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ABSTRACT 

 Specific carbohydrate-protein interactions are crucial in numerous physiological 

processes, disruption of which has been implicated in many different diseases like cancer. This 

provides researchers an opportunity to utilize carbohydrates as biomarkers and targets for 

therapeutics for such diseases. There has been a tremendous surge in the research being 

conducted towards the development of techniques to analyze carbohydrates and their specificity 

and affinity for different proteins. However, owing to their complex three-dimensional structure, 

stereochemistry, low binding affinities and broad specificity, carbohydrates have proven to be 

challenging to study. Therefore, new techniques and improvements in the existing methodologies 

are required. Here, we show that the incorporation of experimental data into molecular modeling 

can be used as a powerful combination to gain an understanding of the structural features of 

proteins and carbohydrates leading to the specificity in their interactions. Firstly, hydroxyl 

radical protein footprinting (HRPF) was used to establish a relationship between the oxidation of 

amino acids exposed on the surface of a protein and their solvent accessible surface area 

(SASA). Oxidation, as well as SASA, are both directly proportional to the exposure of an amino 

acid to the solvent. This relationship was used to estimate SASA of residues of a protein in 

solution, which was then successfully utilized as a score to quantify the quality of models 



generated through a molecular dynamics (MD) simulation and homology modeling. This 

relationship can also be used to study protein- carbohydrate interactions, which remains to be 

tested. Secondly, the functional groups of a monosaccharide essential for forming protein-

carbohydrate interactions were identified by using co-crystal structures and per-atom binding 

energy analysis, which shows that not all chemically-equivalent functional groups are equally 

significant for binding. Lastly, the 3D structure of a group of monosaccharides was analyzed and 

it was observed that two monosaccharides can possess structural similarities depending on their 

alignment, which can be used to explain cross-reactivity between a protein and more than one 

carbohydrate. 
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CHAPTER 1 

INTRODUCTION 

Proteins, polymers of amino acids and carbohydrates with monosaccharides as their basic unit 

comprise two of the most abundant biological molecules. Complex carbohydrates coat the 

surfaces of living cells and play an important role in a vast range of biological processes through 

glycan-binding proteins (GBPs) that recognize them as ligands. The research in this dissertation 

is focused on understanding and addressing the complexities of modeling protein-carbohydrate 

interactions. This subject was tackled from the aspects of both the protein and carbohydrate.  

Therefore, the work done here comprises of: 

1. Development of a methodology to estimate solvent accessibility of residues in a protein, 

to quantify the quality of 3D models in the absence of experimental 3D structures.  

2. Identify the functional groups in a carbohydrate involved in interactions with proteins. 

3. Locate similarities in carbohydrate 3D structures to understand and predict their cross-

reactivity.   

These topics, including the review of their respective backgrounds and the methods applied to 

them, are presented as follows: 

CHAPTER 2: PROTEIN-CARBOHYDRATE INTERACTIONS 

Carbohydrates are ubiquitously expressed biomolecules, and their interactions with proteins are 

essential for cellular function. This chapter describes the structural complexities associated with 

carbohydrates and their significance.  

CHAPTER 3: COMPUTATIONAL METHODS USED TO STUDY BIOMOLECULES 
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There are several computational and experimental methods that are used to study the structure 

and dynamics of biomolecules. Some of these methods, relevant to the research presented here, 

are discussed.  

CHAPTER 4: MONITORING LARGE-SCALE PROTEIN CONFORMATIONAL CHANGES 

This study highlights the potential of combining experimental HRPF analysis and SASA 

estimation in understanding protein flexibility and compare 3D structures. The results of this 

study were published in a peer-reviewed journal: 

Poor TA, Jones LM, Sood A, Leser GP, Plasencia MD, Rempel DL et al. Probing the 

paramyxovirus fusion (F) protein-refolding event from pre- to postfusion by oxidative 

footprinting. Proceedings of the National Academy of Sciences of the United States of America. 

2014 Jun 24;111(25). 

CHAPTER 5: INTEGRATING MASS SPECTROMETRY FOOTPRINTING DATA IN 

PROTEIN STRUCTURE MODELING 

This research employs SASA estimated from HRPF experiments as restraints in simulations of 

globular protein BPTI and to compare 3D models of a globular protein lysozyme, generated by 

molecular dynamics and homology modeling. 

CHAPTER 6: QUANTIFYING FUNCTIONAL GROUP CONTRIBUTIONS TO 

UNDERSTANDING PROTEIN-CARBOHYDRATE AFFINITY 

In this research, a carbohydrate binding protein called Erythrina cristagalli lectin (ECL) was 

used to identify the functional groups of its known ligands necessary for their affinity. 

CHAPTER 7: MONOSACCHARIDE SIMILARITY ANALYSIS TO UNDERSTAND 

PROTEIN-CARBOHYDRATE SPECIFICITY  
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This study compares 3D features of monosaccharides to find similarities in their structures to 

help explain cross-reactivity. 

CHAPTER 8: CONCLUSIONS AND FUTURE PROSPECTS 

The major conclusions of the work are summarized, and possible future directions are provided.  
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CHAPTER 2 

PROTEIN-CARBOHYDRATE INTERACTIONS 

Carbohydrates are ubiquitous in nature as nearly all organisms synthesize and metabolize them, 

and they can also be referred to as sugars, oligo- or polysaccharides, or glycans.  Glycans are 

commonly found covalently bound to other biomolecules such as proteins (glycoproteins) or 

lipids (glycolipids) on cell surfaces. Glycans that are covalently attached to a protein can alter its 

structure and function (1), by either preventing their interaction with the environment through 

blocking regions of the protein surface (2) or by hindering their dynamics because of their large 

mass (3). Even though they have a simple chemical formula, they can form complex 3-

dimensional (3D) structures, because of their unique characteristics. The basic carbohydrate unit 

is called a monosaccharide and can exist in several ring forms, for example as furanose (five-

membered ring structures) and pyranose (six-membered ring structures). Each pyranose has five 

positions available to form linkages with other monosaccharides, which allows carbohydrates to 

form branched structures (Figure 2.1). The exponential increase in the complexity of a 

disaccharide comprised of identical monosaccharide units can be emphasized by comparing it to 

an amino acid: two identical amino acids can form only a single dipeptide, but two identical 

monosaccharides can give rise to eleven different disaccharides (Figure 2.2) due to the 

availability of 5 different glycosidic linkages (1-1, 1-2, 1-3, 1-4 and 1-6) and the conformation of 

the anomeric carbon (α or β).  
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Figure 2.1. Examples of branched structures of carbohydrates. (images generated using 

oligosaccharide library available at www.glycam.org). 

 

Biological importance and applications 

Unlike proteins, carbohydrates are not encoded by the genome. Their assembly and degradation 

are dependent on the glycosyltransferases and glycosidases enzymes respectively, which are 

encoded by the genome. In vivo, carbohydrates are commonly found as glycoproteins and 

glycolipids, collectively known as “glycoconjugates”. The activity of glycosyltransferases and 

glycosidases determines the glycosylation patterns of glycoconjugates. These glycoconjugates 

cover the cell surface, which places them in an optimal position to be able to communicate with 

the cell’s environment. This makes them a target for glycan-binding proteins (GBPs), present at 

the interface between cells, tissues, and organs, to coordinate biological processes. The function 

of GBPs can be divided into two broad categories (endogenous or exogenous). GBPs in the first 

category recognize glycans from the same organism and are known to be involved in many 

physiologically important biological functions including embryonic development, differentiation, 

growth, cell-cell recognition, cell signaling, and metastasis (4-8). 

http://www.glycam.org/
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Figure 2.2. The eleven possible disaccharides of D-glucopyranose. 
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GBPs in the second category recognize glycans from a different organism. These consist mostly 

of pathogenic microbial adhesins, agglutinins, toxins, or host antibodies involved in host-

pathogen interaction during infection, but some also facilitate symbiotic relationships (9-11). 

Alterations in the pattern of protein and cell surface glycosylation can lead to a number of 

diseases, from a range of cancers, rheumatoid arthritis to congenital diseases of glycosylation 

(12, 13). Therefore, the development of treatments aimed at targeting glycan-processing 

enzymes, or development of anti-bacterial vaccines specific for polysaccharides is an important 

step in drug development. Due to their specificity, some GBPs like lectins have found 

applications in various areas of science like medicine, clinical biology, agriculture, and 

biochemistry. They have been used to detect diseases, isolate glycoproteins and other 

carbohydrate containing molecules, and in staining and histochemistry of cells and tissues (14-

16).  

The specific nature of carbohydrate-GBP interactions has been exploited for drug targeting, i.e. 

to selectively deliver drugs to its intended site (17). This reduces the risk of unintended side 

effects, like in anti-cancer drugs.  Moreover, carbohydrates can themselves be used as 

therapeutic agents. For example, a glucosaminoglycan heparin has been used as an anticoagulant 

for several decades. However, low tissue permeability, short serum half­life and poor stability 

makes them inadequate targets for oral drugs. To address these shortcomings, a new field of drug 

development called glycomimetics is emerging, which involves designing small molecules with 

bioactivity similar to carbohydrates that also show drug-like properties such as Oseltamivir (18). 

Oseltamivir is an orally administered antiviral medication used to treat influenza, designed by 

substituting exocyclic groups of sialic acid that were not required for affinity. Glycans can 



 

8 

perform a wide variety of these functions and find numerous applications owing to their 

stereochemistry and structure. 

Carbohydrate structure  

Monosaccharides contain one unit of aldehyde (aldose) or ketone (ketose) and can be classified 

as D- or L-isomers called enantiomers, based on the configuration of the penultimate carbon 

atom from the ketone or aldehyde group. Most monosaccharides exist in the D-configuration, 

with a few exceptions, like Fucose (19). Each monosaccharide has several chiral centers leading 

to multiple stereoisomers called epimers. In solution, they exist in equilibrium between cyclic 

and linear form, but the cyclic form is predominant. Cyclization adds another chiral center to the 

molecule forming two new diastereomers referred to as α (axial) or β (equatorial) (Figure 2.3) 

anomers. In their cyclic form, furanoses tend to adopt two different conformers called envelope 

and twist-boat, i.e. 20 conformations (Figure 2.4), while pyranoses prefer to adopt four distinct 

conformers called a chair, boat, skew boat and half chair. Pyranoses can also be found in 

envelope conformation while transitioning between different conformers, leading to a total of 38  

(20) conformations (Figure 2.5). While most pyranoses favor the chair form in solution, 

iduronate, and glucuronate residues are known to be able to adopt multiple ring conformations.  

 

Figure 2.3. Anomeric configurations of glucopyranose. A. Axial (α) configuration at C-1. B. 

Equatorial (β) configuration.  
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Figure 2.4. An example of the furanose envelope and furanose twist shapes. A. 2E conformation. 

B. 2T1 conformation.  

 

 

Figure 2.5. The cyclic conformations of pyranose. A. Chair (4C1). B. Boat (1,4B). C. Skew-boat 

(1S3). D. Half-chair (1H2). E. Envelope (E1). 

 

Formation of disaccharides takes places via a condensation reaction between the anomeric 

hydroxyl group of one and the hydroxyl group of another, accompanied by the elimination of one 

water molecule forming a glycosidic bond between two monosaccharides (C-O-C bridge). The 

dihedral angles at the glycosidic linkage for 1-2, 1-3, and 1-4 connections are called φ (H1-C1-

O-CX’) and ψ (C1-O-CX’-HX’), where atoms marked with the prime symbol belong to the 
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residue on the reducing end (non-anomeric hydroxyl group). The glycosidic linkage for 1-6 

connection has an additional dihedral angle called ω (O-C6’-C5’-H5’). The glycosidic linkages 

are a part of the backbone of a polysaccharide and determine its global structure.   

A change in the linkage position or configuration can lead to profound changes in properties and 

functions. For example, maltose is a disaccharide made up of two glucose units linked by an 

alpha-1, 4-glycosidic bond, which forms a building block for starch. A disaccharide cellobiose, 

which forms a building block for cellulose is also made up of two glucose units, but they are 

linked by a beta-1, 4-glycosidic bond. While maltose can be easily digested by humans, we lack 

enzymes capable of breaking the beta-linkages, which is why we are unable to digest cellobiose.  

Similarly, yeast can be used to convert starch to ethanol, but does not act on cellulose. 

Carbohydrate chemistry and stereochemistry 

Relative to amino acids, monosaccharides are densely packed with polar exocyclic groups, and 

in solution, they can be indistinguishable from clusters of water molecules (21). However, unlike 

clusters of water molecules, monosaccharides have hydrophobic patches on both sides of the 

ring. It is this property that sets them apart from bulk solvent and introduces CH-π interactions 

(21). It has been implied that hydrophobic interactions are essential for affinity, and electrostatic 

interactions and hydrogen bonds provide selectivity to binding (22, 23). Carbohydrates also 

display stereoelectronic effects that can impact ring stability and linkage orientation. The 

anomeric effect is observed when there is a stabilizing interaction between the unshared electron 

pair on the ring oxygen and the σ* antibonding orbital of the C1–O1 bond in the axial 

orientation. Similarly, the exoanomeric biases the φ dihedral angles around the glycosidic bond 

into distinct rotational preferences, depending on the α/β configuration of the anomeric carbon 

involved (24). The orientation of the dihedral angle ψ is not influenced by the exo-anomeric 
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effect, but it is influenced by the steric constraints due to the attached rings (25). The dihedral 

angle ω, which does not involve a carbon atom located in the ring, shows three preferred 

orientations denoted tg, gg, and gt, where t and g represent trans and gauche, respectively (26). It 

is because of these structural and chemical properties that carbohydrates and glycans have a 

unique behavior compared to other biological molecules.     

Protein-carbohydrate interactions 

A single glycan may be involved in many different functions depending on its spatial and 

temporal expression. On the contrary, a given function might be carried out by several closely 

related glycan structures leading to cross-reactivity. However, despite these complications, the 

fundamental interactions between a carbohydrate and protein are similar.  

Electrostatic interactions: Along with hydroxyl groups, sugars can also contain charged or polar 

groups such as carboxylate, acetyl, phosphoryl or sulfate, resulting in strong electrostatic 

properties. Hence, carbohydrate binding sites in proteins tend to have charged residues and/or 

ions (27). Charge-dependent binding interactions are regarded as major contributors to binding 

enthalpy (27). 

Hydrogen bonds: GBPs like lectin require proper configuration of hydrogen bonds for a glycan 

to be able to bind, implying that hydrogen bonds impart specificity to these interactions. 

Mutations of hydrogen bonding partners can either inhibit binding or lead to a loss in affinity 

(28).   

Hydrophobic interactions: CH-π interactions occur when CH groups on the hydrophobic face of 

the pyranoses interact with the π electron density of the aromatic ring. Even though these 

interactions are weak compared to hydrogen bonds, contributing between -0.5 to -0.8 kcal/mol to 

binding, they are important in stabilizing protein-carbohydrate interactions (29). The 
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hydrophobic face of the rings and the methyl moiety of the amido and acetamido sugars form 

hydrophobic interactions with aliphatic amino acid side chains.  

Entropy contributions: Change in entropy is one of the main contributors to protein-carbohydrate 

binding. In solution, protein forms hydrogen bonds with water. For a carbohydrate to bind to a 

protein, these hydrogen bonds need to be broken, which incurs an enthalpic penalty. However, 

releasing tightly bound water molecules can result in favorable entropic changes (30). Changes 

in conformational entropy upon ligand binding also contribute significantly to the binding, as can 

be deduced from the analysis of thermodynamics of ligand binding to proteins, measured by 

isothermal titration calorimetry (ITC) (31). Ligand binding can cause the stiffening of both the 

ligand and the protein, which can contribute considerably to the free energy of binding. 

Therefore, designing conformationally restricted ligands (32, 33) and accounting for protein 

conformational entropy (34) can prove beneficial in predicting and comparing binding affinities. 

Challenges in studying carbohydrates 

Although carbohydrates have a great potential for future development of drugs and therapeutics 

(35), it is still challenging to exploit it due to a multitude of reasons. Unlike DNA, RNA and 

proteins, carbohydrates are not synthesized from a template, but by the combined action of 

multiple enzymes. This makes the in-vitro synthesis and amplification of complex carbohydrates 

difficult and tedious. Moreover, due to their high flexibility in solution, they are resistant to 

crystallization, leading to a deficiency in structural information. Owing to their structural 

heterogeneity, they can store a vast amount of information. This adds another level of complexity 

in the structure-function relationship of carbohydrates. Furthermore, carbohydrates typically 

have low binding affinities to GBPs in mili-molar to the micro-molar range. To perform 

biological functions, the strength of the interactions between carbohydrates and GBPs is 
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enhanced by multivalent binding, which leads to higher avidity. This is further complicated by a 

large number of techniques with different sensitivities that exist to quantify this affinity, 

producing data that is not always comparable.  

The challenges are not limited to experimental methods, but also observed while modeling 

carbohydrate dynamics and interactions. The possibility of multiple ring conformations in 

solution, presence of branching, the internal flexibility of glycosidic linkage, and structurally and 

environmentally influenced glycosidic dihedral angle rotational preferences represent a unique 

set of structural and energetic features that can prove to be difficult to model accurately. As 

discussed earlier, carbohydrates possess highly polar exocyclic substituents causing complicated 

electrostatic features. For example, variations in conformations and stereoisomers of a single 

monosaccharide can lead to subtle variations in the spatial charge distributions in fixed charge 

force fields. Thus, these force fields require proper treatment of charge sets for both protein and 

ligand. Moreover, endo and exo-anomeric effects observed in carbohydrates that prefer sterically 

disfavored conformers should be accounted for by additional means. Due to their flexibility, 

adequately sampling all the conformations and configurations can prove to be computationally 

costly. Consequently, there has been an increased effort towards the development and 

improvement in the quality of computational tools specific for carbohydrates(36). However, 

sampling conformations is not the only obstacle in modeling protein-carbohydrate interactions. 

Estimating binding free energies can be a daunting task due to the intricate enthalpic and 

entropic relationship between protein, ligand, and solvent molecules. To overcome these 

bottlenecks, it becomes important to combine the knowledge from experimental and 

computational analysis to further our understanding. Some of these methods of analysis and 

current developments will be discussed in the next sections.  
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CHAPTER 3 

COMPUTATIONAL METHODS USED TO STUDY BIOMOLECULES 

Molecular modeling 

Molecular modeling includes a set of computational techniques used to replicate the structural 

and dynamic behavior of biological molecules. These techniques have found applications in 

fields of computational chemistry, computational biology, drug design etc. Most of the studies 

involve three steps i.e. choosing a method to model the interactions involved in the system, 

determining the type of calculation using these models to be performed based on the requirement 

of the study, followed by an analysis of these calculations. The two most commonly used 

methods to describe the inter- and intra-molecular interactions for molecular modeling are 

quantum mechanics (QM) and molecular mechanics (MM). QM utilizes complex mathematical 

formulations to explicitly model the electronic environment of each atom. Currently, this method 

is utilized for systems with a small number of atoms due to the computational expense required 

by these calculations. On the contrary, MM treats atoms as the individual basic unit drastically 

reducing the computational cost. This permits MM to be applied to much larger systems with 

biological relevance on much longer timescales. The potential energy of the molecular system is 

calculated using force fields.   

Classical mechanical force fields 

A force field comprises of a mathematical formulation describing the potential energy function 

along with a set of parameters that can be adjusted to define the structural and dynamic behavior 

of a system. The individual components of a force field equation or potential energy function can 
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be divided as bonded and non-bonded interactions. The functional form of AMBER family of 

force fields is represented in equation 3.1 (37).  

𝑉𝑇𝑜𝑡𝑎𝑙 = ∑
1

2𝐾𝑟(𝑟 − 𝑟0)2

𝐵𝑜𝑛𝑑𝑠

+ ∑
1

2𝐾𝜃(𝜃 − 𝜃0)2

𝐴𝑛𝑔𝑙𝑒𝑠

+ ∑
𝑉𝑛

2[1 + cos(𝑛𝛷 − 𝛾)]

𝐷𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

+ ∑ 4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑅𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑅𝑖𝑗
)

6

 ]

𝑣𝑑𝑊

𝑖<𝑗

+ ∑
1

4𝜋𝜀0 [
𝑞𝑖𝑞𝑗  

𝑅𝑖𝑗
2 ]

𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐𝑠

𝑖<𝑗

                   (3.1) 

The potential energy function is calculated as a pair-wise summation over all the bonded and 

nonbonded atomic interactions. The bonded interactions include bonds, angles and dihedral 

angles that are formed by covalently attached two, three and four atoms respectively. The non-

bonded interactions, represented by the last two terms in equation 3.1, comprise the vdW and 

electrostatic interactions between atoms separated by distance.  

In classical mechanics, atoms are treated as balls attached to each other via a spring representing 

the covalent bonds between them. Therefore, a simple harmonic function describing elasticity 

like Hooke’s law is used to model the dynamic behavior of bonds and angle. The equilibrium 

values are either based on crystallographic or QM optimized structures, or experimental 

diffraction data. The force constants are usually estimated using vibrational spectroscopy. It is 

important to note that by using Hooke’s law, the bonds and angles are not allowed to break, at 

the same time atoms cannot form new bonds. Thus, CM MM is not used to study reaction 

mechanisms.  

The van der Waals (vdW) interactions are weak steric interactions between two atoms with both 

repulsive and attractive components, which are often modeled using the Lennard-Jones 12-6 

potential. The repulsive component accounts for Pauli exclusion, which prevents atomic overlap. 

The attractive component accounts for the London dispersion forces that arise due to 
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instantaneous multipoles. The parameters involved are adjusted to reproduce pure liquid or 

crystal properties, such as enthalpies of vaporization or sublimation.  

Electrostatic interactions occur in atoms due to their electric charge, which can be attractive or 

repulsive depending on the charges of the atoms involved (positive or negative). Electric charge 

is polarizable and dependent on the surrounding electrostatic environment. However, force fields 

like AMBER assign a fixed partial charge to atoms, as implementing charge polarizability in 

force fields like AMOEBA (38), increases the computational cost considerably. A common 

approach to estimating partial charges is to reproduce QM generated electrostatic potential 

(ESP).  

The dihedral term is parametrized as a last step in the force field development and is used as a 

correction. There are several assumptions involved in the development of a force field, therefore 

the total potential energy of the system calculated using the other terms is not always sufficient. 

This is usually demonstrated by the failure of CM to reproduce the energetics of torsional 

rotation generated by QM. Thus, the torsion term can also be referred to as a quantum correction 

to the potential energy.  

The parameters are usually developed by employing small molecular fragments with 

representative properties of the relevant system, which can then be combined and applied to 

larger molecules. The accuracy of the force field is then tested and validated by comparing the 

results of an MD simulation to the experimental data.  

Molecular dynamics (MD) simulation 

Molecular dynamics simulations are used to predict the time-dependent behavior of a molecular 

system of interacting particles. This technique has been applied to many systems including 

proteins, nucleic acids, lipids, and carbohydrates, to sample new conformations and to determine 
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thermodynamic averages of these molecules and their complexes (39-41).  Classical mechanics 

(CM) equations of motion are applied following Newton’s laws. Per Newton’s first law, an 

object in motion stays in motion maintaining its speed and direction unless acted upon by an 

external force. And the second law characterizes the effect of the application of an external force 

on the motion of a particle as shown in the equation 3.2, which states that its acceleration is 

directly proportional to the external force, while it is inversely proportional to the mass of the 

particle. This implies that if the force acting on a particle is known; its acceleration can be 

calculated.  

𝐹⃗ = 𝑚𝑎⃗                              (3.2) 

An additional equation (equation 3.3) (one dimension version) of force states that it is a gradient 

of potential energy with respect to the position of the atom. As the forces on an atom are arising 

due to its interactions with other atoms, this gradient can be estimated using the potential energy 

from force field equation to calculate the force, and in turn, the acceleration. Therefore, MD is a 

deterministic technique, which means if an initial set of positions and velocities are provided, the 

following time progression of the system is in principle completely determined.  

𝐹 = −
𝜕𝑉

𝜕𝑥
                              (3.3) 

In CM MD, time is considered in discrete intervals or regularly spaced instances Δt, which is 

predefined and depends on the underlying timescales of motion under study, for example, 

biological systems often use time steps of 1-2 fs (42). A common method used to integrate 

Newton’s equations of motion over time to predict new positions and velocities at time t+Δt is 

the Verlet algorithm (equation 3.6) (43). Therefore, current position (x(t)) and acceleration (a(t)) 

along with position from the previous step (x(t-Δt)), which can be calculated using equations 3.4 

and 3.5, are sufficient to predict the future (x(t + Δt)) atomic position. Before starting an MD 
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simulation, the initial atomic coordinates are static and do not possess information for previous 

positions. Therefore, commonly velocities are assigned to each atom in the first step of the 

simulation, selected randomly based on a Maxwell-Boltzmann distribution (a probability 

distribution characterizing particle speeds) appropriate to the simulation temperature.  

𝑥(𝑡 + ∆𝑡) = 𝑥(𝑡) + 𝑣(𝑡)𝛥𝑡 +
1

2
𝑎(𝑡)∆𝑡2                                (3.4) 

𝑥(𝑡 − ∆𝑡) = 𝑥(𝑡) − 𝑣(𝑡)𝛥𝑡 +
1

2
𝑎(𝑡)∆𝑡2                                (3.5) 

𝑥(𝑡 + ∆𝑡) = 2𝑥(𝑡) − 𝑥(𝑡 − ∆𝑡) + 𝑎(𝑡)∆𝑡2                                (3.6) 

The entire process of MD simulation can be summarized in following steps:  

1. The force field equation is evaluated to calculate the potential energy of the system. 

2. Acceleration at current time t is computed using the position derivative of the potential 

energy.  

3. Equation 3.6 is evaluated to predict future position x(t+Δt). 

4. The time is incremented by Δt and the atom is moved to its new position.  

This process is repeated in a loop till it reaches the desired predefined length of the simulation. 

MD simulation setup 

The initial structure for an MD simulation may be experimentally determined e.g. from X-ray 

crystallography or NMR, or a theoretical model e.g. from homology modeling. To mimic the 

environment of a biological system, simulations are usually performed in the presence of a 

solvent by means of two possible approaches. The first approach called implicit solvent employs 

a set of mathematical approximations to estimate the influence of bulk water as a continuum 

around the molecular surface. Although this method is computationally inexpensive, it is not able 

to capture some important features involving solute-solvent interactions like hydrogen bonds. 
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Therefore, a more accurate second approach of using explicit discrete water molecules is favored 

in biological systems, despite it being much more computationally expensive. There are many 

explicit water models designed to replicate different molecular and bulk water properties. Some 

of the widely used and extensively tested models are TIP3P (44), TIP4P (44), and TIP5P (45). 

To reduce overall complexity, these three models are designed to be rigid and do not undergo the 

internal motions of bond and angle stretching. After solvation, counter-ions are then added to 

neutralize the system.  

Due to the deterministic nature of MD simulations, biological systems are typically subjected to 

energy minimization prior to the dynamical study, to ensure that the simulation proceeds from a 

reasonable area of phase space. Energy minimization attempts to locate the nearest local 

minimum and in process eliminates large interatomic forces from steric clashes and unrealistic 

geometries in the structure. Minimization after solvation adjusts the solute and solvent relative to 

each other. Some well-known minimization algorithms include Steepest descent (46) and 

Conjugate gradient (47). While steepest descent performs well for minimizing initial structures, 

it is slow to converge. On the other hand, the conjugate gradient is unstable far from a local 

minimum but converges quickly. Therefore, usually conjugate gradient minimization is preceded 

by steepest descent minimization to reduce computational cost. Geometry optimization is 

followed by equilibration to bring the system to the desired temperature and pressure.  

Monte Carlo (MC) sampling 

Unlike MD, Monte Carlo (MC) is a stochastic computational sampling technique that explores 

the energy surface by randomly probing the configuration space of the molecular system, 

generating samples from the Boltzmann distribution at a given temperature. Because it does not 

keep track of time, the time-dependent dynamical properties of a molecular system cannot be 
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derived from an MC simulation. It is widely used to search for low-energy structures of a protein 

and to estimate thermodynamic quantities over a conformation space. The partition function is 

used to calculate most of the statistical thermodynamic properties of a system in statistical 

physics. The canonical partition function (Equation 3.7) is applied in protein simulation studies, 

where β = 1/kBT with kB as the Boltzmann’s constant and T as the temperature. The summation 

is over all possible conformations (xi), and their potential energies (Ei) are calculated using a 

force field. The partition function can be approximated by Importance sampling, i.e. 

conformations with low energy are emphasized by sampling more frequently.  

𝑍 = ∑ 𝑒−𝛽𝐸𝑖

𝑖
                              (3.7) 

The starting structure of an MC simulation is a static structure like MD. Each MC step consists 

of proposing a new structure by perturbing some degrees of freedom (DOFs), usually torsion 

angles. The new structure is accepted or declined based on an acceptance criterion such as 

frequently used Metropolis criterion (48), according to which the simulation moves to a new 

conformation with probability min, where ΔE is the difference in energy between the new and 

previous conformations. A new structure with lower potential energy is always accepted, while 

that with higher energy is accepted with a decreasing probability, as the energy barrier increases. 

The entire process of MC simulation can be summarized in following steps: 

1. Generate new coordinates by perturbing the previous structure. 

2. Compute the change in potential energy. If ΔE < 0, accept the new coordinates. 

3. If ΔE > 0, generate a uniform random number R in the range [0,1] and calculate 

probability P. 

4. Accept the new structure if P>R, decline them otherwise. 
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Enhanced conformational sampling techniques 

The energy landscape of proteins is very rugged with multiple minima. This makes exhaustive 

sampling at lower temperatures extremely difficult, as a simulation can get stuck at a local 

minimum. To overcome this problem, a sampling technique is required that can efficiently 

explore a complex energy landscape. Some of these are discussed below. 

 Parallel Tempering 

Parallel tempering or Replica Exchange (49) is one such method that aims to overcome this 

limitation by running parallel simulations, at a broad range of temperatures, and exchanging 

structures between these simulations after a fixed number of steps. This allows the system to 

escape metastable states when a simulation is at a higher temperature and relaxing it when it is 

exchanged at a lower temperature. This method can achieve protein folding at timescales that are 

substantially smaller than that for simulations at a fixed temperature. The efficiency of parallel 

tempering Monte Carlo can be optimized by maximizing the number of trips between two 

extreme temperatures. This is achieved by optimizing the distribution of temperature points used 

to run the simulation for a specific system. An iterative feedback method is used that 

concentrates the temperature points near the phase transition for that system or the ground state, 

thereby increasing sampling closer to that point. 

In the parallel tempering Monte Carlo algorithm, N replicas of the system are simulated in 

parallel at N different temperatures (T1, T2. . . TN). After a fixed number of Monte Carlo sweeps, 

the two neighboring replicas, i and i+1 with energy Ei and Ei+1, and temperatures Ti and Ti+1 

respectively are exchanged with a probability,  

𝑝(𝐸𝑖, 𝑇𝑖 → 𝐸𝑖+1, 𝑇𝑖+1 = min(1, 𝑒(∆𝛽∆𝐸))                             (3.8) 
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where, ∆𝛽 =  
1

𝑇𝑖+1
− 

1

𝑇𝑖
 , is the difference between the inverse temperatures, and ∆𝐸 =  𝐸𝑖+1 −

𝐸𝑖, is the difference in the energy of the two replicas.  

The minimum temperature of the replicas is usually close to the room temperature, and the 

maximum temperature is high enough that the protein does not get stuck in a local minimum. 

The initial set of temperatures is a geometric progression between the minimum and the 

maximum temperature. The number of replicas closer to the square root of the number of the 

residues in a protein is believed to provide good sampling, but there is no set rule for that. The 

temperature set can be optimized using the protocol in reference (50).  

Simulated Annealing 

Another method for overcoming the multiple minima problem is simulated annealing (51). This 

method works on the assumption that for a protein the global minimum in free energy at room 

temperatures is the global minimum in potential energy. Therefore, simulated annealing tries to 

mimic the crystal growth process to find the global minimum in potential energy, by gradually 

lowering the temperature of a simulation from a high value, to a lower value where the 

simulation does not undergo significant changes. It needs to be made sure that the decrease in the 

temperature over the period of simulation is slow enough that the system stays in thermal 

equilibrium so that it does not get trapped in local minimum. Multiple simulations are needed, to 

increase the probability of finding the global minimum, with different starting structures or with 

a different random number seed. 

Multicanonical sampling 

Multicanonical sampling is a generalized ensemble method, where each state is weighted by a 

non-Boltzmann probability weight factor, to achieve a uniform or flat energy distribution of all 

the states, which allows a free random walk in energy space (E). This method can be used to 



 

23 

overcome metastability in first order phase transitions, as well as a multiple-minima problem in 

various systems. Using this ‘density of states’ method, each configuration with potential energy 

E, is updated with a weight, 𝑤 ∝ 𝑔−1(𝐸) =  𝑒−𝑆(𝐸) and 𝑆(𝐸) = ln (𝑔(𝐸)), where g(E) is the 

density. This results in a uniform energy distribution, 𝑃(𝐸) ∝ 𝑤(𝐸)𝑔(𝐸). Because the weights 

are not known, they are estimated by iterations of short preliminary runs.  

Parallel Wang-Landau 

Wang-Landau Sampling (52, 53) is a powerful technique which has found application in various 

areas of research, including protein modeling (54). Like multicanonical sampling, using this 

‘density of states’ method, one can achieve a flat energy distribution by calculating the density of 

states (g(E)) of a system iteratively, by using a flatness criterion and a modification factor (f). 

First, g(E) is assumed to be uniform, usually, 1 for all configurations and f is typically e, and a 

histogram (H(E)) is introduced, which keeps track of all the visits to each energy level. The 

acceptance probability of exchange between previous (E1) and new (E2) conformation is 𝑃𝑎𝑐𝑐 =

min (1,
𝑔(𝐸1)

𝑔(𝐸2)
). After each visit the histogram is updated, so is the energy of the last visited 

conformation with f. after a flatness criterion is reached, the simulation starts from the beginning 

with new modification factor i.e. √𝑓. This is repeated until f reaches a threshold (10-6). The 

performance of this technique can be further improved by its parallelization. Vogel et al (55) 

describes a novel method of parallel WL based on replica exchange, which gives a remarkable 

speed-up without loss of accuracy. The entire energy range is divided into h windows with an 

overlap. Each energy window can have multiple walkers, with their own energy value and 

density of states gi(E(x)), where i is the walker and E is the energy of conformation x, and H(E). 

These walkers undergo a replica exchange monte carlo, with an acceptance probability of 

exchange, 𝑃𝑎𝑐𝑐 = min [1,
𝑔𝑖(𝐸(𝑋))

𝑔𝑖(𝐸(𝑌))
 

𝑔𝑗(𝐸(𝑌))

𝑔𝑗(𝐸(𝑋))
]. Calculation of g(E) is also iterative in this case. After 
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reaching a flatness criterion, g(E) is averaged out and redistributed within the energy sub-

window, before starting with the next iteration. 

Interaction energy calculation using the molecular mechanics–Poisson-

Boltzmann/generalized Born surface area (MM-PB/GBSA) method 

Predicting the strength of carbohydrate-protein interactions accurately can be more challenging 

than reproducing their conformational behavior in solution. MM-PB/GBSA is an end-state post-

processing method which allows high throughput calculation of free energies of binding by 

substituting explicit solvent with an implicit solvent (continuum dielectric model) and using a 

thermodynamic cycle depicted in figure 3.1, where P represents protein and L represents a ligand 

(56). It is usually determined as an average over multiple snapshots collected from an MD 

simulation, after removing all the explicit water molecules. The binding energy in this method is 

calculated as the equation 3.9 for every snapshot.  

 

Figure 3.1. Thermodynamics cycle used by MM-PB/GBSA.   

 

∆𝐺𝑏𝑖𝑛𝑑 =  𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − (𝐺𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟 + 𝐺𝑙𝑖𝑔𝑎𝑛𝑑)                             (3.9) 

The potential energy, G for each system is calculated as the sum of the gas phase potential 

energy which can be estimated using the force field equation (EMM), the solvation free energy 

(ΔGSol) and the conformational entropy (TS) (equation 3.10).  

𝐺 = 𝐸𝑀𝑀 + 𝐺𝑆𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 − 𝑇𝑆                              (3.10) 



 

25 

The solvation energy comprises of the electrostatic (polar contribution), and non-electrostatic 

solvation part (non-polar contribution). The electrostatic solvation is estimated using either GB 

or PB implicit solvent model, and the non-electrostatic solvation energy is estimated by solvent 

accessible surface area (SASA). The PB model is based on the Poisson continuum dielectric 

model for finding the electrostatic potential, combined with a Boltzmann distribution for finding 

the distribution of charges. Because GB model approximates PB method, it makes GB model 

more computationally efficient. In MM-PB/GBSA method, the solute with low dielectric lies 

within this continuum high dielectric model substituting water molecules, which is approximated 

by the non-polar component. Combining these equations, the binding free energy in solution 

involves energy changes accompanying the protein-ligand binding in the gas phase, the solvation 

of complex, protein and ligand independently, and the entropy changes upon binding (equation 

3.11).  

∆𝐺𝑏𝑖𝑛𝑑
𝑠𝑜𝑙𝑛 = ∆𝐺𝑏𝑖𝑛𝑑

𝑔𝑎𝑠
+ ∆𝐺𝑠𝑜𝑙𝑣

𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − (∆𝐺𝑠𝑜𝑙𝑣
𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟 + ∆𝐺𝑠𝑜𝑙𝑣

𝑙𝑖𝑔𝑎𝑛𝑑
) − 𝑇∆𝑆                       (3.11) 

Although MM-PB/GBSA is routinely used to estimate binding free energies (57, 58), due to a 

number of assumptions inaccuracies can occur in these estimations. Implicit solvents can 

reproduce the behavior of bulk water, but not able to reproduce the behavior of water molecules 

that form a part of hydrogen bond network aiding the protein-ligand interaction. Because all the 

water molecules are removed for post-processing, the stabilizing effects of some the water 

molecules involved in binding will be neglected (59-61). Furthermore, PB and GB models can 

fail to estimate suitable polar and buried charges as the non-polar effect is represented by only a 

surface term.  

 



 

26 

 

 

CHAPTER 4 

MONITORING LARGE-SCALE PROTEIN CONFORMATIONAL CHANGES1 

Introduction 

It is not always possible to determine high-resolution 3D structures of proteins and complexes 

using experimental techniques such as X-ray crystallography and NMR. Biomolecular surface 

mapping methods have emerged as a powerful substitute for characterizing protein-protein and 

protein-ligand interactions in such cases. Therefore, there has been a growing interest in alternate 

high throughput methods such as footprinting and molecular dynamics (MD). Moreover, x-ray 

structural data is unable to provide any information regarding the dynamics of side chains in 

solution, which can be obtained through an MD simulation. This can also prove important when 

employing homology models, to generate a realistic ensemble of side chain orientations. MD has 

been shown to characterize the relation between the per-residue degree of oxidation from 

footprinting and Solvent Accessibility Surface Area (SASA) (62). This relation can be used to 

better understand the dynamics and conformations of a protein. This will be illustrated by using a 

fusion protein from Parainfluenza virus that undergoes a large conformational change upon 

interaction with the host.   

 

 

 

_________________________________ 
1Published as - Poor TA, Jones LM, Sood A, Leser GP, Plasencia MD, Rempel DL, Jardetzky 

TS, Woods RJ, Gross ML, Lamb RA. Probing the paramyxovirus fusion (F) protein-refolding 

event from pre-to postfusion by oxidative footprinting. Proc. Natl. Acad. Sci. USA. 2014 

24;111(25):E2596-605. 
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Parainfluenza virus is an enveloped, negative-sense, single-stranded RNA virus (63) that 

recognizes (binds to a receptor) an appropriate target cell by variable attachment protein 

(Hemagglutinin-neuraminidase (HN), H, or G), and carries out invasion (fusion) by a more 

conserved fusion protein (F) (64-66). Both proteins are embedded in the lipid bilayer of the 

virus. For a successful infection, F protein undergoes irreversible large-scale and complicated 

conformational change, from prefusion structure to postfusion structure after activation by HN or 

heat (67-74). In prefusion conformation, the fusion protein is metastable, while in the postfusion 

state is highly stable. Apart from the prefusion and postfusion crystal structures, very little 

information is available about the intermediate structures during the fusion process or about the 

dynamics of this highly mobile protein in solution. 

 

Figure 4.1.  Organization of the trimeric, soluble PIV5 F protein. (A) The domain organization 

of PIV5 F-GCNt, with a unique color for each domain.  Corresponding amino acid residues are 

noted below each segment.  (B) The prefusion crystal structure of PIV5 F (PDB: 2B9B) and (C) 

the postfusion crystal structure of hPIV3 F (PDB: 1ZTM), colored per (A).  In both (B) and (C), 

two of the trimers are represented as semi-transparent surfaces while the third trimer is depicted 
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as a ribbon cartoon.  Highlighted structural elements include the heptad repeats A and B (HRA 

and HRB, respectively), the postfusion 6 helix bundle (6HB), and the hydrophobic fusion peptide 

(FP), which is disordered in the postfusion crystal structure. (Reprinted here with the permission 

of the publisher). 

 

Theoretical SASA values were calculated and compared to the experimental fast photochemical 

oxidation of proteins (FPOP) coupled with high-resolution mass spectrometry for peptides of 

prefusion PIV5 F protein (PDB ID: 2B9B, Figure. 4.1B) and of a model based on the postfusion 

hPIV3 crystal structure (PDB ID: 1ZTM, Figure 4.1C).  The average SASA (<SASA>) values 

were calculated for the peptides from 10 ns MD simulations. Most of the peptides compared 

show consistent trends in the <SASA> and FPOP oxidation for the peptides from prefusion-to-

postfusion conformational change. While there are a few that exhibit greater-than-predicted 

FPOP oxidation in the prefusion state. The functional relevance of these regions will be further 

discussed.   

Methods 

Preparation of pre- and postfusion protein structures.  A crystal structure of the PIV5 F protein 

in its prefusion conformation (PDB ID: 2B9B) was reported at 2.85 Å resolution and was used in 

this analysis (75).  All the crystallized ligands (N-Acetyl-D-Glucosamine) and water molecules 

were removed.  All histidine residues were considered as neutral with a hydrogen atom on the 

epsilon nitrogen. Because there is no structure available for the postfusion state of PIV5 F, a 

homology model was generated using the SWISS-MODEL (76) homology modeling server with 

the hPIV3 postfusion crystal structure (PDB ID: 1ZTM) as a template (22% identity, 65% 

similarity, and Evalue = 3 x 10-115).  A sequence 41 residues long and consisting of the 
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hydrophobic FP was unresolved in the hPIV3 F structure, which suggests that it does not adopt a 

defined conformation.  To avoid biasing the model by introducing this peptide in a single 

possibly irrelevant conformation, this sequence was also omitted from the homology model, 

necessitating the use of backbone restraints in subsequent simulations.  The terminal residues at 

the location of the missing loop were capped with N-methyl (NME) and N-acetyl (ACE) groups 

as appropriate.  To check the quality of the modeled and template structures, Z-scores of the 

backbone conformations were calculated using WHATIF (77).  Both the template and the model 

received acceptable Z-scores of 1.2 and 0.7, respectively.  It is well established that class I fusion 

proteins share structural features without having high sequence similarity; therefore, the model 

generated was accepted as is and was used for further analysis. 

Energy Minimization.  Each protein structure was solvated in a truncated octahedral box of 

TIP3P water molecules (78), with counter ions (Na+) were added to neutralize the charge, using 

the tLEAP module of AMBER.  In the case of the prefusion structure, 97332 water molecules 

were required, whereas the postfusion required 110360.  The simulations were performed using 

AMBER12 force field (79) with ff99SB parameters (80), with a cutoff for non-bonded 

interactions of 10 Å.  To remove bad contacts, the system was minimized in two steps.  Firstly, 

the energy of the water and ions was minimized while keeping all protein atoms restrained (500 

kcal/mol Å2).  This was followed by energy minimization of the entire system.  Each 

minimization was comprised of an initial phase of steepest descent method for 5000 steps, 

followed by conjugate gradient for 20000 steps.  The resulting minimized structures were 

subjected to MD simulation performed with the pmemd.cuda version of AMBER12 (81). 

MD Simulation.  All the bonds involving hydrogen were constrained using the SHAKE 

algorithm, enabling an integration time step of 2 fs.  Long-range electrostatic interactions were 
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treated with the Particle-Mesh Ewald algorithm (82), with a long-range non-bonded interaction 

cut-off set to 10 Å.  The systems were heated from 5 K to 300 K over a span of 50ps, under NVT 

conditions employing the Berendsen thermostat with a coupling time constant of 1 ps.  The 

simulation was then continued for 10 ns under NPT conditions with weak restraints on the 

backbone atoms (100 kcal/mol Å2).  The first 1 ns of this trajectory was discarded prior to 

analysis of the equilibrated data.  

Data analysis.  Solvent accessible surface area (SASA) values were computed with the 

NACCESS (83) program for snapshots collected every 10ps.  Average values were computed 

from the total 900 snapshots.  Error bars on SASA data graphs represent ±1 standard deviation. 

Unfolding simulations. Ten different globular proteins were selected for unfolding i.e. hen egg-

white lysozyme (PDB ID: 2LYZ), bovine trypsin (PDB ID: 2PTN), rat biliverdin reductase 

(PDB ID: 1GCU), Mg-chelatase cofactor GUN4 (PDB ID: 1Y6I), RdgB- inosine triphosphate 

pyrophosphatase (PDB ID: 1K7K), malonyl-CoA acyl carrier protein transacylase (PDB ID: 

1MLA), pectate lyase C (PDB ID: 2PEC), human Pp2A phosphatase activator (PDB ID: 2IXM), 

TEM-1 beta-lactamase (PDB ID: 1ZG4) and xylanase 10A (PDB ID: 1E0W). To generate an 

ensemble of partially-unfolded structures, the energy-minimized structure of the unsolvated 

protein was heated during an MD simulation from 5 K to 1000 K over 10ns in vacuo. Snapshots 

were extracted from the simulation every 100ps. 

Results and Discussion 

Solvent Accessibility Surface Area (SASA) analysis. The per-residue SASA values were 

calculated from molecular dynamic simulations of available crystal structure data of PIV5 F-

GCNt in the prefusion conformation and its homology modeled postfusion conformation using 

hPIV3 crystal structure. These per-residue SASA values were then evaluated at a per-peptide 
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level based on the 17 tryptic peptides of PIV5 F-GCNt in the prefusion and postfusion 

conformations. The changes in per-peptide SASA for both the conformations were compared to 

the changes in per-peptide oxidation, which can then be localized on the structures. The 

oxidation of amino acids due to free radicals is not only dependent on its accessibility to the 

solvent, but also its reactivity to free radical, which is different for different amino acids. 

Therefore, a direct inter-peptide comparison of raw values of oxidation and SASA is difficult. 

For the scope of this study, the evaluation will be limited to the net change from prefusion to 

postfusion for individual peptides, making the reasonable assumption that the total reactivities of 

each peptide are the same across the analysis. The net change in FPOP oxidation from prefusion 

to postfusion is calculated as %Oxidationprefusion - %Oxidationpostfusion, similarly, the net change in 

SASA is SASAprefusion - SASApostfusion. When these are compared, different trends emerge for 

many of the peptides.   

Of the tryptic peptides contained in both models, 10 out of the 17 peptides (highlighted in pink), 

demonstrate an FPOP labeling change that is different from what would be predicted by changes 

in the side chain SASA of the static crystal structures alone (e.g. prefusion > postfusion vs. 

prefusion = postfusion).  Experimental FPOP values that deviate from what would be predicted 

from the side chain SASA calculations suggest that the crystal structure data do not accurately 

reflect the flexibility of one or both states.  As 9 out of 10 of the disagreeing peptides have 

larger, more positive (prefusion > postfusion) ΔFPOP values, it suggests that the solvent 

accessibility calculations either underestimate the prefusion SASA or overestimate the postfusion 

SASA.  Given that: 1) there is very little structural variation between the postfusion structures of 

multiple paramyxovirus F proteins; 2) the postfusion state is a high stability conformation that 

represents an energy minimum for the protein; and 3) there does exist variation between the two 
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prefusion crystal structures of paramyxovirus fusion proteins (PIV5 F and RSV F), we attribute 

most of the ΔFPOP/ΔSASA trend disagreement to an underestimation of the prefusion SASA 

calculation. The lopsided distribution of the 9 disagreeing peptides likely reflects the global 

decrease in flexibility of the postfusion state relative to the prefusion state.  Further, FPOP 

labeling that deviates from expected SASA trends may highlight regions of greatest solvent 

accessibility and protein flexibility. 

 

Figure 4.2. Changes in peptide FPOP oxidation and side chain SASA between the prefusion and 

postfusion states. (A) Postfusion FPOP or SASA values are subtracted from the corresponding 

prefusion FPOP or SASA values for the tryptic peptides that are common between the two states 

and graphed.  The data represent the change in FPOP oxidation or side chain SASA between the 

prefusion and postfusion states.  Peptides that exhibit a different ΔFPOP trend compared to 

ΔSASA are highlighted by pink backgrounds.  The backbone of the cartoon trimer in (B) is 

colored similarly.  At the bottom of (A), the epitopes of prefusion-specific, neutralizing 
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antibodies against various paramyxoviruses and the HN-interacting surface of PIV5 F are 

assigned to their homologous PIV5 F tryptic peptides.  These important epitopes and interaction 

surfaces are represented as semi-transparent surfaces in (B), colored according to the ovals at the 

bottom of (A).  The distribution of epitopes and surfaces to peptides that show greater-than-

expected ΔFPOP values (relative to ΔSASA) is not random (p = 0.0023, 1-tailed Fisher’s exact 

test), suggesting a correlation between regions of increased prefusion FPOP oxidation and 

functionally important parts of the metastable prefusion trimer. (Reprinted here with the 

permission of the publisher). 

 

Interestingly, of the 9 peptides that show different ΔFPOP values relative to the ΔSASA, most 

contain the epitopes of prefusion-specific, neutralizing antibodies that have been discovered for a 

range of paramyxovirus F proteins. The epitopes of D25 (α-RSV F Fab) (84), MPE8 (broadly 

neutralizing against hRSV and hMPV) (85), DS7 (α-hMPV F Fab) (86), F1a (α-PIV5 F Mab) 

(87), 05D (α-PIV5 F Fab) are colored per the ovals at the bottom of Figure. 4.2A and mapped 

onto their homologous sequences in the prefusion PIV5 F atomic structure (Figure. 4.2B).  

Peptide 387-409 of PIV5 F (Figure. 4.2A,B, cyan surface) contains residues that have been 

implicated in the interaction of PIV5 F and HN (88) and MeV F and H (89) as well as being 

homologous with the RSV F antigenic site IV.  The extensive overlap between antigenically or 

functionally significant regions of paramyxovirus fusion proteins and PIV5 F-GCNt peptides 

with greater-than-predicted levels of FPOP oxidation in the prefusion state is not random (p = 

0.0023, one-tailed Fisher’s exact test) and suggests that there is a correlation between flexibility 

and functionality for these metastable proteins.  Binding of neutralizing antibodies to these 

regions in paramyxovirus F proteins could either stabilize the flexibility of these dynamic 
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regions in the prefusion state or sterically interfere with the refolding event. These results 

demonstrate the importance of evaluating SASA to understand protein conformation and 

flexibility. Therefore, it is appropriate to further investigate the dependence of SASA on the type 

of amino acids.  

 

Figure 4.3. The relationship between ΔSASA and RMSD w.r.t the crystal structure as the 

protein unfolds. The ΔSASA values of non-polar (A) and aromatic residues (B) increases as the 

proteins unfold. The polar (C), positively charged (D) and negatively charged (E) residues do not 

behave in a similar fashion and lack a correlation with the RMSD.  
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The relationship between all-atom RMSD and SASA. In globular proteins, the hydrophobic 

residues are generally buried inside the structure, while the hydrophilic residues reside on the 

surface in contact with the solvent. Therefore, there is a relationship between the protein 

structure and solvent accessibility of different types of residues. To test this, ten different 

proteins were slowly unfolded and the solvent accessibility of all the residues was measured 

every 100ps. The effect of protein unfolding on SASA of the residues can be shown by plotting 

the all-atom RMSD between the crystal and the unfolded structure versus the absolute difference 

between their SASA (abs(SASAref-SASAcurrent)), where SASAref is the per-residue SASA value 

of the crystal and SASAcurrent is the per-residue SASA value for snapshots from the unfolding 

simulation. As expected, non-polar (glycine, alanine, valine, leucine, methionine, isoleucine, and 

proline) and aromatic (phenylalanine, tyrosine, and tryptophan) residues show a direct 

correlation between the two (Figure 4.3A and B), i.e. as the protein unfolds their SASA starts to 

increase. While the SASA of the charged (lysine, arginine, histidine, aspartic acid and glutamic 

acid) and polar (serine, threonine, cysteine, asparagine, and glutamine) residues does not exhibit 

this relation (Figure 4.3C, D, and E).   

Conclusions 

This study highlights the need to view proteins as highly dynamic molecular machines. 

Correlation with the reported epitopes of neutralizing antibodies against other paramyxoviruses 

suggests that regions of viral fusion proteins that experience larger changes in FPOP labeling 

than predicted from the static crystal structure data may be important for proper protein function 

and, thus, make good targets for the development of neutralizing antibodies or small molecule 

inhibitors. We suggest that FPOP coupled with SASA results can provide the dynamic structural 

insights necessary for guiding more targeted and efficient approaches to anti-viral therapeutic 
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development. We also find a correlation between different types of amino acids and their SASA. 

Non-polar and aromatic residues tend to be buried inside the protein core, while charged and 

polar residues are relatively exposed. Due to no net difference in SASA of charged and polar 

residues of folded and unfolded conformation of a protein, they are not very informative about 

protein structure. On the other hand, as non-polar and aromatic residues show a direct 

correlation, in theory, they can be used as indicators for different conformations of proteins. 
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CHAPTER 5 

INTEGRATING MS FOOTPRINTING DATA IN PROTEIN STRUCTURE MODELING 

Introduction 

Almost all the biological processes are carried out by proteins, like replication, transcription, 

translation, metastasis and apoptosis and many other signal transduction pathways relevant to 

development and cell - cell communication. Protein interactions and functions are dependent on 

protein structure, therefore, understanding protein tertiary and quaternary structure is 

fundamental to understanding mechanisms of protein function. There are three main methods for 

obtaining 3D structures with varying levels of resolution i.e. X-ray crystallography, NMR 

spectrometry, and modeling. X-ray crystallography is a powerful tool for protein structure 

determination. For studying a protein using this technique, it first needs to be crystallized. 

Crystallization often takes place at environments far from biological relevance. This can result in 

regions of the protein with significantly different conformations in the crystal from those in 

solution (90). Moreover, obtaining crystals of a protein can be a difficult task. NMR 

spectrometry is a valuable tool for determining protein structures because it can be done in 

solution and does not require crystals. But, structures determined from insufficient restraints or 

misinterpreted data can be incorrect (91, 92). It is not a favored method to be used for larger 

proteins, but is suited to small proteins, typically smaller than 25 Da, as larger proteins show 

increased spectral complexity (93). The accuracy of computational methods for the 

determination of protein structures is varied (94). This is especially true when analyzing proteins 

with no known homologs. Low-resolution techniques can provide insight into the overall 
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secondary structure, solvent accessibility of the backbone or side chain etc.  These techniques 

include absorption, fluorescence, and circular dichroism, chemical derivatization methods like 

biotinylation or acetylation, and mass spectroscopy-based protein footprinting, but they provide 

only sparse data and cannot be used to generate atomic coordinates, unlike high-resolution 

techniques. Due to all the reasons mentioned above, determination of the high-resolution 

structure of proteins and the refinement of low-resolution protein structure are long-standing 

challenges (95).  

The accuracy of the computational methods can be improved by introducing experimental 

constraints for protein structures, and conversely, computational models can be used to interpret 

sparse experimental data. NMR restraints have been used to improve such predictions (96). 

Similarly, solvent accessibility can be employed as a constraint for certain amino acids, which 

help to define the solvent-accessible surface areas of the folded protein (97). Hydroxyl-radical 

protein footprinting (HRPF) is an emerging method of probing protein solvent accessibilities and 

mapping the surface of a protein. Hydroxyl radicals are highly reactive and covalently react with 

almost all the amino acid side chains, which are accessible on the surface of the protein, but with 

different intrinsic reactivities (98). The extent of hydroxyl radical oxidation depends in part on 

amino acid accessibility i.e. residues that are exposed to the solvent will react more readily than 

buried residues and on the reactivity of side chains. Hydroxyl radical footprinting coupled with 

MS has become increasingly popular as a labeling technique to probe intact protein structure, 

protein-protein interactions, protein folding, and protein-small molecule ligand interactions in 

solution (99-104). Based on their reactivity, side chains can be divided into three categories i.e. 

high, medium or low. The residues which are highly reactive or with medium reactivity are the 

most informative, and the ones with low reactivity do not show a linear relation between SASA 
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and percentage oxidation (62). A quantitative relationship between SASA and the magnitude of 

oxidation, for most informative amino acids, can be derived and used to estimate protein 

oxidation level with known 3D structure or to predict per residue SASA, given percentage 

oxidation. This combination of experimental assessment of side chain oxidation and theoretical 

estimation of SASA can be used to study conformational changes in proteins in solution and 

characterize ligand-binding. In this study, we present a computational method, which combines 

modeling and protein footprinting to obtain a high-resolution structure, as well as test the quality 

of generated models.  

Hydroxyl radical protein footprinting (HRPF) 

Protein footprinting involves the study of the surface of proteins by determining the solvent 

accessibility of the amino acid side chains. One of the ways of protein footprinting is to use 

chemical modification reagents, which react with side chains based on their reactivity. The 

hydroxyl radical is one such chemical modification reagent which has been used widely for this 

purpose. They act as good probes for solvent accessibility because of their comparable size to 

water, and nonspecific reactivity to several amino acid side chains, leading to good protein 

coverage. They also provide stable covalent modifications, which gives the user ample time for 

analysis. Protein solution oxidized with hydroxyl radicals is subjected to tryptic digestion and the 

spatial labeling patterns are analyzed with mass spectrometry. There are several methods of 

generating hydroxyl radicals with varying timescales for use in footprinting for example Fenton 

(101, 105-108) and Fenton-like reactions, Radiolysis of water via γ rays (109-112) or X-rays 

(113, 114) and UV Laser photolysis of H2O2. Hambly and Gross (115) (fast photochemical 

oxidation of proteins (FPOP)), and independently Aye and coworkers (116) developed a fast-

labeling method to dissociate H2O2 using a laser beam, generating radicals in a nanosecond to 
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microsecond timescale. This technique has been demonstrated to obtain structural information of 

proteins that is fast and reliable. 

The extent of oxidation of side chains by hydroxyl radicals is dependent on the solvent 

accessibility of the residues at the surface of a protein and on their chemical nature which 

determines their reactivity with hydroxyl radicals. It has also been observed that the oxidation 

has a small dependence on the local sequence as well (100). Sulfur containing and aromatic 

residues are the most reactive. The relative reactivity of the side chains is as follows: Cys > Met 

> Trp > Tyr > Phe > Cysteine > His > Leu ,  Ile >  Arg,  Lys,  Val  >  Ser,  Thr,  Pro  >  Gln,  Glu  

>  Asp,  Asn >  Ala  >  Gly (117-119). As discussed above, there are several ways of generating 

hydroxyl radicals, which expose the protein to the radical for different lengths of time, but the 

chemical modifications resulting from the exposure are largely the same (117, 119, 120). Each 

amino acid has more than one competing mechanism of oxidizing via HO• leading to different 

products (121). These mechanisms and major oxidation products have been identified and widely 

studied. Due to their detectable products, many aromatic, aliphatic, sulfur-containing, and 

charged residues are useful footprinting probes (122). 

To extract information from this experiment, the protein solution is exposed to a series of a 

radical burst of different exposure times. The protein is cleaved using site-specific proteases to 

produce defined peptides. Peptides are separated by chromatography and to locate the residues 

modified by HRPF in each peptide, Tandem mass spectrometry is used. The peak area under the 

ion signal of the unmodified and modified peptide is compared, and the rate of modification of 

each peptide as a function of exposure time is calculated from dose response curve. The dose-

response curve is plotted as the unmodified fractions versus X-ray exposure times. Pseudo-first-

order function is used to fit these curves to get modification rate (123). To make sure of the 
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accuracy of the data it is important to make sure that the primary oxidation events are 

considered, and that all the different factors that affect the rate of oxidation are known, studied 

and accounted for. Due to multiple oxidation products, it is quite challenging to study the 

MS/MS spectra of each peptide, to determine the sites of oxidation. A lot of times, manual 

interpretation of the spectra is required.  

Protein structures can get denatured or unfolded, if subjected to denaturants or if their side chains 

are modified. Therefore, upon oxidation, the native structure of a protein can unfold. Even a 

single oxidation event can trigger protein unfolding, which can expose residues excluded from 

solvent accessibility and cause increased oxidation events, resulting in misleading information 

(124-126). These events are affected by the time of exposure of the native structure of the protein 

to a denaturant, in this case, an oxidizing agent. So, for hydroxyl radical protein footprinting to 

be used as a reliable method for mapping protein structure, it should be done at shorter timescale 

than protein unfolding or other conformational changes.  

Therefore, to study native protein structure, fast methods of generating radicals with low 

exposure times are preferred, like FPOP, which can produce radicals in a few nanoseconds. A 

248 nm pulsed laser beam is used, to photodissociate H2O2 into two hydroxyl radicals. To 

maximize the exposure of radicals to a small volume of protein, a flow system is designed such 

that the laser produces a small window of high flux light. The diffusing radical is dispersed 

through the protein solution reacting with the analyte as well as buffer components. The radical 

concentration achieved from a single pulse of a dilute peroxide solution (1% or less) is adequate 

to achieve significant levels of protein surface oxidation. Without any other additives, radicals 

require up to 100 microseconds to self-quench, long enough to allow super secondary structure 

unfolding. For quenching radicals in a shorter time, the appropriate scavenger is added like 
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glutamine or phenylalanine, which can bring down the exposure time of radicals to within a 

microsecond, as shown by kinetic analysis. This time is short enough that no large-scale protein 

motions take place and it can be argued if any super secondary structural changes take place.  

Some proteins like therapeutic protein formulations require different components e.g. buffers, 

carrier proteins, to stay in their native structure. These extra components can compete for 

oxidation with hydroxyl radicals during the radical burst and scavenge them. This will ultimately 

lead to a decrease in oxidation footprint of the protein being studied to a different extent 

depending on their scavenging property and lower the apparent rate of oxidation. A reporter can 

be added to the solution of the formulations with and without the protein being studied, to correct 

for these components, and a concentration of radical is chosen such that the oxidation of the 

reporter is the same in both the solutions. Then, different formulations are compared for their 

scavenging properties (127). 

The amount of labeling by hydroxyl radicals is dependent on the total concentration of protein 

and hydroxyl radicals. This becomes especially important in comparative studies like studying 

protein interactions or comparing proteins of different sizes, as it will lead to ambiguous results. 

Say protein A is 10 kDa and protein B is 20 kDa, and their 10 M solutions are prepared. If they 

are exposed to same concentration of hydroxyl radicals individually or in a solution with both the 

proteins, the solution with single protein will have higher level of oxidation, and the one with 

both the proteins will have lower oxidation level, not attributed to their shielding, but because of 

lower concentration of radicals available to cause the same level of oxidation. Similarly, if 

exposed to same radical concentration, protein A will have more oxidation than protein B, due to 

the available amount of radicals. 
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Hydroxyl radical protein footprinting along with mass spectrometry has developed into a 

powerful method to study structures and interactions of protein structure, protein-protein, and 

protein-ligand interaction interfaces. There have been rapid advancements in the field resulting 

in more sophisticated experiments. The understanding of the chemistry behind oxidation is 

continuously growing. Advances are also being made to make mass spectrometry techniques 

which are ever more sensitive to oxidation products that are difficult to detect. Other radicals are 

being tested for their application in protein footprinting. Further growth and understanding in this 

field can make it a high throughput technique. 

Computational Methods 

Monte Carlo (MC) simulations: Crystal structure of the globular protein Bovine Pancreatic 

Trypsin Inhibitor (BPTI, PDBID 3CI7) was used to perform in vacuo replica exchange MC 

simulations with ten temperatures in parallel. Initially, all waters of crystallization, as well as all 

the sulphate ions, were removed from the PDB structure.  An all-atom force field called 

ECEPP/3 (128) was employed, using a simulation package called Simple Molecular Mechanics 

for Proteins (SMMP) (129). The package was modified to include RMSDSASA (equation 5.1) as a 

restraint at every step. The solvent accessibilities of non-polar and aromatic residues of the 

crystal structure were used as SASAref, calculated using Double Cubic Lattice (DCL) algorithm 

(130). The simulations were performed in two stages. The first stage employed a simulation of 

100000 steps and the temperatures that were selected as a geometric progression between 270 K 

and 700 K. This stage was treated as an equilibration step. The temperatures in the next stage 

were selected using the feedback loop optimization (Table 5.1) (50) and the simulation was 

200000 steps long.  
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𝑅𝑀𝑆𝐷𝑆𝐴𝑆𝐴 = 𝐾√
∑ (𝑆𝐴𝑆𝐴𝑐𝑢𝑟𝑟𝑒𝑛𝑡  −  𝑆𝐴𝑆𝐴𝑟𝑒𝑓)2

𝑛

𝑛
                    [5.1] 

 

Table 5.1. Temperatures used for Parallel Tempering simulations.  

 

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 

First 700 578.56 525.99 478.19 434.74 395.24 359.32 326.67 296.99 270 

Second 700 572.66 507.73 464.24 424.37 387.84 354.38 323.73 295.68 270 

 

Preparation of protein structures for MD: Crystal structures of the globular proteins hen egg-

white lysozyme (PDB ID: 2LYZ) (131) and horse heart myoglobin (PDB ID: 1YMB) (132) were 

used to test RMSDSASA as a score. Initially, all waters of crystallization were removed from both 

PDB structures, along with any ions, such as the sulfate molecule present in 1YMB. The heme 

group in myoglobin was retained, as it is required for protein stability. All histidine residues 

were considered neutral and protonated only at the epsilon nitrogen. The N- and C-terminal 

residues were capped with acetyl (ACE) and N-methylamine (NME) groups, respectively. The 

proteins were minimized before solvating them in TIP3P water molecules, with a buffer size of 

10 Å, resulting in the addition of 11299 and 9711 water molecules in the case of lysozyme and 

myoglobin, respectively. Counter ions (8 Cl- ions) were added to neutralize the charge in 

lysozyme, using the tLEAP module of AMBER, no ions were required in the case of myoglobin.  

Minimization: Energy minimization was performed with the SANDER module of AMBER12 

(133) with ff12SB protein force field parameters (134).  Prior to solvation, the proteins were 

subjected to 3000 steps of steepest descent and 2000 steps conjugate gradient minimization, in 

vacuo to relieve any steric collisions.  After solvation, the energy of the water and ions was 

minimized while keeping all protein atoms restrained (500 kcal/mol-Å2).  The energy of the 
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entire system was subjected to 5000 steps of steepest descent minimization, followed by 20000 

steps of conjugate gradient minimization.  

MD Simulation. MD simulations of the energy-minimized systems were performed with the 

pmemd.cuda version of AMBER12 (81).  All the bonds involving hydrogen atoms were 

constrained using the SHAKE algorithm (42), enabling an integration time step of 2 fs. Long-

range electrostatic interactions, beyond a cut-off set to 10 Å, were treated with the Particle-Mesh 

Ewald algorithm (82). The systems were heated from 5 K to 300 K over a span of 50 ps, under 

NVT conditions employing the Langevin thermostat (135). The simulations were then continued 

for 30 ns under NPT conditions with weak restraints on the Cα atoms of the protein (10 

kcal/mol-Å2).   

Unfolding simulation: To generate an ensemble of partially-unfolded structures, the energy-

minimized structure of unsolvated Lysozyme was heated during an MD simulation from 5 K to 

1000 K over 10 ns in vacuo. Snapshots were extracted from the simulation every ps. Over the 

course of the simulation, the all-atom RMSD of the conformations (with respect to the crystal 

structure) increased from 1.2 Å to 22.2 Å.  

SASA calculations: The per-residue solvent accessible surface area (SASA) was computed with 

the NACCESS program (83).  Average SASA values (<SASA>) were computed from a total of 

1000 snapshots extracted at 30 ps intervals from the solvated MD simulations. 

SASA RMSD calculations: The RMSDSASA values were calculated using equation 1, where 

SASAcurrent is the per-residue SASA value for each residue in the model (obtained from MD or 

from homology modeling) and SASAref is the SASA value for the same residue in the reference 

structure (either computed from the crystal structure or estimated from experimental HRPF data), 

and n is the total number of residues with SASA values.  
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Homology models: Homology models for Lysozyme were generated using the SWISS-MODEL 

homology modeling server (swissmodel.expasy.org) (76) for multiple template PDB structures 

with sequence identities that varied from 99% to as low as 37% with respect to Lysozyme (Table 

1).  Templates were selected that had at least 90% sequence coverage to ensure plausible fold 

structures.  The all-atom RMSD values (relative to Lysozyme, PDB ID: 2LYZ) ranged from as 

1.2 to 4.6 Å.  

 

Table 5.2. Details of the homology models generated using SWISS MODEL. 

PDB ID Sequence Coverage Sequence Identity All-Atom RMSD (Å) 

1LZE 1 99.2 1.2 

2GV0 1 69 1.6 

2BQJ 0.98 59.8 1.8 

2Z2E 0.99 50.8 2.4 

4L41 0.95 36.9 3.1 

3CB7 0.93 37.5 3.8 

1GD6 0.92 42.9 4.2 

1IIZ 0.92 38.7 4.3 

2RSC 0.92 42.9 4.6 

 

Results and Discussion 

RMSDSASA as restraint: This study has focused on testing and refining the process of including 

restraints based on the solvent accessible surface area (SASA) during Replica Exchange Monte 

Carlo simulation of proteins, using the package Simple Molecular Mechanics for Proteins 

(SMMP). To test the effect of the restraints, four simulations were performed with different 

restraint weights i.e. k in equation 5.1 (0, 1, 5 and 10 kcal/mol Å), starting from a partially 
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unfolded structure of the globular protein Bovine Pancreatic Trypsin Inhibitor (BPTI), generated 

by heating it at an increasing temperature from 5 K to 1000 K over 10 ns of gas phase molecular 

dynamics simulation. SASAref values for BPTI were computed from the crystal structure 

(PDBID 3CI7), using the Double Cubic Lattice (DCL) algorithm. First, simulations were 

performed for 100,000 steps for equilibration for ten replicas at different temperatures (270 K to 

700 K) chosen using geometric progression, with the restraints applied. Then, based on the data 

from the initial equilibration, new temperatures were chosen using feedback optimization, and 

production simulations were performed for 200,000 steps, with the restraints applied.  

The results in Figure 5.1, suggest that a SASA restraint penalty of 5 kcal/mol narrowed the 

spread of backbone RMSD values, with a small (approximately 0.4 Å) reduction in the lowest 

RMSD values. Higher or lower restraint weights (10 or 1 kcal/mol Å) encouraged sampling of 

conformations that had significantly higher RMSD values, relative to the simulation performed 

with no restraints. When the restraint weight is high, it reduces the SASA penalty function, as 

expected; however, it does so at the expense of the structural correctness, as indicated by an 

increase on average in the backbone RMSD (figure 5.2, 5.3). These results indicate that SMMP 

can sample structures with biologically incorrect folds that nevertheless yield more accurate 

RMSDSASA values when the restraint weight is set at high values. The correlation between 

RMSDSASA and backbone RMSD in SMMP models support this observation.  In the case of a 

weak restraint weight, a degradation of the structural correctness was also observed, for reasons 

yet to be determined.  
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Figure 5.1. RMSD vs. potential energy for BPTI models generated by SMMP with no SASA 

restraint (k=0, top left) vs. SASA restraints set from (k=1, top right) 1 kcal/mol, (k=5, bottom 

left) 5 kcal/mol, or (k=10, bottom right) 10 kcal/mol. 

 

Figure 5.2. RMSD vs. SASA RMSD for BPTI models generated by SMMP with SASA 

restraints set from (k=1, left) 1 kcal/mol, (k=5, middle) 5 kcal/mol, or (k=10, right) 10 kcal/mol. 

 

Figure 5.3. Box-plots showing variations in structural RMSD (left) and SASA RMSD (right) 

versus restraint weight (K).  Despite the large standard deviations, the differences in the means 

are statistically significantly (as demonstrated by Kruskal–Wallis test for non-normal 
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distributions). The green box shows the variations from the 25th percentile to the median, while 

the purple box shows the variations from the 75th percentile to the median. 

 

However, with a restraint weight of 5 kcal/mol, models with high backbone RMSDs were not 

observed compared to the simulations performed with either lower or higher restraint. At present, 

no structures were obtained with RMSD values below approximately 5.5 Å, suggesting that more 

sampling is required to conclude whether SASA restraints are effective at pushing low resolution 

(partially unfolded) protein towards a high resolution (crystal) structure. It should be noted that 

the restraint penalty is not applied in a pairwise manner (between residues), but is a global 

property of the protein structure. This feature likely results in many different conformations 

having similar SASA penalty values.  Thus, the SASA penalty values may conflict with the force 

field potential energy, leading to a complex potential energy surface.  This behavior likely 

impairs simulation convergence. 

RMSDSASA score: An alternative approach was examined that uses RMSDSASA values as a scoring 

function, to assess the quality of a protein structure, relative to experimental SASA values, rather 

than attempting to employ the SASA values as restraints during a simulation. The experimental 

SASA values were generated using two different methods of normalizations to minimize the 

influence of the intrinsic reactivity of different amino acids. In the first case, because the amino 

acid types (especially less reactive amino acids to radicals) have a large influence on the 

accuracy of the prediction model for estimating SASA, only amino acids with certain reactivity 

to radicals (Trp, Tyr, Phe, His, Leu, and Ile) were used to build up the SASA prediction model. 

The sequence context, meaning the surrounding amino acids, from a natively folded protein can 

also play a prominent effect on the intrinsic reactivity of an amino acid. Therefore, in the second 
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case, the oxidation of heat denatured protein sample was used to normalize the predicted SASA 

values. In both the cases, the SASA prediction models were built using myoglobin, and these 

models were used to predict SASA of lysozyme. 

To determine whether RMSDSASA scores can be used to characterize the quality of a modeled 

protein 3D structure, an unfolding simulation of the globular protein Lysozyme was performed 

by heating it at an increasing temperature from 5 K to 1000 K over 20 ns of gas phase molecular 

dynamics simulation. The simulation was initiated from the crystal structure (PDBID: 2lyz.pdb).  

Snapshots were extracted from the simulation every ps. The RMSDSASA values were calculated 

for every snapshot, with SASAref values derived from the crystal structure, and separately, with 

SASAref values estimated from experimental HRPF data, using the two SASA prediction models. 

As the protein unfolds, the RMSDSASA increases in both the cases (Figure 5.4).  

 

Figure 5.4. RMSDSASA calculated on structures obtained from an unfolding MD simulation. 

RMSDSASA calculated using the SASAfold from crystal structure in blue (Crystal) and SASAfold 
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estimated from HRPF experiments in orange. A. The values calculated using the SASA 

prediction model that employs free amino acid oxidation for normalization. B. The values 

calculated using the SASA prediction model that employs oxidation of unfolded protein for 

normalization.    

 

The similarity of the RMSDSASA values computed using the crystallographic SASA and HRPF 

SASA references indicate that the SASA values from the HRPF experiments are in good 

agreement with those from the crystallographic data, especially for prediction model normalized 

with the unfolded protein (R2=0.7), versus prediction model normalized with free amino-acids 

(R2=0.6). This observation is confirmed in Figure 5.5. The HRPF-derived SASA values, 

therefore, appear to be suitable to be used as reference values for RMSDSASA calculations. Using 

the first prediction model, a minimum RMSDSASA of approximately 8 Å2 (crystal) or 15 Å2 

(HRPF) is exemplary of a well-folded protein. While with the second prediction model, the 

values change to 11 Å2 and 16 Å2. 

 

Figure 5.5. SASA computed using crystal structure vs. SASA estimated from HRPF experiment. 

A. The values calculated using the SASA prediction model that employs free amino acid 

oxidation for normalization. B. The values calculated using the SASA prediction model that 

employs oxidation of unfolded protein for normalization.  
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RMSDSASA values calculated for snapshots extracted from a simulation of folded lysozyme at 

300K remain stable over the course of the simulation (Figure 5.6), indicating there is no variation 

in the quality of the conformations generated during this MD simulation. Note, the protein 

simulation is also stable as indicated by the average Cα RMSD (0.6 Å).  

 

Figure 5.6. RMSDSASA calculated on structures obtained from an MD simulation of the crystal 

structure. A. The values calculated using the SASA prediction model that employs free amino 

acid oxidation for normalization. B. The values calculated using the SASA prediction model that 

employs oxidation of unfolded protein for normalization. 

 

Subsequently, the RMSDSASA was used to rank the structures of lysozyme generated using 

homology modeling. Homology models were generated using the swiss-model server (Table 

5.2). The all-atom RMSD of these structures with respect to the crystal structure varied from 1.2 

to 4.6 Å. The RMSDSASA scores show a direct relationship with the increasing RMSD, with R2 

values greater than 0.83 using either of the prediction models (Figure 5.7). This is especially true 

for structures with RMSD greater than 2 Å, indicating the limitation of RMSDSASA to 

differentiate between structures close to the native structure.  
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Figure 5.7. RMSDSASA used as a scoring function to rank the structure generated using 

homology modeling. A. The values calculated using the SASA prediction model that employs 

free amino acid oxidation for normalization. B. The values calculated using the SASA prediction 

model that employs oxidation of unfolded protein for normalization. 

 

Conclusion 

The MC simulations show the potential use of RMSDSASA values as restraints, however, their 

applicability is hampered by the computational cost of determining SASA at every step. Further, 

unlike distance or angle values, per-residue SASA values are global properties, which means, to 

calculate the SASA for one residue, the whole molecule needs to be analyzed. The reliability of 

SASA as a restraint is dependent on the number of data points available. The number of 

conformations that can satisfy the constraint can be expected to increase with a decrease in the 

size of the data set. 

RMSDSASA correlates with the structural RMSD of the protein (relative to the crystal structure) 

in an unfolding simulation of lysozyme. Two different prediction models derived from the 

relationship between oxidation and SASA of myoglobin were used to get the reference values of 

SASA. This suggests the capability of RMSDSASA to rank the conformations based on their 

proximity to the native structure. The minimum RMSDSASA value for a stably folded protein in 
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the MD analysis of the folded lysozyme appears to be approximately 8 Å2 and 15 Å2 for the two 

different prediction models, which remains stable throughout the course of this simulation. 

Similar results were obtained by scoring homology models of lysozyme, where we see a 

relationship between RMSD and RMSDSASA. Therefore, RMSDSASA can be used to quantify the 

quality of protein models. 

Notably, each side chain has been found to require a minimum level of exposure before it will be 

oxidized (62). By considering this minimal exposure requirement, with the known side chain 

reactivities, potential reporter groups may be identified. Knowledge of the expected reporter 

groups can be used to provide an estimate of the surface oxidation levels and is therefore of 

significance to the study of protein-protein and protein-ligand interactions. Although not all 

amino acid side chains react under the conditions presented here, the level of surface coverage, 

in terms of those residues that were exposed to solvent and that were not inert to oxidation was 

approximately 70%. This level of coverage is far greater than would be achieved using 

traditional chemical derivatization methods, such as biotinylation or acetylation, wherein only a 

few residues can act as reporter groups. Equally significant to good coverage is the ability to 

quantify the level of oxidation and relate that directly to per-residue <SASA> values. This ability 

significantly elevates the level of footprint resolution, which is key to the practical application of 

this method in characterizing protein complexes. Such quantification facilitates the identification 

of occluded surfaces and should provide a powerful tool for determining the 3D structures of 

complexes that are not amenable to analysis by traditional experimental structural methods. 
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CHAPTER 6 

QUANTIFYING FUNCTIONAL GROUP CONTRIBUTIONS TO UNDERSTANDING 

PROTEIN-CARBOHYDRATE AFFINITY 

Introduction 

The recognition of glycans present on cell surfaces as glycoconjugates lies at the heart of a 

number of biological processes in animals, plants, and microorganisms (136).  Non-covalent 

glycan-protein interactions are involved in cellular adhesion, innate immunity, bacterial and viral 

infection, as well as plant defense mechanisms and other processes (137-142). Glycan-binding 

proteins (GBPs) such as lectins, adhesins, toxins, antibodies, carbohydrate-binding modules, are 

often multimers that possess the ability to crosslink cells, which is essential for cell signaling 

(143) and the disruption of recognition can lead to conditions such as delay in muscle fiber 

development. The multimeric structure of most carbohydrate-binding proteins serves also to 

enhance the apparent affinity of the binding processes through avidity effects (144).  The affinity 

of monomeric carbohydrate protein interactions is typically weaker than uM, and yet the 

specificity appears to arise primarily from the structure of monomeric complexes (145).   

Much of our understanding of carbohydrate recognition has come from crystallographic studies 

of plant lectins, because these proteins are often relatively stable, crystallize readily, and have a 

wide range of receptor specificities. More recently, glycan array screening has been widely 

applied to define specificity.  However, the specificity of lectins (146) and anti-carbohydrate 

antibodies (147) can appear complex. Nevertheless, plant lectins have found widespread use as 

affinity reagents in the separation and characterization of oligosaccharides, and glycoconjugates 
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(148), and are often employed in staining and histochemistry of cells and tissues (15, 16, 149).  

For example, the legume lectin from Erythrina cristagalli (ECL) is widely used as a reagent for 

the detection of terminal galactopyranose (Gal) residues in glycans (its canonical specificity is 

for Gal), yet it also binds to N-acetylgalactosamine (GalNAc) and fucosylated Gal (Fucα1-2Gal).  

Although its function in the legume is unknown, understanding the complex specificity of 

lectins, such as ECL, is fundamental to the rational design of diagnostic and therapeutic agents 

that target specific glycans (150).   

Numerous experimental methods have been used to quantify the affinity of GBP-carbohydrate 

interactions (including isothermal titration calorimetry (ITC), NMR spectroscopy, microscale 

thermophoresis (MST), biolayer interferometry (BLI), surface plasmon resonance (SPR), frontal 

affinity chromatography (FAC), and ELISA-based assays). Data from different experimental 

techniques can result in conflicting definitions of specificity, depending on the sensitivity of the 

method and on the presence or absence of avidity effects.  This is particularly clear in the case of 

weak interactions, which may be observed by NMR (151) or MST (152), but not by glycan array 

screening (153, 154).  Given the widespread use of glycan array screening, it has become the de 

facto method for defining the specificity of GBPs, and yet often requires amplification of the 

signal through multimerization of the protein analyte (155).  Although glycan array screening is 

a high throughput method capable of screening hundreds of glycans, it is often unable to detect 

weak monomeric interactions and does not provide structural insights into the origin of the 

observed specificity and cross-reactivity. While site directed mutagenesis of the protein (156) or 

chemical modification of ligand (157) can be used to probe the mode of binding in the past, 

protein crystallography is by far the most widely used method to define the binding mode.  

However, crystallography often employs high ratios of ligand to a protein, and the ligand is 
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typically only a small fragment of the intact glycan, leading to questions as to the biological 

relevance of the co-complex (158). Given the high flexibility of glycans, it is not surprising then 

that these complex macromolecules are resistant to crystallization, making it difficult to 

determine the molecular structures for all but the simplest glycan fragments.  Thus, experimental 

techniques alone can prove to be insufficient to understand the mechanism of low-affinity 

carbohydrate recognition. However, when these techniques are coupled with computational 

analyses, it can lead to an improved grasp of the underlying reasons behind the specificity of 

carbohydrate-protein interactions.  

From a structural perspective, binding to the protein requires the carbohydrate to form 

interactions (hydrogen bonds, van der Waals contacts, hydrophobic contacts) that are specific in 

terms of geometry and charge complementarity. Discrimination between potential binders 

depends on differences in affinity, which depends on the strengths of individual interatomic (or 

inter-functional group) interactions. However, it is challenging to quantify these interactions 

experimentally, as any physical alteration to the protein (such as a point mutation) or to the 

ligand (such as a chemical modification) could perturb more than the local interaction, aside 

from the significant effort that may be required.  Thus, an opportunity exists to exploit 

computational methods to estimate the energetic contributions made by individual interacting 

groups.  There are a number of theoretical methods capable of estimating receptor-ligand 

affinities with varying levels of accuracy and computational cost (56), including thermodynamic 

integration (TI), free energy perturbation (FEP), and MM-PB/GBSA (molecular mechanics-

Poisson–Boltzmann/Generalized Born surface area). While equilibrium methods such as TI and 

FEP are generally more accurate than end-point methods like MM-GBSA, achieving sufficient 

conformational sampling is only practical for TI/FEP calculations if the ligands differ only 
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slightly in structure; calculating the binding energy difference between ligands that differ by one 

or more monosaccharide is currently beyond the capability of TI/FEP. In contrast, MM-

PB/GBSA methods are less size-limited, and by default are therefore the methods most widely 

applied for predicting the energetics of carbohydrate-protein complexes. MM-GBSA is known to 

not be able to reproduce experimental binding free energies, but it still shows a correlation with 

the experiments (159). 

Here we perform molecular dynamics (MD) simulations of complexes of ECL with six ligands: 

lactose (160, 161) (Galβ1-4Glcβ, Lac, 1), epi-lactose (Galβ1-4Manβ, Epilac, 2), N-

acetyllactosamine (Galβ1-4GlcNAcβ, LacNAc, 3), N,N-diacetyllactosamine (GalNAcβ1-

4GlcNAcβ , LacDiNAc, 4), fucosylated lactose (Fucα1-2Galβ1-4Glcβ, FucLac, 5) (160), and 

fucosylated N-acetyllactosamine (Fucα1-2Galβ1-4GlcNAcβ, FuclacNAc, blood group H 

trisaccharide, 6).  The MM-GBSA method is then used to compute absolute affinities, as well as 

inter-residue and inter-group interaction energies.  This approach enables us to identify key 

components of the ligand that are responsible for the observed experimental specificity and to 

quantify their relative contributions. In addition, we report a novel crystal structure of ECL in 

complex with N-acetyllactosamine, and new experimental affinities for seven di- or 

trisaccharides. The results from the present analysis provide an explanation for the observed 

specificity of ECL and lead to insights that could be used in general to engineer lectins with new 

ligand specificities (162).  From a theoretical perspective, the results also help to define the 

accuracy limitations of the computational methods. 

Materials and Methods 

Crystallization. A sample of ECL was dissolved in 100 mM NaCl, 20 mM HEPES pH 7.5, 0.1 

mM CaCl2 and 0.1 mM MnCl2 to a concentration of ~ 7 mg/mL. About 1 hour prior to 
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crystallization, the solution of ECL was combined with the aqueous solution, 0.25 mM, of the 

particular ligand at a molar ratio of 1:10 (ECL:ligand). Crystals were grown by the vapor 

diffusion at 20-22 0C using sitting drop method. For ECL with N-Acetyl-D-Lactosamine 

complex screening with QIAGEN’s the JCSG Core I Suite resulted in diffraction quality crystals 

of pyramidal shape from several conditions: #10, 12, 13, 20, 22, and 31. The best crystals were 

obtained from either 0.2 M Calcium acetate hydrate, or Potassium Sodium tartrate and 20 % 

PEG 3350, corresponding conditions are # 20 and 22.  The crystals grew 1 µL sitting drop 

Intelli-Plates. Co-crystals of ECL with epi-lactose were obtained from 10 µL drops in 

microbridges using well solutions containing 0.2 M Calcium Acetate, 0.1 M HEPES pH 7.5, 14-

16 % PEG 3350.       

Data collection. For both complexes X-ray crystallographic data were collected from frozen 

crystals at 100K.  Prior to data collection crystals were placed in a cryoprotectant solution 

composed of 75% well solution and 25% glycerol and then flash cooled by immersion in liquid 

nitrogen. For ECL-N-Acetyl-D-Lactosamine complex diffraction data were collected using an 

ADSC Quantum 315r detector at the Advanced Photon Source (APS) on the ID19 beamline 

SBC-CAT to 1.9 Å resolution. For ECL-epi-lactose co-crystal crystallographic data were 

collected to 2.2 Å using a Rigaku HomeFlux system, equipped with a MicroMax-007 HF 

generator, Osmic VariMax optics, and an RAXIS-IV++ image-plate detector. X-ray diffraction 

data were collected, integrated and scaled using HKL3000 software suite (163). The structure 

was solved by molecular replacement using CCP4 suite (164). The structure of the binary 

complex of ECL with lactose (PDB ID 1UZY) (161) was used as a starting model with all 

waters, ligands including the N-linked glycosylated saccharide and metal ions removed.  

Refinement was completed using the phenix.refine program in the PHENIX (165) suite and the 
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resulting structure analyzed with molprobity (166). The structures were built and manipulated 

with program Coot (167), whereas the figures were generated using the PyMol molecular 

graphics software (v.1.5.0.3; Schrödinger LLC). A summary of the crystallographic data and 

refinement is given in Table S6.1.  

BLI binding experiment: ECL (Cat#: L-1140, Vector Lab, Burlingame, CA, USA), 3 (Cat# 

A7791, Sigma-Aldrich, St. Louis, MO, USA), 1 (Cat#: 61339, Sigma-Aldrich, St. Louis, MO, 

USA), 2 (epi-Lac, Cat#: G0886, Sigma-Aldrich, St. Louis, MO, USA), 5 (2’FucLac, 

Cat#:OF06739, Carbosynth Limited, Berkshire, UK) and 7 (Cellobiose, Cat# 22150, Sigma-

Aldrich, St. Louis, MO, USA) were purchased from their commercial resources. Biotinylated 

glycan Galβ1-4GlcNAcβ-OCH2CH2CH2NH-biotin (LacNAc-biotin) was received as a gift from 

Dr. Nicolai Bovin. ECL was weighted and dissolved in the ECL buffer: 10 mM HEPES, 15 mM 

NaCl, 0.1 mM CaCl2, and 0.1 mM MnCl2 buffered at pH7.4, at 25°C. 

Protein BLI direct binding assay (KD,surface): Ligand LacNAc-biotin was loaded onto streptavidin 

biosensors (SA, Cat#: 18-5019, Pall ForteBio Corp., Menlo Park, CA, USA) at 1 µM for 1800s. 

Then the loaded LacNAc biosensors were dipped into 0.1µM EZ-linkTM Hydrazide-Biocytin 

(biocytin, Cat#: 28020, Thermo Scientific, Rockford, IL, USA) for blocking the possible 

unoccupied biotin-SA binding sites for 1800s. The immobilization of ligand onto SA biosensors 

resulted in ~0.3nm as loading signal under this condition. ECL direct binding KD (LacNAc 

biosensor surface KD) was measured using a BioLayer Interferometer (BLI) Octet Red 96 

system (Pall ForteBio Corp., Menlo Park, CA, USA) and data acquired using ForteBio Data 

Acquisition 8.2 software (Pall ForteBio Corp., Menlo Park, CA, USA). The protein direct 

binding experiment was performed at 600s for association and 1800s for dissociation in ECL 

buffer. ECL was prepared in two-fold serial dilution in ECL buffer from 0~50 µM, in the 
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replicates of three. Surface KD (KD,surface LacNAc biosensor) was then calculated by ForteBio Data 

Analysis 8.2 software (Pall ForteBio Corp., Menlo Park, CA, USA) and Microsoft Office Excel 

2011 (Microsoft, USA). Surface KD (KD,surface LacNAc biosensor) was determined by 1:1 binding 

model from both steady state analysis and Scatchard plot (Figure S6.1) and resulted in 0.92 

(STDEV: 0.02) µM of triplicates. 

Protein BLI inhibition assay (IC50): ECL protein was prepared at 2µM in ECL buffer in a large 

volume for protein inhibition assay. Eight compounds were tested in the inhibition assay 

including six inhibitors: 1, 2, 3, 5, 5-N3 (FucLac-N3), 6-N3 (FucLacNAc-N3), and a non-ECL 

binder 7. All the compounds were prepared in two-fold serial dilution in ECL buffer from 0,1.25, 

2.5, 5, 10, 20, 40, and 80mM. 100µL of 2µM ECL, 20µL of prepared inhibitor/non-binder at its 

concentration, and 80µL of ECL buffer were mixed and incubated at room temperature for 

1hour. ECL inhibition assay was performed on Octet Red 96 at baseline time 120s, association 

time 600s, and dissociation time 1800s at shaker speed 1000RPM at room temperature, in 

replicates of three. IC50 was calculated by using three-parameter dose-response inhibition model 

in GraphPad Prism 7 (GraphPad, La Jolla, CA, USA). The compounds 5 and 5-N3 result in 

similar IC50 values, therefore, only the final values for 5 are reported (Table S6.2, Figure S6.2). 

this shows that the azide group attached to the compound 5-N3 does not affect binding. Hence, it 

can be assumed that the binding of 6 and 6-N3 will be similar as well.  

Solution KD conversion: IC50 is related to the equilibrium dissociation constants for the inhibitor 

and LacNAc biosensor competing binding to the ECL. When IC50 of inhibitor and KD of 

LacNAc biosensor to ECL (KD, surface LacNAc biosensor) were known, solution KD of inhibitor can be 

calculated from the equation: IC50 = KD,solution inhibitor  ( 1   +   [ECL]/KD,surface LacNAc biosensor ). 
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Molecular Dynamics: Crystal structures of ECL in complex with 1, 2, 3 and 5, along with the 3D 

models of 4 and 6 in complex with ECL were used for performing MD simulations. GLYCAM-

Web server (www.glycam.org) was used to generate 3D structures of 4 and 6, which were then 

superimposed on 3 and 5 respectively to get the complex structures. All the waters of 

crystallization and ions were retained, while the N-glycosylated sugar at N113 was removed 

from the crystal structures. The missing protons were added to all the structures in the presence 

of crystal waters using a tool provided by AMBERTOOLS called reduce. These structures were 

then minimized in vacuo to get rid of steric clashes if present by steepest descent minimization 

for 5000 steps followed by 20000 steps of conjugate gradient minimization. The charges in the 

systems were neutralized by adding counter ions (6 Na+ ions) and truncated octahedral solvent 

box of pre-equilibrated TIP3P explicit water molecules was employed to solvate them using the 

tLEAP module provided by the AMBER suite of programs. The water molecules are allowed to 

equilibrate around the solute by keeping the solute atoms restrained (500 kcal/mol-Å2) while 

performing a steepest descent minimization for 5000 steps and conjugate gradient minimization 

for 20000 steps. The next stage of minimization was performed without any restraints using the 

same steps involved in the previous stage. They were then heated from 5 K to 300 K over a span 

of 50ps, under NVT conditions followed by a 1ns equilibration under NPT conditions with weak 

restraints on the Cα atoms in the protein backbone (10 kcal/mol-Å2) with pmemd.cuda version of 

AMBER14. The MD simulations were performed under the same conditions as equilibration for 

100 ns.   

Binding affinity and entropy calculations: Five different parametrizations (GBHCT, igb=1; 

GB1
OBC, igb=2; GB2

OBC, igb=5; GBn1, igb=7; GBn2, igb=8) of Molecular Mechanics-

Generalized Born Solvent Accessible Surface Area (MM/GBSA), and Molecular Mechanics- 

http://www.glycam.org/
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Poisson Boltzmann Solvent Accessible Surface Area (MM/PBSA) using mbondi radii were 

employed to estimate binding affinities of all the six complexes. These calculations were carried 

out on 30,000 snapshots extracted evenly from 30ns of MD simulation using a single trajectory 

method with the MMPBSA.py.MPI module of AMBER.  

Quasi harmonic (QH) entropies were extrapolated to an infinitely long simulation period by 

fitting a linear regression curve to entropy as a function of inverse simulation period (168) 

(Figure 6.1). Three different sets of snapshots were used from a 100ns simulation to get three 

different extrapolated entropies, which were then averaged. The cpptraj module provides a 

functionality to calculate QH entropy of a system. To get the net entropy, protein and ligand 

entropies were subtracted from the entropy of the complex. 

 

Figure 6.1. Extrapolation of quasi-harmonic entropy to infinite time for all the ligands. 

 

Normal mode (NM) entropy calculations were performed using the MMPBSA.py.MPI module. 

As normal mode analysis is computationally very costly, it was performed using 100 snapshots 

from the simulation (169). A single calculation using 250 snapshots from a simulation of ECL in 

complex with 1 results in entropy values (-19.2 kcal/mol) comparable to the entropy calculations 
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from 250 snapshots (-19.0 kcal/mol), suggesting that a sample of 100 snapshots is sufficient for 

these calculations. 

Results and Discussion 

Specificity of ECL: ECL is a Gal/GalNAc specific legume lectin with Galβ1-4GlcNAc as the 

preferred binding motif. A number of experimental studies have been performed to determine 

and compare the affinity of ECL for various monosaccharides and sugars. Thermodynamic 

studies performed here using Biolayer Interferometry compare well with reported values 

obtained by Isothermal Titration Calorimetry (ITC), and show that lactose (Galβ1-4Glcβ, 1), 

Epi-lactose (Galβ1-4Manβ, Epi-Lac, 2), and fucosylated lactose (Fucα1-2Galβ1-4Glcβ, FucLac, 

5) are equivalent binders while the introduction of an N-acetyl moiety into the Glc residue 

enhances affinity, as in N-acetyllactosamine (Galβ1-4GlcNAcβ, LacNAc, 3) and 2′-Fucosyl-N-

acetyllactosamine (Fucα1-2Galβ1-4GlcNAcβ, FucLacNAc, Blood group H trisaccharide, 6) 

(Table 6.1).  Neither Cellobiose (Glcβ1-4 Galβ, 7) nor Maltose (Glcα1-4 Galβ, 8) show any 

measurable affinity for ECL.  Interestingly, data from glycan array screening of ECL indicates 

that 1 and 5 are non-binders, while only 3, 6, and GalNAcβ1-4GlcNAcβ (LacDiNAc, 4) are 

binders (170). The false negative binding observed in the glycan array data for 1 and 5 may 

indicate the relative weakness of the binding of these ligands and suggests a need for caution 

when employing glycan array screening to define glycan-binding specificity for low affinity 

ligands. 

While affinity measurements can indicate which regions of the ligand may be important for 

binding, a detailed rationalization can best be obtained from examination of the 3D structures of 

the complexes.  Conversely, 3D structures alone can provide at best only a qualitative guide to 

the impact of any given intermolecular interaction on the affinity of the ligand.  Computational 
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simulations, employing accurate 3D structures, can permit structure-function relationships to be 

derived that include the critical contributions from molecular motion, solvation, and entropy.  

Here we report the first structures for ECL complexed with 2 and 3, enabling MD simulations 

(100 ns) to be performed on ECL bound to 1-6.  The data from the simulations were then 

compared to the crystallographic data and found to reproduce the majority of the observed inter-

molecular interactions over the course of the simulations.  Having validated the structural 

accuracy of the simulated data, interaction energies were computed for each system, with the 

goal of quantifying not only the contributions made by each monosaccharide but also the 

contributions made by each interacting chemical moiety (NAc groups, OH groups, ring atoms, 

etc).  This approach permits both an assessment of the accuracy and utility of simulations in 

developing glycan structure-function relationships, as well as an opportunity to define the 

limitations and weaknesses of the MM-GBSA energy estimation method. 

 

Table 6.1. Thermodynamic parameters determined by Titration Microcalorimetry. 

 

KD ∆G (kcal/mol) Ref 

1 0.32 (0.02) -4.83 (0.04) -4.9 (0.2)1, -4.8 (0.0)2 

2 0.21 (0.01) -5.08 (0.02) 

 3 0.08 (0.01) -5.66 (0.04) -5.5 (0.1)1 

5 0.22 (0.01) -5.04 (0.06) -4.8 (0.0)2 

6 0.032 (0.01) -6.21 (0.14) 

 1 Experiments performed at 27°C by Gupta et.al. (1996). 
2 Experiments performed at 25°C by Svensson et. al. (2002). 

 

Structural basis of ligand recognition: All ECL crystal structures indicate that there is only one 

carbohydrate binding site per monomer, which is characterized by a shallow groove. All the 
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ligands occupy the same binding site with Gal and Glc residues residing in equivalent positions 

in each of the complexes. The fucosyl residue in 5, and the N-acetyl group in 3 form additional 

hydrogen bonds and van der Waals contacts with the protein, relative to 1.  It is notable that 

despite the presence of presumably favorable interactions with the fucosyl residue, the affinity of 

5 is not significantly different than 1, suggesting a need to examine the interaction energies in 

detail.  Assuming that all of the known ligands bind ECL in a similar fashion with Gal in the 

binding pocket, 3D models of 4 and 6 in complex with ECL were created.  3D structures for 4 

and 6 were retrieved from the GLYCAM-Web server (www.glycam.org), and models for their 

complexes with ECL were generated by superimposing the coordinates for the ring atoms on to 

those present in the complex with 3.  

To examine and compare the stabilities and strengths of the interactions of each of the ligands 

with ECL, each complex was subjected to molecular dynamics (MD) simulation (100 ns) in the 

presence of explicit water, using the AMBER/GLYCAM (133, 171) force field. The ligand-

protein complexes remained stable over the course of the simulations (average ligand 

displacement RMSD: 1 = 0.85 Å, 2 = 0.99 Å, 3 = 0.79 Å, 4 = 0.96 Å, 5 = 0.77 Å, 6 = 0.81 Å), 

which signified that the trajectories were equilibrated and appropriate for further analysis. 

Consistent with the crystal structures (Figure 6.2), each of the ligands formed stable hydrogen 

bonds between O3 and O4 hydroxyl group of Gal residue and D89, N133, and A218, during the 

simulation (Table 6.2). In 5 and 6, the Fuc-O2 group maintained its hydrogen bond with the side 

chain of Asn133.  A hydrogen bond between the O3 group in the terminal reducing residue (Glc, 

Man, GlcNAc) in 1-6 was also observed but found to be significantly more stable in the case of 

GlcNAc. Although a hydrogen bond is present between Gal-O3 and Gly107 in all the crystal 

structures, it was not highly occupied over the course of the simulations. Similarly, the hydrogen 

http://www.glycam.org/
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bond between Fuc-O4 and Tyr108 in 5, present in the crystal structure, only formed occasionally 

during the simulation. 

Quantification of molecular contributions to affinity: The strength of these interactions was 

quantified by performing an MM-GBSA and MM-PBSA analysis of the MD simulations.  In 

addition to contributions from direct interactions (van der Waals and electrostatics), the energies 

generated this way also include estimates of desolvation free energy and entropy. 

Conformational entropies were estimated using a quasi-harmonic (QH) approach, which employs 

a covariance analysis of the changes in atomic fluctuations that occur upon ligand binding to 

predict the entropy changes (172), and normal mode (NM) vibrational analysis (173), which 

estimates the entropic contributions for binding resulting from changes in the frequencies 

associated with bond stretching and angle bending.  

In agreement with the experimental data, and independent of the five desolvation 

parameterizations evaluated, 1 and 2 were always ranked the weakest binders, and displayed 

essentially equivalent interaction energies (Table 6.3). All the MM-GBSA desolvation models 

ranked 5 amongst the best binders, in disagreement with experiment, but in all the models 6 was 

correctly ranked as the highest affinity ligand. In contrast, MM-PBSA desolvation model 

correctly ranked 5 along with 1 and 2 amongst the weakest binders, and 6 was also correctly 

ranked as the strongest binder. Overall none of the MM-GBSA models could correctly rank all 

the ligands. On the other hand, MM-PBSA model could correctly rank every ligand. As expected 

(174), incorporation of QH entropy reduced the magnitude of the interaction energies but did not 

lead to an improvement in the ranking of the relative affinities of the ligands (Table 6.4). 
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Figure 6.2. The contacts between the ECL protein and the ligands 1 to 6 represented from A to 

F. 

  

Table 6.2. Hydrogen bonds present in the crystal structure and in the MD simulation. 

   

Distance1 

  Ligand Protein residue Ligand residue Crystal MD Occupancy Interaction energy2 

1 Asp89-Oδ2 Gal-O4 2.6 2.6 (0.1) 1.0 -3.7 (2.3) 

2 

 

Gal-O3 2.6 2.8 (0.1) 1.0 -3.2 (2.7) 

3 

 

Gal-O3 2.6 2.6 (0.1) 1.0 -3.9 (2.3) 

5 

 

Gal-O4 2.6 2.6 (0.1) 1.0 -3.5 (2.3) 

Modelled structures 

4 

 

GalNAc-O3 

 

2.6 (0.1) 1.0 -3.0 (3.5) 

6 

 

Gal-O4 

 

2.6 (0.1) 1.0 -3.5 (2.3) 

1 Asp89-Oδ1 Gal-O3 2.7 2.7 (0.1) 1.0 -3.3 (2.7) 

2 

 

Gal-O4 2.7 2.6 (0.1) 1.0 -3.8 (2.3) 

3 

 

Gal-O4 2.6 2.7 (0.1) 1.0 -3.1 (2.7) 

5 

 

Gal-O3 2.7 2.7 (0.1) 1.0 -2.8 (3.4) 

Modelled structures 

4 

 

GalNAc-O4 

 

2.7 (0.1) 1.0 -3.4 (3.8) 

6  Gal-O3  2.7 (0.1) 1.0 -2.7 (2.6) 

1 Asn133-Nδ2 Gal-O3 2.85 2.9 (0.1) 0.8 -2.6 (0.9) 

2 

 

Gal-O3 4.0 3.0 (0.1) 0.9 -2.8 (0.8) 

3 

 

Gal-O3 3.1 3.0 (0.1) 0.9 -2.8 (0.8) 

5 

 

Gal-O3 2.85 3.0 (0.1) 1.0 -3.4 (3.4) 

Modelled structures 

4  GalNAc-O3  3.0 (0.1) 1.0 -2.8 (2.9) 

6 

 

Gal-O3 

 

3.0 (0.1) 1.0 -3.4 (0.8) 
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1 Ala218-N Gal-O4 3.05 3.0 (0.1) 1.0 -2 (0.5) 

2 

 

Gal-O4 3.15 3.1 (0.1) 1.0 -2.0 (0.5) 

3 

 

Gal-O4 3.05 3.2 (0.2) 1.0 -1.8 (0.6) 

4 

 

GalNAc-O4 

 

3.0 (0.1) 1.0 -2.2 (2.2) 

Modelled structures 

4 

 

GalNAc-O4 

 

3.0 (0.1) 1.0 -2.2 (2.2) 

6 

 

Gal-O4 

 

3.1 (0.1) 1.0 -2.0 (0.5) 

1 Gly107-N Gal-O3 3.0 3.0 (0.1) 0.3 -1.5 (0.9) 

2 

 

Gal-O3 3.0 3.0 (0.1) 0.3 -1.5 (0.4) 

3 

 

Gal-O3 2.9 3.0 (0.1) 0.4 -1.6 (0.9) 

5  Gal-O3 3.0 3.0 (0.1) 0.4 -1.7 (1.9) 

Modelled structures 

4 

 

GalNAc-O3 

 

3.1 (0.2) 0.1 -1.3 (1.5) 

6 

 

Gal-O3 

 

3.0 (0.1) 0.4 -1.7 (0.9) 

1 Gln219-Nε2 Glc-O3 3.1 4.0 (1.1) 0.2 -1.3 (2.1) 

2 

 

ManO3 3.0 3.9 (0.9) 0.3 -1.5 (2.3) 

3 

 

GlcNAc-O3 2.9 3.4 (0.8) 0.7 -2.7 (2.2) 

5  Glc-O3 3.1 4.0 (1.0) 0.3 -1.5 (2.7) 

Modelled structures 

4 

 

GlcNAc-O3 

 

3.9 (1.4) 0.6 -2.3 (3.1) 

6 

 

GlcNAc-O3 

 

3.2 (0.6) 0.8 -3.0 (3.4) 

5 Asn133-Nδ2 Fuc-O2 2.7 3.1 (0.3) 0.6 -3.9 (4.5) 

Modelled structure 

6 

 

Fuc-O2 

 

3.0 (0.2) 0.8 -4.5 (2.3) 

5 Tyr108-OH Fuc-O4 3.0 4.4 (0.8) 0.1 -0.8 (1.4) 

Modelled structures 

6 

 

Fuc-O4 

 

4.0 (0.8) 0.3 -1.2 (1.8) 

 1Å, with standard deviations in parentheses.  
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2kcal/mol, with standard deviations in parentheses. 

 

 

However, it does lead to an improvement in the R2 values for all MM-GBSA models. Use of NM 

entropies instead of QH brought the binding energies into closer agreement with the 

experimental data, both in terms of the magnitudes and relative affinities, particularly with the 

GBHCT, GB1
OBC, GB2

OBC, and GBn2 desolvation models. The inclusion of NM entropies 

significantly improved the relative affinity of fucosylated ligand 5, ranking it comparable to 

ligands 1 and 2. However, opposed to the experiment, inclusion of NM entropies with GBn1 and 

PBSA desolvation models placed fucosylated ligand 6 along with 1 and 2 as a weak binder, 

resulting in loss of correlation between the experimental and theoretical ranking of ligands. The 

binding free energies calculated using the MM-GBSA desolvation models GBHCT, GB1
OBC, and 

GBn2 desolvation model along with NM entropies result in the best correlation with the 

experiment (R2 = 0.87). Among all the models used, MM-PBSA performs the best in ranking the 

ligands, however, the inclusion of entropies, especially NM entropy, leads to a decrease in 

correlation. The difference between the QH and NM entropies is notable and suggests that the 

100 ns time scale is insufficient to capture the low frequency motions, such as stiffening of the 

backbone, that may occur upon ligand binding.  This would likely impact the accuracy of the QH 

values, more than the NH values, as in the latter method those frequencies are directly computed, 

whereas in the former, the changes must be observed during the simulation.  Additional features, 

such as the absence of explicit solvent molecules in the NM analyses can affect the computed 

values (175). 
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Table 6.3. Binding free energies from MM-GBSA calculation1. 

 

Expt. GBHCT GB1
OBC  GB2

OBC  GBn1  GBn2  PBSA 

1 -4.83 

(0.04) 

-27.17 

(0.01) 

-30.17 

(0.01) 

-33.07 

(0.01) 

-35.73 

(0.01) 

-26.39 

(0.01) 

-13.44 

(0.01) 

2 -5.08 

(0.02) 

-28.25 

(0.02) 

-30.66 

(0.02) 

-33.59 

(0.02) 

-36.68 

(0.02) 

-26.53 

(0.02) 

-14.02 

(0.01) 

3 -5.66 

(0.04) 

-30.74 

(0.01) 

-32.67 

(0.01) 

-35.48 

(0.01) 

-37.34 

(0.01) 

-29.11 

(0.01) 

-19.35 

(0.01) 

4 

n.d. 

-31.48 

(0.01) 

-32.24 

(0.01) 

-34.52 

(0.01) 

-36.68 

(0.01) 

-28.12 

(0.01) 

-15.28 

(0.02) 

5 -5.04 

(0.06) 

-36.46 

(0.01) 

-37.69 

(0.01) 

-41.27 

(0.01) 

-43.15 

(0.01) 

-33.68 

(0.01) 

-12.30 

(0.02) 

6 -6.21 

(0.14) 

-42.29 

(0.02) 

-41.56 

(0.02) 

-44.96 

(0.02) 

-44.36 

(0.03) 

-38.44 

(0.02) 

-22.85 

(0.03) 

 

R2 0.55 0.50 0.46 0.32 0.54 0.98 

1kcal/mol, with standard deviations in parentheses. 

 

Table 6.4. Binding free energies from MM-GBSA calculation employing quasi-harmonic 

entropies (ΔGQH) and normal mode entropies (ΔGNM)1. 

 

Expt. GBHCT GB1
 OBC GB2 OBC GBn1 GBn2 PBSA 

  

SQH SNM SQH SNM SQH SNM SQH SNM SQH SNM SQH SNM 

1 -4.83 

(0.04) 

-12.79 

(0.01) 

-8.17 

(0.87) 

-15.80 

(0.01) 

-11.18 

(0.87) 

-18.69 

(0.01) 

-14.07 

(0.87) 

-21.36 

(0.01) 

-16.73 

(0.87) 

-12.02 

(0.01) 

-7.39 

(0.87) 

0.94 

(0.01) 

5.56 

(0.87) 

2 -5.08 

(0.02) 

-13.65 

(0.03) 

-7.77 

(1.00) 

-16.05 

(0.03) 

-10.12 

(1.00) 

-18.99 

(0.03) 

-13.12 

(1.00) 

-22.07 

(0.03) 

-16.20 

(1.00) 

-11.93 

(0.03) 

-6.05 

(1.00) 

0.59 

(0.03) 

6.46 

(1.00) 

3 -5.66 

(0.04) 

-16.76 

(0.03) 

-11.32 

(0.95) 

-18.69 

(0.03) 

-13.25 

(0.95) 

-21.50 

(0.03) 

-16.06 

(0.95) 

-23.37 

(0.03) 

-17.93 

(0.95) 

-15.13 

(0.03) 

-9.69 

(0.95) 

-5.37 

(0.03) 

0.07 

(0.95) 



 

73 

4 

n.d. 

-17.60 

(0.02) 

-11.00 

(0.98) 

-18.36 

(0.02) 

-11.76 

(0.98) 

-20.64 

(0.02) 

-14.04 

(0.98) 

-22.80 

(0.02) 

-16.2 

(0.98) 

-14.24 

(0.02) 

-7.64 

(0.98) 

-1.40 

(0.03) 

5.20 

(0.98) 

5 -5.04 

(0.06) 

-19.82 

(0.02) 

-10.44 

(1.04) 

-21.05 

(0.02) 

-11.67 

(1.04) 

-24.63 

(0.02) 

-15.25 

(1.04) 

-26.51 

(0.02) 

-17.13 

(1.04) 

-17.04 

(0.02) 

-7.66 

(1.04) 

4.34 

(0.03) 

13.72 

(1.04) 

6 -6.21 

(0.14) 

-23.68 

(0.03) 

-15.81 

(1.16) 

-20.44 

(0.03) 

-15.09 

(1.16) 

-23.47 

(0.03) 

-18.49 

(1.16) 

-19.71 

(0.03) 

-17.89 

(1.16) 

-19.33 

(0.03) 

-11.97 

(1.16) 

-6.83 

(0.03) 

3.63 

(1.16) 

 

R2 0.67 0.87 0.65 0.87 0.60 0.82 0.47 0.65 0.69 0.87 0.80 0.29 

1kcal/mol, with standard deviations in parentheses. 

 

The origin of the variations in absolute affinity arising from the desolvation model can be 

illustrated by a subset of per-residue interactions, in the case of 1 (Table 6.5).  Each model 

results in similar (within approximately 2.1 kcal/mol) estimates for the interaction energies that 

do not involve hydrogen-bonds (Phe 131, Tyr 106).  For polar-neutral hydrogen bonds (Asn 133, 

Gly 107) the interaction energies are generally favorable but vary according to the desolvation 

model up to approximately 1.6 kcal/mol.  Most significantly, the strength of the only interaction 

with a charged side chain (Asp 89) is predicted to range from -7.8 to + 8.4 kcal/mol.  This latter 

observation clearly points to an important source of uncertainty in the choice of desolvation 

model.  An indication of the overall variation in the energies is provided by Z-scores (Table 6.6) 

for each of the per-residue interactions and indicates that the GB1
 OBC model is in closest 

agreement with the average of all the models.  While this doesn’t imply that the GB1
 OBC model 

is the optimal choice, it provides a basis to state that it is a representative GBSA model, enabling 

us to select it for further analysis. 
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Table 6.5.  The impact of desolvation model on per-residue interaction energies1. 

ECL Residue GBHCT GB1
OBC GB2

OBC GBn1 GBn2 PBSA Mean 

Standard 

Deviation 

ASN 133 -1.91 -1.08 -1.03 -0.28 -0.74 -2.15 -1.2 0.71 

ASP  89 -1.44 -4.8 -6.23 -7.83 3.56 8.45 -1.38 6.29 

GLY 107 -1.22 -0.67 -0.6 -0.13 -1.05 -1.73 -0.9 0.55 

PHE 131 -2.17 -2.46 -2.64 -2.63 -2.33 -0.54 -2.13 0.8 

TYR 106 -2.26 -1.55 -1.52 -1.46 -1.95 -2.86 -1.93 0.55 

1kcal/mol 

 

Table 6.6.  Z-scores1 for per-residue interaction energies as a function of the desolvation model  

ECL Residue GBHCT GB1
 OBC  GB2 OBC  GBn1  GBn2  PBSA 

ASN 133 -1.0 0.2 0.2 1.3 0.6 -1.3 

ASP  89 0.0 -0.5 -0.8 -1.0 0.8 1.6 

GLY 107 -0.6 0.4 0.5 1.4 -0.3 -1.5 

PHE 131 -0.1 -0.4 -0.6 -0.6 -0.3 2.0 

TYR 106 -0.6 0.7 0.8 0.9 0.0 -1.7 

 1Z-score = (observed value – Mean)/Standard Deviation 

 

Quantification of per-residue contributions to affinity: Amino acids making significant 

interactions with the ligand were identified on the basis of their individual contributions to the 

total interaction energy, and confirmed all of the expected interactions (Figure 6.3). In addition, 

stabilizing non-polar (van der Waals) contacts were observed between the Fuc residue and Y106, 

Y108, P134, and W135, which have been noted from analyses of the crystal structure. Non-polar 

contacts were also observed in the presence of GlcNAc residue, stabilizing the interaction of 

Q219 with the ligand by over 0.5 kcal/mol.  While the presence of the GalNAc residue 
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introduced van der Waals contacts with N133, it also introduced electrostatic repulsion, reducing 

the overall contribution of N133 to the binding. The significance of some of these residues 

(A88G, Y106A, FI31A, A218G, D89A, N133A, and Q219A among others) has been examined 

by performing mutation studies on a closely related protein called Erythrina corallodendron 

lectin (ECorL) (176). From the perspective of the ligand, the Gal/GalNAc residues were found to 

be the main contributors to binding, accounting for more than 80% of the interaction energy in 

all cases.  In 5 and 6, the fucosyl residue contributed 4% and 7%, fully consistent with the 

observation that fucosylation impacts the affinity only marginally. The Glc and Man residues 

contributed less than 4%, while the presence of NAc group in the GlcNAc residue brings its 

contribution up to over 8.5% in 3, 4 and 6 (Figure 6.4). 

 

Figure 6.3. The binding free energy contribution of amino acids making significant interactions 

with the ligand. 
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Figure 6.4. The percentage contribution of all the ligands on a per-residue basis.  

 

Quantification of per-functional group contributions to affinity: Per-atom decomposition of the 

interaction energy, and categorizing it on the basis of the per-exocyclic group, revealed which of 

these groups were most involved in the interaction. This analysis showed that the main 

contribution to binding came from electrostatic interactions with the O3 and O4 groups (O3 over 

20%, O4 over 14%) along with van der Waals contacts from the framework atoms (FW) of the 

Gal/GalNAc residue (over 30%). The N-acetyl group stabilized the interaction by contributing 

about 1 kcal/mol to the binding.  It was observed that some groups are crucial for the protein-

ligand interaction (O3, O4 group and framework of Gal/GalNAc residue), while some enhance 

this interaction (NAc) and others do not participate (such as O6 and O2 groups of Gal/GalNAc 

and Glc/GlcNAc/Man residues) (Figure 6.5). This provides an objective method to quantify 

features of the ligand that are critical for binding. Based on these observations it can be deduced 

that the conformation of the groups contributing most to the binding, defines the minimum 3D 

motif required for that protein-ligand interaction. Therefore, these 3D motifs in sugar residues 

can be denoted as the Minimum Binding Determinants (MBD). 
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Figure 6.5. The percentage contribution of the functional groups of Gal residue in all the ligands. 

 

The lack of participation of the Glc residue explains why replacing it in Lactose (1) with its O2 

epimer i.e. Mannose in Epi-Lactose (2) results in their equivalent binding affinities. Similarly, 

modifying the O2 group of Gal residue should not affect the binding interaction as it does not 

make a significant contribution if the modification does not introduce any clashes. This was 

observed in 4, 5 and 6 where O2 hydroxyl of Gal residue was replaced with N-acetyl group and 

fucosyl groups. Conversely, modification of groups with a high contribution (O3 and O4 groups 

of Gal residue) should significantly affect the binding. For example, replacing Gal residue with 

its O4 epimer i.e. Glucose, resulting in Cellobiose (Glcβ1-4 Galβ, 7) and Maltose (Glcα1-4 Galβ, 

8) should hamper its interaction. This was proven by Biolayer Interferometry performed here 

which was unable to detect any binding of 7 and 8 with ECL, hence validating the hypothesis 

that not all groups in a bound ligand participate in the binding. 

Conclusion 

Through a combination of experimental and computational analysis, the study provides insight 

into the features that lead to carbohydrate specificity of using the lectin ECL and its six known 

ligands as an example system. The results from binding free energy analyses, employing 
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different desolvation models, along with entropy calculations, indicate that, for agreement with 

the experiments, improvements need to be made in the current desolvation models. It would 

likely be beneficial to include carbohydrate-protein interactions to re-calibrate the current GB/PB 

methods (177). We see a large variation in the per-residue decomposition of binding energy for 

charged residue ASP89, with a difference of 16.2 kcal/mol, which leads to an ambiguity in the 

choice of desolvation model. The addition of QH entropies improves the correlation of the MM-

GBSA models, but they did not converge even after 100 ns of simulation and had to be 

extrapolated. The nmode entropies improve the correlation even further and correctly rank the 

ligands in most cases, but they are computationally expensive and were performed on 100 

snapshots from the entire simulation. Nonetheless, by decomposing the binding free energy on a 

per-residue basis, the MM-GBSA calculations could identify and rank key residues responsible 

for the protein-ligand interactions. Thus, it was possible to locate the functional groups in each 

ligand that were responsible for the specificity of these ligands. Based on the range of strengths 

of their interactions, the functional groups could be characterized as critical, stabilizing, or non-

interacting. Critical groups are essential for achieving measurable affinity while stabilizing 

groups improve the strength of the binding. As expected, non-interacting groups can be replaced, 

if doing so does not introduce unfavorable van-der Waals or electrostatic repulsions. The ability 

to rank the functional groups in terms of their importance to binding can be used to design novel 

ligands and can aid in explaining the specificity and affinity of different ligands for a protein. 
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CHAPTER 7 

MONOSACCHARIDE SIMILARITY ANALYSIS TO UNDERSTAND PROTEIN-

CARBOHYDRATE SPECIFICITY 

Introduction 

Carbohydrates (oligo- and polysaccharides, glycans) comprise a structurally diverse group of 

biopolymers, which participate in a multitude of biological processes, a number of which involve 

recognition by specific glycan-binding proteins (GBPs). The ability of GBPs to recognize 

specific glycans is essential for organisms to carry out their physiological or pathological 

processes.  They are known to participate in cell signaling, cell adhesion, endocytosis, immune 

response, hemostasis, host-pathogen interactions among other roles in the functions of many 

cells (178). Any disease that disrupts the cellular glycosylation machinery can alter the ensemble 

of glycans displayed on the cell surface, hence glycans can also be markers for diseases, such as 

liver, ovarian and pancreatic cancer, which show elevated levels of fucosylation (179).  

Understanding glycan specificity is, therefore, a crucial component in glycobiology, but also 

essential for the design and development of carbohydrate-specific reagents, such as antibodies. 

Glycan specificity is typically defined in terms of the shortest glycan sequence that is found 

among the ensemble of glycans that bind to a given GBP.  This sequence is often referred to as 

the minimal binding determinant (MBD).  Notably, glycan specificity studies have also revealed 

(146, 147) that some GBPs bind to glycans that appear to contain unrelated MBDs; for example, 

the lectin Wheat Germ Agglutinin (WGA) binds to both N-acetylglucosamine (GlcNAc) or sialic 

acid (Neu5Ac).  Such cross-reactivities lead to uncertainties in the canonical definitions of GBP 
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specificity and have led lectins and even anti-carbohydrate antibodies to be described as 

displaying broad or complex specificity.  If the specificity of such reagents cannot be well 

defined or understood it limits their potential utility in diagnostic or therapeutic applications.   

Challenges in interpreting carbohydrate specificity arise in part from the assumption that 

specificity can be defined uniquely by the residues (including the inter-residue linkages) that 

make up the oligosaccharide sequence of the MBD.  Such a nomenclature-based definition fails 

to identify the precise pharmacophore (the subset of underlying 3D structural features within the 

MDB that bind directly to the GBP) responsible for the binding affinity. Because of the structural 

similarities among monosaccharides (many of which are diasteriomers) it is possible, and even 

common, for a GBP to be able to interact with the same pharmacophore among multiple 

monosaccharides.  For example, the pharmacophore in Neu5Ac associated with the binding of 

WGA consists of the N-acetyl and O4-hydroxyl groups.  In the case of GlcNAc, the same 

pharmacophore can be created by the N-acetyl and O3-hydroxyl groups (Figure 7.1).     

The location (in terms of 3D structure) of the pharmacophore within the glycan will also impact 

the extent to which the pharmacophore will continue to be recognized by a given GBP.  Again, 

in the case of WGA, as the Neu5Ac residues are typically present on the termini of glycan 

branches, WGA will recognize the Neu5Ac residues in a broad range of glycans.  In contrast, the 

GlcNAc residues in glycans are often present in non-terminal positions, and for this reason, 

WGA recognizes only a sub-set of glycans that contain GlcNAc.  The dependence of recognition 

on the context of the MBD (or more precisely on the pharmacophore) within the glycan further 

complicates the interpretation of glycan specificity (145).  As a prerequisite to understanding the 

context-dependence of glycan recognition, or conversely to determine the basis for cross 

reactivity, it is essential to be able to identify the relevant pharmacophore (180). While the 
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pharmacophore that leads to cross-reactivity can be obvious (as in the case of WGA), its 

discovery necessitates abandoning the traditional representations of monosaccharides and 

focusing not on residue descriptors but on the 3D structure.    

 

Figure 7.1. Monosaccharides GlcNAc (left) and Neu5Ac (right) showing a shared 

pharmacophore (red).  

 

In glycan-protein complexes, not all exocyclic groups in the carbohydrate are involved in the 

interaction.  The groups that participate depend on the orientation of the monosaccharide in the 

binding site, and on the configuration of the exo-cyclic groups.  Any monosaccharide that 

presents comparable interacting groups appropriately, and does not introduce sterical collisions 

with the protein is a potential ligand (181).  Any alteration of the interacting groups, will 

potentially adversely affect or eliminate recognition, while other non-interacting moieties may be 

altered with little affect. Therefore, to be able to identify and predict binding specificity, a new 

approach to comparing structural similarities among monosaccharides is required.    

Monosaccharides are structurally diverse, as they can exist as D- or L-isomers and as α- or β-

anomers. Moreover, a change in anomer configuration or linkage position can lead to molecules 

with dissimilar biological attributes, which further increases their complexity. Oligo and 

polysaccharides vary widely in size and shape, and because of their flexibility, can adopt 

multiple conformations in solution. Owing to their complexity, generating an unambiguous and 
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consistent representation of glycans can be problematic, as it needs to consist of information 

from monomers involved to three-dimensional (3D) shapes and linkages. Currently, there are 

several representations which incorporate individual monosaccharide units (182), their isomeric 

and anomeric state, linkages and ring structure (183). The specificity of GBPs is defined based 

on these representations.  

Simple 1D and 2D representations like SMILES strings (184), Sybyl Line Notation (185), InChI 

(186) and WURCS (183) are routinely used to encode molecular structure and have proven to be 

a powerful tool for ligand comparison. However, these become quite complicated for 

carbohydrates and as monosaccharides are cyclic, there can be multiple equally valid notations 

for one structure. The rules to derive a valid SMILES string can often be rather arduous to 

encode. A simple representation encoding the 3D features of carbohydrates can be used to 

compare them and score their similarities, that can be used explain and predict the cross 

reactivity of GBPs. A linear representation of carbohydrate monosaccharides based on the 

historic Fischer Projection representation was developed, which can in principle be employed to 

automatically detect sub-structure motifs. A scoring function was introduced to assess 

similarities and locate like exocyclic groups. The significance of the scoring function will be 

illustrated by comparing the ligands of GBPs known to show cross reactivity and to predict novel 

ligands.  

Methods 

Atom-based (3D) representation of Monosaccharides. A novel representation, specific for 

monosaccharides, based on Fischer and Haworth projections called Enhanced Haworth-Fischer 

(EHF) projection was introduced. This representation is capable of incorporating 3D structural 

features of individual monosaccharides and can be used to compare them. Combined with 
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experimental and binding energy data, it can communicate the information required to specify 

the location of the atom-based 3D motifs involved in protein-glycan interactions. As it is 

independent of current naming conventions, representing motifs by their names or symbols to 

define specificity can be avoided.  

Rules to generate the representation. First, the anomeric carbon was located, and the rest of the 

ring atoms were noted in the clockwise direction. Atoms above the average plane of the ring 

were denoted by capital letters, and the ones below the plane were denoted by lowercase letters. 

Uppercase or lowercase letters were used to represent the names for exocyclic atoms depending 

on whether they were equatorial or axial respectively. The equatorial groups were denoted above 

and the axial groups were denoted below the ring atoms they were bonded to. A monosaccharide 

can be represented in two different ways depending on how it is viewed. An 180° rotation around 

an axis will change the sequence of atoms in a clockwise direction and change the location of 

ring atoms with respect to the average plane. Using these rules, this representation can also be 

linearized resembling SMILES notation. The ring atoms are separated by an underscore, and the 

associated exocyclic groups are separated by a hyphen. Some of the monosaccharides with their 

SMILES notations and EHF representations are listed in Table 7.1. This specialized notation can 

represent the chair form, which is the predominant conformation of pyranoses and is capable of 

distinguishing subtle structural variations.   

 

Table 7.1. Carbohydrate representations. The numbers in the second column indicate these 

representations as 1 – SMILES string; 2 – WURCS; 3 – InChI; 4 – EHF; 5 – Linear EHF. 

Monosaccharide 

 

Representations 

β-D-Glc 1 C([C@@H]1[C@H]([C@@H]([C@H]([C@@H](O1)O)O)O)O)O 
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2 1.0/1,0/[12122h|1,5] 

 

3 1S/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h2-11H,1H2/t2-,3-,4+,5-,6-/m1/s1 

 

4 

 

 

5 O_c-O_C-O_c-O_C-O_c-CO 

β-D-Gal 1 C([C@@H]1[C@@H]([C@@H]([C@H]([C@@H](O1)O)O)O)O)O 

 

2 1.0/1,0/[12112h|1,5] 

 

3 1S/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h2-11H,1H2/t2-,3+,4+,5-,6-/m1/s1 

 

4 

 

 

5 O_c-O_C-O_c-O_C-o_c-CO 

β-D-Man 1 C([C@@H]1[C@H]([C@@H]([C@@H]([C@@H](O1)O)O)O)O)O 

 

2 1.0/1,0/[11122h|1,5] 

 

3 1S/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h2-11H,1H2/t2-,3-,4+,5+,6-/m1/s1 

 

4 

 

 

5 O_c-O_C-o_c-O_C-O_c-CO 

α-D-Fuc 1 C[C@@H]1[C@@H]([C@@H]([C@H]([C@H](O1)O)O)O)O 

 

2 1.0/1,0/[22112m|1,5] 

 

3 1S/C6H12O5/c1-2-3(7)4(8)5(9)6(10)11-2/h2-10H,1H3/t2-,3+,4+,5-,6+/m1/s1 

 

4 

 

 

5 O_c-o_C-O_c-O_C-o_c-C 

α-L-Fuc 1 C[C@H]1[C@H]([C@H]([C@@H]([C@@H](O1)O)O)O)O 

 

2 1.0/1,0/[11221m|1,5] 

 

3 1S/C6H12O5/c1-2-3(7)4(8)5(9)6(10)11-2/h2-10H,1H3/t2-,3+,4+,5-,6+/m0/s1 
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4 

 

 

5 o_C-o_c-O_C-O_c-o_C-C 

β-D-GlcNAc 1 CC(=O)N[C@@H]1[C@H]([C@@H]([C@H](O[C@H]1O)CO)O)O 

 

2 1.0/1,0/[12122h|1,5|2*NCC/3=O] 

 

3 

1S/C8H15NO6/c1-3(11)9-5-7(13)6(12)4(2-10)15-8(5)14/h4-8,10,12-

14H,2H2,1H3,(H,9,11)/t4-,5-,6-,7-,8-/m1/s1 

 

4 

 

 

5 O_c-O_C-NAC_c-O_C-O_c-CO 

β-D-GalNAc 1 CC(=O)N[C@@H]1[C@H]([C@H]([C@H](O[C@H]1O)CO)O)O 

 

2 1.0/1,0/[12112h|1,5|2*NCC/3=O] 

 

3 

1S/C8H15NO6/c1-3(11)9-5-7(13)6(12)4(2-10)15-8(5)14/h4-8,10,12-

14H,2H2,1H3,(H,9,11)/t4-,5-,6+,7-,8-/m1/s1 

 

4 

 

 

5 O_c-O_C-NAC_c-O_C-o_c-CO 

α-L-Rha 1 C[C@H]1[C@@H]([C@H]([C@H]([C@@H](O1)O)O)O)O 

 

2 1.0/1,0/[12211m|1,5] 

 

3 1S/C6H12O5/c1-2-3(7)4(8)5(9)6(10)11-2/h2-10H,1H3/t2-,3-,4+,5+,6+/m0/s1 

 

4 

 

 

5 o_C-o_c-o_C-O_c-O_C-C 

β-L-Ara 1 C1[C@@H]([C@@H]([C@H]([C@H](O1)O)O)O)O 

 

2 1.0/1,0/[2211h|1,5] 

 

3 1S/C5H10O5/c6-2-1-10-5(9)4(8)3(2)7/h2-9H,1H2/t2-,3-,4+,5-/m0/s1 
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4 

 

 

5 o_C-o_c-O_C-O_c-o_C 

α-D-Neu5Ac 1 

CC(=O)N[C@@H]1[C@H](C[C@@](O[C@H]1[C@@H]([C@@H](CO)O)O)(C(=O)O)

O)O 

 

2 1.0/1,0/[a2d21122h|2,6|2*O|5*NCC/3=O] 

 

3 

1S/C11H19NO9/c1-4(14)12-7-5(15)2-11(20,10(18)19)21-9(7)8(17)6(16)3-13/h5-9,13,15-

17,20H,2-3H2,1H3,(H,12,14)(H,18,19)/t5-,6+,7+,8+,9+,11+/m0/s1 

 

4 

 

 

 

5 o_C-coo-O_c_C-O_c-NAC_C-GOL 

1 – SMILES string; 2 – WURCS; 3 – InChI; 4 – EHF; 5 – Linear EHF. 

 

Maximum similarity score. A scoring function was developed to compare monosaccharides using 

the new notation and to locate and quantify structural similarities in them. Two monosaccharides 

can be aligned in multiple ways, with each alignment resulting in a different set of structural 

similarities (Figure 7.2). The aim of the maximum similarity score is to find an alignment which 

results in the highest structural resemblance. 

Rules to generate the score. All possible alignments are scored by first matching the ring atoms 

based on their location with respect to the average plane of the ring and if the atoms themselves 

are a match. Then the orientation of all the exocyclic groups is compared and scored at the 

aligned ring positions. Each match of location, ring atoms and exocyclic groups gets a score of 

+1, leading to a maximum possible similarity score of 22 if the exact same monosaccharides are 

aligned. The scores and positions of an alignment that result in the maximum similarity score are 

reported for some of the monosaccharide pairs (Table 7.2 and 7.3). In Figure 7.2, the maximum 
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score is observed with an alignment with 4 leading to a score of 16. These alignments can then 

be used to explain and predict cross reactivity. It can also be used to generate models for known 

cross reactivity, but unknown structures. It is important to note that because different alignments 

can lead to different conformational similarities, and multiple alignments can lead to the same 

score, the maximum similarity is not an essential explanation for cross reactivity.  

Example applications 

Explain cross-reactivity: The ability of a GBP to bind multiple glycans, leading to cross-

reactivity, arises from the presence of the same pharmacophore in those glycans. Therefore, to 

explain cross-reactivity, it becomes essential to locate the pharmacophore responsible for 

binding. Six GBPs (Concanavalin A (ConA), M-ficolin, Pseudomonas aeruginosa-II lectin (PA-

II L), Rhamnose-binding lectin (RBL), Sambucus nigra lectin (SNL) and Wheat Germ agglutinin 

(WGA)) with known cross-reactivity and complex crystal structures with those ligands were 

selected to test the predicted alignments of the monosaccharides, by comparing them to the 

binding modes of the ligands in the crystal structures (Figure 7.3). In all the cases, maximum 

similarity score could predict the similarities in those ligands, and thus their binding modes, 

which are detailed in Table 7.4. The similar positions are denoted by the exocyclic group 

followed by their ring position for ligand 1 and then for ligand 2. For example, Concanavalin A 

(ConA) is a legume lectin known to specifically interact with α-D-mannosyl and α-D-glucosyl 

groups, that are epimers at position C2 (Figure 7.3A). The alignment of these monosaccharides 

that results in the maximum similarity is when they match at all the positions except at C2, 

earning them a score of 20. 
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Figure 7.2. Different alignments of α-D-Neu5Ac and α-D-GlcNAc. These alignments are scored 

by first matching the ring atoms based on their location with respect to the average plane of the 

ring and if the atoms themselves are a match. Then the orientation of all the exocyclic groups at 
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both axial and equatorial positions is compared and scored at the aligned ring positions the 

maximum similarity score of the above aligned conformations are (alignment-score) 1-14, 2-14, 

3-15, 4-18, 5-14, 6-14. 

 

Table 7.2. The maximum similarity scores for a pair of monosaccharides. 

 

β-D-Glc β-D-Gal β-D-Man β-D-Fuc β-L-Fuc β-D-GlcNAc β-D-GalNAc β-L-Rha β-D-Xyl β-L-Ara 

β-D-Gal 20 

         β-D-Man 20 18 

        β-D-Fuc 19 21 17 

       β-L-Fuc 18 17 20 18 

      β-D-GlcNAc 21 19 20 18 18 

     β-D-GalNAc 19 21 18 20 16 20 

    β-L-Rha 18 20 17 20 18 17 19 

   β-D-Xyl 21 19 19 20 18 20 18 18 

  β-L-Ara 17 15 19 15 19 17 15 15 17 

 β-D-Neu5Ac 17 17 16 17 16 18 18 17 17 17 

 

Table 7.3. The aligned positions for monosaccharide pairs observed when an alignment results 

in the maximum similarity score. 

 

β-D-

Glc 

β-D-

Gal 

β-D-

Man 

β-D-

Fuc 

β-L-

Fuc 

β-D-

GlcNA

c 

β-D-

GalNA

c 

β-L-

Rha 

β-D-

Xyl 

β-L-

Ara 

D-Gal-b 

O1O1; 

O2O2; 

O3O3; 

CO5CO5 
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D-Man-b 

O1O1; 

O3O3; 

O4O4; 

CO5CO5 

O1O1; 

O3O3; 

CO5CO5 

        

D-Fuc-b 

O1O1; 

O2O2; 

O3O3 

O1O1; 

O2O2; 

O3O3; 

o4o4 

O1O1; 

O3O3; 

       

D-

GlcNAc-

b 

O1O1; 

O3O3; 

O4O4; 

CO5CO5 

O1O1; 

O3O3; 

CO5CO5 

O1O1; 

O3O3; 

O4O4; 

CO5CO5 

O1O1; 

O3O3; 

O3O3; 

O2O4; 

     

D-

GalNAc-

b 

O1O1; 

O3O3; 

CO5CO5 

O1O1; 

O3O3; 

o4o4; 

CO5CO5 

O1O1; 

O3O3; 

CO5CO5 

O1O1; 

O3O3; 

o4o4; 

O3O3; O1O1; 

NAC2N

AC2; 

O3O3; 

CO5CO5 

    

L-Rha-b 

O3O3; 

O2O4 

o4o2; 

O3O3; 

O2O4 

O3O1; 

o2o2; 

O1O3 

o4o2; 

O3O3; 

O2O4; 

O1O1; 

O3O3; 

C5C5; 

O3O3 o4o2; 

O3O3 

   

D-Xyl-b 

O1O1; 

O2O2; 

O3O3; 

O4O4 

O1O1; 

O2O2; 

O3O3 

O1O1; 

O3O3; 

O4O4; 

O1O1; 

O2O2; 

O3O3; 

C5C5 

O3O3; 

O2O4; 

O1O1; 

O3O3; 

O4O4; 

O1O1; 

O3O3 

O4O2; 

O3O3 

  

L-Ara-b 

O4O2; 

O3O3 

O2O1; 

O3O2 

O4O2; 

O3O3; 

o2o4 

O2O1; 

O3O2 

O2O2; 

O3O3; 

o4o4 

O4O2; 

O3O3; 

O3O3; O3O3 O4O2; 

O3O3 
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D-

Neu5Ac-

b 

O3O3 O3O3 O3O3 O3O3 O3O3 O3O3; 

NAC2N

AC4 

O3O3; 

NAC2N

AC4 

O3O3 O3O3 o1o1; 

O3O3 

 

 

 

Figure 7.3. Aligned structures of GBPs with known cross reactivity and crystal structures with 

their ligands in the binding pocket. A. ConA with αDGlc in red and α-D-Man in blue. B. M-

ficolin with β-D-Neu5Ac in red and α-D-GalNAc in blue. C. PA-II L with α-L-Fuc in blue, α-D-

Man in red and β-L-Ara in orange. D. RBL with β-D-Gal in blue and αLRha in red. E. SNA with 

β-D-GalNAc in blue and α-D-Fuc in red. F. WGA with α-D-Neu5Ac in blue and α-D-GlcNAc in 

red. 

 

Table 7.4. GBPs with known cross-reactivity and structures observe the same alignment as 

predicted by maximum similarity score. 

GBP Ligand 1 (PDB ID) Ligand 2 (PDB ID) Aligned positions 
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ConA (Figure 7.2A) α-D-Glc (1GIC) α-D-Man (1I3H) o1o1;O3O3;O4O4;CO5CO5; 

M-ficolin (Figure 7.2B) α-D-GalNAc (2JHI) β-D-Neu5Ac (2JHL) O3O3;NAC2NAC4; 

PA-II L (Figure 7.2C) α-D-Man (1OUR) α-L-Fuc (1OXC) O4O2;O3O3;o2o4; 

PA-II L (Figure 7.2C) α-D-Man (1OUR) β-L-Ara (2BOJ) O4O2;O3O3;o2o4; 

RBL (Figure 7.2D) α-L-Rha (2ZX2) β-D-Gal (2ZX4) o2o4;O3O3;O4O2; 

SNA (Figure 7.2E) α-D-Fuc (3CAH) β-D-GalNAc (3CA3) O3O3;o4o4; 

WGA (Figure 7.2F) α-D-GlcNAc (2JHI) α-D-Neu5Ac (2CWG) O3O3;NAC2NAC4; 

 

Predict binding modes: There are GBPs with known cross-reactivity that lack crystal structures 

or other experimental data detailing the interactions involved. The maximum similarity score can 

be used to model the binding based on the structures available for at least one of the ligands. The 

models were created for four such proteins i.e. Amaranthus caudatus lectin (ACL), family 9 

Carbohydrate-binding module from Thermotoga maritima Xylanase 10A (CBM9-2), Helix 

pomatia lectin (HPL) and Ricinus communis agglutinin I (RCA120). All these proteins have a 

complex crystal structure available for at least one of their known ligands, and the models were 

generated based on these existing structures (Table 7.5, Figure 7.4). Such as CBM9-2 is known 

to show an affinity for D-glucose, D-galactose, and D-xylose (187), while its only complex 

structure available is bound with D-glucose. Therefore, its binding mode with D-xylose was 

predicted based on this available structure (Figure 7.4B).  
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Figure 7.4. GBPs with known cross reactivity and crystal structure with ligand in the binding 

pocket, along with a modeled ligand with the unknown crystal structure. All crystal ligands are 

in blue and modeled ligands in red. A. ACL with β-D-Gal and β-D-Man. B. CBM-9 with β-D-

Glc and β-D-Xyl. C. HPL with α-D-GalNAc and α-D-GlcNAc. D. RCA120 with α-D-Gal and β-

L-Rha. 

 

Table 7.5. Predicted alignments of known ligands based on maximum similarity score.  

  crystal ligand (PDB ID) modeled ligand position 

ACL (Figure 7.3A) β-D-Gal (1GIC) β-D-Man O1O1;O3O3;CO5CO5; 

CBM-9 (Figure 7.3B) β-D-Glc (1I8A) β-D-Xyl  O1O1;O2O2;O3O3;O4O4;  

HPL (Figure 7.3C) α-D-GalNAc (2CCV) α-D-GlcNAc o1o1;NAC2NAC2;O3O3;CO5CO5;  

RCA120 (Figure 7.3D) α-D-Gal (3RTI) β-L-Rha  o4o2;O3O3;O2O4;  

 

Predict cross-reactivity: Based on the above observations, the maximum similarity score was 

used to predict cross-reactivity of P domain of norovirus, that interacts with histo-blood group 

antigens (HBGAs) with L-fucose in the binding pocket. According to the maximum similarity 
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score, it can be hypothesized that this protein can also bind sialic acid in its binding pocket, with 

the alignment at exocyclic hydroxyls attached to C3 in fucose and C4 in sialic acid, and the ring 

atoms (Figure 7.5).   

 

Figure 7.5. The co-crystal structure P domain of norovirus with fucose (blue) (PDB ID: 4OPO) 

and predicted sialic acid ligand (red). 

 

Conclusions 

The 3D features of different monosaccharides were analyzed and compared, leading to a novel 

representation specific for monosaccharides, which was then used to quantify similarities in a 

pair of monosaccharides by assigning them a maximum similarity score, based on their 

alignment. The new representation is simple and can account for the complexity of 3D structures 

of carbohydrates. It focuses on the most favored conformation of sugars i.e. the chair form, 

however, there is a potential to include the features of other conformations as well. The 

maximum similarity score was successful to locate structural similarities, that help in explaining 

cross-reactivity observed in several GBPs, and predicting them.              
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CHAPTER 8 

CONCLUSIONS AND FUTURE PROSPECTS 

Experimental methods employed in biomolecular research have proven tedious and expensive to 

implement for structure determination and dynamics. This is especially true when it comes to 

carbohydrates as they present unique challenges because of their complex structure and 

stereochemistry. The combination of experimental techniques and computational analysis has 

emerged as a powerful methodology to examine their behavior and interactions with proteins.  

In the first part of this study, hydroxyl radical protein footprinting (HRPF) combined with 

molecular dynamics (MD) and solvent accessible surface area (SASA) estimation was used to 

establish relationship models between amino acid accessibility and oxidation. The residues 

exposed to the solvent can get oxidized by hydroxyl radicals, while the ones buried inside the 

core of the globular protein are shielded from this reaction. The SASA of the residues that are 

oxidized can then be estimated from the established relationship models. These estimated SASA 

values can be used to test the accuracy of protein conformations generated through MD or 

homology or comparative modeling. The research presented here verifies the efficiency of such 

an analysis by calculating RMSDSASA of homology models with respect to the known crystal 

structure of lysozyme. The models close to the crystal structure show lower RMSDSASA and vice 

versa. This information can also be extended to studying protein-protein and protein-ligand 

interactions, as the residues in the binding pocket are shielded from the hydroxyl radicals. The 

results of this study provide an innovative way of quantifying the quality of protein models, 



 

96 

which can lead to improved accuracy of protein structure prediction, and a better estimate of 

position and orientation of a ligand when it is bound to a protein receptor.  

While the previous part of the study was focused on the analysis of proteins, in the next section, 

the role of carbohydrates in their interactions with proteins was examined. The main objective 

was to gain insight into the structural features of carbohydrates leading to the observed cross-

reactivity in their interactions with Glycan binding proteins (GBPs). The free binding energy 

analysis of (ECL) and its interaction with its known ligands, on a per-residue basis, followed by 

the decomposition of free binding energy at the per-functional group, revealed that all the 

exocyclic groups of a monosaccharide do not contribute to binding. There are groups that are 

necessary, some enhance the interaction, while others are non-participating. The mutation of 

non-participating groups, if it does not introduce any steric clashes, does not hinder the protein-

carbohydrate interaction. On the other hand, the mutation of groups critical for the interaction 

can lead to a loss in binding. This type of analysis can be applied to any known co-crystal 

structures or modeled complexes. By employing a novel carbohydrate representation and 

comparing different monosaccharides, we find that based on their alignment, monosaccharides 

can share various structural similarities. As we know that only certain parts of the ligand are 

involved in binding, these similarities can be used to explain and predict cross-reactivity. 

Understanding the molecular interactions and conformational similarities of functional 

carbohydrates can lead to the rational design of glycomimetics, and to the development of 

libraries of molecules sharing structural similarities with various monosaccharides.  

Despite tremendous developments in the field of molecular modeling of carbohydrates and 

proteins, there are still limitations to the available computational power and the underlying 

assumptions. The achievement of convergence while performing an MD simulation, has been the 
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subject of debate, even after an exceptional increase in the computing power and improvements 

in sampling techniques. The conformations sampled during a simulation depends on the starting 

structure and precautions need to be taken to ensure that the orientations of atoms form relevant 

interactions. A small change such as differences in protonation states of histidine can lead to 

large variations. If a crystal structure is being used as a starting structure, like in the present 

study, it is recommended to employ programs such as Reduce (provided by AMBERTOOLS) 

that are capable of optimizing orientations of adjustable groups (ASN, GLN, and HIS side chain 

orientation), optimize the protonation state of HIS, and add and adjust missing hydrogens to 

these structures. Water molecules are known to be involved in protein-ligand interactions, 

therefore it is important to retain crystallized water molecules to study these systems. The 

process of crystallization can lead to unfavorable contacts, which need to be addressed, 

consequently, minimization is a necessary step before a simulation. The type of solvent used also 

affects the course of simulations. While implicit water models are faster, they are not able to 

mimic all their properties, therefore, even though they are computationally expensive and require 

multiple considerations as discussed further, explicit water models are favored for accuracy.  

Implicit solvent models are widely used to calculate the desolvation energies for the binding site 

to predict binding affinities of protein-ligand complexes. There is a trade-off between precision 

and accuracy, as to perform this analysis all the water molecules are usually removed, even the 

ones stabilizing the protein-ligand interaction. Including water molecules can improve the 

accuracy at the expense of computational time, and can lead to large variations in the outcomes. 

The accuracy of this method depends on the quality of the implicit solvent models as well. The 

interactions energies are also sensitive to the force fields and their parameters, which calculate 

the electrostatic and van der Waals contributions. As observed in Chapter 6, the presence of 
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charged residues leads to a large variation in the binding affinity contribution between different 

implicit models, resulting in uncertainty in the choice of models.  

In spite of these limitations, the current study can act as a road map for other investigators to 

understand the underlying structural features of proteins and carbohydrates that lead to their 

specificity and can be extended to other biological systems. Along with advancing the 

fundamental knowledge of interactions involved in protein-carbohydrate binding, this study also 

provides tools for improved prediction and qualification of models.  
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APPENDIX 

PROBING THE PARAMYXOVIRUS FUSION (F) PROTEIN-REFOLDING EVENT FROM 

PRE- TO POSTFUSION BY OXIDATIVE FOOTPRINTING 

Abstract 

To infect a cell, the Paramyxoviridae family of enveloped viruses relies on the coordinated 

action of a receptor-binding protein (variably HN, H, or G) and a more conserved metastable 

fusion protein (F) to effect membrane fusion and allow genomic transfer. Upon receptor binding, 

HN (H or G) triggers F to undergo an extensive refolding event to form a stable postfusion state. 

Little is known about the intermediate states of the F refolding process. Here, a soluble form of 

parainfluenza virus 5 F was triggered to refold using temperature and was footprinted along the 

refolding pathway using fast photochemical oxidation of proteins (FPOP). Localization of the 

oxidative label to solvent-exposed side chains was determined by high-resolution MS/MS. 

Globally, metastable prefusion F is oxidized more extensively than postfusion F, indicating that 

the prefusion state is more exposed to solvent and is more flexible. Among the first peptides to 

be oxidatively labeled after temperature-induced triggering is the hydrophobic fusion peptide. A 

comparison of peptide oxidation levels with the values of solvent-accessible surface area 

calculated from molecular dynamics simulations of available structural data reveals regions of 

the F protein that lie at the heart of its prefusion metastability. The strong correlation between the 

regions of F that experience greater-than-expected oxidative labeling and epitopes for 

neutralizing antibodies suggests that FPOP has a role in guiding the development of targeted 
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therapeutics. Analysis of the residue levels of labeled F intermediates provides detailed insights 

into the mechanics of this critical refolding event. 
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SUPPLEMENTARY INFORMATION CHAPTER 6 

 
Figure S6.1. BLI sensorgram of ECL direct binding to LacNAc on SA biosensors and the KD 

resulting from steady state analysis and scatchard plot analysis. 

 

 
Figure S6.2. IC50 of oligosaccharides inhibiting ECL binding to LacNAc on SA biosensors. 

 

Table S6.1. X-ray crystallographic data-collection and refinement statistics. 

  ECL-2 ECL-3 

Beamline/Facility  
Rigaku HighFlux 

HomeLab/ORNL  
SBC-CAT 19ID/APS  

Space group     P65  P65  
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Cell dimensions:  

  a, b, c (Å)                       134.950, 134.950, 81.794     134.669, 134.669, 81.212 

α, β, γ (°)                    90, 90, 120 90, 90, 120 

Resolution (Å)  40.00-2.20 (2.28-2.20)  44.08-1.90 (1.93-1.90)  

No. reflections measured  42764 (4263) 65144 (3227)  

Rmerge  0.085 (0.496) 0.068 (0.461)  

I / σI  13.1 (2.1) 38.4 (4.4)  

Completeness (%)   98.8 (98.8) 99.2 (98.1)  

Redundancy   3.3 (3.1) 6.7 (5.8)  

Rwork / Rfree                                                                 0.1814 / 0.2042 0.2217 / 0.2636                

No. atoms (non-H)            4142 4274 

Water                                296 394 

R.m.s.d. bonds (Å)            0.003 0.007 

R.m.s.d. bond angles (°)        0.684 1.188 

 

Table S6.2 IC50 of all carbohydrate candidates. 

Ligand IC50 (mM)  

1 0.66 (0.04) 

2 0.44 (0.01) 

3 0.17 (0.01) 

5 0.49 (0.05) 

6 0.07 (0.01) 

7 0.00 (0.00) 
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