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ABSTRACT

The clinical risk points system makes complex statistical models practical and convenient
for clinical use. This risk points system helps clinicians make their decisions for the treatment
process quickly with its characteristic as a scientific tool for predicting risks of diseases or
incorporating effective evidence-based approaches. To develop the clinical risk points system for
data with missing observations, variable selection arises as one of the statistical problems with
multiple imputation (MI). Also, we are confronted with the challenge of developing a
simultaneous risk points system with multiply-imputed datasets. In our study, we suggest a
multiple imputation-stepwise method (MI-Stepwise) across multiply-imputed data to yield a
consistent variable selection. Simulations are conducted and we apply the methods to the Asian
lineage avian influenza Asian H7N9 virus (A/H7N9) study in the China Centers for Disease

Control and Prevention (China CDC) to predict death.
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CHAPTER 1

INTRODUCTION

1.1. Background

Influenza is one of the main health issues in China as well as in the world. Influenza
outbreaks have posed a major threat and caused significant concern due to how easily this
disease spreads. Influenza virus can be transmitted by direct contact and aerosol transmission
human-to-human, or zoonosis[1]. According to recent studies, Asian H7N9 (A/H7N9) virus is an
Asian lineage avian influenza virus, first diagnosed in humans in early 2013, and since then over
1600 people have been infected from five epidemic waves [2-4].

A major clinical characteristic of the disease is that respiratory systems can experience
rapid progressive pneumonia followed by respiratory failure, which leads to mortality rates
above 30% [5]. Human to human transmission of the A/H7N9 is rare [6, 7]. However, the
pandemic potential of avian influenza is a significant concern. In 2017, the Centers for Disease
Control and Prevention (CDC) designated the A/H7N9 virus as the rapid-growing potential risk
for sustained human-to-human transmission and risk factors of global public health of all
influenza A viruses [8, 9]. It is not known how well the mortality predictor applies to a wide
range of epidemic diseases while the high mortality rate has been observed among patients in
A/H7N9. A few studies have reported the risk of death, and most of them investigated the risk

factor with small sample sizes or contained few overall characteristics of the risk factor [10-15].



Also, to verify results of the risk factor, independent validation cohorts for confirmation were not
obtained in previous studies.

Therefore, we study a large cohort with specific epidemiological and clinical
characteristics of A/H7N9 patients identified in laboratories in Zhejiang province, southeastern
China. To test the performance of the model of the risk factor to predict mortality, we investigate
the risk of death in patients and develop a risk classification model that can be clinically useful in

identifying and prioritizing patients with the highest mortality probability.

1.2. A/H7N9 data overview

1.2.1. Study participants and data collection

During the first case of the A/H7N9 epidemic in China in April 2013, enhanced
monitoring of the A/H7N9 was implemented as part of the Chinese surveillance system.
Inpatients with pneumonia or similar symptoms to influenza were classified as having suspected
A/H7NO9 virus infection. Once infection of the A/H7N9 was suspected, respiratory specimens
were first collected, and then demographics and clinical surveys were conducted for all patients
and accompanying family members using standardized forms. Epidemiological data were
gathered from interviews and field observations of patients diagnosed with suspected A/H7N9
infection by local and national CDC field teams within 1 day. All medical information was
reported to CDC in China, but no microbiological A/H7N9 confirmation prior to site and patient

data collection was required for suspected H7N9 infected patients.



1.2.2. Derivation Cohort — A/H7N9 patients from Zhejiang province

All laboratory-identified cases of the A/H7N9 infection presented to the Information
System for Disease Control and Prevention in Zhejiang province in China were classified to the
derivation cohort [16]. The location of these A/H7N9 patients was geospatially mapped and
followed up for their subsequent mortality. Information on demographics, exposure history,
clinical symptoms, and relevant dates in disease process was collected by a standardized
questionnaire. Activities related to exposure history such as visiting live poultry markets, intra-
household poultry raising, occupational exposure, and direct contact with diseased or deceased
poultry within two weeks of clinical onset were asked for laboratory-identified H7N9 cases.
Also, prior diagnoses of chronic and/or noninfectious diseases such as hypertension, chronic
pulmonary disease, diabetes, and cardiovascular disease were inquired from patients. Timelines
of disease and health-care related processes for each case were arranged as follows: Dates of
onset of the illness, first visit to a medical care facility, hospitalization, antivirus treatment
initiation, and confirmatory laboratory test results. Clinical characteristics of the A/H7N9
infection were recorded by respiratory specialists; moreover, whether unilateral or bilateral lung

infections were present in the patients was recorded.

1.2.3. Laboratory diagnostic procedures

RNA extraction was examined from throat specimens. Also, these specimens were tested

using a specific real-time reverse transcription polymerase chain reaction (RT-PCR) with

primers and probes specific to H7N9.



Patients, who were suspected to have the H7N9 infection but who were confirmed as
negative for three consecutive days, were considered disease-free and were not tested anymore.

Other laboratory measurements included white blood count, neutrophil count percent,
lymphocyte count percent, body temperature, and levels of C-protein. These measurements were
collected when patients initially suspected A/H7N9 infections and was performed at multiple
points throughout the course of the disease. We used the results of lab measurements taken

during the first clinical visit (timing furthest from death) since we want to predict mortality.

1.3. Purpose of Study

Our study aims to build a clinical risk score point system to predict the risk of mortality
when A/H7N9 is diagnosed. In other words, it may help physicians provide more effective
medical treatments and direct therapies under intensive clinical monitoring to the patients
receiving high-risk scores. Yet, missing values, whether it is significant values or not, would lead
to bias in data analysis since variable selection are sensitive to missing values and their missing
mechanisms [17]. The A/H7N9 data contains a lot of covariates with missing values. Among 19
covariates considered, 15 covariates include missing values. Especially, the missing proportion
in smoking is conspicuously significant to 60.7% (185). The variables of Chronic drug use and
the C-reactive protein are also remarkably indicated to 48.2% and 43.6% missing, respectively.
Therefore, we will use multiple imputation under the assumption that data are Missing at
Random (MAR) to have identical variable selections among multiply-imputed data. Here, we

used MI-Stepwise [18] variable selection, and MI-LASSO [19] is also applicable. Based on



significant variables selected from MI-Stepwise, the risk point system was carried out to predict

individual survival probabilities.

1.4. Literature review

1.4.1. Missing data

Missing values are one of the most common potential problems in data analysis. A
significant amount of missing information will affect data analysis and cause issues with further
analysis. The first solution to missing data, typically the default selection method of statistical
packages, is list-based deletion or pairwise deletion. However, from the default packages for
missing data, variables that might otherwise be significant may not be selected through statistical
procedures such as forward, backward, or stepwise variable selection. Also, variables with a
large proportion of missing data would be sorted out before statistical analysis. It should be
considered whether or not missing variables may have a significant impact on the outcome.
Usually, it is important to keep the data rather than delete it. Moreover, imputing missing
information is often preferred rather than dropping all that information. Multiple imputation
(MI), which was proposed by Rubin [20], is one of the commonly used methods for filling in
missing values. Unlike single imputation in which one value is inserted for each missing value,
multiple imputations substituted for each missing value with two or more values sampled from
the conditional probability distribution of the imputed variable given ancillary variables. As a
result, more than one complete dataset is created. Multiple imputation can provide unbiased

statistical results given an explicitly specified imputation model [21] and provide parameter



estimates and standard errors that take into account the uncertainty due to missing data values
[17].

MI is a popular method in practical use under missing completely at random (MCAR)
and missing at random (MAR) mechanism; yet, M1l might produce incorrect results under a
missing not at random (MNAR) mechanism. MCAR is defined as the probability of missing data
on a variable that does not depend on itself and any other variable in the dataset subject to
analysis [22]. MAR is denoted as the probability that a datum is missing may depend on
observed characteristics but not on unobserved characteristics of the subject [23]. In addition,
missing data is MNAR, which is neither MCAR nor MAR, when the probability of a missing
variable is related to the value of the missing datum.

Maximum likelihood estimation (MLE) utilizing expectation-maximization (EM)
algorithm [24] and Bayesian estimation are two useful methods for data analysis with observed
data without imputing missing values; MLE obtains statistical inferences based on the marginal
distribution of observed data [25]; Bayesian estimation is based on the observed data likelihood
and a prior distribution for the parameter. Monte Carlo Markov Chain simulation is to produce a
sample from the joint distribution of the parameters and the missing data given the observed data
[17]. While both of these two methods need sophisticated computation and different
computations for different statistical models, the M1 method is generally straightforward to be

implemented and interpreted.



1.4.2. Variable Selection

To fit a proper model for statistical analysis, the choice of statistical selection methods
and/or correct conditions of the methods need to be considered. For example, the subset selection
method checks all combination of variables, and then checks models for the best fit based on
significant criterion, such as adjusted R?, the Akaike Information Criterion (AIC), the Bayes
Information Criterion (BIC), Mallow’s Cp, Mean Square Error, and Predicted Residual Sum of
Squares (PRESS), etc. However, the subset selection method may not be the best variable
selection method if many candidate predictors exist. In addition to fitting all the predictable
subsets, there are more efficient selection methods including Forward Selection and Backward
Elimination. Forward Selection starts to run with an empty model. It adds variables one at a time
and tests the how well the model fits newly added variables. It continuously runs until the
variable does not affect the suitability of the model. On the other hand, Backward Elimination
starts with a full model including all candidate predictors, and then eliminates them one at a time.
The Backward Elimination model is performed in reverse to the process of the Forward Selection
model. Nevertheless, Forward and Backward selection methods are not guaranteed to find the
best model [26]. Thus, a method of combining the Forward Selection and Backward Elimination
models has been proposed: Stepwise regression, which was introduced by Efroymson [27].
Stepwise regression fits models based on prespecified criterion such as significance levels and
Mallow’s Cp. For each iteration of the Stepwise selection method, it adds and/or remove
variables and runs until a model is returned that satisfies the given criterion. While these
selection methods are more practical for datasets with large sample sizes and relatively small

number of candidate variables, penalized regression can more effectively conduct variable



selection if there is a large number of candidate variables or the number of its variables is greater
than the number of observations.

Variable selection methods via penalized likelihood are broadly performed these days
[28]. Penalties are divided into K-Smallest Items (KSI) penalties family, which contain the least
absolute shrinkage and selection operator (LASSO), the Self-adaptive penalty, and the Log-Exp-
Sum penalty [28].

The LASSO, introduced by Robert Tibshirani in 1996 [29], processes regularization by
minimizing the residual sum of squares with the restriction in the sum of absolute values of the
coefficients. Hence, it improves regression model fitting in prediction accuracy and
interpretability. Bayesian variable selection strategies are also frequently applied in many
instances [30].

Considering variable selection procedures after MI, intuitively it is natural to directedly
apply variable selection methods to imputed datasets one at a time. However, this could generate
different selections of variables among imputed datasets, lead to unreliable parameter estimates,
and make scientific conclusions challenging. For this reason, new methods of variable selection
based on data from MI have been conducted; According to Heymans et al [31]., a variable
selection can be applied to each imputed dataset separately, and then based on selections for each
dataset we pick those common predictors for a single model under bootstrapping with automatic
backward regression; Wood et al [18]. proposed a backward stepwise selection under a weighted
regression applied on an integral dataset, which was attained by stacking k multiply-imputed
datasets. They also proposed a MI-stepwise method, which is a stepwise variable selection
method for multiply-imputed data using repeated applications of Rubin’s rules [32, 33]. Chen

and Wang [19] utilize MI-LASSO selection, which combines coefficient estimates for each



variable in k imputed dataset in a group LASSO penalty, and then adds or removes the whole
group together. In this thesis, we will apply MI-stepwise, in which each selection step is based
on the combined P-value processed by Rubin’s rules, to our multiply-imputed datasets for the

variable selection.

1.4.3. Clinical risk points system

Multivariable models used for estimating clinical risks have been developed for medical
studies of diseases [34, 35]. These models of the risks allow us to quantify the effect of
measurable risk factors on diseases. The Framingham Heart Study [36] has led to developments
generating estimates of risk of coronary heart disease and help with creating the models, which
can be practical for selecting appropriate treatments. For this reason, we apply the risk points
system method to our A/H7N9 study for the clinical use.

There are often various risk factors associated with diseases, so it is ideal to consider all
possible disease risk factors that can be measured in clinical practice. However, some verified
risk factors for diseases are not always considered if it takes a lot of time to measure, needs
expensive or dangerous testing procedures, and has difficulties with unquantified data [36]. In
general, some risk factors can be measured accurately and be accessed easily and expeditiously.
Also, restricting risk factors is an important practical way to readily generate the multivariable
risk score models and to reduce noise and errors. These risk score models are often generalizable
to other populations because they mainly include a limited number of clinically significant risk
factors that are relatively easy to measure. While the distributions of the risk factors and the

incidence rate of the outcome event, etc., are associated to the problems that influence



transportability, many of these issues can be solved with minor adjustments to the models.
Details has been provided by a step-by-step tutorial following the Framingham Heart Study [46].

The Framingham Study has developed multivariable models to quantify the impact of
various risk factors and to adopt a multifactorial disease process since they produced initial
multivariable models for coronary heart disease in the 1960s. The first models were generated
based on logistic regression and discriminant function analysis [37-39]. Models were updated
using techniques of survival analysis as data were accumulated, i.e. serial assessments of the risk
factors and longer follow-up for events [34, 35, 40]. In addition, the Framingham Study has
generated models for specific events such as stroke [41, 42], peripheral vascular disease [43] and
congestive heart failure [44] and for subsequent events, based on repeat events in persons who
have a history of coronary disease [45]. The function that best predicted the likelihood of the
events based on easily trackable and measurable risk factors was determined by the underlying
goals in each of these models. Though these models used to estimate the risk are studied and
developed for the long term by the Framingham Study, over the years they have expanded their
applications to populations that differ ethnically, racially, according to risk factor prevalence or
event incidence.

For our study, we aim to develop a risk point system for the risk scores using a multiple
logistic regression model. The risk point system simplifies computation of ), fX, and is derived
by assigning integer points to each level of each risk factor. By summation of these integer
points, we can estimate ), SX for a specific risk factor profile, and then a reference table
providing risk estimates for each point total is produced. The points system is conducted around

categories, but distinct values for the continuous risk factors can be contained.
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CHAPTER 2

METHODOLOGY

2.1. Multiple imputation

Multiple imputation is generally carried out using a Bayesian approach or sequential
regression imputation (SRMI). First, the Bayesian approach for imputing data under multivariate
normal, log-linear, and the general location model is based on Markov Chain Monte Carlo
(MCMC). This approach specifies full multivariate models for imputed variables, and then
produces a posterior predictive distribution for missing data imputations which is fully
conditional on observed values and unknown parameters. Yet, it is not simple to generate the
joint distribution of all variables including missing values with real data. It is difficult since real
data generally contain a large number of variables and with different types of distributions and
consist of sophisticated data structures. If variables in the data like count data have restrictions or
bounds, it could make it hard to generate the distributions, too.

SRMI is also known as multivariate imputation by chained equations (MICE) and fully
conditional specification (FCS) and allows imputing multiple times on relatively complex data
structures under assuming the existence of a joint distribution for variables. Each variable is
successively imputed, in order from the variable with the smallest to the largest numbers of
missing observations. In each step, imputation is conditional on all observed and previously

imputed data. Process of this approach [46] is to first impute variables having the least amount of
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missing values by specifying relevant regression models given other variables. Different
regression models may be applied to different types of variables. Then these first imputed
variables specified an appropriate regression model given other variables are used for the next
imputation of other variables. This process operates based on regression models, conditional on
all other observed or imputed variables, for each variable until all missing values are imputed,
and this whole process is iterated until it converges.

Van Buuren S, Boshuizen HC, Knook DL [23] suggested what variables should be
included or excluded from imputation models. Variables that will be included in the model for
analysis, variables correlated with the imputed variables and variables related to the presence of
the imputed variables are recommended for inclusion. Covariates will be removed if they have a
large number of missing entries in observations. Similarly, Schafer [47] suggests including all
possible inclusive variables for the imputation model. Then, variables, which are associated with
the imputed variables and the absence of the imputed variables, will be selected to generate high-
quality imputations for missing entries of a particular variable.

In our A/H7N9 data, we first include most of all variables based on demographic, clinical
and laboratory characteristics for producing the high-quality imputation model. Types of
variables in A/H7N9 data are continuous or categorical (binary and ordinal). We assume the data
are MAR and impute the data with the FCS approach, which is a powerful and statistically valid
method for creating imputations in large data sets containing both categorical and continuous
variable. This can be achieved by using several R packages, which are ‘mice’ [48] and ‘mi’ [49],
or the IVEware package [50]. We impute the categorical and continuous missing data using the
logistic and linear regression methods, respectively. Five multiply-imputed datasets are

generated.

12



2.2. Rubin’s rules for multiple imputation inference [20]

Each independently imputed dataset is analyzed by the same method as for completed
datasets, and then Rubin’s rules (RR) are applied to get a combined estimate from the D
estimates calculated from the D imputations. Let @, and U, d = 1, ..., D, denote the point
estimate of interest and their associated variances for a population parameter Q, calculated from
the Dth imputation. Then, the combined estimate of parameter Q from D imputations is the

average of D point estimates:

=¥, Q.

The variance of Q has two components to obtain a valid standard error: the average within-

imputation variance,

and the between-imputation variance, which describes the variability from imputation

uncertainty,
= 2 1(Ql Q)Z

The combined variance related to Q is

When sample size is large,
_L ~
T 2 (Q - Q) ~ t‘yy
where the degrees of freedom is

y=0-Di{—7=53

2
(14D~ 1)3} '
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Thus, a 100(1 — a)% confidence interval of Q is

Q +t 1_2\/7.

Y13
Wald’s test can be used for the hypothesis test:
HO : Q = QO’

—_— N 2 - -, .
where Q, is the null value, by comparing the test statistic, W = (Q"TQ), against the critical

value of Fy,,.

When covariates of regression models in each imputation are different, RR cannot be
used to get combined coefficient estimates. After a regression model is selected, this same model
is fitted on each imputation, then RR can be used. Consequently, it enables us to have a variable

selection method that generates a relevant selection across all imputed datasets.

2.3. MI-Stepwise

MI-Stepwise variable selection is similar to general stepwise selection. However, they are
distinguished by the process of selection; in order to add, remove or keep variables in models,
the normal stepwise method depends on significance test using P-value and two significance
levels for entering and removing variables while MI-stepwise uses a combined P-value. In MI-
Stepwise, each imputation obtains P-values for a specific variable, and those P -values are
organized together by RR under MINALYZES procedure. This combined P -value will be used
as the determinant of actions that add, remove or keep variables. Then, the selection procedures
are jointly run across all imputed datasets, and the same actions will be conducted on each

variable in all imputed datasets. Wood, White, and Royston [18] depicted MI-stepwise variable

14



selection by repeated use of RR. Following the detailed procedures present in the MI-stepwise
selection method:

Step 0: Choose a4, a, for P-value to enter and P-value to remove, respectively. Specify the
model with no covariates, denoted the initial model M,. Set t = 0.

Step 1: Let t =t + 1. For each covariate X that is not contained in model M,_,, fit D regressions
with the model {M,_,, X} on D imputed datasets. Estimate the combined P-value for each newly
added p, < a4, and then renew the model M, to be {M,_,, X, }; otherwise, M, = M,_,, and the
procedure terminates.

Step 2: Refit D regressions with the model M, on D imputed datasets and computed the
combined p-values for covariates X in the model. Let X, be the covariate with the largest
combined P-value p,. If p, > a5, place the model M, to be {M;, X;,}, where the minus sign
denotes removing X, from M,.

Step 3: Repeat step 2 until the largest combined p-value p,, is smaller than or equal to a,, p, <
a,.

Step 4: Go back to step 1 and iterate step 1 and step 2 until the procedure terminates.

Terminating the iteration of MI-Stepwise, the combined p-values for all the covariates in
the model should not be larger than a,, and if covariates are added into the model, their
combined p-values should be less than a;. To avoid infinite iteration, the condition of a; < «,

should be given.
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2.4. Algorithm for the clinical risk points system or clinical risk scores [51]

Now we describe the general approach for generating a clinical risk points system based
on regression models, such as multiple linear or logistic regression, Cox proportional hazard
regression, etc. In the following steps, we describe the risk points system in the multiple logistic
regression model to help us generate the points system of the mortality risk in A/H7N9. Also,
since our modeling outcome data are binary (death for 1 and survival for 0), the risk points

system in multiple logistic regression model can be processed.

2.4.1. Estimate the parameters of the multivariable model

Suppose the model f(Y) = By + 1 X; + B X, + -+ + B, X, where Y is the dependent or

outcome variable; Using logistic regression as an illustrating example, where Y = 1 denotes the
presence of a particular event; Y = 0 denotes the absence of the event. The function f() is a logit

link function connected to a linear combination of the risk factors X, ..., X, (X; i = 1, ..., p, can
include continuous, dichotomous, or categorical risk factors). The parameters S, B4, ..., B, are

the regression coefficients.

2.4.2. Organize the risk factors into categories and determine reference values

Suppose a risk factor is continuous, then we need to set up adjacent classes and choose

reference values for each. Specifically, to determine points for each category it is important to

specify a reference value for each category; thus, the mid-points approach is commonly
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acceptable. If a risk factor has a bounded range of continuous values, it is obvious to determine
the reference values. For example, if the range of risk factor X, is 0-39, we can categorize X,
into 0-9, 10-19, 20-29, 30-39, and use 4.5, 14.5, 24.5 and 34.5 as reference values, respectively.
However, there are some exceptions if extreme values or outliers exist in a risk factor. For
example, if the range of risk factor X, is 80-210, we may use the five categories <120, 120-129,
130-139, 140-159, >160. It is straightforward to calculate the mid-points for the three middle risk
factor categories. Otherwise, we apply the following mid-points approach: The reference value
for the first category should be included in the range of 119 or less. Since there could be some
extreme values in the distribution of X, (e.g., the minimum is 80), the mid-point between 119
and the 1th percentile of the observed systolic blood pressures is a more robust mid-point for the
first category. Suppose the 1st percentile is 89, then mid-point for the first category is computed
as 104. Similarly, the reference value for the last risk factor category (>160) can be obtained
using the same strategy.

If a risk factor is dichotomous, modelled as an indicator variable or consists of a set of
dummy variables (e.g. each coded as O=absent or 1=present) reflecting distinct categories of the
risk factor, then the reference value is simply either O or 1.

Here, W;; denotes the reference value (e.g. mid-points for continuous risk factors
arranged into categories, or values 0 or 1 for risk factors modelled by a set of dummy variables
or a single indicator) for the jth category of the ith risk factor, where i=1,..., p, and j=1,..., ¢;,

where c;=the total number of categories for risk factor i.
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2.4.3. Determine the referent risk factor profile

Subsequently, we define the appropriate category for each risk factor to serve as the base
category, which will be assigned 0 points in the point scoring system. Higher scores denote
higher risks in general practice. Thus, categories obtaining worse states of the risk factor will be
contributed to positive points, while categories reflecting better states will be assigned negative.

Let W;zgr denote the reference value of the base category, for each of the i risk factors

i=1,...,p.

2.4.4. Determine how far each category is from the base category in regression units

Next, we calculate how far each category is from the base category Wizgr, in terms of
regression units. In other words, we will determine the number of points for each of the
categories of each risk factor and decide the following for each category j of each risk factor i:

Points;; = B;(W;j — Wiggr), 1=1,...,p, and j=1,..., c;.
Note that the base category of each risk factor will be designed 0 points from this formula.

In our study, it is problematic if we use different points for each of the categories of each
risk factor across multiple datasets since we imputed missing values based on the multiple
imputation. In order to generate the simultaneous points for each risk factor with multiply-
imputed datasets, we combined all imputed datasets into a single one, for which we are able to

apply the mid-points approach to specify a common reference.
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2.4.5. Determine risks associated with point totals

In the final step of generating the point system, we will assign the estimates of risk (or
probability of developing an event over the predetermined time frame) based on each point total.
It requires the use of the exact model to set up the estimates of risk. The following formula is the
typical model obtained for risk estimation, p, along with the multiple logistic regression:

1
1+ exp(—2 XB)

p=

Basically, the risk points system is to approximate the contribution of the risk factors in
the estimate of risk, particularly, to estimate Zle B:X;, which is the component of each model
shown above that relies on the specific risk factor profile.

The estimates of risk include the total number of points, which approximates ). X8, into
the formula p; the risk estimates in the risk points system is based on specific risk factor profiles.
For this reason, there are some issues for the presence of an intercept term and handling of
continuous risk factors.

Intercept term: Notice that we have not included a separate point allocation for an
intercept for the points system. In order to approximate ), X, the estimate of the initial value for
the intercept S, should be included.

Continuous risk factors: In 2.4.2., categories for the continuous risk factors were
generated and each reference value specified. In the next step, we chose a base risk factor
category and assigned O points to them. After that, we added up all the points because we
basically estimated how far a particular individual’s risk factor profile is from the referent
profile. Here, we note that the Zle B;X; term obtains a particular risk profile and not the distance

from the referent risk factor profile. It is important that both the referent risk factor profile and
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the distance from that profile should be added to approximate the relevant Y._, B, X;for the risk

estimate.
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CHAPTER 3

SIMULATION STUDY

3.1. Generating data

In our study we will design the point system from the risk factors and conduct the
estimates of the risk to evaluate the finite sample performance from MI-stepwise variable
selection methods under two missing mechanisms: (i) MCAR; (ii) MAR

For simulation studies, all datasets consist of 14 variables and 300 observations which are
sampled from a multivariate standard normal distribution, which has a mean zero and variance of
one, and a compound symmetric correlation structure. 14 continuous variables (X’s) with a
binary response variable (Y) are generated in our models. Y is given by the logit function linked
to the regression model below:

logit(E[Y|X]) = X B.
This logistic regression model is given as the generalized linear regression model, where
predictors, 1, 5, 10, 11, consisting in the model are significant variables. The coefficients g =
(B, Ps, Bro, B11)T in the logistic regression are all set as 1.

The simulations in all scenarios are repeated 100 times each. To evaluate the performance
of MI-Stepwise variable selection method under MCAR and MAR missing mechanisms, three

criteria presented below would be computed:
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sensitivity of selection (SEN)

# of selected important variables

SEN =

# of true important variables '

specificity of selection (SPE)

# of removed unimportant variables

SPE =

# of true unimportant variables '

and geometric mean of sensitivity and specificity (G)

G = \/sensitivity X specificity.
The range of G is between 0 to 1, and a desirable value for selecting variables correctly would be
computed close to 1. According to Kubat et al. [52], this geometric criterion shows the
distinctive independent property of the numbers of important and unimportant covariates.
Therefore, the geometric mean of sensitivity and specificity was computed for overall
performance measurement.

Mean squared errors (MSE) are used to evaluate the performance of point estimates of
risk from MI-Stepwise variable selection under different missingness mechanisms and varied
situations. Assuming the estimates of the risk p and the empirical estimates of the risk p, which
we will define here as subgroup mortality rate, depends on each kth point total, the MSE can be

estimated by
1 A
MSE = ;Zk (B — Pr)?,
where the sum is over the available observations at the kth point total, n is the number of the kth

point total, and N is the total number of observations in each dataset, which is the sum of the

observations of the kth point total Y}, ny.
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3.2. Generating missing data

We assume that Y is fully observed and generated missing data in the 14 covariates of X
under the missing data mechanisms. We regarded ignorable missing mechanisms for the point
system of the risk: (i) missing completely at random (MCAR) and (ii) missing at random (MAR).

For MCAR, each variable was independently dropped by some missing percentages (i.e.
3%, etc.) in X; to X;, to obtain a missingness scenario with ~70% complete cases. Moreover,
MAR is created by the following logistic regression model to generate the binary missing data
indication R;;:

logit{Pr(Ry; = 0| Xy(j+7))} = ao + Xigj1n),
where «, is given to control the average missing percentage of variable. Similarly, to yield
datasets with about 70% complete cases, each variable was independently dropped by various
missing percentages. Given the logistic regression model, a function of a, shown below

describes the expected missing percentage for each variable:

— 1y _exp(aoptXy)
fl(ao) = nZL 1+exp(ag+X;)

3.3. Results

We will compare the performances of the risk point system under full data, complete
cases with different missing data mechanisms and multiply-imputed data from MI. In MI-
Stepwise, we set up p-value thresholds for including and removing a variable; let @, = 0.05 and

a, = 0.06, respectively.
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We considered two simulations to compare the point system in our study: (i) full data,
complete datasets from two different missing mechanisms and its multiply-imputed data; (ii)

overall comparisons under different overall missing proportion of datasets.

3.3.1. Simulation one

In this simulation, we have the sample size N = 300 and number of covariates N, = 14.
Missing values were generated by MCAR and MAR missing mechanisms including 70%
complete cases. For MCAR, we dropped 3% of each candidate variable in X; — X;, including
about 70% complete cases. Similarly, for MAR, we yielded about 70% complete cases using the
logistic model of the expected missing percentage for each variable. The true regression

coefficients §;’s were set to 1 for i=1, 5, 10, 11 and otherwise g; = 0.

Table 3.1. Mean Sensitivity (SEN), Specificity (SPE) and their Geometric Mean (G): The
Stepwise Regression on Full Cases, the CC-Stepwise on Two Different Missing Mechanisms
(MCAR, MAR) including 70% Complete Cases of 300 Observations and the MI-Stepwise on
Multiply-Imputed Datasets among 100 Simulations.

SEN SPE G
Full data
Stepwise 99.8 93.7 96.7
MCAR
0
Cozno /I‘(’a N CC-Stepwise 98 96 97
Cases MI-Stepwise 99.8 96.6 98.2
MAR
CC-Stepwise 98.8 95.4 97.1
MI-Stepwise 99.8 96.8 98.3

CC-Stepwise, complete cases stepwise; MI-Stepwise, multiply-imputed cases stepwise.
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Stepwise Selection
with Full / 70% Complete / Multiply-Imputed Data (N=300)
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Figure 3.1. Each Variable (in percentage) Selected from Stepwise Methods including Full Data,
30% Missing Cases of 300 Observations, and Multiply-Imputed Data among 100 Simulations.
All significant variable’s (X, X5, X109, X11) coefficients set to 1. Overall missing percentage of
datasets are 30% of 300 observations and missing values are generated under MCAR and MAR.

Figure 3.1 shows the results of stepwise variable selection methods from full data,
complete cases under MCAR and MAR missing mechanisms, and multiply-imputed cases; we
denote stepwise methods as Stepwise for the full data, CC-Stepwise for the complete data and
MI-Stepwise for the multiply-imputed data. From overall 30% missing datasets, all important
variables are selected after multiple imputation across MI-Stepwise selection methods. After
multiple imputation with MI-Stepwise variable selection, the probability of selecting important
variables into the model increases in both missing mechanisms, i.e. it increases from 98% in CC-
Stepwise to 99.8% in MI-Stepwise for MCAR, and from 98.8% to 99.8% for MAR. In addition,

97% in CC-Stepwise of the Geometric criterion increases to 98.2% in MI-Stepwise for MCAR,
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and further improvements are observed for MAR as well. The MI-Stepwise methods on both
missing mechanisms have similar SEN, SPE, and G values compared with the Stepwise method
applied on the full data with no missing values. It suggests that MI-Stepwise competes well as
the Stepwise method applied on full data in terms of identifying important variables. In Table

3.1. we listed results on different criteria for the performance of the variable selections.

Table 3.2. Mean Squared Errors (MSE): Evaluating the Performance of the Risk Point Systems
Generated based on the Stepwise Regression on Full Cases, the CC-Stepwise under MCAR and
MAR Missing Mechanisms including 70% Complete Cases of 300 Observations and the MI-
Stepwise on Multiply-Imputed Datasets among 100 Simulations.

Stepwise (Full) CC-Stepwise (MCAR) CC-Stepwise (MAR)
0.022 0.025 0.030
MI-Stepwise (MCAR) MI-Stepwise (MAR)
0.021 0.022

CC-Stepwise, complete cases stepwise; MI-Stepwise, multiply-imputed cases stepwise.

Table 3.2. shows that the MSE of the risk point system from MI-Stepwise on each
MCAR and MAR are slightly higher than the MSE of the risk scores computed from the full
datasets. However, these MSE from multiply-imputed datasets are improved (lower) under both
MCAR and MAR missing mechanisms compared with the MSE from the 70% complete cases
datasets which deletes incomplete observations. MSE for MCAR is dropped about 16% from
0.025 to 0.021; similarly, it drops about 25% from 0.030 to 0.022 for MAR. The results in
general support the notion that we could achieve better performances in developing the risk point
systems on imputed datasets than the complete case analysis under ignorable missing

mechanisms.
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3.3.2. Simulation two

In this simulation, we increase overall missing proportion to 50% complete cases in the
same sample size to the previous simulation (N=300) and leave other major parameters
unchanged. For MCAR, we generate ~50% complete cases by dropping 5% of each candidate
covariate in X; — X;,. MAR datasets include about 50% complete cases as well. The true

regression coefficients S;’s are set to 1 for i=1, 5, 10, 11 and 0 otherwise.

Stepwise Selection
with Full / 50% Complete / Multiply-Imputed Data (N=300)

100%
80%
60%
40%
20%
0% I|-I. ||I|| II||| II L ||I|I . I.II| T
V10

Vil V12 Vi3 V14

The percentage of time that each variable is included in
the model

m Stepwise (Full) m CC-Stepwise(MCAR) m MI-Stepwise (MCAR)
m CC-Stepwise (MAR) m MI-Stepwise (MAR)

Figure 3.2. Each Variable (in percentage) Selected from Stepwise Methods including Full Data,
50% Missing Cases of 300 Observations, and Multiply-Imputed Data among 100 Simulations.
All significant variable’s (X7, X5, X109, X11) coefficients set to 1. Overall missing percentage of
datasets are 50% of 300 observations and missing values are generated under MCAR and MAR.
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Figure 3.2. shows that important variables selected by Stepwise, CC-Stepwise and MI-
Stepwise reach over 90% of the total replications as well as Figure 3.1. in simulation one.
Generally, after applying MI-Stepwise on multiply-imputed datasets, the correct selection for
valuable covariates presents better selection than the selection from the complete case datasets
without imputation. Details of the simulation results are shown in Table 3.3. Compared with
results from the previous simulation, data with 50% complete cases has lower SEN and G.
Otherwise, SPE from missing data scenarios are slightly higher than the results from the full data
for both simulations. The SPE in our simulations have stable results from overall stepwise
methods in general, with a trade-off of lower SEN in data with missingness, for which MI-

Stepwise outperforms CC-Stepwise.

Table 3.3. Mean Sensitivity (SEN), Specificity (SPE) and their Geometric Mean (G): The
Stepwise Regression on Full Cases, the CC-Stepwise on Two Different Missing Mechanisms
(MCAR, MAR) including 50% Complete Cases of 300 Observations and the MI-Stepwise on
Multiply-Imputed Datasets among 100 Simulations.

SEN SPE G
Full data
Stepwise 99.8 93.7 96.7
MCAR
0,
cotr-)T? /I(:ete CC-Stepwise 96.2 95.2 95.7
Cases MI-Stepwise 99.8 97.3 98.5
MAR
CC-Stepwise 97.2 95.6 96.4
MI-Stepwise 99.8 96.5 98.1

CC-Stepwise, complete cases stepwise; MI-Stepwise, multiply-imputed cases stepwise.

Table 3.4. presents the results of the MSE on the risk point system generated from the
overall stepwise methods with sample size N=300. The risk points system from the full data has

small MSE, and the CC-Stepwise risk score has higher MSE than the risk scores from Stepwise
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and MI-Stepwise. In general, the MSE based on the full data applied to Stepwise method is
considered as the gold standard. The risk point system from data with the MCAR missing
mechanism typically results in better MSE than that from data with the MAR missing
mechanism. Compared with the previous simulation, high overall missing percentage leads to
higher overall MSE, but the general comparisons among different approaches follow the same

pattern observed in simulation one.

Table 3.4. Mean Squared Errors (MSE): Evaluating the Performance of the Risk Point Systems
Generated based on the Stepwise Regression on Full Cases, the CC-Stepwise under MCAR and
MAR Missing Mechanisms including 50% Complete Cases of 300 Observations and the MI-
Stepwise on Multiply-Imputed Datasets among 100 Simulations.

MCAR MAR
Stepwise CC- M- CC- M-
P Stepwise Stepwise Stepwise Stepwise
Full data 0.022
0,
50% complete 0.030 0.021 0.033 0.021
cases

CC-Stepwise, complete cases stepwise; MI-Stepwise, multiply-imputed cases stepwise.
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CHAPTER 4

APPLICATION TO THE H7N9 DATASET

4.1 Application on H7N9

The motivating data on H7N9 in our study was provided from Zhejiang CDC in China.
The study dataset included 305 laboratory-identified A/H7N9 patients from Zhejiang province
between 2013 and 2018. These observations were diagnosed in 10 prefecture cities: Lishui,
Taizhou, Jiaxing, Ningbo, Hangzhou, Wenzhou, Huzhou, Shaoxing, Quzhou, Jinhua. Among
patients confirmed with the A/H7N9, the median age was 59 (interquartile range, 49-68), 64%
were male, and 51% resided in urban residences. Antiviral treatment was given to 81% of
patients, 63% had at least one type of underlying medical conditions, and 30% had 2 or more of
them. Poultry exposure was common; 93% had some poultry exposure, and 69% recently visited
a live poultry market. However, only 6% were poultry workers.

Overall mortality was 37.7% in our H7N9 data; 115 patients died among 305
observations. For this reason, we were motivated to identify sufficient virus exposure pathways,
clinical traits and laboratory examinations and to synthesize a simple, predictive risk point
system for clinical use estimating the risk of the mortality. The A/H7N9 dataset initially
contained 49 candidate covariates. After variables deemed irrelevant to the study purpose were
removed, the final working dataset included 19 covariates. These variables contained

demographics (age, sex, smoking), clinical traits (diabetes, hypertension, cardiovascular disease,
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pulmonary disease, underlying medical conditions history, admission, antiviral treatment), and
laboratory examinations (white blood cells, body temperature in Celsius, chronic drug use,
unilateral/bilateral lung infection, pneumonia). More details of candidate variables are shown in
Table 4.1. We included dichotomous variables converted from nominal variables (i.e. categorical
variables). These final covariates were analyzed containing both 6 continuous and 13 binary
variables, and the data analysis for Ml strategy was based on the five imputations accomplished

by Olson et al [53].
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Age of H7N9 patients (305)
e 1-23
* 28-46
47-60
¢ 61-72
e 73-87

[1 Prefecture-level cities

Population Density (per km2)

"~ Survivors
(190)

Figure 4.1. Geospatial Coordinates of Patients with Laboratory-Confirmed Diagnoses of
A/H7N9 Infection from the Cohort of Zhejiang Province, Southeastern China.
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Table 4.1. Demographic, Clinical, and Laboratory Characteristics of 305 Laboratory-identified
A/HTNO.

No

Variable Participants Percent Median (IQR)
Demographic Characteristics
N 305 100
Median Age, Years (IQR) 59 (49-68)
Age group, years
<45 59 19.3
>45 and <55 55 18.0
>55 and <65 86 28.2
>65 and <75 64 21.0
>75 41 13.4
Male 194 63.6
Smoker
Yes 35 115
No 85 27.9
Missing 185 60.7
Clinical Characteristics
Diabetes
Yes 54 17.7
No 230 75.4
Missing 21 6.9
Hypertension
Yes 125 41.0
No 165 54.1
Missing 15 4.9
Cardiovascular disease
Yes 57 18.7
No 213 69.8
Missing 35 115
Pulmonary disease
Yes 18 5.9
No 252 82.6
Missing 35 115
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Presence of Underlying Medical

Conditions
Yes 193 63.3
No 97 31.8
Missing 15 4.9
Admission 296 97.0
Antiviral Treatment 248 81.3
Laboratory Traits
Lymphocyte Count Percent 15 (10-22)
Abnormal Lymphocyte Count Percent
Low, <0.20 129 42.3
Normal, 0.20 to 0.39 52 17.0
High, >0.40 9 3.0
Missing 115 37.7
Neutrophil Count Percent 78 (71-85)
Neutrophil Count Percent Quartiles
<0.70 63 20.7
>(.70 and <0.79 74 24.3
>0.79 and <0.86 63 20.7
>0.86 63 20.7
Missing 42 13.8
White Blood Cell Count, Microliter 5 (3.6-6.7)
Abnormal White Blood Cell Count
<3.5 63 20.7
3.51t010.5 208 68.2
>10.5 19 6.2
Missing 15 4.9
C-Reactive Protein, Milligram per Liter 755
’ (35.6-129.3)
Abnormal C-Reactive Protein
Normal, <10.0 12
High, 10 to 50 45
Severe, > 50.0 115
Missing 133
Temperature, Celsius 39.3 (38.9-39.8)
Fever (37.8 Celsius or above) 282 92.5
Missing 14 4.6
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Chronic Drug Use 79 25.9

Missing 147 48.2
Unilateral Lung Infection

Yes 255 83.6

No 2 0.7

Missing 48 15.7
Bilateral Lung Infection

Yes 177 58.0

No 43 14.1

Missing 85 27.9
Pneumonia 232 76.1

Missing 64 21.0

IQR, interquartile range.

Percentages refer to within—characteristic column totals among participants within each clinic
and in entire study. The total percentages may not be 100% since within-column percentages
were rounded to the nearest integer. Column totals vary across different characteristics due to
missing values for some participants.

We assumed that the general missing mechanism was MAR in the A/H7N9 dataset and
fitted the multiple logistic regression model with its multiply-imputed datasets. Then we applied
the MI-Stepwise variable selection method with @; = 0.05 and a, = 0.06 to select the A/H7N9
risk factors of the mortality. From these selected risk factors, we then created the clinical risk
points system for mortality. The sufficient covariates selected from MI-Stepwise, its coefficient
estimates, P-values, referent risk factor profiles (W;;) of the clinical risk points system, 95%

confidence intervals (CIs), and the risk point systems on each category of each sufficient

covariate are presented in Table 4.2.
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Table 4.2. Multivariable Logistic Regression Analysis of Derivation of the Clinical Risk Points

System Classification in A/H7N9.

Risk Factor Coe(lef)lent Re(fa;iej;lce P value 95% ClI PT):?::S
Intercept -6.5883 <0.0001  (-9.4658, -3.7108)
Age (years) 0.0574 31.5=Wier  <0.0001  (0.0358, 0.0790)
<50 31.5 0
>50 and <60 54 1
>60 and <68 63.5 2
>68 76 3
Neutrophil Count
Percent Quartile 3.0158 0.46 = Wy,ef 0.0450 (0.0683, 5.9633)
<0.70 0.46 0
>(.70 and <0.79 0.75 1
>0.79 and <0.86 0.83 1
>0.86 0.91 1
White Blood Cell
Count 0.0586 5.0 = Waper 0.0066 (0.0164, 0.1008)
<10.1 5.0 0
>10.1and <11.4 10.75 0
>11.4 and <12.9 24.3 0
>12.9 14.75 1

The real data analysis suggests that the mortality of the A/H7N9 is positively associated

with age, neutrophil count (in percent), and white blood cell count (in microliter). These findings

are dependable and consistent since, in general, many studies find that aging, chronic diseases,

and immune degradation by bacterial/viral infections increase the mortality rate [54]. Moreover,

extreme laboratory results in the neutrophil count test and c-protein test are highly correlated
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with the risk of infections. Results from these biomarkers also suggest that severe viral infection

increases in the risk of the mortality rate.

Risk Risk - - Mortalit_y - -
Score Estimate Imputation  Imputation Imputation Imputation Imputation
1 2 3 4 5

0 0.044 0.182 0.100 0.100 0.158 0.105

1 0.112 0.155 0.189 0.178 0.162 0.173

2 0.256 0.325 0.338 0.333 0.333 0.346

3 0.483 0.438 0.389 0.411 0.403 0.394

4 0.717 0.712 0.727 0.722 0.727 0.727

5 0.873 1.000 1.000 1.000 1.000 1.000

Table 4.3. The Points System of the Risk Estimate and the Empirical Risk of the Mortality in
A/HTNO.

Following the risk point system approach, we investigated risk scores for each category
of each selected covariate in our data. Since age, neutrophil count percent and white blood cell
count covariates were continuous, we categorized them based on clinical references following
quantiles in the multiply-imputed data. Overall trends of estimated coefficients are positive so
that the trend of the risk scores in each variable also relevantly increases in our risk point system.
The risk points assigned in > 68 years old remarkably increase the risk of the death in A/H7N9
infection. In Table 4.3., the clinical risk points of the A/H7N9 ranges from 0 to 5, and their
estimates of risk and the empirical risk of the mortality increase with the clinical risk points. The
same pattern is observed across the imputed datasets.

Findings from our study suggest that MI-Stepwise method with @, = 0.05 and a, =
0.06 may be too liberal in selecting the risk factors for death resulted from A/H7N9 infection.
Mortality rate among those having pulmonary disease in A/H7N9 infected cases is as high as

61%, a potential risk factor to be further explored. Furthermore, pneumonia, smoking and c-
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protein may be regarded as important risk factors of the A/H7N9; pneumonia is associated with a
high mortality rate (41%) in the A/H7N9 infection and is relevant to the invasive lung infection
[5]; smoking is known as one of major risk factors of lung diseases; c-protein remarks infections
or inflammations. Thus, further investigations with less restricted variable selections procedures

are warranted.
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CHAPTER 5

DISCUSSION

The clinical risk points system makes complex statistical models practical and
convenient. Moreover, such systems can aid clinicians to make their decisions for the treatment
process quickly with its characteristic as a scientific tool for predicting risks of diseases or
incorporating effective evidence-based approaches [51]. However, missing data arise in the
problem of generating the risk point system. Ml has been a prevalent method for resolving the
problems of the missing data since it is easy to implement and available with relevant software.
However, we are confronted with the challenge of developing a simultaneous risk points system
with multiply-imputed datasets. In our study, we propose to apply a MI-Stepwise method for
variable selection after multiple imputation, and to combine all multiply-imputed datasets
together so that we include all observations for computing a coincident risk points system that
can be generalizable in application.

MI-Stepwise method is also convenient for implementation on the multiple logistic
regression model, and the MI-Stepwise specifies significant variables in models as well as the
Stepwise on full data. Following our simulations, dropping incomplete observations when
performing stepwise selection on complete-cases results in poor sensitivity of selection,
particularly if the overall missing proportion is relatively high, and/or the missing mechanism is
under MAR. Meanwhile, MI-Stepwise completes variable selection effectively with better

sensitivity and specificity, especially for data with tolerable proportions of overall missingness.
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The MI-Stepwise method is relatively liberal for selecting significant variables into the model. If
we refit the model with variables selected by MI-Stepwise, those variables are mostly significant
at level ;. This feature of the MI-Stepwise appears to be important to yield stable selection of
models based on the multiply-imputed data. Overall, we conclude that MI-Stepwise methods
applied to multiply-imputed data help generating a valid risk points system.

According to Chen and Wang [19], the MI-LASSO method, which adopts the concept of
group LASSO, can be an alternative to the MI-Stepwise since MI-LASSO typically maintains
better sensitivities, especially for small sample size data with a large number of covariates.
However, MI-LASSO could be subjected to over-selecting issues when the sample size is large.

When Ml is used to handle missing data, we often assume that missing information is
ignorable. As such, we generate missing data under MCAR or MAR in our simulation study.
This can be considered as a limitation of the current study. We also applied MI-Stepwise under
different proportion of overall missingness. In terms of MSE, the points systems built on the
variables selected through MI-Stepwise under all scenarios of simulation achieves good
performances under ignorable missing mechanisms. Simulation scenarios of the risk points
system under non-ignorable missing mechanisms can be explored in future studies.

To assess the performance of the risk points system we developed, MSE was used to
compare estimated and empirical mortalities. However, it can be challenging to evaluate the risk
points system this way in some scenarios. Data with large missing proportions will result in
small sample sizes for the complete case analysis, such that the risk points system on the CC-
Stepwise is likely to have a short range of possible risk points. Further, a mis-specified
imputation procedure applied to dataset with a significant portion of its data being missing could

reveal relationships between the outcome and predicting variables with bias. Consequently, the
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risk points system developed from variable selection by MI-Stepwise in these scenarios may
have poor performances.

In this study, we aim to develop the methodology for the computation of the risk points
system on multiple logistic regression model with MI-Stepwise method for data with
missingness, for which theoretical properties are still under exploration. Future studies can be
extended to investigate the method for cox proportional hazards models as well. We note that
assessing the effect of uncertainty in imputation on the variable selection and creating a
simultaneous risk points system for multiply-imputed datasets remain as two major challenges in

developing a consistent risk points system.
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