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Abstract

This work is focused on the structure theory of graded central simple algebras. We consider

algebras graded by Z/pqZ where p, q are distinct primes different than 2. I define a new

algebra type, called a p-odd algebra, and a structure theorem for these algebras. This

definition and structure theorem are a generalization of the current results in the literature.

We define and discuss the graded Brauer group in this context and its relation to the structure

of the algebras. Moreover, we define a group of invariants and show how to view the classical

Brauer group as a subgroup of the graded Brauer group.
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Chapter 1

Introduction

This thesis is focused on developing a theory for Z/nZ-graded central simple algebras, where

n = pq and p, q are distinct primes with p, q 6= 2. The cases where n is prime have been

thoroughly studied in [5] (see also [15]) and the other cases remain open. In this thesis

we will describe the structure of a graded Brauer group and relate it to the structure of

graded algebras. This includes defining a graded Brauer group and structure theorems anal-

ogous to the results in the literature for even and odd algebras. Moreover, we will show

the collection of classes of even algebras with discriminant one in the graded Brauer group

is isomorphic to the (ungraded) Brauer group. The majority of the literature in this area

studies graded central simple algebras up to Brauer equivalence. Koç and Kurtulmaz [5]

and Vela [15] have results on the structure of Z/nZ-graded central simple algebras that only

address even and odd type graded central simple algebras, which are not all inclusive. That

is, there are graded algebras that are neither even nor odd, which we will call p-odd algebras.

As mentioned above the goal of this thesis is to work towards filling this gap in the literature.

There is a rich theory of central simple algebras. One of the most notable theorems is

the Wedderburn-Artin Theorem, which states that a central simple algebra is isomorphic to
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a matrix algebra over a division ring. This theorem can also be stated in more generality for

semisimple algebras. The Wedderburn-Artin Theorem essentially reduces classifying central

simple algebras over a field to classifying division rings with a given center. This theorem

leads to a group structure on the collection of equivalence classes of central simple algebras,

called the Brauer group. Two resulting central simple algebras are in the same equivalence

class, or Brauer class, if they have the same underlying division algebra (the dimensions of

the matrix algebras may be different). Many aspects of this theory are not fully generalized

to graded algebras.

Wall [13] introduced and studied Z/2Z-graded algebras in 1964. He developed a Brauer

equivalence on Z/2Z-graded algebras which forms an abelian group, called the Brauer-Wall

Group. This group is closely related to quadratic forms and Clifford algebras. For an intro-

duction to the classical Brauer group and the Brauer-Wall group (the graded Brauer group

for n = 2) refer to [6]. Additionally, Z/2Z-graded algebras (or superalgebras) have been

studied in a number of contexts [2, 3, 8, 9, 14]. In 1969, Knus [4] generalized this idea by

replacing Z/2Z with a finite abelian group. Many built on this work and there are several

other generalizations of the Brauer group in the literature, including the Brauer group of a

braided monoidal category, which generalizes all other known Brauer groups [11]. A survey

of the various generalizations of the Brauer group can be found in [10]. There are not many

structure results for the corresponding algebras. However, results by Vela, and Koç and

Kurtulmaz focus on decomposition theorems for Z/nZ–graded central simple algebras.

In the following chapters we will review the necessary background material for central

simple algebras, the (ungraded) Brauer group, and graded central simple algebras, then

we will discuss the structure theorems for p-odd algebras and the results about the graded

Brauer group.
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Chapter 2

Background on Central Simple

Algebras

2.1 Preliminaries

We will begin with some basic definitions and notation.

Note: In this paper we are assuming all algebras are finite-dimensional, have an iden-

tity, and are associative. Moreover, when discussing graded algebras, we are assuming the

underlying field of the algebra contains a primitive nth root of unity.

Definition 2.1.1. An algebra, A, is a vector space over F with an additional binary operation

A× A→ A, denoted ·, in which the following hold for all a, b, c ∈ A and α, β ∈ F :

(1) (a+ b) · c = a · c+ b · c (right distributivity)

(2) a · (b+ c) = a · b+ a · c (left distributivity)

(3) (αa) · (βb) = (αβ)(a · b) (compatibility with scalars)

Definition 2.1.2. If A is an algebra over F , End(A) is the algebra of F -linear transforma-

tions from A to itself.
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Proposition 2.1.3. If A and B are F -algebras, then A⊗B is an associative F -algebra with

multiplication induced by (a⊗ b)(a′ ⊗ b′) = (aa′ ⊗ bb′) and identity 1A ⊗ 1B.

Definition 2.1.4. An algebra is said to be a division algebra if it has a multiplicative identity

and every nonzero element has a multiplicative inverse.

2.2 Introduction to Central Simple Algebras

In this section, F is a field, and by ‘an algebra over F ’ we mean a finite dimensional asso-

ciative algebra over the field F . The purpose of this thesis is to study graded central simple

algebras, but we will use some theory of standard central simple algebras. We will briefly

review standard definitions and facts about central simple algebras, as can be found in Lam

[6, Section 4.1], but which are included here for convenience.

Definition 2.2.1. For any subset, B, of A the centralizer of B is given by

CA(B) = {a ∈ A | ab = ba, ∀b ∈ B}.

Definition 2.2.2. The center of an algebra, A, is given by

Z(A) = {a ∈ A | ab = ba, ∀b ∈ A}.

We say an algebra A over F is central if Z(A) = F .

The above definition for the center of A can be equivalently defined as Z(A) = CA(A).

Definition 2.2.3. An algebra over F is simple if it has no proper two-sided ideals.

Definition 2.2.4. An algebra is a central simple algebra (CSA) if it is both central and

simple.
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The following are common examples of central simple algebras.

Example 2.2.5. The endomorphism algebra A = End(V ) ∼= Mn(F ), where V is an n-

dimensional vector space over F , is a central simple algebra.

Example 2.2.6. The quaternion algebra A =
(
a,b
F

)
, which has two generators i, j and

relations i2 = a, j2 = b, ij = −ji, is a central simple algebra over F .

We now review some theorems from Lam [6, Section 4.1] regarding central simple algebras,

including the double centralizer theorem and the Noether-Skolem Theorem.

Proposition 2.2.7 ([6, Theorem 4.1.2]). (1) If A, B are F -algebras, and A′ ⊂ A and B′ ⊂

B are subalgebras, then

CA⊗B(A′ ⊗B′) = CA(A′)⊗ CB(B′).

In particular if A, B are F -central, so is A⊗B.

(2) If A is a central simple algebra over F and B is a simple algebra over F , then A⊗B is

simple.

(3) If A and B are both central simple algebras, then A⊗B is also a central simple algebra.

Now, we review the double centralizer theorem and an important corollary.

Theorem 2.2.8 (Double Centralizer Theorem, [6, Proposition 4.1.6 ]). Let A be a CSA over

F , and B a simple subalgebra of A. Let C = CA(B). Then,

(1) C is simple;

(2) B = CA(C);

(3) dimA = dimB · dimC.
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Corollary 2.2.9 ([6, Corollary 4.1.7 ]). Suppose B ⊂ A and both are central simple algebras

over F . If C = CA(B), then C is also a central simple algebra, B = CA(C), and B⊗C ∼= A.

We will now state the Noether-Skolem Theorem, which is an important theorem in the

theory of central simple algebras. We will later see an even type graded central simple

algebra is, in fact, a (ungraded) central simple algebra. This theorem will play a large role

in this theory of graded central simple algebras, as it shows the existence of an element in

an even algebra that plays a vital role in defining the discriminant of an algebra.

Theorem 2.2.10 (Noether-Skolem Theorem, [6, Theorem 4.1.8]). Let A be a central simple

algebra over F and B a simple algebra. If f , g are algebra homomorphisms from B to A,

then there exists an invertible element s ∈ A, such that f(b) = s−1g(b)s for every b ∈ B

(i.e., f and g differ by an inner automorphism of A).

Corollary 2.2.11 ([6, Corollary 4.1.9]). If A is a central simple algebra over F , then every

automorphism of A is an inner automorphism.

The Wedderburn-Artin theorem is another theorem which is very important in the theory

of central simple algebras, as it is vital in defining the (ungraded) Brauer group. There are

several versions of the Wedderburn-Artin theorem with a less restrictive hypothesis. For

example, there are versions where you only need to have a semisimple ring, semisimple

algebra, or an Artinian ring. However, we are only considering central simple algebras in

this paper, so we will state the following version which is directly applicable to our topic.

Theorem 2.2.12 (Wedderburn-Artin). Let A be a central simple algebra over F . Then

A ∼= Mr(D) for some r and some division algebra, D, over F . Moreover, D is uniquely

determined up to isomorphism by A.
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2.3 The Brauer Group

In this section we will discuss the construction of the classical Brauer group, which we will

generalize for graded algebras in Section 5.

We begin by defining an equivalence relation on central simple algebras, called the Brauer

equivalence. The purpose of the Brauer group is to classify all central simple algebras using

this relation.

Definition 2.3.1. Two central simple algebras A and B over F are Brauer equivalent if

there exist finite-dimensional vector spaces V and W such that A⊗End(V ) ∼= B⊗End(W )

as F -algebras.

It is easy to check that this forms an equivalence relation on the set of central simple

algebras over F . We will denote the equivalence class of A by [A]. The collection of equiva-

lences classes form an abelian group, called the Brauer group. The group operation is given

by [A] · [B] = [A⊗ B], which is well defined and the identity element is [F ] = [Mn(F )]. We

will need the following definition in order to define inverses.

Definition 2.3.2. The opposite algebra is defined to be Aop = {aop | a ∈ A} with operation

given by aop · bop = (ba)op.

Proposition 2.3.3 ([6, Proposition 4.1.3]). If A is a central simple algebra, so is Aop and

A⊗ Aop ∼= End(A).

The above proposition makes it clear that [A]−1 is given by [Aop]. It should also be noted

that by the Wedderburn-Artin Theorem, if A is a central simple algebra, then A ∼= Mr(D)

for some central division algebra D over F . So, [A] = [D] in the Brauer group since Mr(D) ∼=

Mr(F )⊗D.
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Chapter 3

Background on Central Simple

Graded Algebras

3.1 Introduction to Central Simple Graded Algebras

For the remainder of this paper, let n ≥ 2 and F be a field containing ρ, a primitive nth root

of unity, and charF - n . By an algebra, we still mean a finite dimensional associative algebra

with identity over the field F . In Chapter 4, we will study the structure of the graded Brauer

group and p-odd graded central simple algebras. In this chapter, we begin with some basic

definitions regarding central simple graded algebras and will review the structure theory for

even and odd type algebras.

Definition 3.1.1. If A is a Z/nZ-graded algebra, then A has a decomposition of the form

A = A0⊕A1⊕ · · · ⊕An−1, such that AiAj ⊂ Ai+j for all i, j ∈ Z/nZ. An element a ∈ Ak is

called homogeneous of degree k, which we denote by ∂a = k or deg(a) = k. We denote the

set of all homogeneous elements of A by H(A).
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It is important to note that you can define a grading on an algebra by an arbitrary group,

however this paper will focus on gradings by Z/nZ. We will now consider two important

examples of gradings that arise in the structure theorems for graded central simple algebras.

Remark. Algebras graded by Z/2Z (i.e., the case n = 2) have been thoroughly studied and

are called superalgebras.

Example 3.1.2. Given any any algebra A, it can be considered trivially graded by concen-

trating it in degree 0. That is, A = A0 and Ai = 0 for i 6= 0. We denote this trivial grading

on A by (A).

Example 3.1.3. A more interesting example of a Z/nZ-graded algebra that arises in the

structure theorems is, A = F [x]/(xn − d) = F ⊕ Fx ⊕ · · · ⊕ Fxn−1, for d 6= 0. Under this

grading the monomials are the homogeneous elements with axk being degree k. This forms a

grading since the exponents are added when multiplying two monomials.

Example 3.1.4. We will consider two gradings on the matrix algebras Mr(A), where A is

a graded algebra:

1. The first, which we denote M̃r(A) indicates that a matrix is of degree i if all the entries

of the matrix are degree i elements of A.

2. The second grading on Mr(A) is called the generalized checkerboard grading and is

denoted M̂r(F ). Under this Z/nZ grading, a matrix M is homogeneous of degree k if

Mij = 0 for j − i 6≡ k (mod n). Let us consider specific example, where n = 3:

A0 =


∗ 0 0

0 ∗ 0

0 0 ∗

 , A1 =


0 ∗ 0

0 0 ∗

∗ 0 0

 , A2 =


0 0 ∗

∗ 0 0

0 ∗ 0


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The following example will be vital in defining the graded Brauer group in Section 5.

Example 3.1.5. E = End(V ) is a graded F -algebra, where V = ⊕n−1
i=0 Vi is a graded F -

vector space. The grading on E is obtained by defining Ei = {f ∈ End(V ) | f(Vj) ⊂ Vj+i}.

In fact, this graded structure makes E a graded central simple algebra. From a matrix point

of view this is the checkerboard grading described in the example above.

Definition 3.1.6. A graded subspace (or subalgebra) B of an algebra A is a subspace (or

subalgebra) that preserves the graded structure, i.e. B = ⊕n−1
i=0 (B ∩ Ai).

CA(H) is a graded subalgebra for any H ⊂ H(A). The center of A, Z(A), is also a graded

subalgebra.

Definition 3.1.7. We say an ideal of a Z/nZ-graded algebra is graded if it is generated by

homogeneous elements, or equivalently if it can be written as I = ⊕n−1
i=0 (I ∩ Ai).

The ideal 〈H〉 generated by H ⊂ H(A) is a graded ideal of A.

Definition 3.1.8. A graded algebra is a simple graded algebra (SGA) if it has no proper

graded two sided ideals.

Definition 3.1.9. A homogeneous element a ∈ A is said to left graded commute with a

homogenous element b ∈ A if ab = ρ∂a·∂bba. We define the left graded center to be the set

generated by all homogeneous elements that left graded commute with all the elements of A,

i.e. ẐL(A) = span{a ∈ H(A) | ah = ρ∂a·∂hha,∀h ∈ H(A)}. Similarly we define the right

graded center, ẐR(A).

Remark. We will use the notation Ẑ(A) to mean the left graded center, ẐL(A).

Notice, if we have ab = ρ∂a·∂bba (i.e. a left graded commutes with b), it does not nec-

essarily imply that ba = ρ∂a·∂bab (i.e. a right graded commutes with b). Hence, in general

there is a need to distinguish between the left and right graded center. Since the left graded
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center is defined and standardly used in the literature, if there is no designation we will mean

the left graded center. However, at the end of Section 4.1, in Proposition 4.2.6 we will show

that for a Z/pqZ-graded central simple algebra we, in fact, have ẐL(A) = ẐR(A), so for the

majority of this paper the notation Ẑ(A) is not ambiguous.

Definition 3.1.10. We say a graded algebra A over F is a central graded algebra (CGA) if

ẐL(A) = F .

Definition 3.1.11. An algebra A over F is a central simple graded algebra (GCSA) if it is

both graded central and graded simple.

Definition 3.1.12. A graded homomorphism is a map ϕ : A→ B which is a homomorphism

(in the regular sense) and ϕ(Ai) ⊂ Bi for all i ∈ Z/nZ. A graded isomorphism is a (regular)

isomorphism which is also a graded homomorphism.

Example 3.1.13. The following are some examples of graded central simple algebras:

(1) The algebra in Example 3.1.3, A = F [x]/(xn−d) with d 6= 0, is an central simple Z/nZ-

graded algebra over F . However, it is not necessarily central or simple as an ungraded

algebra since Z(A) = A and if we take d = 1,then A ∼= F × · · · × F by the Chinese

remainder theorem (recall F contains a primitive root of unity), which has proper ideals.

(2) Recall the trivial grading from Example 3.1.2. If A is a central simple algebra over F ,

then (A) is a graded central simple algebra over F .

(3) Mn(D) is a graded central simple algebra over F where D is a graded division algebra

over F .

We now define a graded tensor product of graded algebras, denoted ⊗̂, and review some

of the properties of the graded tensor.
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Definition 3.1.14. The graded tensor product (⊗̂) of two central simple graded algebras, A

and B, is the same as A⊗B as vector spaces, but has multiplication induced by

(a ⊗̂ b)(a′ ⊗̂ b′) = ρ∂b·∂a
′
(aa′ ⊗̂ bb′).

Proposition 3.1.15. If A,B,C are Z/nZ-graded algebras, then (A ⊗̂B) ⊗̂C ∼= A ⊗̂ (B ⊗̂C)

as graded algebras.

Proof. We know the above are isomorphic as vector spaces since A ⊗̂B is the same as A⊗B

as vector spaces. Since the map clearly preserves the grading, we only need to show the map

induced by

φ : (A ⊗̂B) ⊗̂ C −→ A ⊗̂ (B ⊗̂ C)

(a ⊗̂ b) ⊗̂ c 7−→ a ⊗̂ (b ⊗̂ c)

is a homomorphism. Let a, b, c be homogeneous elements of A,B,C, respectively. Then,

φ([(a ⊗̂ b) ⊗̂ c][(a′ ⊗̂ b′) ⊗̂ c′]) = ρ∂c(∂a
′+∂b′)φ([(a ⊗̂ b)(a′ ⊗̂ b′)] ⊗̂ cc′)

= ρ∂c·∂a
′+∂c·∂b′+∂b·∂a′φ((aa′ ⊗̂ bb′) ⊗̂ cc′)

= ρ∂c·∂a
′+∂c·∂b′+∂b·∂a′aa′ ⊗̂ (bb′ ⊗̂ cc′)

= ρ∂a
′(∂b+∂c)+∂c·∂b′aa′ ⊗̂ (bb′ ⊗̂ cc′)

= ρ∂a
′(∂b+∂c)aa′ ⊗̂ [(b ⊗̂ c)(b′ ⊗̂ c′)]

= [a ⊗̂ (b ⊗̂ c)][a′ ⊗̂ b′(⊗̂c′)]

= φ((a ⊗̂ b) ⊗̂ c)φ((a′ ⊗̂ b′) ⊗̂ c′)
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Thus, φ is a homomorphism and (A ⊗̂B) ⊗̂ C ∼= A ⊗̂ (B ⊗̂ C).

The following propositions from Koç and Kurtulmaz [5] explore the results when graded

tensoring two graded algebras. As one would hope, the graded tensor of two central simple

graded algebras results in a third graded central simple algebra.

Proposition 3.1.16. [5, Proposition 2.3] If A and B are central graded algebras, then so is

A ⊗̂B.

Proposition 3.1.17. [5, Proposition 2.4] If A is a central simple graded algebra and B is a

simple graded algebra, then A ⊗̂B is a simple graded algebra. In particular, if A and B are

both graded central simple algebras, then A ⊗̂B is also a graded central simple algebra.

The following proposition gives criteria for when the graded tensor and regular tensor are

isomorphic, which will be useful in the following sections, particularly in defining the graded

Brauer group.

Proposition 3.1.18 ([5, Theorem 2.5]). Let A and B be finite dimensional graded algebras.

If there exists an invertible element z ∈ A such that zn = 1, az = ρ∂aza for all homogeneous

elements a ∈ A, then A ⊗̂B and A⊗B are isomorphic. Further, if z ∈ A0 this isomorphism

is a graded isomorphism.

It is important to note that the hypothesis that zn = 1 is left out in [5], however it

is a necessary hypothesis in order for the result to hold. In order to see this is necessary,

we will need to use some definitions from Chapter 5. Consider the Z/15Z-graded algebras

A and B. Let A be a (1, 0) algebra (3-odd algebra) with discriminant 1 and B an even

algebra with discriminant d (see Definition 4.1.1, 5.1.1, and 5.1.2). We will see in Chapter

5 that the discriminant is an invariant of graded algebras and two isomorphic algebras have

the same discriminant. Applying Theorem 5.2.1, we see the discriminant of A ⊗̂ B is dj

where j ≡ 1 − (k − i)3 (mod 15), 3k ≡ 1 (mod 5), and 3i ≡ −1 (mod 5). Solving these

13



equivalences, we see j ≡ 4 (mod 15). So the discriminant of A ⊗̂ B is d4, whereas the

discriminant of B ⊗̂ A is d. But, if the zn = 1 hypothesis were omitted, the algebras A and

B would satisfy the hypotheses of Theorem 3.1.18. In the following section we will show the

existence of z in an even algebra, but we do not necessarily know zn = 1 in an arbitrary

even algebra. So, Theorem 3.1.18 implies A ⊗̂ B ∼= A ⊗ B ∼= B ⊗ A ∼= B ⊗̂ A, which is a

contradiction since the graded tensor products have different discriminants.

In the following section, Propostion 3.2.6, we will see that the degree 0 element described

in the above proposition always exists in even type algebra with discriminant 1. Moreover,

we know A⊗B ∼= B⊗A, thus this proposition also tells us A⊗̂B ∼= A⊗B ∼= B⊗A ∼= B ⊗̂A

if either A or B is an even algebra with discriminant 1. Thus, this proposition also provides

criteria for A ⊗̂ B ∼= B ⊗̂ A. The above proposition will be useful in the following sections,

particularly in defining the graded Brauer group.

3.2 Structure Theorems for Even and Odd Algebras

This section will focus on the structure results of Z/nZ-graded central simple algebras, which

I will generalize in the next section for n = pq where p, q are distinct primes with p, q 6= 2.

To provide context, we begin by reviewing the structure results in [5] and [15]. The following

theorem in Vela [15] and corollary in Koç and Kurtulmaz [5] are key in developing theory

for graded central simple algebras.

Theorem 3.2.1. ([5, Theorem 4.1 ],[15, Theorem 4.1 ]) Let A be a Z/nZ-graded central

simple algebra. Then, there exists a nonzero homogeneous element z ∈ Z(A) that is of

minimal degree and generates Z(A). Moreover, the degree of z divides n.

Notice if n = p, a prime, there are only two options for the degree of z, 1 and p. This

case has been thoroughly studied and leads itself to the following definitions of even and odd

type algebras.
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Definition 3.2.2. A central simple graded algebra is of even type if Z(A) = F and is of odd

type if Z(A) = F [z], where z is a homogeneous element of degree 1 and zn = d ∈ F ∗.

Notice from Theorem 3.2.1 and Definition 3.2.2 that not all Z/nZ-graded algebras are

either even or odd. In particular, if n is not prime, there is an algebra that is neither even

nor odd. For example, F ⊕ Fz ⊕ Fz2 graded by Z/6Z, where the degree of z is 2, is neither

even nor odd. This will be the focus of Section 4.1.

Example 3.2.3. A quaternion algebra C =
(
a,b
F

)
with basis {1, i, j, k} and relations i2 = a,

j2 = b, and ij = −ji is a Z/2Z-graded central simple algebra over F , with C0 = F ⊕Fk and

C1 = Fi⊕ Fj. Since Z(C) = F , this is an even type algebra.

Example 3.2.4. Consider A = F [x]/(xn−d) = F⊕Fx⊕· · ·⊕Fxn−1, d ∈ F ∗, from example

3.1.3. Since A is commutative, Z(A) = A = F [x], and hence A is an odd algebra.

Corollary 3.2.5 ([5, Corollary 3.4]). Let A be a Z/nZ-graded central simple algebra. A is

of even type if and only if A is central and simple as an ungraded algebra.

The following proposition shows the existence of the element mentioned in Proposition

3.1.18. However it is important to observe, for an even algebra A it is not necessarily true

that the element, u, has the property un = 1. We will later define un to be the discriminant

of an even algebra A. So, if un = 1, in the following theorem (i.e. discriminant of A is 1)

and either A or B is an even algebra, A ⊗̂B ∼= B ⊗̂ A.

Proposition 3.2.6. Let A be a Z/nZ-graded central simple algebra of even type. Then,

there exists a degree 0 element u ∈ A such that ua = ρ∂aau.

Notation: We will often refer to the element u in this Proposition as the “Noether Skolem

element” in an even algebra.
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Proof. Since A is an even GCSA, by Corollary 3.2.5 A is a CSA (as an ungraded algebra).

Define the following F-linear map on A induced by the following,

A
ϕ−→ A

a ∈ H(A) 7−→ ρ∂aa.

We will show that ϕ is an automorphism by checking that it is an injective homomor-

phism. Let a, b ∈ H(A), then

ϕ(ab) = ρ∂a+∂bab = (ρ∂aa)(ρ∂bb) = ϕ(a)ϕ(b).

Now, we will look at the kernel of this map,

ker(ϕ) = span{a ∈ H(A) | ϕ(a) = ρaa = 0} = {0}.

So ϕ is an injective homomorphism, and thus an automorphism. Since A is a CSA, the

Noether-Skolem theorem implies that this automorphism is inner. That is, there exists

u ∈ A such that ϕ(a) = uau−1. Therefore, uau−1 = ρ∂aa which implies the desired result

ua = ρ∂aau.

Now, we must check u ∈ A0, i.e. u is degree 0. We will show CA(u) = A0. Let a ∈ A0,

then ua = au and so a ∈ CA(u). Conversely, if we take a ∈ CA(u), then ua = au. But,on

the other hand we have ua = ρ∂aau, so ρ∂a = 1 and thus ∂a = 0. Thus, we have CA(u) = A0,

and in particular, u ∈ A0.

In their 2012 paper [5], Koç and Kurtulmaz proved the following structure results. The

structure of a graded central simple algebra depends on the type of the algebra. The structure

theorem for the odd algebras gives a very concrete and explicit statement for the graded
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structure. We will give an analogous result for algebras that are neither even nor odd in the

next section, cf. Theorem 4.2.4.

Theorem 3.2.7. [5, Theorem 4.4] Let A be a GCSA of odd type, graded by Z/nZ. Then

(i) A0 is central simple as an ungraded algebra;

(ii) A = A0[z] = A0⊕A0z⊕· · ·⊕A0z
n−1 and CA(A0) = F [z] for some central homogeneous

element z of degree 1 such that zn = a ∈ F ∗, which is uniquely determined up to a

scalar multiple with these properties;

(iii) There are graded isomorphisms

A ∼= (A0) ⊗̂ F 〈 n
√
a〉 ∼= (A0)⊗ F 〈 n

√
a〉,

where F 〈 n
√
a〉 represents the graded algebra F [x]/(xn − a).

(iv) (a) If xn − a is irreducible over F , then A is central simple over the field F ( n
√
a),

(b) If xn − a has a root in F , then Z(A) = F × · · · × F︸ ︷︷ ︸
n-copies

and A = A0 × · · · × A0︸ ︷︷ ︸
n-copies

.

Since an even algebra is, in fact, a central simple algebra, we know from the Wedderburn

Artin Theorem that A ∼= Mr(D) as ungraded algebras for some central division algebra,

D over F . However, this does not provide any information about the graded structure of

A. The following structure theorem, 3.2.9 from [5] describe the graded structure of an even

algebra. However, before we state the structure theorem, we must first recall some notation

and make a definition.

Recall the following grading on Mr(D) from Example 3.1.13 which appears in the fol-

lowing structure theorem: The homogeneous elements of the grading on Mr(D) denoted by

M̃r(D), are of degree i if all the entries in the matrix are degree i elements of D.
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Definition 3.2.8. The generalized Clifford algebra associated with the vector space V =

Fe1⊕Fe2⊕· · ·⊕Fen with an ordered basis {e1, e2, . . . , en} is denoted C(V ) = (a1, a2, · · · , an)
(n)
ρ .

C(V ) is the algebra generated by e1, · · · , en with relations eni = ai for i = 1, . . . , n and

ejei = ρeiej for j > i where a1, · · · , an ∈ F and ρ is an nth root of unity.

We are now ready to state the structure theorem for even algebras.

Theorem 3.2.9. [5, Theorem 4.6] Let A be a GCSA of even type, graded by Z/nZ. Let

D be a central division algebra over F such that A ∼= Mr(D) as ungraded algebras and

characteristic of F does not divide n. Then,

Z(A0) = CA(A0) = F ⊕ Fz ⊕ · · · ⊕ Fzn−1

for some z ∈ Z(A0) with zn = c ∈ F ∗ and the following statements hold:,

(i) If c ∈ (F ∗)n, then there is a graded space V = ⊕p−1
i=0Vi such that

(a) A ∼= End(V ) ⊗̂ (D) as graded algebras,

(b) A0
∼= Mr0(D)× · · · ×Mrn−1(D) where ri = dim(Vi), i = 0, . . . , n− 1,

(c) Z(A0) ∼= F × · · · × F︸ ︷︷ ︸
n-copies

.

(ii) If xn − c is irreducible over F and D has a subfield isomorphic with F ( n
√
c) = Z(A0),

then there exists a grading on D such that

(a) A ∼= M̃r(D) ∼= M̃r(F ) ⊗̂D as graded algebras,

(b) A0
∼= Mn(D0)

(c) A0 is central simple over Z(A0).

(iii) if xn − c is irreducible over F but D has no subfields isomorphic to F ( n
√
c) ∼= Z(A0),

then

18



(a) r = nm and a ∼= (Mm(D)) ⊗̂ (c, 1)
(n)
ρ as graded algebras

(b) A0
∼= Mm(D)⊗ F ( n

√
c),

(c) A0 is central simple over Z(A0).
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Chapter 4

P-Odd Algebras and their Structure

4.1 Definitions

As mentioned previously, the current literature focuses on theory and structure theorems

for GCSAs that are even or odd. There are also many generalizations of the Brauer group,

however there are not many results for the corresponding algebras. We will now focus on

developing structure results for algebras that are neither even nor odd. We will call these

algebras p-odd type, where p is the degree of the z element that generates the center. These

algebras share characteristics of both even and odd algebras. For the remainder of this thesis,

we will turn our attention to Z/pqZ-graded central simple algebras, which are neither even

nor odd.

In this section, we will assume p and q are distinct primes with p > q. However, in the

next section, Section 5, we will further restrict, p, q 6= 2.

The main result of this section is the following structure theorem for p-odd algebras.
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Theorem. Let A be a central simple Z/pqZ graded p-odd algebra with z ∈ A, a degree p

element that generates Z(A) and zq = d ∈ F ∗. Then the following statements hold:

1. A(q) = A0 ⊕ Aq ⊕ A2q ⊕ · · · ⊕ A(p−1)q is central simple as an ungraded algebra, as well

as a Z/pZ-GCSA.

2. A = A(q)[z] = A(q) ⊕ A(q)z ⊕ A(q)z
2 ⊕ · · · ⊕ A(q)z

q−1 and CA(A(q)) = F [z].

3. A ∼= A(q) ⊗̂ F [z] ∼= A(q) ⊗ F [z].

In order to prove the above theorem, we will need to make some new definitions and

prove a few propositions. The three statements in the above theorem are stated and proved

independently in Propositions 4.2.1, 4.2.2, and 4.2.3. The three propositions are then com-

bined to form the above theorem, which is restated toward the end of this section as Theorem

4.2.4. Recall from Theorem 3.2.1, that in a Z/pqZ-graded central simple algebra there exists

a special homogeneous element z of minimal degree that generates the center and whose or-

der divides pq. This leads us to the following definition, which complements the definitions

of even and odd type algebras given in the previous section.

Definition 4.1.1. Let A be a Z/pqZ-graded central simple algebra. We say A is of type

(1, 0), or p-odd, if Z(A) = F ⊕Fz⊕· · ·⊕Fzq−1, where deg(z)=p and zq = d ∈ F ∗. Similarly

we say A is of type (0, 1) or q-odd if the degree of z is q.

Remark. The classical even algebra is type (0, 0) and the classical odd algebra is type (1, 1).

Example 4.1.2. The Z/15Z-graded central simple algebra, A = F [z]/(z5 − d) = F ⊕ Fz ⊕

Fz2 ⊕ Fz3 ⊕ Fz4 where deg(z) = 3 is a 3-odd algebra (p = 3 and q = 5).

It should be noted that the algebra types are represented as elements of Z/2Z × Z/2Z,

whereas in the classical Z/2Z-graded case the types are represented by 0 and 1. Moreover,

at the end of this section we will show that the type of a graded tensor of algebras is given
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by addition in Z/2Z × Z/2Z. For example, graded tensoring a (1, 0) algebra with a (0, 1)

algebra will result in a (1, 1) algebra. This will be shown at the end of this section, as the

structure result simplifies the proof in many cases.

4.2 Structure Results

We now look at the structure theorem for p-odd algebras. This theorem is analogous to the

odd structure result in the previous section, Theorem 3.2.7, but in a more general setting.

Proposition 4.2.1. Let A be a Z/pqZ-graded central simple, p-odd algebra and let z ∈ A be

an element of degree p that generates the center of A and zq = d ∈ F ∗. Then, we can write

A = A(q) ⊕ A(q)z ⊕ A(q)z
2 ⊕ · · · ⊕ A(q)z

q−1, where A(q) = A0 ⊕ Aq ⊕ A2q ⊕ · · · ⊕ A(p−1)q.

Proof. We will show that A = A0⊕A1⊕· · ·⊕Apq−1 = A(q)⊕A(q)z⊕A(q)z
2⊕ · · ·⊕A(q)z

q−1.

Since p and q are relatively prime, we can write any integer k as k = rp+sq for some integers

r and s. Thus we can write each of the integers 0, 1, 2, . . . , pq − 1 as rp + sq (mod pq), for

some r, s.

The homogeneous parts of A(q)[z] are of the form Aiqz
j, which has degree iq+pj (mod pq).

Thus, by changing i and j, we can obtain homogeneous parts of degrees 0, . . . , pq−1. Notice

that we are considering i modulo p and j modulo q. Hence, the Chinese Remainder Theorem

ensures distinct pairs of i and j produce distinct results of iq+pj modulo pq and conversely,

distinct iq + pj (mod pq) come from distinct pairs of i and j modulo p and q, respectively.

Now we check that Aiq+jp = Aiqz
j. Clearly, Aiqz

j ⊂ Aiq+jp since deg(Aiqz
j) = iq + jp.

Now, let a ∈ Aiq+jp. We can write a = (az−j)zj and the degree of az−j is (iq + jp) +

(−jp) = iq. So, az−j ∈ Aiq and a = (az−j)zj ∈ Aiqzj. Thus Aiq+jp ⊂ Aiqz
j and we have

Aiq+jp = Aiqz
j. This, along with the observation from the Chinese Remainder Theorem

above gives us A = ⊕i,jAiqzj. Now, if we consider Aiqz
j with a fixed j, iq will range through
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all the possible multiples of q (modulo pq) and we get A = ⊕jA(q)z
j. We now have the

desired result, A0 ⊕ A1 ⊕ · · · ⊕ Apq−1 = A(q) ⊕ A(q)z ⊕ A(q)z
2 ⊕ · · · ⊕ A(q)z

q−1.

Thus, we can now write any Z/pqZ-graded central simple p-odd algebra as A = A(q) ⊕

A(q)z ⊕A(q)z
2 ⊕ · · · ⊕A(q)z

q−1. We will now turn our attention to the subalgebra A(q) of A.

If we define B = A(q), we can view B as a Z/pZ graded algebra with Bk = Akq. To verify

this, observe BiBj = AiqAjq ⊂ Aiq+jq = A(i+j)q = Bi+j and Bp = Apq = A0 = B0.

Proposition 4.2.2. Let A be a Z/pqZ-graded central simple p-odd algebra and let z ∈ A

be an element of degree p that generates the center of A and zq = d ∈ F ∗. Then A(q) is a

Z/pZ-graded central simple algebra under the grading described above, as well as a central

simple algebra (as an ungraded algebra).

Proof. We will first show that A(q) is graded central as a Z/pZ-graded algebra. We will show

that Ẑ(A(q)) ⊂ Ẑ(A) = F . Let x ∈ Ẑ(A(q)). Then, the degree of x as an element of A is

a multiple of q, say lq, and therefore in terms of the Z/pZ grading of A(q), x has degree l.

Moreover, x graded commutes with all elements of A(q) since x ∈ Ẑ(A(q)). We want to show

x graded commutes with all elements of A = A(q) ⊕ A(q)z ⊕ · · · ⊕ A(q)z
q−1, so we only need

to check that x graded commutes with z. Now, z is in the center of A, Z(A), so xz = zx,

but this is the same as xz = ρlqpzx. Note the subtle observation that since ρ is a primitive

pqth root of unity, ω = ρq is a primitive pth root of unity. So we have xz = ωlpzx, which is

the statement for graded commuting when viewing A(q) as a Z/pZ-graded algebra. Thus,

x ∈ Ẑ(A) and so Ẑ(A(q)) ⊂ Ẑ(A) = F . Therefore, Ẑ(A(q)) = F .

Now, we show that A(q) is graded simple. Let I = I0 ⊕ Iq ⊕ · · · ⊕ I(p−1)q be a nonzero

homogeneous ideal in A(q). Consider the ideal J = I ⊕ Iz ⊕ · · · Izq−1 in A. J is a nonzero
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graded ideal of A, but A is graded simple, so J = A. So we have

I ⊕ Iz ⊕ · · · Izq−1 = A(q) ⊕ A(q)z ⊕ · · · ⊕ A(q)z
q−1.

As mentioned previously if r and s are integers such that r = 0, . . . p− 1 and s = 0 . . . q− 1,

then the linear combinations, rq + sp, give distinct integers modulo pq. Since the above

expressions are both decompositions of A, they have the same grading. Moreover, both

the decompositions of I and A(q) only consist of degrees which are multiples of q. Since the

decompositions give distinct integers mod pq, we do not get any repeats in the decomposition.

In particular, on the right hand side the degrees that are a multiple of q only occur in A(q).

Similarly, on the left hand side, the degrees that are a multiple of q only occur in the I term,

since I is a homogeneous ideal of A(q). Thus, since these two decompositions have the same

grading we get A0 = I0, Aq = Iq, . . . , A(p−1)q = I(p−1)q. Therefore we have, A(q) = I.

We will not show that A(q) is central simple as an ungraded algebra.

Z(A(q)) = A(q) ∩ CA(A(q)) = A(q) ∩ Z(A).

Note that it is easy to see Z(A) = CA(A(q)) from Proposition 4.2.1 since A = A(q) ⊕

A(q)z ⊕ · · · ⊕ A(q)z
q−1 and z is central. Now, A(q) consists of homogeneous elements with

degrees that are a multiple of q, while Z(A) = F [z] only consists of homogeneous elements

of degrees that are multiples of p (since the degree of z is p). Since p and q are prime,

A(q) ∩ Z(A) = A0 ∩ F = F . Thus, Z(A(q)) = F , and A(q) is F -central.

Now, we know that A(q) is a Z/pZ-graded central simple algebra and Z(A(q)) = F . Then,

by Corollary 3.2.5, A(q) is central simple as an ungraded algebra.
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Observe, if we let B = A(q), we have A = B ⊕ Bz ⊕ . . . ⊕ Bzq−1, where z is degree p.

Now, we just showed that B is a Z/pZ-graded central simple algebra, so B is either even or

odd. But as we just showed, Z(B) = F , so B is even. The following Proposition shows that

a p-odd algebra is the graded tensor of an even algebra with a more simple, explicit p-odd

algebra. This decomposition will prove useful in the next section in regards to defining the

discriminant of an algebra and various other propositions.

Proposition 4.2.3. If A is a graded central simple algebra of p-odd type and z is a degree p

element that generates the center of A and zp = d ∈ F ∗, then A ∼= A(q) ⊗̂F [z] ∼= A(q)⊗F [z].

Proof. Recall, A = A(q)[z] = A(q)F [z] from 4.2.1. Consider the F - linear map induced by,

A = A(q)F [z]
ϕ−→ A(q) ⊗ F [z].

azi 7−→ a⊗ zi

We first check that the above map ϕ is, in fact, a homomorphism. Let a, b ∈ A(q), then

both a, b have degrees which are a multiple of q.

ϕ(azi · bzj) = ϕ(ab · zizj)

= ab⊗ zizj

= (a⊗ zi)(b⊗ zj)

= ϕ(azi)ϕ(bzj),

since z ∈ Z(A). It is also important to note (a⊗zi)(b⊗zj) = ρ∂z·∂bab⊗zzj = ab⊗zzj because

∂z = p and ∂b = kq for some k. Furthermore, this map is surjective and the dimensions of

A(q)F [z] and A(q) ⊗ F [z] are equal, so ϕ is an ungraded isomorphism.

Since the elements of A(q) have degrees which are a multiple of q and elements of F [z] have

degrees that are a multiple of p, A(q) and F [z] commute and A(q) ⊗̂ F [z] ∼= A(q) ⊗ F [z].
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Theorem 4.2.4. Let A be a central simple Z/pqZ-graded p-odd algebra with z ∈ A, a element

of degree p that generates the center of A and zq = d ∈ F ∗,

1. A(q) = A0 ⊕ Aq ⊕ A2q ⊕ · · · ⊕ A(p−1)q is central simple as an ungraded algebra, as well

as a Z/pZ-GCSA.

2. A = A(q)[z] = A(q) ⊕ A(q)z ⊕ A(q)z
2 ⊕ · · · ⊕ A(q)z

q−1, and CA(A(q)) = F [z].

3. A ∼= A(q) ⊗̂ F [z] ∼= A(q) ⊗ F [z].

Proof. This theorem is a combination of the previous three propositions, so all that remains

is to show CA(A(q)) = F [z]. Since A = A(q)⊕A(q)z⊕A(q)z
2⊕ · · · ⊕A(q)z

q−1, we see Z(A) =

CA(A(q)). But A is a p-odd algebra, so Z(A) = F [z], and thus we have CA(A(q)) = F [z].

Now that we have the structure results, we will prove how the algebra types combine

when graded tensored together. The following proposition will also come in useful in the

next section since it shows a map from the graded Brauer group to the group of algebra

types is a homomorphism.

Proposition 4.2.5. Let A(i,j) represent a Z/pqZ-graded central simple algebra of type (i, j),

where (i, j) ∈ Z/2Z×Z/2Z. Then A(i,j) ⊗̂A(k,l) = A(i+k,j+l), where + is addition in Z/2Z×

Z/2Z.

Proof. We will consider each case separately.

A proof of the combinations of the classic even (1, 1) and odd (0, 0) algebras can be found

in Vela [15, Theorem 6.4]. This includes the graded tensor of two even algebras, the graded

tensor of two odd algebras, and the graded tensor of an even and an odd algebra.

Let A be a (0, 0) algebra and B a (1, 0) algebra. We want to show A ⊗̂B is of type (1, 0).

Since A is even, there exists u ∈ A of degree 0, such that ua = ρ∂aau and B is p-odd, so

there is an element z ∈ Z(B) of degree p. Consider u−p ⊗̂ z ∈ A ⊗̂ B. The degree of this

26



element is p and for any a ∈ A and b ∈ B, we have

(u−p ⊗̂ z)(a ⊗̂ b) = ρp·∂a(u−pa ⊗̂ zb)

= ρp·∂aρ−p·∂a(au−p ⊗̂ bz)

= au−p ⊗̂ bz

= (a ⊗̂ b)(u−p ⊗̂ z).

So, we have a degree p element, u−p ⊗̂ z, in Z(A ⊗̂B). Recall, the element in a GCSA that

generates the center is of minimal degree, so in order for A ⊗̂ B to be a p-odd algebra, we

need to show that Z(A ⊗̂B) cannot be generated by an element with degree less than p, i.e.

with degree 1. Notice, we have already shown there is a degree p element in the center. If,

in addition there were a degree q element in the center, we would necessarily have a degree

1 element in the center since there exist i, j such that 1 = pi+ qj. We will show there are no

elements of degree q in Z(A⊗̂B). We begin by assuming there is an element a⊗̂b ∈ Z(A⊗̂B)

with ∂(a+ b) = ∂(a) + ∂(b) = q. Since B = B(q) ⊗̂F [z], there is a degree 0 element, v ∈ B(q)

such that vb = ρ∂bbv for all b ∈ B(q). In particular, since a ⊗̂ b ∈ Z(A ⊗̂B), a ⊗̂ b commutes

with u ⊗̂ 1 and 1 ⊗̂ v,

(a ⊗̂ b)(u ⊗̂ 1) = (u ⊗̂ 1)(a ⊗̂ b),

which implies

au ⊗̂ b = ua ⊗̂ b = ρ∂aau ⊗̂ b.

Thus, ρ∂a = 1 and ∂a ≡ 0 (mod pq). Now, q = ∂(a + b) = ∂(b) and from the structure

theorem for p-odd algebras, we know b ∈ A(q). Now, we consider,

(a ⊗̂ b)(1 ⊗̂ v) = (1 ⊗̂ v)(a ⊗̂ b),
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which impies

a ⊗̂ bv = a ⊗̂ vb = ρ∂ba ⊗̂ bv,

since b ∈ B(q). Similar to above, we get ρ∂b = 1, which implies ∂b ≡ 0 (mod pq). However,

∂b = q, so we have arrived at a contradiction. Therefore, there are no elements of degree q

in Z(A ⊗̂ B) and hence no degree 1 elements. Thus, in this case, an element of degree p is

the only possible degree for the element that generates the center (since it must divide pq).

By reversing the role of p and q in the above argument we see the graded tensor of a

(0, 0) algebra and a (1, 0) algebra results in a (1, 0) algebra. A similar argument holds for

B(1,0) ⊗̂ A(0,0), where z ⊗̂ up has degree p and is in the center of B(1,0) ⊗̂ A(0,0). Again by

reversing the role of p and q the result holds for B(0,1) ⊗̂ A(0,0).

Now, let A and B both be p-odd algebras (i.e., type (1, 0)) and we will show A ⊗̂B is an

even algebra. Using the structure theorem for p-odd algebras we can write A = A(q) ⊗̂ F [x]

and B = B(q) ⊗̂F [z], where both x, z are degree p elements that generate the center of A and

B respectively. Now, A ⊗̂B = A(q) ⊗̂ F [x] ⊗̂B(q) ⊗̂ F [z]. Recall, in general A ⊗̂B 6∼= B ⊗̂A

since you cannot, in general, define a homomorphism between them. However, since the

elements of F [x] have degree a multiple of p and elements of B(q) have degree a multiple of

q and ρpq = 1, we can define a homomorphism and F [x] ⊗̂B(q)
∼= B(q) ⊗̂ F [x]. So, we have

A ⊗̂B ∼= (A(q) ⊗̂B(q)) ⊗̂ (F [x] ⊗̂ F [z]).

We have already showed that the graded tensor of two even algebras is even, so we must

only show that F [x] ⊗̂F [z] is even. We will accomplish this by showing Z(F [x] ⊗̂F [z]) = F .

It is clear that F ⊂ Z(F [x] ⊗̂ F [z]), so we must only check the reverse inclusion. Let

xi ⊗̂ zj ∈ Z(F [x] ⊗̂ F [z]) for some i, j, then

(xi ⊗̂ zj)(xk ⊗̂ zl) = (xk ⊗̂ zl)(xi ⊗̂ zj)
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for all k, l. In particular, if we take k = 1 and l = 0 we get

(xi ⊗̂ zj)(x ⊗̂ 1) = ρp
2j(xix ⊗̂ z) = (xxi ⊗̂ z) = (x ⊗̂ 1)(xi ⊗̂ z),

which forces p2j ≡ 0 (mod pq), i.e. pq|p2j. This, in turn implies q|j, or j ≡ 0 (mod q), and

jp ≡ 0 (mod pq). Now, deg(zj) = pj ≡ 0 (mod pq), so zj ∈ F (the only degree 0 elements

of F [z] are F . Similarly, taking k = 0 and l = 1, results in pi ≡ 0 (mod pq) and it follows

that xi ∈ F . Thus we have shown Z(F [x] ⊗̂ F [z]) = F , and so we have an even GCSA.

Reversing the role of p and q in the above argument shows that the graded tensor of two

(0, 1) algebras is even, (0, 0).

Let A = A(1,0) and B = B(0,1). Using the structure theorem for p-odd algebras we know

A = A(q) ⊗̂ F [z] and B = B(p) ⊗̂ F [x], where deg(z) = p and deg(x) = q and z, x generate

the centers of their respective algebras. Moreover, we know there exist degree 0 elements u

and v in A(q) and B(p) (since these are even algebras), respectively, such that ua = ρ∂aau

and vb = ρ∂bbv for all a ∈ A(q) and b ∈ B(p). Consider the element uk ⊗̂ zi ⊗̂ vl ⊗̂ xj ∈

A(q)⊗̂F [z]⊗̂B(p)⊗̂F [x]. Since p and q are relatively prime, there exist i, j such that ip+jq ≡ 1

(mod pq) and so we can choose i, j such that the element has degree 1. Moreover, we choose

k and l such that k ≡ −qj (mod pq) and l ≡ pi (mod pq). Let a ∈ A(q) and b ∈ B(p), then

in the following computation ∂a · p ≡ 0 (mod pq) and ∂b · q ≡ 0 (mod pq). We will now

show uk ⊗̂ zi ⊗̂ vl ⊗̂ xj is in the center of A ⊗̂B, however in an effort to simplify notation we

will write a to mean ∂a in the exponent of ρ.
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[(uk ⊗̂ zi) ⊗̂ (vl ⊗̂ xj)][(a ⊗̂ z) ⊗̂ (b ⊗̂ x)] = ρqj(a+p)(uk ⊗̂ zi)(a ⊗̂ z) ⊗̂ (vl ⊗̂ xj)(b ⊗̂ x)

= ρqjaρpia+qjb(uka ⊗̂ ziz) ⊗̂ (vlb ⊗̂ xjx)

= ρqja(uka ⊗̂ ziz) ⊗̂ (vlb ⊗̂ xjx)

= ρqjaρka+bl(auk ⊗̂ zzi) ⊗̂ (bvl ⊗̂ xxj)

= ρqja+ka+bl(a ⊗̂ z)(uk ⊗̂ zi) ⊗̂ (b ⊗̂ x)(vl ⊗̂ xj)

= ρbl(a ⊗̂ z)(uk ⊗̂ zi) ⊗̂ (b ⊗̂ x)(vl ⊗̂ xj)

= ρblρ−pi(b+q)[(a ⊗̂ z) ⊗̂ (b ⊗̂ x)][(uk ⊗̂ zi) ⊗̂ (vl ⊗̂ xj)]

= ρbl−pib+piq[(a ⊗̂ z) ⊗̂ (b ⊗̂ x)][(uk ⊗̂ zi) ⊗̂ (vl ⊗̂ xj)]

= [(a ⊗̂ z) ⊗̂ (b ⊗̂ x)][(uk ⊗̂ zi) ⊗̂ (vl ⊗̂ xj)]

So, we have found a degree 1 element in the center of A ⊗̂ B. We know that the center

of a GCSA is generated by a central element of minimal degree by Theorem 3.2.1. Since we

found a central element of degree 1, the center must be generated by an element of degree 1

and hence the resulting algebra, A ⊗̂B, is odd.

For A(0,1) ⊗̂B(1,0), you can switch the role of p and q in the above explanation.

Let A = A(1,0) be a p-odd algebra and B = B(1,1) an odd algebra. Using the structure

theorems, we can write A = A(q) ⊗̂ F [x] and B = B0 ⊗̂ F [z], where ∂x = p, ∂z = 1, and x

and z generate the center of A and B, respectively. Now, we can write

A ⊗̂B = (A(q) ⊗̂ F [x]) ⊗̂ (B0 ⊗̂ F [z]) ∼= (A(q) ⊗̂B0) ⊗̂ (F [x] ⊗̂ F [z]),

since algebras concentrated in degree 0 commute with any algebra. A(q) and B0 are both even,

so their graded tensor is an even algebra as well. We have already shown the graded tensor

of a (0, 0) with a (0, 1) algebra results in a (0, 1), so all that remains to show is F [x] ⊗̂ F [z]
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is a (0, 1) algebra. The element 1 ⊗̂ zq is a degree q central element in F [x] ⊗̂F [z]. Now, we

will show that there cannot be an element of degree p in Z(F [x] ⊗̂F [z]), which then implies

there cannot be an element of degree 1 since we already know there is an element of degree

q in the center. Assume there exists xi ⊗̂ zj ∈ Z(F [x] ⊗̂F [z]) with deg(xi ⊗̂ zj) = pi+ j ≡ p

(mod pq). Then, in particular xi ⊗̂ zj commutes with x ⊗̂ 1,

(xi ⊗̂ zj)(x ⊗̂ 1) = (x ⊗̂ 1)(xi ⊗̂ zj).

Combining both sides, we get

ρpj(xix ⊗̂ zj) = (xxi ⊗̂ zj) = (xix ⊗̂ zj),

which gives pj ≡ 0 (mod pq). This congruence implies j ≡ 0 (mod q). Similarly, we get

i ≡ 0 (mod q) by considering (xi⊗̂zj)(1⊗̂z) = (1⊗̂z)(xi⊗̂zj). Now, rewriting the congruence

pi + j ≡ p (mod pq), we get j ≡ p(1 − i) (mod pq) or equivalently pq|j − p(1 − i). So we

have, q divides j − p(1− i) and j, so q must also divide p(1− i). Since p and q are distinct,

it must be the case that q|1 − i, or i ≡ 1 (mod q). However, we cannot have both i ≡ 1

(mod q) and i ≡ 0 (mod q), since neither p nor q can be equal to 2. So we have arrived at

a contradiction and hence the center of F [x] ⊗̂ F [z] cannot contain an element of degree p,

and therefore also does not contain an element of degree 1. Hence, A ⊗̂B is a (0, 1) algebra.

A similar argument holds for B ⊗̂A and the result for the graded tensor of a (0, 1) and a

(1, 1) algebra follows by reversing the role of p and q in the above argument. We will briefly

discuss the case B ⊗̂A where B and A are as defined in the previous case. Let A = A(1,0) be

a p-odd algebra and B = B(1,1) an odd algebra. Using the structure theorems, we can write

A = A(q) ⊗̂F [x] and B = B0 ⊗̂F [z], where ∂x = p, ∂z = 1, and x and z generate the center
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of A and B, respectively. Now, we can write

B ⊗̂ A = (B0 ⊗̂ F [z]) ⊗̂ (A(q) ⊗̂ F [x]) ∼= B0 ⊗̂ (F [z] ⊗̂ F [x]) ⊗̂ A(q).

An argument similar to the previous case shows, by contradiction, F [z]⊗̂F [x] cannot contain

a central element of degree p and hence cannot contain a degree 1 element.

Proposition 4.2.6. If A is a Z/pqZ-graded (left) central simple algebra, then ẐL(A) =

ẐR(A).

Proof. We will show this by considering each type of algebra (even, odd, p-odd) since this

will allow us to utilize the structure of each type.

First we will show the result for an even Z/pqZ-graded (left) central simple algebra A.

It is clear that ẐL(A) = F ⊂ ẐR(A). Now, let c ∈ ẐR(A), then ac = ρ∂a·∂cca for all

homogeneous elements a ∈ A. Since A is a even algebra, by Proposition 3.2.6 we know there

exists a degree element u ∈ A such that ua = ρ∂aau for all homogeneous elements a ∈ A.

On one hand, we have

uc = ρ∂ccu.

On the other hand, ∂u = 0 and c right graded commutes with u, i.e.

uc = ρ∂c·∂ucu = cu.

Thus, we must have ρ∂c = 1 and ∂c = 0. Now, the degree of c is 0 so graded commuting with

c is the same as (regular) commuting with c. So, c ∈ Z(A). Since A is an even algebra, it is

an (ungraded) central simple algebra, and thus Z(A) = F . Therefore, ẐR(A) ⊂ F = ẐL(A)

and we conclude ẐR(A) = ẐL(A).
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If A is an odd algebra, then by Theorem 3.2.7 there is a graded isomorphism such that

A ∼= (A0)⊗F 〈 pq
√
a〉 ∼= (A0) ⊗̂F 〈 pq

√
a〉 and Z(A0) = F . For simplicity, we will use the regular

tensor product in this proof. Recall the following notation, F 〈 pq
√
a〉 = F [x]/(xpq − a). It

is clear that ẐL(A) = F ⊂ ẐR(A). To see the reverse containment, let c ⊗ xk ∈ ẐR(A),

where c ∈ A0. So, c⊗ xk right graded commutes with all elements of A, in particular c⊗ xk

right graded commutes with 1 ⊗ x ∈ A. Recall the degree of x is 1, so ∂(c ⊗ xk) = k and

∂(1⊗ x) = 1. Using the definition for the right graded center, we get

(1⊗ x)(c⊗ xk) = ρk(c⊗ xk)(1⊗ x),

which implies

c⊗ xxk = ρk(c⊗ xkx).

But on the other hand, F 〈 pq
√
a〉 is commutative, so

c⊗ xxk = c⊗ xkx.

So, we now have

c⊗ xkx = ρk(c⊗ xkx),

which implies ρk = 1 and hence k = 0. So, our original element c⊗xk = c⊗1 ∈ (A0)⊗F 〈 pq
√
a〉

and we know ẐR(A) ⊂ (A0). So, c⊗ 1 must graded commute with a⊗ 1 for all a ∈ A0. That

is,

(a⊗ 1)(c⊗ 1) = ρ0(c⊗ 1)(a⊗ 1),

which gives ac ⊗ 1 = ca ⊗ 1 for all a ∈ A0. Thus, we must have that c ∈ Z(A0) = F . This

proves ẐR(A) ⊂ F = ẐL(A) and the desired conclusion follows ẐR(A) = F = ẐL(A).
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Finally, we consider a p-odd algebra, A. By Theorem 4.2.4 A ∼= A(q) ⊗̂F [z] ∼= A(q)⊗F [z],

where z is a degree p element that generates the center of A and zpq = d ∈ F ∗. Again, it

is clear that ẐR(A) = F ⊂ ẐL(A) and we will show the reverse containment. Let c ⊗ zk ∈

ẐR(A), then deg(c) = iq for some i. Since, c⊗ zk is in the right graded center of A, it right

graded commutes with all elements of A, in particular 1⊗ z ∈ A. That is,

(1⊗ z)(c⊗ zk) = ρp(iq+pk)(c⊗ zk)(1⊗ z)

= ρp
2k(c⊗ zk)(1⊗ z).

After combining the tensors and recalling z is in the center of A we get,

c⊗ zzk = ρp
2kc⊗ zzk.

This implies ρp
2k = 1 and so we must have p2k ≡ 0(mod pq), which implies k is a multiple

of q. Thus deg(zk) = p(jq) ≡ 0 for some j. So, we have deg(c ⊗ zk) = deg(c) and hence

ẐR(A) ⊂ A(q). Now, any element in ẐR(A) looks like c⊗ 1, where c ∈ A(q). Now, c⊗ 1 must

right graded commuted with a⊗ 1 for any homogeneous a ∈ A(q). That is,

(a⊗ 1)(c⊗ 1) = ρ∂a·∂c(c⊗ 1)(a⊗ 1),

which implies

ac⊗ 1 = ρ∂a·∂cca⊗ 1.

The above equation shows that c right graded commutes with any homogeneous element

a ∈ A(q). Thus, c ∈ ẐR(A(q)) = F since A(q) is graded central. Therefore we have shown

ẐR(A) ⊂ F = ẐL(A) and ẐR(A) = F = ẐL(A).
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Chapter 5

Structure of the Graded Brauer

Group

In this chapter we will review some work describing the Graded Brauer Group. We will

continue to assume our algebra is graded by Z/pqZ where p, q are distinct primes, not equal

to 2. We will define the notion of a discriminant for an algebra that is neither even nor odd

and show how this discriminant, together with the type, can be combined to form a non-

abelian group, Q(F ), which keeps track of information about the algebras. In particular, one

can define the graded Brauer group, the objects of which are equivalence classes of algebras.

We will show that there is a natural homomorphism from the graded Brauer group to the

group Q(F ) which provides this desired information (that is, the type and discriminant).

Below we will briefly recall the definition of the discriminant in the even case, provide a new

definition of the discriminant for the other algebra types and describe the structure of the

group Q(F ) and how it relates to the graded Brauer group. Lastly, we will show how the

classic Brauer group is a subgroup of the graded Brauer group.
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5.1 The Graded Brauer Group

We will denote the discriminant of A using the notation, δ(A). Recall, in an even type

algebra, there exists a degree 0 element u from Proposition 3.2.6, which arose from an

application of the Noether-Skolem Theorem.

Definition 5.1.1. The discriminant of an even Z/nZ GCSA is given by un = d, where u is

the element described above.

For the following definitions, we will need to recall the structure theorems for odd and

p-odd algebras. For an odd algebra A, Theorem 3.2.7 implies A ∼= (A0) ⊗̂ F [z]/(zpq − d) ∼=

(A0) ⊗ F [z]/(zpq − d), where z is a degree 1 element that generates the center of A. For a

p-odd algebra, Theorem 4.2.4 implies A ∼= A(q) ⊗̂F [z]/(zq− d) ∼= A(q)⊗F [z]/(zq− d), where

z is a degree p element that generates the center of A.

Definition 5.1.2. The discriminant of an odd Z/pqZ-graded central simple algebra,

A = (A0) ⊗̂ F [z]/(zpq − d),

is defined to be the discriminant of the even algebra

(A0) ⊗̂ F [z]/(zpq − d) ⊗̂ F [x]/(xpq − 1),

where deg(z) = deg(x) = 1.

An alternate, but equivalent, definition for the discriminant of an odd Z/pqZ GCSA is

δ(A) = dj, where j ≡ −1 (mod pq) and d = zpq (z is the degree 1 element that generates

the center of A).

We define the discriminant of a p-odd algebra in a similar manner.
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Definition 5.1.3. The discriminant of a p-odd Z/pqZ graded central simple algebra,

A = A(q) ⊗̂ F [z]/(zq − d),

is defined to be the discriminant of the even algebra

A(q) ⊗̂ F [z]/(zq − d) ⊗̂ F [x]/(xq − 1),

where deg(z) = deg(x) = p.

Again, we have an alternate, but equivalent definition for a p-odd algebra. A p-odd Z/pqZ

GCSA has discriminant d′dip, where d = zq (z is the degree p element that generates the

center), ip ≡ −1 (mod q), and d′ is the discriminant of the even algebra A(q). The definition

for a q-odd algebra is analogous.

Next we will describe the structure of the graded Brauer group over F .

Definition 5.1.4. Let A and B be two Z/pqZ graded central simple algebras over F . We

say A and B are equivalent in GB(F ) (or graded Brauer equivalent) if A ⊗̂ End(V ) ∼=

B ⊗̂ End(W ), for some graded vector spaces, V =
−1⊕
i=0

Vi and W =
n−1⊕
i=0

Wi. The grading

on End(V ) is given by Ei = {f ∈ End(V ) | f(Vj) ⊂ Vj+i}. The equivalence class of A is

denoted 〈A〉.

In this section we show the relation defined above is an equivalence relation and the

collection of equivalence classes form a non-abelian group, which we call the graded Brauer

Group, denoted GB(F ).

Definition 5.1.5. The graded Brauer group, which we denote GB(F ), is the group of graded

central simple algebras under the graded Brauer equivalence, defined above.

The following proposition is necessary in order to show the above relation is an equivalence

relation and the operation in the graded Brauer group is well defined.
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Proposition 5.1.6. Let V,W be graded vector spaces. Then End(V )⊗̂End(W ) ∼= End(V ⊗̂

W ).

Proof. Recall, A ⊗̂ B ∼= A ⊗ B as vector spaces, so End(V ) ⊗̂ End(W ) and End(V ⊗̂W )

are isomorphic as vector spaces. Thus, to show they are graded isomorphic, we only need to

define a graded algebra homomorphism. Define the following map for homogeneous elements

and extend it to be F linear,

ϕ : End(V ) ⊗̂ End(W ) −→ End(V ⊗̂W ),

f ⊗̂ g 7−→ Tf⊗̂g

where f : V −→ V , g : W −→ W , and the map Tf⊗̂g ∈ End(V ⊗̂W ) acts on homogeneous

elements, v ⊗̂ w ∈ V ⊗̂W in the following way, Tf⊗̂g(v ⊗̂ w) = ρ∂g·∂vf(v) ⊗̂ g(w). We first

check that ϕ is a homomorphism, i.e.

ϕ((f ⊗̂ g)(f ′ ⊗̂ g′)) = ϕ(f ⊗̂ g) ◦ ϕ(f ′ ⊗̂ g′), (5.1.1)

where ◦ denotes composition in End(V ⊗̂W ). We begin by looking at the left hand side of

equation 5.1.1,

ϕ((f ⊗̂ g)(f ′ ⊗̂ g′)) = ϕ(ρ∂g·∂f
′
(f ◦ f ′) ⊗̂ (g ◦ g′))

= ρ∂g·∂f
′
Tf◦f ′⊗̂g◦g′ (5.1.2)

We now consider the right hand side of equation 5.1.1,

ϕ(f ⊗̂ g) ◦ ϕ(f ′ ⊗̂ g′) = Tf⊗̂g ◦ Tf ′⊗̂g′ . (5.1.3)

To see that both of the above describe the same map, we will apply each to an element

v ⊗̂ w ∈ V ⊗̂W (v, w are homogeneous elements of V,W , respectively). Applying the map
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in (5.1.2) to v ⊗̂ w, we get,

ρ∂g·∂f
′
Tf◦f ′⊗̂g◦g′(v ⊗̂ w) = ρ∂g·∂f

′+(∂g+∂g′)∂vf ◦ f ′(v) ⊗̂ g ◦ g′(w). (5.1.4)

Now, applying the map in 5.1.3 to v ⊗̂ w we get,

Tf⊗̂g ◦ Tf ′⊗̂g′(v ⊗̂ w) = Tf⊗̂g(ρ
∂g′∂vf ′(v) ⊗̂ g′(w))

= ρ∂g
′·∂v+∂g(∂f ′+∂v)f ◦ f ′(v) ⊗̂ g ◦ g′(w). (5.1.5)

It is clear that the maps in (5.1.4) and (5.1.5) are the same. Therefore, ϕ((f ⊗̂ g)(f ′ ⊗̂ g′)) =

ϕ(f ⊗̂ g) ◦ ϕ(f ′ ⊗̂ g′) and ϕ is, indeed, a homomorphism. Moreover, it is simple to see that

this homomorphism is graded. Let f ∈ End(V ) and g ∈ End(W ) with deg(f) = i and

deg(g) = j. Then the degree of f ⊗̂ g in End(V ) ⊗̂ End(W ) is i + j. The homomorphism

is given by, ϕ(f ⊗̂ g) = Tf⊗̂g, so ϕ(f ⊗̂ g)(v ⊗̂ w) = ρjkf(v) ⊗̂ g(w), where v is a degree

k element of V and w is a degree l element of W . The degree of the right hand side is

(i + k) + (j + l) = (i + j) + (k + l) and the degree of v ⊗̂ w is k + l which implies that the

degree of ϕ(f ⊗̂ g) = Tf⊗̂g is i + j in End(V ⊗̂W ). Therefore, we have defined a graded

algebra homomorphism and since End(V ) ⊗̂ End(W ) and End(V ⊗̂W ) are isomorphic as

vector spaces, they are isomorphic as graded algebras.

Before we check that the relation given in Definition 5.1.4 is an equivalence relation, we

first make an important observation about E = End(V ), where V is a graded vector space.

This algebra is even since Z(E) = F . Moreover, the discriminant of E is 1. To see this,

define the endomorphism ϕ : V → V by ϕ(v) = ρ∂vv. This is a degree 0 homomorphism and

for any ψ ∈ E we have ϕ ◦ ψ = ρψψ ◦ ϕ since,
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ϕ(ψ(v)) = ρψ(v)ψ(v)

= ρ∂ψ+∂vψ(v)

= ρψψ(ρvv)

= ρψψ(ϕ(v))

for any homogeneous v ∈ V . So this map ϕ is the Noether-Skolem element of E that exists

an even algebra from Proposition 3.2.6. Now, to find the discriminant of E, by definition,

we raise this element to the pqth power,

ϕpq(v) = ρpq·∂vv = v.

Hence, ϕpq is the identity on V , and so we have δ(E) = 1.

We now check that the relation given in Definition 5.1.4 is, in fact, an equivalence relation.

It is clear that the defined relation is reflexive. Recall Proposition 3.1.18, which implies that

for an even algebra with discriminant 1, E, we have A ⊗̂ E ∼= E ⊗̂ A. Since End(V ) is

an even algebra with discriminant 1, the relation is symmetric. To see that the relation is

transitive, assume A ∼ B and B ∼ C. Now, there exist graded vector spaces V , V ′,W , and

W ′ such that A ⊗̂End(V ) ∼= B ⊗̂End(V ′) and B ⊗̂End(W ) ∼= C ⊗̂End(W ′). If we graded

tensor the first equation with End(W ) on the right and the second equation with End(V ′)

on the right, we get

A ⊗̂ End(V ) ⊗̂ End(W ) ∼= B ⊗̂ End(V ′) ⊗̂ End(W )

and

B ⊗̂ End(W ) ⊗̂ End(V ′) ∼= C ⊗̂ End(W ′) ⊗̂ End(V ′).

40



Recall that if E is an even algebra with discriminant 1, then A ⊗̂ E ∼= E ⊗̂ A. Finally, by

5.1.6 we see that End(V ) ⊗̂ End(V ′) ∼= End(V ⊗̂ V ′), which gives

A ⊗̂ End(V ⊗̂W ) ∼= B ⊗̂ End(V ′ ⊗̂W ) ∼= C ⊗̂ End(V ′ ⊗̂W ′),

and so the relation is transitive.

We will now check that the operation 〈A1〉 · 〈A2〉 = 〈A1 ⊗̂ A2〉 on equivalence classes is

well defined. Let 〈A〉 = 〈A′〉 and 〈B〉 = 〈B′〉. Then there exist graded vector spaces V , V ′,

W , and V ′ such that A ⊗̂End(V ) ∼= A′ ⊗̂End(V ′) and B ⊗̂End(W ) ∼= B′ ⊗̂End(W ′). Then

we have,

A ⊗̂ End(V ) ⊗̂B ⊗̂ End(W ) ∼= A′ ⊗̂ End(V ′) ⊗̂B′ ⊗̂ End(W ′).

By 3.1.18 we have A ⊗̂ End(V ) ∼= End(V ) ⊗̂ A, which implies

A ⊗̂B ⊗̂ End(V ) ⊗̂ End(W ) ∼= A′ ⊗̂B′ ⊗̂ End(V ′) ⊗̂ End(W ′).

Finally, since End(V ) ⊗̂ End(V ′) ∼= End(V ⊗̂ V ′), we get

A ⊗̂B ⊗̂ End(V ⊗̂W ) ∼= A′ ⊗̂B′ ⊗̂ End(V ′ ⊗̂W ′).

Hence, 〈A ⊗̂ B〉 = 〈A′ ⊗̂ B′〉 and the operation is well defined. We now have the structure

of a non-commutative monoid, where the identity is 〈F 〉 = 〈End(V )〉 and F is considered

trivially graded over itself. Note that this is non-commutative since, in general, 〈A〉 · 〈B〉 =

A ⊗̂B 6∼= B ⊗̂A = 〈B〉 · 〈A〉. In order to define inverses, we must first define the notion of a

graded opposite algebra.

Definition 5.1.7. The graded opposite algebra of A, denoted A∗, is defined to be A∗ = {a∗ |

a ∈ A} with grading given by A∗i = {a∗ | a ∈ Ai} and operation a∗ · b∗ = ρ∂a·∂b(ba)∗.
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In the following observation we need to distinguish left and right graded center, so we

return to labeling the center as left or right for a moment. Let us consider ẐL(A∗) = {a∗ ∈

A | a∗b∗ = ρ∂a·∂bb∗a∗, ∀b∗ ∈ A}. Let a∗ ∈ ẐL(A∗), then for any b∗ ∈ A

a∗b∗ = ρ∂a·∂bb∗a∗ ⇐⇒ (ba)∗ = ρ∂a·∂b(ab)∗

⇐⇒ ba = ρ∂a·∂bab.

Thus a∗ ∈ ẐL(A∗) if and only if a ∈ ẐR(A). Thus, we have ẐL(A∗) = {a∗ ∈ A | a ∈ ẐR(A)}.

Recall, in Proposition 4.2.6 we showed for a Z/pqZ-graded central simple algebra the left and

right graded center are equal. So, ẐL(A∗) = {a∗ ∈ A | a ∈ ẐR(A) = ẐL(A)}. So if A is (left)

graded central, then so is A∗. Additionally, if I is graded ideal in A∗, then {a ∈ A | a∗ ∈ I}

is a graded ideal in A. Thus, if A is graded simple, A∗ is also graded simple. Thus A a

GCSA over F implies that A∗ is a GCSA over F.

Proposition 5.1.8. If A is a GCSA, then A ⊗̂ A∗ ∼= End(A) as graded algebras.

Proof. Define θ : A ⊗̂ A∗ −→ End(A) to be the F -linear map induced by θ(a ⊗̂ b∗)(c) =

ρ∂b·∂eacb, where a, b, c are homogeneous elements of A. θ takes an element, a ⊗̂ b∗ of degree

∂a+ ∂b in A ⊗̂A∗ and sends it to an endomorphism, θ(a ⊗̂ b∗). This endomorphism takes an

element c in A of degree ∂c and send its to ρ∂b·∂cacb, an element of degree ∂a + ∂b + ∂c in

A. This implies that θ(a ⊗̂ b)(Ai) ⊂ A∂a+∂b+i. Thus θ(a ⊗̂ b) is a degree ∂a+ ∂b element in

End(A). Thus, the map θ preserves the grading since it takes an element of degree ∂a+ ∂b

to an element of the same degree.
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Now we check that θ is a graded homomorphism. Let a, c, e ∈ A and b∗, d∗ ∈ A∗ be

homogeneous elements, then

θ((a ⊗̂ b∗)(c ⊗̂ d∗))(e) = θ(ρ∂b·∂cac ⊗̂ b∗d∗)(e)

= ρ∂b·∂cθ(ρ∂b·∂d(ac ⊗̂ (db)∗)(e)

= ρ∂b(∂c+∂d)ρ∂e(∂b+∂d)ac(e)db

= ρ∂b(∂c+∂d+∂e)ρ∂e·∂da(ced)b

= θ(a ⊗̂ b∗)(ρ∂e·∂dced)

= [θ(a ⊗̂ b∗)θ(c ⊗̂ d∗)](e)

Now, from the discussion before this proposition, we know if A is a GCSA, so is A∗. Then

A ⊗̂A∗ is a GCSA and ker(θ) is trivial, and so θ is injective. We see that this is, in fact, an

isomorphism since both A ⊗̂ A∗ and End(A) have dimension dim(A)2.

The above proposition shows that 〈A〉−1 = 〈A∗〉 since 〈End(A)〉 = 〈F 〉 is the identity in

GB(F ), and so GB(F ) is a non-abelian group, which we will call the graded Brauer group.

Note that the Brauer-Wall group, which is the graded Brauer group for GCSA’s graded by

Z/2Z, is abelian. However, as we see here, the graded Brauer group is not necessarily abelian

in general.

The two following statements will be useful when further exploring the relation between

the Brauer group and the Graded Brauer group.

Lemma 5.1.9. F [z]/(zq − 1) ∼= (F [z]/(zq − 1))∗, where deg(z) = p. Similarly, F [x]/(xpq −

1) ∼= (F [x]/(xpq − 1))∗.
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Proof. To prove the claim, define the map, ϕ

ϕ : F [z]/(zq − 1) −→ (F [z]/(zq − 1))∗

zi 7−→ ρp
2(1+2+···+(i−1))(zi)

∗
.

We first check this map is a well defined, graded homomorphism. Let zi ∈ F [z]. Then,

[ϕ(z)]i = (z∗)i

= ρp
2(1+2+···+(i−1))(zi)

∗

= ϕ(zi).

Moreover,

ϕ(zq − 1) = ρp
2(1+2+···+(q−1))(zq)∗ − 1∗ = ρp

2( (q−1)q
2 )(zq)∗ − 1∗ = 1∗ − 1∗ = 0∗,

so the map is well defined. Recall the grading on the graded opposite is given by Ai = {a∗ |

a ∈ Ai}, so this map preserves the grading and is a graded homomorphism. To see this map

is surjective, notice the preimage of an element (zj)∗ is ρ−p
2(1+2+···+(j−1))zj since

ϕ(ρ−p
2(1+2+···+(j−1))zj) = ρ−p

2(1+2+···+(j−1))ϕ(zj)

= ρ−p
2(1+2+···+(j−1))ρp

2(1+2+···+(j−1))(zj)∗

= (zj)∗.

Lastly, to see the map is injective, let zi ∈ ker(ϕ). Then, ϕ(zi) = 0∗, which implies

ρp
2(1+2+···+(i−1))(zi)

∗
= 0∗ and hence we must have zi = 0. Now, we have shown the claim

holds, F [z]/(zq − 1) ∼= (F [z]/(zq − 1)∗.
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Corollary 5.1.10. 〈F [z]/(zq − 1) ⊗̂ F [z]/(zq − 1)〉 = 〈F 〉, where deg(z) = p. Similarly,

〈F [x]/(xpq − 1) ⊗̂ F [x]/(xpq − 1)〉 = 〈F 〉, where deg(x) = 1.

Proof. By Lemma 5.1.9 〈F [z]/(zq − 1) ⊗̂F [z]/(zq − 1)〉 = 〈F [z]/(zq − 1) ⊗̂ (F [z]/(zq − 1))∗〉

and Proposition 5.1.8 〈F [z]/(zq − 1) ⊗̂ (F [z]/(zq − 1))∗〉 = 〈End(F [z]/(zq − 1))〉 = 〈F 〉.

5.2 Invariants and Classification

We are interested in exploring the relationship between the classic Brauer group, B(F ),

and the graded Brauer group, GB(F ). Our next goal is to define a (non abelian) group,

Q(F ) which will provide information about two invariants: the type and discriminant of

an algebra. In fact, we will define Q(F ) to be a semidirect product of D = F ∗/(F ∗)pq,

the possible discriminants and T = Z/2Z× Z/2Z, the types of a GCSA. This group, Q(F )

is analogous to the group Q(F ) defined in [6] for a Z/2Z-graded central simple algebra.

However, there are some key differences between the two cases cases. For example, in the

Z/2Z case Q(F ) is abelian and Q ∼= T × D with (t, d)(t′, d′) = (t + t′, (−1)tt
′
dd′) (in the

Z/2Z case T = Z/2Z).

The following theorem will help us to understand the relation between Q(F ) and the

graded Brauer group.

Theorem 5.2.1. GB(F )/GBE,1(F ) ∼= Q(F ) where Q(F ) = DoT with operation (d, t)(d′, t′) =

(d(d′)t, t+ t′) and action given by

d(0,0) = d,

d(1,1) = di, where i ≡ −1 (mod pq),

d(1,0) = dj, where j ≡ 1− (k − i)p (mod pq), pk ≡ 1 (mod q), and − pi ≡ 1 (mod q),

d(0,1) = dl, where l ≡ 1− (r − s)q (mod pq), qr ≡ 1 (mod p), and − qs ≡ 1 (mod p).
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Proof. We begin defining a well-defined map, ϕ, which sends an equivalence class in the

graded Brauer group to its type, which is an element of Z/2Z × Z/2Z. This map is well

defined since all the algebras in a graded Brauer equivalence class have the same type. To

see this, recall that End(V ) is even, i.e. type (0, 0), and Proposition 4.2.5 states when two

algebras are graded tensored the type of the resulting algebra is the sum of the types as

elements of Z/2Z × Z/2Z. Moreover, Proposition 4.2.5 also directly implies that ϕ is a

homomorphism. Now, the kernel of this map is the equivalence classes in GB(F ) with type

(0, 0), or even algebras, which we denote GBE(F ). This is represented by the following short

exact sequence,

1 −→ GBE(F ) −→ GB(F )
ϕ−→ T −→ 1.

Now, for an algebra in GBE(F ) there is a well-defined discriminant map, ψ, which is part

of the following short exact sequence where the kernel consists of classes of even algebras

with discriminant 1, denoted GBE,1(F ),

1 −→ GBE,1(F ) −→ GBE(F )
ψ−→ D −→ 1.

First, notice ψ is a homomorphism since we are restricted to classes of even type algebras.

Let A,B be even GCSAs, and u, v the Noether Skolem elements of A,B respectively, with

upq = d and vpq = d′. Then, u ⊗̂ v is the Noether Skolem element of A ⊗̂ B. Now,

ψ(〈A ⊗̂ B〉) = δ(A ⊗̂ B) = (u ⊗̂ v)pq = upq ⊗̂ vpq = dd′ = δ(A)δ(B) = ψ(〈A〉)ψ(〈B〉). The

map, ψ, is well defined because End(V ) has discriminant 1, where V is a graded vector

space. So, any two algebras in the same graded Brauer equivalence class have the same

discriminant.

Since GBE,1(F ) ⊂ GBE(F ) ⊂ GB(F ), we can now combine the two previous short exact
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sequences to create the following sequence, which will help us define a splitting,

1 −→ GBE(F )/GBE,1(F ) −→ GB(F )/GBE,1(F ) −→ GB(F )/GBE(F ) −→ 1.

We use D = GBE(F )/GBE,1(F ) and T = GB(F )/GBE(F ) obtained from the first two

short exact sequences, and project GB(F ) to each component of the short exact sequence

to obtain the diagram below,

GB(F )

��ww
1 // D // GB(F )/GBE,1(F ) // T

θ̄
gg

//

θ

hh
1.

Now, if we define a splitting, θ of the above short exact sequence, then we can recognize

GB(F )/GBE,1(F ) as a semidirect product of D and T , i.e. GB(F )/GBE,1
∼= D o T .

Remark. We have made the restriction, p, q 6= 2, because there does not exists a splitting if

either p or q is 2.

Recall, we originally defined T = Z/2Z × Z/2Z, so in order to find a splitting, θ, we

must only define where the generators, (1, 0) and (0, 1), of T map to. We will define θ by

first mapping the generators to GB(F ) via θ̄ and then projecting to GB(F )/GBE,1(F ). We

will map (1, 0) to the equivalence class of F [z] with discriminant 1 in GB(F ), where the

degree of z is p. Similarly, we map (0, 1) to the class of F [x] with discriminant 1, where

the degree of x is q. Below we will show θ is a homomorphism, but let us assume this for a

moment in order to describe the action of T on D. Assuming θ is a homomorphism, then

GB(F )/GBE,1(F ) is a semidirect product of D and T . The action defined from the splitting

θ in the sequence,

1 // D
β // D o T

α // T //

θ

bb 1,
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is given by φt(d) = β−1 (θ(t)β(d)θ−1(t)). Recall D = GBE(F )/GBE,1(F ), so the map β is an

inclusion sending an algebra with discriminant d, to it’s equivalence class inGB(F )/GBE,1(F ) ∼=

Do T . So, β(d) = (d, (0, 0)). We defined θ above and t has order 2 so θ(t−1) = θ(t). Recall,

θ(t) is 〈F 〉, 〈F [z]/(zq−1)〉, 〈F [w]/(wp−1)〉, or 〈F [x]/(xpq−1)〉. So, β−1 (θ(t)β(d)θ−1(t)) =

β−1 (θ(t) (d, (0, 0)) θ(t)). Now, the preimage of θ(t) (d, (0, 0)) θ(t) (which is an even, (0, 0),

algebra) under β is the discriminant of θ(t) (d, (0, 0)) θ(t). Thus, the action given by the

splitting is φt(d) = δ (θ(t) (d, (0, 0)) θ(t)). This can be computed explicitly in four cases by

conjugating an even algebra A with discriminant d, by an algebra given by the splitting θ

and finding the discriminant of the resulting even algebra (i.e finding the Noether-Skolem

element and raising it to the pqth power). The resulting action is as follows:

φ(0,0) = d,

φ(1,1) = di, where i ≡ −1 (mod pq),

φ(1,0) = dj, where j ≡ 1− (k − i)p (mod pq), pk ≡ 1 (mod q), and − pi ≡ 1 (mod q),

φ(0,1) = dl, where l ≡ 1− (r − s)q (mod pq), qr ≡ 1 (mod p), and − qs ≡ 1 (mod p).

Notice, that the above action is the same as the action defined for Q(F ) = DoT in the state-

ment of the theorem. So, Q(F ) := D o T and GB(F )/GBE,1(F ) ∼= D oφ T are semidirect

products of the same group with the same action and therefore GB(F )/GBE,1(F ) ∼= Q(F ).
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Now, to complete the proof, we check that θ is indeed a homomorphism by checking each

case. For simplicity, we will use the following notation in the below computations:

θ(0, 0) = 〈F 〉

θ(1, 0) = 〈F [z]/(zq − 1)〉,where z is degree p,

θ(0, 1) = 〈F [w]/(wp − 1)〉,where w is degree q ,

θ(1, 1) = 〈F [x]/(xpq − 1)〉,where x is degree 1 .

To see that θ is a homomorphism, we check

θ(t+ t′) = θ(t) ⊗̂ θ(t′) = 〈θ(t) ⊗̂ θ(t′)〉 (5.2.1)

for all the combinations of the 4 algebra types. In the following proof, we will use F [z] to

denote F [z]/(zq − 1) in order to simplify the notation in the computations.

• θ ((0, 0) + (0, 0)) = θ(0, 0) = 〈F 〉 = 〈F ⊗̂ F 〉 = 〈F 〉 ⊗̂ 〈F 〉 = θ(0, 0) ⊗̂ θ(0, 0).

• θ ((0, 0) + (1, 0)) = θ(1, 0) = 〈F [z]〉 = 〈F ⊗̂ F [z]〉 = 〈F 〉 ⊗̂ 〈F [z]〉 = θ(0, 0) ⊗̂ θ(1, 0).

• θ ((0, 0) + (0, 1)) = θ(0, 1) = 〈F [w]〉 = 〈F ⊗̂ F [w]〉 = 〈F 〉 ⊗̂ 〈F [w]〉 = θ(0, 0) ⊗̂ θ(0, 1).

• θ ((0, 0) + (1, 1)) = θ(1, 1) = 〈F [x]〉 = 〈F ⊗̂ F [x]〉 = 〈F 〉 ⊗̂ 〈F [x]〉 = θ(0, 0) ⊗̂ θ(1, 1).

• θ ((1, 0) + (0, 0)) = θ(1, 0) = 〈F [z]〉 = 〈F [z] ⊗̂ F 〉 = 〈F [z]〉 ⊗̂ 〈F 〉 = θ(1, 0) ⊗̂ θ(0, 0).

• On one hand, θ ((1, 0) + (1, 0)) = θ(0, 0) = 〈F 〉. On the other hand, θ(1, 0) ⊗̂ θ(1, 0) =

〈F [z]〉 ⊗̂ 〈F [z]〉 = 〈F [z] ⊗̂ F [z]〉 = 〈F 〉, by Corollary 5.1.10.

Remark. The other cases that involve only one type, θ(t + t) = θ(t) ⊗̂ θ(t) are very

similar and follow the same process as this case.
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• In this case we will use a different approach than in the previous cases. We have

θ ((1, 0) + (0, 1)) = θ(1, 1) = 〈F [x]〉, which we want to be equal to θ(1, 0) ⊗̂ θ(0, 1) =

〈F [z]〉 ⊗̂ 〈F [w]〉 = 〈F [z] ⊗̂ F [w]〉. Recall, deg(x) = 1 with xpq = 1, deg(z) = p with

zq = 1, and deg(w) = q with wp = 1. Consider the element zi ⊗̂ wj ∈ F [z] ⊗̂ F [w],

where pi + qj ≡ 1 (mod pq). This is a degree 1 central element of F [z] ⊗̂ F [w], with

(zi ⊗̂wj)pq = 1 and using the structure theorem for odd algebras we see 〈F [z]⊗̂F [w]〉 =

〈B0 ⊗̂ F [zi ⊗̂ wj]〉, where B0 are the degree 0 elements of F [z] ⊗̂ F [w].

We now consider the elements of B0. The degree 0 elements in F [z] ⊗̂ F [w] are of the

form zk ⊗̂wl where pk+ ql ≡ 0 (mod pq). Using the Chinese Remainder Theorem, we

can consider this equivalence modulo p and q individually. So, we get pk+ ql ≡ ql ≡ 0

(mod p) and pk + ql ≡ pk ≡ 0 (mod q) which implies p|l and q|k. i.e. l = pr and

k = qs. Then our original element, zk ⊗̂wl = zqs ⊗̂wpr = (zq)s ⊗̂ (wp)r = 1 ⊗̂1. Hence,

B0
∼= F .

Thus far, we have shown

〈F [z] ⊗̂ F [w]〉 = 〈B0 ⊗̂ F [zi ⊗̂ wj]〉 = 〈F ⊗̂ F [zi ⊗̂ wj]〉 = 〈F [zi ⊗̂ wj]〉.

We will now, show 〈F [z] ⊗̂F [w]〉 = 〈F [zi ⊗̂wj]〉, by showing F [z] ⊗̂F [w] ∼= F [zi ⊗̂wj]

via defining an isomorphism,

ϕ : F [x] −� F [zi ⊗̂ wj]/((zi ⊗̂ wj)pq − 1).

x 7−→ zi ⊗̂ wj

Since x and zi ⊗̂ wj are both degree 1, this map clearly preserves the grading. To see
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this is a homomorphism,

[ϕ(x)]k = (zi ⊗̂ wj) · · · (zi ⊗̂ wj)︸ ︷︷ ︸
k times

= (zi ⊗̂ wj)k since deg(z) = p and deg(w) = p

= ϕ(xk).

So we have a graded homomorphism. Moreover, by the first isomoprhism theorem, we

know F [x]/ ker(ϕ) ∼= F [zi ⊗̂wj]/((zi ⊗̂wj)pq − 1) as vector spaces. It is clear, that the

kernel of ϕ is generated by xpq−1, and thus F [x]/(xpq−1) ∼= F [zi⊗̂wj]/((zi⊗̂wj)pq−1).

We have shown the two are isomorphic as vector spaces and that the homomorphism

preserves the algebraic and graded structure. Thus we have a graded isomorphism.

To summarize this case, we have

θ(1, 0) ⊗̂ θ((0, 1)) = 〈F [z] ⊗̂ F [w]〉

= 〈F [zi ⊗̂ wj]〉

= 〈F [x]〉

= θ(1, 1)

= θ ((1, 0) + (0, 1)) .

• We have θ ((1, 0) + (1, 1)) = θ(0, 1), which we want to be equal to θ(1, 0) ⊗̂θ(1, 1). The
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following cases we have already proved will be useful in showing this case:

θ(1, 1) = θ ((1, 0) + (0, 1)) = θ(1, 0) ⊗̂ θ(0, 1)

θ ((1, 0) + (1, 0)) = θ(1, 0) ⊗̂ θ(1, 0)

θ ((0, 0) + (0, 1)) = θ(0, 0) ⊗̂ θ(0, 1).

Now, we see

θ(1, 0) ⊗̂ θ(1, 1) = θ(1, 0) ⊗̂ θ ((1, 0) + (0, 1))

= θ(1, 0) ⊗̂
(
θ(1, 0) ⊗̂ θ(0, 1)

)
=
(
θ(1, 0) ⊗̂ θ(1, 0)

)
⊗̂ θ(0, 1)

= θ ((1, 0) + (1, 0)) ⊗̂ θ(0, 1)

= θ(0, 0) ⊗̂ θ(0, 1)

= θ ((0, 0) + (0, 1))

= θ(0, 1)

= θ ((1, 0) + (1, 1)) .

Remark. The cases of the form θ ((0, 1) + t) = θ((0, 1))⊗̂θ(t) follow from the previous

four cases by switching the role of p and q.

• θ ((1, 1) + (0, 0)) = θ(1, 1) = 〈F [x]〉 = 〈F [x] ⊗̂ F 〉 = 〈F [x]〉 ⊗̂ 〈F 〉 = θ(1, 1) ⊗̂ θ(0, 0).

• This is very similar to the previous case, but we include it for completion. We have

θ ((1, 1) + (1, 0)) = θ(0, 1), which we want to be equal to θ(1, 1)⊗̂θ(1, 0). We will again
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use some cases we have already shown,

θ(1, 1) ⊗̂ θ(1, 0) = θ ((0, 1) + (1, 0)) ⊗̂ θ(1, 0)

=
(
θ(0, 1) ⊗̂ θ(1, 0)

)
⊗̂ θ(1, 0)

= θ(0, 1) ⊗̂
(
θ(1, 0) ⊗̂ θ(1, 0)

)
= θ(0, 1) ⊗̂ θ ((1, 0) + (1, 0))

= θ(0, 1) ⊗̂ θ(0, 0)

= θ ((0, 1) + (0, 0))

= θ(0, 1)

= θ ((1, 1) + (1, 0)) .

• This case is very similar to the previous two cases, but we include it for completion.

We have θ ((1, 1) + (0, 1)) = θ(1, 0), which we want to be equal to θ(1, 1) ⊗̂ θ(0, 1). We

will again use some cases we have already shown,

θ(1, 1) ⊗̂ θ(0, 1) = θ ((1, 0) + (0, 1)) ⊗̂ θ(0, 1)

=
(
θ(1, 0) ⊗̂ θ(0, 1)

)
⊗̂ θ(0, 1)

= θ(1, 0) ⊗̂
(
θ(0, 1) ⊗̂ θ(0, 1)

)
= θ(1, 0) ⊗̂ θ ((0, 1) + (0, 1))

= θ(1, 0) ⊗̂ θ(0, 0)

= θ ((1, 0) + (0, 0))

= θ(1, 0)

= θ ((1, 1) + (0, 1)) .
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• The final case θ ((1, 1) + (1, 1)) = θ(1, 1)⊗̂θ(1, 1) is very similar to the case θ ((1, 0) + (1, 0)) =

θ(1, 0)⊗̂θ(1, 0). It can be shown that F [x]/(xpq−1) ∼= (F [x]/(xpq − 1))∗ (where x is de-

gree 1) in the same manner we proved the equivalent statement for the θ ((1, 0) + (1, 0))

case. Thus we get,

θ(1, 1) ⊗̂ θ(1, 1) = 〈F [x] ⊗̂ F [x]〉

= 〈F [x] ⊗̂ (F [x])∗〉

= 〈End(F [x])〉

= 〈F 〉

= θ(0, 0)

= θ ((1, 1) + (1, 1)) .

We will now discuss a key, but subtle, observation regarding the action of the semidirect

product defined in the Theorem above. The action defined is (not obviously) trivial in

certain cases. We will consider the action of (1, 0) on the algebra A(q). Recall, A(q) =

A0 ⊕ Aq ⊕ A2q ⊕ · · · ⊕ A(p−1)q. Since A(q) is central, it is even as a Z/pqZ-graded central

simple algebra and hence contains a Noether-Skolem element u such that upq = d. Now,

we can also view A(q) = B = B0 ⊕ B1 ⊕ · · · ⊕ Bp−1 as an even Z/pZ graded central simple

algebra. So B contains a Noether-Skolem element, v, such that vp = d′ and vb = ρ∂bbv.

Now, vqb = ρq∂(b)bvq, so we have u = vq (since the Noether-Skolem element is unique up to

pqth powers). Now

d = upq = (vq)pq = (vp)q
2

= ((d′)q)
q

. So, d is already a qth power. By the Chinese Remainder Theorem F ∗/(F ∗)pq ∼= F ∗/(F ∗)p×

F ∗/(F ∗)q. Under this isomorphism we have, d 7→ (d, 0) (because it is a qth power) and
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dj 7→ (d1+p(i−k), 0) where j ≡ 1 + p(i− k) (mod pq), pk ≡ 1 (mod q), and pi ≡ −1 (mod q).

Clearly, j ≡ 1 (mod p), so (d1+p(i−k), 0) = (d, 0) in F ∗/(F ∗)p×F ∗/(F ∗)q. So, we see that the

action by (1, 0) on A(q) is trivial. There are also other cases in which the action is simplified

due to the Noether-Skolem element already being a power. For example a similar argument

shows that the action by a (1, 0) algebra on A(p) is (0, dj) = (0, d−1) in F ∗/(F ∗)p×F ∗/(F ∗)q.

Proposition 5.2.2. The map, i : B(F ) −→ GB(F ), which takes a (ungraded) CSA, A over

F , to the trivially graded algebra, (A), is a well-defined, injective homomorphism.

Proof. To see this is a well-defined map, consider A and B to be CSAs over F such that [A] =

[B] in B(F ). Then there exist vector spaces V and W such that A⊗End(V ) ∼= B⊗End(W ).

But A ⊗ End(V ) ∼= (A) ⊗̂ End((V )), where both A and V are considered trivially graded

(i.e. concentrated in degree 0) and similarly for B. This implies that 〈(A)〉 = 〈(B)〉, and so

i([A]) = i([B]).

Now, we check that the map i is a homomorphism. Let A and B be CSAs over F in

B(F ), then

i([A] · [B]) = i([A⊗B])

= 〈(A⊗B)〉

= 〈(A) ⊗̂ (B)〉

= 〈(A)〉 · 〈(B)〉

= i([A]) · i([B]).

To show injectivity, let A and B be CSAs over F . If i([A]) = i([B]), then there exists a

graded isomorphism and graded vector spaces V and W such that,

(A) ⊗̂ End(V ) ∼= (B) ⊗̂ End(W ).

Now, (A) and (B) are concentrated in degree 0 so (A)⊗̂End(V ) ∼= A⊗End(V ), and similarly
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(B) ⊗̂ End(W ) ∼= B ⊗ End(W ). Hence we get an isomorphism

A⊗ End(V ) ∼= B ⊗ End(W ),

which implies [A] = [B] in B(F ).

Recall, that for each graded central simple algebra, we can associate to it a type and

discriminant. The group Q(F ) which we defined earlier in this section is a semidirect product

of the algebra types (T = Z/2Z× Z/2Z) and discriminants (D = F ∗/F ∗pq). We can define

a map by associating the isomorphism class of a GCSA to an element in Q(F ), by sending

the class to it’s type and discriminant.

Corollary 5.2.3. There is a well defined group homomorphism j : GB(F ) −→ Q(F ) via

〈A〉 7−→ (δ(A), type(A)) with ker(j) = GBE,1(F ).

Proof. In the previous theorem we showed Q(F ) ∼= GB(F )/GBE,1(F ). Then, there is a well

defined homomorphism j : GB(F ) −→ GB(F )/GBE,1(F ) ∼= Q(F ) with ker(j) = GBE,1(F ).

We will now take a closer look at the group theory involved in the previous theorem,

which shows GB(F )/GBE,1(F ) ∼= Do T = Q(F ) in order to recognize the map j as defined

in this theorem. Recall the short exact sequence defined in the proof of the previous theorem,

Theorem 5.2.1

1 // D
β // GB(F )/GBE,1(F ) α //

γ

ff T //

θ

hh
1.

We will use the above short exact sequence to define a map, ψ : GB(F )/GBE,1(F ) −→

DoT . First notice we can map from GB(F )/GBE,1(F ) to T by the map α. The splitting γ is

obtained from the splitting θ by γ(〈A〉) = β−1 (〈A〉 · (θ ◦ α) (〈A〉)) = β−1
(
〈A ⊗̂ (θ ◦ α)(A)〉

)
.

Notice, that A ⊗̂ (θ ◦ α)(A) is an even algebra (since (θ ◦ α)(A) is the same type as A)

and so is in the kernel of α. Since this sequence is exact, 〈A ⊗̂ (θ ◦ α)(A)〉 is in the image

of β. Now, γ is just the definition of the discriminant of A, so we can recognize the map
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ψ : GB(F )/GBE,1(F ) −→ D o T by 〈A〉 7→ (γ(A), α(A)) = (δ(A), type(A)). It is important

for the above explanation to recall, θ(α(〈A〉))−1 = θ(α(〈A〉))∗ = θ(α(〈A〉)) by Lemma 5.1.9.

Theorem 5.2.4. Let i and j be the maps given by B(F )
i−→ GB(F )

j−→ Q(F ). The map

i takes a central simple algebra A over F and sends it to the graded algebra (A). If A is a

GCSA with 〈A〉 ∈ ker(j), then 〈A〉 = i[A]. Recall, [A] denotes the equivalence class of A in

B(F ) viewed as an ungraded CSA.

Proof. Let A be any GCSA such that 〈A〉 ∈ ker(j). Then A is an even algebra with

discriminant 1. If A1 = A2 = · · · = An−1 = 0 (i.e. A = A0) then i[A] = 〈A〉 since

A0⊗End(V ) ∼= A0 ⊗̂End(V ). If Ai 6= 0 for some 1 < i ≤ n− 1, using the theory of descent

we can assume we have case (i) (zpq = c ∈ (F ∗)pq, where z is the degree 0 element that

generates the center of A0) of Theorem 3.2.9, i.e. there exists a graded vector space V =
n−1⊕
i=0

such that A ∼= End(V ) ⊗̂ (D), where A ∼= Mr(D) and D is a central division algebra over

F . Since A ∼= End(V ) ⊗̂ (D), we have 〈A〉 = 〈(D)〉 and 〈(D)〉 = i[D] since (D) is concen-

trated in degree 0. Now, D and A are Brauer equivalent ([D] = [A]) since A ∼= Mr(D). So,

i[D] = i[A] and hence 〈A〉 = i[A].

Theorem 5.2.5. There is a group isomorphism B(F ) ∼= GBE,1(F )

Proof. By Proposition 5.2.2 we have a well defined, injective homomorphism i′ : B(F ) →

GBE,1(F ) = ker(j), where j is the well defined homomorphism from GB(F ) to Q(F ) in

Proposition 5.2.3 and Proposition 5.2.4. To see this map is surjective, let 〈A〉 ∈ GBE,1(F ) =

ker(j). Then, by Proposition 5.2.4, since 〈A〉 ∈ ker(j), i([A]) = 〈A〉, where [A] is the Brauer

class in B(F ). Thus we have found a preimage of 〈A〉 in B(F ), and our map is surjective.

Thus, we have an isomorphism.
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The above theorem allows us to recognize the classic Brauer group as a subgroup of

the graded Brauer group. Moreover, applying this result to Theorem 5.2.1 we see Q(F ) ∼=

GB(F )/B(F ).
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