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ABSTRACT 

Precise thermochemical properties of benzaldehyde, gallium pentahydride, boron 

pentahydride, aluminum pentahydride, ozone, and silicon dicarbide have been determined 

through systematic extrapolations of ab initio energies within the Coupled Cluster framework of 

higher order excitation corrections.  The discrepancy between experiment and theory regarding 

benzaldehyde’s internal barrier to rotation has been resolved, with a recommended barrier of 7.7 

kcal mol-1.  Gallium pentahydride may exist at low temperatures, as a weak complex between 

gallane and molecular hydrogen, with a D0 of 0.11 kcal mol-1.  The deprotonation energies of 

group thirteen pentahydrides follow an unusual pattern: 326.3 (AlH5), 331.0 (GaH5), and 332.4 

(BH5) kcal mol-1.  The gap in observed properties usually falls between boron and aluminum, 

with gallium’s properties often very similar to those of aluminum.  Several ionization and 

excitation pathways to the quartet state of ozone radical cation were investigated to aid in 

synthesis.  From the ground state of ozone, vertical ionizations to 4A2 O3
+, 4B2 O3

+, and 4A1 O3
+ are 

possible at 13.91, 14.39, and 14.90 eV, respectively.   Other possible pathways to the quartet 

states are 4A1 O3
+ ← 3A2 O3 , 4A2 O3

+ ← 3A2 O3 , 4A1 O3
+ ← 3B2 O3 , 4A2 O3

+ ← 3B1 O3 , 4B2 O3
+ 

← 3B1 O3 , 4A1 O3
+ ← 2B2 O3

+, and 4A2 O3
+ ← 2B2 O3

+ with vertical IPs of 12.46, 12.85, 12.82, 



12.46, 12.65, 1.36, and 1.26 eV, respectively.  One of the most accurate potential energy surfaces 

in literature was developed for SiC2 by implementing a composite method, c-CBS CCSDT.  This 

method includes extrapolation to the complete basis set limit, CCSD(T), with additional CCSDT, 

relativistic, and core-valence corrections.  It yields a barrier to linearity for SiC2 of 5.45 ± 0.1 

kcal mol-1, fundamental vibrational frequencies for the “T-shaped” ground state of 1752, 846, 

and 15 cm-1, and ΔfH0
° (SiC2) of 152.45 ± 0.20 kcal mol-1. 
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CHAPTER 1 

INTRODUCTION AND BACKGROUND MATERIAL 

1.1 QUANTUM MECHANICS 

The late nineteenth and early twentieth centuries saw many interesting discoveries in 

physics and chemistry regarding the particles which make up the macroscopic world.  Although 

classical mechanics accurately predicts the behavior of objects in the visible world, from 

projectiles and machinery to planetary motion, its failure to correctly describe very small 

particles was noticed in the 1900s.  When physicists used statistical mechanics and the 

electromagnetic-wave model of light to predict the intensity vs. frequency curve for black body 

radiation, their results were in complete disagreement with the experimental data in the high-

frequency region.  In 1900, Max Planck achieved agreement with the observed blackbody-

radiation curve by hypothesizing that only certain quantities of light energy could be emitted, in 

units corresponding to 6.6 x 10-34 J s.  This constant, now known as Planck’s constant (h), marks 

the beginning of quantum mechanics.  The successful explanation of the photoelectric effect by 

Einstein confirmed energy quantization of photons.  Quantum Mechanics culminated in 1926 

with Schrodinger’s time-independent equation, ܪ෡Ψ ൌ EΨ, to predict discrete energies of systems 

where classical mechanics fails. 

Computational quantum chemistry simply applies quantum mechanics to problems in 

chemistry.  It is used for interpreting vibrational spectra by frequencies and intensities, 

determining relative stabilities of molecules; molecular properties and rate constants, analyzing 



NMR spectra, mechanisms of chemical reactions, and even protein folding; every branch of 

chemistry has been influenced by computational quantum chemistry. 

1.2 COUPLED CLUSTER 

Coupled Cluster (CC) theory1 has emerged as perhaps the most reliable, yet 

computationally affordable, method for obtaining approximate solutions to the electronic 

Schrödinger equation, and for the prediction of molecular properties. The “exponential ansatz” is 

one of the central equations of coupled cluster theory.  The exponentiated cluster operator, T , 

when applied to the reference determinant, Φ0, produces a new wavefunction containing cluster 

functions.  Each of these correlates the motion of electrons within specific orbitals: 

ˆ

                                     
[ ] )()(),()()( 432121 xxxxxx lkijji f ϕϕϕϕψ +=   (1.1) 

where is the cluster function.  The cluster operators, , are 

frequently referred to as excitation operators, since the determinants they produce when 

operating on Φ0 resemble excited states in Hartree-Fock theory.  Truncation of the cluster 

operator at specific substitution/excitation levels leads to a hierarchy of coupled cluster 

techniques2-8 

∑
>

=
ba

nbma
ab
ijnmij tf )()(),( xxxx ϕϕ nT̂

                                                   CCSDTTTTT

CCSDTTT

CCDTT

⎯→⎯++≡
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⎯→⎯≡

321

21
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ˆˆˆˆ

ˆˆˆ

ˆˆ

where “S”, “D”, and “T” indicate that single-, double-, and triple-excitations, respectively, are 

included in the wavefunction expansion.  With the exponential ansatz, CC is one of the premier 

methods for computing the correlation energy necessary for accurate molecular predictions.  Not 
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only is CC size-consistent, but it recovers more electron correlation energy than its counterpart, 

Configuration Interaction (CI), with similar scaling.  

 1.3 FOCAL POINT ANALYSES 

With improved computer technology, higher levels of theory can now be routinely 

applied to novel chemical systems.  It is possible to systematically approach the complete basis 

set (CBS) limit using carefully constructed families of basis sets, such as Dunning’s correlation-

consistent polarized valence basis sets (cc-pVXZ).9-11  Successive members of this family are 

constructed by adding additional levels of valence and polarization functions to the previous 

basis set.  Each basis set is characterized by the principle number of the highest shell.  For 

example, cc-pVDZ and cc-pVTZ basis sets contract to 3s2p1d and 4s3p2d1f, respectively.  

While near exponential convergence is observed for Hartree-Fock energies, utilizing a three 

point fit;12,13 

                                                   ܽ ൅ ܾ݁ି௖௑  (1.2) 

correlation energies employ a two point al form,  function

                                                                ܽ ൅ ܾܺିଷ  (1.3) 

where X is the cardinal number of the basis set.14   

The determination of the energy at the CBS limit is vital in the focal-point analysis of 

Allen and co-workers.15  The focal-point scheme systematically approaches both the CBS and 

full configuration interaction (Full CI) limits.  Energies are computed at an accurate geometry at 

the SCF, MP2, CCSD, CCSD(T), CCSDT, CCSDT(Q), and CCSDTQ levels of theory.  At each 

level of theory, computations are performed with the largest possible basis set.  The SCF and 

correlation energies are then extrapolated using eqs 1.2 and 1.3, respectively.  Extrapolations for 

correlation treatments are usually limited to coupled-cluster with singles and doubles method, 
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augmented by a perturbative triples term [CCSD(T)].  Higher order correlation treatments and 

other small corrections are included in an additive fashion, see figure 1.1.  The extrapolated 

increments are summed up to yield an estimate of the complete basis set CCSDTQ energy.  This 

approach has been used numerous times with sub-chemical accuracy;16-19 that is, errors of ± 0.1 

kcal mol-1. 

By extrapolating the energies at each level of theory to the CBS limit, the error due to 

incomplete basis set and insufficient correlation treatment can be quantified.  With sufficient 

additional corrections, such as core-valence correlation, relativistic effects, and zero-point 

vibrational energy, the error, relative to the exact energy within the Born-Oppenheimer 

approximation, can be reduced to any level desired. 

1.4 PROSPECTUS 

Although quantum chemistry has been around since 1926, initially it was limited to 

systems with a few electrons and theory development.  It wasn’t until the 1970s that 

computational chemistry became a practical tool for the assignment of spectra and identification 

of states.20  Aided by advances in computer science and technology, computational chemistry has 

become a useful tool for every chemist.  As it has matured through the decades, most 

applications fall into three general areas: 1) Development of new theories and approximations for 

faster, more accurate results, 2) Confirmation/Disproval of experimental results and conclusions; 

and 3) Collaboration with experimentalists and synthetic chemists.  This dissertation 

encompasses all three situations. 

Chapter 2 focuses on scenario two by addressing a discrepancy between theory and 

experiment relating to the rotational barrier height of benzaldehyde.   The experimental result 

was investigated and found to utilize Pitzer's model.21  This model computes the reduced moment 
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of inertia for a given molecular geometry, and accounts for the effects of an asymmetric top on 

the internal rotational barrier. Using the reduced moment of inertia and the observed torsional 

frequency, the rotational barriers were experimentally calculated.  This chapter examines the 

validity of the experimental model and compares to ab initio results. 

Chapter 3 was prompted by an experimentalist’s enquiry whether GaH5 exists, and if so, 

could hydrogen scrambling occur?  A thorough potential energy surface for hydrogen scrambling 

and dissociation of this system was investigated.  Chapter 4 extends this theoretical 

characterization to BH5 and AlH5 and examines their deprotonation energies. 

Collaboration with Professor Frederic Merkt is the reason for chapter 5.  He was 

attempting to synthesize and identify the quartet states of the ozone radical cation and required 

theoretical data to guide his experiments.  Potential energy surfaces for the C2v structures of the 

singlet and triplet neutral ozone and doublet and quartet states of ozone cation were constructed.  

All feasible ionizations and excitations are discussed. 

The last chapter deals with pushing the limits of CC theory to sub-chemical accuracy for 

one of the most challenging molecules to computational chemists, SiC2.  In addition to achieving 

converged predictions of a T-shaped global minimum with correct surface curvature, and 

determining unassailably whether a low-lying isomer exists, the topography for the large-

amplitude pinwheel motion was established.  Silicon dicarbide is both basis set and electron 

correlation treatment sensitive.  To overcome these issues, a composite, complete basis set limit 

CCSDT approach was developed.  The potential energy surface contained over 970 energy 

computations, resulting in one of the most accurate potential energy surface in the literature.  

Sub-chemical accuracy was reached for the barrier to linearity, heat of formation, and C2 singlet-

triplet energy separation.  
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2.1 ABSTRACT 

Recently, it has been proposed that ab initio calculations cannot accurately treat 

molecules comprised of a benzene ring with a π-conjugated substituent, for example, 

benzaldehyde. Theoretical predictions of the benzaldehyde barrier to internal rotation are 

typically a factor of 2 too high in comparison to the experimental values of 4.67 (infared) and 

4.90 (microwave) kcal mol–1. However, both experiments use Pitzer's 1946 model to compute the 

reduced moment of inertia and employ the experimentally observed torsional frequency to 

deduce benzaldehyde's rotational barrier. When Pitzer's model is applied to a system with a 

nonconjugated functional group, such as phenol, the model and theoretical values are in close 

agreement. Therefore, we conclude the model may not account for conjugation between the 

substituent and the π-system of benzene. The experimental values of the benzaldehyde rotational 

barrier are therefore misleading. The true rotational barrier lies closer to the theoretically 

extrapolated limit of 7.7 kcal mol–1, based on coupled cluster theory. 

2.2 INTRODUCTION 

Currently, there is a discrepancy between experimental and theoretical values for 

rotational barriers of molecules comprised of a benzene ring and a π-conjugated substituent, such 

as benzaldehyde (Figure 2.1). Meier and Koglin recently argued that the density functional theory 

(DFT)1,2,3 and ab initio calculations such as Møller–Plesset theory (MP2)4 and Hartree–Fock 

(HF) yield results that are a factor 2 too high compared to experiments.5,6 Meier has used this 

discrepancy to launch a more general criticism7 of DFT. This conflict between theory and 

experiment rests on the results of three separate experiments.  

Miller, Fateley, and Witkowksi in 1967 obtained the infrared spectrum of benzaldehyde, 

from 33 to 400 cm–1, and observed the torsional band at 111 cm–1. This lead to a rotational barrier 
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of 4.66 kcal mol–1.8 In 1970 Kakar, Quade, and Kojima reported the torsional frequency of 

benzaldehyde to be 113.8±5.0 cm–1 via microwave spectroscopy and then deduced the barrier to 

internal rotation to be 4.90±0.43 kcal mol–1.9 Fifteen years later, Durig, Bist, Furic, Qui, and 

Little further explored this rotation barrier by examining the far-infrared spectrum of gaseous 

benzaldehyde. This resulted in a torsional frequency of 110.85 cm–1 and a rotational barrier of 

4.67 kcal mol–1.10  

The microwave and infrared spectroscopic results are in close agreement with one 

another, suggesting that they are accurate measures of the true rotational barrier height for 

benzaldehyde. All experimental determinations of barrier heights from experiment were based on 

Pitzer's model,11 which computes the reduced moment of inertia given the molecular geometry 

and accounts for contributions of an asymmetric top to the internal rotational barrier. Using the 

reduced moment of inertia and the observed torsional frequency, the rotational barriers were then 

computed.12 Pitzer's model has become a standard in evaluating rotational barriers of molecules 

composed of a rigid frame and an unsymmetrical top, such as benzaldehyde and phenol.  

Phenol (Figure 2.2), which is a nonconjugated benzene derivative, is a good test case for 

determining the accuracy of Pitzer's model as compared to ab initio predictions. Berden, Meerts, 

Schmitt, and Kleinermanns examined phenol via high resolution fluorescence excitation 

spectroscopy and recorded a rotational barrier of 3.47 kcal mol–1.13 Tsuzuki, Houjou, Nawawa, 

and Hiratani have theoretically computed phenol's rotational barrier height and are in close 

agreement with experiment with their MP2 barrier of 3.52 kcal mol–1.14  

Due to discrepancies between the experimental and theoretical rotational barriers of 

benzaldehyde, we decided to undertake the current research. The mutual agreement of phenol's 
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experimental and theoretical rotational barriers lead us to examine the possibility of a 

misinterpretation of the benzaldehyde experiments.  

2.3 COMPUTATIONAL DETAILS 

We employed Dunning's corelation consistent basis sets, denoted cc-pVXZ, for all 

geometry optimizations and harmonic frequency computations. At the Hartree–Fock level of 

theory we utilized the cc-pVXZ (X=D,T,Q,5)15 basis sets. For the second order Møller–Plesset 

theory (MP2) computations cc-pVXZ (X=D,T,Q) were applied. Potential curves of benzaldehyde 

were created using cc-pVXZ (X=D,T,Q) HF and cc-pVDZ MP2 computations by performing 

constrained optimizations of the dihederal angle (C=C-C=O) at 10 degree increments from 0 to 

90 and allowing all other parameters to be optimized.  

Geometry and harmonic frequency analyses were performed at the cc-pVXZ (X=D,T,Q) 

HF level for phenol. We obtained potential energy curves for phenol at the cc-pVDZ HF and cc-

pVDZ MP2 levels in the same fashion as that of benzaldehyde.  

The lowest energy structure of benzaldehyde was found to be the planar conformer with a 

߮ ؠ ܥ ൌ ܥ െ ܥ ൌ ܱ dihedral angle of zero degrees and all real vibrational frequencies. The 

highest energy structure occurs for a dihedral angle φ of very close to 90 degrees, referred to as 

the perpendicular structure, which is a transition state with one imaginary frequency 

corresponding to rotation of the aldehyde group.  

We computed theoretical rotation barriers by subtracting Eplan from Eperp, to find both the 

adiabatic and zero point energy (ZPE) corrected classical barrier heights. There exists some 

ambiguity in the ZPE corrected classical barrier heights. In the planar form, the lowest 

vibrational frequency was real and was accounted for in the zero point energy (ZPE) correction, 
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while the lowest frequency in the perpendicular form was imaginary and was not accounted for 

in the zero point energy correction. It needs to be noted that if this error was corrected for, it 

would push the theoretical value higher for the rotational barrier height of benzaldehyde.  

The MP2/cc-pVQZ optimized geometry (Figure 2.3) (for the cc-pVQZ MP2 geometry 

optimization, g functions on carbon and oxygen were neglected) was used at all levels of theory 

for the extrapolation. The HF extrapolated rotational barrier limit was computed from the HF/cc-

pVXZ (X=D,T,Q,5) levels of theory. The extrapolated MP2 correction was computed from the 

MP2/cc-pVXZ (X=D,T,Q,5) levels of theory. The equation  

                                                  A + B * e–C * X (X=D,T,Q, etc.),  (2.1) 

 was fit to the Hartree–Fock barrier heights. For the MP2 correction, we performed a two 

parameter fit to the equation A + B * X–3. The final step in the extrapolation was the addition of a 

cc-pVDZ CCSD(T)16,17 correction term that we obtained from the following formula:  

                                                    Ecorrection = ECCSD(T)–EMP2.  (2.2) 

All Hartree–Fock (HF) and MP2 calculations at the cc-pVXZ (X=D,T,Q) level of theory 

were performed using GAUSSIAN 94.18 GAUSSIAN 9819 was employed for cc-pV5Z HF and 

cc-pVDZ MP2 computations at NERSC while QChem20 was utilized for the cc-pVXZ (X=T,Q) 

MP2 optimizations. GAUSSIAN 0321 was used for the cc-pVTZ MP2 frequencies and cc-pV5Z 

HF. MOLPRO22 was used for the application of the CCSD(T) method.  

A simple computer program was written to compute the reduced moment of inertia for 

molecules composed of a rigid frame with an attached, unsymmetrical top. The equations used 

are discussed in detail in Pitzer's 1946 paper.11 Using the reduced moment of inertia, Ir, the 

rotational barriers were estimated through a series of simple equations developed by Fateley and 

co-workers,12  
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                                                          జ
మ

ி
ൌ ଵܸ ൅ 4 ଶܸ ൅ 9 ଷܸ,  (2.3) 

where F = 16.852/Ir, v=observed torsional frequency (cm–1), V1 = V3 = 0, and V2 is the rotational 

barrier (cm–1).  

The latter analysis was done in an attempt to make a direct comparison with Durig10 and 

Kakar's9 experimental barrier heights and to determine if our theoretical predictions would yield 

similar results to those obtained via Pitzer's model. 

2.4 RESULTS AND DISCUSSION 

Meier argues that since benzaldehyde's ab initio and density functional theory (DFT) 

rotational barriers are much higher than the experimental values, they are incorrect (Table 2.1). 

In fact Meier uses this finding to argue more generally for the failure of DFT.  

Using Pitzer's model in an attempt to replicate Kakar and Durig's experimental values 

resulted in rotational barrier values of 5.01, 4.43, 4.28, 4.28, 4.45, 3.95, and 3.95 for cc-pVXZ 

(X=D,T,Q,5) HF and cc-pVXZ (X=D,T,Q) MP2, respectively. At each level of theory the 

optimized geometry and respective torsional frequency were used. Our results are similar to 

Kakar's 4.90 and Durig's 4.67 kcal mol–1 (Table 2.2) rotational barriers. Both Kakar and Durig 

used Fateley's reduced moment of inertia value to calculate the rotational barrier instead of 

computing the value themselves. Since the geometry used in Fateley's computation of Ir was not 

published, this value could not be precisely replicated.  

The directly computed quantum mechanical barriers for benzaldehyde are much higher 

than the experimental 8.63, 7.70, 7.47, 8.44, 8.32, 7.94 (kcal mol–1) for cc-pVXZ (X=D,T,Q) HF 

and cc-pVXZ (X=D,T,Q) MP2, respectively. Extrapolation resulted in the following rotational 

barriers: the HF limit (7.98 kcal mol–1), the extrapolated MP2 correction limit (–0.01 kcal mol–1), 

14 
 

http://scitation.aip.org/journals/doc/JCPSA6-ft/vol_120/iss_9/4247_1.html#R10
http://scitation.aip.org/journals/doc/JCPSA6-ft/vol_120/iss_9/4247_1.html#R9
http://scitation.aip.org/journals/doc/JCPSA6-ft/vol_120/iss_9/4247_1.html#T2


CCSD(T) correction (–0.31 kcal mol–1) (the T1 diagnostics from the MOLPRO outputs, 

approximately 0.013, show that the system is qualitatively described by a single-reference 

configuration, and non-dynamical correlation is not dominant23,24), and a final extrapolated 

barrier height of 7.66 kcal mol–1. This value, although in disagreement with the experimental 

deductions, cannot be ignored given the high level of theory and large basis sets employed.  

Applications of Pitzer's model to phenol resulted in rotational barriers that were in close 

agreement (Table 2.3) and displayed only 0.03, 0.01, and 0.03 (kcal mol–1) differences between 

theoretical computations and Pitzer's model at the cc-pVXZ (X=D,T,Q) HF levels of theory, 

respectively. Phenol is structurally related to benzaldehyde although one less carbon atom is 

present and no π-conjugation exists in the asymmetric top of the molecule. Note that the lone pair 

on the oxygen in phenol delocalizes throughout the benzene ring, forming a slight degree of 

conjugation in the planar form. However, when phenol rotates, the first lone pair comes out of the 

benzene ring, and the second lone pair delocalizes in the benzene ring. Thus, the slight 

conjugation of phenol cancels out in the planar and perpendicular forms and can be ignored. The 

close agreement between Pitzer's model and the theoretical values confirms a correct 

implementation of Pitzer's model used in the program and seems to validate Pitzer's model for 

molecules comprised of a rigid frame with an attached, unsymmetrical top.  

In looking at the chemical structures of phenol and benzaldehyde, intuitively, 

benzaldehyde should have a much higher rotational barrier height. In phenol, as discussed above, 

the conjugation is apparent in both forms, so stability in phenol is retained and the rotational 

barrier is low. However, in benzaldehyde the conjugation is present only in the planar form. This 

leads to a greatly decreased stability as the aldehyde group is rotated and thus experiences a large 
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rotational barrier. Experimentally, benzaldehyde's barrier height is at most 1.54 kcal mol–1 

greater than that of phenol. Clearly this difference is too small.  

The discrepancies between theory and experiment lead us to believe there is a problem 

with the interpretation of the benzaldehyde experiments. Clearly the theoretical and experimental 

barriers of phenol are in close agreement and help substantiate our claim. Investigating 

experimental procedures resulted in no likely errors in the spectroscopic methods, since both 

experiments arrived at comparable torsional frequencies. This leaves only the question how the 

rotational barrier height was deduced from experiment. The two experimental analyses used 

Fateley's reduced moment of inertia and their respective observed torsional frequencies and 

arrived at similar rotational barriers. Therefore, we conclude that Pitzer's model appears to be ill 

suited for rigid molecules with unsymmetrical tops that demonstrate strong π-conjugation.  

Evaluation of the potential curve at 10 degree increments confirms that it fits a potential 

with only the V2 term nonzero. This fit has an R-squared value of greater than 0.99. This suggests 

that only the V2 term should be needed to describe the barrier.  

2.5 CONCLUSIONS 

The classic 1946 Pitzer paper which describes how to calculate reduced moments of 

inertia for molecules with functional groups attached to the main body was not intended to 

compute rigorous rotational barriers. Pitzer's model applied to phenol results in close agreement 

between experiment and theory and thus supports Pitzer's model for rotational barriers. However, 

when applied to π-conjugated-top molecules, such as benzaldehyde, the theory does not work as 

well. Pitzer's model may not account for the π-conjugated bond in benzaldehyde's top. We 

therefore conclude that the benzaldehyde experiments should not have used Fateley's reduced 
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moment of inertia value and, as a direct result, the benzaldehyde experimental rotational barrier 

height values are too low. The true value of benzaldehyde's rotational barrier height should be 

closer to the present extrapolated theoretical limit of 7.66 kcal mol–1. Although density functional 

theory has many known failures, the rotational barrier for benzaldehyde is not one of them.  
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Table 2.1.  Previous theoretical predictions of the benzaldehyde rotational barrier (in kcal mol-

1).a 

Theoretical  Predicted barrier 

STO-3G//STO-3G 5.90 
6-311G//3-21G 9.20 
3-21G//3-21G 11.30 
4-31G//4-21G 9.70 
6-31G//3-21G 9.40 
6-311G**//6-31G* 8.80 
6-31G*//3-21G 9.00 
6-31G*//6-31G* 8.90 
MP2/3-21G//3-21G 10.00 
MP2/6-311G**//6-31G* 8.30 
MP2/6-31G*//6-31G* 8.60 
ANO-I/SCF 8.40 
ANO-I/CAS(8) 6.20 
ANO-I/RAS(14) 5.80 
ANO-II/SCF 7.80 
ANO-II/CAS(8) 5.00 
ANO-II/RAS(14) 4.30 
D-VWN/TZVP(A2)//D-VWN/TZVP(A2) 10.20 
B88-PW91/TZVP(A2)//B88-PW91/TZVP(A2) 9.00 
PW91-PW91/TZVP(A2)//PW91-PW91/TZVP(A2) 9.30 
B88-P86/TZVP(A2)//B88-P86/TZVP(A2) 9.20 
BLYP/TZVP(A2)//BLYP/TZVP(A2) 9.10 
FT-97/TZVP~(A2)//FT-97/TZVP(A2) 8.70 
HCTH/TZVP(A2)//HCTH/TZVP(A2) 8.50 
RCCSD(6-31G*) 7.80 

Experiment  Value 
Microwave 4.90 
Gas-phase IR 4.70 

aData from Meier and Koglin (Ref. 5). 
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Table 2.2.  Theoretical rotational barriers for benzaldehyde (in kcal mol-1). 

          

Pitzer Model 
    

Basis Set HF MP2 HF MP2 
          

cc-pVDZ 9.27 9.02 5.01 4.45 
cc-pVTZ 8.30 8.23 4.43 3.95 
cc-pVQZ 8.05 7.99 4.28 3.95 
cc-pV5Z 7.90 7.96a 4.28 
          
a   The MP2/cc-pV5Z energies were evaluated at the optimzed MP2/cc-pVQZ 
geometries. 
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Table 2.3.  Theoretical rotational barriers for phenol (kcal mol-1). 

        

Basis Set HF Pitzer Model (HF) 
        

cc-pVDZ 2.23 2.26 
cc-pVTZ 2.19 2.20 
cc-pVQZ 2.20 2.17 
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Figure 2.1.  Structures of benzaldehyde. 
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Figure 2.1.  Structure of phenol. 
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Figure 2.3.  Benzaldehyde geometrical parameters.  All bond distances in Angstroms. 
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3.1 ABSTRACT 

The existence or nonexistence of GaH5 has been widely discussed [N. M. Mitzel, Angew. 

Chem. Int. Ed. 42, 3856 (2003)]. Seven possible structures for gallium pentahydride have been 

systematically investigated using ab initio electronic structure theory. Structures and vibrational 

frequencies have been determined employing self-consistent field, coupled cluster including all 

single and double excitations (CCSD), and CCSD with perturbative triples levels of theory, with 

at least three correlation-consistent polarized-valence-(cc-pVXZ and aug-cc-pVXZ) type basis 

sets. The ′  state for GaH5 is predicted to be weakly bound complex 1 between gallane and 

molecular hydrogen, with Cs symmetry. The dissociation energy corresponding to 

GaH5→GaH3+H2 is predicted to be De = 2.05 kcal mol−1. The H–H stretching fundamental is 

predicted to be v = 4060 cm−1, compared to the tentatively assigned experimental feature of 

Wang and Andrews [J. Phys. Chem. A 107, 11371 (2003)] at 4087 cm−1. A second Cs structure 2 

with nearly equal energy is predicted to be a transition state, corresponding to a 90° rotation of 

the H2 bond. Thus the rotation of the hydrogen molecule is essentially free. However, hydrogen 

scrambling through the C2v structure 3 seems unlikely, as the activation barrier for scrambling is 

at least 30 kcal mol−1 higher in energy than that for the dissociation of GaH5 to GaH3 and H2. 

Two additional structures consisting of GaH3 with a dihydrogen bond perpendicular to gallane 

(C3v structure 4) and an in-plane dihydrogen bond [Cs(III) structure 5] were also examined. A C3v 

symmetry second-order saddle point has nearly the same energy as the GaH3+H2 dissociation 

limit, while the Cs(III) structure 5 is a transition structure to the C3v structure. The C4v structure 6 

and the D3h structure 7 are much higher in energy than GaH3+H2 by 88 and 103 kcal mol−1, 

respectively. 
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3.2 INTRODUCTION 

Early research on pentahydride type molecules began in 1961 when Davis, Bromels, and 

Kibby1 studied the hydrolysis of NaBH4
- through the general acid reaction: 

                                             BH4
- + H3O+ + 2H2O  B(OH)3 + 4H2 (3.1) 

They observed an inverse hydrogen/deuterium kinetic isotope effect and concluded that a 

pentacoordinate activated complex may be involved in the rate-determining step of hydrolysis.  

In the following year, Mesmer and Jolly2 experimentally confirmed the existence of a 

pentacoordinate activated complex, since the hydrolysis of BD4
- yielded HD, H2, and D2.  

Mesmer and Jolly proposed BH5 as the pentacoordinated complex.  Eleven years later, Kreevoy 

and Hutchins3 suggested a BH5 intermediate structure similar to the known equilibrium structure 

of CH5
+; see Figure 3.1. An excellent recent review of the CH5

+ saga has been given by 

Borman.4  Olah, Westerman, Mo, and Klopman5 were the first to theoretically investigate BH5 in 

this arrangement.  Olah reported that large quantities of H2 were formed in the nonaqueous 

solvolysis and proposed hydrogen scrambling in BH5 prior to dissociation.  Since then, there has 

been much discussion concerning the stability of BH5.  In 1994, Tague and Andrews6 reported 

the first and only experimental detection of BH5 via a cryogenic argon matrix study with 

fundamental frequencies of 2475.2 and 1134.3 cm-1. 

Schreiner, Schaefer, and Schleyer7,8 thoroughly investigated both BH5 and AlH5 to 

determine their stability and possible hydrogen scrambling effects.  The ground state for BH5 was 

found to be a Cs structure, a pentahydride molecule comprised of nearly planar borane with 

dihydrogen out of the plane (BH3···H3 midpoint distance is 1.5 Å) and parallel to a B-H bond;   

An analogous structure is found for alane but the AlH3-H2 midpoint distance is 2.3 Å away.  The 

Cs (II) 2 transition structure was nearly degenerate, allowing essentially free rotation of the H2 σ 
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molecule.  The C4v and D3h saddle-points were reported to have much higher energies, and 

hydrogen scrambling via the C2v transition state was unlikely (especially for AlH5), since the 

latter transition states lie 2.8 kcal mol-1 and 24.6 kcal mol-1, respectively, higher than the 

dissociation energies of BH5 and AlH5.  At room temperature both molecules would dissociate 

into XH3 and H2 (X = B and Al).  However, at absolute zero, BH5 and AlH5 complexes would 

form exothermically, by 1.4 kcal mol-1 and 1.7 kcal mol-1, respectively.  The most recent and 

definitive theoretical work on BH5 was conducted by Schuurman, Allen, Schleyer, and Schaefer9 

using cc-p(C)VXZ (X=2-6) basis sets, explicitly correlated R12 methods, coupled-cluster theory 

including quadruple excitations (CCSDTQ), and a focal point analysis.  Their results confirmed 

Schreiner’s7 previous results with a Do = 1.2 kcal mol-1 and barrier height of 4.2 kcal mol-1 to the 

C2v transition state responsible for hydrogen scrambling. 

With BH5 and AlH5 systematically investigated for possible hydrogen scrambling 

through the C2v structure, the question of the existence of gallium pentahydride, GaH5, remains.  

This question has been discussed in a prominent recent review by Mitzel.10  Recently, Wang and 

Andrews assigned a GaH5 fundamental in their infrared matrix isolation spectra11 to their 

observed feature of 4087 cm-1.  They also carried out Density Functional Theory (DFT) 

computations with the B3LYP/6-311++G(d,p) method and predicted a 4424 cm-1 harmonic 

vibrational frequency for the H2 stretch.12  Their DFT geometry for the Cs ground state reports 

2.477 Å for the GaH3 to H2 separation, 0.743 Å for the H2 bond distance, and 1.577 Å for the 

GaH3 bond lengths.   

Although GaH5 is a recent target for experimental research, the gallane (GaH3) and the 

tetrahydridolgallate anion (GaH4
-) have been carefully examined experimentally and 

theoretically.  The first theoretical investigation of GaH3 was reported in 1970 by Stevenson and 
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Lipscomb.13  They predicted a gallane structure with D3h symmetry with Hartree-Fock (HF) bond 

distances of 1.551 Å.  Since then, Balasubramanian has performed Complete Active Space Self 

Consistent Field (CASSCF) and Second Order Configuration Interaction (SOCI) computations to 

obtain 1.58 and 1.56 Å Ga-H bond distances, respectively.14  Duke employed Second Order 

Møller-Plesset theory (MP2) with the 3-21G* basis set to yield a 1.594 Å Ga-H distance15 while 

Schwerdtfeger, Heath, Dolg, and Bennett carried out Quadratic Configuration Interaction (QCI) 

study to obtain a 1.586 Å Ga-H bond length using a contracted Dunning (15s/11p/6d)/[11s8p/4d] 

basis set.16   Since Schwerdtfeger’s study, there have been other theoretical studies on 

gallane.17,18  In 1994, Pullumbi, Bouteiller, Manceron, and Mijoule19 experimentally recorded the 

infrared (IR) spectrum of GaH3 in solid argon and also made theoretical predictions with coupled 

cluster theory, CCSD(T).  Experimentally, they recorded IR features at 1923, 759, and 717 cm-1 

while their theoretical predictions were 1897, 1891, 759, and 705 cm-1.19  The most recent 

experimental and theoretical work was conducted by Wang and Andrews in 2003.11  Their  IR 

matrix isolation study led to experimental fundamentals of 1929, 758, and 719 cm-1 while their 

DFT work at the B3LYP/6-311++G(d,p) level led to predicted frequencies at 1981, 1977, 763, 

and 722 cm-1.  Their DFT geometry was of D3h symmetry with Ga-H bond distances of 1.567 

Å.11   

Tetrahydridogallate was first reported experimentally in 1973 by Shirk and Shriver20 

through the Raman and IR spectra of GaH4
- salts.  They recorded Raman frequencies (from solid 

KGaH4) of  1799, 1774, 1724, 830, and 765 cm-1 while their study of NaGaH4 led to observed IR 

frequencies of 1760, 1720, and 715 cm-1.  Two years later, Kurbakova et. al. recorded GaH4
- 

frequencies of 1752, 1700, 780, and 733 cm-1 from their Raman spectroscopic study of NaGaH4 

in diglyme solution.21  The first theoretical study appeared in 1996 by Bühl.22  He performed 
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SCF and MP2 computations with the 6-31G* basis set to obtain frequencies of 1852 and 1827 

cm-1 with bond distances of 1.642, 1.629 Å, respectively, in Td symmetry.  The most recent 

experimental and theoretical work on GaH4
- is again that of Wang and Andrews.11  Their 

experiments yielded GaH4
- frequencies at 1774 and 1766 cm-1 while their predicted DFT, 

B3LYP/6-311++G(d,p), frequencies were 1762, 1684, 782 and 730 cm-1. Wang and Andrew’s 

theoretical geometry displayed Td symmetry with bond distances of 1.623 Å.11 

In the present study the global minimum of GaH5 along with six other stationary points 

have been systematically studied using correlated methods available in our laboratory.  This 

study also included GaH3 and H2 for the evaluation of dissociation energies.  GaH4
- was also 

examined to predict the deprotonation energy of GaH5.   

3.3 COMPUTATIONAL PROCEDURES 

Seven possible structures for gallium pentahydride (GaH5) were optimized and their 

vibrational frequencies computed.  In addition, tetrahydridolgallate (GaH4
-), gallium trihydride 

(GaH3), and molecular hydrogen were also structurally optimized.  

 The three basis sets employed were the correlation consistent polarized valence basis sets 

developed by Dunning and coworkers23,24 denoted cc-pVXZ (X = D, T, Q).  Augmented basis 

sets were used for determining the deprotonation energy of GaH5 and a more definitive 

dissociation energy (GaH5 Cs (I) 1, GaH4
-, GaH3, and H2 structures).23,24  The largest basis set, 

aug-cc-pVQZ, consists of 323 contracted Gaussian functions for the GaH5 structures.  

Geometries were fully optimized with each basis set and level of theory.  Harmonic vibrational 

frequencies were evaluated using analytic methods when available, and otherwise determined 

through numerical differentiation of gradients for total energies. 
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The zeroth-order descriptions for all structures of GaH5, GaH4
-, GaH3, and H2 were 

obtained using single configuration SCF (restricted Hartree-Fock, RHF) wave functions.  

Correlation effects were included using the coupled cluster method with single and double 

excitations (CCSD) and CCSD with perturbative triples [CCSD(T)] levels of theory.  In the 

correlated procedures, fourteen core orbitals (28 electrons) were frozen for gallium.  The 

MOLPRO25-33 ab initio program package was utilized during this study.  All values reported 

refer to the cc-pVQZ CCSD(T) results unless otherwise stated. 

3.4 RESULTS AND DISCUSSION 

 Tables 3.1, 3.2, and 3.5 present total energies, relative and structure’s 1 dissociation 

energies, and vibrational frequencies for the GaH5 transition structures, respectively, at the cc-

pVXZ (X = D, T, and Q) basis sets.  Table 3.3 includes GaH5, GaH4
-, GaH3, and H2 total 

energies, predicted dissociation energies, and GaH4
- proton affinities while Table 3.4 compares 

the vibrational frequency for GaH5, GaH4
-, and GaH3.  The results in Tables 3.3 and 3.4 were 

obtained using the aug-cc-pVXZ (X = D, T, and Q) basis sets.  Table 3.6 summarizes the state-

of-the-art theoretical work for CH5
+, SiH5

+, GeH5
+, BH5, AlH5, and GaH5.  Figure 3.1 shows the 

CH5
+ structure while Figures 3.2 through 3.10 display the present theoretical results. 

3.4.1 GEOMETRIES 

The global minimum for GaH5 was found to be the Cs (I) 1 structure (Figure 3.2 and 

Figure 3.3) analogous to BH5 and AlH5.  Structure 1 consists of a nearly planar gallane attached 

to a weakly bound molecular hydrogen 2.5 Å (this is the Ga-H2 midpoint distance) away.  This 

molecular hydrogen is out of the gallane plane, but parallel to one of its Ga-H bond.  It is 

impressive that the σ(H2) MO interacts with the unoccupied 4p π-orbital of gallane.  The three 

Ga-H bonds for this structure are 0.001 Å longer than those for isolated GaH3 at the same level of 
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theory.  The dihydrogen bond was determined to be 0.006 Å longer than that for molecular 

hydrogen, also at the same level of theory. 

The second Cs structure 2, (Figure 3.4), is a transition state with nearly identical geometry 

to the global minimum, with the exception of rotation of the hydrogen molecule by 90 degrees.  

This structure has a GaH bond longer by 0.0003 Å than that for gallane and a longer H2 bond 

distance by 0.006 Å.  The GaH3-H2 distance for this structure is 0.024 Å longer than that for the 

global minimum. 

The C2v transition state 3 for hydrogen scrambling (Figure 3.5) has a similar electronic 

structure to that of the ground state, with three sp2 hybridized Ga-H bonds and an empty 4pπ 

orbital.  However, instead of the empty 4pπ orbital interacting the hydrogen molecule σ-orbital, 

it interacts with the hydrogen s orbitals on each side with H-Ga-H angles of 36.4 degrees.  These 

three in-plane bond distances are predicted to longer than the isolated GaH bonds in GaH3 by 

0.123, 0.123 and 0.192 Å.   The two conventional Ga-H bonds separated by 137.8° were shorter 

than the GaH3 bonds by 0.0221 Å.  

A second-order saddle point structure 4 with C3v symmetry was also found (Figure 3.6).  

In this structure, the three Ga-H bond and dihydrogen bonds were identical (to within 0.001 Å ) 

to their corresponding gallane and molecular hydrogen geometries, with the very long Ga···H 

separation being 8.8 Å.  Although Schreiner predicted an analogous very weakly associated bond 

for BH5 and AlH5, the energy of this GaH5 structure is nearly identical (within 0.001 kcal mol-1) 

to that of GaH3 + H2, unlike BH5 and AlH5.  Therefore we do not predict 4 to be a significant 

structure. 

The third Cs (III) 5 transition state (Figure 3.7) consists of GaH3 with H2 closest to one of 

the gallane hydrogen atoms at an angle of ~170 degrees of an H···H separation of about 3 Å.  The 
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Ga-H bond lengths and the H-H bond length were nearly identical to their respective isolated 

GaH3 and H2 bond distances. 

A sixth gallium pentahydride structure 6 (Figure 3.8) was determined to be a second-

order saddle-point with a square pyramidal structure of C4v symmetry.  The four identical Ga-H 

bond lengths were 0.061 Å longer than those for isolated GaH3.  The fifth Ga-H bond is 

predicted to be shorter than those for GaH3 by about 0.034 Å. 

The seventh GaH5 structure 7, another second-order saddle-point state, is a trigonal 

bipyramidal structure with D3h symmetry (Figure 3.9).  The three equatorial Ga-H bonds were 

0.054 Å longer than the normal Ga-H gallane bond lengths while the two axial bond distances 

were also longer, but only by 0.006 Å.  

Isolated gallane (GaH3), Figures 3.10 and 3.11, is predicted to have Ga-H bond distances 

of 1.585 Å with D3h symmetry.  GaH3 may be characterized as having three sp2 hybrid bonds 

with an empty 4pπ-orbital.  Our predicted bond distance may be compared with previous 

theoretical results: 1.551 (SCF)13, 1.58 (CASSCF)14, 1.557 (SOCI)14, 1.594 (MP2)15, 1.586 

(QCISD)16, and 1.567 (B3LYP)11.  The QCISD bond distance of Schwerdtfeger is in almost 

perfect agreement with the present research. 

3.4.2 ENERGETICS 

Total energies for the seven structures of gallium pentahydride, gallane, and molecular 

hydrogen are given in Table 3.1.  Relative energies for the gallium pentahydride structures are 

given in Table 3.2 along with dissociation energies for the global minimum GaH5.  The 

augmented basis set computations of dissociation and proton affinities can be found in Table 3.3.   

The Cs (I) 1 and Cs (II) 2 structures are nearly degenerate, allowing essentially free 

rotation of the hydrogen molecule, as shown in Table 3.1.  The C2v transition state 3 for 
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hydrogen scrambling is predicted to lie more than 30 kcal mol-1 above the ground state.  The 

other two structures consisting of loosely associated GaH3 and H2 were also higher in energy 

than 1 by 1.96 (5) and 1.27 (6) kcal mol-1, respectively.  The C4v 6 and D3h 7 structures were 

much higher in energy relative to the ground state, by at least 70 kcal mol-1.  When zero-point 

energies are included, the Cs (II) 2, C3v 4, and Cs (III) 5 structures become lower in energy than 

the Cs (I) 1 structure.  However, the latter structures have imaginary vibrational frequencies, 

which are not counted in evaluating zero-point vibrational energies.   

The Cs (I) 1, Cs (II) 2, and Cs (III) 5 structures are predicted to have De = 1.95, 1.95, and 

0.21 kcal mol-1, respectively.  When the zero-point corrections are included, these three 

structures have dissociation energies D0 = -0.06, -0.02, and -0.24 kcal mol-1, respectively.  

However, at the aug-cc-pVQZ CCSD(T) basis set, has a De and D0 of 2.05 and 0.11 kcal mol-1.  

Although these numbers are stable with respect to dissociation, they remain within error of our 

present method.  At very low temperatures, gallium pentahydride might be kinetically stable with 

respect to dissociation into GaH3 and H2.  The C2v 3, C4v 6, and D3h 7 structures are unlikely 

candidates for observation since they are predicted to lie 30, 69, and 84 kcal mol-1 above the 

dissociation energy of gallium pentahydride, respectively. 

The proton affinity is predicted to be 331.0 kcal mol-1 which is similar to the proton 

affinities for BH4
- (333.5 kcal mol-1) and AlH4

- (328.7 kcal mol-1). 

3.4.3 VIBRATIONAL FREQUENCIES 

Prior experimental work is available with which to compare the theoretically predicted 

vibrational frequencies for GaH3 and GaH4
- (Table 3.4).  Pullumbi et. al.19 performed IR matrix 

isolation experiments on gallane, while Shirk and Shriver20 and Kurbakova et. al.21 carried out 



vibrational analyses of tetrahydrogallate salts.  The theoretically predicted and experimentally 

determined frequencies are in close agreement, as shown in Table 3.4.  

For GaH5, the predicted harmonic vibrational frequency for the H2 stretching is 230 cm-1 

higher than Wang and Andrews’ assignment.  However, the experimental H2 anharmonicity 

correction accounts for this difference.  The general equation for a harmonic frequency 

evaluation is 

                2 3
e e e e e e e

1 1 1 1=G(v)=ω (v+ )-ω x (v+ ) +ω y (v+ ) +ω z (v+ ) +...
2 2 2 2

4ν
 

 (3.1) 

Setting v = 1 and v = 0 and taking their difference 

                                                   
e e e e

26G(1)-G(0) ω -2ω x + ω y
8

≅ e   (3.2) 

Then using the following experimental data, 34, 34, and 34 -1
eω =4401.2 cm e eω x =121.3 e eω y =0.81

yields the experimental fundamental frequency for molecular hydrogen to be ν=4161 cm-1.35  

If we apply the same anharmonic correction to our own H2 computations with aug-cc-

pVQZ CCSD(T) level of theory, ωe = 4399 cm-1, we predict fundamental frequency of H2 to be 

4157 cm-1, which is very close to the experimental value.  If the same experimental anharmonic 

correction is applicable to GaH5, then the theoretical value should be much closer to experiment.  

The theoretical frequency for the GaH5 molecular hydrogen stretching frequency including this 

anharmonic correction is 4063 cm-1, only 24 cm-1 lower than the Wang and Andrews11 assigned 

frequency for the H2GaH3 complex. 

Table 3.5 reports the harmonic vibrational frequencies of the GaH5 transition structures.  

An analysis of the imaginary vibrational frequencies of the six GaH5 structures was conducted.  

As expected, the C2v 3 structure’s imaginary frequency corresponds to the normal mode for 

36 
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hydrogen scrambling.  The imaginary vibrational mode of this third structure corresponds to the 

breaking of the Ha-Hb bond and the formation of another bond between Hb-Hc, resulting in 

hydrogen scrambling.  The Cs (II) structure 2 has a single imaginary frequency which 

corresponds to the molecular hydrogen bond rotating about the GaH3 plane.   

Both imaginary vibrational frequencies for the C3v structure 4 relate to molecular 

hydrogen rotating about GaH3, while maintaining the long (8 Å) GaH3···H2 separation.  The third 

Cs (III) structure 5 appears to be a transition state to the C3v 4 structure with its imaginary 

frequency pulling the molecular hydrogen out of the plane and perpendicular to the GaH3 portion 

of the molecule.   

 The higher energy structures, C4v 6 and D3h 7, are predicted to have degenerate imaginary 

frequencies.  For the C4v structure 6, the first imaginary component corresponds to motion 

toward Cs (I) 1, while the second connects to the C2v structure 3.  The degenerate imaginary 

frequency associated with the D3h structure 7 relates to the two axial hydrogen atoms moving 

away from the rest of the molecule. 

The search for group III and IV pentahydrides may now be extended to include gallium 

pentahydride, as shown in Table 3.6.  Some general trends occur throughout the pentahydride 

series:  rotation of the H2 around the gallium 4pπ-orbital is unrestricted, and all molecules show a 

barrier to hydrogen scrambling by a C2v 3 structure (except for CH5
+).  The C4v 6 and D3h 7 

structures are always higher in energy, and the C3v structure 4 dissociates for BH5 and GaH5.  
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3.5 CONCLUSIONS 

Gallium pentahydride may exist as a weak complex between gallane and molecular 

hydrogen at very low temperatures.  The Cs (I) 1 and Cs (II) 2 structures are nearly degenerate, 

allowing free hydrogen rotation of the H2 bond.  Both structures 1 and 2 are predicted to have 

dissociation energies De = 1.95 kcal mol-1 for the process GaH5  GaH3 + H2.  Hydrogen 

scrambling is unlikely to occur since the C2v symmetry transition state 3 is predicted to lie 30 

kcal mol-1 above the energy required for dissociation of GaH5.  The H2 fundamental vibrational 

frequency in structure 1 (GaH3···H2) is predicted to be ν = 4063 cm-1, compared to a proposed 

experimental GaH5 feature at 4087 cm-1. 
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Table 3.1.  Total energies (in hartrees) and zero-point vibrational energy (ZPVE) (in kcal mol-1) for the seven structures of GaH5 plus 

GaH3 and H2.   

Cs (I) 1 Cs (II) 2 C2v 3 C3v 4 Cs (III) 5 C4v 6 D3h 7 GaH3 H2

0 1 1 2 1 2 2

cc-pVDZ SCF -1926.057779 -1926.057779 -1925.995307 -1926.057043 -1926.057117 -1925.908564 -1925.867299 -1924.928304 -1.128746
ZPVE 19.80 19.80 21.55 18.64 18.64 18.26 17.34 12.09 6.55

cc-pVTZ SCF -1926.135007 -1926.135006 -1926.071861 -1926.134338 -1926.134425 -1925.983961 -1925.941597 -1925.001356 -1.132990
ZPVE 19.73 19.74 21.48 18.60 18.60 18.22 17.25 12.04 6.56

cc-pVQZ SCF -1926.139498 -1926.139497 -1926.076446 -1926.138740 -1926.138823 -1925.988358 -1925.946084 -1925.005254 -1.133495
ZPVE 19.75 19.75 21.52 18.62 18.62 18.25 17.27 12.07 6.55

cc-pVDZ CCSD -1926.193376 -1926.193377 -1926.144426 -1926.191278 -1926.191500 -1926.074992 -1926.049702 -1925.027611 -1.163673
ZPVE 19.78 19.73 20.78 17.88 17.87 16.98 16.49 11.61 6.26

cc-pVTZ CCSD -1926.290538 -1926.290538 -1926.240841 -1926.288115 -1926.288403 -1926.172239 -1926.143562 -1925.115784 -1.172337
ZPVE 19.83 19.79 20.65 17.90 18.11 17.53 16.16 11.59 6.30

cc-pVQZ CCSD -1926.300434 -1926.300434 -1926.251060 -1926.297722 -1926.298014 -1926.182635 -1926.154097 -1925.123931 -1.173796
ZPVE 19.85 19.81 20.67 17.90 17.90 17.45 16.02 11.61 6.29

cc-pVDZ CCSD(T) -1926.194750 -1926.194750 -1926.147395 -1926.192473 -1926.192720 -1926.080165 -1926.056313 -1925.028806 -1.163673
ZPVE 19.78 19.74 20.68 17.84 17.83 16.75 16.29 11.57 6.26

cc-pVTZ CCSD(T) -1926.292540 -1926.292540 -1926.244831 -1926.289786 -1926.290115 -1926.179062 -1926.152011 -1925.117455 -1.172337
ZPVE 19.85 19.81 20.54 17.86 18.30 17.30 15.87 11.55 6.30

cc-pVQZ CCSD(T) -1926.302707 -1926.302707 -1926.255441 -1926.299591 -1926.299934 -1926.190058 -1926.163187 -1925.125800 -1.173796
ZPVE 19.87 19.84 20.55 17.86 18.07 17.21 15.94 11.57 6.29

Level of Theory

Imaginary
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Table 3.2.  Relative and ZPVE corrected energies (in kcal mol-1) with respect to  GaH5 including its dissociation energy.  The 

number of imaginary frequencies per structure are also included at the cc-pVQZ CCSD(T) level of theory. 

 

Basis Set Theory Cs (I) 1 Cs (II) 2 C2v 3 C3v 4 Cs (III) 5 C4v 6 D3h 7 De D0

Imaginary 0 1 1 2 1 2 2

cc-pVDZ SCF 0.00 0.00 39.20 0.46 0.42 93.63 119.53 0.46
ZPVE 0.00 0.00 40.96 -0.69 -0.74 92.10 117.07 -0.70

cc-pVTZ SCF 0.00 0.00 39.62 0.42 0.37 94.78 121.37 0.41
ZPVE 0.00 0.00 41.37 -0.71 -0.77 93.27 118.88 -0.72

cc-pVQZ SCF 0.00 0.00 39.57 0.48 0.42 94.84 121.37 0.47
ZPVE 0.00 0.00 41.33 -0.65 -0.71 93.34 118.89 -0.66

cc-pVDZ CCSD 0.00 0.00 30.72 1.32 1.18 74.29 90.16 1.31
ZPVE 0.00 -0.05 31.72 -0.59 -0.73 71.49 86.87 -0.59

cc-pVTZ CCSD 0.00 0.00 31.19 1.52 1.34 74.23 92.23 1.52

ZPVE 0.00 -0.04 32.01 -0.41 -0.38 71.93 88.55 -0.42
cc-pVQZ CCSD 0.00 0.00 30.98 1.70 1.52 73.92 91.83 1.70

ZPVE 0.00 -0.04 31.81 -0.24 -0.43 71.52 88.00 -0.25

cc-pVDZ CCSD(T) 0.00 0.00 29.72 1.43 1.27 71.90 86.87 1.43
ZPVE 0.00 -0.05 30.62 -0.52 -0.68 68.87 83.38 -0.52

cc-pVTZ CCSD(T) 0.00 0.00 29.94 1.73 1.52 71.21 88.18 1.72
ZPVE 0.00 -0.04 30.63 -0.26 -0.02 68.66 84.20 -0.27

cc-pVQZ CCSD(T) 0.00 0.00 29.66 1.96 1.74 70.69 87.55 1.95
ZPVE 0.00 -0.03 30.34 -0.05 -0.06 68.03 83.62 -0.06
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Table 3.3.  Total energies (in hartrees), zero-point vibrational energy (ZPVE), dissociation energies of GaH5, and proton affinities for 

GaH5, GaH4
-, GaH3, and H2 with augmented basis sets (in kcal mol-1). 

 

De D0 PAe PA0

aug-cc-pVDZ SCF -1926.058800 -1925.522668 -1924.929172 -1.128826 0.50 336.43
ZPVE 19.75 15.39 12.06 6.52 -0.67 332.06

aug-cc-pVTZ SCF -1926.135460 -1925.596668 -1925.001622 -1.133056 0.49 338.10
ZPVE 19.72 15.38 12.03 6.56 -0.64 333.76

aug-cc-pVQZ SCF -1926.139560 -1925.600635 -1925.005293 -1.133509 0.48 338.18
ZPVE 19.75 15.44 12.07 6.55 -0.65 333.88

aug-cc-pVDZ CCSD -1926.200633 -1925.667147 -1925.033044 -1.164899 1.69 334.77
ZPVE 19.62 14.79 11.51 6.21 -0.21 329.94

aug-cc-pVTZ CCSD -1926.293119 -1925.756624 -1925.117676 -1.172636 1.76 336.66
ZPVE 19.77 14.84 11.55 6.29 -0.16 331.73

aug-cc-pVQZ CCSD -1926.301126 -1925.764604 -1925.124419 -1.173867 1.78 336.67
ZPVE 0.00 14.94 11.59 6.29 19.66 351.61

aug-cc-pVDZ CCSD(T) -1926.202297 -1925.669715 -1925.034425 -1.164899 1.87 334.20
ZPVE 19.62 14.73 11.47 6.21 -0.08 329.31

aug-cc-pVTZ CCSD(T) -1926.295302 -1925.759962 -1925.119459 -1.172636 2.01 335.93
ZPVE 19.79 14.78 11.51 6.29 0.03 330.93

aug-cc-pVQZ CCSD(T) -1926.303469 -1925.768184 -1925.126328 -1.173867 2.05 335.90
ZPVE 0.00 14.87 11.55 6.29 19.89 350.77

H2GaH5Level of Theory GaH4
- GaH3
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Table 3.4.  Harmonic vibrational frequencies (in cm-1) for the ground electronic states of GaH5, GaH4
-, and GaH3 at the aug-cc-pVQZ 

CCSD(T) level of theory.  Experimental results are fundamental frequencies. 

 

Species QZ CCSD(T) Exp11 QZ CCSD(T) Exp11 Exp20 Exp21 QZ CCSD(T) Exp19 Exp11

Vibrational a׳ 4303 4087 a1 1743 1774 1760 1752 a1’ 1962 1923 1929
frequencies a׳ 1961 e 764 780 a2˝ 703 717 719

a׳ 1947 t2 1654 1766 1720 1700 e׳ 1953
a׳ 755 t2 723 715 733 e׳ 759 759 758
a׳ 705
a׳ 626
a׳ 317
a׳ 252
a״ 1951
a״ 755
a״ 326
a״ 110

GaH4
- GaH3GaH5
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Table 3.5.  Harmonic vibrational frequencies for GaH5 transition structures at the cc-pVQZ 

CCSD(T)  level of theory (in cm-1). 

 

38i 1618i 48i 31i 946i 665i
245 573 16i 22 946i 665i
311 664 36 78 269 154
322 686 36 146 538 481
611 731 50 155 629 482
705 1109 703 703 630 727
755 1294 760 759 1000 727
755 1468 760 760 1681 1618

1949 1818 1953 1954 1714 1669
1949 1976 1953 1955 1714 1705
1961 2021 1962 1963 1800 1705
4071 2036 4163 4155 2063 1881

C s  (II) 2 D 3h  7C 2v  3 C 3v  4 C s  (III) 5 C 4v  6
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Table 3.6.  Comparison of the relative energies (in kcal mol-1 including ZPVE),36 

H2 dissociation energies (D0), and proton affinities (PA0) of the AH4 species.37 

                    
  Geometry CH5

+ a SiH5
+ b GeH5

+ c BH5
d AlH5

d GaH5
e   

                    
    
  Cs (I) 1 0.0 0.0 0.0 0.0 0.0 0.0   
  Cs (II) 2 0.0 0.0 0.0 0.0 0.0 0.0   
  C2v 3 0.2 26.9 32.7 4.2f 24.6 30.3   
  C3v 4 31.5g 8.8 7.5 0.2h 0.9i -0.1   
  C4v 6 3.5g 60.6 83.8j 22.8 71.9k 68.0   
  D3h 7 11.5g 82.6 48.3j 45.3 84.0k 83.6   
  De

l 2.1m   
  D0

l 42.0g 10.3 10.0 1.4f 1.7 0.1m   
  PA0

n 130.5 153.2 156.4 333.5o 328.7 331.0l   
                 
    

a TZ2P+f CCSD(T)//TZ2P CCSD(T), unless otherwise specified. 
b TZ2P CCSD, unless otherwise specified. 
cTZ2P+f CCSD, unless otherwise specified. 
d TZ2P(f,d) CCSD(T)//TZ2P CCSD(T), unless otherwise specified. 
e cc-pVQZ CCSD(T); this research. 
f cc-pVQZ CCSD(T) (Ref. 6). 
g QCISD(T)/6-311++G(3df,3pd)//MP2(fu)/6-311++G(2df,2pd).  Experimental D0 = 
45.3 kcal mol-1: ΔHf of CH5

+ = 216.0 kcal mol-1 (Ref. 36). 
ΔHf of CH3

+ = 261.3 kcal mol-1 (Ref. 37). 
h Dissociates at higher levels. 
i TZ2P CCSD(T). 
j DZP SCF. 
k DZP CCSD. 
l AH5

(+) --> AH3
(+) + H2. 

m aug-cc-pVQZ CCSD(T); this research. 
n AH4

(-) + H+ --> AH5
(+). 

o TZ(3d1f1g,2p1d) CCSD(T)/TZ(3d1f,2p1d) CCSD(T), 
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Figure 3.1.  Known equilibrium geometry for CH5
+. 
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Ga

cc-pVDZ SCF     1.574
cc-pVTZ SCF     1.575
cc-pVQZ SCF     1.574

cc-pVDZ CCSD    1.584
cc-pVTZ CCSD    1.586
cc-pVQZ CCSD    1.585

cc-pVDZ CCSD(T) 1.585
cc-pVTZ CCSD(T) 1.587
cc-pVQZ CCSD(T) 1.584

81.6o

81.8o

81.7o

81.0o

80.9o

80.8o

80.9o

80.8o

80.7o

2.912
2.920
2.931

2.528
2.493
2.481

2.501
2.457
2.441 0.749

0.736
0.736

0.764
0.748
0.748

0.765
0.749
0.749

2.922
2.931
2.943

2.536
2.504
2.493

2.510
2.469
2.454

14.8o

14.5o

14.4o

17.4o

17.2o

17.3o

17.6o

17.5o

17.6o

120.0o

120.0o

120.0o

120.1o

120.0o

120.0o

120.1o

120.0o

120.1o

1.574
1.575
1.574

1.584
1.585
1.584

1.585
1.586
1.585

1
 

Figure 3.2.  Predicted geometries for the Cs (I) structure 1 of GaH5 (Bond lengths given in Å, 

angles in degrees). 
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Ga

aug-cc-pVDZ SCF     1.574
aug-cc-pVTZ SCF     1.574
aug-cc-pVQZ SCF     1.574

aug-cc-pVDZ CCSD    1.584
aug-cc-pVTZ CCSD    1.588
aug-cc-pVQZ CCSD    1.585

aug-cc-pVDZ CCSD(T) 1.572
aug-cc-pVTZ CCSD(T) 1.589
aug-cc-pVQZ CCSD(T) 1.587

81.6o

81.6o

81.7o

81.0o

80.8o

80.8o

80.7o

80.7o

80.6o

2.912
2.880
2.923

2.528
2.509
2.482

2.409
2.478
2.448 0.749

0.749
0.736

0.764
0.766
0.747

0.766
0.766
0.750

2.922
2.892
2.936

2.536
2.522
2.495

2.419
2.492
2.461

14.7o

14.9o

14.4o

17.4o

17.5o

17.3o

18.2o

17.7o

17.6o

120.0o

120.0o

120.0o

120.1o

120.0o

120.0o

120.1o

120.0o

120.1o

1.574
1.574
1.574

1.584
1.587
1.585

1.571
1.588
1.586

aug 1
 

Figure 3.3.  Predicted geometries for the Cs (I) structure 1 of GaH5 with augmented basis 

functions (Bond lengths given in Å, angles in degrees).  
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Figure 3.4.  Predicted geometries for the Cs (II) transition structure 2 of GaH5 (Bond lengths 

given in Å, angles in degrees).  

Ga

cc-pVDZ SCF     1.574
cc-pVTZ SCF     1.575
cc-pVQZ SCF     1.574

cc-pVDZ CCSD    1.584
cc-pVTZ CCSD    1.586
cc-pVQZ CCSD    1.585

cc-pVDZ CCSD(T) 1.585
cc-pVTZ CCSD(T) 1.587
cc-pVQZ CCSD(T) 1.586

83.4o

83.5o

83.6o

83.7o

83.7o

83.7o

83.7o

83.7o

83.0o

2.916
2.923
2.939

2.552
2.515
2.503

2.523
2.477
2.465

2.917
2.924
2.938

2.549
2.511
2.499

2.520
2.474
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14.8o

14.5o

14.4o

17.2o

17.1o

17.2o

17.4o

17.4o

17.5o
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120.0o

120.0o

120.0o

120.0o

120.0o

120.0o

120.0o
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1.574
1.574

1.583
1.585
1.584

1.584
1.587
1.586

0.749
0.736
0.736

0.763
0.748
0.747

0.764
0.748
0.748
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Ga

1.552 cc-pVDZ SCF
1.553 cc-pVTZ SCF
1.552 cc-pVQZ SCF

1.562 cc-pVDZ CCSD
1.563 cc-pVTZ CCSD
1.562 cc-pVQZ CCSD

1.563 cc-pVDZ CCSD(T)
1.564 cc-pVTZ CCSD(T)
1.563 cc-pVQZ CCSD(T)

36.1o

36.0o

36.0o

36.4o

36.2o

36.3o

36.4o

36.3o

36.4o

1.778
1.778
1.775

1.780
1.780
1.777

1.781
1.781
1.777

1.707
1.703
1.700

1.714
1.710
1.706

1.716
1.712
1.708

135.8o

135.5o

135.1o

138.0o

137.6o

137.4o

138.2o

138.0o

137.8o

3
 

Figure 3.5.  Predicted geometries for the C2v transition structure 3 of GaH5 (Bond lengths given 

in Å, angles in degrees). 
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Ga

1.574 cc-pVDZ SCF
1.575 cc-pVTZ SCF
1.574 cc-pVQZ SCF

1.584 cc-pVDZ CCSD
1.585 cc-pVTZ CCSD
1.584 cc-pVQZ CCSD

1.585 cc-pVDZ CCSD(T)
1.586 cc-pVTZ CCSD(T)
1.585 cc-pVQZ CCSD(T)

0.748
0.734
0.734

0.761
0.743
0.742

0.761
0.743
0.742

8.834
8.834
8.834

8.821
8.830
8.830

8.821
8.830
8.830

90.3o

90.3o

90.3o

90.3o

90.3o

90.3o

90.3o

90.3o

90.3o

4

Figure 3.6.  Predicted geometries for the C3v second-order saddle-point structure 4 of GaH5 

(Bond lengths given in Å, angles in degrees). 
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Ga

1.574 cc-pVDZ SCF
1.575 cc-pVTZ SCF
1.574 cc-pVQZ SCF

1.584 cc-pVDZ CCSD
1.585 cc-pVTZ CCSD
1.584 cc-pVQZ CCSD

1.585 cc-pVDZ CCSD(T)
1.586 cc-pVTZ CCSD(T)
1.585 cc-pVQZ CCSD(T)

135.4o

162.0o

160.9o

165.0o
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166.2o

165.3o
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172.5o

3.428
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2.973
2.853
2.827

2.936
2.786
2.753

0.748
0.735
0.734

0.761
0.743
0.742

0.761
0.743
0.742

5

Figure 3.7.  Predicted geometries for the Cs (III) transition state 5 of GaH5 (Bond lengths given in Å, angles in degrees). 
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Ga

cc-pVDZ SCF     1.535
cc-pVTZ SCF     1.535
cc-pVQZ SCF     1.534

cc-pVDZ CCSD    1.552
cc-pVTZ CCSD    1.550
cc-pVQZ CCSD    1.550

cc-pVDZ CCSD(T) 1.554
cc-pVTZ CCSD(T) 1.552
cc-pVQZ CCSD(T) 1.551

134.2o

134.7o

134.7o

131.2o

132.3o

132.2o

130.6o

131.9o

131.8o

1.631
1.633
1.631

1.642
1.645
1.644

1.645
1.648
1.647

6

 

Figure 3.8.  Predicted geometries for the C4v second-order saddle-point structure 6 of GaH5 

(Bond lengths given in Å, angles in degrees). 
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Ga

1.565 cc-pVDZ SCF
1.561 cc-pVTZ SCF
1.560 cc-pVQZ SCF

1.592 cc-pVDZ CCSD
1.588 cc-pVTZ CCSD
1.586 cc-pVQZ CCSD

1.597 cc-pVDZ CCSD(T)
1.594 cc-pVTZ CCSD(T)
1.591 cc-pVQZ CCSD(T)

1.610
1.608
1.607

1.640
1.636
1.633

1.645
1.641
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Figure 3.9.  Predicted geometries for the D3h second-order saddle-point structure 7 of GaH5 

(Bond lengths in given Å). 
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Ga

1.574 cc-pVDZ SCF
1.575 cc-pVTZ SCF
1.574 cc-pVQZ SCF

1.584 cc-pVDZ CCSD
1.585 cc-pVTZ CCSD
1.584 cc-pVQZ CCSD

1.585 cc-pVDZ CCSD(T)
1.586 cc-pVTZ CCSD(T)
1.585 cc-pVQZ CCSD(T)

Figure 3.10.  Predicted geometries for D3h symmetry GaH3 (Bond lengths given in Å). 
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Ga

1.574 aug-cc-pVDZ SCF
1.574 aug-cc-pVTZ SCF
1.574 aug-cc-pVQZ SCF

1.587 aug-cc-pVDZ CCSD
1.585 aug-cc-pVTZ CCSD
1.585 aug-cc-pVQZ CCSD

1.588 aug-cc-pVDZ CCSD(T)
1.586 aug-cc-pVTZ CCSD(T)
1.585 aug-cc-pVQZ CCSD(T)

aug
 

Figure 3.11.  Predicted geometries for D3h symmetry GaH3 with augmented basis functions 

(Bond lengths given in Å).  
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Ga

1.641 aug-cc-pVDZ SCF
1.643 aug-cc-pVTZ SCF
1.642 aug-cc-pVQZ SCF

1.649 aug-cc-pVDZ CCSD
1.649 aug-cc-pVTZ CCSD
1.647 aug-cc-pVQZ CCSD

1.650 aug-cc-pVDZ CCSD(T)
1.650 aug-cc-pVTZ CCSD(T)
1.648 aug-cc-pVQZ CCSD(T)

-

aug
 

Figure 3.12.  Predicted geometries for Td symmetry GaH4
- with augmented basis functions (Bond 

lengths given in Å). 
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CHAPTER 4 

 

THE DEPROTONATION ENERGIES OF BH5 AND AlH5:  

COMPARISONS TO GaH5
† 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

†Lucas D. Speakman, Justin M. Turney, and Henry F. Schaefer III.  Chem. Phys. 331, 396 

(2007); doi:10.1016/j.chemphys.2006.11.008. Reprinted here with permission of publisher. 

59 

 



60 

 

4.1 ABSTRACT 

Hypercoordinate boron is most unusual, leading to considerable theoretical and 

experimental research on the parent BH5 molecule.  The deprotonation energies of BH5 and the 

related molecules AlH5 and GaH5 have been of particular interest.  Here the energy differences 

for XH5  XH4
- + H (X=B and Al) are computed to be 332.4 kcal mol-1 and 326.3 kcal mol-1, 

respectively, with an aug-cc-pVQZ basis set at the CCSD(T) level of theory.  Vibrational 

frequencies for BH4
- and AlH4

- are also reported as 1098, 1210, 2263, and 2284 cm-1 and 760, 

779, 1658, and 1745 cm-1, respectively, again at the CCSD(T) aug-cc-pVQZ level of theory.  

Comparsions with the valence isoelectronic GaH5 molecule are made. 

4.2 INTRODUCTION 

Hypercoordinate is a theme of long-standing interest in chemistry1.  In particular, the 

synthesis of pentavalent compunds of Group 13 elements (B, Al, Ga, …) has been a very 

challenging problem2.  The theoretical and experimental demonstration of the existence of BH5 

has been a long and arduous task since it was proposed in the early 1960s. This long search for 

BH5 appears to have been successfully concluded with the recent experiments of Tague and 

Andews3. 

The first high level theoretical study4 of BH5 appeared in 1994.  That research 

systematically investigated multiple BH5 structures including BH4
- and reported the 

deprotonation energy of BH5.  More recently (2005), the theoretical studies of BH5 reached 

subchemical accuracy (0.1 kcal mol-1) in their analysis5 of the BH5 stability with respect to 

dissociation and possible hydrogen scrambling effects through the C2v structure. The results from 

references 4 and 5 confirm the viability of BH5. Perhaps most importantly, Schuurman’s high 
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level of theory application on the Cs structure provides agreement with the two vibrational 

stretching modes assigned by Tague and Andrews3. 

The most recent theoretical study of BH4
- (deprotonated BH5) is that of Dixon and 

Gutowski6.  They report an aug-cc-pVTZ CCSD(T) bond distance of 1.240 Å for tetrahedral 

symmetry.  Their harmonic vibrational frequencies were 2261, 2240, 1185, and 1086 cm-1, 

predicted with the aug-cc-pVDZ basis set and the CCSD(T) level of theory. 

Schreiner, Schaefer, and Schleyer7 continued their study of pentacoordinate systems with 

AlH5 by examining six possible structures and predicting the global minimum to be a weak 

complex between alane (AlH3) and dihydrogen with Cs symmetry, analogous to that of BH5
4,5 

and GaH5
8.  Moc, Bober, and Panek’s9 recent theoretical study confirms the Schreiner et al. 

predictions.  Andrews and Wang10 and Wang, Andrews, Tam, DeRose, and Fajardo11 both report 

an experimental H-H stretching mode for AlH5 at 4062 cm-1, which agrees with Schreiner’s 

predicted frequency7 of 4082 cm-1.  Andrews and Wang performed additional MP2/6-

311++G(3df,3pd) computations on AlH5 and predicted the H-H stretching mode to be 4424 cm-1 

with no anharmonic correction.  It is interesting to note that Andrews and Wang predict an 

imaginary frequency in their computations.  This mode corresponds to the H2 rotation of 

Schreiner et al.’s7 second Cs structure to the Cs minimum. 

There have been several theoretical and experimental investigations of the AlH4
- anion.  

Shirk and Shriver12 observed 1757, 772, 1678, and 766 cm-1 through the Raman and IR spectra 

of AlH4
- salts.  Pullumbi, Bouteiller, and Manceron13 predicted harmonic frequencies of 1760, 

1679, 810, and 776 cm-1 at the CCSD(T) level of theory and observed 1609, 767, and 750 cm-1 in 

their matrix isolation experiments.  Schreiner et al.7 also investigated AlH4
- and predicted the 

vibrational frequencies to be 1679, 1594, 772, and 748 cm-1 and a bond distance of 1.639 Å at 
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the TZ2P CCSD(T) levels of theory.  Wang et al.11 observed two infrared absorptions, 1609 and 

766 cm-1, from coideposition of laser-ablated atoms with Ar/H2 at 3.5 K.  Their B3LYP/6-

311++G** DFT computations predicted vibrational frequencies of 1735, 1649, 783, and 763 cm-

1 and bond distances of 1.644 Å. 

This brief report comments on the work of Schreiner4 and extends the deprotontation 

energies of BH5 and AlH5 to the aug-cc-pVQZ CCSD(T) level of theory. 

4.3 COMPUTATIONAL DETAILS 

Geometries for boron pentahydride and tetrahydridoborate were optimized using coupled 

cluster theory including all single and double excitations (CCSD)14-17 and CCSD with the effects 

of connected triple excitations included perturbatively [CCSD(T)]18-20. At the correlated levels 

the boron 1s-like core orbital and aluminum 1s, 2s, and 2p-like core orbitals were frozen.  

Dunning’s augmented correlation-consistent polarized-valence basis sets, aug-cc-pVXZ21,22 (X = 

D, T, Q) were employed.  The largest basis set, aug-cc-pVQZ, consists of 310 and 314 

contracted gaussian functions for BH5 and AlH5, respectively.  Zero-point vibration energy 

(ZPVE) corrections were included at all levels.  The average atomic mass was used for Boron 

and Aluminum.  All computations utilized the MOLPRO ab initio package23-31. 

The deprotonation energy of BH5, equivalent to the negative of the proton affinity (PA) of BH4
-, 

was evaluated as the energy difference for the reaction BH4
- + H+  BH5. Unless otherwise 

stated, all values reported here refer to our most reliable method, the aug-cc-pVQZ CCSD(T) 

level of theory. 

4.4 RESULTS AND DISCUSSION 

Table 4.1 reproduces Schreiner’s previous theoretical values and the corresponding 

proton affinities.  Tables 4.2 and 4.3 report the present work for the harmonic vibrational 
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frequencies for the boron and aluminum compounds, respectively.  Table 4.4 shows the total 

energies and ZPVE values for all four molecules, while Table 4.5 displays the deprotonation 

energies for BH5, AlH5, and GaH5. Figures 4.1, 4.2, 4.3, and 4.4 depict the optimized structures 

for BH5, BH4
-, AlH5, and AlH4

-, respectively. 

4.4.1 AN OVERSIGHT 

In the 1994 paper, Schreiner, Schaefer, and Schleyer (SSS) reported total energies and 

ZPVE for BH5 and BH4
- and the deprotonation energy as 345.8 kcal mol-1 at the 

TZ(3d1f1g,2p1d) CCSD(T) level of theory.  The first two columns in Table 4.1 contains SSS’s 

total energies (in hartrees) and ZPVE (in kcal mol-1) for BH5 and BH4
- while the last three 

columns are all possible PAs from his data.  The first PA column is the adiabatic value while the 

last two columns are ZPVE corrected with the DZP SCF and TZP SCF methods, respectively.  

SSS computed the ZPVE of BH5 at the TZ2P CCSD(T) level, but for BH4
- they report ZPVE 

values for DZP SCF and TZ2P SCF.  The reported SSS value of 345.8 kcal mol-1 is in error and 

should be corrected to 338.5 kcal mol-1 at the TZ(3d1f1g,2p1d) CCSD(T) level of theory 

including the TZ2P SCF ZPVE correction.  This error was inadvertently transferred to Schreiner, 

Schaefer, and Schleyer’s paper7 describing AlH5. 

4.4.2 GEOMETRIES 

The optimized Cs boron pentahydride structure consists of a nearly planar BH3 entity 

attached to a hydrogen molecule 1.42 Å (this the B H2 midpoint distance) away.  This molecular 

hydrogen is out of the borane plane, but parallel to one of its B-H bonds.  Our BH5 structure 

agrees well with Schuurman’s5 recent work and the earlier research of SSS.  The optimized 

structure for AlH5 is similar to that of BH5, with molecular hydrogen 2.22 Å away from the AlH3 

moiety. 
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The anionic structures are of Td symmetry with re (B-H) and re (Al-H) being 1.237 Å and 

1.644 Å, respectively.  As expected, our lower level BH4
- aug-cc-pVTZ CCSD(T) result is 

qualitatively similar to that of Dixon6. 

4.4.3 VIBRATIONAL FREQUENCIES 

Harmonic vibrational frequencies are reported for BH4
- and BH5 in Table 4.2.  Both 

optimized structures are minima, confirmed by the absence of imaginary vibrational frequencies.  

Again, we are in agreement with Dixon’s6 assignment of the aug-cc-pVDZ CCSD(T) vibrational 

frequencies.  Only four frequencies are reported since ν2(t), ν 3(e), and ν 4(t) are triply, doubly, 

and triply degenerate modes, respectively.  For a more complete BH5 vibrational analysis the 

reader is directed to Schuurman’s5 paper. 

The aluminum pentahydride and AlH4
- vibrational frequencies are shown in Table 4.3.  

Both structures are minima with no imaginary frequencies.  Our predicted H-H harmonic 

stretching mode of AlH5 is 190 cm-1 above the observed fundamental frequency of Wang, 

Andrews, Tam, DeRose, and Fajardo11.  If we apply a simple anharmonic correction of -240 cm-1 

(see Speakman, Turney, and Schaefer8 for details), our predicted hydrogen stretching mode is 

4012 cm-1, 50 cm-1 less than the observed frequency. 

4.4.4 ENERGETICS 

The deprotonation energies of BH5 and AlH5 have now been extended via the aug-cc-

pVQZ CCSD(T) method, as shown in Table 4.5.  We predict a value of 332.4 kcal mol-1 for BH5, 

which is 1.1 kcal mol-1 less than Schreiner’s corrected proton affinity, and 326.3 kcal mol-1 for 

AlH5. 
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4.5 CONCLUSIONS 

The best previous deprotonation energy of BH5 is 345.8 kcal mol-1.  The latter value has 

now been simply corrected to 333.5 kcal mol-1. That value has been superceded in the present 

research by the more reliable aug-cc-pVQZ CCSD(T) level of theory, yielding 332.4 kcal mol-1.  

We also report vibrational frequencies of 1098, 1210, 2263, and 2284 cm-1 for BH4
-. 

We have also improved the theoretical geometries and harmonic vibrational frequencies 

for AlH5 and AlH4
- predicting the H-H stretching mode of AlH5 to be 4012 cm-1, comparable to 

Wang et al.’s observed frequency11.  Our predicted AlH4
- harmonic frequencies also agree well 

with Shirk and Shriver’s experiments12. 

It is of special interest to compare the BH5, AlH5, and GaH5 deprotonation energies in 

Table 4. 5.  All three compounds have similar dissociation energies around 330 kcal mol-1.  The 

deprotonation energies for Group 3 pentacoordinate systems show the trend BH5 > GaH5 > AlH5.  

The actual results are 332.4 (BH5), 326.3 (AlH5), and 331.0 (GaH5).  This pattern is a bit 

unusual, since the gap in observed properties usually falls between boron and aluminum with the 

gallium properties often very similar to those for aluminum. 
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Table 4.1.  BH5 Total Energies (in hartrees) with Proton Affinities and ZPVEs in kcal mol-1. 

Level of Theory C s  BH5 T d  BH4
- No ZPVE ZPVE 1b ZPVE 2c

DZP SCF -27.52376 -26.97056 347.14 344.44 344.54
     ZPVEa 1            22.40 19.70
TZ2P SCF -27.52900 -26.98656 340.39 337.69 337.79
     ZPVEa 2            22.30 19.70
DZP CISD -27.66704 -27.12073 342.81 340.11 340.21
DZP CISD+Q -27.67572 -27.13044 342.17 339.47 339.57
TZ2P CISD -27.69080 -27.15564 335.82 333.12 333.22
TZ2P CISD+Q -27.70146 -27.16789 334.82 332.12 332.22
DZP CCSD -27.67359 -27.12781 342.48 339.78 339.88
TZ2P CCSD -27.70041 -27.16447 336.31 333.61 333.71
DZP CCSD(T) -27.67509 -27.13053 341.72 339.02 339.12
TZ2P CCSD(T) -27.70450 -27.16909 335.98 333.28 333.38
     ZPVE 26.50
TZ(3d 1f ,2p 1d ) CCSD(T) -27.72052 -27.18523 335.90 333.20 333.30
TZ(3d 1f 1g ,2p 1d ) CCSD(T) -27.72309 -27.18752 336.08 333.38 333.48

a ZPVE energies scaled by 0.91.
b The DZP SCF ZPVE correction is -2.70 kcal mol-1.  This correction factor is applied to each
   level of theory in this column.

c The TZ2P SCF ZPVE correction is -2.60 kcal mol-1.  This correction factor is applied to each
   level of theory in this column.

PA (in kcal mol-1)
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Table 4.2.  Vibrational Frequencies for BH5 and BH4
- (in cm-1). 

 

Molecule Symmetry DZa TZ QZ DZ TZ QZ Priorb

ω1 (a) 2270 2275 2284 2260 2266 2284 2261
ω4 (t) 2245 2258 2263 2239 2254 2263 2240
ω6 (e) 1193 1212 1210 1185 1203 1210 1185
ω9 (t) 1096 1100 1098 1086 1087 1098 1086

ω1 (a׳) 3728 3691 3685 3654 3603 3594 3322
ω2 (a׳) 2613 2627 2631 2601 2615 2619 2513 ν2 = 2475
ω3 (a׳) 2520 2532 2536 2508 2519 2523 2444
ω4 (a׳) 1575 1691 1714 1620 1742 1767
ω5 (a׳) 1189 1210 1211 1184 1204 1205 1182
ω6 (a׳) 1174 1195 1196 1167 1189 1190 1171 ν6 = 1134
ω7 (a׳) 899 938 945 909 955 966
ω8 (a׳) 659 717 731 702 756 766
ω9 (a״) 2649 2667 2671 2640 2659 2663 2555 ν9 = 2544
ω10 (a״) 1178 1197 1197 1172 1190 1191 1170
ω11 (a״) 992 1020 1022 995 1021 1023 1015
ω12 (a״) 187 183 184 201 200 203

a Abbreviation for aug-cc-pVXZ (X = D, T, Q).

b Prior theoretical work for BH4
- is Dixon and Gutowksi6.

  Prior theoretical work for BH5 by Schuurman et al. 5. (anharmonicaly corrected)

c Experimental results from Tague and Andrews3 for BH5.

BH4
-

BH5

CCSD CCSD(T)

Expt.c
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Table 4.3.  Vibrational Frequencies for AlH5 and AlH4
- (in cm-1). 

Molecule Symmetry DZa TZ QZ DZ TZ QZ Ref. 7 Ref. 11 Ref. 13 Ref. 11 Ref. 12 Ref. 13

ω1 (a) 1708 1735 1750 1703 1730 1745 1679 1735 1760 1757
ω4 (t) 1623 1648 1660 1620 1645 1658 1594 1649 1679 1609 1678 1609
ω6 (e) 773 784 786 768 777 779 772 783 810 766 772 767
ω9 (t) 754 760 765 750 756 760 748 763 776 766 750

Ref. 7 Ref. 10 Ref. 10 & 11

ω1 (a׳) 4250 4273 4270 4238 4256 4252 4082 4380 4062
ω2 (a׳) 1911 1937 1953 1906 1932 1947 1852 1985
ω3 (a׳) 1908 1933 1948 1902 1926 1941 1848 1982
ω4 (a׳) 785 791 803 781 794 814 817
ω5 (a׳) 783 783 791 779 778 786 761 809
ω6 (a׳) 703 726 726 716 722 722 691 774
ω7 (a׳) 367 378 386 374 387 395 351 390
ω8 (a׳) 287 307 316 301 329 339 268 312
ω9 (a״) 1912 1938 1954 1907 1932 1948 1853 1989
ω10 (a״) 732 753 772 729 765 778 758 741
ω11 (a״) 373 390 398 381 400 409 368 402
ω12 (a״) 125 113 110 125 113 111 49

a Abbreviation for aug-cc-pVXZ (X = D, T, Q).

AlH4
-

AlH5

Prior Theoretical Experimental
Fundamental, νCCSD CCSD(T)
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Table 4.4.  Total Energies (in hartrees) and ZPVE Values (kcal mol-1) for BH5, BH4
-, AlH5, and 

AlH4
-. 

 

Level of Theory C s  BH5 T d  BH4
- C s  AlH5 T d  AlH4

-

aug-cc-pVDZ CCSD -27.681290 -27.150202 -244.907248 -244.380205
ZPVE 27.68 20.99 20.03 14.88

aug-cc-pVTZ CCSD -27.715549 -27.180351 -244.940227 -244.410915
ZPVE 28.12 21.12 20.32 15.08

aug-cc-pVQZ CCSD -27.723429 -27.187768 -244.948568 -244.419117
ZPVE 28.19 21.14 20.47 15.18

aug-cc-pVDZ CCSD(T) -27.684822 -27.154512 -244.908891 -244.382569
ZPVE 27.67 20.88 20.03 14.82

aug-cc-pVTZ CCSD(T) -27.720502 -27.186224 -244.942439 -244.414032
ZPVE 28.10 21.01 20.33 15.02

aug-cc-pVQZ CCSD(T) -27.728729 -27.187768 -244.950945 -244.422455
ZPVE 28.17 21.14 20.49 15.12
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Table 4.5.  Deprotonation Energies of BH5, AlH5, and GaH5 (kcal mol-1). 

 

PAe PA0 PAe PA0 PAe PA0

aug-cc-pVDZ CCSD 333.26 326.57 330.72 325.57 334.77 329.94
aug-cc-pVTZ CCSD 335.84 328.85 332.15 326.91 336.66 331.73
aug-cc-pVQZ CCSD 336.13 329.08 332.24 326.94 336.67 331.61

aug-cc-pVDZ CCSD(T) 332.77 325.99 330.27 325.06 334.20 329.31
aug-cc-pVTZ CCSD(T) 335.26 328.18 331.58 326.27 335.93 330.93
aug-cc-pVQZ CCSD(T) 339.46 332.43 331.63 326.26 335.90 330.99

a Current Research

b Reference 8

BH5 a AlH5 a GaH5 b

Level of Theory
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B

aug-cc-pVDZ CCSD    1.215
aug-cc-pVTZ CCSD    1.202
aug-cc-pVQZ CCSD    1.200

aug-cc-pVDZ CCSD(T) 1.217
aug-cc-pVTZ CCSD(T) 1.204
aug-cc-pVQZ CCSD(T) 1.202

80.0o

80.0o

80.0o

79.6o

79.6o

79.5o

1.482
1.442
1.435

1.465
1.423
1.417

0.803
0.794
0.794

0.809
0.800
0.800

1.497
1.455
1.448

1.480
1.438
1.431

31.3o

31.8o

31.9o

31.9o

32.5o

32.6o
119.9o

119.9o

119.9o

120.1o

120.1o

120.1o

1.208
1.194
1.193

1.210
1.195
1.194

 

Figure 4.1.  Predicted equilibrium geometries for BH5 (bond lengths given in Å, angles in 

degrees). 
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B

1.254 aug-cc-pVDZ CCSD
1.239 aug-cc-pVTZ CCSD
1.237 aug-cc-pVQZ CCSD

1.255 aug-cc-pVDZ CCSD(T)
1.240 aug-cc-pVTZ CCSD(T)
1.237 aug-cc-pVQZ CCSD(T)

 

Figure 4.2.  Predicted equilibrium geometries for the BH4
- anion (bond lengths given in Å, angles 

in degrees). 
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Al

cc-pVDZ CCSD    1.593
cc-pVTZ CCSD    1.586
cc-pVQZ CCSD    1.583

cc-pVDZ CCSD(T) 1.594
cc-pVTZ CCSD(T) 1.588
cc-pVQZ CCSD(T) 1.584

80.4o

80.2o

80.1o

80.3o

80.0o

79.9o

2.333
2.271
2.251

2.309
2.241
2.220

0.767
0.752
0.751

0.768
0.753
0.752

2.347
2.286
2.265

2.324
2.257
2.236

18.9o

19.0o

19.1o

19.1o

19.3o

19.4o
119.9o

119.9o

119.9o

119.9o

119.9o

119.9o

1.591
1.585
1.582

1.592
1.586
1.583

 

Figure 4.3.  Predicted equilibrium geometries for AlH5 (bond lengths given in Å, angles in 

degrees). 
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Al

1.654 aug-cc-pVDZ CCSD
1.648 aug-cc-pVTZ CCSD
1.644 aug-cc-pVQZ CCSD

1.655 aug-cc-pVDZ CCSD(T)
1.648 aug-cc-pVTZ CCSD(T)
1.644 aug-cc-pVQZ CCSD(T)

 

Figure 4.4.  Predicted equilibrium geometries for the AlH4
- anion (bond lengths given in Å, 

angles in degrees). 
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CHAPTER 5 

 

TOWARD THE OBSERVATION OF QUARTET STATES OF THE OZONE RADICAL 

CATION: INSIGHTS FROM COUPLED CLUSTER THEORY† 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

†Lucas D. Speakman, Justin M. Turney, and Henry F. Schaefer III. J. Chem. Phys. 128, 214302 

(2008); doi:10.1063/1.2924128. Reprinted here with permission of publisher.
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5.1 ABSTRACT 

Since the discovery of ozone depletion, the doublet electronic states of the ozone radical 

cation have received much attention in experimental and theoretical investigations, while the 

low-lying quartet states have not.  In the present research viable pathways to the quartet states 

from the lowest three triplet states of ozone, 3A2, 3B2, and 3B1, and excitations from the 2A1 and 

2B2 states of the ozone radical cation have been studied in detail.  The potential energy surfaces, 

structural optimizations, and vibrational frequencies for several states of ozone and its radical 

cation have been thoroughly investigated using the Complete Active Space Self-Consistent Field 

(CASSCF), unrestricted coupled cluster theory from a restricted open-shell Hartree-Fock 

reference including all single and double excitations (UCCSD), UCCSD method with the effects 

of connected triple excitations included perturbatively [UCCSD(T)], and unrestricted coupled 

cluster including all single, double, and triple excitations with the effects of connected quadruple 

excitations included perturbatively [UCCSDT(Q)]. These methods used Dunning’s correlation-

consistent polarized core-valence basis sets, cc-pCVXZ (X=D, T, Q, and 5).  The most feasible 

pathways (symmetry and spin allowed transitions) to the quartet states are 4A1 ← 3A2;  4A2 ← 

3A2;  4A1 ← 3B2;  4A2 ← 3B1;  4B2 ← 3B1;  4A2 ← 1A1;  4B2 ← 1A1; and 4A1 ← 1A1 with vertical 

IPs of 12.46;  12.85;  12.82;  12.46;  12.65;  13.43;  13.93; and 14.90 eV, respectively.  

5.2 INTRODUCTION 

 Ozone plays a vital role in our stratosphere by absorbing ultraviolet radiation.1,2  Neutral 

ozone has been well characterized both experimentally and theoretically, but the ozone radical 

cation was largely ignored until the recent discovery of depleted ozone.3  Since the recognition of 

ozone depletion, scientists have investigated possible pathways for ozone’s creation and 

destruction, for which reliable experimental and theoretical results are needed to obtain a 



comprehensive understanding.  However, in the pursuit of the cationic states of ozone, the 

quartet states have been almost completely ignored by theoretical and experimental chemists.  

This paper aims to theoretically characterize the quartet states of O3
+ and to consider possible 

avenues of excitation from neutral triplet electronic states of ozone for laboratory detection. 

 Ozone has a long experimental history, dating back at least to the classic 1880 paper by 

Chappuis.4  Since then, a breadth of theoretical and experimental research has been performed on 

ozone, leading to several recent review articles.5-8  Many theoretical methods fail to satisfactorily 

describe X~ 1A1 O3, because it is best described by a two configuration reference wave function 

and the treatment of dynamical electron correlation.  Although ground state ozone is a 

multireference problem, the work of Watts, Bartlett, and Stanton9-11 has shown that the inclusion 

of iterative or perturbative triple excitations in single reference coupled cluster methods can yield 

accurate results for molecular geometry and vibrational frequencies.  In 1970 Tanaka and 

Morino12 experimentally deduced r0 and θ0 to be 1.272 Å and 116.8°, followed in 1977 by 

Depannemaecher and Bellet13 with a 1.278 Å bond length and 116.8° bond angle.  Barbe and his 

coworkers recently updated their spectroscopic constants for ozone from earlier work to the 

values14,15 1133, 715, and 1087 cm-1 for ω1, ω2, and ω3, respectively.  The X~ 1A1 state of O3 is 

included as a reference point for all electronic excitation and ionization processes in the present 

research. 

The lowest triplet states of ozone also exhibit some theoretical challenges.  It is clear 

from recent review articles5-8 that multireference methods agree with experiment for adiabatic 

excitation energies to the lowest neutral triplet states of ozone, while single reference methods do 

not.  For example, Borowski, Fulcher, Malmqvist, and Roos16 used multi-configuration second-

order perturbation theory (CASPT2) with an atomic natural orbital (4s3p3d1f) contracted basis 
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set to order the triplet states of ozone: 3A2, 3B2, 3B1 lying 1.16, 1.34, and 1.35 eV above the 

ground state, respectively.  Meanwhile, recent experiments17-20 confirm this order with excitation 

energies of 1.184 ± 0.002, 1.29 ± 0.03, and 1.45 ± 0.03 eV for 3A2, 3B2, and 3B1, respectively.    

Watts and Bartlett21 computed CCSD(T)/cc-pVTZ//CCSDT-3/cc-pVTZ adiabatic excitation 

energies of 1.08, 1.16, 1.46 eV with CCSDT-3 for the 3B2, 3A2, and 3B1 states, assigning 3B2 as 

the lowest excited triplet state instead of 3A2.  However, they mention that basis set 

considerations could affect their predicted order.  Since the 3A2 and 3B2 states are so close in 

energy, possible excitation from the ozone ground state should be investigated to examine 

whether higher order coupled cluster methods will assign 3A2 as the lowest triplet state. 

Since 1966 there have been many experimental techniques used to detect the ozone 

radical cation: photoelectron spectroscopy,22-27 photoionization mass spectrometry,28,29 

photofragment spectroscopy,30 electron impact ionization,31 pulsed-field-ionization zero-kinetic-

energy photoelectron (PFI-ZEKE),32 and threshold photoelectron spectroscopy.33  The initial 

photoelectron spectroscopic studies indicated that the three lowest doublet electronic states, 2A2, 

2A1, and 2B2, were within one eV of each other and the two lowest states were nearly degenerate.  

In 1984, Katsumata, Shiromaru, and Kimura26 were able to assign 2A2 as the highest of the three 

O3
+ doublet states but were unable to identify either 2A1 or 2B2 as the electronic ground state.  

Due to the nearly degenerate 2A1 and 2B2 energy levels, it was not until 2005 when Willitsch, 

Innocenti, Dyke, and Merkt32 conducted a PFI-ZEKE experiment to establish the adiabatic O3
+ 

ground state as 2A1, lying only 3.12 kcal mol-1 below the 2B2 state.   

 While experimentalists have endeavored for forty years to label the nearly degenerate 

low-lying doublet states of O3
+, theoretical chemists have also struggled since 1975 to make 

reliable predictions concerning the lowest three states.  Hay, Dunning, and Goddard34 used a 



generalized valence bond configuration interaction (GVB-CI) procedure with a DZ basis set 

(9s5p/4s2p) to predict the vertical ionization potentials to the 2A1, 2B2, and 2A2 states to be 12.91, 

13.03, and 13.59 eV, respectively.  The latter results are in fair agreement with the early (1974) 

experimental ordering25 of 12.75, 13.57, and 13.03 eV for 2A1, 2B2, and 2A2, respectively.  

Dunning, Hay, and Goddard suggested an experimental misinterpretation due to ozone deviating 

from Koopmans theorem, from which the experimentalists qualitatively assigned 2A2 and 2B2.   

There have been a few other theoretical studies that mislabeled the ozone doublet ground 

state.35,36  In 1981, Kosugi, Kuroda, and Iwata37 confirmed Dunning’s analysis,34 showing that 

Koopman’s theorem incorrectly predicts the third state of O3
+ to be the first state (2A2) and thus 

explaining earlier problems.   

In 198338 and 1991,39 complete active space self consistent field (CASSCF) potential 

energy surfaces (PES) for doublet states of O3
+ were reported, showing a low-lying conical 

intersection.  The study of Schmelz, Chambaud, Rosmus, Köppel, Cederbaum, and Werner39 

used a multireference configuration interaction (MRCI) method employing CASSCF natural 

orbitals to order the doublet and quartet states of the ozone cation with respect to O3 X~ 1A1.  

They predicted 2A1 (12.44 eV), 2B2 (12.49 eV), 2A2 (13.17 eV), 4A2 (13.43 eV), 4B2 (13.93 eV), 

2B1 (14.12 eV), 4A1 (14.35 eV), and 4B1 (17.42 eV).  Starting from these computations, Muller, 

Koppel, and Cederbaum investigated vibronic coupling effects and nuclear dynamics arising 

from the conical intersection PES of the doublet state of O3
+.40-42  

Recently, high level ab initio methods have been applied to the vertical ionization of 

ozone,43,44 with recent papers by Willitsch, Innocenti, Dyke, and Merkt32 and Ohtsuka, 

Hasegawa, and Nakatsuji.45  Willitsch et al. computed excitation energies with MRCI including 

single and doubles excitations following CASSCF calculations with the aug-cc-pVTZ basis set.  
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They also used multireference second-order perturbation theory (CASPT2) with the cc-pVQZ 

basis set, a CASSCF potential surface, and evaluated harmonic vibrational frequencies at the 

CASSCF level of theory with the aug-cc-pVTZ basis set.  Their theoretical predictions agree 

with their PFI-ZEKE experimental values and unambiguously determine the ordering of O3
+ 

states to be X~ 2A1, A~  2B2, and B~  2A2, in agreement with Hay, Dunning, and Goddard.34  

Ohtsuka, Hasegawa, and Nakatsuji used a multi-exponentially generated fourth-order method 

(MEG4/EX-MEG4), a multi-reference implementation of the symmetry-adapted cluster-

configuration interaction (SAC-CI), to consider the valence and ionized states of ozone.  They 

reported theoretical results for several excited electronic states of ozone and the ozone cation. 

The dissociation of the ozone radical cation is of crucial interest if the quartet states are to 

be observed.  Vestal and Mauclaire46 reported the first photodissociation reactions on O3
+ in 

1977 using a tandem quadrupole photodissociation mass spectrometer.  Their work explored two 

dissociation pathways for the ozone radical cation: collisional dissociation leads to the 

production of O2
+ while the dominant product in photodissociation is O+.  They deduced 

dissociation energies for the ground state of O3
+ to be 1.85 and 0.60 eV for O+ + O2 and O2

+ + O, 

respectively. Later in that same year, Weiss, Berkowitz, and Appelman47 detected O+ + O2 and  

O + O2
+ formation from O3 at 15.21 and 13.13 eV, respectively, from photoionization 

experiments.  In 1980, Moseley, Ozenne, and Cosby48 reported a photodissociation energy of O3
+ 

→ O2 + O+ at 2.16 eV while their collision induced dissociation experiment yielded 0.59 eV for 

O3
+ → O2

+ + O.  A year later, Hiller and Vestal49 reinterpreted Moseley, Ozenne, and Cosby’s 

photodissocation data to yield a photodissociation energy of 1.776 eV, while assigning their own 

1.860 eV value.  Although these papers suggest possible photodissociation pathways, Goss and 

Morrison50 were the first experimentalists to label the fourth ionized state of ozone, C~  2B1 O3
+, 
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responsible for O3 → O2 + O+ with an observed energy of 15.03 eV.  In 2001, Mocellin, et. al.51 

recorded the total and partial ion yields of ozone using time-of-flight techniques to confirm that 

two states, X~ 2A1 O3
+ and A~  2B2 O3

+, are bound after ionization.  The first direct experimental 

evidence for the predissociation state of the ozone cation,C~  2B1 O3
+, was presented on the basis 

of resonant auger electron spectra of core excited ozone in 2003.44 

 Over the past forty years, the doublet states of the ozone radical cation have received 

much attention; however, only one paper mentions the quartet states of O3
+.  The present 

research extends the theoretical characterization of ozone to include the quartet states of O3
+.  

This research provides experimentalists with vertical excitation energies from several ozone 

triplet states, which are also examined at high levels of theory. 

5.3 COMPUTATIONAL DETAILS 

 Geometries for all states of ozone and the ozone cation were optimized using the 

CASSCF,52-55 unrestricted coupled cluster theory from a restricted open-shell Hartree-Fock 

reference including all single and double excitations (UCCSD),56-59 and UCCSD methods with 

the effects of connected triple excitations included perturbatively [UCCSD(T)].60-62  Dunning’s 

correlation-consistent polarized-core-valence basis sets, cc-pCVXZ (X = T, Q, and 5),63,64 were 

used without frozen core approximations.  The largest basis set, cc-pCV5Z, included 435 

contracted Gaussian functions.  The CASSCF procedure for the ozone radical cation places all 

23 electrons in 15 molecular orbitals with 59588 (4A1), 60436 (4B1), 59740 (4B2), 60476 (4A2), 

77598 (2A1), 75366 (2B1), 77514 (2B2), and 75282 (2A2) configuration state functions (CSFs) for 

O3
+.  Similarily, the CASSCF procedure for neutral ozone places 24 electrons in 15 molecular 

orbitals, with total configuration numbers 24189 (3B1), 25035 (3B2), 24159 (3A2), and 16683 

(1A1).   
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 Potential energy curves were computed using the full-valence CASSCF method with the 

cc-pVTZ basis set.  Bond angles were incremented by 5° between 70°-155°, constrained, and 

bond lengths were allowed to relax.  Geometry optimizations and potential surfaces were 

computed using the MOLPRO 2002.6 package.64-72 

 Harmonic vibrational frequencies were determined at the optimized cc-pCVTZ UCCSD 

and cc-pCVTZ UCCSD(T) geometries using ACESII73,74 analytic second derivatives.75-77 The 

UCCSD adiabatic zero-point vibration corrected energies, T0, are seen in Tables 5.6 and 7 and 

used cc-pCVTZ UCCSD’s ZPVE values.  The remaining coupled cluster methods used cc-

pCVTZ UCCSD(T) ZPVEs for their zero-point vibrational corrections.  It became evident that 

higher order coupled cluster methods are needed to obtain reliable results with single 

determinant based methods.  Accordingly, the cc-pCVDZ63,64 UCCSDT(Q) 78,79  energy 

correction was evaluated using Kállay’s MRCC77,80-84 interface with the ACESII package.  The 

full triples plus perturbative quadruple excitations correction was evaluated as the difference 

between two single point energies, cc-pCVDZ UCCSDT(Q) and cc-pCVDZ UCCSD(T), at the 

optimized cc-pCV5Z UCCSD(T) geometry.   

5.4 RESULTS AND DISCUSSION 

5.4.1 GEOMETRIES 

In Table 5.1 the theoretical geometries are reported for the quartet states of the ozone 

radical cation, with the appropriate electron configurations given in Table 5.4.  The electron 

configurations for the four states differ by which one of the four orbitals is doubly occupied: 6a1, 

1a2, 4b2, or 2b1.  The theoretical bond angles qualitatively agree with the Walsh diagram, seen in 

Figure 5.1.  Walsh’s diagram predicts the 6a1
21a2 4b2 2b1 (4A1) state to be the most bent because 

the 6a1 orbital is doubly occupied.  This is followed structurally by 6a11a2 4b2 2b1
2 (4B1), in 
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which the doubly occupied 2b1 orbital is seen in Figure 5.1 to have no real preference to a bent or 

linear structure.  The last two quartet states contain doubly occupied orbitals that prefer linear 

structures, with the 4b2 orbital having a steeper curve than 1a2.  Thus, 6a11a2 4b2
2 2b1 (4B2) state 

should have a larger bond angle than 6a11a2
2 4b2 2b1 (4A2).  The Walsh diagram therefore 

predicts the bond angles to fall in the order 4A1 < 4B1 < 4A2 < 4B2, which order matches the 

theoretical cc-pCV5Z UCCSD(T) geometries: 89.8°, 97.6°, 113.8°, and 124.6°, respectively. 

Optimized triplet state structures for neutral ozone are reported in Table 5.2, with their 

configurations shown in Table 5.4.  The treatment of the 3A1 state is unreliable with single 

determinant methods because of its extreme multireference nature, demonstrated in Table 5.4.  

For the remaining three states, the electron configurations place six electrons in four orbitals:  

6a1, 1a2, 4b2, and 2b1.   Walsh’s diagram predicts the 6a1 orbital to favor strongly bent structures 

while the 4b2 and 1a2 orbitals are predisposed to linear geometries.  Thus, the Walsh diagram 

predicts the configuration 6a11a2
2 4b2

2 2b1 (3B1) to have the largest bond angle.  The two 

remaining states, 6a1
21a2

2 4b2 2b1 (3A2) and 6a1
21a2 4b2

2 2b1 (3B2), differ in their occupations of 

4b2 and 1a2.  Since the 1a2 orbital does not favor linearity as much as 4b2, the 3A2 state should (in 

Walsh’s picture) have a smaller bond angle.  Our theoretical bond angles agree with this simple 

Walsh diagram ordering: 97.9°, 108.5°, and 128.5° for 3A2, 3B2, and 3B1, respectively.  The 

theoretical 3A2 ozone structure re differs from the experimental ro by 0.013 Å and 1.0 degrees. 

The theoretical results for the doublet states of the ozone radical cation (see Table 5.1) 

also follow the Walsh diagram predictions for the bond angle order.  Only one of the lowest-

lying doublet states has a singly occupied 6a1, giving rise to the largest bond angle, 6a11a2
2 4b2

2 

(2A1); while the configuration with 4b2 unoccupied should have the smallest angle, 6a1
21a2

2 2b1 

(2B1).  The remaining two doublet states have three electrons in 1a2 and 4b2.  A state with a 



doubly occupied 4b2, namely 6a1
21a2 4b2

2 (2A2), should (Walsh argument) have a larger bond 

angle than the state with a doubly occupied 1a2, namely 6a1
21a2

2 4b2 (2B2).  The present ab initio 

predictions follow the Walsh pattern with 71.0°, 104.2°, 112.8°, and 132.7° for 2B1, 2B2, 2A2, and 

2A1, respectively.  The 2A1 geometry agrees roughly with the recent experimental results of 

Merkt,32 but with a shorter bond length by 0.023 Å and a bond angle different by 1.2°.  However, 

the 2B2 structure at the UCCSD(T) level of theory differs from experiment32 by 0.100 Å and 7.1°.  

This discrepancy could conceivably be rationalized by examining the second significant 

configuration for the 2B2 state, 6a11a2 4b2
22b1, compared to the dominant configuration, 6a1

21a2
2 

4b2.  With the absence of the doubly occupied 6a1 and the presence of a doubly occupied 4b2, 

this second configuration might have a substantionally larger bond angle.  Incorporation of this 

configuration into a geometry optimization might yield a bond angle closer to the Willitsch 

value.32  Willitsch attributes this discrepancy to the anharmonicity of the potential in the vicinity 

of the equilibrium geometry.  A more complete discussion of the structural predictions will be 

given in the conclusions. 

Optimized stationary points for the ground state structures for ozone, molecular oxygen, 

and the molecular oxygen cation are reported in Tables 5.2 and 5.3, respectively.  There is 

excellent agreement for O2 and O2
+, the bond distances differing by 0.0027 Å and 0.0022 Å.85  

Despite the X~ 1A1 O3 multireference nature, cc-pCV5Z UCCSD(T) gives good agreement with 

the experimental re structure12,13 of 0.007 Å and 0.4°. 

5.4.2 Vibrational Frequencies 

Predicted harmonic vibrational frequencies are reported in Tables 5.3 and 5.5.  The 

UCCSD(T) results agree satisfactorily with the experimentally derived harmonic frequencies,14,15 

differing by 25, 5, and -25 cm-1 for ω1, ω2, and ω3, respectively.  This comparison is consistent 
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with Bartlett and coworkers’ comments about the necessity of triple excitations for accurate 

harmonic frequencies.9,10,21  For example, for neutral O3 coupled cluster theory with the singles 

and doubles anstaz (CCSD) predicts ω1 and ω3 to be nearly equal, 1283 and 1273 cm-1, 

respectively.  Including the effects of perturbative triples, coupled cluster theory shows a 

dramatic improvement, lowering these two harmonic frequencies by 125 and 211 cm-1, to within 

25 cm-1 of experiment.  The remarkable effect of triples is not restricted to the ground state of 

ozone: 4A1 O3
+ (ω3), 2A1 O3

+ (ω1 and ω3), and 2B2 O3
+ (ω3) all exhibit significant differences of 

233, 137, 168, and 133 cm-1, respectively, between CCSD and CCSD(T).   

For the triplet states, there is reasonable agreement with experiment for most harmonic 

vibrational frequencies.  For the 3B1 and 3B2 states, the UCCSD(T) frequencies fall inside the 

experimental error ranges.  However, the 3A2 frequencies are not so close to Anderson and 

Mauersberger’s17 experiment, differing by 34 and 59 cm-1 for ω1 and ω2, respectively.   

For the ground state of the ozone radical cation, the present theoretical results fall within 

Weiss, Berkowitz, and Appleman’s47 suggested experimental errors.  The other available 

experiment to compare with theory is for the 2B2 state.  Our coupled cluster prediction for ω1 

(1278 cm-1) differs from experiment (1380 ± 40 cm-1) by over at least 60 cm-1.  As mentioned 

earlier, this state is severely multi-reference and also affected by anharmonicity.32  Further 

theoretical investigations including quartic force fields and multi reference coupled cluster 

methods are needed to understand this apparent disagreement between theory and experiment.  It 

is of course possible that the rather large stated experimental error bars (± 40 cm-1) were overly 

optimistic.  The 2B1 state of O3
+ has a nearly equilateral structure, and its imaginary vibrational 

frequency indicates a transition state leading to a Cs structure.  The remaining two states, 4B2 and 

2A2, have one imaginary vibrational frequency and are also transition states to Cs minima.   
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5.4.3 Energetics 

 The bending potential energy curves for the ozone radical cation and ozone are sketched 

in Figures 5.2 and 5.3, respectively.  For the doublet ozone radical cation species, Figure 5.2 is in 

excellent agreement with Schmelz’s39 earlier research.  Both theoretical models show 2A1, 2B2, 

2A2, and 2B1 with minima at about 130, 105, 115, and 70°, respectively.  The state responsible for 

predissociation, 2B1, is nearly 2 eV higher in energy than 2A1 and 2B2 in the range of 90 to 130 

degrees before falling to its minimum near 70°.  For the triplet states, the CASSCF PES predicts 

the 3A2 state to be higher in energy than 3B2.  Three of the four quartet states, 4A1, 4A2, and 4B2, 

are similar in energy to the 2B1 state, which is responsible for the premature dissociation of O3
+ 

→ O+ + O2.  However, with the error in the triplet excited states mentioned above, higher levels 

of theory than CASSCF must be utilized to illuminate the quartet states of the ozone radical 

cation.  The first subsection in this energetics discussion justifies UCCSD(T) and UCCSDT(Q), 

while the second part describes the ionizations  and excitations to the quartet states of the ozone 

radical cation. 

5.4.3.1 Method Justification 

The energetic ordering of the triplet states of ozone has been a very challenging 

problem21 for single determinant coupled cluster methods.  Table 5.6 shows how the inclusion of 

higher excitations reverses the energetic order of the 3B2 and 3A2 states.  The CASSCF and 

UCCSD methods predict 3B2 to be the lowest excited electronic state by 0.11 and 0.37 eV, 

respectively, while UCCSD(T) predicts the two states to be nearly degenerate.  The inclusion of 

perturbative quadruple excitations confirms the experimental ordering of the 3A2, 3B2, and 3B1 

states, with energies relative to 3A2 of 0.13, and 0.28 eV for 3B2 and 3B1, respectively.  These 

energy differences are in remarkable agreement with Anderson and Mauersberger’s 



experiments,17 differing by 0.02 eV (3B2 ←3A2) and 0.01 eV (3B1 ←3A2).  Although 

UCCSDT(Q) provides an excellent energy separation ΔE(3A2 – 3B2) between the two triplet 

states, UCCSD(T) is sufficient to describe the triplet excitations from the ozone ground state.  

Our UCCSD(T) predictions are in fine agreement with experiment17 with differences of 0.02 

(3A2 Te), 0.02 (3A2 T0), 0.03 (3B2 Te), 0.07 (3B2 T0), 0.04 (3B1 Te), and 0.02 eV (3B1 T0).   

The ionization energies of neutral ozone to the doublet cation states are also reported in 

Table 5.6.  The same energetic ordering is obtained from UCCSD(T) for the doublet states of the 

ozone cation, differing from Merkt’s results32 by 0.06 eV.  UCCSD(T) performs satisfactorily in 

describing 2A1 T0 (differs from experiment by 0.03 eV),32 2B2 T0 (0.09),32 2B2 Tv (0.05),23,26 and 

2A2 Tv (0.04).23,26  However, UCCSD(T) differs by 0.20 electron volts for 2A1 Tv and 2B1 Tv 

(vertical excitation energy).  The inclusion of quadruple excitations improves the theoretical 

predictions for 2A1 Tv and 2B1 Tv to 13.22 and 15.11 eV, respectively, which are in good 

agreement with experiment.47,50   

Table 5.7 reports the two dissociation energies (to O2 + O+ and O2
+ + O) for ozone radical 

cation electronic states for X~  2A1 O3
+.  This work confirms that the two lowest doublet cation 

states, X~  2A1 O3
+ and A~  2B2 O3

+, are bound with respect to 2Πg O2
+ + 3P O by 0.63 and 0.53 eV, 

respectively.  Experimentalists46-48 report 0.60 eV for X~  2A1 O3
+ which result is in excellent 

agreement with our UCCSDT(Q) prediction of 0.63 eV.  The other available experimental result 

with which to compare involves the photodissociation pathway for 2A1 O3
+.  Vestal and 

coworkers derived a dissociation barrier of 1.85 eV from two experiments46,49 and a 

reinterpretation of Moseley’s results48.  The UCCSDT(Q) prediction is nearly a one eV higher 

than experiment.  However, Table 5.7 shows our theoretical thermochemical bond energy (O3
+ 
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→ O2
+ + O) for the ozone cation to be 2.14 eV which is in essentially perfect agreement with 



accepted bond energy of 2.165 ± 0.02 eV.48  For the ozone cation dissociation value, two 

experiments deduced the 2B1 vertical ionization energy from the ground state of ozone for 

15.2146 and 15.03 eV,50 which bracket the UCCSDT(Q) predicted value of 15.11 eV.  Vestal 

started from the ground state of ozone and deduced a dissociation energy of 1.85 eV for X~ 2A1 

O3
+ from the appearance of O3

+ and O2
+ in his spectrum.  Since Goss and Morrison report that 

the C~  2B1 O3
+ state is responsible for the ozone radical dissociation, we compare the vertical 

ionization potentials of C~  2B1 O3
+ and X~ 2A1 O3

+ from X~ 1A1 O3 to pursue Vestal’s experiment.  

Our perturbative quadruples method predicts the dissociation energy of the ozone radical cation 

to be 1.89 eV, 0.04 eV off from experiment.  As a byproduct of the theoretical dissociation 

energies, Table 5.3 reports ionization energies for oxygen and molecular oxygen.  Since 

UCCSD(T) has already essentially converged to the experimentally observed energies of 13.6186 

and 12.0787 eV for 4S O+ ← 3P O and 2Πg O2
+ ← 3 −Σg  O2, respectively, the perturbative 

quadruples corrections are not included. 

5.4.3.2 Ionization and Electronic 

 

xcitation 

y t  obtain accurate relative energies for the 

trip

(1A1, 3A2, 3B2, and 3B1) and the ozone cation surfaces (2A1 and 2B2).   

E

 The UCCSDT(Q) correction seems necessar o

let states of ozone, the ionization to the doublet states of the ozone cation, and the 

predissociation limit for the ozone cation.  However, UCCSD(T) performs very satisfactorily 

with only a few properties differing from experiment by more than 0.10 eV.  Thus, the 

UCCSDT(Q) method is not reported for the ozone and the ozone radical cation in Table 5.8.  The 

remaining discussion of energetics revolves around theoretical predictions of the positions of the 

quartet states of the ozone cation relative to several different points along the ozone surfaces 
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one radical cation over the 

entire P

 for the 3A2 state of ozone.  Two likely 

ionization pathways to the quartet states involve (qualitatively) removing an electron from one of 

the nea

d 

Although there could exist other dissociation pathways for the ozone cation, this work 

assumes the 2B1 O3
+ state is responsible for the dissociation of the oz

ES.  Thus, a state is bound/unbound if its vertical excitation energy is less/more than the 

2B1 vertical excitation energy at a particular geometry. 

5.4.3.2.1  O3
+ ← 3A2 O3 

Table 5.8 reports the theoretically obtained IPs

rly degenerate, doubly occupied 6a1 (4A2 ← 3A2) or 1a2 (4A1 ← 3A2) orbitals.  The latter 

ionization potential (4A1 ← 3A2) pertains to the relationship between the lowest triplet neutral 

ozone state (3A2) and the lowest quartet ozone cation state, with an adiabatic IP of 12.34 eV.  

From the potential curves (Figures 5.2 and 5.3) and structures (Tables 5.1 and 5.2), the 4A1 and 

3A2 states have very similar geometries, resulting in similar adiabatic and vertical ionization 

energies.  The 4A2 ← 3A2 transition is also possible, leading to the second lowest quartet state of 

the ozone cation with a IPe predicted of 12.51 eV.  The 4A2 state has a bond angle 16° wider than 

3A2, leading to an increased vertical ionization energy 12.85 eV.  However, the vertical IP is still 

within the predissociation limit of 2B1 by 0.06 eV.  The last two ionization pathways from the 

3A2 to the quartet states of the ozone radical cation involve the second electronic configuration  

(▪▪▪6a11a2 4b2
2 2b1

2) with 4b2 and 2b1 doubly occupied.  Removal of a single electron from these 

orbitals results in the 4B1 ← 3A2 or 4B2 ← 3A2 excitations.  However, 4B1 is not a bound excite

electronic state (by nearly 3 eV) and any ionization to this state should dissociate to −∑ g
3 O2 and 

4S O+.  The last ionization, 4B2 ← 3A2, has a reasonable adiabatic excitation energy, 12.85 eV; 

but these two structures differ by nearly 30° and its Tv increases by 1 eV to 13.96 eV, which 

causes the 4B2 state to be dissociative by 1.05 eV.   
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yielding 2B2 ← 3A2) or from the 4b2 orbital 

(yieldin

e 3B2 state is not the lowest triplet state, it may to be the state which 

experim  obtain the quartet states, since it has the smallest vertical 

The two most practical pathways from ozone to the doublet states of O3
+ are the removal 

of a singly occupied electron from the 2b1 orbital (

g 2B1 ← 3A2).  The former ionization, 2B2 ← 3A2, has the lowest vertical IP, 11.73 eV, for 

3A2 while the process 2B1 ← 3A2 lies a full electron volt higher in energy due to the significant 

geometry differences between the two states and is responsible for predissociation.  The other 

ionization processes are 2A1 ← 3A2 (ionize 2b1; 4b2 ← 6a1) and 2A2 ← 3A2 (ionize 2b1; 4b2 ← 

1a2) with vertical ionization energies of 13.23 and 12.79 eV, respectively.  Although 2A1 ← 3A2 

has the lowest adiabatic IP for 3A2, its vertical IP is 0.32 eV above the Tv of 2B1 while the 2A2 ← 

3A2 process is viable by 0.12 eV.  Thus, the four most likely ionizations from the 3A2 state are 

2B2 ← 3A2, 4A1 ← 3A2, 4A2 ← 3A2, and 2A2 ← 3A2, with vertical IPs of 11.73, 12.46, 12.85, and 

12.79 eV and adiabatic IPs of 11.55, 12.34, 12.51, and 12.29 eV, respectively.  Experimentally, it 

will be demanding to distinguish 4A2 ← 3A2 from 2A2 ← 3A2, due to the two final states being 

nearly degenerate. 

5.4.3.2.2  O3
+ ← 3B2 O3 

 Although th

entalists should use to

excitation energy from X~ 1A1 O3.  Table 5.8 reports Te, T0, and Tv predictions for the ionization 

of the 3B2 state.  If one takes the 3B2 ozone electronic configuration, 6a1
21a24b2

22b1, and removes 

an electron from the different orbitals (in a simple MO picture), the following ionization 

processes result: 2A2 ← 3B2, 4A1 ← 3B2, 2B1 ← 3B2, and 4B2 ← 3B2.  However, this qualitative 

2B1 ← 3B2 ionization does not correspond to the ab initio 2B1 electron configuration.  Instead, the 

2B1 ← 3B2 ionization may be viewed as a two step process: ionization of a 4b2 electron followed 



by the excitation 1a2 ← 4b2.  The resulting vertical IP, 13.07 eV, leads to dissociation into −∑ g
3

O2 and 4S O+.  The 4B2 ← 3B2 pathway lies just above the 2B2 vertical limit by 0.12 eV.  

remaining three computed ionizations are two step routes: 4A2 ← 3B2, 2B2 ← 3B2, and 2A1 ← 3B2.  

The first of these pathways removes a 4b2 electron and includes a symmetry forbidden 1a2 ← 6a1 

transition for a Tv of 12.58 eV.  The 2B2 ← 3B2 ionization involves a 2b1 electron ejection and 

subsequent 1a2 ← 4b2 excitation, with an energy of 11.85 eV.  The last two step process is a 

combination of the two mechanisms just mentioned: removal of a 2b1 electron and inclusion of a 

symmetry forbidden transition, 1a2 ← 6a1 (Tv of 12.36 eV).  Excluding symmetry forbidden 

transitions, only three schemes are realistic from the 3B2 excited state: 2B2 ← 3B2 (11.85 eV), 2A2 

← 3B2 (12.49 eV) and 4A1 ← 3B2 (12.82 eV). 

5.4.3.2.3  O3
+ ← 3B1 O3 

The 
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tate, 3B1, is another possible ionization source for quartet states 

of O3
+.

The third lowest triplet s

  Table 5.8 reports theoretical ionization potentials from the 3B1 state.  The dissociation 

limit for 3B1 warrants a short discussion.  There exists extreme multireference character of the 

2B1 O3
+ wavefunction at the 3B1 O3 equilibrium geometry resulting in cc-pCV5Z CASSCF CI 

coefficients of 0.77 and -0.51 from the most significant configurations.  Thus, it may be 

challenging to reliably predict a vertical ionization energy of 2B1.  Three processes from the 3B1 

electronic state of ozone are 2A1 ← 3B1 (corresponding in qualitative terms to removal of an 

electron from a singly occupied 2b1 orbital), 4A2 ← 3B1 (ejection of an electron from the doubly 

occupied 4b2 orbital), and 4B2 ← 3B1 (ionization of an electron from the doubly occupied 1a2 

orbital) with vertical IPs of 11.26, 12.46, and 12.65 eV, respectively.  The only other single 

photon process occurs from the second most important electron configuration for the 3B1 

(6a1
21a2 4b2 2b1

2) state with the removal of an electron from the doubly occupied 2b1 orbital, 4A1 



← 3B1.  However, this process has a large vertical excitation energy of 13.93 eV and the 4A1 

state is expected to dissociate into 4S O+ and 3Σg
- O2.  The remaining ionization pathways 

considered here are two step processes which occur from 3B1.  The 2B2 ← 3B1 process arises 

from removal of a 2b1 electron followed conceptually by 6a1 ← 4b2 or 1a2 ← 2b1 to yield the 2B2 

state, with a total predicted vertical IP of 12.15 eV.  The second path, 2A2 ← 3B1, also removes a 

2b1 electron plus a second single excitation, 6a1 ← 1a2 or 4b2 ← 2b1, also requiring 12.15 eV for 

the overall vertical ionization energy.  However, the 2B2 ← 3B1 process is an unlikely transition, 

since 6a1 ← 1a2 and 4b2 ← 2b1 are both symmetry forbidden electronic transitions.  Beyond 

reasonable doubt, 2A1 ← 3B1 is a bound pathway with vertical and adiabatic IPs of 11.26 and 

11.07 eV, respectively.  Tentatively, 4A2 ← 3B1, 2A2 ← 3B1, and 4B2 ← 3B1 are bound 

mechanisms, since sufficient energy for 2B1 predissociation is not available. 

5.4.3.2.4  4O3
+ ← 2O3

+ 
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  citing an electron from X~ 1As an alternative to initially ex A1 O3 to the triplet state and 

1.36 and 1.26 eV, respectively.  

then ionizing, there exists the pathway of ionization (to a doublet state of O3
+), followed by the 

spin-forbidden excitation to a quartet state.  Table 5.8 reports the theoretical predictions for these 

spin forbidden transitions.  With a 4A1 ← 2A1 vertical electronic excitation of 4.10 eV, the 4A1 

state will dissociate upon electronic transition.  A second transition, 4B2 ← 2A1, is a tentative 

transition with a vertical IPv of 2.03 eV.  The third transition, 4A2 ← 2A1, is an energetically 

viable excitation, but it is also symmetry forbidden.  Thus, there are no robust mechanisms for 

the formation of quartet O3
+ via the ground electronic state of the ozone radical cation.  For the 

first excited state of the ozone cation, there are two symmetry-allowed, spin-forbidden bound 

excitations to the quartet states:  4A1 ← 2B2 and 4A2 ← 2B2, with vertical excitation energies of 
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citation energies from the ground state of ozone are shown.  In 

conjunc ionization of 15.11 eV, 4A1 O3
+ ← 1A1 O3, 4B2 O3

+ ← 1A1 O3, and 

2 O3  

ates of ozone and the ozone 

een thoroughly examined with CASSCF and coupled cluster theory.  

5.4.3.2.5  4O3
+ ← 1O3 

 In Table 5.8, possible ex

tion with 2B1 vertical 

4A + ← 1A1 O3 are bound processes with Tv of 14.90, 14.39, and 13.91 eV, respectively.  

Schmelz and coworkers’39  CASSCF and MRCI computations order the vertical IPs as 2A1, 2B2, 

2A2, 4A2, 4B2, 2B1, 4A1, and 4B1 while our UCCSD(T) predictions switch the 4A1 and 2B1 states.  

The present CASSCF energies are within 0.15 eV of Schmelz’s work while our coupled cluster 

relative energies are more than 0.5 eV larger than the MRCI results. 

4.5 CONCLUSIONS 

 The potential energy surfaces for many different electronic st

radical cation have b

Inclusion of perturbative triples excitations yields excellent agreement with many experimental 

results, while perturbative quaduples excitations seem necessary for the ozone radical cation 

triplet energy spacing and dissociation limits. 

Stanton and coworkers9-11 state that triple excitations are needed for accurate geometry 

and vibrational frequency results for the X~ 1A1 ground state of O3; the present research extends 

this statement to triplet states of ozone and doublet states of the ozone radical cation.  In most 

cases, the cc-pCV5Z UCCSD(T) method agrees with experimentally deduced bond distances and 

bond angles, except for the 2B2 state. There our structure differs from that of Willitsch by 0.100 

Å and 7.1°.32  Merkt and coworkers suggests anharmonicity as the key reason for the theoretical 

inconsistency since they are observing an r0 structure and a fundamental vibration.  This could 

conceivably be a factor in the 2B2 harmonic frequency differing by 100 ± 40 wavenumbers from 

experiment, and a more elaborate perturbation treatment is necessary for an accurate theoretical 



prediction.  An interesting by-product of the geometry discussion is that ozone and the ozone 

cation qualitatively follow the Walsh diagram for bond angle deductions.   

    While triple excitations are needed for accurate geometry and vibrational frequency 

predictions for X~ 1A1 O3, quadruple excitations appear necessary for coupled cluster methods to 

energetically order the triplet states of ozone, 3A2, 3B2, and 3B1, which have relative energies of 

0.00, 0.13, and 0.28 eV.  In addition to the triplet state energy spacings, the UCCSDT(Q) 

correlation is also essential for accurate thermochemcial dissociation limits of the ozone radical 

cation.  For the X~ 2A1 O3
+ → 2Πg O2

+ + 3P O dissociation, the quadruple excitations improve the 

UCCSD(T) energy of 0.44 eV to 0.63 eV which is in agreement with experiments46-48 to within 

0.03 eV.  For the second dissociation pathway, X~ 2A1 O3
+ → −Σg

3  O2 + 4S O+, the perturbative 

quadruples corrected the UCCSD(T) value of 1.93 to 2.14 eV which agrees with the 

experimentally expected bond energy of 2.165 e 48  Although re is a dramatic effect on the 

thermochemcial bond energies, the UCCSDT(Q) correction is not as important in the 2B1 O3
+ 

predissocation pathway.  The UCCSDT(Q) method adds -0.05 eV to the UCCSD(T) energy of 

1.94 eV to obtain a value of 1.89 eV, 0.03 eV from experiment.46,49  While UCCSD(T) was 

unable to quantitatively characterize a few ozone properties, it is successful in determining 

equilibrium geometries, harmonic vibrations, adiabatic and vertical singlet-triplet excitations, 

and adiabatic and vertical singlet-doublet ionization potentials. 

From the energetic discussion above, three quartet minima lie below the 2B1 dissociation 

limit and may be possible bound states with respect to photodis

V.  the

sociation.  From the ground state 

of ozone, vertical ionizations to 4A2, 4B2, and 4A1 are possible at 13.91, 14.39, and 14.90 eV, 

compared to 15.11 eV for the 2B1 state responsible for predissociation.  Other possible pathways 
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coupled cluster methods yet applied to these systems.  This research suggests 

several

was supported by the Department of Energy, Office of Basic Energy 

undamental Interactions Team.  We thank Professor Michael 

Duncan

ak, Contemporary Phys. 38, 289 (1997). 

, Chemistry of Atmospheres, 3rd Ed. (Oxford University Press, Oxford, 

4 puis, C. R. Acad. Sci. 91, 985 (1880). 

cta A 54, 17 (1998). 

allagher, J. Phys. Chem. Ref. Data 16, 911 

8 yuterev, S. Tashkun, P. Jensen, A. Barbe, and T. Cours, J. Mol. Spec. 198, 57 

to the quartet states are 4A1 ← 3A2, 4A2 ← 3A2, 4A1 ← 3B2, 4A2 ← 3B1, 4B2 ← 3B1, 4A1 ← 2B2, 

and 4A2 ← 2B2 with vertical IPs of 12.46, 12.85, 12.82, 12.46, 12.65, 1.36, and 1.26 eV, 

respectively. 

This research has investigated ozone and the ozone radical cation with the most 

sophisticated 

 different avenues for experimentalists to detect and characterize the excited states of the 

ozone radical cation. 
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s; angles in 

egrees). 

 
32 Wiilitsch Inoocenti

Table 5.1.  Optimized geometries for O3
+ states (bond distances in Angstrom

d

r e θ e r e θ e r e θ e r e θ e

cc-pCVTZ CASSCF 1.3754 90.43 1.3398 113.28 1.3475 123.60 1.4897 99.73
cc-pCVQZ CASSCF 1.3734 90.58 1.3373 113.19 1.3449 123.57 1.4879 99.36
cc-pCV5Z CASSCF 1.3732 90.60 1.3372 113.18 1.3447 123.55 1.4877 99.34

cc-pCVTZ UCCSD 1.3444 89.60 1.3113 113.64 1.3098 125.07 1.4449 96.01
cc-pCVQZ UCCSD 1.3384 89.81 1.3046 113.63 1.3029 125.13 1.4373 95.82
cc-pCV5Z UCCSD 1.3371 89.82 1.3033 113.61 1.3015 125.09 1.4354 95.82

cc-pCVTZ UCCSD(T) 1.3618 89.58 1.3251 113.83 1.3303 124.60 1.4720 97.56
cc-pCVQZ UCCSD(T) 1.3561 89.77 1.3185 113.79 1.3233 124.64 1.4647 97.25
cc-pCV5Z UCCSD(T) 1.3549 89.78 1.3173 113.76 1.3219 124.59 1.4626 97.25

r e θ e r e θ e r e θ e r e θ e

cc-pCVTZ CASSCF 1.2476 130.62 1.2896 104.51 1.3661 71.34 1.3012 112.68
cc-pCVQZ CASSCF 1.2450 130.65 1.2872 104.59 1.3640 71.49 1.2985 112.72
cc-pCV5Z CASSCF 1.2449 130.63 1.2870 104.61 1.3638 71.47 1.2983 112.74

cc-pCVTZ UCCSD 1.2034 134.09 1.2477 103.79 1.3389 69.18 1.2717 112.85
cc-pCVQZ UCCSD 1.1981 134.19 1.2423 103.93 1.3328 69.28 1.2654 112.91
cc-pCV5Z UCCSD 1.1970 134.18 1.2412 103.96 1.3316 69.22 1.2642 112.91

cc-pCVTZ UCCSD(T) 1.2345 132.57 1.2784 104.01 1.3535 70.92 1.2920 112.79
cc-pCVQZ UCCSD(T) 1.2283 132.71 1.2722 104.12 1.3477 71.10 1.2854 112.84
cc-pCV5Z UCCSD(T) 1.2272 132.70 1.2711 104.15 1.3465 71.02 1.2841 112.83

1.25oo 131.5o 1.371o 111.3o

a  Reference 32.

Basis Set Theory

Basis Set Theory
2A1

2B2
2B1

2A2

Experiment a

4A2
4B2

4B1
4A1



Table 5.2.  Optimized geometries for O3 states (bond distances in Angstroms; angles in degrees). 

r e θ e r e θ e r e θ e r e θ e r e θ e

cc-pCVTZ CASSCF 1.3622 99.13 1.3726 108.36 1.3388 124.42 1.6923 180.00 1.2840 116.70
cc-pCVQZ CASSCF 1.3593 99.25 1.3693 108.41 1.3354 124.48 1.6921 180.00 1.2806 116.79
cc-pCV5Z CASSCF 1.3588 99.30 1.3688 108.44 1.3350 124.47 1.6911 180.00 1.2801 116.82

cc-pCVTZ UCCSD 1.3193 97.17 1.3448 108.46 1.2837 129.45 a a 1.2471 117.67
cc-pCVQZ UCCSD 1.3133 97.36 1.3380 108.52 1.2773 129.52 a a 1.2412 117.79
cc-pCV5Z UCCSD 1.3120 97.42 1.3365 108.53 1.2760 129.47 a a 1.2399 117.81

cc-pCVTZ UCCSD(T) 1.3389 97.73 1.3574 108.48 1.3063 128.41 a a 1.2728 117.03
cc-pCVQZ UCCSD(T) 1.3331 97.84 1.3509 108.52 1.3000 128.51 a a 1.2663 117.17
cc-pCV5Z UCCSD(T) 1.3321 97.90 1.3496 108.53 1.2987 128.45 a a 1.2649 117.19

1.345o 98.9o
1.2717 116.47
1.2715 117.47

a  With a linear structure, the 3A1 (
3Σg

-) state is too multireference in character for single

    determinant methods.
b  Reference 88.
c  Reference 12
d  Reference 13

3B2

Experiment c

Experiment d

3B1
3A1 (

3Σg
-)

Experiment b

1A1 O3
Basis Set Theory

3A2

 
88 Bouvier Inard, Veyret 13Depannemaehcer  12 Tananka & Y. Morino 
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Table 5.3.  Optimized geometries (in Angstroms), harmonic vibrational frequencies (in   cm-1), and ionization potentials (in eV) for O2 

and O2
+. 

85 Huber and Herzrg 

r e ω r e ω IPe

cc-pCVTZ CASSCF 1.2176 1539 1.1212 1901 11.96 10.09 10.12
cc-pCVQZ CASSCF 1.2154 1547 1.1200 1909 11.97 10.07 10.09
cc-pCV5Z CASSCF 1.2152 1548 1.1199 1909 11.97 10.07 10.09

cc-pCVTZ UCCSD 1.1973 1682 1.1058 2044 13.30 11.97 11.99
cc-pCVQZ UCCSD 1.1929 1700 1.1024 2068 13.45 12.06 12.08
cc-pCV5Z UCCSD 1.1919 1703 1.1015 2071 13.51 12.10 12.12

cc-pCVTZ UCCSD(T) 1.2099 1591 1.1184 1919 13.34 11.90 11.92
cc-pCVQZ UCCSD(T) 1.2057 1606 1.1150 1941 13.50 12.01 12.03
cc-pCV5Z UCCSD(T) 1.2048 1608 1.1142 1944 13.56 12.05 12.07

1.2075 1580 1.1164 1905 13.61 b 12.07 c

b  Reference 86.
c  Reference 87.

IP0

4S O+ ← 3P O 2Πg
 O2

+ ← 3∑g
- O2 

IPe

2Πg O2
+

a  Reference 85.

Basis Set Theory
3Σg

- O2

Experiment a
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Table 5.4.  cc-pCV5Z CASSCF CI coefficients (> ±0.23) and corresponding electron 

configurations. 

   

State CI

4A1 O3
+ 0.922 ▪▪▪a 1b1

2 5a1
2 6a1

2 1a2 4b2 2b1

4B1 O3
+ 0.887 ▪▪▪ 1b1

2 5a1
2 6a1 1a2 4b2 2b1

2

4B2 O3
+ 0.919 ▪▪▪ 1b1

2 5a1
2 6a1 1a2 4b2

2 2b1

4A2 O3
+ 0.941 ▪▪▪ 1b1

2 5a1
2 6a1 1a2

2 4b2 2b1

0.759 †††
b 1πu

4 1πg
4 2πu

2

0.832 ††† 1πu
4 1πg

2 2πu
4

0.895 ▪▪▪ 1b1
2 5a1

2 6a1 1a2
2 4b2

2 2b1

-0.305 ▪▪▪ 1b1
2 5a1

2 6a1
2 1a2 4b2 2b1

2

3B2 O3 0.956 ▪▪▪ 1b1
2 5a1

2 6a1
2 1a2 4b2

2 2b1

0.888 ▪▪▪ 1b1
2 5a1

2 6a1
2 1a2

2 4b2 2b1

-0.336 ▪▪▪ 1b1
2 5a1

2 6a1 1a2 4b2
2 2b1

2

0.886 ▪▪▪ 1b1
2 5a1

2 6a1 1a2
2 4b2

2

-0.239 ▪▪▪ 1b1
2 5a1

2 6a1
2 1a2 4b2 2b1

2B1 O3
+ 0.905 ▪▪▪ 1b1

2 5a1
2 6a1

2 1a2
2 2b1

0.870 ▪▪▪ 1b1
2 5a1

2 6a1
2 1a2

2 4b2

-0.291 ▪▪▪ 1b1
2 5a1

2 6a1 1a2 4b2
2 2b1

0.910 ▪▪▪ 1b1
2 5a1

2 6a1
2 1a2 4b2

2

0.241 ▪▪▪ 1b1 5a1
2 6a1

2 1a2 4b2
2 2b1

0.908 ▪▪▪ 1b1
2 5a1

2 6a1
2 1a2

2 4b2
2

-0.289 ▪▪▪ 1b1
2 5a1

2 6a1
2 4b2

2 2b1
2

3Σg
- O2 0.958 1σg

2 1σu
2 2σg

2 2σu
2 3σg

2 1πu
4 1πg

2

2Πg O2
+ 0.969 1σg

2 1σu
2 2σg

2 2σu
2 3σg

2 1πu
4 1πg

α

a ■■■  = 1a1
2 2a1

2 1b2
2 3a1

2 2b2
2 4a1

2 3b2
2

b ††† = 1σg
2 2σg

2 1σu
2 3σg

2 2σu
2 4σg

2 3σu
2

3A1 O3

(3Σg
- O3)

Electron Configuration

2B2 O3
+

3B1 O3

1A1 O3

2A2 O3
+

3A2 O3

2A1 O3
+
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Table 5.5.  cc-pCVTZ harmonic vibrational frequencies (in cm-1), infrared intensities (in km mol-1) in parentheses, and zero-point 

vibrational energies (ZPVE) (in eV) for O3 and O3
+.  

Exp (Harm) Exp (Harm) Exp (Harm) UCCSD UCCSD(T)
4A1 O3

+ 1185 ( 52.5 ) 1136 ( 50.7 ) 614 ( 4.6 ) 584 ( 4.5 ) 382 ( 142.1 ) 148 ( 50.9 ) 0.14 0.12
4B1 O3

+ 906 ( 37.2 ) 857 ( 40.0 ) 419 ( 4.9 ) 382 ( 5.7 ) 422 ( 808.3 ) 452 ( 1178.0 ) 0.11 0.10
4B2 O3

+ 1004 ( 46.9 ) 941 ( 44.4 ) 555 ( 16.6 ) 529 ( 15.0 ) 513i ( 168.5 ) 753i ( 0.2 ) 0.10 0.09
4A2 O3

+ 1051 ( 41.0 ) 999 ( 43.0 ) 524 ( 5.1 ) 502 ( 5.7 ) 125 ( 3.2 ) 233 ( 0.4 ) 0.11 0.11

3B1 O3 1056 ( 1.4 ) 988 ( 2.1 ) 584 ( 2.3 ) 559 ( 1.8 ) 555 ± 15 a 640 ( 107.8 ) 603 ( 10.9 ) 0.14 0.13
3B2 O3 1110 ( 0.3 ) 1069 ( 0.1 ) 1090 ± 80 c 620 ( 2.9 ) 596 ( 2.6 ) 580 ± 50 b 711 ( 9.7 ) 578 ( 6.3 ) 0.15 0.14
3A2 O3 1232 ( 0.7 ) 1156 ( 1.6 ) 1190 ± 15 a 620 ( 2.4 ) 587 ( 2.7 ) 528 ± 05 a 216 ( 71.0 ) 250 ( 4.9 ) 0.13 0.12

2A1 O3
+ 1207 ( 33.7 ) 1069 ( 35.7 ) 1050 ± 50 e 689 ( 13.7 ) 648 ( 13.6 ) 617 ± 0.1 g 1205 ( 1.3 ) 1037 ( 4.7 ) 0.19 0.17

2B1 O3
+ 1301 ( 33.1 ) 1228 ( 38.1 ) 750 ( 8.1 ) 656 ( 6.0 ) 492i ( 7.2 ) 294i ( 8.4 ) 0.13 0.12

2B2 O3
+ 1356 ( 45.2 ) 1278 ( 55.9 ) 1380 ± 40 f 707 ( 1.9 ) 659 ( 1.8 ) 276 ( 43.6 ) 143 ( 67.1 ) 0.15 0.13

2A2 O3
+ 1179 ( 25.5 ) 1151 ( 27.1 ) 696 ( 1.4 ) 673 ( 1.5 ) 662i ( 17.3 ) 704i ( 14.5 ) 0.12 0.11

1A1 O3 1283 ( 0.0 ) 1158 ( 0.3 ) 1133 ± 0.4 d 767 ( 7.5 ) 720 ( 6.1 ) 715 ± 0.4 d 1273 ( 203.5 ) 1062 ( 113.3 ) 1087 ± 0.3 d 0.21 0.18

a  Reference 17.
b  Reference 20.
c  Reference 89.
d  Reference 14.
e  Reference 47.
f  Fundamental Frequency from Reference 22 and 26.
g  Fundamental Frequency from Reference 32.

State
UCCSD UCCSD(T) UCCSD

ω3 (b2) ZPVE

UCCSD(T)

ω1 (a1) ω2 (a1)

UCCSD UCCSD(T)

 
17 Anderson Mauersberger   20 Arnold  89 Allan  14 Barbe   47 Weiss, Berkowitz, and Appelman  22Brundle 26 Katsumata
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Table 5.6.  Comparison of theoretical and experimental excitation energies and ionization potentials (in eV) with respect to the X~ 1A1 

state of O3.a17 A23vitas  32 Willitsch 26 Katsumata  46Vestal and Mauclaire  47Weiss, Berkowitz, Appelman  50 Goss and Morrison  
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Te T0 Tv ΔT0 Te T0 Tv ΔT0 Te T0 Tv ΔT0 Te T0 Tv ΔT0

cc-pCVTZ CASSCF 1.43 2.07 1.33 1.73 1.73 1.98 4.61 8.07
cc-pCVQZ CASSCF 1.46 2.10 1.35 1.76 1.76 2.01 4.66 8.12
cc-pCV5Z CASSCF 1.46 2.11 1.35 1.76 1.77 2.02 4.68 8.12
cc-pCVTZ UCCSD 1.08 1.00 1.96 0.39 0.67 0.62 1.27 0.00 1.37 1.30 1.69 0.68 ##### 8.12
cc-pCVQZ UCCSD 1.13 1.05 2.01 0.37 0.73 0.68 1.33 0.00 1.40 1.34 1.72 0.66 ##### 8.21
cc-pCV5Z UCCSD 1.14 1.06 2.02 0.37 0.74 0.69 1.35 0.00 1.41 1.35 1.73 0.66 ##### 8.22
cc-pCVTZ UCCSD(T) 1.22 1.16 1.92 0.01 1.19 1.15 1.61 0.00 1.48 1.43 1.75 0.29 ##### 7.96
cc-pCVQZ UCCSD(T) 1.25 1.19 1.97 0.00 1.25 1.20 1.67 0.01 1.51 1.46 1.78 0.27 ##### 8.04
cc-pCV5Z UCCSD(T) 1.26 1.20 1.98 0.00 1.26 1.22 1.69 0.02 1.52 1.47 1.79 0.27 ##### 8.04

1.24 1.18 0.00 1.29 1.29 0.11 1.48 1.45 0.27

Te T0 Tv ΔT0 Te T0 Tv ΔT0 Te T0 Tv ΔT0 Te T0 Tv ΔT0

cc-pCVTZ CASSCF 10.86 11.12 11.01 11.23 11.87 12.93 11.77 11.81
cc-pCVQZ CASSCF 10.87 11.12 11.01 11.24 11.88 12.95 11.77 11.81
cc-pCV5Z CASSCF 10.87 11.12 11.01 11.24 11.89 12.95 11.77 11.81
cc-pCVTZ UCCSD 12.62 12.61 13.05 0.00 12.90 12.84 13.24 0.23 13.13 13.05 15.32 0.45 13.09 13.00 13.16 0.40
cc-pCVQZ UCCSD 12.76 12.74 13.19 0.00 13.05 12.99 13.40 0.25 13.31 13.23 15.51 0.49 13.24 13.15 13.31 0.41
cc-pCV5Z UCCSD 12.82 12.80 13.25 0.00 13.11 13.05 13.46 0.25 13.36 13.28 15.58 0.48 13.30 13.21 13.37 0.41
cc-pCVTZ UCCSD(T) 12.34 12.32 12.67 0.00 12.57 12.52 12.84 0.19 13.22 13.16 14.53 0.83 13.33 13.26 13.38 0.94
cc-pCVQZ UCCSD(T) 12.49 12.48 12.84 0.00 12.74 12.68 13.01 0.20 13.41 13.34 14.76 0.86 13.50 13.43 13.55 0.95
cc-pCV5Z UCCSD(T) 12.56 12.55 12.90 0.00 12.80 12.75 13.08 0.20 13.47 13.40 14.84 0.85 13.56 13.50 13.61 0.95

12.52 b 13.13 d 0.00 12.66 b 13.03 c 0.14 15.21 d 13.57 c

15.03 e

a  Reference 17.
b  Reference 32.
c  References 23 and 26.
d  Reference 47.
e  Reference 50.

2 A 2
Method

Experiment

2 B 2

3 A 1

Experiment a

2X O3
+ ← 1A1 O3

Basis

Basis Method

2 A 1
2 B 1

3 B 1
3 B 2

3 A 2

3X O3 ← 1A1 O3



Table 5.7.  Comparison of experimental and theoretical dissociation energies (in eV) for 2A1 O3
+ 

and 2B2 O3
+.  (See Appendix A for theoretical dissociation energies for remaining O3

+ states.)  

De D0 De D0 2B1 De D0

cc-pCVTZ UCCSD -0.50 -0.43 0.83 0.74 2.28 -0.78 -0.76
cc-pCVQZ UCCSD -0.42 -0.36 0.97 0.88 2.32 -0.71 -0.70
cc-pCV5Z UCCSD -0.39 -0.33 1.01 0.93 2.33 -0.69 -0.67

cc-pCVTZ UCCSD(T) 0.38 0.33 1.82 1.75 1.85 0.15 0.14
cc-pCVQZ UCCSD(T) 0.46 0.41 1.96 1.88 1.92 0.21 0.21
cc-pCV5Z UCCSD(T) 0.49 0.44 2.01 1.93 1.94 0.25 0.24

UCCSDT(Q) 0.68 0.63 2.21 2.14 1.89 0.54 0.53

0.60 2.17

1.86
0.60 1.85
0.59 1.77
0.61 2.69

2B2 O3
+ →

2Πg O2
+ + 3P O

Basis
2Πg O2

+ + 3P O

Reference 49
Reference 46
Reference 48

Method

Bond Energy

Experiment

3∑g
- O2 + 4S O+

Reference 47

2A1 O3
+ →

 

 

49 Hiller and Vestal   46Vestal and Mauclaire  48Moseley, Ozenne   47Weiss, Berkowitz 
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Table 5.8.   Theoretical cc-pCV5Z UCCSD(T) adiabatic (Te), ZPVE-corrected adiabatic (T0), and vertical ionization potentials (Tv) in 

eV.  (See Appendix A for additional CASSCF, UCCSD, and UCCSD(T) energy predictions.) 

 

State Te T0 Tv State Te T0 Tv State Te T0 Tv

4 A 1 12.35 12.34 12.46 4 A 2 12.53 12.49 12.58 4 A 2 12.26 12.24 12.46
4 A 2 12.53 12.51 12.85 4 A 1 12.35 12.33 12.82 4 B 2 12.61 12.57 12.65
4 B 2 12.88 12.85 13.96 4 B 2 12.88 12.83 13.19 4 A 1 12.09 12.07 13.93
4 B 1 15.34 15.32 15.83 4 B 1 15.34 15.31 15.73 4 B 1 15.08 15.05 16.38

2 B 2 11.54 11.55 11.73 2 B 2 11.54 11.53 11.85 2 A 1 11.04 11.07 11.26
Exp a 11.48 Exp b 11.37 Exp c 11.07
2 A 2 12.30 12.29 12.79 2 A 1 11.30 11.33 12.36 2 B 2 11.28 11.28 12.15
2 B 1 12.21 12.20 12.91 Exp b 11.23 Exp c 11.21
2 A 1 11.30 11.35 13.23 2 A 2 12.30 12.28 12.49 2 A 2 12.04 12.02 12.45
Exp a 11.34 2 B 1 12.21 12.18 13.07 2 B 1 11.94 11.81 12.95

State Te T0 Tv State Te T0 Tv State Te T0 Tv

4 A 2 13.79 13.71 13.91 4 A 1 1.05 1.00 4.10 4 A 1 0.80 0.79 1.36
4 B 2 14.14 14.05 14.39 4 A 2 1.23 1.16 1.85 4 B 2 1.33 1.30 2.23
4 A 1 13.61 13.54 14.90 4 B 2 1.58 1.50 2.03 4 B 1 3.80 3.77 4.95
4 B 1 16.60 16.53 18.00 4 B 1 4.04 3.98 6.61 4 A 2 0.98 0.96 1.26

O3
+ ← 3A2 O3 O3

+ ← 3B2 O3 O3
+ ← 3B1 O3

4O3
+ ← 2B2 O3

+

a  T0 [
2(B2, A1) O3

+ ← 1A1 O3] - T0 [
3A2 O3 ← 1A1 O3], See Table 6

c  T0 [
2(B2, A1) O3

+ ← 1A1 O3] - T0 [
3B1 O3 ← 1A1 O3], See Table 6

b  T0 [
2(B2, A1) O3

+ ← 1A1 O3] - T0 [
3B2 O3 ← 1A1 O3], See Table 6

4X O3
+ ← 1A1 O3 (eV) 4O3

+ ← 2A1 O3
+
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Figure 5.1.  Walsh Diagram for XY2. 
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Figure 5.2.  cc-pVTZ CASSCF potential energy curves for O3
+ (reference energy is the ෨ܺ Aଵଵ  state of O3).  Each point represents a 

constrained geometrical optimization for a fixed bond angle.  
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Figure 5.3.  cc-pVTZ CASSCF potential energy curves for O3.  Each point represents a constrained geometrical optimization for a 

fixed bond angle.  

 

0

0.5

1

1.5

2

2.5

3

3.5

70 80 90 100 110 120 130 140 150

Angle

En
er

gy
 (e

V)

1A1

3B1

3B2

3A2

1A1

3B1

3B2

3A2

113 

 



 

 

CHAPTER 6 

 

THE SIC2 SAGA CONTINUES: REVISED BARRIER TO LINEARITY, EQUILIBRIUM 

STRUCTURES, FUNDAMENTAL FREQUENCIES, AND ENTHALPY OF FORMATION † 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

†Lucas D. Speakman, Etienne Lanthier, Justin M. Turney, Tucker Carington, Jr., Henry F. 

Schaefer III, and Wesley D. Allen, and.  To be submitted to the Journal of Chemical Physics. 
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6.1 ABSTRACT 

Silicon dicarbide, SiC2, remains one of the most demanding challenges for computational 

methods to achieve converged predictions for the topography, energetics, and vibrational 

dynamics of the ground state potential energy surface.  The silicon dicarbide system exhibits a 

mercurial surface for the circumnavigation of Si+ about C2
- in that almost all conceivable 

variations are observed, depending on level of theory and basis set.  While the minimum is a “T-

shaped” C2v structure at the highest levels of theory, the barrier to linearity ranges from –5.09 to 

6.59 kcal mol-1 depending on the choice of basis set and correlation treatment.  To address basis 

set incompleteness and to provide a high-order correlation treatment necessary for accurate 

predictions, we have developed a composite approach.  It consists of a complete basis set 

coupled-cluster with singles and doubles method augmented by a perturbative triples term [CBS 

CCSD(T)], plus a coupled-cluster scheme with a full triples correction (aug-cc-pVTZ CCSDT), a 

mass-velocity and Darwin relativistic term [aug-cc-pVTZ CCSD(T)], and a core-valence 

electron correlation adjustment [aug-cc-pCVQZ CCSD(T)].  Although higher-order coupled-

cluster treatments affect the barrier to linearity, –1.73 (SCF), 2.17 (MP2), 2.04 (CCSD), 0.37 

[CCSD(T)], 0.26 (CCSDT), 0.11 [CCSDT(Q)], 0.06 (CCSDTQ), and 0.23 [CCSDTQ(P)] kcal 

mol-1, we limit the composite approach to full triples because of its excellent approximation to 

CCSDTQ(P).  Our composite method (c-CBS CCSDT) is systematically applied to the ground 

state structures, the quartic force field, and the global potential energy surface of SiC2.  The c-

CBS CCSDT method yields a barrier to linearity of 5.45 ± 0.1 kcal mol-1, bond distances of 

1.8305 (1.6875) Å and 1.2686 (1.2822) Å for rSi-C and rC-C of the “T-shaped” (linear) structures, 

fundamental vibrational frequencies for the “T-shaped” ground state of 1752, 846, and 15 cm-1, 

and (SiC2) of 152.45 ± 0.20 kcal mol-1.  o
0f HΔ
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6.2 INTRODUCTION 

 One of the primary focuses of recent work in our laboratory has been the pursuit of 

chemical accuracy in spectroscopic and thermochemcial properties.  While most chemical 

systems require only the ab initio “Gold Standard” of cc-pCVQZ CCSD(T) to achieve this level 

of accuracy, some molecules require a more rigorous and computational demanding analysis.  

Silicon dicarbide has been a daunting task for ab initio methods to confirm definitive 

experimental spectroscopy on this system.  We endeavor for a sub-chemical accuracy potential 

energy surface for calculation of the ro-vibrational levels of SiC2. 

 The scientific history of silicon dicarbide began in 1926, when Merrill1 and Sanford2 

discovered uncataloged bands near 5000 Å from several carbon rich stars.  The source of these 

electronic transitions was not identified for nearly thirty years.  In 1955, Kleman3 reproduced the 

emission bands in a graphite furnace charged with silicon.  Based on experimental conditions, 

Kleman concluded that the emitting species was SiC2, and proposed a linear geometry analogous 

to that of C3.   

This linear assumption was the basis for spectroscopic interpretation for over thirty years.  

An early matrix isolation study by Weltner and McLeod4 and gas-phase experiments by Verma 

and Nagaraj5 furthered the assignment as ෨ܺ Σଵ ା
/ Πଵ  transitions of linear SiC2, with ground-state 

fundamental frequencies for C-C and Si-C stretching near 1742 and 852 cm-1, respectively.  The 

vibronic analyses resulted in unexpected anharmonicities and peculiar intensities.  Weltner and 

McLeod justified their analysis by involving vibronic interactions with the bending frequency of 

the excited state, while Verma and Nagaraj invoked Fermi resonances to explain the irregularity.  

In 1982, Bondybey6 examined the matrix isolation and gas-phase laser-induced fluorescence 

spectra of SiC2 by vaporizing solid silicon carbide with a pulsed YAG laser.  While Bondybey 
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noted that the linear geometry was not clear given the exceedingly flat bending potential in C3, 

and the reluctance of silicon of form π bonds, earlier assumptions of linearity were preserved in 

accordance with Walsh’s rules.  His reinterpretation of Merrill-Sanford successfully explained a 

previously problematic feature by assigning it to a hot band.  The first ab initio study on SiC2 

came a year later at the DZP RHF level of theory.7  In agreement with previous experiments, the 

ground electronic state was predicted to have a highly ionic, linear structure with a dipole of 4.8 

D.  The more covalent excited linear state was ~2.5 eV higher in energy.  

The first non-linear ground state was proposed less than a year later, both by 

experimentalists at Rice and ab initio theorists from Berkeley.  Michalopoulos, Geusic, 

Langridge-Smith, and Smalley8 obtained full rotational resolution by performing resonant-two-

photon ionization of cold molecular beams containing SiC2.  Analysis of their spectrum in terms 

of linear geometries resulted in extremely short C-C and Si-C bond lengths and an abnormally 

large lambda doubling parameter for the excited state.  They turned to theoretical methods to 

help explain their results.  Grev and Schaefer9 found a cyclic, “T-shaped” C2v saddle point 

connected to the linear ෨ܺ Σଵ ା
 minimum lying 5.1 kcal mol-1 higher in energy at the DZP SCF 

level of theory.  Ensuing CISD single point computations placed the cyclic structure below the 

linear structure.  With additional d-type polarization functions, a final energy prediction of ∆E 

(ring – linear) = -4.7 kcal mol-1 was given to the Rice group.  The Rice experimental group fitted 

asymmetric-top rotational constants to their data.  They obtained bond lengths for the ground 

state which were in remarkable agreement with the structure of the predicted “T-shaped” 

stationary point.  Additional evidence for a C2v structure came from the Rice spectrum: the 

electronic transition is polarized along the inertial b axis, and the odd/even K levels in the 

lower/upper (000) vibronic manifolds are absent.  This is expected for ෨ܺ Aଵ
ଵ  and ܣሚ Bଵ

ଶ  
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electronic states with equivalent carbon nuclei of zero spin.  Thus, the Merrill-Sanford 4977 Å 

line arises from the ෨ܺ Aଵ
ଵ ሚܣ / Bଵ

ଶ  transitions of a SiC2 ring.  The low-lying upper state is 

formed by an in-plane π→π* excitation within the weak, highly strained carbon-carbon triple 

bond. 

With a new basis for interpreting SiC2, several detailed spectroscopic works emerged.  In 

1985, matrix isolation Fourier transform experiments observed only four new symmetric 

stretching bands resulting from 13C substitution, further supporting equivalent carbon nuclei in 

SiC2.10  Shepherd and Graham reviewed the current matrix isolation studies on SiC2.11  Under the 

new C2v selection rules, Bondybey’s6 interval of 354 cm-1 suggests the bending mode, ν3, to be 

approximately 180 cm-1.  The molecule is best described as a T-shaped Si+C2
- species, due to the 

similar C-C bond distance and stretching fundamental in C2
-: 1.268 Å and 1758 cm-1 for SiC2 

and 1.268 Å and 1742 cm-1 for C2
-.  The gaseous emission spectrum of Kleman3 needed to be 

reinterpreted to give a symmetric Si-C stretch mode, ν2, at 837 cm-1.  In 1990, the highly 

anharmonic bending mode was first observed in an argon matrix to be ν3 at 160.4 cm-1.12  A 

Jacobi-type force field best fits the isotopic frequency data. 

 High-resolution rotational spectroscopy of SiC2 appeared in the late 1980s through the 

early 1990s.13-23  The culmination of these studies resulted in 1.26855(36) and 1.83232(58) Å for 

rs(C-C) and rs(Si-C), respectively.13,16,23  A gas-phase ν3 frequency of 186 ± 11 cm-1 was deduced 

from the inertial defect in the rotational constants.14,15  While a simple anharmonic model 

satisfactorily fit the large-amplitude ν3 mode, it required decatic centrifugal distortion parameters 

to fit the observed frequencies within experimental errors.18-22  

 The vibrational analyses of SiC2 concluded in 1994 with a combined experimental and 

theoretical study performed by Ross, Butenhoff, Rohlfing, and Rohlfing.24  Stimulated emission 
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pumping was implemented to determine rovibrational energies levels with up to 14 quanta of 

excitation in the large-amplitude bending mode.  These results were combined with existing 

vibrational term values25 and microwave lines,14,18 and globally fit to a semirigid bender 

Hamiltonian.26-28  The potential energy function derived from the fit extrapolated to a linear SiC2 

transition state.  However, the experiment could not completely rule out a shallow minimum, 

since the experiment only sampled angles within 30° of linearity.  The extrapolated barrier to 

linearity was 5.4 ± 0.6 kcal mol-1.   

 Theoretical work since the discovery of the T-shaped ground state has revealed a 

significant challenge for ab initio methods to identify the linear or T-shaped stationary points as 

minima or transition states.  Early theoretical studies demonstrated large oscillations in the 

Møller-Plesset series and significant basis set dependence; the barrier to linearity ranged from 

1.4 to -5.5 kcal mol-1.29  At the MP4 level, Oddershede, Sabin, Diercksen, and Grüner30 found a 

shallow linear well lying 0.84 kcal mol-1 above the T-shaped minimum; a possible L-shaped 

structure, analogous to KCN in the gas phase.  Sadlej, Diercksen, Oddershede, and Sabin31 

extended the study of methodological dependence through CCSDT, with three important results: 

1) carefully constructed basis sets can cause RHF to predict the T-shaped structure as the lowest 

in energy; 2) including higher angular momentum functions stabilizes the T-shaped isomer; and 

3) the linear isomer is stabilized by triple excitations.  They concluded that highly correlated 

methods, i.e. CCSDT or higher, in conjunction with a large basis set will be necessary to 

definitively confirm the barrier to linearity.   

Nielsen, Allen, Császár, and Schaefer32 studied the topography of SiC2.  Each of the 

linear, L-shaped, and T-shaped structures is the global minimum at some level of theory; a bent 

stationary point exists whenever the linear form is a minimum.  Only at aug-cc-pVTZ CCSD(T) 
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are the L-shaped and bent structures shown to be spurious.  With quadruple excitations and basis 

set incompleteness, relativistic, core-correlation, and non-Born-Oppenheimer corrections, the 

barrier to linearity ranged between 5.3 and 6.0 kcal mol-1.  This is due to uncertainty in higher-

order correlation effects.32,33  This group revisited the problem in 2003 using the Focal Point 

approximation to yield a CBS CCSDT barrier to linearity of 5.45 kcal mol-1.34  Recognizing the 

importance of post-CCSDT corrections for sub-chemical accuracy, the BD(TQ)/cc-pVTZ 

computations moved the final prediction to 6.3 kcal mol-1, which lies outside the experimental 

range24 of 5.4 ± 0.6 kcal mol-1. 

A year later, Largo, Redndo, and Barrientos produced a theoretical work examining the 

competition between linear and cyclic isomers in second-row dicarbides.35  This article gave an 

insightful view on the trend of dicarbides: XC2 (X = Na, Mg, and Al) prefers a C2v minimum 

while XC2 (X = P, S, and Cl) favors a linear minimum.  Since silicon dicarbide is known to be a 

“T-shaped” molecule, it is interesting to note that silicon is the point at which the lowest 

energetic isomer of XC2 switches from C2v to a linear form. 

 Recent advancements in materials science have focused some attention on Silicon 

carbide clusters, SinCm (n, m ≤ 4).36-39  In general these results have longer Si-C experimental 

bond lengths than by 0.017, 0.023, 0.025, and 0.029 Å for LDA/6-311++G**,37,38 BL3LYP/aug-

cc-pVQZ,36 B3PW91/6-31G(d),39 and MP2/aug-cc-pVQZ,36 respectively.  

6.3 COMPUTATIONAL DETAILS  

Silicon dicarbide, SiC2, remains one of the most demanding challenges for computational 

methods to achieve converged predictions for the topography, energetics, and vibrational 

dynamics of the ground state potential energy surface.  The silicon dicarbide system exhibits a 

mercurial surface for the circumnavigation of Si+ about C2
- in that almost all conceivable 
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variations are observed, depending on level of theory and basis set.  To address basis set 

incompleteness and to provide a high-order correlation treatment necessary for accurate 

predictions, we have developed a composite approach for computing equilibrium structures, the 

quartic force field, and the global potential energy surface.   

With conventional methods, it is possible to approach the complete basis set (CBS) limit 

systematically, using carefully constructed families of basis sets, such as the aug-cc-pVXZ basis 

sets.40-42  While near exponential convergence is observed for Hartree-Fock energies, utilizing a 

three point ܽ ൅ ܾ݁ି௖௑ fit,43,44 correlation energies employ a two point ܽ ൅ ܾܺିଷ functional form.  

In these equations, X is the cardinal number of the basis set. 45  The determination of the energy 

at the CBS limit is vital in the focal-point analysis of Allen and co-workers.46  The focal-point 

scheme systematically approaches both the CBS and full configuration interaction (Full CI) 

limits.  Extrapolations for correlation energies are usually limited to coupled-cluster with singles 

and doubles method, augmented by a perturbative triples term [CCSD(T)].  Higher order 

correlation treatments and other small corrections are included in an additive fashion.  This 

approach has been used numerous times, yielding chemical accuracy.33,47-54  To account for 

higher levels of electron correlation, absolute barriers to linearity were computed through 

CCSDTQ(P)/cc-pVDZ//CCSD(T)/aug-cc-pVTZ32 resulting in –1.29 (SCF), 2.30 (MP2), 2.38 

(CCSD), 0.64 [CCSD(T)], 0.54 (CCSDT), 0.37 [CCSDT(Q)], 0.32 (CCSDTQ), and 0.51 

[CCSDTQ(P)] kcal mol-1.  Due to the excellent agreement of CCSDT with CCSDTQ(P), the 

composite method was limited to full triples.  Additional corrections consisted of a mass-velocity 

and Darwin relativistic term and a core-valence electron correlation adjustment.  Thus, our 

composite method includes the following terms [with necessary computations enclosed in 

brackets]:  
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ܿ െ CBS CCSDT ൌ ܧ BS C ሺTሻሾୟ୳୥ିୡୡି୮VX  Q,ହሻ CCSDሺTሻ
ୟ୳୥ିୡୡିPVXZ ሺX ୀ T,Q,ହሻ RHF ሿ  C CSD Z ሺX ୀ

൅ ∆ܧ  ቂܧ ௌ஽ሺ்ሻሺ஺ாሻ
௔௨௚ି௖௖ି௣஼௏ொ௓ െ ܧ ஼ௌ஽ሺ்ሻሺ௙௖ሻ

௔௨௚ି௖௖ି௣஼௏ொ௓ቃ  ௖௢௥௘ ஼஼ ஼

൅ ∆ܧ஼஼ௌ  ቂܧ஼஼ௌ஽்
௔௨௚ି௖௖ି௣௏்௓ െ ஼஼ௌ஽ሺ்ሻܧ

௔௨௚ି௖௖ି௣௏்௓ቃ  ஽்

൅ ܧெ௏஽ ቂܧெ௏஽ି஼஼ௌ஽ሺ்ሻ
௔௨௚ି௖௖ି௣௏்௓ቃ 

Hartree-Fock and CCSD(T) single points were computed with MOLPRO 2006.1,55 while 

relativistic and full triples additive correction were computed with ACESII.56,57  Higher-order 

coupled cluster excitations were made possible by the string-based MRCC code of Kállay and 

coworkers.58-63 The T-shaped and linear isomers of SiC2 were optimized through the PSI3.4 

package.64   

 In order to quantify the anharmonicity contributions to the fundamental frequencies, the 

third and fourth derivatives of the molecular energy were computed by numerical differentiation 

of tightly converged, 10-11 Eh, energies at 35 displaced geometries for the C2v structure.  The 

internal coordinates were chosen as S1 = r(C-C), S2 = 2-1/2[r1(Si-C) + r2(Si-C)], and S3 = 2-

1/2[r1(Si-C) - r2(Si-C)] where r represents a bond distance.  Vibrational anharmonicities were 

computed by application of second-order perturbation theory (VPT2)52,65-71 to the quartic force 

field in reduced normal coordinates.  The MATHEMATICA72 program INTDIF200573,74 was 

used to compute the force constants in internal coordinates; INTDER200575,76 was used to 

execute the nonlinear transformation to the Cartesian space,77,78 whereupon the ANHARM76,79 

program was run for the VPT2 analysis. 

     While a standard set of internal coordinates was used for the quartic force field analysis, 

Jacobi coordinates provide a more natural description of T-shaped molecules executing large-

amplitude pinwheel motion. These coordinates were defined as S1 = r(C-C), S2 = R(Si-C2), and 
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S3 = ρ(Si-C2).  R involves the distance between the silicon atom and the midpoint of the C-C 

bond, and ρ is the angle between a carbon atom, midpoint of the C-C bond, and the silicon atom.  

The potential energy surface (PES) was built by finding the minimum energy path (MEP): First, 

S3(ρ) was varied from 0° to 90° in 10° increments and S1(r) and S2(R) coordinates were 

optimized at each point.  At each MEP point, coordinates S1(r) and S3(ρ) were held constant, 

while single points were computed as S2(R) shifted from -0.4 Å to 1.0 Å by 0.1 Å and ± 0.02 Å 

from the MEP.  Next, S2(R) and S3(ρ) were held constant at each MEP point, and S1(r) adjusted 

by ±0.010 Å and ±0.005 Å to determine the force constant.  To have a more accurate description 

of S1(r) as S2(R) moves, S3(ρ) was held firm and S2(R) fixed at ± 0.2 Å from its MEP; S1(r) was 

then optimized and its force constant determined at the two geometries.  Thus for each S3(ρ) 

coordinate, 27 single points were computed resulting in 270 points for a quadrant.  By symmetry, 

our PES included 972 total sampled geometries.  Using MATHEMATICA,72 the points along 

S3(ρ) were fittedto a Morse potential.  The exponential pre-factor took a Gaussian curve form, 

which depicts the large-amplitude motion, S2(R).  The force constants of S1(r) were extrapolated 

to define the stiff C-C bond. 

6.4 RESULTS AND DISCUSSION 

Experimental re geometries were determined by Nielsen et. al.32 by interfacing high-

resolution rotational spectroscopy from Bogey et. al.19 and theoretical vibration-rotation 

interaction constants (αi) to yield 1.8222 Å and 1.2694 Å for r(Si-C) and r(C-C), respectively.  

Until now, ab initio methods had not been able to converge to within 0.010 Å of the 

experimentally derived silicon carbon bond distance for the T-shaped isomer.  Table 6.1 clearly 

shows the basis set sensitivity and ineffectiveness as aug-cc-pVTZ, aug-cc-pVQZ, and aug-cc-

pV5Z miscalculate re(Si-C) by -0.0313, -0.0207, and -0.0166 Å, respectively.  Even explicitly 
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including all core electrons through the aug-cc-pCVQZ CCSD(T) – (AE) level of theory only 

reduces the error to -0.0111 Å.  However, theory and experiment do agree within 0.010 Å when 

the c-CBS CCSDT method is implemented.  Although it is not as pronounced as in the re(Si-C) 

case, re(C-C) holds the same pattern of errors of -0.0105, -0.0056, -0.0044, and -0.0017 for aug-

cc-pVTZ, aug-cc-pVQZ, aug-cc-pV5Z, and aug-cc-pCVQZ, respectively.  The c-CBS CCSDT 

method is in fantastic agreement with experiment, to within 0.0008 Å.  To test the validity of the 

c-CBS CCSDT treatment of electron correlation, cc-pVDZ CCSDTQ(P) single point energies at 

c-CBS CCSDT geometries resulted in –1.73 (SCF), 2.17 (MP2), 2.04 (CCSD), 0.37 [CCSD(T)], 

0.26 (CCSDT), 0.11 [CCSDT(Q)], 0.06 (CCSDTQ), and 0.23 [CCSDTQ(P)] kcal mol-1.  Again, 

CCSDT is an excellent approximation to CCSDTQ(P).  In general, the c-CBS CCSDT 

geometries shift the barrier to linearity by -0.30 kcal mol-1.  For C2 electronic states structures, 

there is a balance of theoretical errors, with aug-cc-pV5Z being ~0.002 Å longer than 

experiment, while c-CBS CCSDT is ~0.002 Å shorter. 

Key thermochemical quantities for SiC2, such as the barrier to linearity and heat of 

formation, can be determined with increased accuracy as a result of more precise equilibrium 

structures and our composite method.  Table 6.2 shows the incremented valence focal point 

analysis for the barrier to linearity.  The focal point treatment at c-CBS CCSDT geometries is in 

almost perfect agreement with the Ross et. al.24 value of 5.4 ± 0.6 kcal mol-1.  It is interesting to 

note that the triple excitation contributions decrease as the basis set increases while the 

remaining correlation treatments increase the barrier to linearity.  Also, this table supports the 

earlier observations31 that triple excitations stabilize the linear form by 1.45 kcal mol-1.  To 

assess the accuracy of this quantity, an examination of the incremented focal point table is 

necessary.  First, the full triple excitation corrects the perturbative triples by ~0.10 kcal mol-1.  
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Second, the δ[CCSDT(Q)] adjustment is an order of magnitude smaller than the δ[CCSD(T)] 

correction.  From the preceding paragraph, we can see that CCSDTQ corrects the CCSDT(Q) by 

0.05 kcal mol-1.  The higher-order post correlation treatment [CCSDTQ(P) – CCSDT(Q)] 

accounts for 0.12 kcal mol-1.  Following these patterns for higher order excitations, electron 

correlation has converged to within 0.10 kcal mol-1.  Thus, we state with confidence that sub-

chemical accuracy has been reached for the silicon dicarbide barrier to linearity. 

The second important thermochemical quantity reported is SiC2’s heat of formation.  The 

heat of formation can be effectively investigated by means of the following reactions: 

A. Si ൫ ܲ3 ൯+ C2  ቀ ෨ܺ Σg
+1 ቁ ՜ SiC2( ෨ܺ 1ܣ

1 ) 

B. Si ൫ ܲ3 ൯+ C2  ቀ ෤ܽ Πu
3

ቁ ՜ SiC2( ෨ܺ 1ܣ
1 ) 

The focal point analysis, along with the established thermochemical80 data, are shown in Tables 

6.3 and 6.4 for paths A and B, respectively.  Earlier computational values of Δܪ௙,଴
°  were 153.9 

and 155.4 kcal mol-1 for methods A and B, respectively, with a final Δܪ௙,଴
°  = 155 ± 3 kcal      

mol-1.32  This quantity is significantly larger than the experimentally accepted value of 145.6 ± 

6.9 kcal mol-1.80  In pursuit of sub-chemical accuracy, our computed values of Δܪ௙,଴
° for the two 

pathways differ by a tenth of a kcal mol-1!  Although it is superfluous to say that our correlation 

treatment is converged within 0.1 kcal mol-1, it illustrates the balance of CCSDTQ(P) with 

experiment.  This balance is also shown in the next section describing the singlet-triplet energy 

difference of C2.  The recovery of valence electron correlation in method A is expected to be 

more problematic than in method B due to the multi-determinant ground state wavefunction 

arising from the (3σg)2→(2σu)2 excitation.  This nondynamical correlation effect manifested itself 

in the substantial contribution of higher order electron correlation treatment.  The increment 
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between CCSDTQ(P) and CCSDT(Q) was 0.52 kcal mol-1.  In comparison, method B has for 

only 0.17 kcal mol-1 for the same increment of theory.  For a true 0.1 kcal mol-1 convergence of 

the correlation energy, a multi-reference coupled cluster method, such as MK-MRCCSDT,81-86 is 

required.  Due to the precise  Δܪ௙,଴
°  agreement of the two channels, it was not performed in this 

work.  We advance a value of of Δܪ௙,଴
°  = 152.45 ± 0.20 kcal mol-1. 

 While examining the two channels for the heat of formation, it was necessary to compute 

both the ෨ܺ Σg
+1  and ෤ܽ Πu

3
 states of C2.  Since it only has 12 electrons, higher orders of electron 

correlation were possible.  These are presented in Table 6.5.  This table illustrates why single 

determinant methods fail to describe multi-reference situations with traditional coupled cluster 

methods; at CCSDT, it corrected the perturbative triple excitations by -1.94 kcal mol-1.  This is 

the same magnitude as the energy splitting itself!  Even the CCSDTQP correction on 

CCSDTQ(P) was -0.16 kcal mol-1.  This correction brings our value within 0.12 kcal mol-1 of 

Huber and Herzberg’s experimental value of 2.05 kcal mol-1.87  Although the correlation 

treatment is slowly converging, its oscillations are not within the range of sub-chemical 

accuracy.  However, if we limited the table to CCSDTQ(P), like the previous focal point tables, 

the singlet-triplet energy difference becomes 2.09 kcal mol-1, which is only 0.04 kcal mol-1 from 

the experiment value.  Again, this illustrates the agreement of CCSDTQ(P) with experiment and 

indicates the precise agreement of the heat of formation values. 

 Definitive studies of the unusual rovibrational dynamics of SiC2 required analytic 

representations of the PES.  Force constants determined by c-CBS CCSDT level of theory are 

listed in Table 6.6 in two sets of internal coordinates: 1) a standard valence set of symmetrized 

bond distances; and 2) the Si-C2 Jacobi variables as discussed in the Methods section.  These two 

surfaces yield nearly indistinguishable values for the stretching fundamental vibration modes, as 
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seen in Table 6.7; 1757 vs. 1752 cm-1 and 843 vs. 846 cm-1 for the VPT2 and surface potentials, 

respectively.  While the aug-cc-pVTZ CCSD(T) level of theory was insufficient to obtain 

quantitative information about the ν3 vibrational levels, both c-CBS CCSDT surfaces 

significantly improve the accuracy of the bending mode.  However, the large-amplitude bending 

motion is in better agreement with experiment on the Jacobi surface than the quartic force field 

by 9 cm-1.  The Jacobi surface, Figure 6.1, has a dramatic appeal because the silicon atom can be 

displaced over 1.0 Å away and not dissociate!  As the aug-cc-pVTZ CCSD(T) surface 

indicated,32 there are no depressions in the contours to indicate from an L-shaped minimum.  

With an accurate Jacobi surface in hand, accurate rovibrational levels were computed through a 

collaboration with Professor Tucker Carington, Jr..  His advanced results are in excellent 

agreement with the stimulated emission pumping experiments of Ross et. al..24  

6.5 CONCLUSIONS 

An extensive methodological composite level of theory, including extrapolation to the 

complete basis set limit and additive full triple excitations, electron core-valence, and relativistic 

corrections, has been developed to investigate one of the most demanding systems known to ab 

initio methods.  For the first time, theory agrees with experiment regarding the re(Si-C) and re(C-

C) bond distances to within 0.01 and 0.001 Å, respectively.  Sub-chemical accuracy has been 

achieved for the barrier to linearity of 5.45 ± 0.10 kcal mol-1.  Although sub-chemical accuracy 

was not reached for the SiC2 heat of formation or the singlet-triplet energy difference of C2, CBS 

CCSDTQ(P) values agree with experiment to within 0.1 kcal mol-1.  The Jacobi potential energy 

surface of SiC2 provides one of the most accurate theoretical surfaces in the literature to date.  

This surface allowed us to obtain the first quantitative theoretical rovibrational levels and finally 

confirm the spectroscopic analyses of this system.  More than a quarter of century after the first 
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confirmation of the T-shaped isomer of SiC2, the definitive theoretical chapter of the SiC2 saga 

has finally been written. 
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Table 6.1.  Bond lengths of SiC2 and C2 molecules (in Å). 

                         

SiC2 C2 
                

T-Shape Linear 1∑g
+ 3∏u 

               

Basis Set Theory re (C-C) re (Si-C) re (C-C) re (Si-C) re (C-C) re (C-C) 
                

aug-cc-pVTZ CCSD(T) 1.2799 1.8535 1.2921 1.7057 1.2508 1.3198 
aug-cc-pVQZ CCSD(T) 1.2751 1.8429 1.2880 1.6986 1.2460 1.3152 
aug-cc-pV5Z CCSD(T) 1.2738 1.8388 1.2738 1.8388 1.2448 1.3141 

aug-cc-pCVQZ CCSD(T) 1.2711 1.8333 1.2844 1.6905 1.2428 1.3118 
c-CBS  CCSDTa 1.2686 1.8305 1.2822 1.6875 1.2408 1.3099 

Experimentb 1.2694 1.8222 1.2425 1.3119 
                         
a  c-CBS CCSDT = ∆Ee [CBS CCSDT] + ∆core [CCSD(T)/aug-cc-pCVQZ] + ∆rel [CCSD(T) MVD/aug-cc-pVTZ] 

b  High-resolution rotational constants by M. Bogey, M. Cordonnier, C. Demuynck, and J. L. Destombes, in 
Structures and Conformations of Non-Rigid Molecules, edited by J. Laane, M. Dakkouri, B. van der Veken, and H. 
Oberhammer (Kluwer, Dordrecht, 1993), p. 303 were reinterpretd by I. M. B. Nielsen, W. D. Allen, A. g. Császár, 
and H. F. Schaefer, J. Chem. Phys. 107, 1195 (1997) to yield re parameters. 
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Table 6.2.  Valence focal point analysis of the barrier to linearity (in kcal mol-1).  The symbol δ denotes the increment in the relative 

energy (∆Ee) with respect to the preceding level of theory in the hierarchy RHF → MP2 → CCSD → CCSD(T) → CCSDT → 

CCSDT(Q) → CCSDTQ → CCSDTQ(P).  Square brackets signify results obtained from basis set extrapolations or additive 

assumptions.  Final predictions are boldfaced. 

                

Basis Set ∆Ee [RHF] δ[MP2] δ[CCSD] δ[CCSD(T)] δ[CCSDT] δ[CCSDT(Q)] ∆Ee [CCSDT(Q)] 
                

aug-cc-pVDZ -1.11 2.63 0.18 -1.74 -0.06 -0.18 [-0.19] 
aug-cc-pVTZ 0.52 5.01 -0.21 -1.59 -0.09 -0.21 [+3.42] 
aug-cc-pVQZ 0.81 5.60 -0.28 -1.44 [-0.09] [-0.21] [+4.40] 
aug-cc-pV5Z 0.89 5.88 -0.28 -1.40 [-0.09] [-0.21] [+4.79] 
CBS LIMIT [+0.92] [+6.17] [-0.28] [-1.36] [-0.09] [-0.21] [+5.15] 

Fit a+be-cX 
a + bX-

3 a + bX-3 a + bX-3 Additive Additive 
Points (X) 3,4,5 4,5 4,5 4,5 

∆Ee (final) = ∆Ee [CBS CCSDT(Q)] + ∆core [CCSD(T)/aug-cc-pCVQZ] + ∆rel [CCSD(T) MVD/aug-cc-pVTZ] +  
∆post [CCSDTQ(P)/cc-pVDZ] = 5.15 + 0.26 - 0.08 + 0.12 = 5.45 kcal mol-1 
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Table 6.3.  Valence focal point analyses of the heat of formation for path A (in kcal mol-1).  The symbol δ denotes the increment in the 

relative energy (∆Ee) with respect to the preceding level of theory in the hierarchy RHF → MP2 → CCSD → CCSD(T) → CCSDT → 

CCSDT(Q).  Square brackets signify results obtained from basis set extrapolations or additive assumptions.  Final predictions are 

boldfaced. 

A. Si (3P) + C2 (
1Σg

+) → SiC2 (T) 

Basis Set             

   

∆Ee [RHF] δ[MP2] δ[CCSD] δ[CCSD(T)] δ[CCSDT] δ[CCSDT(Q)] ∆Ee [CCSDT(Q)] 

aug‐cc‐pVDZ ‐170.22  30.06  0.07  5.96 ‐1.08  1.58  [‐133.63] 

aug‐cc‐pVTZ     

   

   

‐176.14  25.55 ‐2.53  6.45 ‐0.98  1.81  [‐145.84] 

aug‐cc‐pVQZ ‐177.25  23.54 ‐3.10  6.51  [‐0.98]  [1.81]  [‐159.46] 

aug‐cc‐pV5Z ‐177.94  21.80 ‐2.20  6.54  [‐0.98]  [1.81]  [‐150.96] 

CBS LIMIT  [‐178.33]  [+19.96] [‐1.25]  [+6.58]  [‐0.98]  [1.81]  [‐152.21] 

Fit  a+be‐cX  a + bX‐3  a + bX‐3  a + bX‐3  Additive  Additive 
Points (X)  3,4,5  4,5  4,5  4,5 

∆E0 (final) = ∆Ee [CBS CCSDT(Q)] + ∆core [CCSD(T)/aug‐cc‐pCVQZ] + ∆rel [CCSD(T) MVD/aug‐cc‐pVTZ]  
+ ∆ZPVE [VPT2/c‐CBS CCSDT] + ∆post [CCSDTQ(P)/cc‐pVDZ] = ‐152.21 ‐1.15 + 0.20 + 1.34 ‐ 0.52 = ‐152.34 kcal mol‐1 

∆H°f,0 (SiC2) = ∆E0 + ∆H°f,0 (
3P Si) + ∆H°f,0 (

1Σg
+ C2) = ‐152.42 + 106.66 + 198.2 = 152.5 kcal mol‐1 

                       

a  JANAF Thermochemical Tables, 3rd ed., J. Phys. Chem. Ref. Data 14, Supp. No. 1 (1985). 
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Table 6.4.  Valence focal point analyses of the heat of formation for path B (in kcal mol-1).  The symbol δ denotes the increment in the 

relative energy (∆Ee) with respect to the preceding level of theory in the hierarchy RHF → MP2 → CCSD → CCSD(T) → CCSDT → 

CCSDT(Q).  Square brackets signify results obtained from basis set extrapolations or additive assumptions.  Final predictions are 

boldfaced. 

B. Si (3P) + C2 (
3Πu) → SiC2 (T) 

Basis Set             

       

∆Ee [RHF] δ[MP2] δ[CCSD] δ[CCSD(T)] δ[CCSDT] δ[CCSDT(Q)] ∆Ee [CCSDT(Q)] 

aug‐cc‐pVDZ ‐114.59 ‐25.87  8.67 ‐2.88  0.66 ‐0.18  [‐134.19] 

aug‐cc‐pVTZ       

     

     

‐121.32 ‐32.18  7.93 ‐3.11  0.95 ‐0.27  [‐148.00] 

aug‐cc‐pVQZ ‐122.52 ‐34.95  7.87 ‐3.25  [0.95]  [‐0.27]  [‐152.17] 

aug‐cc‐pV5Z ‐123.21 ‐37.02  8.99 ‐3.29  [0.95]  [‐0.27]  [‐153.84] 

CBS LIMIT  [‐123.59]  [‐39.19]  [+10.17]  [‐3.33]  [0.95]  [‐0.27]  [‐155.25] 

Fit  a+be‐cX  a + bX‐3  a + bX‐3  a + bX‐3  Additive  Additive 
Points (X)  3,4,5  4,5  4,5  4,5 

∆E0 (final) = ∆Ee [CBS CCSDT(Q)] + ∆core [CCSD(T)/aug‐cc‐pCVQZ] + ∆rel [CCSD(T) MVD/aug‐cc‐pVTZ] +  
∆ZPVE [VPT2/c‐CBS CCSDT] + ∆post [CCSDTQ(P)/cc‐pVDZ] = ‐155.25 ‐1.24 + 0.22 + 1.66 + 0.17 = ‐154.44 kcal mol‐1 

∆H°f,0 (SiC2) = ∆E0 + ∆H°f,0 (
3P Si) + ∆H°f,0 (

3Πu C2) = ‐154.44 + 106.66 + 200.2 = 152.4 kcal mol‐1 

∆H°f,0 (
3P Si) =  106.66 kcal mol‐1  a  ∆H°f,0 (

1Σg
+ C2) =  198.2 kcal mol‐1  a 

∆H°f,0 (
3Πu C2) =  200.2 kcal mol‐1  a 

                       

a  JANAF Thermochemical Tables, 3rd ed., J. Phys. Chem. Ref. Data 14, Supp. No. 1 (1985). 
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Table 6.5.  Valence focal point analysis of the C2 energy split (in kcal mol-1).  The symbol δ denotes the increment in the relative 

energy (∆Ee) with respect to the preceding level of theory in the hierarchy RHF → MP2 → CCSD → CCSD(T) → CCSDT → 

CCSDT(Q) → CCSDTQ → CCSDTQ(P) → CCSDTQP.  Square brackets signify results obtained from basis set extrapolations or 

additivity assumptions.  Final predictions are boldfaced. 

           

Basis Set 
∆Ee 
[RHF]                 δ[MP2] δ[CCSD] δ[CCSD(T)] δ[CCSDT] δ[CCSDT(Q)] δ[CCSDTQ] δ[CCSDTQ(P)] δ[CCSDTQP] ∆Ee [CCSDTQP] 

        
aug‐cc‐pVDZ  -55.63 55.92 -8.60 8.85 -1.74 1.77 -1.03 0.36 -0.16 [-0.26] 
aug‐cc‐pVTZ  -54.83 57.73 -10.46 9.56 -1.94 2.07 -1.05 [+0.36] [-0.16] [+1.28] 
aug‐cc‐pVQZ  -54.73 58.49 -10.96 9.76 [-1.94] [2.07] [-1.05] [+0.36] [-0.16] [+1.84] 
aug‐cc‐pV5Z  -54.73 58.81 -11.19 9.83 [-1.94] [2.07] [-1.05] [+0.36] [-0.16] [+2.00] 
CBS LIMIT  [-54.74] [+59.15] [-11.43] [+9.90] [-1.94] [2.07] [-1.05] [+0.36] [-0.16] [+2.17] 

Fit  a+be‐cX  a + bX‐3  a + bX‐3 a + bX‐3 Additive Additive Additive  Additive Additive
Points (X)  3,4,5  4,5  4,5 4,5
∆Ee (final) = ∆Ee [CBS CCSDTQP] + ∆core [CCSD(T)/aug‐cc‐pCVQZ] + ∆rel [CCSD(T) MVD/aug‐cc‐pVTZ] + ∆ZPVE [VPT2/c‐CBS CCSDT]= 2.17 + 0.09 ‐ 0.02 ‐0.31 

= 1.93 kcal mol‐1 
Experiment1

= 2.05 kcal mol‐1 
           
1  K.P. Huber and G. Herzberg, Constants of Diatomic Molecules (data prepared by J.W. Gallagher and R.D. Johnson, III) in NIST Chemistry WebBook, NIST 
Standard Reference Database Number 69, Eds. P.J. Linstrom and W.G. Mallard, National Institute of Standards and Technology, Gaithersburg MD, 
20899. 
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Table 6.6.  Complete quartic force fields of SiC2.  The units of force constants are consistent with 

energies in aJ, distances in Å, and angles in rad. 

Valence Internal Coordinates Jacobi Internal Coordinates 

S1 = r(C-C) 
S2 = 2-1/2[r1(Si-C) + r2(Si-C)] 
S3 = 2-1/2[r1(Si-C) - r2(Si-C)] 

S1 = r(C-C) 
S2 = R(Si-C2) 
S3 = ρ(Si-C2) 

i j k l 

aug-cc-pVTZ 
CCSD(T) 

VPT2a 

c-CBS  
CCSDT
VPT2b 

c-CBS  
CCSDT 
Surfaceb 

aug-cc-pVTZ
CCSD(T) 

VPT2a 

c-CBS 
CCSDT 
VPT2b 

c-CBS 
CCSDT 
Surfaceb 

1 1 10.995 11.461 11.358 10.840 11.298 11.235 

2 1 -0.6526 -0.6851 -0.6038 0.0258 0.0225 0.1380 

2 2 2.7527 2.8672 2.8858 4.8492 5.0465 5.0771 

3 3 0.1208 0.2675 0.2835 0.08711 0.18800 0.20080 

1 1 1 -67.44 -70.07 -69.50 -66.86 -69.49 -69.30 

2 1 1 0.715 0.697 0.231 1.465 1.506 0.583 

2 2 1 0.991 1.105 0.666 -3.152 -3.223 -4.005 

2 2 2 -9.293 -9.775 -9.788 -20.73 -21.76 -21.77 

3 3 1 -1.491 -1.604 -1.962 -2.539 -2.512 -2.799 

3 3 2 -8.963 -9.410 -9.550 -9.575 -9.852 -9.992 

1 1 1 1 336.7 348.4 358.1 338.3 350.0 355.2 

2 1 1 1 1.62 1.56 -3.57 -1.52 -1.64 -5.53 

2 2 1 1 -2.22 -2.12 2.29 -5.39 -5.59 -2.36 

2 2 2 1 -2.53 -3.03 -8.58 16.44 16.99 3.94 

2 2 2 2 27.28 29.34 29.41 73.76 79.19 79.30 

3 3 1 1 1.01 1.24 4.89 -6.56 -6.52 -5.11 

3 3 2 1 0.47 1.01 -0.52 -5.04 -4.64 -6.01 

3 3 2 2 28.15 30.11 30.50 37.99 39.79 40.25 

3 3 3 3 76.13 71.12 74.09  50.67 46.72 48.39 
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Table 6.7.  Harmonic and anharmonic frequencies of T-shaped SiC2 (in cm-1). 

            

ω1 (a1) ω2 (a1) ω3 (b2) 
aug-cc-pVTZ CCSD(T) 
VPT2a 1751 798 137 

c-CBS CCSDT VPT2 1788 814 204 
c-CBS CCSDT PES 1783 817 210 
Experimentb 1756.8(44) 844.0(16) 

ν1 (a1) ν2 (a1) ν3 (b2) 
c-CBS CCSDT VPT2 1757 843 176 
c-CBS CCSDT PES 1752 846 185 
Experimentb 1746.0(28) 840.6(12) 196.37(4) 
        

a I. M. B. Nielsen, W. D. Allen, A. g. Császár, and H. F. Schaefer, J. Chem. Phys. 107, 
1195 (1997). 
b T. J. Butenhoff and E. A. Rohlfing, J. Chem. Phys. 95, 1 (1991). 

 

 

141 
 



 

 

Figure 6.1.  Two-dimensional and three-dimensional potential energy surfaces of SiC2 (x,y 

coordinates in Å, z axis in kcal mol-1). 
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CHAPTER 7 

CONCLUSIONS 

Coupled Cluster (CC) theory stands as the most robust and widely applicable single-

reference method for the treatment of electron correlation.  Explicitly including dynamical 

electron correlation is the only means to reach chemical and sub-chemical accuracy.  The 

question is usually asked, why use such an expensive calculation when DFT and other methods 

can approximate the answer?  In most situations, energy barriers are larger than 50 kcal mol-1, 

and errors of 3-5 kcal mol-1 are acceptable.  However, it is apparent that such large errors are 

unacceptable when working with barriers which are less than 5 kcal mol-1.  The focal point 

analysis of Allen provides a systematic tool to examine basis set and electron correlation 

convergence.  While there is no way to systematically improve DFT, CC will eventually 

converge to the full configuration interaction limit.   

By pushing ab initio limits, we have demonstrated the feasibility of computing accurate 

thermochemical parameters for several important molecules which have been problematic for 

less robust theoretical techniques.  The discrepancy between experiment and theory for the 

barrier to rotation of benzaldehyde was successfully removed by examining the experimental 

interpretation of their spectra.  Coupled Cluster theory was able to account for electron 

correlation in ways which an experimental model could not. 

With adiabatic and zero-point vibration energy dissociation energies of 2.05 and 0.11 

kcal mol-1, respectively, gallium pentahydride may exist as a weak complex between gallane and 

molecular hydrogen at low temperatures.  It is unequivocal that hydrogen scrambling does not 
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occur through a C2v structure, since it lies 30 kcal mol-1 higher in energy.  Continued theoretical 

characterization of the deprotonation of BH5 and AlH5 illuminated a peculiarity; GaH5 has a 

larger deprotonation value than AlH5.  Normally, the gap in observed properties falls between 

boron and aluminum, with gallium properties often very similar to those of aluminum. 

The most powerful feature of CC is the ability to determine the quality of your 

investigation and design procedures to systematically improve your accuracy.  Although 

expensive, the CCSDT(Q) level of the theory was necessary to reach quantitative agreement with 

experiment regarding the ozone radical cation triplet energy spacing and dissociation limits.  

Several possible excitations/ionization pathways were suggested to Prof. Merkt to facilitate the 

experimental synthesis of the quartet states of the ozone cation. 

While quadruple excitations were necessary for ozone, the more sophisticated 

CCSDTQ(P) level of theory was essential for determining SiC2’s barrier to linarity with sub-

chemical accuracy.  For over thirty years, computational chemists had not been able to agree 

with experiment on several key thermochemical properties of silicon dicarbide.  The c-CBS 

CCSDT potential energy surface for SiC2 exposed no shallow minimum.  Ours is the first 

theoretical paper to agree with experimental bond lengths to within 0.01 Å, and to have a near 

perfect agreement with experiment for SiC2’s barrier to linearity.   

These four examples demonstrate the excellent performance of Coupled Cluster theory in 

computational chemistry, as an effective means to make definitive predictions of energetics, 

structures, and electronic properties of molecules, when chemical or sub-chemical accuracy is 

required. 
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Table A.1.  Dissociation energies (in eV) for the quartet and doublet states of the ozone radical cation. 

 

De D0 De D0 De D0 De D0 De D0 De D0 De D0 De D0

cc-pCVTZ UCCSD 0.44 0.41 0.39 0.39 -0.06 -0.06 -2.66 -2.67 -0.89 -0.88 -0.93 -0.95 -1.39 -1.42 -3.99 -4.01
cc-pCVQZ UCCSD 0.51 0.48 0.48 0.48 0.01 0.02 -2.63 -2.63 -0.88 -0.87 -0.91 -0.93 -1.38 -1.41 -4.02 -4.04
cc-pCV5Z UCCSD 0.54 0.51 0.52 0.52 0.04 0.05 -2.60 -2.60 -0.86 -0.86 -0.89 -0.91 -1.37 -1.40 -4.01 -4.03
cc-pCVTZ UCCSD(T) 0.84 0.82 0.65 0.64 0.32 0.33 -2.11 -2.12 -0.60 -0.60 -0.79 -0.80 -1.12 -1.14 -3.55 -3.56
cc-pCVQZ UCCSD(T) 0.92 0.90 0.74 0.73 0.39 0.40 -2.07 -2.07 -0.58 -0.58 -0.76 -0.77 -1.10 -1.13 -3.56 -3.58
cc-pCV5Z UCCSD(T) 0.96 0.94 0.78 0.77 0.43 0.44 -2.04 -2.04 -0.56 -0.56 -0.73 -0.75 -1.09 -1.12 -3.55 -3.57

De D0 De D0 De D0 De D0 De D0 De D0 De D0 De D0

cc-pCVTZ UCCSD 0.83 0.74 0.55 0.51 0.32 0.30 0.36 0.35 -0.50 -0.43 -0.78 -0.76 -1.01 -1.01 -0.97 -0.98
cc-pCVQZ UCCSD 0.97 0.88 0.67 0.63 0.41 0.39 0.48 0.47 -0.42 -0.36 -0.71 -0.70 -0.97 -0.97 -0.91 -0.92
cc-pCV5Z UCCSD 1.01 0.93 0.72 0.68 0.47 0.45 0.53 0.52 -0.39 -0.33 -0.69 -0.67 -0.94 -0.94 -0.87 -0.89
cc-pCVTZ UCCSD(T) 1.82 1.75 1.58 1.55 0.93 0.91 0.82 0.81 0.38 0.33 0.15 0.14 -0.50 -0.50 -0.61 -0.62
cc-pCVQZ UCCSD(T) 1.96 1.88 1.71 1.68 1.04 1.02 0.95 0.93 0.46 0.41 0.21 0.21 -0.45 -0.46 -0.55 -0.56
cc-pCV5Z UCCSD(T) 2.01 1.93 1.76 1.73 1.10 1.08 1.00 0.99 0.49 0.44 0.25 0.24 -0.41 -0.42 -0.51 -0.52

De D0 De D0

1.86
1.85 0.60
1.77 a 0.59
2.69 0.61

a  Reintrepreted by Reference 49.

2A1
2B1

2B2
2A2

4A1
4B1

Basis Method

2A2

4A2
4A1

4B1
4B2

2A1
2B1

2B2

X O3
+ -> 2Πg O2

+ + 3P OX O3
+ -> 3∑g

- O2 + 4S O+

4B2
4A2

Reference 47

Reference 46
Reference 49

Basis Method

2A1
Experiment

2A1

Reference 48
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Table A.2.   Theoretical ionization potentials with respect to the 3A2 state of O3 (in eV). 

 

Te T0 Tv Te T0 Tv Te T0 Tv Te T0 Tv

cc-pCVTZ CASSCF 10.73 10.83 10.82 11.06 11.16 11.99 13.49 13.92
cc-pCVQZ CASSCF 10.71 10.82 10.80 11.04 11.15 11.98 13.49 13.92
cc-pCV5Z CASSCF 10.71 10.82 10.80 11.03 11.15 11.97 13.48 13.92
cc-pCVTZ UCCSD 11.93 11.94 12.04 11.97 11.95 12.35 12.43 12.40 13.68 15.03 15.01 15.55
cc-pCVQZ UCCSD 12.09 12.10 12.20 12.12 12.09 12.49 12.59 12.56 13.84 15.23 15.21 15.74
cc-pCV5Z UCCSD 12.15 12.16 12.26 12.18 12.15 12.55 12.65 12.62 13.90 15.30 15.28 15.81
cc-pCVTZ UCCSD(T) 12.10 12.09 12.21 12.29 12.27 12.61 12.62 12.59 13.70 15.05 15.03 15.55
cc-pCVQZ UCCSD(T) 12.28 12.27 12.39 12.46 12.44 12.78 12.80 12.77 13.89 15.27 15.25 15.75
cc-pCV5Z UCCSD(T) 12.35 12.34 12.46 12.53 12.51 12.85 12.88 12.85 13.96 15.34 15.32 15.83

Te T0 Tv Te T0 Tv Te T0 Tv Te T0 Tv

cc-pCVTZ CASSCF 9.44 10.79 9.58 9.79 10.44 11.15 10.34 10.74
cc-pCVQZ CASSCF 9.41 10.77 9.55 9.76 10.43 11.13 10.31 10.71
cc-pCV5Z CASSCF 9.41 10.76 9.55 9.75 10.42 11.13 10.31 10.71
cc-pCVTZ UCCSD 11.54 11.60 13.99 11.82 11.84 12.11 12.05 12.05 13.23 12.01 12.00 12.58
cc-pCVQZ UCCSD 11.63 11.70 14.11 11.92 11.94 12.22 12.18 12.18 13.38 12.12 12.10 12.68
cc-pCV5Z UCCSD 11.68 11.74 14.16 11.97 11.99 12.27 12.23 12.22 13.44 12.16 12.15 12.73
cc-pCVTZ UCCSD(T) 11.12 11.17 13.00 11.35 11.36 11.54 12.01 12.00 12.67 12.12 12.10 12.60
cc-pCVQZ UCCSD(T) 11.24 11.29 13.17 11.49 11.49 11.67 12.15 12.15 12.84 12.25 12.24 12.74
cc-pCV5Z UCCSD(T) 11.30 11.35 13.23 11.54 11.55 11.73 12.21 12.20 12.91 12.30 12.29 12.79

11.34 11.48

a  T0 [
2X (X = A1, B2) O3

+ ← 1A1 O3] - T0 [
3A2 O3 ← 1A1 O3]  See Table 8

Experimenta

2 A 2

2X O3
+ ← 3A2 O3

4X O3
+ ← 3A2 O3

4 A 1
4 B 1

4 B 2
4 A 2

Basis Method

Basis
2 B 1

2 B 2
Method

2 A 1
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Table A.3.   Theoretical ionization potentials with respect to 3B2 state of O3 (in eV). 

 

Te T0 Tv Te T0 Tv Te T0 Tv Te T0 Tv

cc-pCVTZ CASSCF 10.83 11.21 10.92 10.97 11.26 11.53 13.59 13.95
cc-pCVQZ CASSCF 10.82 11.20 10.91 10.96 11.26 11.53 13.59 13.96
cc-pCV5Z CASSCF 10.82 11.20 10.91 10.96 11.26 11.53 13.59 13.97
cc-pCVTZ UCCSD 12.34 12.32 12.85 12.38 12.34 12.44 12.84 12.78 13.19 15.44 15.40 15.82
cc-pCVQZ UCCSD 12.48 12.47 13.00 12.51 12.47 12.57 12.98 12.93 13.34 15.62 15.58 16.01
cc-pCV5Z UCCSD 12.54 12.53 13.06 12.57 12.52 12.63 13.05 12.99 13.40 15.69 15.65 16.08
cc-pCVTZ UCCSD(T) 12.13 12.10 12.59 12.32 12.28 12.37 12.65 12.60 12.96 15.08 15.04 15.46
cc-pCVQZ UCCSD(T) 12.28 12.26 12.75 12.46 12.43 12.52 12.81 12.76 13.12 15.27 15.24 15.65
cc-pCV5Z UCCSD(T) 12.35 12.33 12.82 12.53 12.49 12.58 12.88 12.83 13.19 15.34 15.31 15.73

Te T0 Tv Te T0 Tv Te T0 Tv Te T0 Tv

cc-pCVTZ CASSCF 9.54 10.37 9.68 9.97 10.54 11.42 10.44 10.63
cc-pCVQZ CASSCF 9.52 10.35 9.66 9.95 10.53 11.41 10.42 10.60
cc-pCV5Z CASSCF 9.52 10.35 9.66 9.95 10.53 11.41 10.42 10.60
cc-pCVTZ UCCSD 11.95 11.99 13.42 12.23 12.22 12.78 12.46 12.43 14.28 12.42 12.38 12.66
cc-pCVQZ UCCSD 12.03 12.07 13.52 12.32 12.31 12.87 12.58 12.55 14.44 12.51 12.48 12.76
cc-pCV5Z UCCSD 12.07 12.11 13.57 12.37 12.36 12.92 12.62 12.59 14.50 12.55 12.52 12.80
cc-pCVTZ UCCSD(T) 11.15 11.18 12.17 11.38 11.37 11.68 12.03 12.01 12.81 12.14 12.12 12.32
cc-pCVQZ UCCSD(T) 11.25 11.28 12.30 11.49 11.48 11.80 12.16 12.14 13.00 12.25 12.23 12.43
cc-pCV5Z UCCSD(T) 11.30 11.33 12.36 11.54 11.53 11.85 12.21 12.18 13.07 12.30 12.28 12.49

11.23 11.37

a  T0 [
2X (X = A1, B2) O3

+ ← 1A1 O3] - T0 [
3B2 O3 ← 1A1 O3]  See Table 8

Experimenta

4X O3
+ ← 3B2 O3

Method

2 A 1
2 B 1

2 B 2
2 A 2

4 A 1
4 B 1

4 B 2

2X O3
+ ← 3B2 O3

Basis

Basis

4 A 2

Method
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Table A.4.   Theoretical ionization potentials with respect to the 3B1 state of O3 (in eV). 

Te T0 Tv Te T0 Tv Te T0 Tv Te T0 Tv

cc-pCVTZ CASSCF 10.42 11.67 10.51 10.63 10.85 10.85 13.18 14.08
cc-pCVQZ CASSCF 10.41 11.67 10.50 10.62 10.84 10.85 13.18 14.10
cc-pCV5Z CASSCF 10.41 11.66 10.49 10.61 10.84 10.84 13.17 14.10
cc-pCVTZ UCCSD 11.65 11.64 13.73 11.69 11.65 11.94 12.15 12.10 12.19 14.75 14.71 16.30
cc-pCVQZ UCCSD 11.81 11.81 13.93 11.84 11.81 12.09 12.31 12.27 12.36 14.95 14.92 16.53
cc-pCV5Z UCCSD 11.87 11.87 14.00 11.90 11.86 12.15 12.38 12.33 12.42 15.02 14.99 16.61
cc-pCVTZ UCCSD(T) 11.83 11.82 13.64 12.02 12.00 12.21 12.35 12.31 12.38 14.79 14.76 16.06
cc-pCVQZ UCCSD(T) 12.02 12.00 13.86 12.19 12.17 12.39 12.54 12.50 12.57 15.00 14.97 16.30
cc-pCV5Z UCCSD(T) 12.09 12.07 13.93 12.26 12.24 12.46 12.61 12.57 12.65 15.08 15.05 16.38

Te T0 Tv Te T0 Tv Te T0 Tv Te T0 Tv

cc-pCVTZ CASSCF 9.13 9.43 9.27 9.90 10.13 11.04 10.03 10.32
cc-pCVQZ CASSCF 9.10 9.40 9.25 9.88 10.12 11.02 10.00 10.29
cc-pCV5Z CASSCF 9.10 9.40 9.24 9.87 10.11 11.02 10.00 10.28

cc-pCVTZ UCCSD 11.25 11.31 11.61 11.53 11.54 12.62 11.77 11.75 13.35 11.73 11.70 12.21
cc-pCVQZ UCCSD 11.36 11.41 11.71 11.65 11.65 12.75 11.91 11.90 13.49 11.84 11.81 12.33
cc-pCV5Z UCCSD 11.40 11.46 11.76 11.70 11.70 12.80 11.95 11.94 13.55 11.89 11.86 12.37

cc-pCVTZ UCCSD(T) 10.85 10.89 11.07 11.09 11.08 11.94 11.74 11.75 12.72 11.85 11.83 12.25
cc-pCVQZ UCCSD(T) 10.98 11.02 11.20 11.22 11.22 12.09 11.89 11.78 12.88 11.99 11.97 12.40
cc-pCV5Z UCCSD(T) 11.04 11.07 11.26 11.28 11.28 12.15 11.94 11.81 12.95 12.04 12.02 12.45

11.07 11.21

a  T0 [
2X (X = A1, B2) O3

+ ← 1A1 O3] - T0 [
3B1 O3 ← 1A1 O3]  See Table 8

Experimenta

4 B 2
4 A 2

4 A 1
4 B 1

2 A 2

2X O3
+ ← 3B1 O3

2 A 1
2 B 1

2 B 2

4X O3
+ ← 3B1 O3

MethodBasis

MethodBasis

149 
 



 

Te T0 Tv Te T0 Tv Te T0 Tv Te T0 Tv

cc-pCVTZ CASSCF 1.29 3.87 1.38 1.94 1.72 2.14 4.05 6.38
cc-pCVQZ CASSCF 1.31 3.90 1.39 1.96 1.74 2.16 4.08 6.43
cc-pCV5Z CASSCF 1.30 3.90 1.39 1.96 1.74 2.16 4.07 6.43
cc-pCVTZ UCCSD 0.39 0.34 4.06 0.44 0.35 1.32 0.89 0.80 1.54 3.49 3.41 6.70
cc-pCVQZ UCCSD 0.46 0.40 4.17 0.49 0.40 1.38 0.96 0.86 1.61 3.59 3.51 6.83
cc-pCV5Z UCCSD 0.47 0.41 4.19 0.50 0.41 1.40 0.97 0.88 1.62 3.62 3.53 6.86
cc-pCVTZ UCCSD(T) 0.98 0.93 3.97 1.17 1.11 1.78 1.50 1.42 1.94 3.93 3.87 6.45
cc-pCVQZ UCCSD(T) 1.04 0.98 4.08 1.22 1.15 1.84 1.56 1.48 2.01 4.02 3.96 6.59
cc-pCV5Z UCCSD(T) 1.05 1.00 4.10 1.23 1.16 1.85 1.58 1.50 2.03 4.04 3.98 6.61

Te T0 Tv Te T0 Tv Te T0 Tv Te T0 Tv

cc-pCVTZ CASSCF 1.15 1.66 1.58 2.40 3.91 5.10 1.24 1.49
cc-pCVQZ CASSCF 1.16 1.68 1.60 2.42 3.93 5.13 1.25 1.50
cc-pCV5Z CASSCF 1.16 1.68 1.60 2.42 3.93 5.13 1.25 1.50

cc-pCVTZ UCCSD 0.11 0.10 0.82 0.61 0.56 1.76 3.21 3.18 4.66 0.16 0.12 0.58
cc-pCVQZ UCCSD 0.16 0.16 0.88 0.67 0.62 1.81 3.30 3.27 4.75 0.19 0.15 0.61
cc-pCV5Z UCCSD 0.18 0.17 0.89 0.68 0.63 1.83 3.32 3.28 4.76 0.20 0.16 0.62

cc-pCVTZ UCCSD(T) 0.75 0.73 1.29 1.26 1.23 2.16 3.70 3.67 4.84 0.93 0.91 1.21
cc-pCVQZ UCCSD(T) 0.79 0.78 1.34 1.32 1.28 2.22 3.78 3.76 4.93 0.97 0.95 1.25
cc-pCV5Z UCCSD(T) 0.80 0.79 1.36 1.33 1.30 2.23 3.80 3.77 4.95 0.98 0.96 1.26

Method

4X O3
+ ← 2B2 O3

+

4 B 2

4X O3
+ ← 2A1 O3

+

4 B 1
4 A 1

4 A 2
Basis

4 A 1
4 B 1

4 B 2
4 A 2

Method

Basis

Table A.5.  Theoretical ionization potentials with respect to the 2A1 and 2B2 states of O3
+ (in eV). 
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Table A.6.   Theoretical ionization potentials with respect to the 1A1 state of O3 (in eV). 

Te T0 Tv Te T0 Tv Te T0 Tv Te T0 Tv

cc-pCVTZ CASSCF 12.16 13.29 12.25 12.37 12.58 12.85 14.92 16.28
cc-pCVQZ CASSCF 12.17 13.32 12.26 12.39 12.61 12.87 14.94 16.33
cc-pCV5Z CASSCF 12.18 13.33 12.26 12.39 12.61 12.88 14.95 16.34
cc-pCVTZ UCCSD 13.01 12.94 14.52 13.06 12.96 13.25 13.51 13.40 13.84 16.11 16.02 17.78
cc-pCVQZ UCCSD 13.22 13.14 14.74 13.24 13.14 13.44 13.72 13.61 14.04 16.35 16.25 18.04
cc-pCV5Z UCCSD 13.29 13.22 14.82 13.31 13.21 13.51 13.79 13.68 14.12 16.43 16.34 18.12
cc-pCVTZ UCCSD(T) 13.32 13.25 14.58 13.51 13.43 13.62 13.84 13.75 14.09 16.27 16.19 17.64
cc-pCVQZ UCCSD(T) 13.53 13.46 14.82 13.71 13.63 13.83 14.06 13.96 14.31 16.52 16.44 17.91
cc-pCV5Z UCCSD(T) 13.61 13.54 14.90 13.79 13.71 13.91 14.14 14.05 14.39 16.60 16.53 18.00

14.35 13.43 13.93 17.42

a  Reference 39.

4 A 2

4X O3
+ ← 1A1 O3 (eV)

MRCI a

Basis Method
4 A 1

4 B 1
4 B 2
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