
MINRONG SONG
RepoX: An XML Repository For Workflow Designs And Specifications
(Under the Direction of JOHN A. MILLER)

XML is gaining acceptance as a universal data format, as more and more workflow

systems are taking XML as their basic data format for workflow process definition, data

type definition, and control information definition. For XML-based workflow systems, an

XML repository is used to manage XML object resources in a safe and efficient way.

RepoX, an XML repository, has been developed for the METEOR workflow system. It

maps XML documents to a relational-object database at the backend and also provides

extraction/retrieval, version control, check in/check out, and searching and query

functions. In addition, it has support for adaptive workflows, which may need workflow

definition information from the repository at runtime, in a dynamically changing

environment. RepoX is used in a bioinformatics application—the fungal genome project

to support and manage workflow designs and specifications.

INDEX WORDS: XML, Repository, Version Control, Configuration Management,

 Workflow Systems, Adaptive Workflow, RepoX

REPOX: AN XML REPOSITORY FOR WORKFLOW

DESIGNS AND SPECIFICATIONS

by

MINRONG SONG

B.E., Shanghai Jiao Tong University, China, 1996

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial

Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2001

 2001

Minrong Song

All Rights Reserved

REPOX: AN XML REPOSITORY FOR WORKFLOW

DESIGNS AND SPECIFICATIONS

by

MINRONG SONG

 Approved:

 Major Professor: John A. Miller

 Committee: Jonathan Arnold
 Daniel M. Everett

Electronic Version Approved:

Gordhan L. Patel
Dean of the Graduate School
The University of Georgia
December 2001

iv

DEDICATION

To Mom, Dad, and Shiming

v

ACKNOWLEDGEMENTS

I would like to acknowledge the invaluable support of all the people who have helped me

over the past two years I have worked towards my Masters Degree. First of all, I would

like to express a special thanks to my major professor Dr. John A. Miller for his patient

and constructive guidance and support in the completion of this degree. Dr. Miller has

been very generous with his time and wisdom. He has always been there to help me when

I needed it. I would also like to thank my committee members, Dr. Jonathan Arnold and

Dr. Daniel M. Everett for their time contributed to my thesis and their valuable

suggestions. Their critique and contributions strengthen this thesis. I would also show my

respect to Dr. Eileen T. Kraemer, Dr. Ismailcem Budak Arpinar, and Jorge Cardoso who

give me a lot of help and suggestions. Finally, I would like to give thanks to my wife

Shiming Dong for her constant support and continual encouragement all these years.

vi

TABLE OF CONTENTS

 Page
ACKNOWLEDGEMENTS ... v

LIST OF TABLES ..vii

LIST OF FIGURES..viii

CHAPTER

 1 INTRODUCTION ...1

 2 REPOX: AN XML REPOSITORY FOR WORKFLOW

 DESIGNS AND SPECIFICATIONS ..3

 Introduction ..4

 Repository and XML Repository ...5

 XML Repositories in Workflow Systems ..7

 Storage and Retrieval in XML Repository ...12

 Version and Configuration Management ...19

 Use RepoX in An Adaptive Workflow Application...................................25

 Conclusions and Future Work ..30

 3 CONCLUSIONS AND FUTURE WORK ..33

REFERENCES………….…………………………………………..…………………...36

APPENDIX

 A XML DOCUMENTS FOR BIOCHEMICAL NETWORK MODELS ……..40

vii

 LIST OF TABLES

TABLE Page

1 Comparison of Traditional XML Repository Storage Approaches ………..12

2 Comparison of ORBWork and Perl’s Approaches………………………….27

viii

LIST OF FIGURES

FIGURE Page

1 Workflow Components Diagram ………………………………………….. 8

2 Five Interfaces of Workflow Reference Model …………………………… 9

3 RepoX Repository’s Architecture …………………………………………11

4 Diagram of Modeling Process to Get Database Schema ………………….14

5 A Simplified DTD of Network Task ……………………………………..15

6 Meta Model in RepoX …………………………………………………….15

7 Tables Defined in MapXML2Tables.java ………………………………...16

8 Definitions of “xmldoc” and “task” …………………………….………. 17

9 An Example of XML Document for Network Task ……….……………...19

10 Network Task C both in Network Task A and B …………………………20

11 Check in and Check out …………………………………………………..21

12 Gene Workflow ………………………………………………………….. 23

13 DOM Tree of Network Task ……………………………………………...28

14 Navigate Network Task ”Gene” ………………………………………….29

15 Screenshot of GUI at the Client Side ……………………………………..30

16 Reaction Model for Hydrogen Combustion ………………………………41

17 Kinetics Model of Quinic Acid and Metabolism …………………………44

 1

CHAPTER 1

INTRODUCTION

 Many business transactions and processes are tedious and time-consuming.

Workflow applications provide automatic and manageable solutions to save time and

effort for human staff by automating, reengineering, and optimizing business and

scientific processes. To ensure scalability, a typical workflow system may need to

exchange and distribute information, or even incorporate other workflow systems to

facilitate interoperability. So a standard data format is highly needed for information

interchange. The Extensible Markup Language (XML) is becoming a new universal

format for exchanging data on the World Wide Web. Many groups are beginning to make

workflow definitions in XML format. All workflow-related information including

workflow process definitions, data type definitions, and transition information can be

defined in XML document format. The Workflow Management Coalition (WfMC)

announced an initiative to provide XML-based workflow standards in 1999 [Wfm00].

 For workflow systems using XML documents for saving workflow process

definitions and especially for XML-based workflow systems, a repository is needed to

provide control for the XML documents. The repository allows uniform access to shared

data and facilitates integration among tools in the workflow system [LLO96]. An XML

repository gives the best solution to maintain, exchange, and modify the workflow

process definition metadata, which is in the form of XML documents. The XML

repository, where users can look up the workflow definition objects, serves as the

metadata foundation of the workflow system.

 2

 This paper will focus on some key issues for XML repositories such as storage,

extraction, retrieval, version control, and configuration control. RepoX, which is an XML

repository implementation for workflow systems, is also introduced. RepoX’s support for

developing workflow applications, especially in workflow designs or specifications, is

addressed in detail. The ultimate design goal for this repository is to support adaptive

workflows. A secondary goal for this repository is that it should be easy to retarget it to

other applications (e.g., saving specifications of simulation models). The RepoX

repository is used in the fungal genome project sponsored by the Genetic Department of

the University of Georgia to support development of workflow applications.

 The rest of this paper is organized as follows. Section 2 explains the concept of

repository and XML repository. Section 3 addresses the role of XML repositories in

workflow systems. Sections 4 and 5 deal with storage, retrieval, and control management

issues for XML repositories together with solutions and examples from RepoX. Section 6

illustrates the repository’s supports for developing workflow applications. Section 7

concludes the paper and discusses future work.

 3

CHAPTER 2

REPOX: AN XML REPOSITORY FOR WORKFLOW

DESIGNS AND SPECIFICATIONS1

1Song Minrong, John A. Miller, and Ismailcem B. Arpinar. 2001.

To be submitted to Information & Management.

 4

1. Introduction

 Many business transactions and processes are tedious and time-consuming.

Workflow applications provide automatic and manageable solutions to save time and

effort for human staff by automating, reengineering, and optimizing business and

scientific processes. To ensure scalability, a typical workflow system may need to

exchange and distribute information, or even incorporate other workflow systems to

facilitate interoperability. So a standard data format is highly needed for information

interchange. The Extensible Markup Language (XML) is becoming a new universal

format for exchanging data on the World Wide Web. Many groups are beginning to make

workflow definitions in XML format. All workflow-related information including

workflow process definitions, data type definitions, and transition information can be

defined in XML document format. The Workflow Management Coalition (WfMC)

announced an initiative to provide XML-based workflow standards in 1999 [Wfm00].

 For workflow systems using XML documents for saving workflow process

definitions and especially for XML-based workflow systems, a repository is needed to

provide control for the XML documents. The repository allows uniform access to shared

data and facilitates integration among tools in the workflow system [LLO96]. An XML

repository gives the best solution to maintain, exchange, and modify the workflow

process definition metadata, which is in the form of XML documents. The XML

repository, where users can look up the workflow definition objects, serves as the

metadata foundation of the workflow system.

 This paper will focus on some key issues for XML repositories such as storage,

extraction, retrieval, version control, and configuration control. RepoX, which is an XML

repository implementation for workflow systems, is also introduced. RepoX’s support for

developing workflow applications, especially in workflow designs or specifications, is

addressed in detail. The ultimate design goal for this repository is to support adaptive

workflows. A secondary goal for this repository is that it should be easy to retarget it to

 5

other applications (e.g., saving specifications of simulation models). The RepoX

repository is used in the fungal genome project sponsored by the Genetics Department of

the University of Georgia to support development of workflow applications.

 The rest of this paper is organized as follows. Section 2 explains the concept of

repository and XML repository. Section 3 addresses the role of XML repositories in

workflow systems. Sections 4 and 5 deal with storage, retrieval, and control management

issues for XML repositories together with solutions and examples from RepoX. Section 6

illustrates the repository’s supports for developing workflow applications. Section 7

concludes the paper and discusses future work.

2. Repository and XML Repository

2.1 Basic Concept of Repository

 “A repository is a place to define, store, access, and manage all the information

about an enterprise including its data, and its software systems” [McC92]. It is not just a

passive data dictionary or database. More than information storage, the repository, which

is an integrated holding area [Tan94], should also keep the information up to date by

providing processing methods and make it available to a user as needed. A repository,

which maintains valuable information about all of the information system assets of an

organization and the relationships between them [EM95], acts as a central manager of all

of the information resources in an enterprise. A repository should provide services such

as change notification, modification tracking, version management, configuration

management, and user authorization [MPK+94].

 Several standards have been developed for the repository marketplace. The

Information Resource Dictionary System (IRDS) is a standard that describes the

requirements and architecture of a repository [Haj00]. The Case Data Interchange Format

CDIF) was initiated by the major CASE (Computer-Aided Software Engineering)

vendors and developed as a formal way of transferring data between CASE tools [Fla96].

 6

The Portable Common Tool Environment (PCTE) is a standard for a public tool interface

for an open repository [WJ93].

2.2 XML—The New Standard for Exchanging Data Electronically

 XML—the Extensible Markup Language—is a new standard adopted by the World

Wide Web Consortium (W3C) to complement HTML for data exchange on the web

[Eli01]. The Internet, which has no built-in semantics rather than those required for

presentation of the data, is overloaded with the data explosion in electronic information

systems. XML is a solution that can associate semantics with data. So that data and

semantics can be transmitted together over the Internet. XML is gaining widespread

acceptance in the industry for its simple, open, extensible, and self-explaining nature.

 XML was designed specifically for describing the contents of data, rather than the

presentation. It is different from HTML in three major respects.

1. Users can define their own tags as they wish.

2. Any structure can be nested to an arbitrary depth.

3. An operational grammar description can be associated with an XML document.

A Document Type Definition (DTD) serves as a kind of grammar for the corresponding

XML document and is part of the XML language. A DTD can also be a schema for the

data represented in the XML document to some extent. XML schema complements

DTDs by introducing types and allowing user-defined data types.

2.3 XML Repository

 The information technology constitutes logically coherent concepts and is always

distributed over several different data sources, which may be from different organizations

and are heterogeneous in nature. The widespread availability of XML-capable clients and

their flexibility in structuring information make it possible for XML to become the

 7

universal data format. Without the help of a repository, it will be difficult to control XML

objects in a manageable way and make them available when needed.

 “An XML repository is a special purpose repository that can manage XML objects

in a native format allowing the developer to focus entirely on business logic, instead of

database design and programming” [BG97]. It should provide several basic functions

such as importing/exporting XML data from original text files, user check in/check out,

version control, as well as searching and querying on XML elements. In the electronic

commerce world, XML repositories are the online source for obtaining the appropriate

tag, document-type definition, data element, database schema, software code or routines.

As a result, companies, especially small enterprises, can speed up processing and expand

their ability to conduct electronic commerce. One major problem is the integration of

heterogeneous biological databases, and XML provides an exchange mechanism.

2.4 New Standards for XML Repositories

 XML/EDI (Electronic Data Interchange) developed by the XML/EDI Group

represents a new framework for e-business data exchange. It is one of the most important

applications of XML, which combines the semantics of EDI with XML. Documents in

the XML format can be exchanged across different organizations according to those

standards easily, so business and scientific processes can be synchronized from

application to application. The XML/EDI group also proposed a standard on public

repository for XML message definition [HHS+99].

 Other examples where XML dialects are used in repositories include AIAG in the

automotive domain, and HL7 and HIBCC in health care.

3. XML Repositories in Workflow Systems

 Many enterprise business and scientific processes as well as research procedures

require both human staff and software applications to process data in a pre-defined way.

 8

Workflow Management System (WfMSs) is a system to provide complete support for

process definition, workflow enactment, and administration and monitoring of workflow

processes [Hol95]. Each node in the whole processing chain or network works on a

specific task and sends the results and other control information to the next node if it

exists. Figure 1 shows the components of a typical workflow system.

Figure1: Workflow Components Diagram

 Typically, workflow systems need to integrate other software such as client

software and application software into one whole system. So the translation between the

workflow API and the other software’s native API may increase the cost of software

development and maintenance. Moreover, if the whole processing procedures become

more and more complicated, they may begin to include other processes from different

organizations. If different organizations use different workflow systems, it can be a

problem to communicate with each other. If an XML-based workflow standard becomes

adopted, different workflow systems can exchange their processing descriptions much

more easily. Different workflow engines can communicate and cooperate with each other

by the means of interoperability [JK98, BK99]. Figure 2 shows the Workflow Reference

Model that describes the Five Interfaces. Process Definition Interchange (Interface 1) is

Workflow Enactment

Service

 Workflow
 Repository

Workflow Design
 Tool

Workflow
Engine(s)

 9

the interface between the bulid-time and run-time environments to make the process

definition generated by one modeling tool usable by workflow runtime systems. It has

recently been rewritten to use Wf-XML [All01, Mar01]. Some specifications on the Wf-

XML language definition are addressed in [Wfm00].

Figure 2: Five Interfaces of Workflow Reference Model [Hol95]

3.1 METEOR Workflow Management Systems

 METEOR (Managing End-To-End OpeRations) workflow management systems

are developed by the workflow research group at the Large Scale Distributed Information

Systems Lab in the Computer Science Department at the University of Georgia. The

METEOR WfMSs [KS95, SKM+96, WS97] include both the design/build-time and

runtime enactment components that support large-scale multi-system workflow

applications in heterogeneous and distributed operating environments.

Workflow API and Interchange formats

Workflow Enactment Service

Workflow
Engine(s)

Process
Definition Tools

Administration
&Monitoring

Tools

Workflow
Client

Applications

Invoked
Applications

Other Workflow
Enactment Service(s)

Workflow
Engine(s)

Interface 1

Interface 2 Interface 3

Interface 4
Interface 5

 10

 ORBWork and WebWork are such two WfMS implementations. ORBWork is a

fully distributed CORBA-based workflow enactment service [KSM99, DKM+97], and

WebWork is a fully distributed workflow enactment service relying solely on Web

technology [MPS+97].

3.2 RepoX—An XML Repository For METEOR Workflow Systems

 In the workflow process definition phase, many types of metadata are produced for

workflow specification and task instances. “A Workflow Process Repository is needed to

store metadata about workflow designs, organizations, informational resources, and

computational resources” [AMS01]. RepoX, an XML repository management tool, is

developed in the METEOR Workflow System environment for the purposes of managing

XML-based metadata efficiently and providing other basic repository functions. The

metadata stored in the repository contain the definition of workflow processes and are in

the form of XML documents.

 RepoX is a Client-Server model repository with a relational or object-relational

database at the backend. RepoX helps workflow application developers to produce

workflow specifications and also manage all the XML documents related to workflow

process definitions. The architecture of the RepoX repository is shown in Figure 3. The

client and the server communicate with each other using Java Remote Method Invocation

(RMI). The client side is a GUI tool integrated with a graphical workflow design tool

developed by the Naval Research Center. A workflow developer can design workflows

using the design tool and then save the XML-based workflow process definition metadata

to the RepoX repository or first save to the local file system then export it to the

repository some time later. RepoX also provides a user-friendly query tool as part of its

client side, so that a user can browse and navigate the repository easily and give the query

command to select interested objects.

 11

 RMI
 Client Server

 metadata

 metadata

 JDBC

 Schema

Figure 3: RepoX Repository’s Architecture

 On the server side, spec definitions can be produced according to the DTD

specifications. The DTD are used to generate schema for Oracle 8i or MySQL (could use

others). Elements needed are extracted from the XML documents according to the spec

definitions and put into database tables. Also the whole XML document is stored in a

specific “xmldoc” table as Character Large Object by the CLOB utility supported by the

object-relational database. The document is correlated with the table where objects

extracted from it are stored by setting this table’s foreign key to the key of the “xmldoc”

table. For the later retrieval phase, the whole workflow process definitions together with

related information such as input or output data definitions, and role definitions can be

*.xml

Workflow
Graphic
Design
Tool

*.dtd Xgen
(DXML)

 Java
Interface

Extractor/
Retriever

spec
definition Schema

Generator ORDBMS

 CLOB
 Utility

Database
Utility

 12

exported to the client side in one retrieval operation. XML document storage and retrieval

will be addressed in detail in section 4.

4. Storage and Retrieval in XML Repository

 A repository is the central area for holding all the information of an organization.

Therefore, the storage and retrieval of data objects are the most basic services that a

repository should provide. For an XML repository or XML database, recent research

work has focused on the efficient storage of XML document to take advantage of its

structure [ABS00].

4.1 Traditional Approaches to Implement XML Repository Storage

 There are obvious mismatches between traditional storage solutions and XML,

which has its own specific structure. XML documents associates semantics with data and

its DTD in the case of valid documents contains the structure definition. The following

table compares several straightforward approaches for storing XML documents.

Approach Advantages Drawbacks

A simple file 1. Free technology

2. Simple

3. Available on all systems

1. Need parsing to generate XML

structure for every access

2. No query searching

3. No concurrent access control

4. No scalability

A relational

database

1. Provide DBMS functionality

and reliability

2. Widely available

3. Standardized query (SQL)

1. No support for references,

hierarchical data structures and

multiple value fields

2.Expensive mapping from XML

 13

 model to relational model

3. Scalability hampered

An Object

solution

1. Provide DBMS functionality

and reliability

2. Standardized (ODMG)

3. Better distributed support (e.g..

CORBA, OID)

4. Support for query and

navigation access

5. Scalability

1. prone to deterioration in

performance for large data

volume

Table 1. Comparison of Traditional XML Repository Storage Approaches

 Many current commercial XML data servers use an object-relational system as a

backend database. In these systems, a storage schema is derived from the typing

information given by the DTD [ABS00].

4.2 A Native XML Database Approach

 A native XML database exploiting the semi-structure of the documents is a

database designed especially to store XML documents. It is another approach to be

considered to store data, especially in environments having a large collection of XML

documents. The main difference between a native XML database and other relational

database management systems or object database management systems is that the native

approach’s internal model is based on XML structure and not something else. As other

systems map XML documents to their own structures, additional layers are introduced

between logical data and physical storage. So updating and query processing will be less

efficient [CM00]. Tamino from Software AG is a famous native XML Database in the

 14

XML database market.

4.3 RepoX’s Approach for Storing and Retrieving Workflow Designs

 RepoX is an XML repository developed especially for storing and retrieving

workflow designs. The storage and retrieval strategy of RepoX does not simply fall into

one exact approach as described above. RepoX works with either a relational or an

object-relational database (currently Oracle8i or MySQL) at the backend and builds other

operations on top of it to provide more functions.

4.3.1 Modeling Process

 In RepoX, the metadata model is first created according to the structure of the

XML documents from the design tool. All these XML documents are related to workflow

design definitions such as network task definition, data type definition, domain

environment, and role domain definition. The DTD specifications for those definitions

are defined by the design tool developers. Following the diagram in Figure 4, a user can

define the database schema beginning with the DTD specifications.

Figure 4: Diagram of Modeling Process to Get Database Schema

 15

<!--
 Workflow TaskList Data Type Definition (DTD)
 Revision: 1.2
 Date: March 08 1999
 -->

 <!ELEMENT NetworkTask (Task, SimpleSubTaskList)>
 <!-- Task describes NetworkTask
 -->
 <!ATTLIST NetworkTask id ID #REQUIRED
 date CDATA #IMPLIED>

 <!ELEMENT Task (Name, Description, TaskType, Host, ForeignTask)>
 <!ATTLIST Task id ID #REQUIRED>
 <!ELEMENT SimpleSubTaskList (Task)*>
 <!ELEMENT Name (#PCDATA)>
 <!ELEMENT Description (#PCDATA)>
 <!ELEMENT TaskType (#PCDATA)>
 <!ELEMENT Host (#PCDATA)>
 <!ELEMENT ForeignTask (#PCDATA)>

Figure 5: A Simplified DTD of Network Task

 In step one, a workflow application developer can map the DTD specifications to

the UML meta model. During this phase, a user needs to analyze the DTD specifications

and decide on the tables (classes) to be created, the attributes to appear in the tables, and

the relationships between these tables. A simplified version of the DTD specifications for

the definition of network task is given in Figure 5.

Figure 6: Meta Model in RepoX

 16

 Step one is the most important phase because all the tables are defined here. It can

be in an ad-hoc manner so that some important or obvious tables are created first. Later,

more tables and relationships between tables can be added. In Figure 6, a UML diagram

of the meta model for RepoX is given.

 In step two, everything created in step one, including tables, attributes in the tables,

and relationships between tables, are all defined in the Java file named

MapXML2Tables.java. Figure 7 shows the code that gives the definition of tables.

 public static final String [] TABLE = {
 "xmldoc",

 "networktask",
 "task",

 "taskref",
 "dataobject",
 "roledomain",
 "wfrole"

 };

Figure 7: Tables Defined in MapXML2Tables.java

 Step three is actually automatic. The output of calling MapXML2Tables class can

be used directly by a database to create the database schema. For example, the definitions

of the table “xmldoc” and the table “task” for MySQL are given in Figure 8.

 If the workflow process definition is changed when the corresponding DTD

specifications are modified, the specification definitions will also need to be modified.

How to reflect these changes quickly in a repository and at the same time keep the

previous versions of documents valid is a problem. The XSL Transformations (XSLT)

can transform an XML document in one format to an XML document in another format.

Because of the changes made in the DTD, the old XML document may need to be

constructed. An application probably with a GUI tool should be developed to support

online editing and modifications of the specification definitions. New schema can be

generated according to the new specification definitions. This will be left to future work

 17

to support regenerating schema and still keeping compatibility with old data.

CREATE TABLE xmldoc (
 DocumentId int not null auto_increment,

 VersionNo int not null,
 DtdFileName varchar (254),

 XmlFileName varchar (254),
 DocumentText longblob,

 primary key (DocumentId, VersionNo)

);

 CREATE TABLE task (
 Name varchar (64) not null,

 Description varchar (64),
 TaskType varchar (64),
 Host varchar (64),
 ForeignTask varchar (64),

 xmldoc_DocumentId int not null,
 xmldoc_VersionNo int,
 primary key (Name, xmldoc_DocumentId),

 foreign key (xmldoc_DocumentId, xmldoc_VersionNo)
 references xmldoc (DocumentId, VersionNo)
);

Figure 8: Definitions of “xmldoc” and “task”

4.3.2 Data Filtering, Extraction, and Retrieval

 A data extraction and filtering component is used to extract and validate the data

taken from external data sources. Data filtering not only selects the XML document

elements that need to be extracted, but also checks data for validity and consistency.

According to the results of filtering, extraction will store atomic XML elements and

XML attributes (with types such as CDATA or PCDATA) as the values of the attributes in

the relational table. Composite XML elements, which contain other XML elements, are

stored as relational tables.

 During the extraction process, the DTD files of the XML document files are used

by Dynamic XML (DXML, from ObjectSpace, Inc.) to generate a Java Class for every

XML element. DXML makes it easier for the XML developer to develop XML

 18

applications by providing this Class with a way for “random access” of XML element. A

developer can access any part of the data at any time as a regular Java object. When the

XML document is viewed as a tree structure, the spec definition looks like a path

expression starting from the root node down to the desired leaf node. The destination is

the target atomic element that will be pulled out as the value of the attribute. An element

can also be referred to by substituting its name with the symbol ‘*’. The symbol ‘*’

means a collection and will return all elements that are the children of the element in the

current context, regardless of their tag names. For example, the spec definition is given as

{‘NetworkTask’, ‘SimpleSubTaskList’, ‘Task’, ‘*’}.

A spec definition is similar to expressions with XPath syntax. Figure 9 is an instance of

network task. According to the spec definition above, a collection of elements related to

the tag “task” will be extracted and stored in the table “task” created in the schema

generation phase. The whole XML document is saved as Character Large Objects

(CLOBs) in the table called “xmldoc”. In addition, the XML elements extracted and

stored in relational tables can be related to the XML document where they come from by

setting the foreign key to the table “xmldoc”. For more details of data filtering and

extraction from XML documents, see [AMS01].

 A network task can be a workflow if it is the root, or it can be a sub-workflow if it

is a component of another network task. A specific extraction utility is developed for an

XML document representing a network task. If a user chooses a network task and wants

to export it to the repository, the XML document representing this network task will be

parsed and all the network tasks it contains will also be exported to the repository. It is a

recursive procedure that all the related XML documents representing those network tasks

will be saved to the repository.

 The RepoX repository has a GUI with a workflow design tool integrated on the

client side. A single XML document can be selected and retrieved. The whole workflow

process definition together with related information, such as input or output data

 19

definitions and role definitions, can also be retrieved to the client side as one retrieval

operation. When a user wants to get a workflow design from the repository and review it

by using the design tool, all the metadata related to the workflow process definition are

already there.

 <?xml version="1.0"?>
 <!DOCTYPE NetworkTask SYSTEM "NetworkTask.dtd">

 <NetworkTask id="NetworkTask_HTBLAST">
 <Task id="HTBLAST">
 <Name>HTBLAST</Name>
 <Description>do HTBLAST search</Description>
 <TaskType>Non-transactional WorkFlow</TaskType>

 <Host></Host>
 <ForeignTask>false</ForeignTask>

 </Task>
 <SimpleSubTaskList>
 <Task id="start">
 <Name>start</Name>
 <Description>start HTBLAST</Description>
 <TaskType>Simple Non-transactional Task</TaskType>

 <Host></Host>
 <ForeignTask>false</ForeignTask>

 </Task>
 </SimpleSubTaskList>

 </NetworkTask>

Figure 9: An Example of XML Document for Network Task

5. Version and Configuration Management

 Version management is widely used in software development projects. Some well-

known version control systems are Revision Control System (RCS; 1980s), Concurrent

Versions System (CVS; 1986), and Source Code Control System (SCCS; 1972). Version

management is also important in workflow application development.

5.1 Version Management

 It is important to decide at which level to implement versioning. The simplest

approach is to store the entire XML document as different versions. However, too much

 20

storage space will be wasted. As an XML document has a tag-based structure, we can

treat each tag as a versionable item. If the XML document is mapped to an Object-

Oriented database, every tag can have its own OID. This approach will be too

complicated if the XML document has many levels. Therefore, deciding the level for

versioning is application and user dependent. In RepoX, the level is set at the level of

simple task and sub-workflow for network task definition. A simple task is atomic, and a

network task, which can contain other network tasks, is composite. A version of a

network task is only stored once no matter how many times it is a component in other

network tasks. Figure 10 shows a network task C that is referenced both in network task

A and network task B. However network task C will be stored only once; the additional

storage includes the links from network task A to network task C and from network task

B to network task C. Storage space is not wasted for duplicate storage in this approach. If

the structure of a network task is modified for a new version, it is easy to trace the

changes.

Figure 10: Network Task C both in Network Task A and B

 For efficient version storage, one common solution is to store each new version as

the delta changes of the previous version. Another popular solution is to use reverse

 21

deltas to reconstruct versions. Because the current version is always used most, it is

stored entirely in the repository. The previous versions can be recomputed using the

reverse deltas. This solution has an advantage over forward delta storage. As more and

more revisions are added, the faster retrieval time for the latest version becomes more

significant.

 In the RepoX repository, several developers can work cooperatively on the same

workflow project, possibly remotely, at the same time. A user can obtain a copy of the

metadata for a specific workflow design from the repository and store it locally (Check

out). The user can then view the workflow definition graphically and make modifications.

When all the changes are made, the user can export it back to the repository (Check in).

Figure 11 shows the process of check-in and check-out.

Figure 11: Check in and Check out

 It may be necessary for more than one developer to work on the same project and

modify the same version of an XML document at the same time. One strict but simple

choice is to lock the whole XML document. Other users can not make changes on this

 22

version item until it is checked back in. Consistency is maintained, since only one user at

a time can work on a specific document. Another open but more complicated solution is

to allow concurrent revision in a regulated fashion via a temporary branch in the version

history of an item [Whi91]. Merging may occur in a later phase. In the RepoX repository,

the whole XML document is locked when a user checks it out. It will be unlocked when

explicitly checked in again. This is implemented by maintaining a consistent and

persistent lock table in the RepoX.

5.2 Configuration Management

 Configuration Management is used to coordinate the work of different developers

who are working on the same project at the same time. Lack of configuration

management will cause many problems, such as missing documents, inability to track the

changes, and inability to maintain different versions. “A configuration is a named

collection of atomic entities and other configurations” [ABC+99]. Unlike version

management that treats atomic entities, configure management controls composites or

configurations by applying selection mechanisms.

 To consider all atomic entities at the same time, the number of possible

combinations of these versions will be too large. Attempts to deal with all the

combinations manually are impossible and configuration item selection becomes very

important. Selecting too many configuration items will cause hampered visibility and

poor management rather than giving improved control. On the other hand, selecting too

few configuration items will cause not only loss of visibility down to the required level

for maintenance or modification, but also difficulty in managing the changes effectively.

 Intentional versioning uses formulated selection rules (such as the latest version) to

choose the particular variant and version of an atomic entity, thus automating the

selection process and reducing the number of the combinations. Many existing

configuration management systems, such as Rational ClearCase and CVS (Concurrent

 23

Versions System), use intentional versioning.

 Many state-based systems (a version is characterized by its state, e.g., revision

running under Solaris) use extensional versioning model [ABC+99]. A versioned item is

defined as a version set by recursively enumerating its members. Its member can be

another versioned item. Each version is identified by a unique version number and is

immutable if it has been checked in. SCCS (Source Code Control System) and RCS

(Revision Control System) use extensional versioning.

Figure 12: Gene Workflow

 In the RepoX repository, a task is the atomic object and a network task is the

composite object that may contain tasks and other sub network tasks. As the Gene

workflow in Figure 12 shows, there are four simple tasks, “Retrieve”, “StoreCosmid”,

 24

“SetReads”, and “Annotation” as well as one sub network task called “HTBLAST”. As

the definition and creation of a composite object may cause configuration problems,

extensional versioning is used for the configuration of workflow design structure and

versions.

 Network tasks can be shared and invoked as sub network tasks in other network

tasks. There is a relation between a network task and its sub network task, because the

sub network task can be invoked in different conditions by different network tasks.

Suppose network task N1 has a task T1 and a sub network task N3 with a relation R13, and

network task N2 has a task T2 and a sub network task N3 with a relation R23. So N3 is

shared both by N1 and N2.

 N1 = {T1, N3; R13} (5.1)

 N2 = {T2, N3; R23} (5.2)

If we change the property of N3 in N2 and make it a new version to N3’, N2 will be

 N2 = {T2, N3’; R23} (5.3)

If we do not take the versioning into consideration, the specifications for both network

task N1 and N2 will both include N3’.

 N1 = {T1, N3’; R13} (5.4)

N1 will have an unexpected change as N3 is changed to a new version N3’, so N1 may fail.

To avoid this, we introduce the rule in RepoX that a network task must be identified by

both its name and version. Therefore, N1 is not changed in this case.

 N1 = {T1, N3; R13} (5.1)

 To represent the structure and version of the components of a network task, a

directed acyclic graph (DAG) is stored for every version. An edge in the graph means

that the end node, which represents a sub network task, is a component of the start node.

For network task N1 in the previous example, the graph has only one edge with two nodes

as (N1; v1.0) ! (N3; v1.0). This indicates that network task N1 with version 1.0 has one

sub network task N3 with version 1.0. In this way, unexpected changes can be avoided as

 25

all network tasks are identified by both name and version.

6. Use RepoX in An Adaptive Workflow Application

6.1 Concept of Adaptive Workflow

 The unpredictable and evolving environments make it necessary for the current

workflow systems to be able to adapt dynamically. To handle unexpected situations or

failures, support for ad-hoc processes and dynamic process models are required [MJ98].

An adaptive workflow system should be able to redesign and make native on-the-fly

modifications due to the changing conditions. Tasks executed for some specific purposes

in the workflow systems need to have the ability to extend, replace, and re-order [Aal99].

In such a way, new situations and unexpected difficulties can be handled during the

execution of workflow instances. Some requirements for an adaptive workflow are as

follows:

• be able to capture and maintain knowledge from external environments

• be able to make knowledge-based decisions

• be able to select right resources

• be able to synthesize plans and schedules

• be able to re-plan and re-execute processes

• be able to handle unexpected exceptions

 The ORBWork is one of the implementations of the METEOR workflow

enactment services. One of the design goals of ORBWork is to provide an enactment

framework that is suitable for supporting dynamic and adaptive workflow. The

architecture of the enactment system in ORBWork has been designed to support dynamic

changes and serve as a platform for conducting research in the area of dynamic and

collaborative workflows [KSM99].

 26

6.2 RepoX in Fungal Genome Project

 The fungal genome project is sponsored by the Genetics Department of the

University of Georgia. The current goals of this project are to create high-resolution of

physical and genetic maps, determine the genome’s complete DNA sequences, and to

identify, map, and determine the functions of all genes [HMA+99]. Many tasks, such as

experimenting, data analysis, and annotation, can all be integrated in an automated

workflow with much less human interference. These tasks can be organized into a

workflow to carry out specific functions.

 The immediate goal of the RepoX repository project is to help developers to

develop workflow applications in the fungal genome project. The Gene workflow as

illustrated in Figure 10 is a small part in the whole fungal genome workflow. It first

retrieves all the sequence files generated by other workflow applications from a different

machine. These sequence files are used to do HTBLAST search against the public

database [CCG98]. The searching process may take several hours or longer. The results

are stored in our private database, and the annotation steps can be carried out to analyze

the search results.

 The RepoX repository provides supports at the design time. There are many

different ways to develop workflow applications. It can be developed directly by some

script languages like Perl or by a workflow management systems (WfMS’s) like

ORBWork. The RepoX supports both approaches. After the design time, the RepoX can

create some skeleton codes for Perl scripts that follow the logical design of the workflow.

The following table compares the ORBWork approach and the Perl’s approach to develop

workflow applications with the support of RepoX.

 With the help of the RepoX repository, the designs of the fungal genome workflow

can be kept persistently and developers can review any version of a workflow application

freely. Many bioinformatics workflow applications are developed by the language Perl.

Because the RepoX repository generates skeleton codes following the logical design of

 27

the workflow application, developers can concentrate on developing various applications.

Application codes can be integrated in these skeleton codes easily.

 ORBWork Perl

Design Same Same

Generate Code .spec and .java files skeleton files in Perl

Custom Coding Special tasks Bulk of coding

Compile Built-in the design tool Perl compiler or interpreter

Installation Packaged and only need one

installation command

By developer

Run Can be invoked from browser

to choose from task list

Run *.pl to start the

workflow

Table 2: Comparison of ORBWork and Perl’s Approaches

 The RepoX repository can also be used to store the XML documents representing

the structure of a circuit, which can be an biochemical network model. The DTD, and

some XML document examples are addressed in Appendix A.

6.3 Searching, Querying, and Versioning

 The repository stores all the metadata of the workflow systems including process

definition, data definition, and role definition. Because adaptive workflow systems have

the ability to capture and maintain knowledge of the changing environments to make

knowledge-based decisions, the repository should support searching, querying, and

retrieving the existing workflow definitions that match those decisions. All these

operations can be done through a GUI query tool or an API that directly visits the

repository. Any task or network task, which is the result of searching, can be reviewed,

 28

modified, or incorporated to replace other task or network task. The modified part of the

whole workflow then can be recompiled and re-executed. In this way, all the changes are

made in an on-the-fly way to achieve re-planning and problems-fixing goal during

execution time.

 The RepoX repository provides full support for searching, querying, and

versioning. An XML document can be modeled as a “rooted, directed, ordered, labeled

tree” [Tom98]. To access and manipulate the XML document as a tree structure, the

Document Object Model (DOM) core interfaces, which provide an open solution for a

variety of tools to manage documents, are used in the RepoX. The DOM represents the

XML document as a hierarchical tree of elements and attributes. A user can view and

browse the XML elements as a tree structure (expanding from the current non-leaf node)

using the application that implements the DOM API. Figure 13 gives an example of a

DOM tree of a network task called “Gene”.

Figure 13: DOM Tree of Network Task

 29

 With the help of a navigation tool, a user can select the XML document and then

click on the node representing the current object to see the next detailed level until the

leaf node level. Figure 14 shows the navigation of the network task “Gene” and a user

can browse it using the functions provided by Java JTree. Every non-leaf node can be

clicked to show the next detailed level.

Figure 14: Navigate Network Task “Gene”

 A user-friendly GUI tool is developed to make it easy for a user to query the

repository. Given some key words such as the task name, all the related versions of this

task, already extracted to the repository, will appear on the screen. A user can choose the

latest version or any previous version. Figure 15 is a screenshot of the GUI from the

client side.

 30

Figure15: Screenshot of GUI at the Client Side

7. Conclusions and Future Work

 The repository is the foundation to provide the mechanisms for storage, access, and

control management of all the information related to an enterprise. As XML becomes the

new universal data format, an XML repository is needed to manage all the XML

documents. Typically, an XML repository uses a database as the backend to store XML

documents. Software is also needed to transfer data from an XML document to the

database and from the database to an XML document.

 In this paper we introduced RepoX, an XML repository that provides such basic

functions as storage/retrieval management, version control, configuration management,

searching and browsing, as well as support for adaptive workflows. The architecture of

 31

RepoX is discussed, and some of it features are presented. The main goal of this project is

to develop an XML repository for workflow designs and specifications.

 In RepoX, the storage of XML documents is different from some traditional

approaches. We developed a modeling process procedure to help users produce a schema

from DTD specifications. RepoX is very useful in developing workflow applications. It

has a graphical workflow design tool integrated on the client side. At design time, a user

can use the tool to design the workflow logically and then export the workflow

definitions in the XML document format to the repository. Provided with version and

configuration control, a workflow developer can review and make modifications on any

version of a workflow application stored in the repository by means of check-in and

check-out. The whole design history is kept, which makes it is easy to move back to any

previous version. If a workflow application is developed in the Perl language, RepoX can

generate skeleton code that follow the workflow logical design. Other applications can be

integrated into the skeleton code easily. RepoX is used in the fungal genome project,

sponsored by the Genetics Department of the University of Georgia, for developing

workflow applications.

 Some future work is still left to do. An application with a GUI can be developed to

support the online editing and modifications of the specification definitions from

different DTD specifications. Another area of improvement relates to the way that

versions are stored. For different versions of the same network task workflow definition,

only the delta changes should be stored for efficiency. A function to compute the

minimum changes between different versions of the same item should also be provided.

In this way, a previous version can be computed from the latest version with the reverse

delta changes. In RepoX, a versionable item is a simple task or a network task. Support

for versioning with low-level granularity should also be provided. Security issues should

also be considered to keep track of users who are currently working with the repository.

So far only the user authentication information and the lock table are kept. Access control

 32

needs to be provided to limit the access rights of an authenticated user or user group on a

given document resource. To support more concurrency, locking should be at the

document fragment level rather the whole document. In this way, fragments of an XML

document can be checked out and locked independently. Different types of locks, such as

read locks and write locks, should also be provided to increase concurrency.

 In the RepoX repository, the elements of an XML document are mapped to Java

classes by the product called DXML (Dynamical XML) and those elements are stored in

tables of a database by the predefined schema for efficient filtering and storage. A native

XML database, which exploits the semi-structured data, may be another approach to be

considered. An XML database can give fast retrieval and avoid generating schema at

runtime for the translation to tables or any other non-XML data structures. It should

support the XQuery language [W3C01], which simplifies the processing of the XML

documents by utilizing the XML structure.

 33

CHAPTER 3

CONCLUSIONS AND FUTURE WORK

 The repository is the foundation to provide the mechanisms for storage, access, and

control management of all the information related to an enterprise. As XML becomes the

new universal data format, an XML repository is needed to manage all the XML

documents. Typically, an XML repository uses a database as the backend to store XML

documents. Software is also needed to transfer data from an XML document to the

database and from the database to an XML document.

 In this paper we introduced RepoX, an XML repository that provides such basic

functions as storage/retrieval management, version control, configuration management,

searching and browsing, as well as support for adaptive workflows. The architecture of

RepoX is discussed, and some of it features are presented. The main goal of this project is

to develop an XML repository for workflow designs and specifications.

 In RepoX, the storage of XML documents is different from some traditional

approaches. We developed a modeling process procedure to help users produce a schema

from DTD specifications. RepoX is very useful in developing workflow applications. It

has a graphical workflow design tool integrated on the client side. At design time, a user

can use the tool to design the workflow logically and then export the workflow

definitions in the XML document format to the repository. Provided with version and

configuration control, a workflow developer can review and make modifications on any

version of a workflow application stored in the repository by means of check-in and

check-out. The whole design history is kept, which makes it is easy to move back to any

previous version. If a workflow application is developed in the Perl language, RepoX can

 34

generate skeleton code that follow the workflow logical design. Other applications can

be integrated into the skeleton code easily. RepoX is used in the fungal genome project,

sponsored by the Genetics Department of the University of Georgia, for developing

workflow applications.

 Some future work is still left to do. An application with a GUI can be developed to

support the online editing and modifications of the specification definitions from

different DTD specifications. Another area of improvement relates to the way that

versions are stored. For different versions of the same network task workflow definition,

only the delta changes should be stored for efficiency. A function to compute the

minimum changes between different versions of the same item should also be provided.

In this way, a previous version can be computed from the latest version with the reverse

delta changes. In RepoX, a versionable item is a simple task or a network task. Support

for versioning with low-level granularity should also be provided. Security issues should

also be considered to keep track of users who are currently working with the repository.

So far only the user authentication information and the lock table are kept. Access

control needs to be provided to limit the access rights of an authenticated user or user

group on a given document resource. To support more concurrency, locking should be at

the document fragment level rather the whole document. In this way, fragments of an

XML document can be checked out and locked independently. Different types of locks,

such as read locks and write locks, should also be provided to increase concurrency.

 In the RepoX repository, the elements of an XML document are mapped to Java

classes by the product called DXML (Dynamical XML) and those elements are stored in

tables of a database by the predefined schema for efficient filtering and storage. A native

XML database, which exploits the semi-structured data, may be another approach to be

considered. An XML database can give fast retrieval and avoid generating schema at

runtime for the translation to tables or any other non-XML data structures. It should

support the XQuery language [W3C01], which simplifies the processing of the XML

 35

documents by utilizing the XML structure.

 36

REFERENCES

[Aal99] W.M.P. van der Aalst. How to handle dynamic change and capture

 management information? An approach based on generic workflow

 models. Department of Information and Technology, Eindhove University

 of Technology. pp. 5-8, 1999.

[ABC+99] Ulf Asklund, Lars Bendix, Henrik B. Christensen, and Boris Magnusson.

 The Unified Extensional Versioning Model. System Configuration

 Management, Proc of the 9th International Symposium, SCM-9, pp. 100-122,

 Sep 1999.

[ABS00] Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web:

 From Relations to Semistructured Data and XML. Morgan Kaufmann

 Publishers, pp. 235-238, 2000.

[All01] Rob Allen. Workflow: An Introduction. Workflow Management Coalition,

 pp. 24-32, 2001.

[AMS01] I. Budak Arpinar, John Miller, and P. Sheth. An Efficient Data

 Extraction and Storage Utility for XML Documents. Proceedings of the 39th

 Annual ACM Southeast Conference (ACMSE’01), Athens, Georgia. pp.

 293-295, Mar 2001.

[BG97] Dirk Bartels and Matthew Gertner. A Scalable XML Repository.

 SGML World 1997, Washington D.C., Nov 1997.

[BK99] Ketan A. Bhukhanwala and Krys J. Kochut. jFlow: Workflow

Interoperablility for the Meter Workflow Management System, UGA-CS

Masters Thesis, 1999.

 37

[CCG98] Nick Camp, Haruna Cofer and Roberto Gomperts. High-Throughput BLAST,

White Paper, pp. 2-8, Sep 1998.

[CM00] Kanne, C.-C. and G. Moerkotte. Efficient Storage of XML Data. Proc. of

 the 16th Int. Conf. On Data Engineering (ICDE), San Diego, 2000.

[DKM+97] S. Das, K. Kochut, J. Miller, A. Sheth, and D. Worah. ORBWork: A

 Reliable Distributed CORBA-based Workflow Enactment Systems for

 METEOR. Technical Report UGA-CS-TR-97-001, University of

 Georgia, Department of Computer Science, 1997.

[Eli01] Elizabeth Castro. XML—For the World Wide Web. Peachpit Press, 2001.

[EM95] Bonnie M. Edwards and John A. Miller. Implementing and Evaluating

 Common Repository Services. UGA_CS Masters Thesis, 1995.

[Fla96] Ronny G. Flatscher. An Overview of the Architecture of EIA's CASE Data

 Interchange Format (CDIF). 1996.

[HHS+99] Betty Harvey, Denis Hill, Ron Schuldt, Martin Bryan, Dick Rarman,

 Gerard Freriks and David Webber. White Paper on Global XML

 Repository for XML/EDI. The XML/EDI Group, pp. 8-14, Feb 1999.

[HMA+99] David Hall, John A. Miller, Jonathan Arnold, Krys J. Kochut, Amit P.

 Sheth, and Michael J. Weise. Using Workflow to Build an Information

 Management System for a Geographically Distributed Genome

 Sequence Initiative. Genomics of Plants and Fungi, R.A. Prade and H.J.

 Bohner, Editors, 2001.

[Haj00] Horiuchi Hajime. Standardization of Information Resource Dictionary

 System. IPSJ MAGAZINE, Vol.37 No.07, 2000.

[Hol95] D. Hollingsworth. The Workflow Reference Model. Technical

 Report TC00-1003, Issue 1.1. The Workflow Management Coalition,

 Brussels, Belgium, pp. 21-27, November 1995.

 38

[JK98] Yong Jiang and Krys J. Kochut. The Repository System of Meteor2

Workflow Management System, UGA-CS Masters Thesis, 1998.

[KSM99] Krys J. Kochut, Amit P. Sheth, and John A. Miller. Optimizing

 Workflow-Using a CORBA-based, fully distributed process to create

 scalable, dynamic systems. Component Strategies, Vol. 1, No. 9, pp. 45-57,

 1999.

[KS95] N. Krishnakumar and A. Sheth. Managing Heterogeneous Multi-System

 Tasks to Support Enterprise-Wide Operations. The Journal on Distributed

 and Parallel Database Systems, 3 (2), 1995.

[LLO96] Chengfei Liu, Hui Li, and Maria E Orlowska. Object-Oriented Design of

 Repository for Enterprise Workflows. CRC for Distributed Systems

 Technology and Computer Science Department, The University of

 Queensland, 1996.

[Mar01] Mike Marin. Workflow Process Definition Interface—XML Process

 Definition Language. The Workflow Management Coalition Specification,

 pp. 15-31, 2001.

[McC92] Carma McClure. The Three Rs of Software Automation: Re-engineering,

 Repository, and Reusability. Prentice Hall, pp. 157-160, 1992.

[MJ98] Dragos A. Manolescu and Ralph E.Johnson. Dynamic Object Model and

 Adaptive Workflow. Department of Computer Science, University of

 Illinois at Urbana-Champaign. Technical Report, 1998.

[MPK+94] John A. Miller, Walter D. Potter, Krys J. Kochut, Sunderratnan Krishnan,

 Bonnie Edwards, Wensheng Zhang and Jayesh Sahasi. Design of a WSRC

 Repository with an End-User Emphasis. UGA-CS Technical Report, pp.

 50-53, 1994.

 39

[MPS+97] John A. Miller, Devanand Palaniswami, Amit P. Sheth, Krys J. Kochut and

 Harvinder Singh. WebWork: METEOR2’s Web-Based Workflow

 Management System. Journal of Intelligent Information Systems, Special

 Issue on Workflow Management Systems, Vol. 10, No. 2, pp. 185-215, 1997.

[SKM+96] A. Sheth, K. Kochut, J. Miller, D. Worah, S. Das, C. Lin, D. Palaniswami, J.

 Lynch and I. Shevchenko. Supporting State-Wide Immunization Tracking

 Using Multi-Paradigm Workflow Technology. Proc. of the 22nd Intl. Conf.

 On Very Large Database (VLDB96), 1996.

[Tan94] Adrienne Tannenbaum. Implementing a Corporate Repository: The Models

 Meet Reality. John Wiley & Sons, Inc. pp. 275-286, 1994.

[Tom98] Frank Tompa. University of Waterloo. Providing Flexible Access in a

 Query Language for XML. QL 98, position paper, 1998.

[Wfm00] Workflow Management Coalition. Workflow Standards – Interoperability

 Wf-XML Binding. Document Number WFMC-TC-1023, pp.8-28, May 2000.

[Whi91] David Whitgift. Methods and Tools for Software Configuration

 Management. John Wiley and Sons Ltd., 1991.

[WS97] D. Worah and A. Sheth. Transactions in Transactional Workflows.

 Advanced Transaction Models and Architectures, S. Jajodia and L.

 Kerschberg, Eds., Kluwer Academic Publishers, 1997.

[WJ93] Lois Wakeman and Jonathan Jowett. PCTE: The Standard for Open

 Repositories. Prentice Hall, pp. 1-14, 1993.

[W3C01] W3C Working Draft. XQuery: A Query Language for XML,

 www.w3.org/TR/2001/WD-xquery-20010215. Feb, 2001.

 40

APPENDIX A

XML Documents for Biochemical Network Models

 In the fungal genome projects, XML documents representing Biochemical Network

Models can be stored in the RepoX repository.

 The DTD associated with those XML documents is shown as follows.

 41

 Figure 16 is the diagram for the reaction of Hydrogen Combustion

(H_2 + O -> OH + H).

Figure 16: Reaction Model for Hydrogen Combustion

 The following is the XML document that represents the diagram in Figure 16.

<?xml version="1.0"?>
<!--
 Model2
 Revision: 1
 Wed Aug 21 22:25:29 EDT 2001
-->
<!DOCTYPE Circlet SYSTEM "c:/testbedServer/repository/repo/dtd/Circlet.dtd">
<Circlet id="Circlet_Model2">
 <Name>Model2</Name>
 <Nspec>6</Nspec>
 <Nreac>3</Nreac>
 <Time0>0.000</Time0>
 <Time1>10.00000</Time1>
 <Ntime>100</Ntime>
 <Jtime>1</Jtime>
 <SpecList>
 <Spec id="H_2">
 <Name>H_2</Name>

 42

 <XSpec0>6.000</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="O_2">
 <Name>O_2</Name>
 <XSpec0>3.000</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="O">
 <Name>O</Name>
 <XSpec0>0.000</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="H">
 <Name>H</Name>
 <XSpec0>0.010</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="OH">
 <Name>OH</Name>
 <XSpec0>0.000</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="H_2O">
 <Name>H_2O</Name>
 <XSpec0>0.000</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 </SpecList>
 <ReactionList>
 <Reaction id="action1">
 <Name>H_2+O</Name>
 <Rkfor>1.0000</Rkfor>
 <Bkbak>0.0200</Bkbak>
 <Nipart>2</Nipart>
 <Nopart>2</Nopart>
 <Jkin>2</Jkin>
 </Reaction>
 <Reaction id="action2">
 <Name>O_2+H</Name>
 <Rkfor>1.0000</Rkfor>

 43

 <Bkbak>0.0200</Bkbak>
 <Nipart>2</Nipart>
 <Nopart>2</Nopart>
 <Jkin>2</Jkin>
 </Reaction>
 <Reaction id="action3">
 <Name>OH+H_2</Name>
 <Rkfor>0.5000</Rkfor>
 <Bkbak>0.0100</Bkbak>
 <Nipart>2</Nipart>
 <Nopart>2</Nopart>
 <Jkin>2</Jkin>
 </Reaction>
 </ReactionList>
 <ReactionInputList>
 <Parameter Reactionidref="action1" Specidref="H_2"/>
 <Parameter Reactionidref="action1" Specidref="O"/>
 <Parameter Reactionidref="action2" Specidref="O_2"/>
 <Parameter Reactionidref="action2" Specidref="H"/>
 <Parameter Reactionidref="action3" Specidref="OH"/>
 <Parameter Reactionidref="action3" Specidref="H_2"/>
 </ReactionInputList>
 <ReactionOutputList>
 <Parameter Reactionidref="action1" Specidref="OH"/>
 <Parameter Reactionidref="action1" Specidref="H"/>
 <Parameter Reactionidref="action2" Specidref="OH"/>
 <Parameter Reactionidref="action2" Specidref="O"/>
 <Parameter Reactionidref="action3" Specidref="H_2O"/>
 <Parameter Reactionidref="action3" Specidref="H"/>
 </ReactionOutputList>
</Circlet>

 44

 Figure 17 is the diagram for the Kinetics model of quinic acid and metabolism.

Figure 17: Kinetics Model of Quinic Acid and Metabolism

 The following is the XML document that represents the diagram in Figure 17.

<?xml version="1.0"?>
<!--
 qa-model
 Revision: 1
 Thu Aug 23 12:25:29 EDT 2001
-->
<!DOCTYPE Circlet SYSTEM "c:/testbedServer/repository/repo/dtd/Circlet.dtd">
<Circlet id="Circlet_qa_model">
 <Name>qa_model</Name>
 <Nspec>37</Nspec>

 45

 <Nreac>43</Nreac>
 <Time0>0.00000000D+00</Time0>
 <Time1>0.10000000D+03</Time1>
 <Ntime>10000</Ntime>
 <Jtime>1</Jtime>
 <SpecList>
 <Spec id="qa_x_0">
 <Name>qa_x_0</Name>
 <XSpec0>0.10000000D+00</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="qa_2_0">
 <Name>qa_2_0</Name>
 <XSpec0>0.10000000D+00</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="qa_4_0">
 <Name>qa_4_0</Name>
 <XSpec0>0.10000000D+00</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="qa_3_0">
 <Name>qa_3_0</Name>
 <XSpec0>0.10000000D+00</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="qa_y_0">
 <Name>qa_y_0</Name>
 <XSpec0>0.10000000D+00</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="qa_1S_0">
 <Name>qa_1S_0</Name>
 <XSpec0>0.10000000D+00</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="qa_1F_0">
 <Name>qa_1F_0</Name>
 <XSpec0>0.10000000D+00</XSpec0>
 <Jfix>0</Jfix>
 </Spec>

 46

 <Spec id="qa_x_1">
 <Name>qa_x_1</Name>
 <XSpec0>0.00000000D+00</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="qa_2_1">
 <Name>qa_2_1</Name>
 <XSpec0>0.00000000D+00</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="qa_4_1">
 <Name>qa_x_0</Name>
 <XSpec0>0.00000000D+00</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="qa_3_1">
 <Name>qa_3_1</Name>
 <XSpec0>0.00000000D+00</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="qa_y_1">
 <Name>qa_y_1</Name>
 <XSpec0>0.00000000D+00</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="qa_1S_1">
 <Name>qa_1S_1</Name>
 <XSpec0>0.00000000D+00</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="qa_1F_1">
 <Name>qa_1F_1</Name>
 <XSpec0>0.00000000D+00</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="qa_x_r">
 <Name>qa_x_r</Name>
 <XSpec0>0.00000000D+00</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="qa_2_r">

 47

 <Name>qa_2_r</Name>
 <XSpec0>0.00000000D+00</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="qa_4_r">
 <Name>qa_4_r</Name>
 <XSpec0>0.00000000D+00</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="qa_3_r">
 <Name>qa_3_r</Name>
 <XSpec0>0.00000000D+00</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="qa_y_r">
 <Name>qa_y_0</Name>
 <XSpec0>0.00000000D+00</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="qa_1S_r">
 <Name>qa_1S_r</Name>
 <XSpec0>0.00000000D+00</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="qa_1F_r">
 <Name>qa_1F_r</Name>
 <XSpec0>0.00000000D+00</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="qa_x_p">
 <Name>qa_x_p</Name>
 <XSpec0>0.00000000D+00</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="qa_2_p">
 <Name>qa_2_p</Name>
 <XSpec0>0.00000000D+00</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="qa_4_p">
 <Name>qa_4_p</Name>

 48

 <XSpec0>0.00000000D+00</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="qa_3_p">
 <Name>qa_3_p</Name>
 <XSpec0>0.00000000D+00</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="qa_y_p">
 <Name>qa_y_p</Name>
 <XSpec0>0.00000000D+00</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="qa_1S_p">
 <Name>qa_1S_p</Name>
 <XSpec0>0.00000000D+00</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="qa_1F_p">
 <Name>qa_1F_p</Name>
 <XSpec0>0.00000000D+00</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="Sucrose">
 <Name>Sucrose</Name>
 <XSpec0>1.00000000D+01</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="qa_1S_p_and_qa_1F_p">
 <Name>qa_1S_p/qa_1F_p</Name>
 <XSpec0>0.20000000D+01</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="qa_1S_p_and_QA">
 <Name>qa_1S_p/QA</Name>
 <XSpec0>0.00000000D+00</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="QA">
 <Name>QA</Name>
 <XSpec0>0.00000000D+00</XSpec0>

 49

 <Jfix>0</Jfix>
 </Spec>
 <Spec id="SA">
 <Name>SA</Name>
 <XSpec0>0.00000000D+00</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="DHq">
 <Name>DHq</Name>
 <XSpec0>0.00000000D+00</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="DHS">
 <Name>DHS</Name>
 <XSpec0>0.00000000D+00</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="PCA">
 <Name>PCA</Name>
 <XSpec0>0.10000000D+00</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 <Spec id="QA_e">
 <Name>QA_e</Name>
 <XSpec0>0.10000000D+01</XSpec0>
 <Jfix>0</Jfix>
 </Spec>
 </SpecList>
 <ReactionList>
 <Reaction id="Ax">
 <Name>Ax</Name>
 <Rkfor>0.10000000D+01</Rkfor>
 <Bkbak>0.20000000D-01</Bkbak>
 <Nipart>2</Nipart>
 <Nopart>1</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="A2">
 <Name>A2</Name>
 <Rkfor>0.10000000D+01</Rkfor>
 <Bkbak>0.20000000D-01</Bkbak>

 50

 <Nipart>2</Nipart>
 <Nopart>1</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="A4">
 <Name>A4</Name>
 <Rkfor>0.10000000D+01</Rkfor>
 <Bkbak>0.20000000D-01</Bkbak>
 <Nipart>2</Nipart>
 <Nopart>1</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="A3">
 <Name>A3</Name>
 <Rkfor>0.10000000D+01</Rkfor>
 <Bkbak>0.20000000D-01</Bkbak>
 <Nipart>2</Nipart>
 <Nopart>1</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="Ay">
 <Name>Ay</Name>
 <Rkfor>0.10000000D+01</Rkfor>
 <Bkbak>0.20000000D-01</Bkbak>
 <Nipart>2</Nipart>
 <Nopart>1</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="A1S">
 <Name>A1S</Name>
 <Rkfor>0.10000000D+01</Rkfor>
 <Bkbak>0.20000000D-01</Bkbak>
 <Nipart>2</Nipart>
 <Nopart>1</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="A1F">
 <Name>A1F</Name>
 <Rkfor>0.10000000D+01</Rkfor>
 <Bkbak>0.20000000D-01</Bkbak>
 <Nipart>2</Nipart>

 51

 <Nopart>1</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="Sx">
 <Name>Sx</Name>
 <Rkfor>0.10000000D+01</Rkfor>
 <Bkbak>0.00000000D+00</Bkbak>
 <Nipart>1</Nipart>
 <Nopart>2</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="S2">
 <Name>S2</Name>
 <Rkfor>0.10000000D+01</Rkfor>
 <Bkbak>0.00000000D+00</Bkbak>
 <Nipart>1</Nipart>
 <Nopart>2</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="S4">
 <Name>A4</Name>
 <Rkfor>0.10000000D+01</Rkfor>
 <Bkbak>0.00000000D+00</Bkbak>
 <Nipart>1</Nipart>
 <Nopart>2</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="S3">
 <Name>S3</Name>
 <Rkfor>0.10000000D+01</Rkfor>
 <Bkbak>0.00000000D+00</Bkbak>
 <Nipart>1</Nipart>
 <Nopart>2</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="Sy">
 <Name>Sy</Name>
 <Rkfor>0.10000000D+01</Rkfor>
 <Bkbak>0.00000000D+00</Bkbak>
 <Nipart>1</Nipart>
 <Nopart>2</Nopart>

 52

 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="S1S">
 <Name>S1S</Name>
 <Rkfor>0.10000000D+01</Rkfor>
 <Bkbak>0.00000000D+00</Bkbak>
 <Nipart>1</Nipart>
 <Nopart>2</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="S1F">
 <Name>S1F</Name>
 <Rkfor>0.10000000D+01</Rkfor>
 <Bkbak>0.00000000D+00</Bkbak>
 <Nipart>1</Nipart>
 <Nopart>2</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="Lx">
 <Name>Lx</Name>
 <Rkfor>0.10000000D+01</Rkfor>
 <Bkbak>0.00000000D+00</Bkbak>
 <Nipart>1</Nipart>
 <Nopart>2</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="L2">
 <Name>L2</Name>
 <Rkfor>0.10000000D+01</Rkfor>
 <Bkbak>0.00000000D+00</Bkbak>
 <Nipart>1</Nipart>
 <Nopart>2</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="L4">
 <Name>L4</Name>
 <Rkfor>0.10000000D+01</Rkfor>
 <Bkbak>0.00000000D+00</Bkbak>
 <Nipart>1</Nipart>
 <Nopart>2</Nopart>
 <Jkin>1</Jkin>

 53

 </Reaction>
 <Reaction id="L3">
 <Name>L3</Name>
 <Rkfor>0.10000000D+01</Rkfor>
 <Bkbak>0.00000000D+00</Bkbak>
 <Nipart>1</Nipart>
 <Nopart>2</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="Ly">
 <Name>Ly</Name>
 <Rkfor>0.10000000D+01</Rkfor>
 <Bkbak>0.00000000D+00</Bkbak>
 <Nipart>1</Nipart>
 <Nopart>2</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="L1S">
 <Name>L1S</Name>
 <Rkfor>0.10000000D+01</Rkfor>
 <Bkbak>0.00000000D+00</Bkbak>
 <Nipart>1</Nipart>
 <Nopart>2</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="L1F">
 <Name>L1F</Name>
 <Rkfor>0.10000000D+01</Rkfor>
 <Bkbak>0.00000000D+00</Bkbak>
 <Nipart>1</Nipart>
 <Nopart>2</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="I1">
 <Name>I1</Name>
 <Rkfor>0.10000000D+01</Rkfor>
 <Bkbak>0.00000000D+00</Bkbak>
 <Nipart>3</Nipart>
 <Nopart>2</Nopart>
 <Jkin>1</Jkin>
 </Reaction>

 54

 <Reaction id="I2">
 <Name>I2</Name>
 <Rkfor>0.50000000D+01</Rkfor>
 <Bkbak>0.10000000D+00</Bkbak>
 <Nipart>2</Nipart>
 <Nopart>2</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="M1">
 <Name>M1</Name>
 <Rkfor>0.10000000D+01</Rkfor>
 <Bkbak>0.20000000D-01</Bkbak>
 <Nipart>2</Nipart>
 <Nopart>2</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="M2">
 <Name>M2</Name>
 <Rkfor>0.10000000D+01</Rkfor>
 <Bkbak>0.20000000D-01</Bkbak>
 <Nipart>2</Nipart>
 <Nopart>2</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="M3">
 <Name>M3</Name>
 <Rkfor>0.10000000D+01</Rkfor>
 <Bkbak>0.20000000D-01</Bkbak>
 <Nipart>2</Nipart>
 <Nopart>2</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="M4">
 <Name>M4</Name>
 <Rkfor>0.10000000D+01</Rkfor>
 <Bkbak>0.20000000D-01</Bkbak>
 <Nipart>2</Nipart>
 <Nopart>2</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="T1">

 55

 <Name>T1</Name>
 <Rkfor>0.20000000D-01</Rkfor>
 <Bkbak>0.20000000D-01</Bkbak>
 <Nipart>1</Nipart>
 <Nopart>1</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="T2">
 <Name>T2</Name>
 <Rkfor>0.10000000D+01</Rkfor>
 <Bkbak>0.20000000D-01</Bkbak>
 <Nipart>2</Nipart>
 <Nopart>2</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="Dxr">
 <Name>Dxr</Name>
 <Rkfor>0.10000000D+00</Rkfor>
 <Bkbak>0.00000000D+00</Bkbak>
 <Nipart>1</Nipart>
 <Nopart>0</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="D2r">
 <Name>D2r</Name>
 <Rkfor>0.10000000D+00</Rkfor>
 <Bkbak>0.00000000D+00</Bkbak>
 <Nipart>1</Nipart>
 <Nopart>0</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="D4r">
 <Name>D4r</Name>
 <Rkfor>0.10000000D+00</Rkfor>
 <Bkbak>0.00000000D+00</Bkbak>
 <Nipart>1</Nipart>
 <Nopart>0</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="D3r">
 <Name>D3r</Name>

 56

 <Rkfor>0.10000000D+00</Rkfor>
 <Bkbak>0.00000000D+00</Bkbak>
 <Nipart>1</Nipart>
 <Nopart>0</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="Dyr">
 <Name>Dyr</Name>
 <Rkfor>0.10000000D+00</Rkfor>
 <Bkbak>0.00000000D+00</Bkbak>
 <Nipart>1</Nipart>
 <Nopart>0</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="D1Sr">
 <Name>D1Sr</Name>
 <Rkfor>0.10000000D+00</Rkfor>
 <Bkbak>0.00000000D+00</Bkbak>
 <Nipart>1</Nipart>
 <Nopart>0</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="D1Fr">
 <Name>D1Fr</Name>
 <Rkfor>0.10000000D+00</Rkfor>
 <Bkbak>0.00000000D+00</Bkbak>
 <Nipart>1</Nipart>
 <Nopart>0</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="Dxp">
 <Name>Dxp</Name>
 <Rkfor>0.10000000D+00</Rkfor>
 <Bkbak>0.00000000D+00</Bkbak>
 <Nipart>1</Nipart>
 <Nopart>0</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="D2p">
 <Name>D2p</Name>
 <Rkfor>0.10000000D+00</Rkfor>

 57

 <Bkbak>0.00000000D+00</Bkbak>
 <Nipart>1</Nipart>
 <Nopart>0</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="D4p">
 <Name>D4p</Name>
 <Rkfor>0.10000000D+00</Rkfor>
 <Bkbak>0.00000000D+00</Bkbak>
 <Nipart>1</Nipart>
 <Nopart>0</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="D3p">
 <Name>D3p</Name>
 <Rkfor>0.10000000D+00</Rkfor>
 <Bkbak>0.00000000D+00</Bkbak>
 <Nipart>1</Nipart>
 <Nopart>0</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="Dyp">
 <Name>Dyp</Name>
 <Rkfor>0.10000000D+00</Rkfor>
 <Bkbak>0.00000000D+00</Bkbak>
 <Nipart>1</Nipart>
 <Nopart>0</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="D1Sp">
 <Name>D1Sp</Name>
 <Rkfor>0.10000000D+00</Rkfor>
 <Bkbak>0.00000000D+00</Bkbak>
 <Nipart>1</Nipart>
 <Nopart>0</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 <Reaction id="D1Fp">
 <Name>D1Fp</Name>
 <Rkfor>0.10000000D+00</Rkfor>
 <Bkbak>0.00000000D+00</Bkbak>

 58

 <Nipart>1</Nipart>
 <Nopart>0</Nopart>
 <Jkin>1</Jkin>
 </Reaction>
 </ReactionList>
 <ReactionInputList>
 <Parameter Reactionidref="Ax" Specidref="qa_x_0"/>
 <Parameter Reactionidref="Ax" Specidref="qa_1F_p"/>
 <Parameter Reactionidref="A2" Specidref="qa_2_0"/>
 <Parameter Reactionidref="A2" Specidref="qa_1F_p"/>
 <Parameter Reactionidref="A4" Specidref="qa_4_0"/>
 <Parameter Reactionidref="A4" Specidref="qa_1F_p"/>
 <Parameter Reactionidref="A3" Specidref="qa_3_0"/>
 <Parameter Reactionidref="A3" Specidref="qa_1F_p"/>
 <Parameter Reactionidref="Ay" Specidref="qa_y_0"/>
 <Parameter Reactionidref="Ay" Specidref="qa_1F_p"/>
 <Parameter Reactionidref="A1S" Specidref="qa_1S_0"/>
 <Parameter Reactionidref="A1S" Specidref="qa_1F_p"/>
 <Parameter Reactionidref="A1F" Specidref="qa_1F_0"/>
 <Parameter Reactionidref="A1F" Specidref="qa_1F_p"/>
 <Parameter Reactionidref="Sx" Specidref="qa_x_1"/>
 <Parameter Reactionidref="S2" Specidref="qa_2_1"/>
 <Parameter Reactionidref="S4" Specidref="qa_4_1"/>
 <Parameter Reactionidref="S3" Specidref="qa_3_1"/>
 <Parameter Reactionidref="Sy" Specidref="qa_y_1"/>
 <Parameter Reactionidref="S1S" Specidref="qa_1S_1"/>
 <Parameter Reactionidref="S1F" Specidref="qa_1F_1"/>
 <Parameter Reactionidref="Lx" Specidref="qa_x_r"/>
 <Parameter Reactionidref="L2" Specidref="qa_2_r"/>
 <Parameter Reactionidref="L4" Specidref="qa_4_r"/>
 <Parameter Reactionidref="L3" Specidref="qa_3_r"/>
 <Parameter Reactionidref="Ly" Specidref="qa_y_r"/>
 <Parameter Reactionidref="L1S" Specidref="qa_1S_r"/>
 <Parameter Reactionidref="L1F" Specidref="qa_1F_r"/>
 <Parameter Reactionidref="I1" Specidref="Sucrose"/>
 <Parameter Reactionidref="I1" Specidref="qa_1S_p"/>
 <Parameter Reactionidref="I1" Specidref="qa_1F_p"/>
 <Parameter Reactionidref="I2" Specidref="QA"/>
 <Parameter Reactionidref="I2" Specidref="qa_1S_p_and_qa_1F_p"/>
 <Parameter Reactionidref="M1" Specidref="qa_3_p"/>
 <Parameter Reactionidref="M1" Specidref="QA"/>

 59

 <Parameter Reactionidref="M2" Specidref="qa_2_p"/>
 <Parameter Reactionidref="M2" Specidref="DHq"/>
 <Parameter Reactionidref="M3" Specidref="qa_3_p"/>
 <Parameter Reactionidref="M3" Specidref="DHS"/>
 <Parameter Reactionidref="M4" Specidref="qa_4_p0"/>
 <Parameter Reactionidref="M4" Specidref="DHS"/>
 <Parameter Reactionidref="T1" Specidref="QA_e"/>
 <Parameter Reactionidref="T2" Specidref="qa_y_p"/>
 <Parameter Reactionidref="T2" Specidref="QA_e"/>
 <Parameter Reactionidref="Dxr" Specidref="qa_x_r"/>
 <Parameter Reactionidref="D2r" Specidref="qa_2_r"/>
 <Parameter Reactionidref="D4r" Specidref="qa_4_r"/>
 <Parameter Reactionidref="D3r" Specidref="qa_3_r"/>
 <Parameter Reactionidref="Dyr" Specidref="qa_y_r"/>
 <Parameter Reactionidref="D1Sr" Specidref="qa_1S_r"/>
 <Parameter Reactionidref="D1Fr" Specidref="qa_1F_r"/>
 <Parameter Reactionidref="D2p" Specidref="qa_2_p"/>
 <Parameter Reactionidref="D4p" Specidref="qa_4_p"/>
 <Parameter Reactionidref="D3p" Specidref="qa_3_p"/>
 <Parameter Reactionidref="Dyp" Specidref="qa_y_p"/>
 <Parameter Reactionidref="D1Sp" Specidref="qa_1S_p"/>
 <Parameter Reactionidref="D1Fp" Specidref="qa_1F_p"/>
 </ReactionInputList>
 <ReactionOutputList>
 <Parameter Reactionidref="Ax" Specidref="qa_x_1"/>
 <Parameter Reactionidref="A2" Specidref="qa_2_1"/>
 <Parameter Reactionidref="A4" Specidref="qa_4_1"/>
 <Parameter Reactionidref="A3" Specidref="qa_3_1"/>
 <Parameter Reactionidref="Ay" Specidref="qa_y_1"/>
 <Parameter Reactionidref="A1S" Specidref="qa_1S_1"/>
 <Parameter Reactionidref="A1F" Specidref="qa_1F_1"/>
 <Parameter Reactionidref="Sx" Specidref="qa_x_1"/>
 <Parameter Reactionidref="Sx" Specidref="qa_x_r"/>
 <Parameter Reactionidref="S2" Specidref="qa_2_1"/>
 <Parameter Reactionidref="S2" Specidref="qa_2_r"/>
 <Parameter Reactionidref="S4" Specidref="qa_4_1"/>
 <Parameter Reactionidref="S4" Specidref="qa_4_r"/>
 <Parameter Reactionidref="S3" Specidref="qa_3_1"/>
 <Parameter Reactionidref="S3" Specidref="qa_3_r"/>
 <Parameter Reactionidref="Sy" Specidref="qa_y_1"/>
 <Parameter Reactionidref="Sy" Specidref="qa_y_r"/>

 60

 <Parameter Reactionidref="S1S" Specidref="qa_1S_1"/>
 <Parameter Reactionidref="S1S" Specidref="qa_1S_r"/>
 <Parameter Reactionidref="S1F" Specidref="qa_1F_1"/>
 <Parameter Reactionidref="S1F" Specidref="qa_1F_r"/>
 <Parameter Reactionidref="Lx" Specidref="qa_x_r"/>
 <Parameter Reactionidref="Lx" Specidref="qa_x_p"/>
 <Parameter Reactionidref="L2" Specidref="qa_2_r"/>
 <Parameter Reactionidref="L2" Specidref="qa_2_p"/>
 <Parameter Reactionidref="L4" Specidref="qa_4_r"/>
 <Parameter Reactionidref="L4" Specidref="qa_4_p"/>
 <Parameter Reactionidref="L3" Specidref="qa_3_r"/>
 <Parameter Reactionidref="L3" Specidref="qa_3_p"/>
 <Parameter Reactionidref="Ly" Specidref="qa_y_r"/>
 <Parameter Reactionidref="Ly" Specidref="qa_y_p"/>
 <Parameter Reactionidref="L1S" Specidref="qa_1S_r"/>
 <Parameter Reactionidref="L1S" Specidref="qa_1S_p"/>
 <Parameter Reactionidref="L1F" Specidref="qa_1F_r"/>
 <Parameter Reactionidref="L1F" Specidref="qa_1F_p"/>
 <Parameter Reactionidref="I1" Specidref="Sucrose"/>
 <Parameter Reactionidref="I1" Specidref="qa_1S_p_and_qa_1F_p"/>
 <Parameter Reactionidref="I2" Specidref="qa_1F_p"/>
 <Parameter Reactionidref="I2" Specidref="qa_1S_p_and_QA"/>
 <Parameter Reactionidref="M1" Specidref="qa_3_p"/>
 <Parameter Reactionidref="M1" Specidref="DHq"/>
 <Parameter Reactionidref="M2" Specidref="qa_2_p"/>
 <Parameter Reactionidref="M2" Specidref="DHS"/>
 <Parameter Reactionidref="M3" Specidref="qa_3_p"/>
 <Parameter Reactionidref="M3" Specidref="SA"/>
 <Parameter Reactionidref="M4" Specidref="qa_4_p"/>
 <Parameter Reactionidref="M4" Specidref="PCA"/>
 <Parameter Reactionidref="T1" Specidref="QA"/>
 <Parameter Reactionidref="T2" Specidref="qa_y_p"/>
 <Parameter Reactionidref="T2" Specidref="QA"/>
 </ReactionOutputList>
</Circlet>

	MINRONG SONG
	DEDICATION.pdf
	Page
	Comparison of Traditional XML Repository Storage Approaches ………..12

	DEDICATION.pdf
	Page
	Comparison of Traditional XML Repository Storage Approaches ………..12

	CHAPTER 1.pdf
	CHAPTER 1

	CHAPTER 2.pdf
	CHAPTER 2

	manualscript.pdf
	2. Repository and XML Repository
	Figure1: Workflow Components Diagram
	Figure 3: RepoX Repository’s Architecture
	On the server side, spec definitions can be produced according to the DTD specifications. The DTD are used to generate schema for Oracle 8i or MySQL (could use others). Elements needed are extracted from the XML documents according to the spec definition
	Revision: 1.2
	Figure 5: A Simplified DTD of Network Task

	5. Version and Configuration Management
	5.1 Version Management

	conclusion.pdf
	CHAPTER 3

	REFERENCE1.pdf
	REFERENCES
	[EM95] Bonnie M. Edwards and John A. Miller. Implementing and Evaluating
	Common Repository Services. UGA_CS Masters Thesis, 1995.
	[Fla96] Ronny G. Flatscher. An Overview of the Architecture of EIA's CASE Data
	Interchange Format (CDIF). 1996.
	[HMA+99] David Hall, John A. Miller, Jonathan Arnold, Krys J. Kochut, Amit P.
	Sheth, and Michael J. Weise. Using Workflow to Build an Information
	Management System for a Geographically Distributed Genome
	Sequence Initiative. Genomics of Plants and Fungi, R.A. Prade and H.J.
	Bohner, Editors, 2001.
	[Haj00] Horiuchi Hajime. Standardization of Information Resource Dictionary
	[JK98] Yong Jiang and Krys J. Kochut. The Repository System of Meteor2 Workflow Management System, UGA-CS Masters Thesis, 1998.

	REFERENCE1.pdf
	REFERENCES
	[EM95] Bonnie M. Edwards and John A. Miller. Implementing and Evaluating
	Common Repository Services. UGA_CS Masters Thesis, 1995.
	[Fla96] Ronny G. Flatscher. An Overview of the Architecture of EIA's CASE Data
	Interchange Format (CDIF). 1996.
	[HMA+99] David Hall, John A. Miller, Jonathan Arnold, Krys J. Kochut, Amit P.
	Sheth, and Michael J. Weise. Using Workflow to Build an Information
	Management System for a Geographically Distributed Genome
	Sequence Initiative. Genomics of Plants and Fungi, R.A. Prade and H.J.
	Bohner, Editors, 2001.
	[Haj00] Horiuchi Hajime. Standardization of Information Resource Dictionary
	[JK98] Yong Jiang and Krys J. Kochut. The Repository System of Meteor2 Workflow Management System, UGA-CS Masters Thesis, 1998.

