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ABSTRACT 

 The clinical risk points system makes complex statistical models practical and convenient 

for clinical use. This risk points system helps clinicians make their decisions for the treatment 

process quickly with its characteristic as a scientific tool for predicting risks of diseases or 

incorporating effective evidence-based approaches. To develop the clinical risk points system for 

data with missing observations, variable selection arises as one of the statistical problems with 

multiple imputation (MI). Also, we are confronted with the challenge of developing a 

simultaneous risk points system with multiply-imputed datasets. In our study, we suggest a 

multiple imputation-stepwise method (MI-Stepwise) across multiply-imputed data to yield a 

consistent variable selection. Simulations are conducted and we apply the methods to the Asian 

lineage avian influenza Asian H7N9 virus (A/H7N9) study in the China Centers for Disease 

Control and Prevention (China CDC) to predict death. 
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CHAPTER 1 

INTRODUCTION 

 

1.1. Background 

 

Influenza is one of the main health issues in China as well as in the world. Influenza 

outbreaks have posed a major threat and caused significant concern due to how easily this 

disease spreads. Influenza virus can be transmitted by direct contact and aerosol transmission 

human-to-human, or zoonosis[1]. According to recent studies, Asian H7N9 (A/H7N9) virus is an 

Asian lineage avian influenza virus, first diagnosed in humans in early 2013, and since then over 

1600 people have been infected  from five epidemic waves [2-4]. 

A major clinical characteristic of the disease is that respiratory systems can experience 

rapid progressive pneumonia followed by respiratory failure, which leads to mortality rates 

above 30% [5]. Human to human transmission of the A/H7N9 is rare [6, 7]. However, the 

pandemic potential of avian influenza is a significant concern. In 2017, the Centers for Disease 

Control and Prevention (CDC) designated the A/H7N9 virus as the rapid-growing potential risk 

for sustained human-to-human transmission and risk factors of global public health of all 

influenza A viruses [8, 9]. It is not known how well the mortality predictor applies to a wide 

range of epidemic diseases while the high mortality rate has been observed among patients in 

A/H7N9. A few studies have reported the risk of death, and most of them investigated the risk 

factor with small sample sizes or contained few overall characteristics of the risk factor [10-15]. 
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Also, to verify results of the risk factor, independent validation cohorts for confirmation were not 

obtained in previous studies. 

 Therefore, we study a large cohort with specific epidemiological and clinical 

characteristics of A/H7N9 patients identified in laboratories in Zhejiang province, southeastern 

China. To test the performance of the model of the risk factor to predict mortality, we investigate 

the risk of death in patients and develop a risk classification model that can be clinically useful in 

identifying and prioritizing patients with the highest mortality probability. 

 

1.2. A/H7N9 data overview 

 

1.2.1. Study participants and data collection 

 

 During the first case of the A/H7N9 epidemic in China in April 2013, enhanced 

monitoring of the A/H7N9 was implemented as part of the Chinese surveillance system. 

Inpatients with pneumonia or similar symptoms to influenza were classified as having suspected 

A/H7N9 virus infection. Once infection of the A/H7N9 was suspected, respiratory specimens 

were first collected, and then demographics and clinical surveys were conducted for all patients 

and accompanying family members using standardized forms. Epidemiological data were 

gathered from interviews and field observations of patients diagnosed with suspected A/H7N9 

infection by local and national CDC field teams within 1 day. All medical information was 

reported to CDC in China, but no microbiological A/H7N9 confirmation prior to site and patient 

data collection was required for suspected H7N9 infected patients. 
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1.2.2. Derivation Cohort – A/H7N9 patients from Zhejiang province 

 

 All laboratory-identified cases of the A/H7N9 infection presented to the Information 

System for Disease Control and Prevention in Zhejiang province in China were classified to the 

derivation cohort [16]. The location of these A/H7N9 patients was geospatially mapped and 

followed up for their subsequent mortality. Information on demographics, exposure history, 

clinical symptoms, and relevant dates in disease process was collected by a standardized 

questionnaire. Activities related to exposure history such as visiting live poultry markets, intra-

household poultry raising, occupational exposure, and direct contact with diseased or deceased 

poultry within two weeks of clinical onset were asked for laboratory-identified H7N9 cases. 

Also, prior diagnoses of chronic and/or noninfectious diseases such as hypertension, chronic 

pulmonary disease, diabetes, and cardiovascular disease were inquired from patients. Timelines 

of disease and health-care related processes for each case were arranged as follows: Dates of 

onset of the illness, first visit to a medical care facility, hospitalization, antivirus treatment 

initiation, and confirmatory laboratory test results. Clinical characteristics of the A/H7N9 

infection were recorded by respiratory specialists; moreover, whether unilateral or bilateral lung 

infections were present in the patients was recorded.  

 

1.2.3. Laboratory diagnostic procedures 

 

RNA extraction was examined from throat specimens. Also, these specimens were tested 

using a specific real-time reverse transcription polymerase chain reaction (RT-PCR) with 

primers and probes specific to H7N9. 
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 Patients, who were suspected to have the H7N9 infection but who were confirmed as 

negative for three consecutive days, were considered disease-free and were not tested anymore. 

 Other laboratory measurements included white blood count, neutrophil count percent, 

lymphocyte count percent, body temperature, and levels of C-protein. These measurements were 

collected when patients initially suspected A/H7N9 infections and was performed at multiple 

points throughout the course of the disease. We used the results of lab measurements taken 

during the first clinical visit (timing furthest from death) since we want to predict mortality. 

 

1.3. Purpose of Study 

   

Our study aims to build a clinical risk score point system to predict the risk of mortality 

when A/H7N9 is diagnosed. In other words, it may help physicians provide more effective 

medical treatments and direct therapies under intensive clinical monitoring to the patients 

receiving high-risk scores. Yet, missing values, whether it is significant values or not, would lead 

to bias in data analysis since variable selection are sensitive to missing values and their missing 

mechanisms [17]. The A/H7N9 data contains a lot of covariates with missing values. Among 19 

covariates considered, 15 covariates include missing values. Especially, the missing proportion 

in smoking is conspicuously significant to 60.7% (185). The variables of Chronic drug use and 

the C-reactive protein are also remarkably indicated to 48.2% and 43.6% missing, respectively. 

Therefore, we will use multiple imputation under the assumption that data are Missing at 

Random (MAR) to have identical variable selections among multiply-imputed data. Here, we 

used MI-Stepwise [18] variable selection, and MI-LASSO [19] is also applicable. Based on 
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significant variables selected from MI-Stepwise, the risk point system was carried out to predict 

individual survival probabilities. 

 

1.4. Literature review 

 

1.4.1. Missing data 

 

Missing values are one of the most common potential problems in data analysis. A 

significant amount of missing information will affect data analysis and cause issues with further 

analysis. The first solution to missing data, typically the default selection method of statistical 

packages, is list-based deletion or pairwise deletion. However, from the default packages for 

missing data, variables that might otherwise be significant may not be selected through statistical 

procedures such as forward, backward, or stepwise variable selection. Also, variables with a 

large proportion of missing data would be sorted out before statistical analysis. It should be 

considered whether or not missing variables may have a significant impact on the outcome. 

Usually, it is important to keep the data rather than delete it. Moreover, imputing missing 

information is often preferred rather than dropping all that information. Multiple imputation 

(MI), which was proposed by Rubin [20], is one of the commonly used methods for filling in 

missing values. Unlike single imputation in which one value is inserted for each missing value, 

multiple imputations substituted for each missing value with two or more values sampled from 

the conditional probability distribution of the imputed variable given ancillary variables. As a 

result, more than one complete dataset is created. Multiple imputation can provide unbiased 

statistical results given an explicitly specified imputation model [21] and provide parameter 
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estimates and standard errors that take into account the uncertainty due to missing data values 

[17].  

MI is a popular method in practical use under missing completely at random (MCAR) 

and missing at random (MAR) mechanism; yet, MI might produce incorrect results under a 

missing not at random (MNAR) mechanism. MCAR is defined as the probability of missing data 

on a variable that does not depend on itself and any other variable in the dataset subject to 

analysis [22]. MAR is denoted as the probability that a datum is missing may depend on 

observed characteristics but not on unobserved characteristics of the subject [23]. In addition, 

missing data is MNAR, which is neither MCAR nor MAR, when the probability of a missing 

variable is related to the value of the missing datum.  

Maximum likelihood estimation (MLE) utilizing expectation-maximization (EM) 

algorithm [24] and Bayesian estimation are two useful methods for data analysis with observed  

data without imputing missing values; MLE obtains statistical inferences based on the marginal 

distribution of observed data [25];  Bayesian estimation is based on the observed data likelihood 

and a prior distribution for the parameter.  Monte Carlo Markov Chain simulation is to produce a 

sample from the joint distribution of the parameters and the missing data given the observed data 

[17]. While both of these two methods need sophisticated computation and different 

computations for different statistical models, the MI method is generally straightforward to be 

implemented and interpreted. 
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1.4.2. Variable Selection  

 

To fit a proper model for statistical analysis, the choice of statistical selection methods 

and/or correct conditions of the methods need to be considered. For example, the subset selection 

method checks all combination of variables, and then checks models for the best fit based on 

significant criterion, such as adjusted R2, the Akaike Information Criterion (AIC), the Bayes 

Information Criterion (BIC), Mallow’s Cp, Mean Square Error, and Predicted Residual Sum of 

Squares (PRESS), etc. However, the subset selection method may not be the best variable 

selection method if many candidate predictors exist. In addition to fitting all the predictable 

subsets, there are more efficient selection methods including Forward Selection and Backward 

Elimination. Forward Selection starts to run with an empty model. It adds variables one at a time 

and tests the how well the model fits newly added variables. It continuously runs until the 

variable does not affect the suitability of the model. On the other hand, Backward Elimination 

starts with a full model including all candidate predictors, and then eliminates them one at a time. 

The Backward Elimination model is performed in reverse to the process of the Forward Selection 

model. Nevertheless, Forward and Backward selection methods are not guaranteed to find the 

best model [26]. Thus, a method of combining the Forward Selection and Backward Elimination 

models has been proposed: Stepwise regression, which was introduced by Efroymson [27]. 

Stepwise regression fits models based on prespecified criterion such as significance levels and 

Mallow’s Cp. For each iteration of the Stepwise selection method, it adds and/or remove 

variables and runs until a model is returned that satisfies the given criterion. While these 

selection methods are more practical for datasets with large sample sizes and relatively small 

number of candidate variables, penalized regression can more effectively conduct variable 
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selection if there is a large number of candidate variables or the number of its variables is greater 

than the number of observations. 

 Variable selection methods via penalized likelihood are broadly performed these days 

[28]. Penalties are divided into K-Smallest Items (KSI) penalties family, which contain the least 

absolute shrinkage and selection operator (LASSO), the Self-adaptive penalty, and the Log-Exp-

Sum penalty [28]. 

The LASSO, introduced by Robert Tibshirani in 1996 [29], processes regularization by 

minimizing the residual sum of squares with the restriction in the sum of absolute values of the 

coefficients. Hence, it improves regression model fitting in prediction accuracy and 

interpretability. Bayesian variable selection strategies are also frequently applied in many 

instances [30].  

Considering variable selection procedures after MI, intuitively it is natural to directedly 

apply variable selection methods to imputed datasets one at a time. However, this could generate 

different selections of variables among imputed datasets, lead to unreliable parameter estimates, 

and make scientific conclusions challenging. For this reason, new methods of variable selection 

based on data from MI have been conducted; According to Heymans et al [31]., a variable 

selection can be applied to each imputed dataset separately, and then based on selections for each 

dataset we pick those common predictors for a single model under bootstrapping with automatic 

backward regression; Wood et al [18]. proposed a backward stepwise selection under a weighted 

regression applied on an integral dataset, which was attained by stacking k multiply-imputed 

datasets. They also proposed a MI-stepwise method, which is a stepwise variable selection 

method for multiply-imputed data using repeated applications of Rubin’s rules [32, 33]. Chen 

and Wang [19] utilize MI-LASSO selection, which combines coefficient estimates for each 
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variable in k imputed dataset in a group LASSO penalty, and then adds or removes the whole 

group together. In this thesis, we will apply MI-stepwise, in which each selection step is based 

on the combined P-value processed by Rubin’s rules, to our multiply-imputed datasets for the 

variable selection. 

 

1.4.3. Clinical risk points system 

 

Multivariable models used for estimating clinical risks have been developed for medical 

studies of diseases [34, 35]. These models of the risks allow us to quantify the effect of 

measurable risk factors on diseases. The Framingham Heart Study [36] has led to developments 

generating estimates of risk of coronary heart disease and help with creating the models, which 

can be practical for selecting appropriate treatments. For this reason, we apply the risk points 

system method to our A/H7N9 study for the clinical use. 

There are often various risk factors associated with diseases, so it is ideal to consider all 

possible disease risk factors that can be measured in clinical practice.  However, some verified 

risk factors for diseases are not always considered if it takes a lot of time to measure, needs 

expensive or dangerous testing procedures, and has difficulties with unquantified data [36]. In 

general, some risk factors can be measured accurately and be accessed easily and expeditiously. 

Also, restricting risk factors is an important practical way to readily generate the multivariable 

risk score models and to reduce noise and errors. These risk score models are often generalizable 

to other populations because they mainly include a limited number of clinically significant risk 

factors that are relatively easy to measure. While the distributions of the risk factors and the 

incidence rate of the outcome event, etc., are associated to the problems that influence 



 

 10 

transportability, many of these issues can be solved with minor adjustments to the models. 

Details has been provided by a step-by-step tutorial following the Framingham Heart Study [46]. 

The Framingham Study has developed multivariable models to quantify the impact of 

various risk factors and to adopt a multifactorial disease process since they produced initial 

multivariable models for coronary heart disease in the 1960s. The first models were generated 

based on logistic regression and discriminant function analysis [37-39]. Models were updated 

using techniques of survival analysis as data were accumulated, i.e. serial assessments of the risk 

factors and longer follow-up for events [34, 35, 40]. In addition, the Framingham Study has 

generated models for specific events such as stroke [41, 42], peripheral vascular disease [43] and 

congestive heart failure [44] and for subsequent events, based on repeat events in persons who 

have a history of coronary disease [45]. The function that best predicted the likelihood of the 

events based on easily trackable and measurable risk factors was determined by the underlying 

goals in each of these models. Though these models used to estimate the risk are studied and 

developed for the long term by the Framingham Study, over the years they have expanded their 

applications to populations that differ ethnically, racially, according to risk factor prevalence or 

event incidence.  

For our study, we aim to develop a risk point system for the risk scores using a multiple 

logistic regression model. The risk point system simplifies computation of ∑ 𝛽𝑋, and is derived 

by assigning integer points to each level of each risk factor. By summation of these integer 

points, we can estimate ∑ 𝛽𝑋 for a specific risk factor profile, and then a reference table 

providing risk estimates for each point total is produced. The points system is conducted around 

categories, but distinct values for the continuous risk factors can be contained. 
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CHAPTER 2 

METHODOLOGY 

 

2.1. Multiple imputation 

 

 Multiple imputation is generally carried out using a Bayesian approach or sequential 

regression imputation (SRMI). First, the Bayesian approach for imputing data under multivariate 

normal, log-linear, and the general location model is based on Markov Chain Monte Carlo 

(MCMC). This approach specifies full multivariate models for imputed variables, and then 

produces a posterior predictive distribution for missing data imputations which is fully 

conditional on observed values and unknown parameters. Yet, it is not simple to generate the 

joint distribution of all variables including missing values with real data. It is difficult since real 

data generally contain a large number of variables and with different types of distributions and 

consist of sophisticated data structures. If variables in the data like count data have restrictions or 

bounds, it could make it hard to generate the distributions, too. 

 SRMI is also known as multivariate imputation by chained equations (MICE) and fully 

conditional specification (FCS) and allows imputing multiple times on relatively complex data 

structures under assuming the existence of a joint distribution for variables. Each variable is 

successively imputed, in order from the variable with the smallest to the largest numbers of 

missing observations.  In each step, imputation is conditional on all observed and previously 

imputed data. Process of this approach [46] is to first impute variables having the least amount of 
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missing values by specifying relevant regression models given other variables. Different 

regression models may be applied to different types of variables. Then these first imputed 

variables specified an appropriate regression model given other variables are used for the next 

imputation of other variables. This process operates based on regression models, conditional on 

all other observed or imputed variables, for each variable until all missing values are imputed, 

and this whole process is iterated until it converges. 

 Van Buuren S, Boshuizen HC, Knook DL [23] suggested what variables should be 

included or excluded from imputation models. Variables that will be included in the model for 

analysis, variables correlated with the imputed variables and variables related to the presence of 

the imputed variables are recommended for inclusion. Covariates will be removed if they have a 

large number of missing entries in observations. Similarly, Schafer [47] suggests including all 

possible inclusive variables for the imputation model. Then, variables, which are associated with 

the imputed variables and the absence of the imputed variables, will be selected to generate high-

quality imputations for missing entries of a particular variable. 

 In our A/H7N9 data, we first include most of all variables based on demographic, clinical 

and laboratory characteristics for producing the high-quality imputation model. Types of 

variables in A/H7N9 data are continuous or categorical (binary and ordinal). We assume the data 

are MAR and impute the data with the FCS approach, which is a powerful and statistically valid 

method for creating imputations in large data sets containing both categorical and continuous 

variable. This can be achieved by using several R packages, which are ‘mice’ [48] and ‘mi’ [49], 

or the IVEware package [50]. We impute the categorical and continuous missing data using the 

logistic and linear regression methods, respectively. Five multiply-imputed datasets are 

generated. 
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2.2. Rubin’s rules for multiple imputation inference [20] 

 

 Each independently imputed dataset is analyzed by the same method as for completed 

datasets, and then Rubin’s rules (RR) are applied to get a combined estimate from the D 

estimates calculated from the D imputations. Let 𝑄𝑖̂ and  𝑈𝑖̂, d = 1, …, D, denote the point 

estimate of interest and their associated variances for a population parameter Q, calculated from 

the Dth imputation. Then, the combined estimate of parameter Q from D imputations is the 

average of D point estimates:  

𝑄̅ =  
1

𝐷
 ∑ 𝑄𝑖̂

𝐷
𝑖=1 . 

The variance of 𝑄̅ has two components to obtain a valid standard error: the average within-

imputation variance, 

𝑈̅ =  
1

𝐷
 ∑ 𝑈𝑖̂

𝐷
𝑖=1 , 

and the between-imputation variance, which describes the variability from imputation 

uncertainty, 

𝐵 =  
1

𝐷−1
 ∑ (𝑄𝑖̂ − 𝑄̅)2𝐷

𝑖=1 . 

The combined variance related to 𝑄̅ is 

𝑇 =  𝑈̅  + (1 +
1

𝐷
) 𝐵. 

When sample size is large, 

𝑇−
1

2 (𝑄 − 𝑄̅) ~ 𝑡𝛾, 

where the degrees of freedom is 

𝛾 = (𝐷 − 1) {
𝑈

(1 + 𝐷−1) 𝐵
}2. 
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Thus, a 100(1 − 𝛼)% confidence interval of 𝑄̅ is 

𝑄̅  ±  𝑡𝛾,1−
𝛼

2
 √𝑇. 

Wald’s test can be used for the hypothesis test:  

𝐻0 ∶ 𝑄 =  𝑄0, 

where 𝑄0 is the null value, by comparing the test statistic, 𝑊 =  
(𝑄0− 𝑄̅)2

𝑇
, against the critical 

value of 𝐹1,𝛾. 

 When covariates of regression models in each imputation are different, RR cannot be 

used to get combined coefficient estimates. After a regression model is selected, this same model 

is fitted on each imputation, then RR can be used. Consequently, it enables us to have a variable 

selection method that generates a relevant selection across all imputed datasets. 

 

2.3. MI-Stepwise 

 

MI-Stepwise variable selection is similar to general stepwise selection. However, they are 

distinguished by the process of selection; in order to add, remove or keep variables in models, 

the normal stepwise method depends on significance test using P-value and two significance 

levels for entering and removing variables while MI-stepwise uses a combined P-value. In MI-

Stepwise, each imputation obtains P-values for a specific variable, and those P -values are 

organized together by RR under MINALYZES procedure. This combined P -value will be used 

as the determinant of actions that add, remove or keep variables. Then, the selection procedures 

are jointly run across all imputed datasets, and the same actions will be conducted on each 

variable in all imputed datasets. Wood, White, and Royston [18] depicted MI-stepwise variable 
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selection by repeated use of RR. Following the detailed procedures present in the MI-stepwise 

selection method: 

Step 0: Choose 𝛼1, 𝛼2 for P-value to enter and P-value to remove, respectively. Specify the 

model with no covariates, denoted the initial model 𝑀0. Set t = 0. 

Step 1: Let t = t + 1. For each covariate X that is not contained in model 𝑀𝑡−1, fit D regressions 

with the model {𝑀𝑡−1, 𝑋} on D imputed datasets. Estimate the combined P-value for each newly 

added 𝑝𝑎 ≤ 𝛼1, and then renew the model 𝑀𝑡 to be {𝑀𝑡−1, 𝑋𝑎}; otherwise, 𝑀𝑡 =  𝑀𝑡−1, and the 

procedure terminates. 

Step 2: Refit D regressions with the model 𝑀𝑡 on D imputed datasets and computed the 

combined p-values for covariates X in the model. Let 𝑋𝑏 be the covariate with the largest 

combined P-value 𝑝𝑏 . If 𝑝𝑏 >  𝛼2, place the model 𝑀𝑡 to be {𝑀𝑡 , 𝑋𝑏}, where the minus sign 

denotes removing 𝑋𝑏 from 𝑀𝑡. 

Step 3:  Repeat step 2 until the largest combined p-value 𝑝𝑏  is smaller than or equal to 𝛼2,  𝑝𝑏 ≤

 𝛼2. 

Step 4:  Go back to step 1 and iterate step 1 and step 2 until the procedure terminates. 

  

 Terminating the iteration of MI-Stepwise, the combined p-values for all the covariates in 

the model should not be larger than 𝛼2, and if covariates are added into the model, their 

combined p-values should be less than 𝛼1. To avoid infinite iteration, the condition of 𝛼1 ≤ 𝛼2 

should be given. 
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2.4. Algorithm for the clinical risk points system or clinical risk scores [51] 

 

Now we describe the general approach for generating a clinical risk points system based 

on regression models, such as multiple linear or logistic regression, Cox proportional hazard 

regression, etc. In the following steps, we describe the risk points system in the multiple logistic 

regression model to help us generate the points system of the mortality risk in A/H7N9. Also, 

since our modeling outcome data are binary (death for 1 and survival for 0), the risk points 

system in multiple logistic regression model can be processed. 

 

2.4.1. Estimate the parameters of the multivariable model  

 

 Suppose the model 𝑓(𝑌) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝑝, where Y is the dependent or 

outcome variable; Using logistic regression as an illustrating example, where Y = 1 denotes the 

presence of a particular event; Y = 0 denotes the absence of the event. The function f(∙) is a logit 

link function connected to a linear combination of the risk factors 𝑋1, … , 𝑋𝑝 (𝑋𝑖  𝑖 = 1, … , 𝑝, can 

include continuous, dichotomous, or categorical risk factors). The parameters 𝛽0, 𝛽1, … , 𝛽𝑝 are 

the regression coefficients.  

 

2.4.2. Organize the risk factors into categories and determine reference values  

 

 Suppose a risk factor is continuous, then we need to set up adjacent classes and choose 

reference values for each. Specifically, to determine points for each category it is important to 

specify a reference value for each category; thus, the mid-points approach is commonly 
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acceptable. If a risk factor has a bounded range of continuous values, it is obvious to determine 

the reference values. For example, if the range of risk factor 𝑋1 is 0-39, we can categorize 𝑋1 

into 0-9, 10-19, 20-29, 30-39, and use 4.5, 14.5, 24.5 and 34.5 as reference values, respectively. 

However, there are some exceptions if extreme values or outliers exist in a risk factor. For 

example, if the range of risk factor 𝑋2 is 80-210, we may use the five categories <120, 120-129, 

130-139, 140-159, 160. It is straightforward to calculate the mid-points for the three middle risk 

factor categories. Otherwise, we apply the following mid-points approach: The reference value 

for the first category should be included in the range of 119 or less. Since there could be some 

extreme values in the distribution of 𝑋2 (e.g., the minimum is 80), the mid-point between 119 

and the 1th percentile of the observed systolic blood pressures is a more robust mid-point for the 

first category. Suppose the 1st percentile is 89, then mid-point for the first category is computed 

as 104. Similarly, the reference value for the last risk factor category (160) can be obtained 

using the same strategy.  

If a risk factor is dichotomous, modelled as an indicator variable or consists of a set of 

dummy variables (e.g. each coded as 0=absent or 1=present) reflecting distinct categories of the 

risk factor, then the reference value is simply either 0 or 1.  

 Here, 𝑊𝑖𝑗  denotes the reference value (e.g. mid-points for continuous risk factors 

arranged into categories, or values 0 or 1 for risk factors modelled by a set of dummy variables 

or a single indicator) for the jth category of the ith risk factor, where i=1,…, p, and j=1,…, 𝑐𝑖, 

where 𝑐𝑖=the total number of categories for risk factor i. 
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2.4.3. Determine the referent risk factor profile 

 

 Subsequently, we define the appropriate category for each risk factor to serve as the base 

category, which will be assigned 0 points in the point scoring system. Higher scores denote 

higher risks in general practice. Thus, categories obtaining worse states of the risk factor will be 

contributed to positive points, while categories reflecting better states will be assigned negative. 

Let 𝑊𝑖𝑅𝐸𝐹  denote the reference value of the base category, for each of the i risk factors 

i=1,…, p.  

 

2.4.4. Determine how far each category is from the base category in regression units  

 

 Next, we calculate how far each category is from the base category 𝑊𝑖𝑅𝐸𝐹 , in terms of 

regression units. In other words, we will determine the number of points for each of the 

categories of each risk factor and decide the following for each category j of each risk factor i: 

𝑃𝑜𝑖𝑛𝑡𝑠𝑖𝑗 =  𝛽𝑖(𝑊𝑖𝑗 − 𝑊𝑖𝑅𝐸𝐹), i=1,…, p, and j=1,…, 𝑐𝑖. 

Note that the base category of each risk factor will be designed 0 points from this formula.  

 In our study, it is problematic if we use different points for each of the categories of each 

risk factor across multiple datasets since we imputed missing values based on the multiple 

imputation. In order to generate the simultaneous points for each risk factor with multiply-

imputed datasets, we combined all imputed datasets into a single one, for which we are able to 

apply the mid-points approach to specify a common reference. 
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2.4.5. Determine risks associated with point totals  

 

In the final step of generating the point system, we will assign the estimates of risk (or 

probability of developing an event over the predetermined time frame) based on each point total. 

It requires the use of the exact model to set up the estimates of risk. The following formula is the 

typical model obtained for risk estimation, 𝑝̂, along with the multiple logistic regression: 

𝑝̂ =
1

1 + 𝑒𝑥𝑝(− ∑ 𝑿𝜷)
 

Basically, the risk points system is to approximate the contribution of the risk factors in 

the estimate of risk, particularly, to estimate ∑ 𝛽𝑖𝑋𝑖
𝑝
𝑖=1 , which is the component of each model 

shown above that relies on the specific risk factor profile. 

The estimates of risk include the total number of points, which approximates ∑ 𝑿𝜷, into 

the formula 𝑝̂; the risk estimates in the risk points system is based on specific risk factor profiles. 

For this reason, there are some issues for the presence of an intercept term and handling of 

continuous risk factors.  

Intercept term: Notice that we have not included a separate point allocation for an 

intercept for the points system. In order to approximate ∑ 𝑿𝜷, the estimate of the initial value for 

the intercept 𝛽0 should be included. 

 Continuous risk factors: In 2.4.2., categories for the continuous risk factors were 

generated and each reference value specified. In the next step, we chose a base risk factor 

category and assigned 0 points to them. After that, we added up all the points because we 

basically estimated how far a particular individual’s risk factor profile is from the referent 

profile. Here, we note that the ∑ 𝛽𝑖𝑋𝑖
𝑝
𝑖=1  term obtains a particular risk profile and not the distance 

from the referent risk factor profile. It is important that both the referent risk factor profile and 
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the distance from that profile should be added to approximate the relevant ∑ 𝛽𝑖𝑋𝑖
𝑝
𝑖=1 for the risk 

estimate.  
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CHAPTER 3 

SIMULATION STUDY 

 

3.1. Generating data 

 

 In our study we will design the point system from the risk factors and conduct the 

estimates of the risk to evaluate the finite sample performance from MI-stepwise variable 

selection methods under two missing mechanisms: (i) MCAR; (ii) MAR  

For simulation studies, all datasets consist of 14 variables and 300 observations which are 

sampled from a multivariate standard normal distribution, which has a mean zero and variance of 

one, and a compound symmetric correlation structure. 14 continuous variables (X’s) with a 

binary response variable (Y) are generated in our models. Y is given by the logit function linked 

to the regression model below: 

𝑙𝑜𝑔𝑖𝑡(𝐸[𝒀|𝑿])  =  𝑿 𝜷. 

This logistic regression model is given as the generalized linear regression model, where 

predictors, 1, 5, 10, 11, consisting in the model are significant variables. The coefficients 𝜷 =

 (𝛽1, 𝛽5, 𝛽10, 𝛽11)𝑇 in the logistic regression are all set as 1. 

The simulations in all scenarios are repeated 100 times each. To evaluate the performance 

of MI-Stepwise variable selection method under MCAR and MAR missing mechanisms, three 

criteria presented below would be computed:  
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sensitivity of selection (SEN) 

𝑆𝐸𝑁 =
# 𝑜𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

# 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠
, 

specificity of selection (SPE) 

𝑆𝑃𝐸 =  
# 𝑜𝑓 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 𝑢𝑛𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

# 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑢𝑛𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠
, 

and geometric mean of sensitivity and specificity (G) 

𝐺 =  √𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ×  𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦. 

The range of G is between 0 to 1, and a desirable value for selecting variables correctly would be 

computed close to 1. According to Kubat et al. [52], this geometric criterion shows the 

distinctive independent property of the numbers of important and unimportant covariates. 

Therefore, the geometric mean of sensitivity and specificity was computed for overall 

performance measurement. 

 Mean squared errors (MSE) are used to evaluate the performance of point estimates of 

risk from MI-Stepwise variable selection under different missingness mechanisms and varied 

situations. Assuming the estimates of the risk 𝑝̂ and the empirical estimates of the risk p, which 

we will define here as subgroup mortality rate, depends on each kth point total, the MSE can be 

estimated by 

𝑀𝑆𝐸 =  
1

𝑁
∑ 𝑛𝑘(𝑝̂𝑘 − 𝑝𝑘)2

𝑘 , 

where the sum is over the available observations at the kth point total, 𝑛𝑘 is the number of the kth 

point total, and N is the total number of observations in each dataset, which is the sum of the 

observations of the kth point total ∑ 𝑛𝑘𝑘 . 
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3.2. Generating missing data 

 

We assume that Y is fully observed and generated missing data in the 14 covariates of X 

under the missing data mechanisms. We regarded ignorable missing mechanisms for the point 

system of the risk: (i) missing completely at random (MCAR) and (ii) missing at random (MAR).  

 For MCAR, each variable was independently dropped by some missing percentages (i.e. 

3%, etc.) in 𝑋1 to 𝑋14 to obtain a missingness scenario with ~70% complete cases. Moreover, 

MAR is created by the following logistic regression model to generate the binary missing data 

indication 𝑅𝑖𝑗: 

𝑙𝑜𝑔𝑖𝑡{Pr(𝑅𝑖𝑗 = 0 | 𝑋𝑖(𝑗±7))} = 𝛼0 + 𝑋𝑖(𝑗±7), 

where  𝛼0 is given to control the average missing percentage of variable. Similarly, to yield 

datasets with about 70% complete cases, each variable was independently dropped by various 

missing percentages. Given the logistic regression model, a function of 𝛼0 shown below 

describes the expected missing percentage for each variable: 

𝑓𝑖(𝛼0) =  
1

𝑛
∑

𝑒𝑥𝑝(𝛼0+𝑋𝑖)

1+𝑒𝑥𝑝(𝛼0+𝑋𝑖)𝑖 . 

 

3.3. Results 

 

 We will compare the performances of the risk point system under full data, complete 

cases with different missing data mechanisms and multiply-imputed data from MI. In MI-

Stepwise, we set up p-value thresholds for including and removing a variable; let 𝛼1 = 0.05 and 

𝛼2 = 0.06, respectively.  
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We considered two simulations to compare the point system in our study: (i) full data, 

complete datasets from two different missing mechanisms and its multiply-imputed data; (ii) 

overall comparisons under different overall missing proportion of datasets. 

 

3.3.1. Simulation one 

 

 In this simulation, we have the sample size N = 300 and number of covariates 𝑁𝑝 = 14. 

Missing values were generated by MCAR and MAR missing mechanisms including 70% 

complete cases. For MCAR, we dropped 3% of each candidate variable in 𝑋1 − 𝑋14 including 

about 70% complete cases. Similarly, for MAR, we yielded about 70% complete cases using the 

logistic model of the expected missing percentage for each variable. The true regression 

coefficients 𝛽𝑖’s were set to 1 for i=1, 5, 10, 11 and otherwise 𝛽𝑖 = 0. 

 

Table 3.1. Mean Sensitivity (SEN), Specificity (SPE) and their Geometric Mean (G): The 

Stepwise Regression on Full Cases, the CC-Stepwise on Two Different Missing Mechanisms 

(MCAR, MAR) including 70% Complete Cases of 300 Observations and the MI-Stepwise on 

Multiply-Imputed Datasets among 100 Simulations. 

 

   SEN SPE G 

70% 

complete 

cases 

Full data    

Stepwise 99.8 93.7 96.7 

MCAR    

 CC-Stepwise 98 96 97 

MI-Stepwise 99.8 96.6 98.2 

MAR    

CC-Stepwise 98.8 95.4 97.1 

MI-Stepwise 99.8 96.8 98.3 

 

CC-Stepwise, complete cases stepwise; MI-Stepwise, multiply-imputed cases stepwise. 
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Figure 3.1. Each Variable (in percentage) Selected from Stepwise Methods including Full Data, 

30% Missing Cases of 300 Observations, and Multiply-Imputed Data among 100 Simulations. 

All significant variable’s (𝑋1, 𝑋5, 𝑋10, 𝑋11) coefficients set to 1. Overall missing percentage of 

datasets are 30% of 300 observations and missing values are generated under MCAR and MAR. 

 

 

Figure 3.1 shows the results of stepwise variable selection methods from full data, 

complete cases under MCAR and MAR missing mechanisms, and multiply-imputed cases; we 

denote stepwise methods as Stepwise for the full data, CC-Stepwise for the complete data and 

MI-Stepwise for the multiply-imputed data. From overall 30% missing datasets, all important 

variables are selected after multiple imputation across MI-Stepwise selection methods. After 

multiple imputation with MI-Stepwise variable selection, the probability of selecting important 

variables into the model increases in both missing mechanisms, i.e. it increases from 98% in CC-

Stepwise to 99.8% in MI-Stepwise for MCAR, and from 98.8% to 99.8% for MAR. In addition, 

97% in CC-Stepwise of the Geometric criterion increases to 98.2% in MI-Stepwise for MCAR, 
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and further improvements are observed for MAR as well. The MI-Stepwise methods on both 

missing mechanisms have similar SEN, SPE, and G values compared with the Stepwise method 

applied on the full data with no missing values. It suggests that MI-Stepwise competes well as 

the Stepwise method applied on full data in terms of identifying important variables. In Table 

3.1. we listed results on different criteria for the performance of the variable selections. 

 

Table 3.2. Mean Squared Errors (MSE): Evaluating the Performance of the Risk Point Systems 

Generated based on the Stepwise Regression on Full Cases, the CC-Stepwise under MCAR and 

MAR Missing Mechanisms including 70% Complete Cases of 300 Observations and the MI-

Stepwise on Multiply-Imputed Datasets among 100 Simulations. 

 

Stepwise (Full) CC-Stepwise (MCAR) CC-Stepwise (MAR) 

0.022 0.025 0.030 

 MI-Stepwise (MCAR) MI-Stepwise (MAR) 

  0.021 0.022 

 

CC-Stepwise, complete cases stepwise; MI-Stepwise, multiply-imputed cases stepwise. 

 

 Table 3.2. shows that the MSE of the risk point system from MI-Stepwise on each 

MCAR and MAR are slightly higher than the MSE of the risk scores computed from the full 

datasets. However, these MSE from multiply-imputed datasets are improved (lower) under both 

MCAR and MAR missing mechanisms compared with the MSE from the 70% complete cases 

datasets which deletes incomplete observations. MSE for MCAR is dropped about 16% from 

0.025 to 0.021; similarly, it drops about 25% from 0.030 to 0.022 for MAR. The results in 

general support the notion that we could achieve better performances in developing the risk point 

systems on imputed datasets than the complete case analysis under ignorable missing 

mechanisms.  
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3.3.2. Simulation two 

 

 In this simulation, we increase overall missing proportion to 50% complete cases in the 

same sample size to the previous simulation (N=300) and leave other major parameters 

unchanged. For MCAR, we generate ~50% complete cases by dropping 5% of each candidate 

covariate in 𝑋1 − 𝑋14. MAR datasets include about 50% complete cases as well. The true 

regression coefficients 𝛽𝑖’s are set to 1 for i=1, 5, 10, 11 and 0 otherwise. 

 

 

Figure 3.2. Each Variable (in percentage) Selected from Stepwise Methods including Full Data, 

50% Missing Cases of 300 Observations, and Multiply-Imputed Data among 100 Simulations. 

All significant variable’s (𝑋1, 𝑋5, 𝑋10, 𝑋11) coefficients set to 1. Overall missing percentage of 

datasets are 50% of 300 observations and missing values are generated under MCAR and MAR. 
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Figure 3.2. shows that important variables selected by Stepwise, CC-Stepwise and MI-

Stepwise reach over 90% of the total replications as well as Figure 3.1. in simulation one. 

Generally, after applying MI-Stepwise on multiply-imputed datasets, the correct selection for 

valuable covariates presents better selection than the selection from the complete case datasets 

without imputation. Details of the simulation results are shown in Table 3.3. Compared with 

results from the previous simulation, data with 50% complete cases has lower SEN and G. 

Otherwise, SPE from missing data scenarios are slightly higher than the results from the full data 

for both simulations. The SPE in our simulations have stable results from overall stepwise 

methods in general, with a trade-off of lower SEN in data with missingness, for which MI-

Stepwise outperforms CC-Stepwise.  

 

Table 3.3. Mean Sensitivity (SEN), Specificity (SPE) and their Geometric Mean (G): The 

Stepwise Regression on Full Cases, the CC-Stepwise on Two Different Missing Mechanisms 

(MCAR, MAR) including 50% Complete Cases of 300 Observations and the MI-Stepwise on 

Multiply-Imputed Datasets among 100 Simulations. 

 

   SEN SPE G 

50% 

complete 

cases 

Full data    

Stepwise 99.8 93.7 96.7 

MCAR    

 CC-Stepwise 96.2 95.2 95.7 

MI-Stepwise 99.8 97.3 98.5 

MAR    

CC-Stepwise 97.2 95.6 96.4 

MI-Stepwise 99.8 96.5 98.1 

 

CC-Stepwise, complete cases stepwise; MI-Stepwise, multiply-imputed cases stepwise. 

 

Table 3.4. presents the results of the MSE on the risk point system generated from the 

overall stepwise methods with sample size N=300. The risk points system from the full data has 

small MSE, and the CC-Stepwise risk score has higher MSE than the risk scores from Stepwise 
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and MI-Stepwise. In general, the MSE based on the full data applied to Stepwise method is 

considered as the gold standard. The risk point system from data with the MCAR missing 

mechanism typically results in better MSE than that from data with the MAR missing 

mechanism. Compared with the previous simulation, high overall missing percentage leads to 

higher overall MSE, but the general comparisons among different approaches follow the same 

pattern observed in simulation one.  

 

Table 3.4. Mean Squared Errors (MSE): Evaluating the Performance of the Risk Point Systems 

Generated based on the Stepwise Regression on Full Cases, the CC-Stepwise under MCAR and 

MAR Missing Mechanisms including 50% Complete Cases of 300 Observations and the MI-

Stepwise on Multiply-Imputed Datasets among 100 Simulations. 

 

 

CC-Stepwise, complete cases stepwise; MI-Stepwise, multiply-imputed cases stepwise. 

   

 

 

 

 

 

 

 

 

  MCAR MAR 

  Stepwise  
CC-

Stepwise 

MI-

Stepwise 

CC-

Stepwise 

MI-

Stepwise 

Full data 0.022     

50% complete 

cases 
 0.030 0.021 0.033 0.021 
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CHAPTER 4 

APPLICATION TO THE H7N9 DATASET 

 

4.1 Application on H7N9 

 

 The motivating data on H7N9 in our study was provided from Zhejiang CDC in China. 

The study dataset included 305 laboratory-identified A/H7N9 patients from Zhejiang province 

between 2013 and 2018. These observations were diagnosed in 10 prefecture cities: Lishui, 

Taizhou, Jiaxing, Ningbo, Hangzhou, Wenzhou, Huzhou, Shaoxing, Quzhou, Jinhua. Among 

patients confirmed with the A/H7N9, the median age was 59 (interquartile range, 49–68), 64% 

were male, and 51% resided in urban residences. Antiviral treatment was given to 81% of 

patients, 63% had at least one type of underlying medical conditions, and 30% had 2 or more of 

them. Poultry exposure was common; 93% had some poultry exposure, and 69% recently visited 

a live poultry market. However, only 6% were poultry workers. 

Overall mortality was 37.7% in our H7N9 data; 115 patients died among 305 

observations. For this reason, we were motivated to identify sufficient virus exposure pathways, 

clinical traits and laboratory examinations and to synthesize a simple, predictive risk point 

system for clinical use estimating the risk of the mortality. The A/H7N9 dataset initially 

contained 49 candidate covariates. After variables deemed irrelevant to the study purpose were 

removed, the final working dataset included 19 covariates. These variables contained 

demographics (age, sex, smoking), clinical traits (diabetes, hypertension, cardiovascular disease, 
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pulmonary disease, underlying medical conditions history, admission, antiviral treatment), and 

laboratory examinations (white blood cells, body temperature in Celsius, chronic drug use, 

unilateral/bilateral lung infection, pneumonia). More details of candidate variables are shown in 

Table 4.1. We included dichotomous variables converted from nominal variables (i.e. categorical 

variables). These final covariates were analyzed containing both 6 continuous and 13 binary 

variables, and the data analysis for MI strategy was based on the five imputations accomplished 

by Olson et al [53]. 
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Figure 4.1. Geospatial Coordinates of Patients with Laboratory-Confirmed Diagnoses of 

A/H7N9 Infection from the Cohort of Zhejiang Province, Southeastern China. 
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Table 4.1. Demographic, Clinical, and Laboratory Characteristics of 305 Laboratory-identified 

A/H7N9. 

 

Variable 
No. 

Participants 
Percent Median (IQR) 

    

Demographic Characteristics 

 
   

    N 305 100  

    Median Age, Years (IQR)   59 (49–68) 

    

    Age group, years    

        <45 59 19.3  

        ≥45 and <55 55 18.0  

        ≥55 and <65 86 28.2  

        ≥65 and <75 64 21.0  

        ≥75 41 13.4  

    

    Male 194 63.6  

    

    Smoker    

        Yes 35 11.5  

        No 85 27.9  

        Missing 185 60.7  

    

Clinical Characteristics 

 
   

    Diabetes    

        Yes 54 17.7  

        No 230 75.4  

        Missing 21 6.9  

    

    Hypertension    

        Yes 125 41.0  

        No 165 54.1  

        Missing 15 4.9  

    

    Cardiovascular disease    

        Yes 57 18.7  

        No 213 69.8  

        Missing 35 11.5  

    

    Pulmonary disease    

        Yes 18 5.9  

        No 252 82.6  

        Missing 35 11.5  
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    Presence of Underlying Medical  

    Conditions 
   

        Yes 193 63.3  

        No 97 31.8  

        Missing 15 4.9  

    

    Admission 296 97.0  

    

    Antiviral Treatment 248 81.3  

    

Laboratory Traits 

 
   

   Lymphocyte Count Percent   15 (10–22) 

    Abnormal Lymphocyte Count Percent    

       Low, <0.20 129 42.3  

        Normal, 0.20 to 0.39 52 17.0  

        High, >0.40 9 3.0  

        Missing 115 37.7  

    

   Neutrophil Count Percent   78 (71–85) 

   Neutrophil Count Percent Quartiles    

        <0.70 63 20.7  

        ≥0.70 and <0.79 74 24.3  

        ≥0.79 and <0.86 63 20.7  

        ≥0.86 63 20.7  

        Missing 42 13.8  

    

   White Blood Cell Count, Microliter   5 (3.6–6.7) 

    Abnormal White Blood Cell Count    

        <3.5 63 20.7  

        3.5 to 10.5 208 68.2  

        >10.5 19 6.2  

        Missing 15 4.9  

    

   C-Reactive Protein, Milligram per Liter   
75.5  

(35.6–129.3) 

    Abnormal C-Reactive Protein    

        Normal, <10.0 12   

        High, 10 to 50 45   

        Severe, > 50.0 115   

        Missing 133   

    

   Temperature, Celsius    39.3 (38.9–39.8) 

    Fever (37.8 Celsius or above) 282 92.5  

        Missing 14 4.6  
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    Chronic Drug Use 79 25.9  

        Missing 147 48.2  

    

    Unilateral Lung Infection    

        Yes 255 83.6  

        No 2 0.7  

        Missing 48 15.7  

    

    Bilateral Lung Infection    

        Yes 177 58.0  

        No 43 14.1  

        Missing 85 27.9  

    

    Pneumonia 232 76.1  

        Missing 64 21.0          

       

 

IQR, interquartile range.  

Percentages refer to within–characteristic column totals among participants within each clinic 

and in entire study. The total percentages may not be 100% since within-column percentages 

were rounded to the nearest integer. Column totals vary across different characteristics due to 

missing values for some participants. 

 

We assumed that the general missing mechanism was MAR in the A/H7N9 dataset and 

fitted the multiple logistic regression model with its multiply-imputed datasets. Then we applied 

the MI-Stepwise variable selection method with 𝛼1 = 0.05 and 𝛼2 = 0.06 to select the A/H7N9 

risk factors of the mortality. From these selected risk factors, we then created the clinical risk 

points system for mortality. The sufficient covariates selected from MI-Stepwise, its coefficient 

estimates, P-values, referent risk factor profiles (𝑊𝑖𝑗) of the clinical risk points system, 95% 

confidence intervals (CIs), and the risk point systems on each category of each sufficient 

covariate are presented in Table 4.2.  
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Table 4.2. Multivariable Logistic Regression Analysis of Derivation of the Clinical Risk Points 

System Classification in A/H7N9. 

 

Risk Factor 
Coefficient 

(𝜷𝒊) 

Reference 

(𝑾𝒊𝒋) 
P value 95% CI 

Risk 

Points 

      

Intercept -6.5883  < 0.0001 (-9.4658, -3.7108)  

      

Age (years) 0.0574 31.5 = 𝑊1𝑟𝑒𝑓  < 0.0001 (0.0358, 0.0790)  

    <50  31.5   0 

    ≥50 and <60  54   1 

    ≥60 and <68  63.5   2 

    ≥68  76   3 

      

Neutrophil Count 

Percent Quartile 3.0158 0.46 = 𝑊2𝑟𝑒𝑓  0.0450 (0.0683, 5.9633)  

    <0.70  0.46   0 

    ≥0.70 and <0.79  0.75   1 

    ≥0.79 and <0.86  0.83   1 

    ≥0.86  0.91   1 

      

White Blood Cell 

        Count 0.0586 5.0 = 𝑊3𝑟𝑒𝑓  0.0066 (0.0164, 0.1008)  

    <10.1  5.0   0 

    ≥10.1 and <11.4  10.75   0 

    ≥11.4 and <12.9  24.3   0 

    ≥12.9  14.75   1 

      

 

The real data analysis suggests that the mortality of the A/H7N9 is positively associated 

with age, neutrophil count (in percent), and white blood cell count (in microliter). These findings 

are dependable and consistent since, in general, many studies find that aging, chronic diseases, 

and immune degradation by bacterial/viral infections increase the mortality rate [54]. Moreover, 

extreme laboratory results in the neutrophil count test and c-protein test are highly correlated 
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with the risk of infections. Results from these biomarkers also suggest that severe viral infection 

increases in the risk of the mortality rate. 

 

Risk 
Score 

Risk 
Estimate 

Mortality 

Imputation 
1 

Imputation 
2 

Imputation 
3 

Imputation 
4 

Imputation 
5 

0 0.044 0.182 0.100 0.100 0.158 0.105 

1 0.112 0.155 0.189 0.178 0.162 0.173 

2 0.256 0.325 0.338 0.333 0.333 0.346 

3 0.483 0.438 0.389 0.411 0.403 0.394 

4 0.717 0.712 0.727 0.722 0.727 0.727 

5 0.873 1.000 1.000 1.000 1.000 1.000 
 

Table 4.3. The Points System of the Risk Estimate and the Empirical Risk of the Mortality in 

A/H7N9. 

 

 Following the risk point system approach, we investigated risk scores for each category 

of each selected covariate in our data. Since age, neutrophil count percent and white blood cell 

count covariates were continuous, we categorized them based on clinical references following 

quantiles in the multiply-imputed data. Overall trends of estimated coefficients are positive so 

that the trend of the risk scores in each variable also relevantly increases in our risk point system. 

The risk points assigned in ≥ 68 years old remarkably increase the risk of the death in A/H7N9 

infection. In Table 4.3., the clinical risk points of the A/H7N9 ranges from 0 to 5, and their 

estimates of risk and the empirical risk of the mortality increase with the clinical risk points. The 

same pattern is observed across the imputed datasets. 

 Findings from our study suggest that MI-Stepwise method with 𝛼1 = 0.05 and 𝛼2 =

0.06 may be too liberal in selecting the risk factors for death resulted from A/H7N9 infection. 

Mortality rate among those having pulmonary disease in A/H7N9 infected cases is as high as 

61%, a potential risk factor to be further explored. Furthermore, pneumonia, smoking and c-
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protein may be regarded as important risk factors of the A/H7N9; pneumonia is associated with a 

high mortality rate (41%) in the A/H7N9 infection and is relevant to the invasive lung infection 

[5]; smoking is known as one of major risk factors of lung diseases; c-protein remarks infections 

or inflammations. Thus, further investigations with less restricted variable selections procedures 

are warranted. 
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CHAPTER 5 

DISCUSSION 

 

The clinical risk points system makes complex statistical models practical and 

convenient. Moreover, such systems can aid clinicians to make their decisions for the treatment 

process quickly with its characteristic as a scientific tool for predicting risks of diseases or 

incorporating effective evidence-based approaches [51]. However, missing data arise in the 

problem of generating the risk point system. MI has been a prevalent method for resolving the 

problems of the missing data since it is easy to implement and available with relevant software. 

However, we are confronted with the challenge of developing a simultaneous risk points system 

with multiply-imputed datasets. In our study, we propose to apply a MI-Stepwise method for 

variable selection after multiple imputation, and to combine all multiply-imputed datasets 

together so that we include all observations for computing a coincident risk points system that 

can be generalizable in application. 

MI-Stepwise method is also convenient for implementation on the multiple logistic 

regression model, and the MI-Stepwise specifies significant variables in models as well as the 

Stepwise on full data. Following our simulations, dropping incomplete observations when 

performing stepwise selection on complete-cases results in poor sensitivity of selection, 

particularly if the overall missing proportion is relatively high, and/or the missing mechanism is 

under MAR. Meanwhile, MI-Stepwise completes variable selection effectively with better 

sensitivity and specificity, especially for data with tolerable proportions of overall missingness. 
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The MI-Stepwise method is relatively liberal for selecting significant variables into the model. If 

we refit the model with variables selected by MI-Stepwise, those variables are mostly significant 

at level 𝛼1. This feature of the MI-Stepwise appears to be important to yield stable selection of 

models based on the multiply-imputed data. Overall, we conclude that MI-Stepwise methods 

applied to multiply-imputed data help generating a valid risk points system. 

 According to Chen and Wang [19], the MI-LASSO method, which adopts the concept of 

group LASSO, can be an alternative to the MI-Stepwise since MI-LASSO typically maintains 

better sensitivities, especially for small sample size data with a large number of covariates. 

However, MI-LASSO could be subjected to over-selecting issues when the sample size is large. 

 When MI is used to handle missing data, we often assume that missing information is 

ignorable. As such, we generate missing data under MCAR or MAR in our simulation study. 

This can be considered as a limitation of the current study. We also applied MI-Stepwise under 

different proportion of overall missingness. In terms of MSE, the points systems built on the 

variables selected through MI-Stepwise under all scenarios of simulation achieves good 

performances under ignorable missing mechanisms. Simulation scenarios of the risk points 

system under non-ignorable missing mechanisms can be explored in future studies.  

 To assess the performance of the risk points system we developed, MSE was used to 

compare estimated and empirical mortalities. However, it can be challenging to evaluate the risk 

points system this way in some scenarios. Data with large missing proportions will result in 

small sample sizes for the complete case analysis, such that the risk points system on the CC-

Stepwise is likely to have a short range of possible risk points. Further, a mis-specified 

imputation procedure applied to dataset with a significant portion of its data being missing could 

reveal relationships between the outcome and predicting variables with bias. Consequently, the 
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risk points system developed from variable selection by MI-Stepwise in these scenarios may 

have poor performances. 

 In this study, we aim to develop the methodology for the computation of the risk points 

system on multiple logistic regression model with MI-Stepwise method for data with 

missingness, for which theoretical properties are still under exploration. Future studies can be 

extended to investigate the method for cox proportional hazards models as well. We note that 

assessing the effect of uncertainty in imputation on the variable selection and creating a 

simultaneous risk points system for multiply-imputed datasets remain as two major challenges in 

developing a consistent risk points system. 
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