.56 0.43 0.00 2.69 4.72
None

grMCP
2.35 0.79 0.53 0.04 3.44 5.25

gHOLP 1.71 0.46 0.42 0.00 2.57 4.66
gAR2 1.78 0.50 0.42 0.00 2.62 4.70

Model V

None
grLasso

2.00 30.15 0.50 0.00 32.15 5.02
gHOLP 2.00 22.16 0.50 0.00 24.16 7.47
gAR2 0.02 9.94 0.50 0.00 11.94 9.56
None

grSCAD
2.00 22.16 0.50 0.00 24.16 7.47

gHOLP 2.00 23.50 0.50 0.00 25.50 7.40
gAR2 0.02 9.94 0.50 0.00 11.94 9.56
None

grMCP
2.00 17.29 0.50 0.00 19.29 7.60

gHOLP 2.00 19.04 0.50 0.00 21.04 7.58
gAR2 0.02 10.10 0.50 0.00 12.10 13.01

Model VI

None
grLasso

1.14 39.31 0.72 0.51 42.17 2.60
gHOLP 1.17 46.46 0.71 0.46 49.29 2.63
gAR2 1.06 36.14 0.67 0.37 38.80 2.39
None

grSCAD
1.60 5.18 0.60 0.10 7.58 1.86

gHOLP 1.56 5.71 0.61 0.11 8.15 1.52
gAR2 1.38 7.48 0.59 0.13 9.82 1.66
None

grMCP
1.62 4.55 0.60 0.10 6.93 1.53

gHOLP 1.59 5.44 0.60 0.10 7.85 1.54
gAR2 1.47 6.33 0.56 0.07 8.58 1.62
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Figure 4.1: Bar charts of average computation time for the combinations of group screening
and selection procedure with (n, J) = (200, 2000) based on 100 simulations.
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Figure 4.2: Bar charts of average computation time for the combinations of group screening
and selection procedure with (n, J) = (800, 5000) based on 100 simulations.
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Chapter 5

Application for GAW17 Dataset

To test the proposed approaches on a realistic situation, we analyze a real dataset that is a

hybrid of simulated and real data from the 2010 Genetic Analysis Workshop 17 (GAW17).

GAW17 dataset contains real exome sequencing data from the 1000 Genomes Project (The

1000 Genomes Project Consortium, 2010, http://www.1000genomes.org) that is designed to

survey genetic variation at the sequence level across multiple human population groups.The

data consist of 697 unrelated individuals and 24487 autosomal single-nucleotide polymor-

phisms (SNPs) that are assigned to 3205 genes based on the first intersection found of the

marker location and the basepair coordinates of all the genes. In other words, we collected

24487 SNPs and grouped into 3205 genes for each sample. Two hundred independent quan-

titative risk factors Q1 were simulated by the organizers of the workshop according to a

plausible phenotype model. Almasy et al., (2011) described greater details of dataset and

simulation settings. In the notation of this dissertation, n = 697, J = 3205, p = 24487. To

simplify the process, we take the average of two hundred independent phenotype Q1 as the

response for each individual sample. According to the phenotype model, we know that the

quantitative risk factor Q1 was influenced by 39 SNPs in 9 genes (see Table 1 in Almasy

et al., 2011). There were 1-11 functional SNPs per gene, which means the number of co-
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variates varies among the groups. To select the significant genes and/or SNPs, we apply

group Lasso (grLasso), group SCAD (grSCAD), group MCP (grMCP) and group exponen-

tial Lasso (GEL) to perform the grouped variable selection on the original dataset without

screening procedure and the screened dataset with screening step, respectively. Note that

only grLasso does not perform bi-level selection. In particular, the threshold of screening

procedure is set to be 1000 groups and we use gSIS, gHOLP and gAR2, respectively at the

first stage, combined with grLasso, grSCAD, grMCP and GEL at the second stage for the

two-stage procedure. Thus, we reduce almost two thirds of the total groups (i.e., decreases

J = 3205 to d = 1000) at the first stage but retain most of the useful information by screen-

ing approach, such that the computation load is decreased and the accuracy of estimation

is maintained or even improved at the second stage. To compare their performances, we

report the running time in seconds (Time), mean squared error (MSE = n−1
∑n

i=1(ŷi−yi)2),

number of selected SNPs (SNPs) and genes (genes) that have nonzero coefficients, number

of truly selected SNPs (SNPs true) from 39 true SNPs and genes (genes true) from 9 true

genes.

Table 5.1 shows that the proposed two-stage procedures are superior to the one-stage proce-

dures in terms of almost all measurements, except for grLasso. However, even one stage of

grLasso is somewhat better than the two-stage procedure, its computation load is much more

intensive and false discovery rate is larger than the others in the sense that the number of

selected SNPs and genes are much larger than those selected by other methods. We can also

see that gAR2 performs better than other screening methods due to the severe collinearity of

the covariates in GAW17 dataset. The real data analysis confirms again that the proposed

grouped variable screening methods can improve the results of grouped variable selection in

terms of the computation time and accuracy of estimation.
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Time MSE SNPs genes SNPs true genes true
grLasso 106.44 0.07 297.00 159.00 27.00 5.00
gSIS-grLasso 17.31 0.08 252.00 122.00 23.00 3.00
gHOLP-grLasso 56.36 0.07 295.00 139.00 22.00 3.00
gAR2-grLasso 58.64 0.10 290.00 101.00 27.00 5.00
grSCAD 106.28 0.11 106.00 59.00 15.00 3.00
gSIS-grSCAD 20.29 0.12 60.00 29.00 10.00 1.00
gHOLP-grSCAD 60.35 0.11 72.00 37.00 10.00 1.00
gAR2-grSCAD 61.84 0.11 100.00 35.00 23.00 4.00
grMCP 101.56 0.12 48.00 26.00 10.00 1.00
gSIS-grMCP 18.42 0.12 40.00 18.00 10.00 1.00
gHOLP-grMCP 61.30 0.10 51.00 26.00 10.00 1.00
gAR2-grMCP 60.82 0.12 50.00 19.00 11.00 2.00
GEL 57.75 0.11 49.00 11.00 23.00 4.00
gSIS-GEL 11.14 0.12 42.00 5.00 21.00 2.00
gHOLP-GEL 52.06 0.12 43.00 8.00 21.00 2.00
gAR2-GEL 39.62 0.11 44.00 7.00 23.00 4.00

Table 5.1: Grouped variable selection results for GAW17 dataset.
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Chapter 6

Implementation in R: grpss Package

6.1 Description

R language has been widely used among statisticians and data miners for developing statisti-

cal software, data analysis and visualization. We implement our proposed methods described

in Chapter 2 into R language by developing a R package grpss which means grouped variable

screening and selection. The grpss package can be easily accessed and downloaded from

R-CRAN website https://cran.rstudio.com/web/packages/grpss/. The main functions

in this package are described as follows.

� grp.criValues: computes values of grouped screening criterion for each group.

� grpss: performs grouped variable screening and selection.

� summary: summarizes the results of grouped variable screening and selection.

� predict: makes a prediction to the fitted penalized regression model.

The most important function grpss() implements the two-stage procedure including screen-

ing and selection. Certainly it can also perform only the grouped variable screening for the
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first stage by setting argument select = FALSE without conducting the grouped variable

selection. We should point out that at the second stage, the grouped variable selection is

accomplished by using the grpreg package developed by Patrick Breheny (2015). Thus, the

grpss package heavily relies on the grpreg package that provides functions to conduct many

popular grouped variable selection methods at the second stage.

6.2 Usage

In this section, we provide instructions on how to use the functions in grpss package, espe-

cially on the arguments of four functions described above. The first function grp.criValues()

is to calculate the values that measure the strength of relationship between each group and

response by using formula (2.2), (2.4), (2.5) and (2.6). The second and most important func-

tion grpss() combines the grouped variable screening and selection through the combination

of grp.criValues() from grpss package and grpreg() from grpreg package.

grp.criValues(X, y, group, criterion = c("gSIS", "gHOLP", "gAR2", "gDC"),

family = c("gaussian", "binomial", "poisson"),

scale = c("standardize","normalize", "none"),

norm = c("L1", "L2", "Linf"))

grpss(X, y, group, threshold = NULL, scale = c("standardize",

"normalize", "none"), criterion = c("gSIS", "gHOLP", "gAR2", "gDC"),

family = c("gaussian", "binomial", "poisson"), select = FALSE,

penalty = c("grSCAD", "grLasso", "grMCP", "gel", "cMCP"),

cross.validation = FALSE, norm = c("L1", "L2", "Linf"), q = 1,

perm.seed = 1, nfolds = 10, cv.seed = NULL, parallel = FALSE,

cl = NULL, cores = NULL, ...)
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Since grp.criValues() is the internal function of grpss(), we only introduce the arguments

of function grpss() as follows.

� X: predictors X.

� y: response y.

� group: the group index for each predictor. Groups labeled 0 or ’0’ will not participate

in the screening procedure and will enter the variable selection directly but without

being penalized.

� threshold: the threshold d to retain the number of groups at screening procedure.

The default NULL means a data-driven threshold is determined by random permutation

idea described in Section 2.5 of Chapter 2. In case the data-driven threshold is 0, ncut

will be reset to bn/ log(n)c.

� scale: the type of scaling of predictors X. For example, let x be one of the columns

of X. We have

standardize =
x−mean(x)

sd(x)
,

normalize =
x−min(x)

max(x)−min(x)
.

The default is to standardize each column of X such that each column has mean 0 and

standard deviation 1. Note that gSIS is sensitive to the scale of covariates X, so it is

necessary to scale the covariates before conducting screening procedure if the scales of

X are greatly different. The other grouped screening approaches gHOLP, gAR2 and

gDC are invariant to the scale of covariates.

� criterion: the grouped screening criterion. The default is gSIS.

� family: a description of the error distribution and link function to be used in the

model. The default is gaussian which is used for linear regression model.
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� select: a logical value indicating whether to conduct the grouped variable selection.

The default is FALSE which means to conduct the grouped variable screening only.

� penalty: the penalty to be applied to the screened submodel Mg
d. The default is

grSCAD with default extra regularization parameter a = 3.7.

� cross.validation: a logical value indicating whether to perform the k-fold cross-

validation when conducting the grouped variable selection. This argument is only

valid when setting select = TRUE.

� norm: the type of norm to incorporate the group structure for gSIS and gHOLP criteria.

For example, let a = (a1, ..., an) be a vector. "L2" norm is defined as ‖a‖2 = (a2
1 +

· · · + a2
n)1/2 and "Linf" norm as ‖a‖∞ = max(a1, ..., an). The default is "L1" norm,

defined as ‖a‖1 = |a1|+ · · ·+ |an|.

� q: a quantile for calculating the data-driven threshold in the permutation-based grouped

screening. The default value is 100 percentile (maximum absolute value).

� perm.seed: a seed of the random number generator used for the permutation-based

screening to obtain the threshold.

� nfolds: the number of folds to perform the cross-validation. The default is 10-folds

cross-validation which empirically performs rather well in practice.

� cv.seed: a seed of the random number generator used for the cross-validation.

� parallel: a logical value indicating whether to use the parallel computing. We have to

register the parallel backend before using parallel computing. e.g., library(doParallel)

and then registerDoParallel(cores = 3).

� cl: a cluster object as returned by makeCluster, or the number of nodes to be created

in the cluster. This is from the argument of foreach() function.
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� core: the number of cores to use for parallel execution. If not specified, the number

of core is set to be 3.

� ...: optional arguments such as lambda, max.iter and gamma passed to grpreg()

function.

Note that for the case in which family = "binomial" and family = "poisson", we cal-

culate the Akaike’s Information Criterion (AIC) that marginally measures the correlation

between each group Xj, j = 1, ..., J and response y. AIC characterizes the relationship be-

tween grouped variables and response, which is analog to the groupwise adjusted R2 for linear

model at family = "gaussian". Thus, we still use the argument criterion = "gAR2" rep-

resenting the gAIC screening criteria. To improve the computation efficiency, we utilize the

parallel computing by setting the argument parallel = TRUE and take advantage of the

computer cores.

The last two functions summary() and predict() are the same as usual functions that

summarize a fitted model and make predictions based on the fitted model in R language.

summary(object, lambda = NULL, digits = 4, ...)

predict(object, newdata, lambda = NULL,

type = c("response", "class", "probability"), ...)

The description of arguments in these two functions are provided as follows.

� object: a fitted penalized regression model.

� lambda: a regularization parameter at which to summarize or predict.

� newdata: a matrix or data frame where to predict. If omits, the fitted predictors are

used.
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� type: the type of prediction: "response" gives the fitted values; "class" returns

the predicted class for the binomial outcome; "probability" returns the predicted

probabilities for the logistic regression.

� digits: number of digits past the decimal point to print out.

The object is a fitted penalized regression model obtained from function grpss() with

arguments select = TRUE. It can also be an object that is fitted by function grpreg()

or cv.grpreg() from grpreg package. Otherwise, there is no fitted regression model to

summarize and predict if we only conduct the grouped variable screening.

In addition, there is a simple function called importance which is to arrange and visu-

alize the importance of the groups based on the screening values that are obtained from

grp.criValues() function.

importance(grp.values, n = 10, plot = TRUE)

It contains the following arguments:

� grp.values: a fitted result from grp.criValues() function.

� n: the number of top n important groups to display. The default is 10.

� plot: a logical value indicating whether to visualize the importance of top n groups.

The default is TRUE. A bar plot will be created to show the importance.

6.3 Examples

In this section, we provide several simple examples to demonstrate the usage of functions

in grpss package. We simply generate three different datasets whose grouped variables are

from multivariate normal distribution with different covariance matrices. To be specific, we
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let the sample size n = 100 and group size J = 300. For simplicity, the number of variables

within each group is set to be equal, i.e., p1 = p2 = · · · = pJ = 4, leading to the total number

of predictors p = 4J = 1200. The grouped covariates X ∼ N (0,Σ), where 0 is a p× 1 mean

vector and Σ is a p× p covariance matrix. We consider three different settings of covariance

matrix: (i) Independent: Σ = Ip; (ii) Serial correlated: Σ = {σij}pi,j=1 = {0.6|i−j|}pi,j=1; (iii)

Compound symmetric: Σ = {σij}pi,j=1 = 0.6 at i 6= j and 1 at i = j. The first three groups

are set to be truly correlated with response. That is, the coefficients of the first three groups

are nonzero and generated from uniform distribution U(−2, 5). The R code to generate the

datasets is given as follows.

> set.seed(123)

> n <- 100 # sample size

> p <- 4 # number of predictors within a group

> J <- 300 # entire group size

> group <- rep(1:J,each = p) # group indices for each predictor

> (betaTrue <- runif(12,-2,5)) # nonzero coefficients

[1] 0.01304264 3.51813595 0.86283845 4.18112183 4.58327099 -1.68110450

[7] 1.69673842 4.24693331 1.86004510 1.19630315 4.69783342 1.17333909

> # Case 1: independent predictors

> Sigma1 <- diag(p*J)

> X1 <- MASS:::mvrnorm(n,seq(0,5,length.out = p*J),Sigma1)

> y1 <- X1%*%matrix(c(betaTrue,rep(0,p*J-12)),ncol = 1) + rnorm(n)

>

> # Case 2: serial correlation

> Sigma2 <- 0.6^abs(matrix(1:(p*J),p*J,p*J) - t(matrix(1:(p*J),p*J,p*J)))

> X2 <- MASS:::mvrnorm(n,seq(0,5,length.out = p*J),Sigma2)
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> y2 <- X2%*%matrix(c(betaTrue,rep(0,p*J-12)),ncol = 1) + rnorm(n)

> # Case 3: compund symmetric

> Sigma3 <- matrix(0.6,p*J,p*J)

> diag(Sigma3) <- 1

> X3 <- MASS:::mvrnorm(n,seq(0,5,length.out = p*J),Sigma3)

> y3 <- X3%*%matrix(c(betaTrue,rep(0,p*J-12)),ncol = 1) + rnorm(n)

After generating the datasets, we first conduct the grouped variable screening. Here we

use the default threshold = NULL, but we can also supply the threshold manually, i.e.,

threshold = length(y) or threshold = floor(length(y)/log(length(y))).

> # Conduct grouped variable screening

> (gss01 <- grpss(X1,y1,group)) # gSIS for case 1

Call:

grpss.default(X = X1, y = y1, group = group)

Criterion: group SIS

Threshold (ncut): 5

Screened groups: 1 2 3 154 255

> (gss02 <- grpss(X2,y2,group, criterion = "gHOLP")) # gHOLP for case 2

Call:

grpss.default(X = X2, y = y2, group = group, criterion = "gHOLP")

Criterion: group HOLP

Threshold (ncut): 3

Screened groups: 1 2 3
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> (gss03 <- grpss(X3,y3,group, criterion = "gAR2")) # gAR2 for case 3

Call:

grpss.default(X = X3, y = y3, group = group, criterion = "gAR2")

Criterion: group AR2

Threshold (ncut): 21

Screened groups: 1 2 3 10 20 37 43 67 73 93 150 167 187 188 193 213 224

249 253 279 280

We can also use the importance function to visualize the importance of the top n = 20

groups, though the importance of groups is not a critical issue for the grouped variable

screening. The top 20 importance of groups are shown in Figure 6.1. It is obvious that the

first three groups 1,2,3 are ranked in top 3 by both grouped screening methods gSIS and

gHOLP.

> # gSIS for case 1

> grp.valSIS <- grp.criValues(X1,y1,group)

> imp.sis <- importance(grp.valSIS, n = 20) # top 20 important groups

> # gHOLP for case 2

> grp.valHOLP <- grp.criValues(X2,y2,group,criterion = "gHOLP")

> imp.holp <- importance(grp.valHOLP, n = 20)

Now we perform both grouped variable screening and selection by setting select = TRUE.

In this case, we can use the cross-validation to get the optimal regularization parameter λ

at which we obtain the minimum cross-validation error. We can see from the results that all

methods exactly select the true groups labeled as 1,2,3.
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Figure 6.1: The top 20 important groups screening by gSIS and gHOLP using importance()

function in grpss package.
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> # Perform grouped variable screening and selection

> gss11 = grpss(X1,y1,group,select = T,cross.validation = T)

> summary(gss11)

Call:

grpss.default(X = X1, y = y1, group = group, select = T,

cross.validation = T)

Nonzero coefficients:

(Intercept) X1 X1 X1 X1 X2

0.05033 0.11295 3.52648 0.86507 4.16351 4.58345

X2 X2 X2 X3 X3 X3 X3

-1.60723 1.62135 4.26652 1.81505 1.19560 4.71769 1.06263

R-squared: 0.991268 ; Scale estimate (sigma): 0.9352904

Signal-to-noise ratio: 113.5215

----------------------------------

Group SCAD-penalized linear regression with group SIS screening

Optimal model obtained at lambda = 0.1266245

Minimum cross-validation error: 1.179545

>

> gss12 = grpss(X2,y2,group,select = T,cross.validation = T,

criterion = "gHOLP")

> summary(gss12)

Call:

grpss.default(X = X2, y = y2, group = group, criterion = "gHOLP",

select = T, cross.validation = T)
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Nonzero coefficients:

(Intercept) X1 X1 X1 X1 X2

-0.05424 0.08309 3.41002 0.98347 3.92783 4.62001

X2 X2 X2 X3 X3 X3 X3

-1.47442 1.59385 4.22682 1.92204 1.04885 4.94081 1.19385

R-squared: 0.9945333 ; Scale estimate (sigma): 1.026363

Signal-to-noise ratio: 181.926

----------------------------------

Group SCAD-penalized linear regression with group HOLP screening

Optimal model obtained at lambda = 0.7230969

Minimum cross-validation error: 1.397396

>

> gss13 = grpss(X3,y3,group,select = T,cross.validation = T,

criterion = "gAR2")

> summary(gss13)

Call:

grpss.default(X = X3, y = y3, group = group, criterion = "gAR2",

select = T, cross.validation = T)

Nonzero coefficients:

(Intercept) X1 X1 X1 X1 X2

0.06146 -0.03366 3.63686 0.51309 3.67957 4.43205

X2 X2 X2 X3 X3 X3 X3

-1.59108 1.67209 4.51899 2.09576 1.63608 4.75015 1.17623
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R-squared: 0.9979041 ; Scale estimate (sigma): 0.9634959

Signal-to-noise ratio: 476.1455

----------------------------------

Group SCAD-penalized linear regression with group AR2 screening

Optimal model obtained at lambda = 0.6676974

Minimum cross-validation error: 1.246246

Finally, we can make predictions based on the fitted model by grpss() function. The

predict() function in grpss package is similar to predict() function provided in grpreg

package, but the former can omit the argument newdata to get the fitted values.

> # make predictions

> predict(gss11)[1:10] # fitted values, only print out first 10 values

[1] -4.296464 22.777814 -9.332836 -14.633269 -3.219178 -3.013977

[7] -22.712330 -1.242792 -4.437115 1.607212

> predict(gss12, newdata = X2[1:2,]) # predict the values at X2[1:2,]

response

[1,] -17.033098

[2,] -6.748028

We now give a toy example to compare the performances of grpss with argument select = TRUE

and grpreg packages in terms of the computation efficiency and estimation accuracy. In

Section 4.2 of Chapter 4, we compared the performances of two-stage procedure and one-

stage procedure with fixed group size, but now we compare their performances with dif-

ferent group sizes. In greater details, we execute the function grpss() and grpreg() re-

spectively for the datasets generated from the first two cases of covariance matrix with

fixed sample size n = 100 but increasing group size from 200 to 1000 with step 50, i.e.,
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J = 200, 250, 300, ..., 1000. We calculate the average computation time and prediction errors

based on 20 simulations. We exclude the gDC screening due to the intensive computation for

large datasets. Figure 6.2 and 6.3 shows that the computation time is increasing rapidly as

the number of groups is increasing for the selection results obtained from grpreg() function.

However, with the extra screening procedure, the computation time increases slowly enough

without a sharp trend. On average, the prediction errors are also smaller when we apply

the extra screening procedure using grpss() function. In this toy example, we do not use

the parallel computing, otherwise computation time will definitely be much faster if we set

parallel = TRUE and use more cores of computers.
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Figure 6.2: Comparison of grpss and grpreg packages for the dataset generated from case
1 of independent groups.
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Figure 6.3: Comparison of grpss and grpreg packages for the dataset generated from case
2 of moderate serial correlation predictors.
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Appendix

Recall that the model we work with is of the form

Y =
J∑
j=1

Xjβj + ε =
J∑
j=1

pj∑
k=1

Xjkβjk + ε,

where Xj =
(
Xj1, · · · , Xjpj

)
,βj =

(
βj1, · · · , βjpj

)T
are covariates and coefficients for the j-th

group, respectively.

We denoteMg
S =

{
Xj :

∥∥βj∥∥1
6= 0, 1 ≤ j ≤ J

}
to be the true sparse model with non-sparsity

size s = |MS| and also define

z = Σ−1/2x,

Z = XΣ−1/2,

where x = (x1, ...,xJ)T and Σ = cov (x), X = (X1, ...,XJ)T . Clearly, the n rows of the

transformed designed matrix Z are IID copies of z which now has covariance matrix Ip.

Also, we define the total number of individual covariates p =
∑J

j=1
pj. For simplicity, all

the predictors X11, · · · , X1p1 , · · · , XJ1, · · · , XJpJ are standardized such that they have mean

0 and standard deviation 1. This indicates the covariance matrix becomes the correlation

matrix, i.e., Σii = 1, i = 1, · · · , p.
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A Proof of Theorem 2.1

As gSIS is based on the SIS, the screening property of gSIS relies on the screening property

of SIS. However, we provide a different framework of proofs to show the screening property of

SIS, and then proceed to show the screening property of gSIS. To achieve this, we first need

two lemmas provided in SIS (Fan and Lv (2008)). Note that the singular value decomposition

of Z is Z = VD1U, where V ∈ O (n) ,U ∈ O (p) and D1 is an n × p diagonal matrix

whose diagonal elements are µ
1/2
1 , · · · , µ1/2

n , in which O (n) is defined as the orthogonal space

with dimension n. Let S =
(
ZTZ

)−
ZTZ, Ũ = (In, 0)n×p U, where

(
ZTZ

)−
denotes the

Moore-Penrose generalized inverse of ZTZ. By simple linear algebra, we can easily obtain

S = ŨT Ũ. Lemma A.1 and A.2 describe the distribution of S, which only requires the

assumptions that Z has a spherical symmetric distribution and the dimension p is larger

than the sample size n. Let eTjk be a column vector with the jk-th elements 1 and others 0,

i.e., eTjk = (0, · · · , 1, · · · , 0)p×1. For ease of notation, we use eT1 = eT11, e
T
2 = eT12 without any

ambiguity in the subsequent section.

Lemma A.1 (Lemma 4, Fan and Lv (2008)): For any C > 0, there is some constant c1 > 1

such that

Pr

(
〈Se1, e1〉 < c−1

1

n

p
or 〈Se1, e1〉 > c1

n

p

)
≤ 4 exp (−Cn) .

Lemma A.2 (Lemma 5, Fan and Lv (2008)): Let Se1 = (V1, V2, · · · , Vp)T . Then, given

that the first co-ordinate V1 = v, the random vector (V2, · · · , Vp)T is uniformly distributed

on the sphere Sp−2
{√

v − v2
}

. Moreover, for any C > 0, there is some c > 1 such that

Pr
(
|Vi| > cn1/2p−1 |W |

)
≤ 3 exp (−Cn) ,

where W is an independent N (0, 1)-distributed random variable.

Note that the design matrix X can be transformed into ZΣ1/2. Thus, we make assumptions
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on Z and Σ separately.

Assumptions:

(A1) The transformed z has a spherically symmetric distribution and random matrix Z has

the concentration property such that

Pr
{
λmin

(
p−1ZZT

)
< 1/c1 or λmax

(
p−1ZZT

)
> c1

}
≤ exp (−Cn)

for some c1 > 1 and C > 0.

(A2) The random error ε has a normal distribution with mean 0 and standard deviation σ,

i.e., ε ∼ N (0, σ2), where σ is a constant.

(A3) We assume that Var (Y ) = O (1) and

min
j∈S

∑pj

k=1
|βjk| ≥

c2

nκ
, λmin (Σ) ≥ c3 and λmax (Σ) ≤ c4n

τ

for some κ ≥ 0, ν ≥ 0, τ ≥ 0 and c2, c4 > 0, 0 < c3 < 1.

(A4) Assume that the number of true important groups s ≤ c5n
ν , c5 > 0 and the j-th

group size pj = c6n
γ for some constant c6 > 0. Also, assume that log (J) = O

(
nδ
)
,

δ ∈ (0, 1− 2κ− 2τ − ν − γ), where κ, τ, ν, γ are parameters defined as above.

Assumptions (A1) - (A4) are very similar to those of SIS in Fan an Lv (2008). The key

difference is that in Assumption (A3), we make an assumption on the grouped coefficients

βj for the important groups, rather than on the individual coefficients βjk, j = 1, ..., J, k =

1, ..., pj. Also, note that SIS would fail completely for the case where the predictors are

marginally uncorrelated but jointly correlated with Y . That is, Fan and Lv (2008) ruled

out this situation by imposing a constriant on the marginal correlation between important

variables and response, i.e., cov (Xjk, Y ) ≥ c2c3/n
κ. To rule out the same situation in gSIS,

65



Assumptions (A3) and (A4) can lead to the similar condition. To see this, we can observe

that

min
j∈S

∑pj

k=1
|cov (Xjk, Y )| = min

j∈S

∑pj

k=1
|cov (Xejk, Y )| = min

j∈S

∑pj

k=1
|cov (Xejk,Xβ)|

= min
j∈S

∑pj

k=1

∣∣eTjkΣβ∣∣ ≥ min
j∈S

∑pj

k=1

∣∣eTjkλmin (Σ) Ipβ
∣∣

≥ c3 min
j∈S

∑pj

k=1
|βjk| ≥

c2c3

nκ
.

Since

ZTZ = UT diag (µ1, ...µn, ..., 0) U,

we can obtain

XTX = pΣ1/2ŨT diag (µ1, · · · , µn) ŨΣ
1/2
,

where µ1, ..., µn are n eigenvalues of p−1ZZT . Recall that the individual SIS is to compute

ω = XTY = XT (Xβ + ε) = XTXβ + XT ε := ξ + η,

where ξ and η are signal and noise part, respectively.

For the signal part of the j-th group, ξj =
(
ξj1, · · · , ξjpj

)
, j = 1, ..., J , where ξjk = eTjkX

TXβ.

We first bound the diagonal and off-diagonal elements of XTX. For the diagonal components,

using the fact that Σ1/2ejk = Qe1 for some Q ∈ O (p) and SQ
(d)
= S, we have

eTjkX
TXejk = peTjkΣ

1/2ŨT diag (µ1, · · · , µn) ŨΣ1/2ejk

= peT1 QT ŨT diag (µ1, · · · , µn) ŨQe1

≥ peT1Q
T ŨTλmin

(
p−1ZZT

)
InŨQe1

(d)
= pλmin

(
p−1ZZT

)
〈Se1, e1〉 ,
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which implies for some c′ < 1 with c′ = c′1 · c′2, c′1 < 1, c′2 < 1,

Pr
(∣∣eTjkXTXejk

∣∣ < c′n
)
≤ Pr

(
λmin

(
p−1ZZT

)
〈Se1, e1〉 < c′1c

′
2

n

p

)
(A.1)

≤ Pr
(
λmin

(
p−1ZZT

)
< c′1

)
+ Pr

(
〈Se1, e1〉 < c′2

n

p

)
≤ exp (−Cn) .

Now for the off-diagonal components, without loss of generality, we only consider eT1 XTXe2

that can be easily extended to other cases. That is, we have

eT1 XTXe2 = peT1 Σ1/2ŨT diag (µ1, · · · , µn) ŨΣ1/2e2

≤ peT1 λ
1/2
max (Σ) IpŨ

Tλmax

(
p−1ZZT

)
InŨλ

1/2
max (Σ) Ipe2

≤ pc4n
τλmax

(
p−1ZZT

)
〈Se1, e2〉 .

Therefore, by using Lemma A.2 and observing 〈Se1, e2〉 = V2, we can obtain

Pr
(∣∣eT1 XTXe2

∣∣ > c1c4n
τcn1/2 |W |

)
≤ Pr

(
pc4n

τλmax

(
p−1ZZT

)
〈Se1, e2〉 > c1c4n

τcn1/2 |W |
)

≤ Pr
(
λmax

(
p−1ZZT

)
> c1

)
+ Pr

(
V2 > cn1/2p−1 |W |

)
≤ O {exp (−Cn)} .

Taking xn =
√

2c1c4cn
1−κ−ν/2−γ/2/

√
log (n), we have

Pr
(∣∣eT1 XTXe2

∣∣ > xn
)

= Pr
(∣∣eT1 XTXe2

∣∣× c1c4n
τcn1/2 |W | > xn × c1c4n

τcn1/2 |W |
)

≤ Pr
(∣∣eT1 XTXe2

∣∣ > c1c4n
τcn1/2 |W |

)
+ Pr

(
c1c4n

τcn1/2 |W | > xn
)

≤ O {exp (−Cn)}+ Pr
(
c1c4n

τcn1/2 |W | > xn
)
.
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For the second term, letting c1c4c = C2, we have by Gaussian tail bound inequality,

Pr
(
c1c4n

τcn1/2 |W | > xn
)

= Pr
{
|W | > xn/

(
Mn1/2+τ

)}
≤ exp

{
− x2

n

2C2
2n

1+2τ

}( √
2πxn

C2n1/2+τ

)−1

= exp

{
−Cn

1−2κ−2τ−ν−γ

log (n)

}(
2
√
πn1/2−κ−τ−ν/2−γ/2√

log (n)

)−1

≤ exp

{
−Cn

1−2κ−2τ−ν−γ

log (n)

}
.

Thus, we obtain the bound for the off-diagonal components of XTX, jk 6= j′k′ for j, j′ =

1, ..., J, k, k′ = 1, ..., pj,

Pr

(∣∣eTjkXTXej′k′
∣∣ > C2

n1−κ−ν/2−γ/2√
log (n)

)
≤ O

{
exp

(
−Cn

1−2κ−2τ−ν−γ√
log (n)

)}
.

Next, we bound the signal part of the j-th group, p−1
j

∥∥ξj∥∥1
= p−1

j

∑pj

k=1

∣∣ejkXTXβ
∣∣ for

j /∈ S and j ∈ S, respectively. For j /∈ S, using Cauchy Schwartz inequality, we have

∥∥ξj∥∥1
=

∑pj

k=1

∣∣ejkXTXβ
∣∣ =

∑pj

k=1

∣∣∣ejkXTX
∑

j′∈S

∑pj

k′=1
ej′k′βj′k′

∣∣∣
=

∑pj

k=1

∣∣∣∑
j′∈S

∑pj

k′=1
ejkX

TXej′k′βj′k′
∣∣∣ ≤∑pj

k=1

∑
j′∈S

∑pj

k′=1

∣∣ejkXTXej′k′
∣∣ |βj′k′ |

≤
∑pj

k=1

√∑
j′∈S

∑pj

k′=1
|ejkXTXej′k′ |2

√∑
j′∈S

∑pj

k′=1
|βj′k′ |2

≤
∑pj

k=1

√∑
j′∈S

∑pj

k′=1
|ejkXTXej′k′ |2 ‖β‖2 .

Note that c3 ‖β‖2
2 ≤ λmin (Σ) ‖β‖2

2 ≤ βTΣβ = Var (Y ) − σ2 < c′ for some constant c′,
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resulting in ‖β‖2
2 ≤ c′/c3. It follows that

Pr

{
p−1
j

∥∥ξj∥∥1
>
C2c

′√c5c6n
1−κ

c3

√
log (n)

}
(A.2)

= Pr

{
p−1
j

∑pj

k=1

√∑
j′∈S

∑pj

k′=1

∣∣eTjkXTXej′k′
∣∣2 ‖β‖2 >

C2c
′√c5c6n

1−κ

c3

√
log (n)

}

≤ Pr

{
p−1
j

∑pj

k=1

√∑
j′∈S

∑pj

k′=1

∣∣eTjkXTXej′k′
∣∣2 > C2

√
c5c6n

1−κ√
log (n)

}

≤ c5c6n
γ+ν · Pr

{∣∣eTjkXTXej′k′
∣∣ > C2

n1−κ−ν/2−γ/2√
log (n)

}
≤ O

{
exp

(
−Cn

1−2κ−2τ−ν−γ

log (n)

)}
.

For j ∈ S, we have

∥∥ξj∥∥1
=

∑pj

k=1

∣∣eTjkXTXβ
∣∣ =

∑pj

k=1

∣∣eTjkXTXejkβjk
∣∣+
∑pj

k=1

∣∣∣eTjkXTX
∑

j′∈S

∑pj

k′=1
ej′k′βj′k′

∣∣∣
≥

∑pj

k=1

∣∣eTjkXTXejk
∣∣ |βjk| −∑pj

k=1

∣∣∣eTjkXTX
∑

j′∈S

∑pj

k′=1
ej′k′βj′k′

∣∣∣ ,
which implies for some constant c5 by combining (A.1) and (A.2),

Pr

{
p−1
j

∥∥ξj∥∥1
<

(
c2c
′

nγ
+
C2c

′√c5c6

c3

√
log (n)

)
n1−κ

}
≤ Pr

(
p−1
j

∑pj

k=1

∣∣eTjkXTXejk
∣∣ |βjk| < c2c

′n1−κ−γ
)

+ Pr

(
p−1
j

∑pj

k=1

∣∣∣eTjkXTX
∑

j′∈S

∑pj

k′=1
ej′k′βj′k′

∣∣∣ > C2c
′√c5c6n

1−κ

c3

√
log (n)

)
≤ Pr

(
min
k

∣∣eTjkXTXejk
∣∣∑pj

k=1
|βjk| < c2c

′n1−κ
)

+ Pr

(
p−1
j

∑pj

k=1

∣∣∣eTjkXTX
∑

j′∈S

∑pj

k′=1
ej′k′βj′k′

∣∣∣ > C2c
′√c5c6n

1−κ

c3

√
log (n)

)

≤ c6n
γ Pr

(∣∣eTjkXTXejk
∣∣ < c′n

)
+O

{
exp

(
−Cn

1−2κ−2τ−ν−γ

log (n)

)}
≤ O

{
exp (−Cn) + exp

(
−Cn

1−2κ−2τ−ν−γ

log (n)

)}
= O

{
exp

(
−Cn

1−2κ−2τ−ν−γ

log (n)

)}
.
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Now we turn to bound the noise part p−1
j

∥∥ηj∥∥1
= p−1

j

∑pj

k=1

∣∣eTjkXT ε
∣∣.

To bound the noise part, p−1
j

∥∥ηj∥∥1
, we first consider |ηjk| =

∣∣eTjkXT ε
∣∣. The noise ηjk can be

decomposed as

ηjk =
∥∥eTjkXT

∥∥
2
×

eTjkX
T∥∥eTjkXT
∥∥

2

× σ × ε

σ
= σ

∥∥eTjkXT
∥∥

2
× a× ε

σ
,

where a = (a1, · · · , an) = eTjkX
T/
∥∥eTjkXT

∥∥
2
. Since X is independent of ε, a is also indepen-

dent of ε. Define W = a · ε/σ, we have ηjk = σ
∥∥eTjkXT

∥∥
2
·W. For the norm term, using the

fact Σ1/2ejk = Qe1 again, we have

∥∥eTjkXT
∥∥2

2
= eTjkX

TXejk = peTjkΣ
1/2ŨTdiag (µ1, · · · , µn) ŨΣ

1/2
ejk

≤ peT1 QT ŨTλmax

(
p−1ZZT

)
InŨQe1

(d)
= pλmax

(
p−1ZZT

)
〈Se1, e1〉 .

Thus, we have for some c > 1,

Pr
(∥∥eTjkXT

∥∥2

2
> cn

)
≤ Pr

(
pλmax

(
p−1ZZT

)
〈Se1, e1〉 > cn

)
(A.3)

= Pr
(
pλmax

(
p−1ZZT

)
> cp

)
+ Pr

(
〈Se1, e1〉 > c

n

p

)
= O {exp (−Cn)} .

Now for the second term W , we can bound it using Gaussian tail bound again. Since

ε1, · · · , εn are i.i.d normally distributed N (0, σ2) and ‖a‖ = 1, we know that W ∼ N (0, 1).

Taking x′n = Cn1/2−κ/
√

log (n), we have

Pr (|W | > x′n) = Pr

(
|W | > C

n1/2−κ√
log (n)

)
≤ exp

(
−C n1−2κ

log (n)

)(√
2πC

n1/2−κ√
log (n)

)−1

(A.4)

= O

{
exp

(
−C n1−2κ

log (n)

)}
.
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Therefore, combining (A.3) and (A.4), we have for C1 > C,

Pr

(
|ηjk| > C1

n1−κ√
log (n)

)
≤ Pr

(∥∥eTjkXT
∥∥

2
> cn1/2

)
+ Pr

(
|W | > C

n1/2−κ√
log (n)

)

≤ O

{
exp

(
−C n1−2κ

log (n)

)}
.

Now we can easily obtain

Pr

(
p−1
j

∥∥ηj∥∥1
> C1

n1−κ√
log (n)

)
= Pr

(
p−1
j

∑pj

k=1
|ηjk| > C1

n1−κ√
log (n)

)

≤ O

{
nγ exp

(
−C n1−2κ

log (n)

)}
= O

{
exp

(
−C n1−2κ

log (n)

)}
.

Finally, we prove the screening property by combining the results above. Note that for any

j = 1, ..., J ,

ωgj = p−1
j ‖ωj‖1 = p−1

j

∥∥ξj + ηj
∥∥

1
≤ p−1

j

∥∥ξj∥∥1
+ p−1

j

∥∥ηj∥∥1
.

For j ∈ S, we have

Pr

(
min
j∈S

p−1
j

∥∥ξj∥∥1
< cn1−κ

)
≤ O

{
s · exp

(
−Cn

1−2κ−2τ−ν−γ

log (n)

)}
≤ O

{
exp

(
−Cn

1−2κ−2τ−ν−γ

log (n)

)}
,

and

Pr

(
max
j∈S

p−1
j

∥∥ηj∥∥1
> C1

n1−κ√
log (n)

)
≤ O

{
s · exp

(
−C n1−2κ

log (n)

)}
= O

{
exp

(
−C n1−2κ

log (n)

)}
.

So if we choose a threshold γn satisfying

γn
n1−κ → 0, and

γn
√

log (n)

n1−κ →∞,
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then we have

Pr

(
min
j∈S

ωgj < γn

)
≤ Pr

(
min
j∈S

p−1
j

∥∥ξj∥∥1
< cn1−κ

)
+ Pr

(
max
j∈S

p−1
j

∥∥ηj∥∥1
> C1

n1−κ√
log (n)

)

≤ O

{
exp

(
−Cn

1−2κ−2τ−ν−γ

log (n)

)}
. (A.5)

Similarly, for j /∈ S, we have

Pr

{
max
j /∈S

p−1
j

∥∥ξj∥∥1
> O

(
n1−κ√
log (n)

)}
≤ O

{
nν exp

(
−Cn

1−2κ−2τ−ν−γ

log (n)

)}
= O

{
exp

(
−Cn

1−2κ−2τ−ν−γ

log (n)

)}
.

This entails

Pr

{
max
j /∈S

ωgj > γn

}
≤ Pr

{
max
j /∈S

p−1
j

∥∥ξj∥∥1
> O

(
n1−κ√
log (n)

)}
+ Pr

(
max
j∈S

p−1
j

∥∥ηj∥∥1
> O

(
n1−κ√
log (n)

))

≤ O

{
J exp

(
−Cn

1−2κ−2τ−ν−γ

log (n)

)}
+O

{
J exp

(
−C n1−2κ

log (n)

)}
= O

{
exp

(
−Cn

1−2κ−2τ−ν−γ

log (n)

)}
, (A.6)

where log (J) = O
(
nδ
)

for δ ∈ (0, 1− 2κ− 2τ − ν − γ) by Assumption (A4). Combining

(A.5) and (A.6), we have

Pr

(
max
j /∈S

ωgj < γn < min
j∈S

ωgj

)
≤ 1−O

{
exp

(
−Cn

1−2κ−2τ−ν−γ

log (n)

)}
.

This indicates if we choose a submodel with size d > s, we will have

Pr
(
Mg

s ⊂M
g
D,SIS

)
= 1−O

{
exp

(
−Cn

1−2κ−2τ−ν−γ

log (n)

)}
.

This completes the proof of Theorem 2.1. �
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B Proof of Theorem 2.2

In this section, we will provide the proofs of the screening property for gHOLP. We first give

the assumptions that are very similar to those in (A1) - (A4). Specially, assumptions (B1)

and (B2) are exactly the same as assumptions (A1) and (A2). Assumption (B4) is similar

to assumption (A4), except for the parameter δ′ and δ that have different values.

Assumptions:

(B1) The transformed z has a spherically symmetric distribution and there exist some c1 > 1

and C1 > 0 such that

Pr
(
λmax

(
p−1ZZT

)
> c1 or λmin

(
p−1ZZT

)
< c−1

1

)
≤ exp (−C1n) ,

where λmax (·) and λmin (·) are the largest and smallest eigenvalues of a matrix respec-

tively.

(B2) The random error ε has a standard normal distribution with mean zero and standard

deviation σ, i.e., ε ∼ N (0, σ2), where σ is a constant.

(B3) We assume that Var (Y ) = O (1) and for some κ ≥ 0, τ ′ ≥ 0 and c2, c4 > 0 ,

min
j∈S

∥∥βj∥∥1
≥ c2

nκ
, and cond (Σ) ≤ c4n

τ ′ ,

where cond (Σ) = λmax (Σ) /λmin (Σ) is the conditional number of Σ.

(B4) Assume the number of true important groups s ≤ c5n
ν , c5 > 0 for some ν > 0 and group

size pj = O (nγ) = c6n
γ for some constant c6 > 0. Also, assume log (J) = O

(
nδ
′)

for

some δ′ ∈ (0, 1− 5τ ′ − 2κ− ν − γ), where τ ′, κ, ν, γ are parameters defined as above.

The tail behavior of the random error ε has a significant impact on the screening performance,
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but in this work, we only focus on the gaussian distribution of random error stated in

assumption (B2).

Again, most of the assumptions are similar to those in individual HOLP (Wang and Leng

(2015)). The key difference lies in the assumption (B3) on the magnitude of grouped coef-

ficients βj which is constrained on the group level, instead of individual level. This means

that for the important groups, the individual βjk can be small enough within the j-th group,

but the accumulative effect of βjk within the group should not be too small. In other words,

we stress on the group effect of βj rather than the individual contribution of βjk. Also,

in Assumption (B4), the pj can be divergent as n increases for all j. Another key differ-

ence between assumption (A3) and (B3) is that the marginal covariance between important

groups and response for gHOLP can be much smaller than that of gSIS. To see this, note

that λmin (Σ) ≥
(
c4n

τ ′
)−1

, so we can obtain

min
j∈S

∣∣∣∑pj

k=1
cov (Xjk, Y )

∣∣∣ ≥ |λmin (Σ)| ×min
j∈S

∥∥βj∥∥1
≥ c2c4

nκ+τ ′
,

while the lower bound of marginal covariance between important groups and response for

gSIS is c2c3/n
κ. This difference indicates that gHOLP can tackle better than gSIS the case

where the important groups are marginally uncorrelated but jointly correlated with response.

Without considering the group structure, the individual HOLP screening estimator is

β̂ = XT
(
XXT

)−1
Y = XT

(
XXT

)−1
Xβ + XT

(
XXT

)−1
ε := ξ + η, (B.1)

where ξ can be seen as the signal part and η the noise part. Note that the singular

value decomposition of Z as Z = VDUT , where V ∈ O (n) ,U ∈ Vn,p and D is an n × n

diagonal matrix, where O (n) is an orthogonal space and Vn,p is a Stiefel manifold defined

as Vn,p =
{
X ∈ Rp×n : XTX = In

}
. This entails XT

(
XXT

)−1
X = HHT , where H =
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Σ1/2U
(
UTΣU

)−1/2
. Consequently,

ξ = HHTβ, ξjk = eTjkHHTβ,

where eTjk = (0, · · · , 0, 1, 0, · · · , 0) is a p × 1 vector with jk-th element 1 and other 0, j =

1, ..., J, k = 1, ..., pj. The decomposition (B.1) indicates the equation β̂j = ξj + ηj for the

j-th group, where ξj =
(
ξj1, · · · , ξjpj

)′
and ηj =

(
ηj1, · · · , ηjpj

)′
. Thus, we have

∥∥∥β̂j∥∥∥
1

=
∥∥ξj + ηj

∥∥
1
≤
∥∥ξj∥∥1

+
∥∥ηj∥∥1

.

The gHOLP screening criterion is defined by β̂
g

=
(
β̂g1 , · · · , β̂

g
J

)
, where β̂gj = p−1

j

∥∥∥β̂j∥∥∥
1
.

Theorem 2.2 states that as the sample size goes to large enough, the probability of retaining

the true important groups will be overwhelming large by using the group HOLP. To prove

it, we will first bound the
∥∥ ξj∥∥1

and
∥∥ηj∥∥1

separately and then adjust them by the group

size pj.

Lemma B.1 (bounding
∥∥ξj∥∥1

) Assume (B1)-(B4) hold, then we have for any C > 0,

c, c̃ > 0 such that for any j ∈ S,

Pr

(∥∥ξj∥∥1
< c

n1−τ ′−κ+γ

p

)
≤ O

{
exp

(
−Cn

1−5τ ′−2κ−ν−γ

2 log (n)

)}
,

and for any j /∈ S,

Pr

(∥∥ξj∥∥1
>

c̃√
log (n)

n1−τ ′−κ+γ

p

)
≤ O

{
exp

(
−Cn

1−5τ ′−2κ−ν−γ

2 log (n)

)}
,

where τ ′, κ, ν, γ are parameters defined in (B3), (B4) and satisfy (5τ ′ + 2κ+ ν + γ) ∈ (0, 1)

.

Proof: Using the results in proof of Lemma 5 in Wang and Leng (2015), the diagonal and

75



off-diagonal components are bounded by

Pr

(
eTjkHHTejk < c′1

n1−τ ′

p

)
< 2 exp (−Cn) , (B.2)

for 0 < c′1 < 1 < c′2 and

Pr

(∣∣eTjkHHTej′k′
∣∣ > C ′1√

log (n)

n1+τ ′−α

p

)
≤ O

{
exp

(
− Cn

1−2α

2 log (n)

)}

for C ′1 > 0, α ∈ (0, 1/2), where jk 6= j′k′, j, j′ = 1, ..., J, k′, k = 1, ..., pj.

Now for j /∈ S, we know that βjk = 0. Thus we have by Cauchy-Schwartz inequality

|ξjk| =
∣∣eTjkHHTβ

∣∣ =
∣∣∣eTjkHHT

∑
j′∈S

∑pj′

k′=1
ej′k′βj′k′ + eTjkHHT

∑
j′ /∈S

∑pj′

k′=1
ej′k′βj′k′

∣∣∣
=

∣∣∣eTjkHHT
∑

j′∈S

∑pj′

k′=1
ej′k′βj′k′

∣∣∣ =
∣∣∣∑

j′∈S

∑pj′

k′=1
eTjkHHTej′k′βj′k′

∣∣∣
≤

√∣∣∣∑
j′∈S

∑pj′

k′=1
eTjkHHTej′k′

∣∣∣2√∑
j′∈S

∑pj′

k′=1
|βj′k′ |2

≤
√∑

j′∈S

∑pj′

k′=1

∣∣eTjkHHTej′k′
∣∣2 ‖β‖2 .

Note that by the standardization on predictors X, we have Σii = 1, i = 1, ..., p, which implies

λmin (Σ) ≤ 1 ≤ λmax (Σ). So by Assumption (B3) we can easily get λmin (Σ) ≥
(
c4n

τ ′
)−1

.

Thus, we can obtain the bound for ‖β‖2,

1

c4nτ
′ ‖β‖

2
2 ≤ λmin (Σ) ‖β‖2

2 = βTλmin (Σ) Ipβ ≤ βT Σβ = Var (Y )− σ2 < c′,

resulting in ‖β‖2 ≤
√
c′c4nτ

′ for some constant c′ and it follows that for j /∈ S and some
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constant C ′1 > 0,

Pr

(
|ξjk| ≤

√
c′c4c3c5C

′
1√

log (n)

n1+3τ ′/2+ν/2+γ/2−α

p

)

≥ Pr

(√
c′c4nτ

′

√∑
j′∈S

∑pj′

k′=1

∣∣eTjkHHTej′k′
∣∣2 ≤ √c′c4C

′
1√

log (n)

n1+3τ ′/2+ν/2+γ/2−α

p

)

= Pr

(√∑
j′∈S

∑pj′

k′=1

∣∣eTjkHHTej′k′
∣∣2 ≤ √c3c5C

′
1√

log (n)

n1+τ ′+ν/2+γ/2−α

p

)

≥ Pr

(
√
c3nνc5nγ

∣∣eTjkHHTej′k′
∣∣ ≤ √c3c5C

′
1√

log (n)

n1+τ ′+ν/2+γ/2−α

p

)

= Pr

(∣∣eTjkHHTej′k′
∣∣ ≤ C ′1√

log (n)

n1+τ ′−α

p

)
= 1−O

{
exp

(
− Cn

1−2α

2 log (n)

)}
.

Taking α = (5/2) τ ′ + κ+ ν/2 + γ/2 ∈ (0, 1/2), we have

Pr

(
|ξjk| >

C ′1√
log (n)

n1−τ ′−κ

p

)
≤ O

{
exp

(
−Cn

1−5τ ′−2κ−γ−ν

2 log (n)

)}
. (B.3)

This entails that for j /∈ S, we have

Pr

(∥∥ξj∥∥1
>

c5C
′
1√

log (n)

n1−τ−κ+γ

p

)
≤ Pr

(
c5n

γ max
k
|ξjk| >

c5C
′
1√

log (n)

n1−τ−κ+γ

p

)

≤ O

{
exp

(
−Cn

1−5τ−2κ−γ−ν

2 log (n)

)}
.

Taking c̃ = c5C
′
1/
√

log (n), we have for j /∈ S,

Pr

(∥∥ξj∥∥1
> c̃

n1−τ ′−κ+γ

p

)
≤ O

{
exp

(
−Cn

1−5τ ′−2κ−γ−ν

2 log (n)

)}
.
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Next, we bound the
∥∥ξj∥∥1

for j ∈ S. , we have for jk 6= j′k′,

∥∥ξj∥∥1
=

∑pj

k=1
|ξjk| =

∑pj

k=1

∣∣eTjkHHTβ
∣∣

=
∑pj

k=1

∣∣eTjkHHTejkβjk
∣∣+
∑pj

k=1

∣∣∣eTjkHHT
∑

j′∈S

∑pj′

k′=1
ej′k′βj′k′

∣∣∣
=

∑pj

k=1

∣∣eTjkHHTejk
∣∣ |βjk|+∑pj

k=1

∣∣∣eTjkHHT
∑

j′∈S

∑pj′

k′=1
ej′k′βj′k′

∣∣∣
≥

∑pj

k=1

∣∣eTjkHHTejk
∣∣ |βjk| −∑pj

k=1

∣∣∣eTjkHHT
∑

j′∈S

∑pj′

k′=1
ej′k′βj′k′

∣∣∣ .
By Bonferroni’s inequality and Assumption (B4), along with combination of (B.2) and (B.3),

we can obtain the bound of
∥∥ξj∥∥1

by using the same value of α. That is,

Pr

{∥∥ξj∥∥1
<

(
c2c
′
1 +

c6

√
c′c4C

′
1√

log (n)

)
n1−τ ′−κ+γ

p

}

≤ Pr

(∑pj

k=1

∣∣eTjkHHTejk
∣∣ |βjk| < c2c

′
1

n1−τ ′−κ+γ

p

)
+

Pr

(∑pj

k=1

∣∣∣eTjkHHT
∑

j′∈S

∑pj′

k′=1
ej′k′βj′k′

∣∣∣ > c6

√
c′c4C

′
1√

log (n)

n1−τ ′−κ+γ

p

)

≤ Pr

(
min
k

∣∣eTjkHHTejk
∣∣∑pj

k=1
|βjk| < c2c

′
1

n1−τ ′−κ+γ

p

)
+

+ Pr

(
c6n

γ max
k

∣∣∣eTjkHHT
∑

j′∈S

∑pj′

k′=1
ej′k′βj′k′

∣∣∣ > c6

√
c′c4C

′
1√

log (n)

n1−τ ′−κ+γ

p

)

≤ Pr

(
min
k

∣∣eTjkHHTejk
∣∣ < c′1

n1−τ ′

p

)
+ c6n

γ Pr

(∣∣eTjkHHTej′k′
∣∣ > C ′1√

log (n)

n1−τ ′−κ

p

)

≤ c6n
γ Pr

(∣∣eTjkHHTejk
∣∣ < c′1

n1−τ ′

p

)
+ c6n

γ Pr

(∣∣eTjkHHTej′k′
∣∣ > C ′1√

log (n)

n1−τ ′−κ

p

)

= 2c6n
γ ·O (exp (−Cn)) + c6n

γ ·O
{

exp

(
−Cn

1−5τ ′−2κ−γ−ν

2 log (n)

)}
= O

{
exp

(
−Cn

1−5τ−2κ−γ−ν

2 log (n)

)}
,

which is equivalent to Pr
(∥∥ξj∥∥1

≥ cn
1−τ−κ+γ

p

)
≥ 1−O

{
exp

(
−Cn1−5τ−2κ−γ−ν

2 log(n)

)}
. This com-

pletes the proof. �
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Lemma B.2 (bounding |ηjk|, Lemma 6 in Wang and Leng (2015)) Assume (B1)-(B4)

hold, we have for any j ∈ {1, 2, ..., J} , k ∈ {1, ..., pj},

Pr

(
|ηjk| >

σ
√
C1c1c′2c4√
log (n)

n1−κ−τ ′

p

)
< O

(
exp

{
−C1n

1−4τ ′−2κ

2 log (n)

})
,

where C1, c1, c4 are defined in the assumption, and c′2 > 1.

Lemma B.3 (bounding
∥∥ηj∥∥1

) Assume (B1)-(B4) hold, we have for any j ∈ {1, 2, ..., J},

Pr

(∥∥ηj∥∥1
>
c6σ
√
C1c1c′2c4√

log (n)

n1−κ−τ ′+γ

p

)
< O

(
exp

{
−C1n

1−4τ ′−2κ

2 log (n)

})
. (B.4)

Proof: We let C ′ = σ
√
C1c1c′2c4. Note that

∥∥ηj∥∥1
=
∑pj

k=1
|ηjk| and pj = c6n

γ, it follows

that

Pr

(∥∥ηj∥∥1
>

c6C
′√

log (n)

n1−κ−τ ′+γ

p

)
≤ Pr

(
pj max

k
|ηjk| >

c6C
′√

log (n)

n1−κ−τ ′+γ

p

)

≤ c6n
γ · Pr

(
c6n

γ |ηjk| >
c6C

′√
log (n)

n1−κ−τ ′+γ

p

)

= c6n
γ · Pr

(
|ηjk| >

C ′√
log (n)

n1−κ−τ ′

p

)

= O

(
exp

{
−C1n

1−4τ ′−2κ

2 log (n)

})
.

This completes the proof. �

Note that c6C
′n1−κ−τ ′+γ/ (p log (n)) = o

(
n1−κ−τ ′+γ). Thus, the inequality (B.4) is equivalent

to

Pr
(∥∥ηj∥∥1

≤ o
(
n1−κ−τ ′+γ

))
≥ 1−O

(
exp

{
−C1n

1−4τ ′−2κ

2 log (n)

})
.

This implies that as n→∞, the probability of
∥∥ηj∥∥1

being small enough is going to 1.

Proof of Theorem 2.2: Recall J = O
{

exp
(
nδ
′)}

, δ′ ∈ (0, 1− 5τ ′ − 2κ− ν − γ) and
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s = c5n
ν , ν ≥ 0. By Lemma B.1, we have for j ∈ S,

Pr

(
min
j∈S

p−1
j

∥∥ξj∥∥1
< c

n1−τ ′−κ

p

)
≤ s ·O

{
exp

(
−Cn

1−5τ ′−2κ−ν−γ

2 log (n)

)}
= O

{
exp

(
−Cn

1−5τ ′−2κ−ν−γ

2 log (n)

)}
,

and for j /∈ S,

Pr

(
max
j /∈S

p−1
j

∥∥ξj∥∥1
>

c̃√
log (n)

n1−τ ′−κ

p

)
≤ J ·O

{
exp

(
−Cn

1−5τ ′−2κ−ν−γ

2 log (n)

)}
= O

{
exp

(
−Cn

1−5τ ′−2κ−ν−γ

2 log (n)

)}
.

Also, taking c̃1 = c6

√
C1c1c′2c4 and by Lemma B.3, we have

Pr

(
max
j
p−1
j

∥∥ηj∥∥1
>

c̃1√
log (n)

n1−κ−τ ′

p

)
< J ·O

(
exp

{
−C1n

1−4τ ′−2κ

2 log (n)

})
= O

(
exp

{
−C1n

1−4τ ′−2κ

2 log (n)

})
.

If we choose a threshold γn such that

pγn
n1−τ ′−κ → 0, and

pγn
√

log (n)

n1−τ ′−κ →∞,

then we have by Bonferroni’s inequality,

Pr

(
min
j∈S

p−1
j

∥∥∥β̂j∥∥∥
1
< γn

)
≤ Pr

(
min
j∈S

p−1
j

∥∥ξj∥∥1
< c

n1−τ ′−κ

p

)
+ Pr

(
max
j∈S

p−1
j

∥∥ηj∥∥1
>

c6C
′√

log (n)

n1−κ−τ ′

p

)

< O

{
exp

(
−Cn

1−5τ ′−2κ−ν−γ

2 log (n)

)}
,
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and

Pr

(
max
j /∈S

p−1
j

∥∥∥β̂j∥∥∥
1
> γn

)
≤ Pr

(
max
j /∈S

p−1
j

∥∥ξj∥∥1
>

c̃√
log (n)

n1−τ ′−κ

p

)
+ Pr

(
max
j /∈S

p−1
j

∥∥ηj∥∥1
>

c6C
′√

log (n)

n1−κ−τ ′

p

)

< O

{
exp

(
−Cn

1−5τ ′−2κ−ν−γ

2 log (n)

)}
.

This indicates

Pr

(
min
j∈S

β̂gj > γn > max
j /∈S

β̂gj

)
≥ 1−O

{
exp

(
−Cn

1−5τ ′−2κ−ν−γ

2 log (n)

)}
.

Obviously, this implies if we choose a submodel Mg
D,HOLP with d > s, we have

P
(
Mg

S ⊂M
g
D,HOLP

)
= 1−O

{
exp

(
−C1

n1−2κ−5τ ′−ν−γ

2 log (n)

)}
.

The proof is completed. �

C Proof of Theorem 2.3

Without loss of generality, we assume all groups have the same number of variables, pj for

simplicity. This indicates that using R2
j is the same as using R̄2

j for the screening purpose.

Recall that Y = (y1, ..., yn)T , Xj =
(
Xj1, ..., Xjpj

)
, where Xjk = (xjk1, ..., xjkn)T . For the

j-th group, R2
j is defined as

R2
j = 1−

(
Y − Ŷ

)T (
Y − Ŷ

)
(
Y − Ȳ

)T (
Y − Ȳ

) ,
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where Ŷ = (ŷ1, ..., ŷn)T and Ȳ = (ȳ, ..., ȳ)T . We first observe that Ŷ is orthogonal to

Y − Ŷ , which is equivalent to Ŷ T
(
Y − Ŷ

)
= Ŷ TY − Ŷ T Ŷ = 0, i.e., Ŷ TY = Ŷ T Ŷ . By the

assumption E (Y ) = 0, one has

R2
j = 1− Y TY − Y T Ŷ − Ŷ TY + Ŷ T Ŷ

Y TY
= 1− Y TY − 2Y T Ŷ + Ŷ T Ŷ

Y TY

= 1− Y TY − 2Ŷ T Ŷ + Ŷ T Ŷ

Y TY
=
Ŷ T Ŷ

Y TY
.

The denominator is the same for all groups, so we only study the property of numerator of

R2
j . Since Ŷ = Xj

(
XT
j Xj

)−1
XT
j Y := HjY and HT

j = Hj, H2
j = Hj, one can obtain

Ŷ T Ŷ = (HjY )T HjY = Y THjY = Y TXj

(
XT
j Xj

)−1
XT
j Y =

(
XT
j Y
)T (

XT
j Xj

)−1
XT
j Y.

Hence, R2
j can be written as

R2
j =

(
XT
j Y
)T (

XT
j Xj

)−1
XT
j Y

Y TY
.

To gain the sure screening property of gAR2, we need the same assumptions as (A1) - (A4) in

Appendix A, except that pj = c6n
γ′′ with γ′′ ∈ (0, 1) and 0 ≤ c6 ≤ 1 to ensure the condition

pj < n. In addition, we also need an assumption of concentration property for the random

matrix Zj := XjΣ
−1/2
j such that

Pr
(
λ−1

max

(
p−1
j ZjZ

T
j

)
> c1 or λ−1

max

(
p−1
j ZjZ

T
j

)
< c−1

1

)
≤ exp (−C1n) .

In the proofs, we do not intent to make the assumptions weakest. Note that Xj = ZjΣ
1/2
j ,

one has

XT
j Xj = pjΣ

1/2
j

(
p−1
j ZT

j Zj

)
Σ

1/2
j .
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Using the fact that ZT
j Zj and ZjZ

T
j have the same eigenvalues, one can obtain λmin

(
p−1
j ZjZ

T
j

)
Ipj ≤

p−1
j ZT

j Zj ≤ λmax

(
p−1
j ZjZ

T
j

)
Ipj . It entails that

XT
j Xj ≤ pjΣ

1/2
j λmax

(
p−1
j ZjZ

T
j

)
IpjΣ

1/2
j = pjλmax

(
p−1
j ZjZ

T
j

)
Σj ≤ pjλmax

(
p−1
j ZjZ

T
j

)
λmax (Σj) Ipj

and

XT
j Xj ≥ pjΣ

1/2
j λmin

(
p−1
j ZjZ

T
j

)
IpjΣ

1/2
j ≥ pjλmin

(
p−1
j ZjZ

T
j

)
λmin (Σj) Ipj ,

which follows

p−1
j λ−1

max

(
p−1
j ZjZ

T
j

)
λ−1

max (Σj) Ipj ≤
(
XT
j Xj

)−1 ≤ p−1
j λ−1

min

(
p−1
j ZjZ

T
j

)
λ−1

min (Σj) Ipj .

Therefore,

p−1
j λ−1

max

(
p−1
j ZjZ

T
j

)
λ−1

max (Σj)
∥∥XT

j Y
∥∥2

2
≤ Ŷ T Ŷ ≤ p−1

j λ−1
min

(
p−1
j ZjZ

T
j

)
λ−1

min (Σj)
∥∥XT

j Y
∥∥2

2
.

By Assumption (A3), one has

λ−1
max (Σj) ≥ λ−1

max (Σ) ≥ (c4n
τ )−1 , and λ−1

min (Σj) ≤ c−1
3 .

Since ωgj = p−1
j

∥∥XT
j Y
∥∥

2
for gSIS and we have the sure screening property that for some

c > 0, c′ > 0 under Assumptions (A1) - (A4)

Pr

(
max
j /∈S

ωgj >
c′n1−κ−τ/2√

log (n)

)
= Pr

(
max
j /∈S

∥∥XT
j Y
∥∥2

2
> p2

jγ
2
n

)
≤ O

{
exp

(
−Cn

1−2κ−3τ−ν−γ′′

log (n)

)}
,

and

Pr

(
min
j∈S

ωgj <
cn1−κ

2

)
= Pr

(
min
j∈S

∥∥XT
j Y
∥∥2

2
< p2

jγ
2
n

)
≤ O

{
exp

(
−Cn

1−2κ−3τ−ν−γ′′

log (n)

)}
.
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These two inequalities are slightly different from those in Appendix A, but they can be easily

obtained by simply taking xn =
√

2c1c4cn
1−κ−τ/2−ν/2−γ/2/

√
log (n) and x′n = cn1−κ−τ/2/

√
log (n)

in the proofs of Theorem A.1, whose details are omitted here. Therefore, for j ∈ S, we have

by Bonferroni’s inequality

Pr

{
min
j∈S

(
XT
j Y
)T (

XT
j Xj

)−1
XT
j Y <

c2pjn
2−2κn−τ

4c1c4

}
≤ Pr

{
p−1
j λ−1

max

(
p−1
j ZjZ

T
j

)
(c4n

τ )−1 min
j∈S

∥∥XT
j Y
∥∥2

2
≤ c2pj

4c1c4

n2−2κ−τ
}

≤ Pr
{
λ−1

max

(
p−1
j ZjZ

T
j

)
≤ c−1

1

}
+ Pr

{
min
j∈S

∥∥XT
j Y
∥∥2

2
≤ p2

j

(
n1−κ

2

)2
}

≤ O

{
exp (−C1n) + exp

(
−Cn

1−2κ−3τ−ν−γ′′

log (n)

)}
≤ O

{
exp

(
−Cn

1−2κ−3τ−ν−γ′′

log (n)

)}
.

By assumption Var (Y ) = O (1), one has

Pr

{
min
j∈S

R2
j ≤

c2c6n
2−2κ−τ+γ′′

4c1c4

}
≤ O

{
exp

(
−Cn

1−2κ−3τ−ν−γ′′

log (n)

)}
.

Similarly, for j /∈ S, we have

Pr

max
j /∈S

(
XT
j Y
)T (

XT
j Xj

)−1
XT
j Y > pjc1c

−1
3

(
c′n1−κ−τ/2√

log (n)

)2


≤ Pr

p−1
j λ−1

min

(
p−1
j ZjZ

T
j

)
c−1

3 max
j /∈S

∥∥XT
j Y
∥∥2

2
> pjc1c

−1
3

(
c′n1−κ−τ/2√

log (n)

)2


= Pr

λ−1
min

(
p−1
j ZjZ

T
j

)
max
j /∈S

∥∥XT
j Y
∥∥2

2
> p2

jc1

(
c′n1−κ−τ/2√

log (n)

)2


≤ Pr
{
λ−1

min

(
p−1
j ZjZ

T
j

)
> c1

}
+ Pr

max
j /∈S

∥∥XT
j Y
∥∥2

2
> p2

jc1

(
c′n1−κ−τ/2√

log (n)

)2


≤ O

{
exp (−C1n) + exp

(
−Cn

1−2κ−3τ−ν−γ′′

log (n)

)}
= O

{
exp

(
−Cn

1−2κ−3τ−ν−γ′′

log (n)

)}
,
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and then

Pr

{
max
j /∈S

R2
j >

c1c6c
′2n2−2κ−τ+γ′′

c3 log (n)

}
≤ O

{
exp

(
−Cn

1−2κ−3τ−ν−γ′′

log (n)

)}
.

Finally, we obtain the sure screening property of gAR2

Pr

{
max
j /∈S

R2
j < γn < min

j∈S
R2
j

}
≥ 1−O

{
exp

(
−Cn

1−2κ−3τ−ν−γ′′

log (n)

)}
,

where the thrshold γn satisfies

γn
n2−2κ−τ+γ′′

→ 0 and
γn log (n)

n2−2κ−τ+γ′′
→∞.

The proof of Theorem 2.3 is completed.

D Proof of Theorem 2.4

We now study the screening property of screening method for groupwise distance correlation.

The assumptions and proofs are very similar to those in Li, et al., (2012), except that now the

response Y is univariate and the predictors Xj are multivariate variables with pj dimensions,

pj ≥ 1, j = 1, . . . , J . To be more specifically, we switch the roles of multiple responses

and univariate predictor that were used in the proofs of Li, et al., (2012). The necessary

assumptions below are adapted from Li et al., (2012) but with a slight modification.

(D1) The univariate response Y and groups Xj satisfy the sub exponential tail probability

uniformly in J , which follows

sup
J

max
1≤j≤J

E
{

exp(α‖Xj‖2
pj

)
}
<∞,
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and

E
{

exp(α‖Y ‖2
1)
}
<∞,

where 2 log(2) < α ≤ 2α0 and α0 is a positive constant. Here, ‖Xj‖pj is the L2 norm

with subscript pj representing the dimensions of Xj, which is slightly different from

the notation in the previous section.

(D2) The minimum distance correlation between response and truly important groups sat-

isfies

min
j∈S
Dj ≥ 2cn−κ

′
,

where c is a constant and 0 ≤ κ′ < 1/2, S is the indices set of the true modelMg
S with

size s.

In practice, assumption (D1) can be immediately satisfied when Y and Xj have multivariate

normal distribution or are uniformly bounded as pointed out by Li, et al., (2012). As-

sumption (D2) implies the groupwise distance correlation between the response and truly

important groups should be greater than some constants, otherwise it is very difficult to

identify the truly important groups at the boundary between truly unimportant groups. In

assumption (D2), κ′ controls the decrease rate for Dj towards 0.

Székely, et al., (2007) mentioned that the squares of distance covariance can be expressed

by an algebraic identity, i.e.,

dcov2(u,v) = S1 + S2 − 2S3,

where S1 = E{‖u− ũ‖du‖v− ṽ‖dv}, S2 = E{‖u− ũ‖du}E{‖v− ṽ‖dv} and S3 = E{E{‖u−

ũ‖du|u}E{‖v − ṽ‖dv |v}}, in which (u,v) are two random vectors with dimensions du, dv

respectively, and (ũ, ṽ) are independent copy of (u,v). We replace (u,v) with (Y,Xj), and

(ũ, ṽ) with (Ỹ , X̃j) in our context to define dcov2(Xj, Y ) = Sj1 + Sj2 − 2Sj3, the distance
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covariance between response and the j-th groups, where

Sj1 = E(‖Xj − X̃j‖pj‖Y − Ỹ ‖1),

Sj2 = E(‖Xj − X̃j‖pj)E(‖Y − Ỹ ‖1),

Sj3 = E{E(‖Xj − X̃j‖pj |Xj)E(‖Y − Ỹ ‖1|Y )},

which immediately follows their respective sample parts

Ŝj1 =
1

n2

∑n

i,h=1
‖Xij −Xhj‖pj‖yi − yh‖1,

Ŝj2 =
1

n2

∑n

i,h=1
‖Xij −Xhj‖pj

1

n2

n∑
i,h=1

‖yi − yh‖1,

Ŝj3 =
1

n3

∑n

i,h,l=1
‖Xij −Xlj‖pj‖yh − yl‖1,

where Xij,Xhj,Xlj are the i-th, h-th, l-th observations of the j-th groups Xj, i, h, l =

1, . . . , n. By the alternative representation of distance covariance, we have the following

definition in the population sense,

dcov2(Xj, Y ) = Sj1 + Sj2 − 2Sj3,

and its estimation in the sample sense,

d̂cov
2
(Xj, Y ) = Ŝj1 + Ŝj2 − 2Ŝj3.

Similar definitions can be applied for dVar2(Xj) = dcov2(Xj,Xj) and dVar2(Y ) = dcov2(Y, Y ),

as well as their sample counterparts d̂Var
2
(Xj), d̂Var

2
(Y ). Therefore, the sample groupwise
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distance correlation can be estimated by

d̂cor(Xj, Y ) =
d̂cov(Xj, Y )√

d̂Var(Xj)× d̂Var(Y )

. (D.1)

To show Theorem 2.4, we first prove

Pr

(
max

1≤j≤J

∣∣∣D̂j −Dj∣∣∣ ≥ cn−κ
′
)
≤ O

(
J
[
exp

{
−c′1n1−2(κ′+γ′)

}
+ n exp

(
−c′2nγ

′
)])

for some positive constants c′1 and c′2, where 0 < γ′ < 1/2− κ′. To achieve this, we need to

show the uniform consistency of the denominator and the numerator of d̂cor(Xj, Y ) defined

in (D.1), respectively. To complete the proofs, the following three lemmas will be used in

the subsequence.

Lemma D.1. (Lemma 5.6.1.A, Serfling (1980)) Let µ = E(Z). If Pr(a ≤ Z ≤ b) = 1, then

E[exp{α(Z − µ)}] ≤ exp{α2(b− a)2/8}

for any α > 0.

Lemma D.2. (Theorem 5.6.1.A, Serfling (1980)) Let h(Z1, . . . , Zm) be a kernel of the U

statistics Un, and θ = E{h(Z1, . . . , Zm)}. If a ≤ h(Z1, . . . , Zm) ≤ b, then for any t > 0 and

n ≥ m,

Pr(Un − θ ≥ t) ≤ exp{−2[n/m]t2/(b− a)2},

where [n/m] denotes the integer part of n/m.

Lemma D.3. (Section 5.1.6, Serfling (1980)) Consider a symmetric kernel u(z1, . . . , zm)

and a sample Z1, . . . , Zn of size n ≥ m. Define r = [n/m] and

W (z1, . . . , zn) =
u(z1, . . . , zm) + u(zm+1, . . . , z2m + . . .+ u(zrm−m+1, . . . , zrm))

r
.
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Letting
∑

n! denote summation over all n! permutations (i1, . . . , in) of (1, . . . , n). Then any

U statistics Un can be represented as an average of n! terms, each of which is itself an average

of r i.i.d random variables. That is,

Un =
1

n!

∑
n!
W (Zi1 , . . . , Zin).

We first deal with the numerator of d̂cor
2
(Xj, Y ) which is d̂cov

2
(Xj, Y ). More specially, we

show the uniform consistency for Ŝj1, Ŝj2, Ŝj3 respectively.

Corollary D.1. (uniform consistency of Ŝj1) Under assumptions (D1) and (D2), there

exists some constants c and C, such that for any ε > 0,

Pr
(
|Ŝj1 − Sj1| ≥ ε

)
≤ 2 exp(−ε2n1−2γ′) + 2nC exp(−αcnγ′/4),

where 0 < γ′ < κ′ − 1/2, κ′ and α are defined in assumptions (D1) and (D2).

Proof : Note that by using Cauchy-Schwartz inequality, we have

Sj1 = E(‖Xij −Xhj‖pj‖yi − yh‖1) ≤
{
E(‖Xij −Xhj‖2

pj
)E(‖yi − yh‖2

1)
}1/2

≤
{
E(22‖Xj‖2

pj
)E(22‖yi‖2)

}1/2

= 4
{
E(‖Xj‖2

pj
)E(y2

i )
}1/2

.

Since E(‖Xj‖2
pj

)E(y2
i ) ≤ E

(
exp

{
α‖Xj‖2

pj

})
E (exp {αy2

i }) for α > 2 log(2), by assump-

tion (D1), we conclude that Sj1 is uniformly bounded in J , i.e., supJ max1≤j≤J Sj1 < ∞.

This implies that for any given ε > 0, we have Sj1/n < ε as n large enough. We define

a U statistic Ŝ∗j1 = {n(n − 1)}−1
∑

i 6=h ‖Xij − Xhj‖pj‖yi − yh‖1, such that
∣∣∣Ŝj1 − Sj1∣∣∣ =
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∣∣∣Ŝ∗j1(n− 1)/n− Sj1(n− 1)/n− Sj1/n
∣∣∣. Therefore, we have by Bonferroni’s inequality

Pr
(∣∣∣Ŝj1 − Sj1∣∣∣ ≥ 2ε

)
= Pr

(∣∣∣∣n− 1

n
Ŝ∗j1 −

n− 1

n
Sj1 −

1

n
Sj1

∣∣∣∣ ≥ 2ε

)
≤ Pr

(∣∣∣∣n− 1

n
Ŝ∗j1 −

n− 1

n
Sj1

∣∣∣∣ ≥ 2ε− 1

n
Sj1

)
≤ Pr

(
n− 1

n

∣∣∣Ŝ∗j1 − Sj1∣∣∣ ≥ ε

)
≤ Pr

(∣∣∣Ŝ∗j1 − Sj1∣∣∣ | ≥ ε
)
.

Thus, if Ŝ∗j1 is uniformly consistent, it is concluded that Ŝj1 is also uniformly consistent.

Now we define

Ŝ∗j1 =
1

n(n− 1)

∑
i 6=h

u1(Xij, yi; Xhj, yh)× 1{u1(Xij, yi; Xhj, yh) ≤M}+

1

n(n− 1)

∑
i 6=h

u1(Xij, yi; Xhj, yh)× 1{u1(Xij, yi; Xhj, yh) > M}

=: Ŝ∗j1,1 + Ŝ∗j1,2,

where u1(Xij, yi; Xhj, yh) = ‖Xij −Xhj‖pj‖yi− yh‖1 that is the kernel of the U statistic Ŝ∗j1,

1{·} is an indicator function. This follows that Sj1 can be also decomposed as

Sj1 = E(u1(Xij, yi; Xhj, yh)1{u1(Xij, yi; Xhj, yh) ≤M}) +

E(u1(Xij, yi; Xhj, yh)1{u1(Xij, yi; Xhj, yh) > M})

=: Sj1,1 + Sj1,2,

where M is a finite constant and will be specified later.

Let us first focus on the consistency of Ŝ∗j1,1. By Markov’s inequality, we have for any t > 0,

Pr
(
Ŝ∗j1,1 − Sj1,1 ≥ ε

)
) = Pr

{
exp

[
t
(
Ŝ∗j1,1 − Sj1,1

)]
≥ exp(tε)

}
≤ exp(−tε) exp(−tSj1,1)E

{
exp

(
tŜ∗j1,1

)}
.
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By Lemma D.3, the U statistics Ŝ∗j1,1 can be expressed as

Ŝ∗j1,1 =
1

n!

∑
n!

W1(X1j, y1; . . . ; Xnj, yn),

where each W1(X1j, y1; . . . ; Xnj, yn) is an average of m = [n/2] i.i.d random variables

u
(1)
1 1(u

(1)
1 ≤M), . . . , u

(m)
1 1(u

(m)
1 ≤M), i.e., W1(X1j, y1; . . . ; Xnj, yn) = m−1

∑m
r=1 u

(r)
1 1

{
u

(r)
1 ≤M

}
.

Therefore, by the fact that exponential function is convex and (X1j, y1), . . . , (Xnj, yn) are i.i.d

random variables, we have by Jensen’s inequality (i.e., exp(n−1
∑n

i=1 xi) ≤ n−1
∑n

i=1 exp(xi))

E
{

exp
(
tŜ∗j1,1

)}
= E

[
exp

{
t

1

n!

∑
n!

W1(X1j, y1; . . . ; Xnj)

}]
≤ 1

n!
E[exp {tW1(X1j, y1; . . . ; Xnj)}]

= Em
{

exp
(
m−1tu

(r)
1 1

(
u

(r)
1 ≤M

))}
.

By Lemma D.1, E
(
u

(r)
1 1

(
u

(r)
1 ≤M

))
= Sj1,1 and Pr

{
0 < u

(r)
1 1

(
u

(r)
1 ≤M

)
≤M

}
= 1,

we can obtain

exp(−tSj1,1)E
{

exp
(
tŜ∗j1,1

)}
≤ exp(−tSj1,1)Em

{
exp

(
m−1tu

(r)
1 1

(
u

(r)
1 ≤M

))}
≤ Em

{
exp

[
m−1tu

(r)
1 1

(
u

(r)
1 ≤M − Sj1,1

)]}
≤ exp

{
t2(M − 0)2

8m

}
= exp

{
t2M2

8m

}
.

Consequently, by setting t = 4εm/M2, we have

Pr
(
Ŝ∗j1,1 − Sj1,1 ≥ ε

)
≤ exp(−tε) exp

(
M2t2

8m

)
= exp

(
−tε+

M2t2

8m

)
= exp

(
−2ε2m

M2

)
.
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By the symmetric of U statistics, it entails immediately that

Pr
(∣∣∣Ŝ∗j1,1 − Sj1,1∣∣∣ ≥ ε

)
≤ 2 exp

(
−2ε2m

M2

)
. (D.2)

Now let us turn to the consistency of Ŝ∗j1,2. Applying Cauchy-Schwartz and Markov’s in-

equality again, we have for any α′ > 0

S2
j1,2 = E[u1(Xij, yi; Xhj, yh)1{u1(Xij, yi; Xhj, yh) ≥M}]

≤ E{u2
1(Xij, yi; Xhj, yh)}E{1{u1(Xij, yi; Xhj, yh) ≥M}

= E{u2
1(Xij, yi; Xhj, yh)}Pr {exp[α′u1(Xij, yi; Xhj, yh)] ≥ exp(α′M)}

≤ E{u2
1(Xij, yi; Xhj, yh)}E[exp{α′u1(Xij, yi; Xhj, yh)}] exp(−α′M).

With the inequality (a2 + b2)/2 ≥ (a+ b)2/4 ≥ |ab|, one has

u1(Xij, yi; Xhj, yh) = {(Xij −Xhj)
T (Xij −Xhj)(yi − yh)2}1/2

≤ {2(‖Xij‖2
pj

+ ‖Xhj‖2
pj

)× 2(y2
i + y2

h)}1/2

≤ {‖Xij‖2
pj

+ ‖Xhj‖2
pj

+ y2
i + y2

h}1/2

= ‖Xij‖2
pj

+ ‖Xhj‖2
pj

+ y2
i + y2

h,

which follows by Cauchy-Schwartz inequality, together with assumption (D1), for any log(2) ≤

α′ ≤ α0, where α0 is defined in assumption (D1),

E[exp{α′u1(Xij, yi; Xhj, yh)}] ≤ E[exp{α′(‖Xij‖2
pj

+ ‖Xhj‖2
pj

+ y2
i + y2

h)}]

= E[exp{α′(‖Xij‖2
pj

+ ‖Xhj‖2
pj
}]E[exp{α′(y2

i + y2
h)}]

≤ E[exp{2α′‖Xij‖2
pj
}]E[exp{2α′y2

i }] <∞.

92



Also, by the inequality exp(x) > x2/2 for x > 0, one can obtain

E{u2
1(Xij, yi; Xhj, yh)} ≤ E[2 exp{u1(Xij, yi; Xhj, yh)}]

≤ E[exp{α′u1(Xij, yi; Xhj, yh)}] <∞.

Therefore, choosing M = cnγ
′

for 0 < γ′ < 1/2 − κ′ and log(2) ≤ α′ ≤ α0, it is concluded

that Sj1,2 ≤ ε/2 as n is large enough. So one can easily obtain that

Pr
(∣∣∣Ŝ∗j1,2 − Sj1,2∣∣∣ > ε

)
≤ Pr

(∣∣∣Ŝ∗j1,2∣∣∣ > ε− Sj1,2
)

= Pr
(∣∣∣Ŝ∗j1,2∣∣∣ > ε

2

)
.

If we can bound the probability Pr
(∣∣∣Ŝ∗j1,2∣∣∣ > ε/2

)
, then Ŝ∗j1,2 is uniformly consistent. As-

sume ‖Xij‖2
pj

+ y2
i ≤ M/2, which implies u1(Xij, yi; Xhj, yh) ≤ ‖Xij‖2

pj
+ ‖Xhj‖2

pj
+ y2

i +

y2
h ≤ M . This entails

∣∣∣Ŝ∗j1,2∣∣∣ = 0 by its definition. This assumption implies that if∣∣∣Ŝ∗j1,2∣∣∣ > 0, we have ‖Xij‖2
pj

+y2
i > M/2, which is equivalent to the events

{∣∣∣Ŝ∗j1,2∣∣∣ > ε/2
}
⊆{

‖Xij‖2
pj

+ y2
i > M/2

}
for any ε > 0 and j = 1, . . . , J . Also, observe that the events satisfy

{‖Xij‖2
pj

+ y2
i > M/2} ⊆ {‖Xij‖2

pj
> M/4} ∪ {y2

i > M/4}. Consequently, by Markov’s

inequality and Bonferroni’s inequality, and assumption (D1), there exists a constant C such

that

max
1≤j≤J

Pr
(∣∣∣Ŝ∗j1,2∣∣∣ > ε

2

)
≤ n max

1≤j≤J
Pr

(
‖Xij‖2

pj
+ y2

i >
M

2

)
(D.3)

≤ n max
1≤j≤J

{
Pr

(
‖Xij‖2

pj
>
M

4

)
+ Pr

(
y2
i >

M

4

)}
≤ n max

1≤j≤J

{
E{exp(α‖Xij‖2

pj
) + E{exp(αy2

i )}
}
× exp

(
−αM

4

)
≤ 2nC exp

(
−αM

4

)
= 2nC exp

(
−αcn

γ′

4

)
.

Therefore, Pr
(∣∣∣Ŝ∗j1,2 − Sj1,2∣∣∣ > ε

)
≤ 2nC exp(−αcnγ′/4). Combining (D.2) and (D.3), re-
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calling m = [n/2] and M = cnγ
′
, one has

Pr
(∣∣∣Ŝj1 − Sj1∣∣∣ ≥ ε

)
≤ 2 exp

(
−ε2n1−2γ′

)
+ 2nC exp

(
−αcn

γ′

4

)
.

Thus, the proof of the uniform consistency of Ŝj1 is completed. �

Next we show the uniform consistency of Ŝj2.

Corollary D.2. (uniform consistency of Ŝj2) Under assumptions (D1) and (D2), there

exists a sufficiently large constant C, such that for any ε > 0

Pr
(∣∣∣Ŝj2 − Sj2∣∣∣ > ε

)
≤ 8 exp

{
−ε

2n1−2γ′

C2

}
+ 8nC exp

(
−αn

γ′

4

)
,

where γ and s are defined in Corollary D.1.

Proof : Define Ŝj2,1 = n−2
∑

i 6=h ‖Xij −Xhj‖pj and Ŝj2,2 = n−2
∑

i 6=h ‖yi − yh‖1 so that one

has Ŝj2 = Ŝj2,1Ŝj2,2. Also, define Sj2,1 = E{‖Xij − Xhj‖pj} and Sj2,2 = E{‖yi − yh‖1},

leading to Sj2 = Sj2,1Sj2,2. Note that

Ŝj2 − Sj2 =
(
Ŝj2,1 − Sj2,1

)
Sj2,2 + Sj2,1

(
Ŝj2,2 − Sj2,2

)
+
(
Ŝj2,1 − Sj2,1

)(
Ŝj2,2 − Sj2,2

)
.

To see this, check the equality ab− cd = (a− c)d+ c(b− d) + (a− c)(b− d).

We first prove that Ŝj2,1 (resp. Ŝj2,2) is a consistent estimator of Sj2,1 (resp. Sj2,2). Since

Ŝj2,1 is a special case of Ŝj1 by setting |yi − yh| = 1 that is indeed uniformly bounded and

satisfying assumption (D1). Following the same arguments in Corollary D.1, one can obtain

Pr
(∣∣∣Ŝj2,1 − Sj2,1∣∣∣ ≥ 4ε

)
≤ 2 exp(−ε2n1−2γ′) + 2nC exp

(
−αn

γ′

4

)
,
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Similarly, one can also obtain

Pr
(∣∣∣Ŝj2,2 − Sj2,2∣∣∣ ≥ 4ε

)
≤ 2 exp

(
−ε2n1−2γ′

)
+ 2nC exp

(
−αn

γ′

4

)
,

which is another special case of Corollary D.1 by setting ‖Xij −Xhj‖pj = 1. Accordingly,

by assumption (D1), one has by using inequality (EX)2 ≤ EX2,

Sj2,1 ≤
{
E(‖Xij −Xhj‖2

pj
)
}1/2

≤
{

4E(‖Xpj‖2
pj

)
}1/2

<∞ (D.4)

and

Sj2,2 ≤ {E(|yi − yh|2)}1/2 ≤ {4E(y2
i )}1/2 <∞. (D.5)

This implies that for some constant C, Sj2,1, Sj2,2 are uniformly bounded in J , i.e.,

max
1≤j≤J

{max
1≤j≤J

Sj2,1, Sj2,2} ≤ C. (D.6)

Finally, following by (D.4) and (D.5), one has

Pr
{∣∣∣(Ŝj2,1 − Sj2,1)(Ŝj2,2 − Sj2,2)∣∣∣ ≥ ε

}
≤ 4 exp

(
−εn

1−2γ′

16

)
+ 4nC exp

(
−αn

γ′

4

)
.(D.7)

Combining (D.4), (D.5), (D.6) and (D.7), one can obtain

Pr
(∣∣∣Ŝj2 − Sj2∣∣∣ ≥ ε

)
= Pr

(∣∣∣Ŝj2,1Ŝj2,2 − Sj2,1Sj2,2∣∣∣ ≥ ε
)

≤ Pr
{∣∣∣(Ŝj2,1 − Sj2,1)Sj2,2∣∣∣ ≥ ε

3

}
+ Pr

{∣∣∣Sj2,1 (Ŝj2,2 − Sj2,2)∣∣∣ ≥ ε

3

}
+

Pr
{∣∣∣(Ŝj2,1 − Sj2,1)(Ŝj2,2 − Sj2,2)∣∣∣ ≥ ε

3

}
≤ 8 exp

{
−ε

2n1−2γ′

C2

}
+ 8nC exp

(
−αn

γ′

4

)
. (D.8)

Thus, the proof of the uniform consistency of Ŝj2 is complete. �
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Finally, we show the uniform consistency of Ŝj3.

Corollary D.3. (uniform consistency of Ŝj3) Under assumptions (D1) and (D2), there

exists a constant C, for any ε > 0,

Pr
(∣∣∣Ŝj3 − Sj3∣∣∣ ≥ ε

)
≤ 4 exp

(
−ε

2n1−2γ′

6

)
+ 4nC exp

(
−αn

γ′

4

)
,

where γ′, α are defined in Corollary D.1.

Proof : Denote another U statistics

Ŝ∗j3 =
1

n(n− 1)(n− 2)

∑
i<h<l

{‖Xij −Xhj‖pj‖yh − yl‖1 +

‖Xij −Xlj‖pj‖yh − yl‖1 + ‖Xij −Xhj‖pj‖yi − yl‖1 +

‖Xlj −Xhj‖pj‖yh − yl‖1 + ||Xij −Xhj‖pj ||yi − yh‖1 +

‖Xlj −Xij‖pj‖yi − yh‖1}

=:
6

n(n− 1)(n− 2)

∑
i<h<l

u3(Xij, yi; Xhj, yh; Xlj, yl),

where u3(Xij, yi; Xhj, yh; Xlj, yl) is the kernel of U statistics Ŝ∗j3. Specifically, Ŝ∗j3 excludes

the following six cases from Ŝj3: i = h, i = l, h = l and the symmetrics h = i, l = i, l = h.

Note that Ŝ∗j3 has a very similar form as Ŝ∗j1 that can be divided into two parts bounded by

a constant M . That is,

Ŝ∗j3 =
6

n(n− 1)(n− 2)

∑
i<h<l

u31(u3 ≤M) +
6

n(n− 1)(n− 2)

∑
i<h<l

u31(u3 > M)

=: Ŝ∗j3,1 + Ŝ∗j3,2.

Accordingly, by the definition of Sj3, one has the corresponding decomposition

Sj3 = E{u31(u3 ≤M)}+ E{u31(u3 > M)} =: Sj3,1 + Sj3,2.
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Again, Ŝj3,1, Ŝj3,2 are unbiased estimator of Sj3,1, Sj3,2 respectively. Observe that Ŝ∗j3,1 has

the similar form as Ŝ∗j1,1, except that now Ŝ∗j3,1 is a third-order U statistics. Let m′ = [n/3],

using the same arguments for proving Ŝ∗j1,1, together with Lemma D.3, one can easily show

that

Pr
(∣∣∣Ŝ∗j3,1 − Sj3,1∣∣∣ ≥ ε

)
≤ 2 exp(−2ε2m′2). (D.9)

Also, for Ŝ∗j3,2, since

u3(Xij, yi; Xhj, yh; Xlj, yl) ≤
4

6

(
‖Xij‖2

pj
+ ‖Xhj‖2

pj
+ ‖Xlj‖2

pj
+ y2

i + y2
h + y2

l

)
,

one has the following result which is similar to that of Ŝ∗j1,2,

Pr
(∣∣∣Ŝ∗j3,2 − Sj3,2∣∣∣ > ε

)
≤ Pr

(∣∣∣Ŝ∗j3,2∣∣∣ > ε

2

)
.

Additionally, for any ε > 0, one has the similar events as Ŝ∗j1,2 that satisfy

{∣∣∣Ŝ∗j3,2∣∣∣ > ε

2

}
⊆
{
‖Xij‖2

pj
+ y2

i >
M

2

}
,

which implies Pr
(∣∣∣Ŝ∗j3,2∣∣∣ > ε/2

)
≤ 2nC exp(−αM/4) by the same arguments in (D.3).

Therefore,

Pr
(∣∣∣Ŝ∗j3,2 − Sj3,2∣∣∣ > ε

)
≤ 2nC exp

(
−αM

4

)
. (D.10)

Let M = cnγ
′

for some 0 < γ′ < 1/2− κ′ again. One has by (D.9) and (D.10)

Pr
(∣∣∣Ŝ∗j3 − Sj3∣∣∣ ≥ ε

)
) ≤ Pr

(∣∣∣Ŝ∗j3,1 − Sj3,1∣∣∣ ≥ ε

2

)
+ Pr

(∣∣∣Ŝ∗j3,2 − Sj3,2∣∣∣ ≥ ε

2

)
≤ 2 exp

(
−ε

2n1−2γ′

2

)
+ 2nC exp

(
−αn

γ′

4

)
. (D.11)
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By the definition of Ŝ∗j3 and Ŝ∗j1, Ŝj3 can be written as

Ŝj3 =
(n− 1)(n− 2)

n2

{
Ŝ∗j3 +

1

(n− 2)
Ŝ∗j1

}
.

Thus, one has

Ŝj3 − Sj3 =
(n− 1)(n− 2)

n2

(
Ŝ∗j3 − Sj3

)
− 3n− 2

n2
Sj3 +

n− 1

n2

(
Ŝ∗j1 − Sj1

)
+
n− 1

n2
Sj1.

It is easily to see that {(n−1)/n2}Sj1 < Sj1/n ≤ ε. To prove the boundedness of Sj3, we use

the properties of conditional expectation: E(E(Z|A)) = E(Z) and [E(Z|A)]2 ≤ E(Z2|A) if

EZ2 < ∞, where A is a sub σ-algebra of a set of events F . By the definition of Sj3, with

Cauchy-Schwartz inequality, one has

Sj3 ≤
{
E
{
E
(
‖Xij − X̃ij‖pj |Xij

)}2

× E
{
E
(
‖Y − Ỹ ‖1|Y

)}2
}1/2

≤
{
E
[
E
(
‖Xij − X̃ij‖2

pj
|Xij

)]
× E

[
E
(
‖Y − Ỹ ‖1|2Y

)]}1/2

=
{
E‖Xij − X̃ij‖2

pj
E‖Y − Ỹ ‖2

1

}1/2

≤ 4
{
E(‖Xij‖2

pj
)E(‖Y ‖2

1)
}1/2

<∞,

leading to {(3n− 2)/n2}Sj3 < 3Sj3/n ≤ ε for any given ε > 0 by assumption (D1). Conse-

quently,

Pr
(∣∣∣Ŝj3 − Sj3∣∣∣ ≥ 4ε

)
≤ Pr

{
(n− 1)(n− 2)

n2

∣∣∣Ŝ∗j3 − Sj3∣∣∣ ≥ ε

}
+ Pr

{
3n− 2

n2
|Sj3| ≥ ε

}
+

Pr

{
n− 2

n2

∣∣∣Ŝ∗j1 − Sj1∣∣∣ ≥ ε

}
+ Pr

{
n− 1

n2
|Sj1| ≥ ε

}
≤ Pr

(∣∣∣Ŝ∗j3 − Sj3∣∣∣ ≥ ε
)

+ Pr
(∣∣∣Ŝ∗j1 − Sj1∣∣∣ ≥ ε

)
≤ 4 exp

(
−ε

2n1−2γ′

2

)
+ 4nC exp

(
−αn

γ′

4

)
.

Thus, the proof of the uniform consistency of Ŝj3 is completed. �

98



Now we have the fact that

Pr
{∣∣∣d̂cov

2
(Xj, Y )− dcov2(Xj, Y )

∣∣∣ ≥ ε
}

= Pr
{∣∣∣(Ŝj1 + Ŝj2 − 2Ŝj3

)
− (Sj1 + Sj2 − 2Sj3)

∣∣∣ ≥ ε
}

= Pr
{∣∣∣(Ŝj1 − Sj1)+

(
Ŝj2 − Sj2

)
− 2

(
Ŝj3 − Sj3

)∣∣∣ ≥ ε
}

≤ Pr
{∣∣∣Ŝj1 − Sj1∣∣∣+

∣∣∣Ŝj2 − Sj2∣∣∣+ 2
∣∣∣Ŝj3 − Sj3∣∣∣ ≥ ε

}
≤ Pr

(∣∣∣Ŝj1 − Sj1∣∣∣ ≥ ε

4

)
+ Pr

(∣∣∣Ŝj2 − Sj2∣∣∣ ≥ ε

4

)
+ Pr

(∣∣∣Ŝj3 − Sj3∣∣∣ ≥ ε

4

)
.

Therefore, by Corollary D.1, D.2, and D.3, one can conclude that

Pr
{∣∣∣d̂cov

2
(Xj, Y )− dcov 2(Xj, Y )

∣∣∣ ≥ ε
}

= O
{

exp
(
−c′1ε2n1−2γ′

)
+ n exp

(
−c′2nγ

′
)}

,

(D.12)

for some positive constants c′1 and c′2. So we complete the proofs for the convergence rate

of the numerator of D̂j. Actually, we can use the same arguments to show the convergence

rate of d̂Var
2
(Xj) = d̂cov

2
(Xj,Xj) and d̂Var

2
(Y ) = d̂cov

2
(Y, Y ) which are special cases

of d̂cov
2
(Xj, Y ) when ‖Xij − Xhj‖pj (resp. ‖yi − yh‖1) is replaced by ‖yi − yh‖1 (resp.

‖Xij −Xhj‖pj) that both are uniformly bounded satisfying the assumption (D1). One can

easily show that the distance variances d̂Var
2
(Xj) and d̂Var

2
(Y ) have the same convergence

rate as d̂cov
2
(Xj, Y ) in (D.12). It entails immediately that the denominator of D̂j has the

same convergence rate as that of the numerator. That is,

Pr
{∣∣∣d̂Var(Xj)d̂Var(Y )− dVar(Xj) dVar(Y )

∣∣∣ ≥ ε
}

= O
{

exp
(
−c′3ε2n1−2γ′

)
+ n exp

(
−c′4nγ

′
)}

,

(D.13)

for some positive constants c′3 and c′4.

Observe that |
∣∣dcov2(Xj, Y )

∣∣ ≤ |Sj1|+|Sj2|+2|Sj3| <∞ by using the results Sj1 <∞, Sj2 <

∞, Sj3 < ∞. So one also has dVar2(Xj) < ∞ and dVar2(Y ) < ∞. By using (D.13),
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one can conclude that d̂Var(Xj)d̂Var(Y ) = dVar(Xj) dVar(Y ) + OP (1) , which implies

1/(d̂Var(Xj)d̂Var(Y )) = 1/(dVar(Xj) dVar(Y ))+OP (1). Therefore, 1/(d̂Var(Xj)d̂Var(Y )) =

1/(dVar(Xj) dVar(Y )) + OP (1) ≤ C for a sufficiently large C. For notation simplicity,

we denote X̂j
.
= d̂cov

2
(Xj, Y ), Xj

.
= dcov2(Xj, Y ) and Ŷj

.
= d̂Var(Xj) × d̂Var(Y ), Yj

.
=

dVar(Xj) dVar(Y ). Note first that

X̂jYj − ŶjXj

ŶjYj
=

(
X̂j −Xj

)
Yj −

(
Ŷj − Yj

)
Xj

ŶjYj
=
X̂j −Xj

Ŷj
−

(
Ŷj − Yj

)
Xj

ŶjYj

and dcor2(Xj, Y ) = Xj/Yj ≤ 1, Ŷ −1
j ≤ C. Now for the distance correlation Dj, one has

Pr
(∣∣∣D̂j −Dj∣∣∣ ≥ ε

)
= Pr

{∣∣∣∣Ŷ −1
j

(
X̂j −Xj

)
−Xj

(
ŶjYj

)−1 (
Ŷj − Yj

)∣∣∣∣ ≥ ε

}
≤ Pr

{∣∣∣Ŷ −1
j

(
X̂j −Xj

)∣∣∣ ≥ ε

2

}
+ Pr

{∣∣∣(Xj/Yj)Ŷ
−1
j

(
Ŷj − Yj

)∣∣∣ ≥ ε

2

}
≤ Pr

(∣∣∣X̂j −Xj

∣∣∣ ≥ ε

2C

)
+ Pr

(∣∣∣Ŷj − Yj∣∣∣ ≥ ε

2C

)
= O{exp

(
−c′5ε2n1−2γ′

)
+ n exp

(
−c′6nγ

′
)
},

for some positive constants c′5 and c′6. Let ε = cn−κ
′

for 0 < κ′ < 1/2 − γ′, which follows

that

Pr

{
max

1≤j≤J

∣∣∣D̂j −Dj∣∣∣ ≥ cn−κ
′
}
≤ J Pr

{∣∣∣D̂j −Dj∣∣∣ ≥ cn−κ
′
}

= O
(
J
[
exp(−c′5ε2n1−2γ′) + n exp(−c′6nγ

′
)
])

= O
(
J
[
exp(−c′5n1−2(κ′+γ′)) + n exp(−c′6nγ

′
)
])
.

We choose Mg
D,DC such that Mg

D,DC =
{

1 ≤ j ≤ J : D̂j ≥ cn−κ
′
}

. This indicates if Mg
S *

Mg
D,DC , then for any j ∈ S, one has D̂j < cn−κ

′
, following by

∣∣∣D̂j −Dj∣∣∣ ≥ cn−κ
′

with

assumption (D2). So the events satisfy
{
Mg

S *Mg
D,DC

}
⊆
{∣∣∣D̂j −Dj∣∣∣ ≥ cn−κ

′
}

for j ∈ S.
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Equivalently, one has
{

maxj∈S

∣∣∣D̂j −Dj∣∣∣ < cn−κ
′
}
⊆ {Mg

S ⊆M
g
D,DC}. Therefore,

Pr(Mg
S ⊆M

g
D,DC) ≥ Pr

(
max
j∈S

∣∣∣D̂j −Dj∣∣∣ < cn−κ
′
)

= 1− Pr

(
min
j∈S

∣∣∣D̂j −Dj∣∣∣ ≥ cn−κ
′
)

= 1− sPr
(∣∣∣D̂j −Dj∣∣∣ ≥ cn−κ

′
)

= 1−O
(
s
[
exp

(
−c′5ε2n1−2(κ′+γ′)

)
+ n exp(−c′6nγ

′
)
])
.

Therefore, we finish the proofs of Theorem 2.4.
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