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Abstract

The highly correlated ab initio coupled-cluster theories have been employed on
the ground and first excited electronic states of the HCSi and HCGe tri-atomic
molecules, and on the ground electronic states of the GeC2, Si2H3, and Si2H4. The
main reason for the choice of these molecules is that very little or even nothing is
known about the structure, energetic, and other first and second order molecular
properties. Also, these molecules are of interest because of their potential applica-
tions in semiconductors and optoelectronics, in surface growth processes, and their
possible existence in the circumstellar atmospheres of evolved carbon stars. Large
basis sets (e.g. TZ3P(2f ,2d)+2diff and cc-pVQZ) have been employed in conjunc-
tion with the very sophisticated quantum mechanical methods such as CCSD(T),
CCSD(2), and CCSDT. Equation of motion coupled cluster theories were employed
in order to determine some excited state properties, which cannot be determined
using standard quantum mechanical methods due to possible variational collapses.
Challenging problems such as characterization of the Renner-Teller splitting in the
ground X̃ 2Π states of HCSi and HCGe, determination of the true ground state equi-
librium geometry for the elusive GeC2, and searching the unanticipated mono- and
di-bridged isomers of the Si2H3 and Si2H4 molecules have been focused. Investigation
of the effects of the scalar relativistic corrections on some molecular properties as
well as on the Renner-Teller splitting has been another focus of interest throughout
the study. In some cases, corrections due to zero-point vibrational energies (ZPVE)
and core-valence interactions have been determined in order to predict reliable spec-
troscopic constants. The theoretical predictions for the HCSi and HCGe tri-atomic
molecules were compared with the few existent experimental and theoretical works
in literature. It has been observed that coupled cluster theory in conjunction with
large basis sets is able to predict bond distances within ±0.1 Å and energetic prop-
erties within ±1 kcal/mol accuracy. Inclusion of the scalar relativistic corrections



even produced better estimates. The equilibrium geometry for the GeC2 molecule in
its ground state is predicted to be L-Shaped rather than T-shaped as in the case of
SiC2. For the structural predictions on the Si2H3 and Si2H4 molecules, collaboration
with the Harvard experimentalists showed excellent agreements.
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values in parentheses). . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 Total energies (in hartree), bond distances (in Å ), and dipole
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Chapter 1

Introduction and Background Material

Once we decide to carry atoms and molecules to the computers, and deal with them

without any experimental data, we should have extremely sophisticated quantum

mechanical tools. The complexity of the atomic and molecular systems makes the

mathematical equations hard to comprehend and cumbersome to implement. I think,

the most dangerous quantum mechanical theory is that it relies on the one or two

physical concepts of the molecular systems rather than comprising all the physics.

For instance, any theory that does not include some kind of relativistic treatments is

incomplete, because the special theory of relativity is valid even for a hydrogen atom.

Any ab initio theory that does not have a proper treatment of electron correlation

is insufficient for describing the molecular structure. Therefore, when we work on a

molecular system not only we should employ highly correlated wave-functions but

also all possible physical facts such as core-valence interactions and relativity should

be taken into account.

Another very important aspect of the ab initio quantum chemical treatments is

the choice and/or size of the basis set. A value obtained from calculations which is

performed with a specific basis set cannot be a reliable prediction, even if a very

sophisticated level of theory is used. Because the basis set used might not describe

the system properly or it might not be large enough. For instance, if the basis

set does not include diffuse functions for a loosely bound system or for an anion,

any treatment with this basis set will not give the correct result even if we do a

1
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complete basis set extrapolation with the cc-pV5Z and cc-pV6Z, or any other kind

of extrapolation scheme. The same is true for the core-valence interactions. If the

basis set does not have any function, which accounts for the core-core or core-valence

interactions, we are not in the true path even if we do the most sophisticated quantum

mechanical treatments. Therefore, we should employ multiple basis sets and monitor

the changes as we increase the size of the basis set. Also, effects of the adding diffuse

functions should be clearly understood. Then, functions which describe the core-

valence interactions should be added. After a careful analysis of the effects of basis

set expansion, adding diffuse functions, and core-valence functions, we may come to

a definitive result.

Therefore, throughout this study, not only I employed highly level quantum

mechanical methods which solve the problem of electron correlations but also I

tried to incorporate other physics such as relativity and core-valence interactions.

I believe that such treatment is necessary for a true description of the molecular

systems, and for reliable theoretical predictions. Also, depending on the result of a

single basis set has been strictly avoided.

1.1 A Brief History of the Coupled Cluster Theory

Coupled cluster theory was introduced into quantum chemistry in the late 1960s

by Č́ıžek and Paldus.1–3 It has been become the most reliable and computationally

affordable method for the approximate solution of the electronic Schrödinger equa-

tion. Quantum chemists were slow to accept coupled cluster theory, perhaps because

the earliest people in the field used elegant but unfamiliar mathematical tools such as

Feynman-like diagrams and second-quantization. Almost ten years after the essential

contributions of Paldus and Č́ıžek, Hurley presented a re-derivation of the coupled

cluster doubles (CCD) equations4 which were more familiar to quantum chemists.
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In 1977, Monkhorst5 reported a general coupled cluster response theory for calcu-

lating molecular properties. The computer implementations of the theory began to

appear by the end of the 1970s. The Pople6 and Bartlett7 groups developed and

tested spin-orbital CCD programs. In 1982, Purvis and Bartlett derived the coupled

cluster singles and doubles (CCSD) equations and implemented them in a practical

computer code.8 Thereafter, the popularity of coupled cluster methods has increased,

and tremendous efforts have been made in the production of highly efficient CCSD

energy codes.8–14

I strongly suggest interested readers to look at a very nice review paper on

coupled cluster theory, written by T. D. Crawford and H. F. Schaefer.15

1.2 Cluster Expansion of the Wavefunction

The Slater determinant for a system of four electrons moving in an arbitrary elec-

trostatic field can be written as

Φ0 =
1√
4!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φi(x1) φj(x1) φk(x1) φl(x1)

φi(x2) φj(x2) φk(x2) φl(x2)

φi(x3) φj(x3) φk(x3) φl(x3)

φi(x4) φj(x4) φk(x4) φl(x4)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (1.1)

Expansion of this determinant produces a linear combination of products of the

four functions, φi, φj, φk, and φl, with the electronic coordinates xn distributed

among them in all possible ways. The component functions φi can be chosen in a

variety of ways. For instance, if the nuclear field were only a single carbon nucleus,

the one-electron spatial functions could be constructed to represent the atomic 1s, 2s,

and 2p orbitals. For a molecular system, the functions can be constructed as a linear

combination of atomic orbitals (AOs) in which each one-electron function represents
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a molecular orbital (MO) whose AO coefficients are determined via the Hartree-

Fock self-consistent-field (SCF) procedure. Since permutation of any two rows in

the determinant — which is equivalent to interchanging the coordinates of any two

electrons — changes the sign of Φ0, the antisymmetry principle is maintained. A

convenient shorthand notation for this wavefunction consists of a Dirac-notation ket

containing only the diagonal elements of the above matrix:

Φ0 = |φi(x1)φj(x2)φk(x3)φl(x4)〉, (1.2)

We can improve this so-called independent-particle approximation such that the

motions of the electrons are correlated. To do this, often the set of occupied orbitals

is chosen from a larger set of one-electron functions. These “extra” functions are fre-

quently referred to as virtual orbitals and arise as a byproduct of the SCF procedure.

These functions will be donated as

• Orbitals of the occupied space have subscripts i, j, k, . . .

• Orbitals within the virtual space have subscripts a, b, c, . . .

• Arbitrary functions which may lie in eitherspace have subscripts p, q, r, . . .

Within the space described by the full set of orbitals, any function of N variables

may be written in terms of N -tuple products of the φp. For example, a function of

two variables may be constructed by using all possible binary products of the set of

one-electron functions, e.g.,

f(x1,x2) =
∑

p>q

cpqφp(x1)φq(x2), (1.3)

Instead of correlating the motions of a specific pair of electrons, however, we may

use a modified form of this expansion to correlate the motions of any two electrons

within a selected pair of occupied orbitals, say functions i and j, using a two-particle
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cluster function:

fij(xm,xn) =
∑

a>b

tab
ij φa(xm)φb(xn), (1.4)

The tab
ij are the cluster coefficients determined via the electronic Schrödinger equa-

tion. Inserting this into Φ0 leads to the somewhat-improved electronic wavefunction:

Ψ = | [φi(x1)φj(x2) + fij(x1,x2)]φk(x3)φl(x4)〉, (1.5)

Inclusion of the cluster function, fij, in the wavefunction produces a linear com-

bination of Slater determinants involving replacement of occupied orbitals φi and φj

by virtual orbitals φa and φb, such that:

Ψ = Φ0 +
∑

a>b

tab
ij |φa(x1)φb(x2)φk(x3)φl(x4)〉. (1.6)

In addition, the determinantal form of the individual terms in this expansion implies

antisymmetrization of the cluster coefficients, such that tab
ij = −tab

ji = −tbaij = tbaji .

Note the cluster function, fij(x1,x2), correlates the motions of any pair of electrons

placed in orbitals i and j. The Slater determinant produces a linear combination of

orbital products, including terms such as:

[φi(x1)φj(x2) + fij(x1,x2)]φk(x3)φl(x4) (1.7)

and

[φi(x3)φj(x4) + fij(x3,x4)]φk(x1)φl(x2), (1.8)

which differ only in their distribution of electronic coordinates. Therefore, the cluster

function correlates the motion of every pair of electrons found in orbitals φi and φj.

A more intelligent approach might be to correlate all possible pairwise combina-

tions of orbitals in this four-electron system:

Φ = |φiφjφkφl〉 + |fijφkφl〉 − |fikφjφl〉 + |filφjφk〉 + |φifjkφl〉 −

|φifjlφk〉 + |φiφjfkl〉 + |fijfkl〉 − |fikfjl〉 + |filfjk〉, (1.9)
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Note that there is no need to limit this approach to only orbital pairs. We could

introduce three-orbital cluster functions and include these in our new wavefunction

to give:

Φ = |φiφjφkφl〉 + |fijφkφl〉 − |fikφjφl〉 + |filφjφk〉 + |φifjkφl〉 −

|φifjlφk〉 + |φiφjfkl〉 + |fijfkl〉 − |fikfjl〉 + |filfjk〉 +

|fijkφl〉 − |fijlφk〉 + |fiklφj〉 + |φifjkl〉. (1.10)

If one continues this process to include all cluster functions for up to N orbitals,

we would obtain the exact wavefunction, Ψ, within the space spanned by the {φp}.

We might assume that clusters larger than pairs are less important to an adequate

description of the system. This assumption supported by the fact that the electronic

Hamiltonian contains operators describing pairwise electronic interactions at most.

We could therefore write a four-electron wavefunction which includes all clusters of

only one and two orbitals as:15

Ψ = |φiφjφkφl〉 + |fiφjφkφl〉 + |φifjφkφl〉 + |φiφjfkφl〉 + |φiφjφkfl〉 +

|fifjφkφl〉 + |fiφjfkφl〉 + |fiφjφkfl〉 + |φifjfkφl〉 + |φifjφkfl〉 +

|φiφjfkfl〉 + |fifjfkφl〉 + |fifjφkfl〉 + |fiφjfkfl〉 + |φifjfkfl〉 +

|fijφkφl〉 − |fikφjφl〉 + |filφjφk〉 + |φifjkφl〉 − |φifjlφk〉 +

|φiφjfkl〉 + |fijfkl〉 − |fikfjl〉 + |filfjk〉 + |fifjfkfl〉 + (1.11)

|fijfkφl〉 + |fijφkfl〉 + |fijfkfl〉 − |fikfjφl〉 − |fikφjfl〉 − |fikfjfl〉 +

|filfjφl〉 + |filφjfl〉 + |filfjfl〉 + |fifjkφl〉 + |φifjkfl〉 + |fifjkfl〉 −

|fifjlφk〉 − |φifjlfk〉 − |fifjlfk〉 + |fiφjfkl〉 + |φifjfkl〉 + |fifjfkl〉.

1.3 The Exponential Ansatz and Formal Coupled-Cluster Theory

The complicated notation of Eq. [1.11] can be drastically reduced by defining a

creation and an annihilation operator.15 The creation operator accts on a Slater
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determinant as;

a†p|φq . . . φs〉 = |φpφq . . . φs〉, (1.12)

And similarly, the annihilation operator;

ap|φpφq . . . φs〉 = |φq . . . φs〉, (1.13)

A given Slater determinant may be written as a chain of creation operators acting

on the true vacuum (a state containing no electrons or orbitals):

a†pa
†
q . . . a

†
s| 〉 = |φpφq . . . φs〉. (1.14)

Using these second-quantized operators, we may define the single-orbital cluster

operator:

t̂i ≡
∑

a

tai a
†
aai , (1.15)

Similarly, a two-orbital cluster operator which substitutes orbital φa for φi and φb

for φj is given as:

t̂ij ≡
∑

a>b

tab
ij a

†
aa

†
bajai , (1.16)

Equations [1.15] and [1.16] may be used to rewrite the long one- and two-orbital

cluster wavefunction in Eq. [1.11] above as:

Ψ =



1 +
∑

i

t̂i +
1

2

∑

ij

t̂it̂j +
1

6

∑

ijk

t̂it̂j t̂k +
1

2

∑

ij

t̂ij+

1

8

∑

ijkl

t̂ij t̂kl +
1

24

∑

ijkl

t̂it̂j t̂kt̂l +
1

2

∑

ijk

t̂ij t̂k +
1

4

∑

ijkl

t̂ij t̂k t̂l



Φ0. (1.17)

We may simplify this expression even further by defining the total one- and two-

orbital cluster operators:

T̂1 ≡
∑

i

t̂i =
∑

ia

tai a
†
aai , (1.18)

and

T̂2 ≡
1

2

∑

ij

t̂ij =
1

4

∑

ijab

tab
ij a

†
aa

†
bajai , (1.19)
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More generally, an n-orbital cluster operator may be defined as:

T̂n =
(

1

n!

)2 n
∑

ij...ab...

tab...
ij...a

†
aa

†
b . . . ajai . (1.20)

This reduces the wavefunction expression to:

Ψ =
(

1 + T̂1 +
1

2!
T̂ 2

1 +
1

3!
T̂ 3

1 + T̂2 +
1

2!
T̂ 2

2 +
1

4!
T̂ 4

1 + T̂2T̂1 +
1

2!
T̂2T̂

2
1

)

Φ0. (1.21)

All of the terms from the above equation match those from the power series

expansion of an exponential function! Thus, the general expression for Eq. [1.21] is:

Ψ = eT̂1+T̂2Φ0 ≡ eT̂ Φ0, (1.22)

The exponentiated cluster operator (ansatz), eT̂ , when applied to the reference deter-

minant, produces a new wavefunction containing cluster functions, each of which cor-

relates the motion of electrons within specific orbitals. If T̂ includes contributions

from all possible orbital groupings for the N -electron system (that is, T̂1, T̂2, . . . , T̂N),

then the exact wavefunction within the given one-electron basis may be obtained

from the reference function. Truncation of the cluster operator at specific sub-

stitution/excitation levels leads to a hierarchy of coupled cluster techniques (e.g.,

T̂ ≡ T̂1 + T̂2 → CCSD; T̂ ≡ T̂1 + T̂2 + T̂3 → CCSDT, etc.

We do not yet have a recipe for determining the so-called “cluster amplitudes”

(tai , t
ab
ij , etc.) which parameterize the power series expansion implicit in Eq. [1.22].

Starting point for this analysis is the electronic Schrödinger equation:

Ĥ|Ψ〉 = E|Ψ〉, (1.23)

The coupled cluster wavefunction, ΨT̂
CCΦ0, is used to approximate the exact solution,

Ψ:

ĤeT̂ |Φ0〉 = EeT̂ |Φ0〉. (1.24)
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Using a “projective” technique, one may left-multiply this equation by the reference,

Φ0, to obtain an expression for the energy:

〈Φ0|ĤeT̂ |Φ0〉 = E〈Φ0|eT̂ |Φ0〉 = E, (1.25)

Additionally, one may obtain expressions for the cluster amplitudes by left-projecting

the Schrödinger equation by the excited determinants produced by the action of the

cluster operator, T̂ , on the reference:

〈Φab...
ij... |ĤeT̂ |Φ0〉 = E〈Φab...

ij... |eT̂ |Φ0〉, (1.26)

Projection by the determinant |Φab
ij 〉, for example, will produce an equation for the

specific amplitude tab
ij (coupled to other amplitudes).

Recall that the exponentiated operator may be expanded in a power series as:

eT̂ = 1 + T̂ +
T̂ 2

2!
+
T̂ 3

3!
+ . . . . (1.27)

Inserting this into the energy expression Eq. [1.25] we obtain:

〈Φ0|Ĥ(1 + T̂ +
T̂ 2

2!
+
T̂ 3

3!
+ . . .)|Φ0〉 = E, (1.28)

which becomes, after distributing terms:

〈Φ0|Ĥ|Φ0〉 + 〈Φ0|ĤT̂ |Φ0〉 + 〈Φ0|Ĥ
T̂ 2

2!
|Φ0〉 + 〈Φ0|Ĥ

T̂ 3

3!
|Φ0〉 + . . . = E. (1.29)

Note that Ĥ is at most a two-particle operator and that T̂ is at least a one-particle

excitation operator. Then, assuming that the reference wavefunction is a single deter-

minant constructed from a set of one-electron functions, Slater’s rules state that

matrix elements of the Hamiltonian between determinants that differ by more than

two orbitals are zero. Thus, the fourth term on the left-hand side of Eq (1.29) con-

tains, at the least, threefold excitations, and, as a result, that matrix element (and

all higher-order elements) necessarily vanish. The energy equation then simplifies to

〈Φ0|Ĥ|Φ0〉 + 〈Φ0|ĤT̂ |Φ0〉 + 〈Φ0|Ĥ
T̂ 2

2!
|Φ0〉 = E. (1.30)
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This truncation depends only on the form of Ĥ and not on that of T̂ or on the

number of electrons.

1.4 Relativity in Chemistry

In the vicinity of nucleus the electrons acquire high velocities, a substantial fraction

of speed of light, and the mass increases;

M = M0(
(1 − v2)

c2
)−1/2 (1.31)

Rbohr α
1

M
(1.32)

The outer s and (to a lesser extent) also the outer p electrons are close to the

nucleus for a certain fraction of their “revolution time”. In a stationary picture, one

would say that their orbitals have “inner tails” or that they are “core-penetrating

orbitals”. Therefore the outer s and p electrons experience direct relativistic effect

as well as indirect effects.16 The shells with higher angular momentum, d and f, are

not core-penetrating due to the their large centrifugal barrier. Therefore, they only

experience indirect relativistic effects which is expanding or destabilization of the d

and f -like orbitals due to the fact that inner electrons shield the nuclei more by

shrinking as a result of the direct relativistic effects.16,17 Therefore, by affecting the

stability and shape of the atomic —and in turn molecular orbitals — special theory

of relativity is quite important for any kind of ab initio treatment on the atomic and

molecular systems. Especially, the effects are very prominent for those molecular

processes which are directly related with the energy and/or shape of the molecular

orbitals, such as ionization and excitation energies [see chapter 3 and 4].

One of the first attempts as a relativistic quantum mechanical wave equation was

the Klein-Gordon equation. Although it is theoretically sound from the perspective

that it is consistent with both classical quantum mechanics and the special theory
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of relativity, it has several features which keep it from being a very powerful tool

in relativistic quantum mechanics. Dirac later developed his own relativistic wave

equation which did not have some of the shortcomings of the Klein-Gordon equation

and that some of the supposed “errors” that the KG equation gave rise to were

actually illustrating some new physics. The Dirac equation is only rigorous for a one

particle system, but has been used as a starting point for a number of approximate

many electron methods.

1.4.1 Klein-Gordon Equation

The special-relativistic expression for the kinetic energy may be used to form the

classical free particle Hamiltonian

E = c(m2c2 + p2)1/2. (1.33)

The analogous quantum mechanical expression may be constructed by replacing the

classical momentum, p, with its quantum mechanical operator, p̂ which yields the

free particle wave equation

(ih̄
∂

∂t
)ψ = [c((m2c2 + p̂2)1/2]ψ (1.34)

This equation, however, does not satisfy some of the conditions required by special

relativity. The wave equation is not invariant to a Lorentz transform, and the square

root term introduces ambiguity. The Klein-Gordon equation rectifies both of these

problems simply by taking the square of the original energy expression and extending

the result to a quantum mechanical wave equation:

E2ψ = (ih̄
∂

∂t
)2ψ = (m2c4 + p̂2c2)ψ (1.35)

The resulting wave equation is Lorentz invariant and well defined, but suffers from

other problems. Negative energy solutions to this equation are possible, which do
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not have a readily obvious explanation, and the probability density, ψ∗ψ, fluctuates

with time as does its integral over all space. The problems of the Klein-Gordon

equation may make it a poor equation for an electron, but those weaknesses helped

to point Dirac in the right direction and to develop a single particle equation which

successfully surmounted all these problems.

1.4.2 Dirac’s Free Particle Equation

In order for a wave equation to satisfy the special relativistic requirement of lorentz

invariance, derivatives in space and time must all appear in the same order. The

K-G equation illustrates that an expression which satisfies this condition but is non-

linear in the space and time derivatives gives rise to anomalous results. Dirac set

out to find an equation which was first order in space and time derivatives. The

result of his efforts, the Dirac equation, is difficult to motivate, impossible to prove,

and far more complicated that the non-relativistic analog. However, Dirac’s wave

equation for a single particle satisfies all the requirements of special relativity and

quantum mechanics, and is able to predict the properties of one particle systems

with remarkable accuracy.

Dirac’s equation for an electron in field-free space is given by18–20

(p̂0 − α · p̂ − βmc)ψ = 0 (1.36)

where

p̂0 = i
h̄

c

∂

∂t
(1.37)

and p̂ is simply the three component momentum. In order to determine the nature

of the three components of α and β, it is useful to compare the modified equation

(p̂0 − α · p̂ − βmc)∗(p̂0 − α · p̂ − βmc)ψ = 0 (1.38)
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to the Klein-Gordon equation. Equations (1.35) and (1.38) are equivalent if we

enforce the conditions

[αi, αj]+ = αiαj + αjαi = ∂ij (1.39)

where αi represents β for i=0 and αx,αy, and αz for i= 1-3, respectively. In order

for this set of four objects to fulfill these anti-commutation relations, each α must

be four-dimensional.

One set of matrices which obey similar anti-commutation relations are the Pauli

spin matrices: σx,y,z. These are 2×2 matrices, however, and there are only three of

them, so they are not useful in their usual form. If the αi’s are defined as19

α0 =









I2×2 0

0 −I2×2









, (1.40)

αi =









0 σi

σi 0









(i = 1 − 3) (1.41)

Where I2×2 is a two by two identity matrix and σi are the Pauli spin matrices.

Though these four by four matrices do not represent the only set of matrices which

satisfy the anti-commutation relations, they may only differ by a similarity transform

from this set.

Because the Dirac equation contains operators represented by four dimensional

matrices, the solutions { ψ } must be represented by a four component vector

ψ =

























ψ1

ψ2

ψ3

ψ4

























(1.42)
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The interpretation of the components of this four-vector is not readily evident.

Expressing the Dirac equation in full matrix form provides some elucidation

























(p̂0 −mc) 0 −p̂z −(p̂x − ip̂y)

(p̂0 −mc) −(p̂x + ip̂y) p̂z

−p̂z −(p̂x − ipy) (p̂0 +mc) 0

−(p̂x + ip̂y) p̂z 0 (p̂0 +mc)

















































ψ1

ψ2

ψ3

ψ4

























= 0 (1.43)

The non-relativistic electronic wave-function has two components corresponding

to the α and β components of spin angular momentum. In the non-relativistic limit,

p0 approaches mc, and the terms which couple ψ1 with ψ2 drop out. What remains are

four eigenvector equations, with approximate eigenvalues of +m0c
2 for ψ1 and ψ2, and

-m0c
2 for ψ3 and ψ4. ψ1 and ψ2, then, may be interpreted as the α and β components

of positive energy, electron-like solutions, but the solutions which are dominated by

ψ3 and ψ4 do not possess a readily evident interpretation. Dirac deduced that these

solutions correspond to a particle with the same mass as the electron but an opposite

charge, and dubbed these particles positrons. Far from being figments of a theorist’s

imagination, only three years after Dirac First suggested them in 1930, positrons

were observed experimentally.

1.5 The Nature of Four-Component Wave-function

The four-component nature of the Dirac eigenfucntions gives rise to many interesting

differences when compared to the non relativistic solutions. The contributions from

the first two components of the wave-function tend to be much larger than the contri-

butions from the final two components for electron-like solutions. For this reason the

upper two-component spinor is known as the large component of the wave-function,

while the lower spinor is known as the small component. By orthogonality the oppo-

site is true for the positron-like solutions. Since the angular and spin portions of
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the wave-functions are normalized, the magnitude of the large and small contribu-

tions is determined entirely by the radial functions, f(r) and g(r). The ratio of their

contributions may be expressed as

g(r)

f(r)
' Zα

2n
(1.44)

In general, the ratio will probably be larger than this approximate value in regions

close to the nucleus, where the contribution of g(r) is the greatest. The contribution

of the small component, then, may be significant for sufficiently heavy nuclei. Though

hydrogenic ions with very heavy nuclei may not be of great practical interest, this

relationship will have implications for heavy many-electron atoms where the inner-

most electrons experience a large portion of the full nuclear charge and hence are

closely related to the analogous hydrogenic systems.

One interesting consequence of the four component wave-function may be

observed in the associated probability density. Scalar wave-functions, ψ, which pos-

sess radial and angular nodes will have the same radial and angular nodes in their

probability density, ψ∗ψ The four-component wave-function, however, gives rise to

a probability density which sis the sum of the probability densities associated with

the large and small wave-functions, φ and χ, respectively. The radial component of

φ and χ posses different numbers of nodes and, in general, none of these nodes will

coincide. Similarly, the angular contributions of φ differ from those of χ by a single

unit of angular momentum. Therefore, although φ∗φ and χ∗χ may possess either

radial of angular nodes individually, their sum, their sum will be node-less.

The energy eigenvalues of the hydrogenic solutions to the Schrödinger equation

are only dependent upon n, the principal quantum number, while the Dirac hydro-

genic eigenvalues are dependent on both n and j. The spectral dependence on j

is upheld by experimental observation, however the degeneracy of eigenvalues for

solutions with the same j values but differing l values is not observed in nature.



16

The breaking of this degeneracy is known as the Lamb shift and its origin has been

attributed to the difference in the interaction of the different j eigenfunctions with

the vacuum fluctuations predicted by quantum electrodynamics. The magnitude of

the Lamb shift is much smaller than the splitting introduced by spin orbit cou-

pling and is largest for the n = 2, j = 1/2 shells of the hydrogenic atom. In this

case, the splitting introduced by the Lamb shift is approximately 10% of the magni-

tude of the energy separation of the p1/2 and p3/2 eigenfunctions.21 It should not be

too surprising that the predictions of the Dirac equation cannot entirely reproduce

experimental observation, since it has its roots in special relativity. In order for any

physical theory to definitively represent reality, it must at least be consistent with

the general theory of relativity.

1.6 Dirac Fock Method

The Dirac-Coulomb Hamiltonian is one of the most widely used special-relativistic,

many-electron Hamiltonians. This Hamiltonian may be utilized in conjunction with a

Hartree-Fock-like wave-function in what is known as the Dirac-Hartree-Fock (DHF)

method.19,21,22 The DHF method has a special status in quantum chemistry as it

often us utilized to benchmark relativistic effects in the absence of electron cor-

relation. Such benchmarks can provide a gauge of the accuracy of more approxi-

mate methods which attempt to include relativistic effects as a perturbation of the

non-relativistic Hartree-Fock case as well as methods which employ transformed,

simplified versions of the Dirac-Coulomb Hamiltonian.

The Dirac equation has been shown to successfully treat the interactions of elec-

trons with nuclei in a special-relativistic manner, and so represents a good starting

point for a special-relativistic many-electron Hamiltonian. What is needed next is a

description of the electron-electron interaction, and an associated quantum mechan-
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ical operator, ĝij. If the electron-electron interaction is not altered significantly by

the introduction of special relativity, then the standard, non-relativistic coulomb

operator, ĝij = 1
rij

, might not be a bad guess. With the coulomb interaction, the

Hamiltonian for an n electron system would be given by

Ĥ =
n
∑

i=1

ĥi
D +

n
∑

i>j

1

rij

=
n
∑

i=1

(φ(ri) + cα̂i · p̂i +mc2) +
n
∑

i>j

1

rij
(1.45)

This is known as the Dirac-Coulomb Hamiltonian, ĤDC . The associated wave equa-

tion, ĤDCΨ = EΨ, is not Lorentz invariant, and so ĤDC does not represent a proper

special relativistic Hamiltonian. In order to obtain a two-electron interaction term

that is consistent with special relativity, it is necessary to turn to Quantum Elec-

trodynamics. In order to cast the QED electron-electron interaction term into a

reasonable form, it is necessary to expand it in perturbative series in orders of the

fine structure constant, α. Retaining only the terms which contribute up to order

α2, gives the coulomb operator plus the Breit interaction term19,20

ĝB
ij =

−1

rij

(

αi · αj +
(αi · rij)(αj · rij)

r2
ij

)

. (1.46)

In practice, however, the full Breit magnetic interaction term is often cumbersome

to implement, and so an approximation of the Breit opperator known as the Gaunt

operator, may be used

ĝG
ij =

−αi · αj

rij

. (1.47)

The Gaunt operator is not gauge invariant, but it avoids having to solve integrals

over operators more complicated than 1
rij

, and includes the largest contributions of

the Breit interaction.

More rigorous forms of the molecular Hamiltonian have been suggested, but

they are, at best, only approximately Lorentz covariant to some order in α. Because
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the two-electron magnetic interaction terms are typically small, the contributions

behind second order in α are typically chemically unimportant. Because of this the

more rigorous Hamiltonians, which typically involve more complicated operators

than even the Breit interaction, have received far less attention from quantum chem-

ical investigators. The Dirac-Coulomb, Dirac-Coulomb-Gaunt, and Dirac-Coulomb-

Breit Hamiltonians have become the most widely accepted four-component special

relativistic molecular Hamiltonians.

1.6.1 Atomic Solutions

Atomic eigenfunctions of the D-C Hamiltonian may not be achieved analytically as

were the hydrogenic solutions of the single particle Dirac equation. Instead, it is nec-

essary, as it was in the non-relativistic theory, to appeal to approximate models such

as the Dirac-Hartree-Fock (DHF) method. In a manner analogous to Hartree-Fock

theory, DHF begins with the assumption that an n-electron atomic wavefunciton, Ψ,

can be represented by an antisymmetrized product of n single particle functions, {

φi }. In contrast to the HF method and in accordance with the 4-component nature

of the single particle operators, ĥi
D, the single particle functions φi are 4-component

spinors. If we make the approximation that each electron experiences a central poten-

tial only, then the single particle functions may be separated into radial, angular,

and spin parts analogous to the hydrogenic eigenfunctions. Anticipating the exis-

tence of electronic and positronic solutions, we may propose two separate forms for

φi, analogous to the hydrogenic solutions ??

φ
j,mj

i (+) =
1

r









pi(r)χ
(+)
i

iqi(r)χ
(−)
i









and (1.48)

φ
j,mj

i (−) =
1

r









−pi(r)χ
(−)
i

iqi(r)χ
(+)
i









(1.49)
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The form of the radial functions has, again, been chosen such that the resultant wave

equations and electronic energy expression are simplified. The total wavefunction

formed by these one particle functions may be expressed as

Ψ = A
(

n
∏

i=1

φi(ri)

)

=
1√
n!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(r1) φ2(r1) · · · φn(r1)

φ1(r2) φ2(r2) · · · φn(r2)

...
...

...

φ1(rn) φ2(rn) · · · φn(rn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1.50)

where A is the antisymetrizer operator. If this form of the atomic wavefunction is

assumed, and the Dirac-Coulomb Hamiltonian is utilized, then the electronic energy

is given by

E = 〈Ψ|ĤDC|Ψ〉

=
n
∑

i

φiĥdφi +
1

2

n
∑

i,j

(

φiφj
1

r12
φiφj − φiφj

1

r12
φjφi

)

=
n
∑

i

iĥdi+
1

2

n
∑

i,j

〈ij||ij〉. (1.51)

1.7 Breit-Pauli Hamiltonian and Scalar Relativistic Corrections

The similarity transformation, known as “Foldy-Wouthuysen transformation”

U =
βH + |E|

√

2|E|(|E| +m0)
(1.52)

transforms the four-component Dirac wavefunction into two sets of two-component

wavefunctions.19,21 The transformation of four component wavefunction ψ with U

yields

F = Uψ (1.53)
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Hence any operator O in the original four-component representation becomes OF ,

given by

OF = U †OU (1.54)

where U † is the hermetian adjoint of U . The hamiltonian and energy projection

operators are transformed as

λF = U †λUHF = Ha
†
UHU (1.55)

The transformation in a rigorous form can only be achieved only for a free-electron

Hamiltonian, which produces

F =

























1

0

0

0

























1

2π2/3
eipzz → ms =

1

2
(1.56)

and

F =

























0

1

0

0

























1

2π2/3
eipzz → ms = −1

2
(1.57)

for positive energy solution E = E+. For the negative energy states

F =

























0

0

1

0

























1

2π2/3
eipzz → ms =

1

2
(1.58)

and

F =

























0

0

0

1

























1

2π2/3
eipzz → ms = −1

2
(1.59)
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These forms suggest the introduction of the following operators

1

2
(1 + β)

1

2
(1 − β) F =

























f1

f2

f3

f4

























(1.60)

So the positive and negative solutions can be represented by the following two-

component wave-function

1

2
(1 + β)F =

























f1

f2

0

0

























= F+ (1.61)

1

2
(1 − β)F =

























0

0

f3

f4

























= F− (1.62)

For an electron in a external field, as in a hydrogen atom, this separation is not pos-

sible, since the large and small components are coupled, as there is mixing between

positive and negative energy states. Therefore, Pauli approximation seeks a simpli-

fied picture in which the small components, which make smaller contributions to the

positive energy states, are neglected. Subsequently, one arrives at operator equations

involving only the two large components. The two-components picture also unfolds

the spin interpretation in that the first component corresponds to spin-up of the

electron; the second component, spin-down.

The inclusion of the “somewhat” correct two-electron relativistic interaction

(Breit Interaction Term)19,21

ĝB
ij =

−1

rij

(

αi · αj +
(αi · rij)((αj · rij)

r2
ij

)

. (1.63)
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to the Pauli view produces “Breit-Pauli Equations”. The much used simplified per-

turbational Breit-Pauli Hamiltonian for a multielectron atomic system includes the

terms19

H0 =
∑

i

(

1

2m0
p2

i −
Ze2

ri

)

+
∑

i<j

e2

rij
(1.64)

H1 = − 1

8m3
0c

2

∑

i

p4
i (1.65)

H2 = − e2

m2
0c

2

∑

i<j

[

r−1
ij pi.pj +

(rij.pi)(rij.pj)

r3
ij

]

(1.66)

H3 =
µ

m0c

∑

i

si.



Ei × pi +
∑

i<j

2e

r3
ij

[rij × pj]



 (1.67)

H4 =
ieh̄

(2m0c)2

∑

i

(pi.Ei) (1.68)

H5 = 4µ2





∑

i<j

[

si.sj

r3
ij

− 3
(si.rij)(sj.rij)

r5
ij

− 8π

3
(si.sj)δ

3(rij)

]



 (1.69)

in which

µ =
eh̄

2m0c
Ei = ∇iV V = −Ze2

∑

i

1

ri
+ e2

∑

i<j

1

rij
(1.70)

These terms in the Breit-Pauli Hamiltonian can be interpreted as

• H0 is the non-relativistic hamiltonian

• H1 is the mass-velocity term attributed to relativistic correction arising from

the variation of the mass of the electron with its speed. It is a purely scalar

term, and does not depend on the spin of the electrons.

• H2 is the relativistic retardation due to the electron magnetic field generated

by an electron.

• H3 is the spin-orbit coupling term. This corresponds to the interaction between

the spin magnetic moment and the orbital magnetic moment of the electron.
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• H4, the Darwin correction, is the relativistic correction characteristic of Dirac’s

theory and is attributed to the electron’s “Zitterbewegung”. It arises from the

smearing of the charge of the electron due to its relativistic motion.

• H5 arises from the interaction of the spin magnetic moments of two electrons,

and constitutes a dipole-dipole interaction between the two spin magnetic

moments, and a Fermi-contact-type interaction.

For molecular systems, the Breit-Pauli Hamiltonian is often written as the sum

of four terms19,22

HBP = H0 +HD +HMV +HSO (1.71)

in which

HD =
α2

8
(∇2V ) (1.72)

HMV = −α
2

8

∑

i

p4
i (1.73)

HSO =
α2

2





∑

i

Z

r3
i

(Li.Si) +
∑

i,j

1

r3
ij

(rij × Pi).(Si + 2Sj)



 (1.74)

The HMV and HD are the major contributions to the total energy of the system.

The scalar relativistic corrections refer to the calculations of these two terms, mass-

velocity and Darwin terms, neglecting spin-orbit term which give rises to splitting

in the potential energy surfaces. The Darwin term, is always positive, corrects the

Coulomb attraction and the mass-velocity term, which is always negative, corrects

the kinetic energy of the system. In this study, these two terms (scalar relativistic

corrections) are evaluated using a first-order perturbation theory, suggested by R.

D. Cowan and D. C. Griffin23,24

It has been shown that this perturbational treatment of the relativity gives very

sufficient results, comparing to the calculation based on Drac-Hartree-Fock (DHF)

and effective core potentials (ecp). In 1983, R. L. Martin24 reported calculations
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on Ag and AgH, and stated in the abstract of his paper that “The Cowan-Griffin

relativistic operator, which retains only the mass-velocity and one-electron Darwin

term of the Breit-Pauli Hamiltonian, has been shown to provide a remarkably good

approximation to the more sophisticated Dirac-Hartree-Fock (DHF) approach for

many atomic systems”. In the same year, He also studied25 Cu2, and reported that

the first-order perturbational approach is quite successful in the predictions of the

excitation energies of Cu2, as well as for first transition series atoms. In 1991, Dyall

et. al.26 studied the group IV tetrahydrides CH4, SiH4, GeH4, SnH4, and PbH4.

They employed DHF, ECP, and first order perturbational treatment where only

mass-velocity and Darwin terms are calculated. They found that the first-order per-

turbational treatment show agreement to within 0.002 Å on the geometries, com-

paring to the DHF results. However, although this relativistic treatment is quite

sufficient for the third and fourth row atoms, the large spin-orbit splitting for the

atoms at the lower part of the periodic table makes the method insufficient for those

molecules that contain very heavy atoms.



Chapter 2

The X̃ 2Π and Ã 2Σ+ electronic states of the HCSi radical:

Characterization of the Renner-Teller effect in the ground state ∗

∗Levent Sari, Jason M. Gonzales, Yukio Yamaguchi, and Henry F. Schaefer III. Journal
of Chemical Physics, 114, 4472 (2001). Reprinted by permission of the American Institue
of Physics.

25



26

2.1 Abstract

The electronic structures of the ground and lowest lying excited state of the sil-

icon methylidyne radical (HCSi) have been investigated at the SCF, CISD, CCSD,

and CCSD(T) levels of theory with a wide range of basis sets. The total energies

and physical properties including equilibrium geometries, dipole moments, harmonic

vibrational frequencies, and Renner-Teller splitting are reported. At our highest level

of theory [CCSD(T)/cc-pVQZ], the ground electronic state (X̃ 2Π) has a linear geom-

etry with re(CH)=1.0781 Å and re(CSi)=1.6956 Å. This is in good agreement with

the experimental values of r0(CH)=1.0677 Å and r0(CSi)=1.6925 Å, respectively. In

the Ã 2Σ+ state, HCSi is also found to have a linear geometry with re(CH)=1.0737

Å and re(CSi)=1.6130 Å at the [CCSD(T)/cc-pVQZ] level, confirming experimental

values of r0(CH)=1.0625 Å, r0(CSi)=1.6118 Å, and the observation of C-Si triple

bond character. With the same method, the X̃ 2Π and Ã 2Σ+ state C-H stretching

vibrational frequencies are predicted to be 3271 cm−1 and 3319 cm−1, respectively,

for which experimental values are not available. The classical X̃-Ã splitting (Te

value) was determined to be 32.6 kcal/mol (1.41 eV, 11400 cm−1) and quantum

mechanical splitting (T0 value) to be 33.5 kcal/mol (1.45 eV, 11726 cm−1) which

are in excellent agreement with the experimental T0 value of 11766.721 cm−1 (33.64

kcal/mol, 1.459 eV). The linear excited Ã 2Σ+ state of the molecule has a real degen-

erate bending vibrational frequency, whereas the ground state (X̃ 2Π) is subject to

the Renner-Teller effect and presents two distinct real vibrational frequencies. The

Renner parameter (ε) and average harmonic bending frequency (ω2) of the X̃ 2Π

state are predicted to be ε=-0.114 and ω2=518 at the CCSD(T)/cc-pVQZ level of

theory. The electronic structure analysis of the ground state showed that the HCSi

radical is an A-Type Renner-Teller molecule.
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2.2 Introduction

Small hydrogen-containing carbon-silicon species are thought to be important in the

interstellar medium due to the fact that carbon and silicon are the most abundant ele-

ments, after hydrogen and helium, in the universe. Several silicon and carbon based

interstellar molecules have been observed, including SiC2,
27 SiC3,

28 SiC4,
29 SiC,30

and SiH4.
31 Herbst, Miller, Wlodek, and Bohme32 have reported model calculations

of gas-phase chemistry of silicon coumpounds in interstellar clouds which suggest

that silicon methylidyne (HCSi) and silylidene (H2CSi) should be relatively aboun-

dant. Therefore, it is probable that the HCSi radical is the precursor of SiCn clusters

found in stellar atmospheres. Also organosilicon radicals are important in the pro-

duction of hydrogenated amorphous silicon carbide (a-SiCH) films. In the production

process, organosilane precursors such as methyltrichlorosilane,33,34 or a mixture of

silane and some hydrocarbons35,36 are decomposed in hydrogen atmospheres. Mean-

while, silicon atoms, silicon clusters, silylidenes, silylenes, and organosilicon radicals

are most likely be formed, and their electronic structure and chemical reactions can

influence the electronic properties of the final products, semiconductor films and

carbides.

Srinivas, Sulzle, and Schwarz37 reported that the HCSi radical is stable under

collision-free conditions, detecting the radical in neutralization-reionization mass

spectrometry. Han, Rittby, and Graham38 conducted a Fourier transform infrared

study of photolysis products of a mixture of silane and methane trapped in an argon

matrix, and found a 1010 cm−1 value for the Si-C stretching fundamental of HCSi.

At about the same time, Cireasa, Cossart and Vervleot39 carried out a near-infrared

emission experiment and they obtained 31
0, 00

0, and 30
1 bands as well as rotational

constants for the 00
0 band. Recently, Smith, Li, and Clouthier40,41 published experi-

mental data on the electronic spectrum of HCSi from a study of laser-induced fluores-
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cence in the 850-600 nm region, producing the radical by an electric discharge using

tetramethylsilane as the precursor. They reported geometries for the ground X̃ 2Π

and first excited Ã 2Σ+ states, excited state Si-C stretching and bending frequencies

as well as a detailed rotational analysis. While our work was in progress, Cireasa,

Cossart, Vervloet, and Robbe42 published an article on the Fourier transform emis-

sion spectrum of the HCSi radical, and they obtained (100)-(000), (000)-(000), and

(000)-(100) Ã 2Σ+-X̃ 2Πi transitions. However, including their study, there are no

experimental values for the ground state C-H stretching and bending vibrational

frequencies, and the excited state C-H stretching vibrational frequency.

In 1997, Robbe, Lavendy, Flament, and Chambaud43 investigated the electronic

structure of this radical theoretically at the multi reference CI (MRCI)/cc-pVQZ*

(cc-pVQZ for H and C, a modification of cc-pVQZ for Si) level of theory. They

predicted a Si-C bond length of 1.702 Å and a C-H bond length of 1.078 Å for the

ground X̃ 2Π state, and 1.587 Å and 1.080 Å for the excited Ã 2Σ+ state, respectively.

They also predicted the quartic force field in internal coordinates and vibrational

frequencies for the ground state as 1012 cm−1, and 3260 cm−1 for stretching modes,

and 470 cm−1 and 539 cm−1 for the two components of the bending mode, and

-0.137 for the Renner parameter. They carried out the same computations with

the CASSCF level of theory and reported that the differences between the values

determined with the two methods are typically 15 cm−1 for the harmonic frequency

of the C-Si stretching mode, 50 cm−1 for the C-H stretching mode, 5 cm−1 for the

lowest bending mode (2A′ Renner-Teller component) and 20 cm−1 for the upper

bending mode (2A′′). These differences suggest that it is necessary to perform more

reliable higher level computations to provide definitive information for the energetics

and spectroscopic properties of the radical.

In the present study, the electronic structure of both the ground and first excited

states of HCSi are theoretically investigated using highly correlated coupled cluster
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with single and double excitations (CCSD) and coupled cluster with singles and dou-

bles including a perturbative expansion for connected triples [CCSD(T)] methods,

as well as SCF and configuration interaction with single and double excitations

(CISD) utilizing significantly large basis sets. Such a systematic study should pro-

vide a useful guideline in theoretically predicting physical properties of polyatomic

molecules in a convincing manner with respect to correlation level and basis set

size. During the bending motion, the excited Ã 2Σ+ state is subject to a variational

collapse into the lower-lying 2A′ component of the X̃ 2Π ground state. Therefore,

the equation-of-motion (EOM) CCSD method has been employed to determine the

bending frequency of the first excited electronic state. The EOM-CCSD wave func-

tion does not suffer from the orbital instability problem (vide infra) due to the fact

that the excited state energies are determined as higher roots of the lowest energy

state CCSD wave function in the same symmetry.

2.3 Electronic Structure Considerations

The lowest electronic state of the linear HCSi radical has the degenerate electronic

configurations:

[core](5σ)2(6σ)2(7σ)2(2πi)
2(2π0) ⇒ X̃ 2Π (2.1)

and

[core](5σ)2(6σ)2(7σ)2(2πi)(2π0)
2 ⇒ X̃ 2Π (2.2)

where [core] donates the six core (Si: 1s-, 2s-, 2p-like and C: 1s-like) orbitals, and

πi and π0 stand for the in-plane and out-of-plane π moleculer orbitals (MOs). The

5σ and 6σ MOs correspond to C-H and Si-C σ bonds. The 7σ MO is the lone pair

orbital on the Si atom as shown in Figure 2.1, while the 2π molecular orbital is

related to the C-Si π bond as depicted in Figure 2.2. This electronic state (2Π) of

the HCSi radical possesses two distinct real vibrational frequencies along the H-C-Si
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Figure 2.1: The 7σ molecular orbital of the X̃ 2Π ground state of HCSi from the
TZ2P(f,d)/SCF method.
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Figure 2.2: The 2π molecular orbital of the X̃ 2Π ground state of HCSi from the
TZ2P(f,d)/SCF method.

bending coordinate. Total energies of both components of the ground state increase

upon bending, showing that this state is subject to the Renner-Teller effect44–49 and

is classified as a type A Renner-Teller molecule according to the nomenclature of

Lee, Fox, Schaefer, and Pitzer.50

The first excited state of HCSi has the electron configuration:

[core](5σ)2(6σ)2(7σ)(2πi)
2(2π0)

2 ⇒ Ã 2Σ+ (2.3)

which is a single electron excitation relative to the ground state;

(7σ)2(2π)3 ⇒ (7σ)(2π)4 (2.4)
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The 2π MOs are occupied by four electrons in this state, giving rise to formal triple

C-Si bond character. This first excited state of the molecule has a real degenerate

bending frequency. However, because the state reduces to 2A′ symmetry on bending,

it interacts with the lower Renner-Teller component of the ground state, which has

the same symmetry 2A′. Therefore, the bending vibrational frequency of the Ã 2Σ+

excited electronic state cannot be determined as the first root of a correlated wave

function.

At this point it may be useful to analyze the MO Hessian (the second derivatives

of the SCF electronic energy with respect to MO rotations) of the reference SCF

wave function.51–53 For the linear X̃ 2Π state, HCSi has one zero eigenvalue of the

MO Hessian, related to the 2πi-2π0 MO rotation, indicating that the SCF energy

is not altered by exchanging the 2πi and 2π0 orbitals. However, for the Ã 2Σ+ first

excited state the MO Hessian has a doubly degenerate negative eigenvalue. The

eigenvectors of this eigenvalue correspond to the 7σ-2πi and 7σ-2π0 MO rotations.

Therefore, the SCF wavefunction of the Ã 2Σ+ state is unstable and there is a lower-

lying state, obtained by exchanging the 7σ-2πi or 7σ-2π0 MOs, which is one of the

Renner-Teller components of the ground state. The physical properties that involve

the 7σ-2π MO rotation should be analyzed with great caution for the Ã 2Σ+ state.

By the same token, the magnitudes of the eigenvalues of the MO Hessian may also

be useful to analyze the instability of the SCF reference wave function.51–53

2.4 Renner-Teller Effects

Following Herzberg’s arguments,54 the Renner parameter (ε) and harmonic bending

frequency (ω2) are described in the following manner. In a degenerate electronic state,

the potential function splits upon bending. This is because in the bent position of

a linear molecule, there are no degenerate electronic state. The “ upper” (inner)
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potential function is denoted as V +, while the “lower” (outer) one as V −, for the Π

and ∆ states. The parity of the potential refers to its symmetry with respect to the

singly occupied MOs. The zero-order bending potential function can be written as;

V 0 = aq2 + bq4 + ... (2.5)

and the splitting of the potential function in Π, ∆, ...states must have the same

form;

V + − V − = αq2 + βq4 + ... (2.6)

where α and a are quadratic force constants, β and b are quartic force constants,

and q is the bending displacement coordinate. Neglecting anharmonicity, the Renner

parameter (ε) is defined as

ε =
α

2a
(2.7)

It may be shown that eq. 2.7 is equivalent to

ε =
f+ − f−

f+ + f−
=

(ω+)2 − (ω−)2

(ω+)2 + (ω−)2
(2.8)

where f+ and f−, ω+ and ω− are the force constants and harmonic frequencies asso-

ciated with the “upper” and “lower” bending potentials, respectively. If we denote

the kinetic energy contribution to the bending motion as µ, the harmonic bending

frequency (ω2) may be determined by using the equation;

ω2 =
1

2πc

√

a

µ
=

1

2πc

√

f+ + f−

2µ
(2.9)

which may be rewritten as;

ω2 =

√

√

√

√

1

2

[

(ω+)2 + (ω−)2

]

(2.10)

The ε and ω2 are experimentally observable quantities.44–49,54 In this study,

eqs.(2.5)-(2.10) will be used to theoretically determine the ε and ω2 values.
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2.5 Theoretical Methods

Eight basis sets were employed in this study. The basis set of triple-ζ (TZ) quali-

ties for silicon is derived from McLean and Chandler’s contraction55 of Huzinaga’s

primitive Gaussian sets56 with contraction scheme (13s9p/6s5p) for TZ. The TZ

basis sets for carbon and hydrogen were obtained from Dunning’s contractions 57

of Huzinaga’s primitive Gaussian set58 and are designated, (11s6p/5s3p)⇒ TZ for

carbon, and (5s/3s)⇒ TZ for hydrogen. The TZ quality basis sets were augmented

with a double and triple sets of polarization functions. The orbital exponents of the

polarization functions are: αd(Si)=1.00, 0.25, αd(C)=1.50, 0.375, αp(H)=1.50, 0.375

for double plarization (TZ2P); and αd(Si)=1.00, 0.50, 0.25, αd(C)=1.50, 0.75, 0.375,

αp(H)=1.50,0.75, 0.375 for triple polarization (TZ3P). The orbital exponents of the

higher angular momentum functions are: αf (Si)=0.32, αf (C)=0.80, αf(H)=1.00 for

one set of higher angular momentum functions [TZ2P(f,d)]; and αf(Si)=0.64,

0.16, αf(C)=1.60, 0.40, αd(H)=2.00, 0.50 for the two sets of higher angular

momentum functions [TZ3P(2f,2d)]. The orbital exponents of diffuse functions

are: αp(Si)=0.02354 and αs(Si)=0.02567, αp(C)=0.03389 and αs(C)=0.04812, and

αs(H)=0.03016 for single sets of diffuse functions [TZ2P+diff and TZ2P(f,d)+diff].

Two sets of diffuse functions were appended to the [TZ3P(2f,2d)] basis set, with

the orbital exponents αp(Si)=0.02354 and 0.008368, αs(Si)=0.02567 and 0.008218,

αp(C)=0.03389 and 0.01253, αs(C)=0.04812 and 0.01669, αs(H)=0.03016 and

0.009246 to construct the basis set TZ3P(2f,2d)+2diff. Pure angular momentum d

and f functions were used throughout.

The largest TZ derived basis set [TZ3P(2f,2d)+2diff] comprises 133 contracted

Gausssian functions with a contraction scheme of Si (15s11p3d2f/8s7p3d2f), C

(13s8p3d2f/7s5p3d2f), and H (7s3p2d/5s3p2d). Two correlation consistent polar-

ized valence basis sets developed by Dunning and coworkers,59 cc-pVTZ and cc-
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pVQZ, have also been employed. The cc-pVQZ basis set consists of 144 contracted

Gaussian functions with a contraction scheme of Si (16s11p3d2f1g/6s5p3d2f1g), C

(12s6p3d2f1g/5s4p3d2f1g), and H (6s3p2d1f/4s3p2d1f).

The zeroth order descriptions of the X̃ 2Π and Ã 2Σ+ states of HCSi were

obtained using a one-configuration SCF (restricted open shell) wave function. Cor-

relation effects were included using configuration interaction with single and double

excitations (CISD), coupled cluster with single and double excitations (CCSD) 60

and CCSD with perturbative triple excitations [CCSD(T)]61 levels of theory. The

six lowest-lying MOs (Si 1s-, 2s-, 2p-like and C 1s-like) were frozen and two highest-

lying virtual MOs (Si and C 1s*-like) were deleted in all correlated procedures with

the valence TZ plus quality basis sets. For the two correlation consistent basis sets,

we froze only the six core MOs.

Using all eight basis sets, we optimized the geometries of both X̃ 2Π and Ã 2Σ+

states of HCSi via analytic derivative methods62 , 63 at the SCF and CISD levels. Har-

monic vibrational frequencies at the SCF level were evaluated analytically, while at

the CISD level of theory they were obtained by finite differences of analytic gradients.

The CCSD, CCSD(T), and EOM-CCSD geometries and vibrational frequencies were

determined via five-point numerical differentiation of the total energies. Throughout

our study, cartesian forces at optimized geometries were required to be less than

10−6 hartree/bohr. All computations were carried out using the PSI 2.0.8 program

package,64 except the EOM-CCSD calculations, which were performed using the

ACES II package65 on IBM RS/6000 workstations.

2.6 Results and Discussion

Total energies, equilibrium geometries, dipole moments, and harmonic vibrational

frequencies of the X̃ 2Π state of HCSi are presented in Table 2.1 at four different
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level of theories, SCF, CISD, CCSD, and CCSD(T) with the two largest basis sets,

[TZ3P(2f,2d)+2diff] and cc-pVQZ. In Table 2.2 the corresponding properties for

the Ã 2Σ+ state are reported at five different levels of theory, SCF, CISD, EOM-

CCSD, CCSD, and CCSD(T), with the same two basis sets. As explained earlier,

bending vibrational frequencies for the Ã 2Σ+ state were not obtained at the CISD,

CCSD, and CCSD(T) level of theories, but they were determined at the SCF and

EOM-CCSD levels. The bending vibrational frequencies for the two Renner-Teller

components of the X̃ 2Π state and the corresponding Renner parameters are given

in Table 2.3 at four levels of theory. Other theoretical results may be obtained from

the authors upon request. Relative energies of the two lowest-lying electronic states

are presented in Table 2.4.

2.6.1 Geometries

The optimized geometries of the X̃ 2Π state are given in Table 2.1 at eight repre-

sentative levels of theory. Given a basis set, the two bond lengths increase with the

inclusion of correlation effects. At our highest level of theory, CCSD(T)/cc-pVQZ,

we predicted the C-H bond length as re(CH)=1.0781 Å and the C-Si bond length as

re(CSi)=1.6956 Å. These two re values are consistent with the experimental values

41 of r0(CH)=1.0677 Å and r0(CSi)=1.6925 Å, respectively. Han et al.38 studied the

ground state of the radical at the CCSD(T)/6-31G** level of theory and predicted

the C-H bond length to be re(CH)=1.077 Å and re(CSi)=1.699 Å. This prediction

is similar to our CCSD(T)/TZ2P(f,d) result of 1.0770 Å and 1.6982 Å as expected.

For the Ã 2Σ+ state, re(CH) was predicted to be 1.0737 Å and re(CSi) to be

1.6130 Å at our most reliable level, CCSD(T)/cc-pVQZ. The experimental values

for the Ã 2Σ+ state C-H and C-Si bond lengths were reported by Smith et al.41

as r0(CH)=1.0625 Å and r0(CSi)=1.6118 Å. Our results show that the C-H bond

length decreases 0.0044 Å upon excitation, which is in good agreement with the
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experimental decrease of 0.0052 Å. Achieving this level of agreement is very impor-

tant, because the previous theoretical study43 predicted an increase in C-H bond

length on excitation. At the same CCSD(T)/cc-pVQZ level of theory, we predict a

decrease in C-Si bond length of 0.0826 Å on excitation, although a recent theoretical

study43 suggests a 0.115 Å decrease. Our prediction is in very close agreement with

the recent experimental41 C-Si bond length decrease of 0.0807 Å. The 7σ MO in

Figure 2.1 mainly consists of the nonbonding lone pair on the Si atom (3s atomic

orbital), while the 2π MO has C-Si π-bonding character as shown in Figure 2.2.

Therefore, a single excitation from the 7σ MO to the 2π MO in eq. (4) decreases

the C-Si bond length. With the cc-pVQZ basis set, the difference in the SCF and

CCSD(T) bond lengths for the ground state is 0.0129 Å for the C-H bond and 0.0355

Å for the Si-C bond. It is observed that the Si-C bond is more sensitive to correlation

effects, due to the multiple bond character of the silicon-carbon linkage.

2.6.2 Harmonic vibrational frequencies

The C-H stretching (ω1) and C-Si stretching (ω3) vibrational frequencies of both the

X̃ 2Π and Ã 2Σ+ states are lowered when correlation effects are included, reflecting

the longer bond distances. Similarly, the two stretching modes of the ground state

have lower frequencies than the corresponding values for the first excited state. The

C-Si stretching fundamental frequency of the X̃ 2Π state of HCSi was experimen-

tally determined to be 1010 cm−1 from the matrix infrared absorption spectrum

38 and 1013 cm−1 from the gas phase emission spectrum.39 Cireasa et al.42 more

recently reported X̃ 2Π1/2 and X̃ 2Π3/2 C-Si stretching vibrational frequencies as

1084.866 cm−1 and 1014.693 cm−1, respectively. The corresponding harmonic vibra-

tional frequency was predicted to be 1028 cm−1 with our most reliable method

CCSD(T)/cc-pVQZ, and 1025 cm−1 with CCSD(T)/TZ3P(2f,2d) level of theory. The

C-H stretching harmonic vibrational frequency was determined to be 3271 cm−1 for
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Table 2.3: Bending vibrational frequencies,(in cm−1), [ω−
2 , (π−,2A′′)], [ω+

2 , (π+,2A′)],

the suitably averaged ω2, and Renner parameter (ε) for the X̃ 2Π state of HCSi.

TZ3P(2f,2d) TZ3P(2f,2d) cc-pVTZ cc-pVQZ
+2diff

SCF-ω−
2 /ω+

2 /ω2 664/651/657 652/644/648 654/645/649 657/650/653
(ε) -0.0197 -0.0123 -0.0138 -0.0107
CISD-ω−

2 /ω+
2 /ω2 582/572/577 569/565/567 588/581/584 596/589/592

(ε) -0.0173 -0.0070 -0.0119 -0.0118
CCSD-ω−

2 /ω+
2 /ω2 559/493/527 549/486/518 568/504/536 573/514/544

(ε) -0.1249 -0.1212 -0.1189 -0.1082
CCSD(T)-ω−

2 /ω+
2 /ω2 538/473/506 528/466/498 544/485/515 547/488/518

(ε) -0.1280 -0.1242 -0.1143 -0.1136

the ground state and 3319 cm−1 for the first excited state, at the CCSD(T)/cc-pVQZ

level. There is no experimental value available for the C-H mode of HCSi for either

the X̃ 2Π or Ã 2Σ+ states in the literature. However there are two previous theoret-

ical studies. Robbe et al.,43 reported the harmonic vibrational frequencies of the X̃

2Π state to be ω1=3260 cm−1 (C-H stretching) and ω3=1012 cm−1 (C-Si stretching),

at the MRCI/cc-pVQZ level of theory. These predictions are in close agreement with

our results. Secondly, Han et al.38 predicted the values of 3337 cm−1 and 1033 cm−1,

for the C-H and C-Si stretching modes respectively, at the CCSD(T)/6-31G** level.

Although the prediction on the C-Si stretching mode is close to our CCSD(T)/cc-

PVQZ result, the value of 3337 cm−1 for the C-H stretching vibrational frequency is

67 cm−1 higher than our CCSD(T)/cc-pVQZ result. Vibrational frequencies given by

Han et al.38 are close to our TZ2P/CCSD predictions of 3310 cm−1 for the C-H mode

and 1035 cm−1 for the C-Si mode. For the Ã 2Σ+ state C-H stretching, Lavendy et

al.66 predicted 3249 cm−1 at a multiconfiguration self-consistent filed-configuration

interaction (MCSCF-CI) level of theory, which is 70 cm−1 lower than our value. As
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discussed in the Introduction, the X̃ 2Π state of the HCSi radical is subject to the

Renner-Teller effect and presents two distinct bending frequencies. Because there are

no experimental data for the ground state bending mode, the bending vibrational

frequencies for both components, 2A′′ and 2A′, as well as the average ω2 frequency of

the ground state are presented at representative levels of theory in Table 2.3. Both

frequencies decrease with inclusion of correlation effects. At the CCSD(T)/cc-pVQZ

level, the X̃ 2Π state bending vibrational frequencies were predicted to be 547 cm−1

and 488 cm−1, respectively, for the upper and lower Renner-Teller components, which

is consistent with the previous theoretical values of 538.8 cm−1 and 469.9 cm−1, at

the MRCI/cc-pVQZ level.43 We found a difference of 59 cm−1 between in-plane and

out-of-plane bending vibrations at the CCSD(T)/cc-pVQZ level. The Renner param-

eter, (ε), which is used to describe the splitting of the potential energy surface, is

on the order of -0.01 at the SCF and CISD levels, which is almost ten times smaller

than the values from the CCSD and CCSD(T) levels. Robbe et al.43 predicted ε to

be -0.137 which is reasonably close to our CCSD(T)/cc-pVQZ result of -0.114. The

Ã 2Σ+ state bending mode has a degenerate frequency which is determined to be

762 cm−1 with the EOM-CCSD/cc-pVQZ method, while Lavendy et al. predicted

it to be 849 cm−1 at the MCSCF-CI level. Our EOM-CCSD/cc-pVQZ value is in

good agreement with the experimental fundamental bending frequency of 715 cm−1

for the Ã 2Σ+ state.40

2.6.3 Energetics

With the cc-pVQZ basis set, the classical X̃-Ã splitting was predicted to be 50.3

(SCF), 39.9 (CISD), 36.7 (CCSD), and 32.6 kcal/mol [CCSD(T)], respectively. It is

seen that advanced treatments of correlation effects decrease the energy separation,

while we find that this energy separation is almost independent of the basis sets used.

Recently, Cireasa et al.42 have studied the emission spectrum of the HCSi radical
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and observed three bands whose origins appeared at 12934.406 cm−1, 11766.721

cm−1, and 10752.430 cm−1. They analyzed and assigned these bands as (100)-(000),

(000)-(000), and (000)-(001) Ã 2Σ+-X̃ 2Πi transitions. Our cc-pVQZ/CCSD(T) Te

result of 11400 cm−1 (32.6 kcal/mol), and TZ3P(2f,2d)/CCSD(T) result of 11500

cm−1 (32.7 kcal/mol) are in very good agreement with the above (000)-(000) Ã 2Σ+-

X̃ 2Πi transion, 11766.721 cm−1. Robbe et al.43 predicted the Te value as 12200

cm−1 at the MRCI level of theory. As seen in Table 2.4, the SCF, CISD, CCSD,

and also MRCI43 results, all overestimate the energy gap. It is observed that only

the CCSD(T) results are in good agreement with the experimental value. Also, we

included (ZPVE) corrections for all level of theories. In determining the ZPVE, the

average w2 values for bending mode of X̃ 2Π state, and the EOM-CCSD bending

vibrational frequencies of Ã 2Σ+ state are used. The T0 value at the CCSD(T)/cc-

pVQZ level was thus determined to be 11726 cm−1 which is only 41 cm−1 smaller

than the experimental value of 11766.721 cm−1.

2.7 Concluding Remarks

The two lowest-lying electronic states of the methylidyne molecule, (HCSi), have

been studied systematically employing ab initio SCF, CISD, CCSD, EOM-CCSD,

and CCSD(T) levels of theory with a wide range of basis sets. Both the X̃ 2Π

and Ã 2Σ+ states are found to have linear structures. The Renner-Teller effect in

the ground state has been investigated, and a value of -0.114 is predicted for the

Renner parameter (ε) at the CCSD(T)/cc-pVQZ level. With the same method, the

ground state C-H stretching, the ground state bending, and the excited state C-

H stretching vibrational frequencies are predicted to be 3270 cm−1, 518 cm−1, and

3319 cm−1, respectively. The classical X̃-Ã splitting (Te value) was determined to be

32.6 kcal/mol (1.41 eV, 11390 cm−1) and quantum mechanical splitting (T0 value)
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to be 33.5 kcal/mol (1.45 eV, 11720 cm−1) at the cc-pVQZ/CCSD(T) level, which

is in excellent agreement with the experimental T0 value of 11766.721 cm−1 (1.459

eV, 33.64 kcal/mol). The present study demonstrates that the CCSD(T) method in

conjunction with large basis sets is able to achieve a chemical accuracy of less than

one kcal/mol in critical energetic quantities.



Chapter 3

Coupled cluster study of the X̃ 2Π and Ã 2Σ+ electronic states of

the HCGe radical: Renner-Teller splitting and the effects of

relativistic corrections ∗

∗Levent Sari, Yukio Yamaguchi, and Henry F. Schaefer III. Journal of Chemical
Physics, 115, 5932 (2001). Reprinted by permission of the American Institue of Physics.
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3.1 Abstract

The X̃ 2Π and Ã 2Σ+ states of the germanium methylidyne radical (HCGe) have

been investigated at the SCF, CISD, CCSD, and CCSD(T) levels of theory. The total

energies, equilibrium geometries, dipole moments, harmonic vibrational frequencies,

infrared intensities, and Renner-Teller splitting are reported. The relativistic one-

electron Darwin and mass-velocity terms are calculated using first-order perturba-

tion theory and the effects of these corrections on energetics, harmonic vibrational

frequencies, and Renner-Teller splitting are discussed. At our highest level of theory

[CCSD(T)/cc-pVQZ], the ground electronic state (X̃ 2Π) has a linear geometry with

re(CH)=1.079 Å and re(CGe)=1.769 Å in good agreement with the experimental

values of r0(CH)=1.067 Å and r0(CGe)=1.776 Å. In the electronically excited Ã

2Σ+ state, HCGe is also found to have a linear geometry with re(CH)=1.074 Å and

a much shorter re(CGe)=1.669 Å at the [CCSD(T)/cc-pVQZ] level, in agreement

with experimental values of r0(CH)=1.059 Å, r0(CGe)=1.674 Å, and the observa-

tion of C-Ge triple bond character. The Ã 2Σ+ state C-Ge stretching vibrational

frequency is determined to be ω3=990.2 cm−1 at the CCSD(T)/cc-pVTZ level with

the inclusion of relativistic effects, which is in essentially perfect agreement with the

experimental value of ν3=990 cm−1. With the same method, the X̃ 2Π state har-

monic vibrational frequencies are predicted to be 846 cm−1 for the C-Ge stretching,

443 and 506 cm−1 for the two nondegenerate bending Renner-Teller components,

and 3249 cm−1 for the C-H stretching modes for which experimental values are not

available. The quantum mechanical splitting (T0 value) was determined to be 38.0

kcal/mol at the non-relativistic CCSD(T)/TZ3P(2f,2d)+2diff level, while it is found

to be 39.9 kcal/mol with the inclusion of relativity, in very good agreement with the

experimental value of 39.8 kcal/mol. The Renner parameter (ε) is determined to be
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-0.1386, and effects of relativity were seen to produce a smaller Renner parameter

of -0.1329.

3.2 Introduction

In 1997 Harper, Ferrall, Hilliard, Stogner, Grev, and Clouthier67 reported the first

observation of 1-germavinylidene or germylidene (H2C=Ge), the simplest unsatu-

rated germylene. The discovery of the high-resolution spectrum of this molecule has

been a fundamental interest due to the observation of quantum beats in their fluores-

cence decay curves.67–69 In 1998 Stogner et al.68 carried out good quality ab initio

calculations (CISD,CCSD and CCSD(T) with TZ quality basis sets) on H2C=Ge

and HCGeH, and they predicted geometries and harmonic vibrational frequencies in

close agreement with the existing experimental data.

The first observation of the germanium methylidyne radical (HCGe) was reported

by Smith, Li, Clouthier,70 in 1999, by a short communication paper on both HCSi

and HCGe radicals. One year later, Smith, Li, Clouthier, Kingston, and Merer71 pub-

lished a detail study on HCGe radical. The radical was produced in a pulsed electric

discharge using tetramethylgermane as the precursor. They recorded Ã 2Σ+-X̃ 2Π

electronic transition of jet-cooled HCGe in the 730-555nm region by laser-induced

fluorescence techniques. The ground X̃ 2Π and the first excited Ã 2Σ+ state geome-

tries and the excited state Ge-C stretching and bending vibrational frequencies were

determined experimentally. They used B3LYP/6-311G** level of theory to predict

ground state vibrational frequencies without characterization of the Renner-Teller

effect in X̃ 2Π state, which causes the bending potential to split into two non-

degenerate surface. At this level of theory, values of 865 cm−1, 3235 cm−1, and 492

cm−1 were predicted for the ground X̃ 2Π state Ge-C stretching, C-H stretching, and

bending vibrational frequencies, respectively. They also used the same level of theory
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to predict values for the excited Ã 2Σ+ state harmonic vibrational frequencies for

which experimental results were already found. The differences between their theo-

retical predictions at the B3LYP/6-311G** level and their experimental results are

50 cm−1 for the Ge-C stretching and 75 cm−1 for the bending vibrational frequencies.

They also reported that the excitation energy determined at the B3LYP/6-311G**

level of theory is about 1800 cm−1 higher than the experimental value, and the

B3P86 density functional, SCF, and UMP2 levels of theory show considerable vari-

ations. All of these results, along with the fact that there is no any other study in

literature, suggest that it is desirable to perform more reliable high level quantum

mechanical computations to provide dependable predictions of the energetics and

spectroscopic properties of the HCGe radical.

In the present study, the highly correlated coupled cluster with single and

double excitations (CCSD) method and coupled cluster with singles and doubles

including a perturbative expansion for connected triples [CCSD(T)] methods have

been employed to study the electronic structure of both the ground and first excited

states of HCGe radical. The SCF and configuration interaction with single and

double excitations (CISD) methods have also been used. Relativistic corrections,

Darwin and mass-velocity terms, are evaluated for both the ground and excited

states, and the effects of these corrections on several physical properties including

the Renner-Teller splitting are discussed. The excited Ã 2Σ+ state is subject to a

variational collapse, during the bending motion, into the lower-lying 2A′ component

of the X̃ 2Π ground state. Therefore, the equation-of-motion (EOM) CCSD method,

which does not suffer from the orbital instability problem (vide infra), has been

employed to determine the bending frequency of the first excited electronic state of

HCGe.
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3.3 Electronic Structure Considerations

The degenerate ground electron configurations of HCGe are

[core](8σ)2(9σ)2(10σ)2(4πi)
2(4πo) ⇒ X̃ 2Π (3.1)

and

[core](8σ)2(9σ)2(10σ)2(4πi)(4πo)
2 ⇒ X̃ 2Π (3.2)

In (1) and (2), [core] denotes the fifteen core (Ge: 1s-, 2s-, 2p-, 3s-, 3p-, and 3d-

like and C: 1s-like) orbitals, and πi and πo stand for the in-plane and out-of-plane

π moleculer orbitals (MOs). The 8σ and 9σ molecular orbitals correspond to the

σCH+σCGe and σCH -σCGe bonds.

The 10σ MO is the lone pair orbital on the Ge atom as shown in Figure 3.1, while

the 4π molecular orbital is related to the Ge-C π bond as depicted in Figure 3.2.

This ground electronic state (2Π) of the HCGe radical possesses two distinct real

vibrational frequencies along the H-C-Ge bending coordinate. Total energies of two

components of the ground state increase upon bending. This shows that this state

is subject to the Renner-Teller effect44–49 and is classified as a type A Renner-Teller

molecule.50

The electron configuration for the first excited doublet state of HCGe is

[core](8σ)2(9σ)2(10σ)(4π)4 ⇒ Ã 2Σ+ (3.3)

representing a single excitation relative to the ground state:

(10σ)2(4π)3 ⇒ (10σ)(4π)4 (3.4)

The 4π MO is fully occupied in the Ã 2Σ+ state, resulting in formal triple C-Ge

bond character. Because the Ã 2Σ+ state collapses to 2A′ symmetry on bending,

it interacts with the lower Renner-Teller component of the ground X̃ 2Π state,
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Figure 3.1: The 10σ molecular orbital for the X̃ 2Π ground state of HCGe from the
TZ2P(f,d)/SCF method
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Figure 3.2: The 4π molecular orbital of the X̃ 2Π ground state of HCGe from the
TZ2P(f,d)/SCF method.
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which has the same symmetry 2A′. Therefore, the bending vibrational frequency of

the Ã 2Σ+ electronic state cannot be calculated from the lowest eigenvalue of the

appropriate secular equation.

It may be useful to analyze the MO Hessian (the second derivatives of the SCF

electronic energy with respect to MO rotations) of the reference SCF wave function.

51–53 For the X̃ 2Π state, the SCF wave function has one zero eigenvalue of the MO

Hessian related to the 4πi-4π0 MO rotation. This is an indication of the fact that

the SCF energy is not changed by exchanging the 4πi and 4π0 orbitals. However, for

the Ã 2Σ+ state, the MO Hessian has a doubly degenerate negative eigenvalue. The

corresponding eigenvectors are the 10σ-4πi and 10σ-4π0 MO rotations. Therefore,

the SCF wavefunction for the Ã 2Σ+ state is unstable and there is a lower-lying state.

We can obtain the lower-lying state by exchanging the 10σ-4πi or 10σ-4π0 moleculer

orbitals, which is one of the Renner-Teller components of the ground state. The

excited state properties that involve the 10σ-4π MO rotation should be interpreted

with great caution. Also, the magnitudes of the eigenvalues of the MO Hessian may

also be useful to study the instability of the SCF reference wave function.51–53

As shown in Chapter 1, the Renner parameter44–49,54 (ε) and the averaged har-

monic bending frequency (ω2) may be determined using the equations

ε =
f+ − f−

f+ + f−
=

(ω+)2 − (ω−)2

(ω+)2 + (ω−)2
(3.5)

ω2 =

√

√

√

√

1

2

[

(ω+)2 + (ω−)2

]

(3.6)

where f+ and f−, ω+ and ω− are the force constants and harmonic frequencies

associated with the “plus” and “minus” bending potentials, respectively.
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3.4 Theoretical Methods

The zeroth order descriptions of the X̃ 2Π and Ã 2Σ+ states of HCGe were obtained

using single configuration SCF (restricted open shell) wave functions. Correlation

effects were included using configuration interaction with single and double exci-

tations (CISD), coupled cluster with single and double excitations (CCSD)60 and

CCSD with perturbative triple excitations [CCSD(T)]61 levels of theory. The ten

lowest-lying MOs (Ge 1s-, 2s-, 2p-, 3s-, 3p-like and C 1s-like) were frozen and the

highest-lying virtual MO was deleted in all correlated procedures with the valence

TZ plus quality basis sets. For the two correlation consistent basis sets, only the ten

core MOs were frozen. All MOs were included into relativistic calculations.

A total of six basis sets were employed in this study. The basis set of triple-ζ

(TZ) qualities for germanium is derived from Schäfer, Horn, and Ahlrichs72 with

the contraction scheme (17s12p6d/6s5p2d). The TZ basis sets for carbon and

hydrogen were obtained from Dunning’s contractions57 of Huzinaga’s primitive

Gaussian set58 and are designated (10s6p/5s3p)⇒ TZ for carbon, and (5s/3s)⇒

TZ for hydrogen. The TZ quality basis sets were augmented with double and triple

sets of polarization functions. The orbital exponents of the polarization functions

are: αd(Ge)=0.3549, 0.1316, αd(C)=1.50, 0.375, αp(H)=1.50, 0.375 for double plar-

ization (TZ2P); and αd(Ge)=0.7098, 0.24325, 0.0658, αd(C)=3.00, 0.75, 0.1875,

αp(H)=1.50, 0.75, 0.375 for triple polarization (TZ3P). The orbital exponents of the

higher angular momentum functions are: αf(Ge)=0.362, αf(C)=0.80, αd(H)=1.00

for one set of higher angular momentum functions [TZ2P(f,d)]; and αf(Ge)=0.724,

0.181, αf(C)=1.60, 0.40, αd(H)=2.00, 0.50 for the two sets of higher angular

momentum functions [TZ3P(2f,2d)]. The orbital exponents of diffuse functions

are: αp(Ge)=0.02269 and αs(Ge)=0.02633, αp(C)=0.03389 and αs(C)=0.04812,

and αs(H)=0.03016 for single sets of diffuse functions [TZ2P(f,d)+diff]. Two sets of
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diffuse functions were appended to the [TZ3P(2f,2d)] basis set, with the orbital expo-

nents αp(Ge)=0.02269 and 0.006358, αs(Ge)=0.02633 and 0.008465, αp(C)=0.03389

and 0.01253, αs(C)=0.04812 and 0.01669, αs(H)=0.03016 and 0.009246 to construct

the basis set TZ3P(2f,2d)+2diff. Pure angular momentum d and f functions were

used throughout.

The basis set [TZ3P(2f,2d)+2diff] is the largest TZ derived basis set which

comprises 143 contracted Gausssian functions with a contraction scheme of Ge

(19s14p9d2f/8s7p5d2f), C (13s8p3d2f/7s5p3d2f), and H (7s3p2d/5s3p2d). Two of

Dunning’s correlation consistent polarized valence basis sets,73 cc-pVTZ and cc-

pVQZ, have also been employed. The cc-pVQZ basis set consists of 153 contracted

Gaussian functions with a contraction scheme of Ge (21s16p12d2f1g/7s6p4d2f1g), C

(12s6p3d2f1g/5s4p3d2f1g), and H (6s3p2d1f/4s3p2d1f).

The geometries of both X̃ 2Π and Ã 2Σ+ states of HCGe were optimized via

analytic derivative methods62 , 63 at the SCF and CISD levels. Harmonic vibrational

frequencies at the SCF level were evaluated analytically, while at the CISD level

of theory they were obtained by finite differences of analytic gradients. The CCSD,

CCSD(T), and EOM-CCSD geometries and vibrational frequencies were determined

via five-point numerical differentiation of the total energies.

The one-electron Darwin term, which is always positive and corrects the Coulomb

attraction, and the mass-velocity term, which is always negative and corrects the

kinetic energy of the system, were evaluated using first-order perturbation theory.

23? This method gives consistent results for germanium compounds compared to

methods such as Dirac-Hartree-Fock (DHF) and the use of relativistic effective core

potentials (RECP).26 The two-electron Darwin correction, which reduces the repul-

sion between electrons, is very small due to the fact that it depends on the probability

of two electrons being at the same point in space. In all of the calculations for the

relativistic effects, non-relativistic optimized geometries were used. Relativistic cor-
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rections to the harmonic vibrational frequencies are determined by evaluating the

Darwin and mass-velocity terms at each displaced geometry and adding them to the

total non-relativistic energy in the numerical differentiation procedure.

Throughout our study, cartesian forces at optimized geometries were required to

be less than 10−8 hartree/bohr. All computations were carried out using the PSI

2.0.8 program package,64 except the calculations for EOM-CCSD and for relativistic

effects which were performed using the ACES II package,65 on IBM RS/6000 work-

stations.

3.5 Results and Discussion

In Table 3.1, the equilibrium geometries, total energies and dipole moments for the X̃

2Π state of HCGe are presented. In Table 3.2, the ground state harmonic vibrational

frequencies including two non-degenerate bending vibrational frequencies, ω+
2 and

ω−
2 , infrared intensities, and Renner parameters are given. Total energies, and phys-

ical properties for the Ã 2Σ+ state are reported at five different levels of theory, SCF,

CISD, EOM-CCSD, CCSD, and CCSD(T) in Table 3.3. As explained earlier, bending

vibrational frequencies for the Ã 2Σ+ were not obtained at the CISD, CCSD, and

CCSD(T) level of theories, but they were predicted with the SCF and EOM-CCSD

methods. The effects of isotopic substitutions on the C-Ge stretching vibrational

frequency were predicted at the CCSD(T)/TZ3P(2f,2d)+2diff and CCSD(T)/cc-

pVQZ level of theories and results are given in Table 3.4. Relative energies of the

two lowest-lying electronic states are presented in Table 3.5. Relativistic corrections

to total energies and to the T0 values are predicted at the CCSD and CCSD(T)

levels with two different basis sets, and the results are given in Table 3.6. Effects of

relativistic corrections on the Renner parameter (ε) were investigated and are tabu-

lated in Table 3.7. Also, effects of relativity on the stretching harmonic frequencies
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Table 3.1: Total energies (in hartree), bond distances (in Å ), and dipole moments

(in debye) for the X̃ 2Π state of HCGe.

Total energy µe re(HC) re(CGe)

TZ3P(2f,2d) SCF -2113.711019 0.402 1.0673 1.7457
TZ3P(2f,2d)+2diff SCF -2113.711537 0.361 1.0673 1.7459
cc-pVTZ SCF -2113.748058 0.229 1.0676 1.7456
cc-pVQZ SCF -2113.753650 1.0670 1.7444

TZ3P(2f,2d) CISD -2114.094117 0.237 1.0712 1.7529
TZ3P(2f,2d)+2diff CISD -2114.095066 0.202 1.0713 1.7527
cc-pVTZ CISD -2114.040544 0.024 1.0728 1.7553
cc-pVQZ CISD -2114.104589 1.0709 1.7451

TZ3P(2f,2d) CCSD -2114.136929 1.0773 1.7690
TZ3P(2f,2d)+2diff CCSD -2114.137993 1.0775 1.7689
cc-pVTZ CCSD -2114.069990 0.046 1.0776 1.7681
cc-pVQZ CCSD -2114.141877 0.036 1.0762 1.7581

TZ3P(2f,2d) CCSD(T) -2114.157130 1.0800 1.7808
TZ3P(2f,2d)+2diff CCSD(T) -2114.158252 1.0802 1.7807
cc-pVTZ CCSD(T) -2114.088351 0.138 1.0802 1.7794
cc-pVQZ CCSD(T) -2114.162992 0.053 1.0790 1.7692

B3LYP/6-311G** from Reference 71. 1.082 1.775
B3LYP/6-311++G(d,p) from Reference 74. 1.082 1.774

Available experimental values:
r0(HC)= 1.0671 Å and r0(CGe)= 1.7758 Å from Reference 71.

were studied at the CCSD(T) level with two basis sets, and values included in Table

3.8.

3.5.1 Geometries

In Table 2.1, the optimized geometries of the X̃ 2Π state are given at sixteen rep-

resentative levels of theory. The two bond lengths increase with the inclusion of



57

T
ab

le
3.

2:
H

ar
m

on
ic

v
ib

ra
ti
on

al
fr

eq
u
en

ci
es

(i
n

cm
−

1
),

in
fr

ar
ed

(I
R

)
in

te
n
si
ti
es

(i
n

p
ar

en
th

es
es

in
k
m

m
ol

−
1
),

an
d

R
en

n
er

p
ar

am
et

er
(ε

)
fo

r
th

e
X̃

2
Π

st
at

e
of

H
C

G
e.

ω
1

ω
3

ω
+ 2

ω
− 2

ω
a 2

ε
(C

-H
S
tr

.)
(C

-G
e

S
tr

.)
(π

+
,2
A

′ )
(π

−
,2
A

′′
)

T
Z
2P

(f
,d

)
S
C

F
34

34
(8

.7
)

96
8(

58
.5

)
58

3(
37

.9
)

58
9(

16
1.

1)
58

6
-0

.0
10

2
T

Z
2P

(f
,d

)+
d
iff

S
C

F
34

34
(1

0.
5)

96
6(

62
.9

)
58

1(
42

.8
)

58
8(

18
8.

8)
58

4
-0

.0
12

0
T

Z
3P

(2
f,
2d

)
S
C

F
34

30
(8

.3
)

96
9(

58
.6

)
58

4(
35

.6
)

58
8(

15
4.

0)
58

6
-0

.0
07

0
T

Z
3P

(2
f,
2d

)+
2d

iff
S
C

F
34

29
(9

.7
)

96
7(

62
.5

)
58

5(
37

.6
)

59
0(

17
2.

3)
58

7
-0

.0
09

7
cc

-p
V

T
Z

S
C

F
34

27
(7

.6
)

97
0(

53
.8

)
57

9(
38

.6
)

58
4(

17
3.

9)
58

1
-0

.0
09

1
cc

-p
V

Q
Z

S
C

F
34

29
96

9
57

7
58

1
57

9
-0

.0
05

9

T
Z
2P

(f
,d

)
C

IS
D

33
60

(4
.8

)
92

9(
42

.9
)

54
3(

26
.7

)
54

0(
13

2.
3)

54
1

0.
00

52
T

Z
2P

(f
,d

)+
d
iff

C
IS

D
33

60
(5

.8
)

92
8(

46
.4

)
55

0(
30

.1
)

54
5(

15
1.

9)
54

8
0.

00
80

T
Z
3P

(2
f,
2d

)
C

IS
D

33
50

(5
.2

)
93

5(
45

.9
)

54
5(

25
.0

)
53

6(
12

6.
8)

54
1

0.
01

59
T

Z
3P

(2
f,
2d

)+
2d

iff
C

IS
D

33
49

(5
.9

)
93

5(
49

.3
)

55
1(

26
.5

)
54

1(
14

0.
8)

54
6

0.
01

80
cc

-p
V

T
Z

C
IS

D
33

45
(4

.2
)

93
0(

39
.4

)
54

4(
26

.6
)

54
0(

14
1.

0)
54

2
0.

00
74

cc
-p

V
Q

Z
C

IS
D

33
61

94
7

57
5

56
8

57
2

0.
01

15

T
Z
2P

(f
,d

)
C

C
S
D

32
90

88
3

43
7

51
5

47
7

-0
.1

61
4

T
Z
2P

(f
,d

)+
d
iff

C
C

S
D

32
89

88
2

44
8

52
1

48
6

-0
.1

51
9

T
Z
3P

(2
f,
2d

)
C

C
S
D

32
71

88
7

43
9

51
1

47
6

-0
.1

52
4

T
Z
3P

(2
f,
2d

)+
2d

iff
C

C
S
D

32
71

88
6

44
7

51
7

48
3

-0
.1

43
8

cc
-p

V
T

Z
C

C
S
D

32
83

89
1

44
6

51
9

48
4

-0
.1

52
1

cc
-p

V
Q

Z
C

C
S
D

32
91

90
5

48
2

54
9

51
7

-0
.1

29
9

T
Z
2P

(f
,d

)
C

C
S
D

(T
)

32
58

85
3

41
9

49
5

45
9

-0
.1

65
6

T
Z
2P

(f
,d

)+
d
iff

C
C

S
D

(T
)

32
57

85
3

45
5

49
8

47
7

-0
.0

90
5

T
Z
3P

(2
f,
2d

)
C

C
S
D

(T
)

32
38

85
6

42
6

49
0

45
9

-0
.1

39
1

T
Z
3P

(2
f,
2d

)+
2d

iff
C

C
S
D

(T
)

32
37

85
5

43
1

49
6

46
5

-0
.1

38
6

cc
-p

V
T

Z
C

C
S
D

(T
)

32
51

86
1

44
3

50
9

47
7

-0
.1

38
6

cc
-p

V
Q

Z
C

C
S
D

(T
)

32
58

87
4

47
4

52
6

50
0

-0
.1

04
6

B
3L

Y
P

/6
-3

11
G

**
fr

om
R

ef
er

en
ce

71
.

32
35

86
5

49
2

a
T

h
e

su
it
ab

ly
av

er
ag

ed
b
en

d
in

g
v
ib

ra
ti
on

al
fr

eq
u
en

cy
.



58

correlation effects, at given a basis set. At our highest level of theory, CCSD(T)/cc-

pVQZ, the C-H bond length is predicted as re(CH)=1.0790 Å and the C-Ge bond

length as re(CGe)=1.7692 Å. These two re values are consistent with the experi-

mental values71 of r0(CH)=1.0671 Å and r0(CGe)=1.7758 Å, respectively. At this

level, our prediction of re(CH) is 0.0119 Å longer and that of re(CGe) is 0.0066

Å shorter than the experimental r0 values. The discrepancy between re(CH) and

r0(CH), may be atributed to relatively large zero-point vibrational correction to the

C-H bond length. Smith et al.71 studied the ground state of the radical with a DFT

method, B3LYP/6-311G**, and predicted the bond lengths to be re(CH)=1.0822 Å

and re(CGe)=1.7753 Å. Also Jackson et al.74 found almost the same geometry with

the values of re(CH)= 1.082 Å and re(CGe)=1.774 Å at the B3LYP/6-311++G(d,p)

level. For the Ã 2Σ+ state, re(CH) was predicted to be 1.0737 Å and re(CGe)

to be 1.6687 Å at the our highest level of theory, CCSD(T)/cc-pVQZ, as seen

in Table 3.3. The experimental values for the Ã 2Σ+ state C-H and C-Ge bond

lengths were reported by Smith et al.71 as r0(CH)=1.0588 Å and r0(CGe)=1.6736

Å. The B3LYP/6-311G** predictions71 of bond lengths at the excited state are

re(CH)=1.0776 Å and re(CGe)=1.6655 Å and the B3LYP/6-311++G(d,p) predic-

tions74 are re(CH)=1.078 Å and re(CGe)=1.667 Å. Our results show that the C-H

bond length decreases 0.0053 Å upon excitation, which is in good agreement with

the experimental decrease of 0.0083 Å. At the same CCSD(T)/cc-pVQZ level of

theory, we predict a decrease in C-Ge bond length of 0.1005 Å upon excitation,

while B3LYP/6-311G** suggests a 0.110 Å decrease.71 Our prediction is in very

close agreement with the experimental71 C-Ge bond length decrease of 0.1022 Å. As

seen in Figure 3.1, the 10σ MO mainly consists of the nonbonding 4s atomic orbital

on the Ge atom, while the 4π MO has the C-Ge π-bonding character shown in Figure

3.2. Therefore, a single excitation from the 10σ MO to the 4π MO in equation (4)

decreases the C-Ge bond length. With the cc-pVQZ basis set, the difference in the
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SCF and CCSD(T) bond lengths for the ground state is 0.012 Å for the C-H bond

and 0.0248 Å for the C-Ge bond. It is observed that the C-Ge bond is more sensitive

to correlation effects, due to the multiple bond character of the carbon-germanium

linkage.

3.5.2 Dipole Moments

The dipole moments were determined as first derivatives of the total energies with

respect to external electric fields. As seen in Table 3.1, dipole moment predictions for

the ground X̃ 2Π state are small. At our highest level of theory, CCSD(T)/cc-pVQZ,

a value of 0.053 debye is predicted for the ground state. For the Ã 2Σ+ state, our

prediction is 1.530 debye at the same level of theory. A single electron excitation

from the 10σ MO to 4π MO in eq.(4) appears to increase the charge separation

between the carbon and germanium atoms. For both states, CCSD and CCSD(T)

predicitons are consistent with each other while SCF predictions are higher than

CCSD and CCSD(T) results by amounts 0.2-0.9 debye. The CISD predictions for

the dipole moments are between SCF and CCSD results. In all levels of theory

and for the both states, carbon atom is negatively charged, around 0.35-0.45, and

germanium atom is positively charged, around 0.25-0.35, i.e. HC−Ge+. The hydrogen

atom is almost neutral, having a positive charge around 0.08-0.15.

3.5.3 Harmonic vibrational frequencies

When correlation effects are included, the C-H stretching (ω1) and C-Ge stretching

(ω3) vibrational frequencies of both the X̃ 2Π and Ã 2Σ+ states are lowered, which

reflects the longer bond distances. The two stretching modes of the excited state

have higher frequencies than the corresponding values for the ground state. Experi-

mental values for the vibrational frequencies of the ground X̃ 2Π state have not yet

been reported. On the other hand, in May 2000, Smith et al.71 reported the Ã 2Σ+
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state C-Ge stretching and bending vibrational frequencies, studying the electronic

transition of the radical by laser-induced fluorescence techniques. They found the C-

Ge stretching vibrational frequency to be 990 cm−1. We predict the corresponding

frequency to be 1034 cm−1 with the CCSD(T)/cc-pVQZ method, and 1011 cm−1

with CCSD(T)/TZ2P(2f,2d)+2diff level. Smith et al.71 carried out computations

with the B3LYP/6-311G** method, and they found a frequency of ω3=1040 cm−1.

Although CCSD(T) predicts slightly better values with all basis sets, compared to

the DFT value, it is clear from Table 3.3 that CCSD(T)/cc-pVQZ result is about

20 cm−1 larger than the other CCSD(T) results. In fact, the cc-pVQZ basis set

predicts the C-Ge stretching (ω3) vibrational frequency of the both X̃ 2Π and Ã

2Σ+ states about 15-25 cm−1 higher than the other basis sets, at all levels of theory

except at the SCF level. This may be due to the presence of a g-function in the

basis set. It is unlikely to be a result of the lack of diffuse functions, because the

TZ3P(2f,2d), TZ3P(2f,2d)+2diff, and cc-pVTZ basis sets predict very similar vibra-

tional frequencies. Therefore, we think that the results with our second largest basis

set TZ3P(2f,2d)+2diff (which comprises 143 contracted Gausssian functions, 10 less

than cc-pVQZ) for the harmonic vibrational frequencies may be considered more

reliable. The excited state C-H stretching vibrational frequency was determined to

be 3294 cm−1, at the CCSD(T)/TZ2P(2f,2d)+2diff level, for which there is no exper-

imental value. The B3LYP/6-311G** prediction71 for this mode is 12 cm−1 less than

our prediction.

For the excited state bending mode, the EOM-CCSD method was employed to

avoid variatonal collapse due to the identical symmetry of the excited state with

the 2A′ component of the ground X̃ 2Π state in the bent structures. We determined

values of 743 cm−1 and 722 cm−1 at the EOM-CCSD/cc-pVQZ and EOM-CCSD/cc-

pVTZ levels of theory. Although the EOM-CCSD/cc-pVTZ result is better, it devi-

ates from the experimental result71 of 638 cm−1 by 84 cm−1. Such deviations are
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probably caused by the fact that EOM calculations were performed on geometries

which were optimized at the CCSD level. For the same mode, Smith et al.71 predict

713 cm−1 at the B3LYP/6-311G** level, which is close to our predictions, and is 75

cm−1 larger than the experimental value.

As mentioned before, there are no experimental values for the ground state vibra-

tional frequencies. Therefore, we present all of our results for these vibrational fre-

quencies in Table 3.2. The ground state C-H stretching (ω1) vibrational frequency

is predicted to be 3237 cm−1, and the C-Ge stretching (ω3) to be 855 cm−1 at the

CCSD(T)/TZ3P(2f,2d)+2diff level. Again, the cc-pVQZ basis set produce higher

vibrational frequencies by 10-15 cm−1 in all correlated methods. The B3LYP/6-

311G** results71 are 3235 cm−1 and 865 cm−1, which are close to our predictions.

The effects of isotopic substitution of germanium on the C-Ge stretching har-

monic vibrational frequency were determined at the two highest levels of theory,

CCSD(T)/TZ3P(2f,2d)+2diff and CCSD(T)/cc-pVQZ. As seen in Table 3.4, at the

CCSD(T)/cc-pVQZ level, the difference between the smallest vibrational frequency

(for HC76Ge ) and the largest one (for HC70Ge) is 5.4 cm−1 for the ground X̃ 2Π

state and 6.5 cm−1 for the excited Ã 2Σ+ state. Because the C-H stretching and

bending vibrational frequencies do not change very much (on the order of 0.1 cm−1

for the bending and 0.01 cm−1 for the C-H stretching), they were not included

in the table. Smith et al.71 experimentally investigated the effects of germanium

isotopes on the excitation energies between Ã 2Σ+-X̃ 2Π states. They determined

HC72Ge-HC74Ge isotope splittings as 2.2 cm−1 for the 31
0, 4.2 cm−1 for the 32

0, and

6.0 cm−1 for the 33
0 bands. We evaluated the same splittings as 2.25 cm−1 for the 31

0,

4.35 cm−1 for the 32
0, and 6.45 cm−1 for the 33

0 bands, using the values of the pre-

dicted C-Ge stretching vibrational frequencies for the HC72Ge and HC74Ge at the

CCSD(T)/TZ3P(2f,2d)+2diff level. This excellent agreement between experiment

and theory supports the reliability of the CCSD(T)/TZ3P(2f,2d)+2diff predictions
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Table 3.4: Theoretical predictions of the C-Ge stretching harmonic vibrational fre-
quency (ω3) for the isotopomers of HCGe.

HC70Ge HC72Ge HC73Ge HC74Ge HC76Ge

X̃ 2Π state
TZ2P(2f,2d)+2diff CCSD(T) 858.9 857.0 856.0 855.2 853.5
cc-pVQZ CCSD(T) 877.2 875.3 874.4 873.5 871.8

Ã 2Σ+ state
TZ2P(2f,2d)+2diff CCSD(T) 1015.7 1013.5 1012.4 1011.4 1009.4

cc-pVQZ CCSD(T) 1038.8 1036.5 1035.4 1034.3 1032.3

of the physical properties. Specifically, the theoretically predicted ground state vibra-

tional frequencies will be useful in determining experimental (unknown) frequencies.

As we will discuss later, CCSD(T)/TZ3P(2f,2d)+2diff level of theory predicts the

best value for the quantum mechanical splitting (T0) which is only 0.14 kcal/mol

(49.0 cm−1) larger than the experimental value, after including relativistic effects.

3.5.4 Renner-Teller splitting in the X̃ 2Π state

As discussed previously, the ground state of the HCGe radical has two distinct real

bending vibrational frequencies. One of them corresponds to the bending motion

of the 2A′ state, where the single electron in the 4π MO is in the plane which

transforms as a′ in point group Cs. The other vibrational frequency corresponds to

the bending motion of the 2A′′ state, where the singly-occupied orbital is in the

plane and transforms as a′′. As seen in Table 3.2, the Renner parameter (ε) has a

magnitude of the order of 0.01 at the SCF and CISD levels, about 10 times smaller

than the values from CCSD and CCSD(T) levels. Another important point is that

the CISD method predicts positive values for the Renner parameter, while SCF,
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CCSD, and CCSD(T) predict negative values. Negative values mean that the 2A′

(=V+) surface, which corresponds to the electronic state that is symmetric under

reflection in the plane of the bent molecule, lies below the 2A′′ surface (=V−).

This feature is illustrated in Figure 3.3, where the energy difference between the

two surfaces is plotted using 24 different levels of theory. As seen in the figure, the

difference (2A′ - 2A′′) is positive for the CISD levels, whereas it is negative with the

SCF, CCSD and CCSD(T) methods. The sign change in CISD cannot be readily

attributed to the treatment of correlation effects in CISD compared to CCSD and

CCSD(T), because SCF predicts the same sign as CCSD and CCSD(T). For the

2A′ state energy calculations, we suspect that the CISD somehow overestimates

the energy contribution from the configurations formed by the single excitations.

However, higher order excitations in CCSD and CCSD(T) can reduce the effects

of single excitations, because of the huge number of different excitations formed,

compared to the CI expansion. The magnitude of the splitting, the absolute value

of the Renner parameter, can be attributed to the incomplete treatment of electron

correlation in CISD, because the SCF method also predicts very small splittings.

The Renner parameter for the X̃ 2Π state was determined as -0.1046 at the

CCSD(T)/cc-pVQZ level, and -0.1386 at the CCSD(T)/TZ3P(2f,2d)+2diff level.

There is no available experimental value for the ε, as well as no previous theoretical

prediction. Our CCSD(T)/TZ3P(2f,2d)+2diff result should be more reliable, inas-

much as it is very consistent with the other basis set results. We recently investigated

the Renner-Teller effect in HCSi and reported the Renner parameter as -0.1136

at the CCSD(T)/cc-pVQZ level and -0.1242 at the CCSD(T)/TZ3P(2f,2d)+2diff

level,75 which are close to the ε values for HCGe. It is important to note that the

CCSD(T)/cc-pVQZ method predicts smaller ε values (in absolute magnitudes) than

the CCSD(T)/TZ3P(2f,2d)+2diff level by 0.02, for both radicals HCSi and HCGe.
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Figure 3.3: The energy difference between the 2A′ and 2A′′ Renner-Teller components
of the X̃ 2Π state
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3.5.5 Infrared (IR) intensities

The most intense IR mode for the ground X̃ 2Π state is found for the ω−
2 vibrational

frequency, which corresponds to the 2A′′ Renner-Teller component. As seen in Table

3.2, this mode has an intensity of 140.8 km mol−1 whereas the other mode ω+
2 ,

which corresponds to the 2A′ component, has only a 26.5 km mol−1 intensity at

the CISD/TZ3P(2f,2d)+2diff level. The C-Ge stretching vibrational mode is much

more intense for the ground X̃ 2Π state comparing to the excited Ã 2Σ+ state.

The situation is the reverse for the C-H stretching mode, which has 5.9 km mol−1

intensity for the ground state whereas the intensity for the excited state is 61.5 km

mol−1. For the excited state bending mode, we could not determine the intensity

due to the variational collapse. Although we present SCF results for the intensity of

this mode, they may not be too reliable for the reason just mentioned.

3.5.6 Energetics

The classical X̃-Ã splitting was predicted to be 56.0 (SCF), 45.4 (CISD), 40.7

(CCSD), and 37.0 kcal/mol [CCSD(T)], with the TZ3P(2f,2d)+2diff basis set. This

basis set provides better energetics than the cc-pVQZ basis set which predicts 0.7-

0.9 kcal/mol smaller energy separations than the TZ3P(2f,2d)+2diff values. It is

seen that advanced treatments of correlation effects decrease the energy seperation,

while increase of the basis set size provides larger separations. At the CCSD(T)

level, the difference between result of TZ2P(f,d) and that of TZ3P(2f,2d)+2diff is

0.4 kcal/mol. We include zero-point corrections for all basis sets, using the EOM-

CCSD/cc-pVTZ value for the Ã 2Σ+ state bending mode. As seen in Table 3.5, the T0

value was predicted to be 38.0 kcal/mol at the CCSD(T)/TZ3P(2f,2d)+2diff level.

The experimental value was determined by Smith et al.71 to be T0=39.75 kcal/mol

(13901.8297 cm−1). Comparing with the experimental value, the SCF, CISD, and
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CCSD methods overestimate the energy gap in all basis sets, whereas the CCSD(T)

energy separations are in good agreement with the experimental value. Although our

CCSD(T)/TZ3P(2f,2d)+2diff result of 38.0 kcal/mol is much better than B3LYP/6-

311G** result of 45.4 kcal/mol (15875 cm−1),71 we still see a 1.7 kcal/mol deviation

from the experiment. Considering the fact that we recently predicted75 the X̃-Ã

energy gap for HCSi within 0.12 kcal/mol error at the CCSD(T)/TZ3P(2f,2d)+2diff

level of theory, we think that the 1.7 kcal/mol deviation for the HCGe molecule is

not satisfactory. As seen in Table 3.5, after addition of relativistic effects, Darwin

and mass-velocity terms determined at the CCSD(T)/cc-pVQZ level, we predicted a

value of 39.9 kcal/mol at the CCSD(T)/TZ3P(2f,2d)+2diff level which is only 0.14

kcal/mol (=49 cm−1) larger than the experimental value. In the next section, effects

of relativistic corrections on several physical properties as well as the energy gap will

be discussed in detail.

3.5.7 Effects of relativistic corrections

The power series expansion of the exact solution of the Dirac equation for hypo-

thetical relativistic atoms without any electron correlation produces very simple

equations for estimating the relativistic corrections.20,76 Especially, the second term

in the expansion in powers of c−1;

e(2) = (
3

8n4
− 1

2n3|κ|)Z
4 (3.7)

where n and κ (|κ|=j+1/2) are quantum numbers, produces more than 96 percent

of the total relativistic corrections for atoms up to Kr(Z=36)76 (note that the first

term in this expansion is just the non-relativistic energy). This term gives a value

of around -21 hartree for germanium, considering it as a hypothetical relativistic

atom without any electron correlation. All of our predictions about the relativistic

corrections for the HCGe radical are in good agreement with this simple model.
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Table 3.6: Relativistic corrections, sum of Darwin and mass-velocity terms, to total
energies (in hartree), and to T0 values (in kcal/mole).

Correction to X̃ 2Π state Correction to Ã 2Σ+ states ∆ T0*

cc-pVTZ CCSD -21.238956 -21.236911 +1.277
cc-pVQZ CCSD -21.240123 -21.237223 +1.813

cc-pVTZ CCSD(T) -21.239117 -21.236958 +1.348
cc-pVQZ CCSD(T) -21.240343 -21.237382 +1.852

*The contribution from the relativistic ZPVE changes was estimated to be -0.0066
kcal/mol at the CCSD(T)/cc-pVQZ level, and included into all ∆ T0 values.

The most important effect of relativity was seen to be on the energetics of the

system. As we mentioned before, the best non-relativistic T0 value predicted is 38.0

kcal/mol which is 1.7 kcal/mol smaller than the experimental value of 39.7 kcal/mol.

The relativistic corrections to total energies and to T0 values are presented in Table

3.6. As seen in the table, the cc-pVQZ basis set predicts larger corrections than the

cc-pVTZ basis set. When the CCSD(T)/cc-pVQZ result is taken into account, the

corrected T0 values are in very good agreement with experiment, as seen in Table 3.5.

The T0 value is predicted to be 39.9 kcal/mol at the CCSD(T)/TZ3P(2f,2d)+2diff

level of theory which is only 0.14 kcal/mol larger than the experimental result. The

effects of relativity on the non-degenerate bending harmonic vibrational frequencies

of the two components of the X̃ 2Π state are small. The results of four different

level of theory are presented in Table 3.7. The two bending vibrational frequencies

decrease by amounts of 2-3 cm−1 when the relativistic corrections are included.

Dyall et al.26 investigated relativistic effects on the several spectroscopic constants

for the XH4 and XH2 (X=Si, Ge, Sn, and Pb) systems, and they reported that the

effects of relativity were seen in the shorter bond lengths and higher frequencies
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for XH4, but lower stretching frequencies for the XH2 systems. They reported 0.004

Å and 0.003 Å bond length decreases for GeH2 by perturbation theory and Dirac-

Hartree-Fock calculations, respectively, which in turn result in 3-4 cm−1 increases

in the bending vibrational frequency. Therefore, it is desirable that geometry re-

optimization including the relativistic effects should be done in order to predict

the changes in the bending modes. The relativistic corrections also decrease the

Renner-Teller splitting, and again, the cc-pVQZ basis set predicts larger effects than

the cc-pVTZ basis. The resultant relativistic correction to the Renner parameter

ε is +0.0079 at the CCSD(T)/cc-pVQZ level of theory. The effects can be larger

for the stretching vibrational frequencies. It is observed that relativistic corrections

decrease the C-Ge stretching frequency by amounts of 15-20 cm−1 while its effects

are on the order of 3-4 cm−1 for the C-H stretching mode, as seen in Table 3.8.

Dyall et al.26 reported that the symmetric stretching vibrational frequency [ω1(a1)]

of GeH2 decrease 11 cm−1 (PT) and 12 cm−1 (DHF) with inclusion of relativity,

consistent with our results. With the inclusion of the relativistic effects, the excited

state C-Ge stretching frequency is determined to be 1014 cm−1 and 990 cm−1 at the

CCSD(T)/cc-pVQZ and CCSD(T)/cc-pVTZ levels, respectively. As we mentioned

before, the TZ3P(2f,2d)+2diff basis set predicts more reliable values than the cc-

pVQZ basis set, and for the C-Ge mode, the cc-pVTZ predictions are very close to

TZ3P(2f,2d)+2diff. Our relativistic CCSD(T)/cc-pVTZ result for the Ã 2Σ+ state

C-Ge harmonic vibrational frequency (ω3) is almost the same as the experimental71

fundamental of ν3=990 cm−1. Therefore, perhaps the relativistic CCSD(T)/cc-pVTZ

result of 846.4 cm−1 should be a more reliable value for the ground X̃ 2Π state C-Ge

stretching mode, for which experimental value is not available.

We investigated the change of the relativistic corrections at each displacement of

the C-H and C-Ge internal coordinates. When one of the two internal coordinates
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Table 3.8: Effects of relativistic corrections on stretching harmonic vibrational fre-
quencies (in cm−1), and on the zero point vibrational energy (non-relativistic/with
the inclusion of Darwin and mass-velocity terms).

CCSD(T)/cc-pVTZ CCSD(T)/cc-pVQZ Experiment

X̃ 2Π state
ω1(C-H Str.) 3251.4/3248.6 3257.8/3263.2
ω3(C-Ge Str.) 860.8/846.4 873.5/851.9
ZPVE 2533/2523 2566/2559

Ã 2Σ+ states
ω1(C-H Str.) 3314.0/3310.7 3316.2/3313.5
ω3(C-Ge Str.) 1012.2/990.2 1034.3/1014.4 ν3=990
ZPVE* 2885/2872 2897/2886

*For the Ã 2Σ+ state bending mode (ω2), the non-relativistic EOM-CCSD/cc-pVTZ
value is used for both relativistic and non-relativistic ZPVEs.

is changed, the other one is fixed. Figure 3.4 shows the variations of the relativistic

effects in terms of the two internal coordinates.

The displacements along the C-H and C-Ge internal coordinates produce the

similar effect in the one electron Darwin term, which corrects the Coulomb attrac-

tion. In both cases, the Darwin term increases with the positive displacements, and

decreases (gets more negative) with the negative displacements. However, the vari-

ation in mass-velocity term is in the opposite directions for the two internal coor-

dinates, as seen in Figure 3.4.a The variation for the total correction, the sum of

the two terms, is again in opposite directions. For the C-H displacements, variations

in the total correction are very small as expected because almost all of the rela-

tivistic corrections come from the germanium atom. However, displacements along

the C-Ge internal coordinate cause significant variations in the total energy correc-

tion. As seen in Figure 3.4.c and 3.4.d, positive displacements from the equilibrium



73

Figure 3.4: Variations of the mass-velocity term, one electron Darwin term, and the
total relativistic energy corrections with the displacements along the C-H and C-Ge
internal coordinates, for the X̃ 2Π state (energies are relative to the equilibrium
energy).
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distance produce higher energies, while negative displacements produce negative

energy corrections. In other words, the shorter C-Ge bond distance minimizes the

total relativistic energy correction, which result in the common term ‘relativistic

bond contraction’. For some systems where three or more heavy atoms are adja-

cent, this kind of analysis of the total relativistic energy correction calculated on

the non-relativistic geometries may be helpful in deciding whether a specific bond

contracts or elongates with the inclusion of the total relativistic effects of the system.

In all physical systems, it is expected that the geometry changes in a way that the

total relativistic energy correction is minimized, the same as the total energy of the

system. Using this argument for our system, the C-H bond should elongate slightly

and the C-Ge bond should contract with the inclusion of relativity, a result of the

fact that slope of the C-Ge lines is positive, whereas that of the C-H lines is negative,

as seen in Figure 3.4.c and 3.4.d.

3.6 Concluding Remarks

The germanium methylidyne molecule (HCGe) is valence isoelectronic with the C2H

radical, well known in combustion chemistry. In the present study, the properties of

HCGe have been investigated with a variety of theoretical methods. As was found for

the HCSi radical, both the X̃ 2Π and Ã 2Σ+ states of HCGe are found to have linear

structures. It is observed that the CCSD(T) method in conjunction with large basis

sets is able to predict very reliable values for many physical properties. The rela-

tivistic one-electron Darwin and mass-velocity terms are calculated using first-order

perturbation theory and effects of these corrections on energetics, harmonic vibra-

tional frequencies, and Renner-Teller splitting are discussed. The relativistic effects

were seen to produce lower stretching vibrational frequencies and larger energy gaps

between the ground X̃ 2Π and first excited Ã 2Σ+ states. Although non-relativistic
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estimations of the quantum mechanical splitting (T0 value) and harmonic vibrational

frequencies agree reasonably well with the available experimental values, inclusion

of the relativistic corrections produces excellent agreement between the theory and

the experiment. This feature indicates that it may be necessary for germanium com-

pounds to take relativistic considerations into account to make quantitative spec-

troscopic predictions.



Chapter 4

An L-Shaped Equilibrium Geometry for Germanium Dicarbide(GeC2)?

Interesting Effects of Zero-Point Vibration, Scalar Relativity,

and Core-Valence Correlation ∗

∗Levent Sari, Kirk A. Peterson, Yukio Yamaguchi, and Henry F. Schaefer III. Journal
of Chemical Physics, 117, 10008 (2002). Reprinted by permission of the American Institue
of Physics.
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4.1 Abstract

The ground state potential energy surface of the GeC2 molecule has been investi-

gated at highly correlated coupled cluster levels of theory. Large basis sets including

diffuse functions and functions to describe core correlation effects were employed

in order to predict the true equilibrium geometry for GeC2. Like the much-studied

valence isoelectronic SiC2, the linear (1Σ+), L-Shaped (1A′), and T-Shaped struc-

tures (1A1) must be investigated. The L-Shaped Cs geometry is found to have real

harmonic vibrational frequencies along every internal coordinate, and the linear

stationary point has an imaginary vibrational frequency along the bending mode

at every level of theory employed. The T-Shaped geometry is found to have an

imaginary vibrational frequency along the asymmetric stretching mode. At the cou-

pled cluster with single and double excitations and perturbative triple excitations

[CCSD(T)]/correlation consistent polarized valence quadruple-ζ (cc-pVQZ) level,

the non-relativistic classical relative energies of the T-Shaped and linear structures

with respect to the L-Shaped minimum are 0.1 kcal/mol and 2.8 kcal/mol, respec-

tively. Including zero-point vibrational energy (ZPVE), scalar relativistic, and core-

valence corrections, the T-L energy separation is shifted to 0.4 kcal/mol and the

relative energy between the L-Shaped and linear structures is still 2.8 kcal/mol. All

non-relativistic and relativistic computations predict that the L-Shaped (1A′) struc-

ture is most favored for the ground state. The linear structure is predicted to be a

transition state, as the case of SiC2.

4.2 Introduction

The group IV diatomics and triatomics such as CSi, CSi2, SiC2, GeC, Ge2C,

GeC2, and SnC have held a growing interest for both experimental and theoretical

researchers, mainly due to the their extraordinary electronic structures and potential
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usages in optoelectronic and semiconductor applications.77–82 The inconsistency in

the electronic structures of these periodically related species gave rise to incorrect

conclusions about the ground state structures, some of which had been held for

many years. One reason for encountering these surprising results is that C, Si, Ge,

and Sn have different core sizes, which play a significant role in the minimum energy

geometries and in the extent of relativistic energy corrections. Also, the absence

of occupied d-electrons for C and Si causes an unbalanced competition for the

valence electrons compared to Ge or Sn. There have been many cases reported in

the literature showing this inconsistency. For instance, the ground state of C2
83 is

1Σ+
g , that of CSi81 is 3Π, and for Ge2

84 it is 3Σ−
g . Further, C3 has a linear structure

85 in its ground state (1Σ+
g ), Si3 has a triangular structure86 (1A1), while GeSi2 is

predicted80 to have a triplet (3B2) rather than singlet ground state.

The most discussed molecule of this kind is SiC2. Once evidences were found

for SiC2 in carbon rich stars87 in 1926, it became a focus of interest. However until

1982, experimental and theoretical studies seemed to show that SiC2 has a linear

structure in its ground state (1Σ+). In 1982, Bondybey88 carried out a time-resolved

laser-induced fluorescence spectroscopy experiment, and he concluded that linear

ground state structure is not a priori obvious. The first ab initio study of SiC2 was

published by Green89 in 1983. They excluded the possibility of the CSiC isomer, and

concluded that the linear 1Σ+ state is the ground state. However, in 1984, Grev and

Schaefer90 carried out CISD/DZP studies and reported that the T-Shaped 1A1 state

is in fact lower in energy than the linear structure by 0.4 kcal/mol. Simultaneously,

Smalley and coworkers91 concluded that the linear 1Σ+ structure is not consistent

with the observed rotational spectra. In 1988, Shepherd and Graham92 performed

fourier transform infrared spectroscopy (FTIR) experiments and confirmed the cyclic

T-Shaped geometry for the ground state (1A1).
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The analogous GeC2 molecule was detected by Schmude, Gingerich, and King-

cade82 in a mass spectrometry experiment in 1995. They reported enthalpies of

formation for GeC2 as well as Ge2C, Ge2C2, and Ge3C. However, they assumed the

structure of GeC2 to be T-Shaped, considering the Si analog. Of course, the mass

spectroscopic experiments did not provide any information concerning the geometry

of the global minimum and the electronic structure. The only theoretical study to

date was reported by Li et al.80 in 2001. They performed DFT calculations on AmBn

(A,B = Si,Ge,C and m+n < 10). For GeC2, they excluded the possibility of a linear

structure, stating that AB2 binary clusters of group IV elements have extremely low

stabilities for linear geometries. Li and coworkers reported that GeC2, Ge2C, SiC2,

Si2C, and SiGe2 all have T-Shaped geometries in their ground states.

Because there is no experimental data pertinent to the structure and energetics

of the GeC2 system, as well as no high level theoretical study, we aimed to study the

ground state electronic structure of this elusive molecule by employing highly corre-

lated coupled-cluster theories in conjunction with substantial basis sets. Especially,

we wanted to see the effects of relativistic and core-valence correlations on the struc-

ture and energetics of the system due to the existence of the Ge atom. The primary

motivation here is that the ground state potential energy surface is extremely flat,

like SiC2, and even 2-3 kcal/mol energy is sufficient to invert the Ge atom around

the molecule. Secondly, the main differences between the Si and Ge atoms are (a)

the relatively large core of Ge, which makes relativity more important; and (b) the

3d electrons of Ge which gives rise to additional core-valence correlations with the 4s

and 4p electrons. Therefore, the Ge atom sometimes behave differently from the Si

atom, and in turn, the ground state potential energy surface of GeC2 might be dif-

ferent from that of SiC2, due to the fact that very small energy differences determine

the shape of the surface.
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4.3 Electronic Structure Considerations

The three different geometries that have been studied in this work are given in Figure

4.1 The ground electronic state of GeC2 has accordingly the following electronic

configurations:

Linear C∞v symmetry,

[core](10σ)2(11σ)2(12σ)2(13σ)2(4π)4 ⇒ 1Σ+ (4.1)

Cyclic C2v symmetry (T-Shaped geometry),

[core](9a1)
2(10a1)

2(5b2)
2(4b1)

2(11a1)
2(12a1)

2 ⇒ 1A1 (4.2)

Bent Cs symmetry (L-Shaped geometry),

[core](13a′)2(14a′)2(15a′)2(5a′′)2(16a′)2(17a′)2 ⇒ 1A′ (4.3)

In the above equations, [core] denotes the sixteen core (Ge: 1s-, 2s-, 2p-, 3s-,

3p-, and 3d-like and C: 1s-like) orbitals. One of the 4π molecular orbitals (MOs)

of linear GeC2 becomes the 4b1 MO for the T-Shaped structure and represents the

π bonding. The 5a′′ MO of the L-Shaped structure corresponds to the π molecular

orbital. The in-plane π MO in the L-Shaped structure is mixed with other MOs of

the same symmetry. The 10σ and 11σ MOs of the linear structure, 9a1, 10a1, and

5b2 MOs of the T-Shaped, and 13a′ and 14a′ MOs of the L-Shaped arrangement

correspond to the σ(C-C) + σ(C-Ge) and σ(C-C) - σ(C-Ge) bonds. The 12σ and

13σ orbitals of the linear structure, 11a1 and 12a1 orbitals for T-Shaped, and 16a′

and 17a′ orbitals for L-Shaped are associated with the lone pairs of the C and Ge

atoms, respectively.

4.4 Theoretical Methods

SCF (restricted open shell) wave functions have been used for the zeroth order

descriptions of the ground state for each geometry (T-Shaped, linear, and L-Shaped).
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Figure 4.1: The three different geometries of GeC2 studied in this work.
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The configuration interaction with single and double excitations (CISD), the coupled

cluster with single and double excitations (CCSD),60 and CCSD with perturbative

triple excitations [CCSD(T)]61 methods have been employed to include correlation

effects. The eleven lowest-lying MOs (Ge: 1s-, 2s-, 2p-, 3s-, 3p-like and C: 1s-like)

were frozen and the two highest-lying virtual MOs were deleted with all correlated

levels with the TZ2P+diff and TZ3P(2f) basis sets. Only the eleven lowest-lying

MOs were frozen for the correlation consistent basis sets (cc-pVXZ). In the corre-

lated relativistic calculations, core and core-valence correlation effects were explicitly

included.

Four basis sets, TZ2P+diff, TZ3P(2f), cc-pVTZ, and cc-pVQZ, were used at the

SCF, CISD, and CCSD levels, for all three structures. The triple-ζ (TZ) valence

basis for germanium is obtained from Schäfer, Huber, and Ahlrichs72 with the con-

traction scheme (17s12p6d/6s5p2d). The TZ basis set for carbon is from Dunning’s

contraction57 of Huzinaga’s primitive Gaussian set58 with the contraction scheme

(10s6p/5s3p). The detailed descriptions of these basis sets were given in our recent

study of HCGe.93 To obtain more reliable results for the L-Shaped and T-Shaped

geometries, which are the main candidates for the ground state, an aug-cc-pVTZ

basis set was also included at the CCSD(T) level. All correlation consistent basis

sets were obtained from the EMSL basis set library.73

The cc-pwCVTZ basis set for germanium is constructed here from the cc-

pVTZ set by adding two s-functions with orbital exponents 5.6565 and 0.9693,

two p-functions with orbital exponents 3.1638 and 1.4818, two d-functions with

α= 2.9448 and 1.0686, two f-functions (5.2610 and 1.3303), and one g-function

(1.5394). This new basis set, designated correlation consistent polarized weighted

core-valence triple-ζ (cc-pwCVTZ), is weighted so that core-valence correlation

effects are stressed. This choice is due to the fact that we employ the mass-velocity

and Darwin (MVD) contributions for recovering the relativistic effects. This per-
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turbative method for recovering relativistic effects couples with the correlation

treatment (especially correlation effects involving electrons near the nuclei) because

it is based on the Breit-Pauli relativistic Hamiltonian.19,20 Therefore, we tried to

avoid overemphasizing the core-core correlation when employing the cc-pwCVTZ

basis set. Pure angular momentum d and f functions were used throughout.

The geometry optimizations and harmonic vibrational frequency evaluations

for all three structures were performed using analytic first and second derivative

methods62 , 63 at the SCF level. At the CISD level, optimizations were performed

using gradients, whereas for the frequency calculations five-point numerical differ-

entiation of the total energies was used. At all coupled-cluster levels, both geometry

optimizations and harmonic vibrational frequency evaluations were carried out using

five-point numerical differentiation of the total energies. In the relativistic optimiza-

tions and frequency calculations, the same five-point procedure was used with the

total relativistic energies (non-relativistic + MVD correction). Cartesian forces at

optimized geometries were required to be less than 10−7 hartree/bohr in all geometry

optimizations.

In the evaluation of the relativistic energy corrections, the one-electron Darwin

term, which is always positive, and the mass-velocity term, which is always negative,

were evaluated using first-order perturbation theory.23,24 The Darwin term corrects

the Coulomb attraction, and the mass-velocity term corrects the kinetic energy of

the system. This level of relativistic treatment gives adequate results for germanium

compounds (and other atoms up to Z=40) compared to methods such as Dirac-

Hartree-Fock (DHF) and the use of relativistic effective core potentials (RECP).

26,76

Throughout our study, all computations were carried out using the PSI 2.0.8

program package,64 except the evaluation for relativistic effects which was performed
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using the ACES II package.65 IBM RS/6000 workstations, an IBM SP2, and PCs

were used.

4.5 Results and Discussion

4.5.1 Non-Relativistic Results

We present the equilibrium geometries, total energies, dipole moments evaluated at

some levels, and harmonic vibrational frequencies for the T-Shaped geometry (1A1)

in Table 4.1. Similar properties for the linear structure (1Σ+) are given in Table 4.2,

and those for the L-Shaped geometry (1A′) may be seen in Table 4.3.

Geometries

Table 4.1 indicates that the T-Shaped geometry was optimized at every level of

theory. The C-C bond length re(CC) systematically increases with the inclusion of

correlation effects. At the SCF level it is ∼ 1.25 Å, at the CISD level ∼ 1.26 Å, at

the CCSD level ∼ 1.27 Å, and at the CCSD(T) level ∼ 1.28 Å. However, the same

trend is not observed for the Ge-C bond distance. As seen in Table 4.1, the basis

set dependence is more apparent than the effects of correlation for re(GeC). This

distance changes between 1.96 Å and 1.92 Å depending on the basis set choice. For

instance, with the TZ2P+diff basis set re(GeC) is 1.943 Å at the SCF level, 1.938 Å

at the CISD level, 1.947 Å at the CCSD level, and 1.956 Å at the CCSD(T) level,

which distances are reasonably close to each other. At the highest non-relativistic

level of theory, CCSD(T)/cc-pVQZ, re(CC) is predicted to be 1.279 Å and re(GeC)

is 1.929 Å. The linear geometry (1Σ+) has similar C-C bond distances to the T-

Shaped structure. As presented in Table 4.2, the trend in re(CC) with the inclusion

of correlation effects parallels that for the T-Shaped geometry. However, the linear

Ge-C bond length is about 0.15-0.20 Å shorter than that of the T-Shaped structure
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at every level of theory. Our most reliable non-relativistic values for the re(CC) and

re(GeC) distances at the linear stationary point geometry are 1.287 Å and 1.769 Å,

respectively.

The L-Shaped (1A′) equilibrium geometry has a slightly longer C-C bond distance

than the T-Shaped and linear structures, by about 0.01 Å. On the other hand,

the L-Shaped Ge-C bond distance falls between that of the T-Shaped and linear

geometries. The effects of electron correlation on the L-Shaped geometry are similar

to those found for the T-Shaped structure. The primary difference is an increase in

the C-C bond distance. An important point is that the bond angle in the L-Shaped

geometry is very much dependent on both theoretical method and basis set. As

shown in Table 4.3, larger basis sets produce smaller bond angles. However, as we

include electron correlation no regular trend was observed. Although the CISD and

CCSD Ge-C-C angles are smaller than the SCF values, the CCSD(T) angles are

larger than both CISD and CCSD. This is not very surprising because, as will be

discussed later, the potential energy surface is extremely flat, and even 2-3 kcal/mol

of energy is enough to invert the Ge atom with respect to the C-C bond.

Nielsen et al.94 published a significant theoretical (ab initio) paper on SiC2 in

1997. Their predictions for the C-C bond distances in the T-Shaped, linear, and

L-Shaped structures are very similar to our predictions for GeC2. The Ge-C bond

distance is about 0.10 Å, 0.06 Å, and 0.10 Å longer than the analogous Si-C dis-

tances in the T-Shaped, linear, and L-Shaped geometries, respectively. Nielsen and

coworkers reported that they could not locate an L-Shaped stationary point at sev-

eral levels of theory. Here we find an L-Shaped GeC2 stationary point at every level

of theory. As is now well known, the true ground state geometry of SiC2 is T-Shaped,

and the experimental structural parameters95 are r0(CC) = 1.269 Å, r0(SiC) = 1.832

Å, while the C-Si-C bond angle is 40.4 degrees. The predicted geometrical parame-

ters for the T-Shaped GeC2 are re(CC) = 1.279 Å, re(GeC)=1.929 Å, and Θe(CGeC)
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= 38.7 degrees at the CCSD(T)/cc-pVQZ level of theory. However, as we will discuss

in the next section, unlike SiC2 the T-Shaped geometry of GeC2 is found to be a

transition state rather than the global minimum.

Harmonic Vibrational Frequencies

The T-Shaped geometry (1A1), which is the true global minimum for SiC2, is found

to be a stationary point having an imaginary harmonic vibrational frequency, for the

asymmetric stretching mode ω3(b2). As presented in Table 4.1, although the imagi-

nary value is getting smaller as correlation effects are included, our CCSD(T) GeC2

ω3(b2) predictions are still imaginary except with the cc-pVTZ and aug-cc-pVTZ

basis sets, for which real frequencies of 36 cm−1 and 38 cm−1 were obtained, respec-

tively. However, the cc-pVQZ CCSD(T) method yields an imaginary ω3(b2) of 38i

cm−1, and the core-valence correlation consistent basis set (cc-pwCVTZ) produced

an imaginary frequency of 105i cm−1. Interestingly, as discussed later, relativistic

corrections turn the real ω3(b2) values for the cc-pVTZ and aug-cc-pVTZ basis sets

into imaginary values. Therefore, considering that almost all non-relativistic levels

(except the two as just mentioned), the core-valence correlated correlation consistent

basis set at the CCSD(T) level, and all relativistic computations produce imaginary

values for the asymmetric stretching ω3(b2) mode, the T-Shaped GeC2 is predicted

to be a transition state between the two L-Shaped geometries. Although our theo-

retical results support this conclusion, we realize that new experiments are necessary

in this respect, because the system is elusive and the surface is extraordinarily flat.

The C-C ω1(a1) stretching vibrational frequency of the T-Shaped structure

decreases with more sophisticated treatments of correlation effects, whereas the

Ge-C stretching ω2(a1) frequency is mainly dependent on the basis set choice,

similar to the Ge-C bond length. At the highest non-relativistic level of theory,
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CCSD(T)/cc-pVQZ, T-Shaped frequencies of 1750 cm−1, 649 cm−1, and 38i cm−1

are predicted for the ω1(a1), ω2(a1), and ω3(b2) modes, respectively.

The linear structure has an imaginary harmonic vibrational frequency for the

degenerate bending mode ω2(π). This imaginary frequency, as well as the C-C

stretching frequency ω1(σ), decreases as we improve the level of theory. The linear

Ge-C stretching harmonic vibrational frequency ω3(σ) is slightly higher at the SCF,

CISD, and CCSD levels than the values for the corresponding mode of the T-Shaped

ω2(a1), whereas at the CCSD(T) level ω3(σ) is slightly lower than ω2(a1). Although

some ab initio and DFT methods94,96 give a spurious real vibrational frequency for

the bending mode of SiC2 in the linear structure, it has been concluded both from

experiment and theory90–92,94 that the linear geometry of SiC2 is a transition state to

the cyclic T-Shaped structure. In contrast, we have obtained imaginary frequencies

for the bending ω2(π) mode of GeC2 at all levels of theory (Table 4.2). Therefore,

the linear geometry of GeC2 is a transition state. However, as mentioned above,

this transition state cannot connect two T-Shaped structures because the T-Shaped

geometry is also predicted to be a transition state. Consequently, the linear geom-

etry of GeC2 should be a transition state between the two equivalent L-Shaped

geometries.

The L-Shaped geometry was successfully optimized at every level of theory, and

real values are obtained for all harmonic vibrational frequencies, as may be observed

in Table 4.3. All three vibrational frequencies decrease with higher level treatments

of electron correlation, with the exception that the CCSD(T) values for the Ge-

C stretching mode (ω2) and Ge-C-C bending mode (ω3) are slightly higher than

those predicted by CCSD. At the highest non-relativistic level, CCSD(T)/cc-pVQZ,

frequencies of 1713, 809, and 96 cm−1 are predicted for the C-C stretching (ω1), Ge-C

stretching (ω2), and Ge-C-C bending (ω3) modes, respectively. Because we did not

encounter any imaginary vibrational frequencies, and found this L-Shaped geometry
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to lie energetically lowest, the L-shaped geometry is predicted to be the ground

state equilibrium geometry. As will be discussed later, the inclusion of core-valence

correlation and relativistic corrections supports this conclusion.

Dipole Moments

Some predicted dipole moments are presented in Tables 4.1-4.3. For all three geome-

tries, the molecule has a significant dipole moment. At the CISD/cc-pVTZ level of

theory, values of 3.28, 5.12, and 3.80 debye are predicted for the T-Shaped, linear,

and L-Shaped geometries, respectively. At the T-Shaped geometry, the Ge atom

has a positive Mulliken charge of 0.50, and each C atom has a negative charge of

-0.25. For the linear geometry, the Ge atom has a positive Mulliken charge of 0.46

and the adjacent C atom has a negative charge of -0.45. The second C atom in the

linear geometry is essentially neutral in this oversimplified picture. At the L-Shaped

geometry, the Ge atom again is predicted to have a positive charge of 0.34, the

neighboring C atom has a negative charge of -0.20, and the other C atom has the

remaining negative charge of -0.14. These Mulliken atomic population were predicted

at the CISD/cc-pVTZ level of theory.

Energetics

At all non-relativistic levels of theory, the L-Shaped geometry is found to be lower in

energy than the T-Shaped and linear structures. This supports our earlier conclusion

from the vibrational analysis that the L-Shaped structure is the global minimum

for the ground state of GeC2. The relative energies of the T-Shaped and linear

geometries with respect to the L-Shaped structure are plotted in Figure 4.2. The

relative energy of the T-Shaped geometry decreases as we increase the level of theory.

At the CCSD(T)/cc-pVQZ level, the T-L energy difference is only 0.11 kcal/mol.



92

Figure 4.2: The relative energies of the T-shaped (1A1) and linear (1Σ+) geometries
with respect to the L-shaped (1A

′

) geometry.
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It is necessary to include the zero-point vibrational energy (ZPVE) correction

to obtain a quantum mechanical energy separation. However, due to the extremely

flat and sensitive potential energy surface of the GeC2 system, the ZPVE correc-

tions should be evaluated cautiously. According to the study by Grev, Janssen, and

Schaefer,97 the ZPVE estimated from SCF harmonic vibrational frequencies is usu-

ally overestimated by few tenths of a kcal/mol. Thus, they recommended a scaling

factor of 0.91 for determinations of ZPVEs. With the CCSD(T) method, a scaling

factor of 0.95 would be a reasonable estimate to obtain the ZPVE correction from

CCSD(T) harmonic vibrational frequencies. At the CCSD(T)/cc-pVQZ level, the

T-shaped isomer is predicted to be a transition state, the ZPVE correction for the

T-L energy difference being -0.31 (-0.30) kcal/mol. However, the T-Shaped isomer is

predicted to be a minimum at the CCSD(T)/cc-pVTZ and CCSD(T)/aug-cc-pVTZ

levels. The ZPVE corrections for the T-L energy difference at these two levels are

-0.26 (-0.24) kcal/mol and -0.25 (-0.23) kcal/mol, respectively. The above ZPVE

corrections in parentheses are the scaled values. Since the T-Shaped structure is a

reasonable candidate for the global minimum, it should be treated as if it were a min-

imum. Thus, employing the scaled ZPVE correction of -0.23 kcal/mol and classical

relative energy of 0.11 kcal/mol at the CCSD(T)/cc-pVQZ level, the non-relativistic

quantum mechanical T-L energy separation becomes -0.12 kcal/mol.

An energy difference this small suggests the need for highly precise experimental

work or more advanced theoretical methods (perhaps some kind of extrapolation

technique to the full CI limit). The basis set convergence at the CISD, CCSD, and

CCSD(T) levels does not absolutely guarantee our assignment of the L-Shaped geom-

etry to the equilibrium geometry (see Figure 4.2). However, the basis set convergence

appears satisfactory, and the convergence seems to be approached near the cc-pVQZ

basis set. The cc-pVQZ T-L energy differences are very slightly greater than the

cc-pVTZ results at the correlated levels [by 0.038 kcal/mol higher with CISD, 0.039
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kcal/mol with CCSD, and 0.031 kcal/mol with CCSD(T)]. This observation may

suggest that larger basis sets will not significantly lower the relative energy. As a

result, although all of our non-relativistic and relativistic (see below) calculations

put the T-Shaped geometry above the L-Shaped structure, we are concerned that a

definitive conclusion about the energetics of these two geometries is difficult due to

the extremely flat nature of the ground state potential energy surface.

The energy relative to the global minimum is more evident for the linear struc-

ture. As displayed in Figure 4.2, the SCF method puts the linear geometry about 3

kcal/mol, CISD and CCSD about 4 kcal/mol, and CCSD(T) 2.5-3.0 kcal/mol above

the L-Shaped structure. At the CCSD(T) level, except for one basis set, TZ3P(2f),

the other seven basis sets produced values between 2.5 and 3.0 kcal/mol for the

relative energy of the linear geometry. The best non-relativistic classical energy sep-

aration is predicted to be 2.78 kcal/mol at the CCSD(T)/cc-pVQZ level and the

quantum mechanical energy difference (with the scaled ZPVE correction) to be 2.64

kcal/mol. Therefore, the linear structure is certainly not the true global minimum.

4.5.2 Effects of Core-Valence Correlations

As described in the theoretical section, the cc-pwCVTZ basis set documented here

for Ge was used at the CCSD(T) level to consider core-valence electron correlation

effects. The results for this level of theory, CCSD(T)/cc-pwCVTZ, are included in

Tables 4.1-4.3. The predictions with this basis set should be compared with those for

the cc-pVTZ basis set in order to deduce the differential effects of Ge core-valence

correlations. This is because the only difference between the two basis sets is the

usage of core-valence correlated version of the normal cc-pVTZ basis sets for the Ge

atom (see above theoretical procedures for more information).

The most obvious effect of the inclusion of Ge core-valence correlation was seen

to be on the asymmetric stretching mode ω3(b2) of the T-Shaped geometry and on
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the bending harmonic vibrational frequencies of the linear and L-Shaped geometries.

This is expected because movement of the Ge atom in the molecular plane requires

very little energy, and all these harmonic vibrations are associated with the motion

of the Ge atom. As noted above, the CCSD(T)/cc-pVTZ level of theory predicts a

real harmonic vibrational frequency of 36 cm−1 for the asymmetric stretching mode

ω3(b2) of the T-Shaped geometry, although most other methods predict imaginary

values. As seen in Table 4.1, inclusion of the core-valence correlation replaces the real

frequency with an imaginary value of 105i cm−1. This is quite important because

this core-valence correlation effect very much supports our earlier finding that the

T-Shaped geometry of GeC2 is a transition state. The situation is similar in the

linear case. As presented in Table 4.2, our result for the bending harmonic vibration

ω2(π) with the normal cc-pVTZ basis set [at the CCSD(T) level] is 60i cm−1 and

inclusion of core-valence correlation produces a larger imaginary value of 79i cm−1.

This confirms our earlier prediction that the linear geometry is a transition state.

The inverse effect is seen for the L-Shaped geometry (see Table 4.3). The Ge-C-C

bending harmonic vibrational frequency (ω3) becomes more real, 116 cm−1 (the cc-

pVTZ prediction is 86 cm−1). In other words, the core-valence correlation effects

associated with the Ge atom in the L-Shaped geometry decrease the likelihood that

the L-Shaped structure is a transition state.

The effects of core-valence correlation on the energetics of the GeC2 system are

also important. The relative energy of the T-Shaped geometry with the cc-pwCVTZ

basis set is 0.41 kcal/mol, and it is larger by 0.33 kcal/mol relative to that (0.078

kcal/mol) with the cc-pVTZ basis set. This stabilization of the L-Shaped geometry

with respect to the T-Shaped structure also suggests the L-Shaped to be the favored

choice for the ground state geometry. On the other had, the energy difference between

the linear and L-Shaped geometries is 2.98 kcal/mol with the cc-pwCTZ basis set

and 2.64 kcal/mol with the cc-pVTZ basis set. Therefore, the relative energy of the
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linear structure increases with the inclusion of core-valence correction as well, by a

similar amount of 0.34 kcal/mol with respect to the L-Shaped geometry.

4.5.3 Effects of Relativistic Corrections.

The relativistic optimizations are computationally demanding. They require nine

single point and nine numerical first derivative CCSD(T) calculations for the T-

Shaped and linear geometries, and 13 single points and 13 numerical first derivative

CCSD(T) calculations for the L-Shaped geometry just for one optimization cycle.

Therefore, we focused more attention on the T-Shaped geometry. This is also because

the non-relativistic results for the L-Shaped and linear geometries are definitive,

whereas those for the L-Shaped and T-Shaped geometries are not. As discussed ear-

lier, the T-L energy difference is small, and two of our non-relativistic levels of theory

gave real frequencies for the asymmetric stretching vibration ω3(b2) of the T-Shaped

geometry (see Table 4.1). Therefore, we carried out relativistic optimizations and

frequency evaluations for the T-Shaped geometry with four different basis sets at

the CCSD(T) level. For the linear geometry we employed three different basis sets,

whereas only one basis set was used for the L-Shaped geometry, due to the high com-

putational cost [a total of 52 single point and 52 numerical first derivative CCSD(T)

calculations in Cs symmetry were performed for the relativistic optimization of the

L-Shaped geometry with one basis set]. We present the effects of relativistic correc-

tions in Table 4.4 for the T-Shaped, in Table 4.5 for the linear, and in Table 4.6 for

the L-Shaped geometries. The effects of relativity on the geometries are somewhat

different among the three structures. The Ge-C bond shortens by ∼ 0.003 Å in the

T-Shaped geometry, by ∼ 0.005 Å in the linear case, and by ∼ 0.013 Å in the L-

Shaped geometry. The C-C bond distance decreases very slightly for the T-Shaped

and linear geometries, whereas it elongates by ∼ 0.001 Å for the L-Shaped geometry.
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Table 4.4: The effects of relativistic corrections, namely mass-velocity and one elec-
tron Darwin terms, on the geometry, energetics, and harmonic vibrational frequen-
cies of the T-Shaped geometry (1A1 symmetry).

Non-Relativistic Relativistic ∆

—–CCSD(T)/cc-pVTZ—–
Total Energy -2151.495462 -2172.748839 -21.253377
re(CC) 1.2842 1.2841 -0.0001
re(GeC) 1.9375 1.9341 -0.0034
Θ 38.70 38.78 +0.08
ω1(a1) 1735.1 1734.4 -0.7
ω2(a1) 652.2 649.3 -2.9
ω3(b2) 35.5 75.7i 35.5→75.7i

—–CCSD(T)/aug-cc-pVTZ—–
Total Energy -2151.506748 -2172.760546 -21.253798
re(CC) 1.2834 1.2833 -0.0001
re(GeC) 1.9371 1.9335 -0.0036
Θ 38.69 38.76 +0.07
ω1(a1) 1739.0 1736.1 -2.9
ω2(a1) 648.9 646.3 -2.6
ω3(b2) 37.8 82.4i 37.8→82.4i

—–CCSD(T)/cc-pVQZ—–
Total Energy -2151.579612 -2172.834445 -21.254833
re(CC) 1.2789 1.2790 -0.0001
re(GeC) 1.9291 1.9261 -0.0030
Θ 38.72 38.78 +0.06
ω1(a1) 1750.1 1747.8 -2.3
ω2(a1) 648.7 647.7 -1.0
ω3(b2) 38.0i 74.7i 38.0i→74.7i

—–CCSD(T)/cc-pwCVTZ—–
Total Energy -2151.843234 -2173.098334 -21.255100
re(CC) 1.2842 1.2841 -0.0001
re(GeC) 1.9363 1.9336 -0.0027
Θ 38.73 38.79 +0.06
ω1(a1) 1737.5 1734.1 -3.4
ω2(a1) 644.3 640.4 -3.9
ω3(b2) 105.0i 131.1i 105.0i→131.1i
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The relativistic effects on the L-Shaped geometry are considerably larger than those

for the other two structures.

For the T-Shaped geometry, the asymmetric stretching vibrational frequency

ω3(b2) becomes more imaginary when relativity is considered. The two real frequen-

cies, 36 cm−1 and 38 cm−1 obtained at the CCSD(T)/cc-pVTZ and CCSD(T)/aug-

cc-pVTZ levels, shifted to imaginary values of 76i cm−1 and 82i cm−1, respectively,

as presented in Table 4.4. At the highest level of theory, CCSD(T)/cc-pVQZ, the

imaginary value of 38i cm−1 becomes 75i cm−1 for the same mode. This shift is in

the same direction as the effects of core-valence correlation (see the previous sec-

tion). Therefore, depending on the relativistic and core-valence correlated results,

we can say that both of these corrections tend to move the Ge atom in the T-Shaped

geometry toward the L-Shaped geometry. This interesting effect of relativity may

be attributed to the fact that the valence electrons, which mainly contribute to the

chemical bonding, also display direct relativistic effects due to their core-penetrating

natures as well as indirect relativistic effects. The main relativistic effects for the

linear structure are observed for the bending harmonic vibrational frequency ω2(π),

as shown in Table 4.5. The CCSD(T)/cc-pVTZ basis set produces a lower imag-

inary frequency, whereas the CCSD(T)/cc-pwCVTZ generates a higher imaginary

value compared to the corresponding non-relativistic imaginary bending ω2(π) fre-

quencies. The CCSD(T)/cc-pVQZ basis set shifts the small imaginary value of 12i

cm−1 to a real value of 34 cm−1 when relativity is included. This shift should not

be taken too seriously because the relativistic CCSD(T)/cc-pwCVTZ level, which

has core-valence correlation, presents a larger imaginary bending frequency, as men-

tioned above. For the L-Shaped structure, the GeC stretching (ω2) and Ge-C-C

bending (ω3) frequencies increase by 15 cm−1 and 21 cm−1, respectively, upon the

inclusion of the relativity. The relativistic effects on the energetics of the system

are significant. The relative energy of the T-Shaped geometry increases by 0.27
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Table 4.5: The effects of relativistic corrections, namely mass-velocity and one elec-
tron Darwin terms, on the geometry, energetics, and harmonic vibrational frequen-
cies of the linear geometry (1Σ+ symmetry).

Non-Relativistic Relativistic ∆

—–CCSD(T)/cc-pVTZ—–
Total Energy -2151.491380 -2172.745452 -21.254072
re(CC) 1.2916 1.2914 -0.0002
re(GeC) 1.7780 1.7723 -0.0057
ω1(σ) 1864.1 1863.0 -1.1
ω2(π) 60.4i 52.7i 60.4i→52.7i
ω3(σ) 635.8 634.2 -1.6

—–CCSD(T)/cc-pVQZ—–
Total Energy -2151.575353 -2172.830886 -21.255533
re(CC) 1.2866 1.2864 -0.0002
re(GeC) 1.7692 1.7643 -0.0049
ω1(σ) 1873.3 1872.9 -0.4
ω2(π) 11.8i 34.3 11.8i→34.3
ω3(σ) 643.4 642.7 -0.7

—–CCSD(T)/cc-pwCVTZ—–
Total Energy -2151.839143 -2173.094758 -21.255627
re(CC) 1.2925 1.2923 -0.0002
re(GeC) 1.7749 1.7703 -0.0046
ω1(σ) 1856.9 1854.8 -2.1
ω2(π) 79.2i 88.4i 79.2i→88.4i
ω3(σ) 632.6 630.2 -2.4

Table 4.6: The effects of relativistic corrections, namely mass-velocity and one elec-
tron Darwin terms, on the geometry, energetics, and harmonic vibrational frequen-
cies of the L-Shaped geometry (1A′ symmetry).

Non-Relativistic Relativistic ∆

—–CCSD(T)/cc-pVTZ—–
Total Energy -2151.495586 -2172.749386 -21.253800
re(CC) 1.2927 1.2937 +0.0010
re(GeC) 1.8087 1.7960 -0.0127
Θ 92.28 96.38 +4.1
ω1 1703.0 1705.9 +2.9
ω2 812.7 827.4 +14.7
ω3 86.1 106.7 +20.6
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kcal/mol at the CCSD(T)/cc-pVTZ, 0.23 kcal/mol at the CCSD(T)/cc-pVQZ, and

0.27 kcal/mol at the CCSD(T)/cc-pwCVTZ levels of theory. These energy shifts are

important because the non-relativistic energy T-L differences at the CCSD(T) levels

are very close to zero (see Figure 4.2). Unlike the T-Shaped geometry the linear

geometry is stabilized with respect to the L-Shaped structure, by 0.17 kcal/mol,

0.21 kcal/mol, and 0.07 kcal/mol, at the CCSD(T)/cc-pVTZ, CCSD(T)/cc-pVQZ,

and CCSD(T)/cc-pwCVTZ levels, respectively. These relativistic effects on the ener-

getics of the system are plotted in Figure 4.3.

In Section I-d. the non-relativistic classical and ZPVE-corrected T-L energy

separations at the CCSD(T)/cc-pCVQZ level of theory were determined to be 0.11

kcal/mol and -0.12 kcal/mol, respectively. Assuming the additivity of core-valence

correlation effects of +0.33 kcal/mol in Section II and relativistic effects of +0.23

kcal/mol, the relativistic quantum mechanical T-L energy difference is predicted to

be +0.44 kcal/mol. On the other hand, the non-relativistic classical and quantum

mechanical energy separations between the linear and L-Shaped structures at the

CCSD(T)/cc-pCVQZ level of theory were found to be 2.78 kcal/mol and 2.64

kcal/mol, respectively. Including core-valence correlation effects of +0.34 kcal/mol

and relativistic effects of -0.21 kcal/mol, the relativistic quantum mechanical energy

difference between the linear and L-Shaped structures is predicted to be +2.77

kcal/mol. The final predicted shape of the ground state potential energy surface at

the relativistic CCSD(T)/cc-pVQZ level of theory is depicted in Figure 4.4.

4.6 Concluding Remarks

The ground state potential energy surface of the experimentally observed GeC2

molecule reflects the same kind of elusive structure as that of the much discussed

SiC2. Although the T-Shaped and L-Shaped geometries are very close in energy, and
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Figure 4.3: The effects of relativistic corrections on the relative energies of the T-
shaped (1A1) and linear (1Σ+) geometries with respect to the L-shaped (1A

′

) geom-
etry.
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Figure 4.4: The proposed potential energy surface for the ground state of GeC2 at the
CCSD(T)/cc-pVQZ level with the inclusion of zero-point vibrational energy, scalar
relativistic, and core-valence corrections.
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a conclusive result is difficult to reach due to the very flat nature of the potential

energy surface, the L-Shaped structure is predicted to be the global minimum. The

scalar relativistic corrections (mass-velocity and one-electron Darwin terms) and

core-valence corrections are found to stabilize the L-Shaped geometry over the T-

Shaped structure. All of our non-relativistic and relativistic computations predict the

L-Shaped structure to be lower in energy than the T-Shaped geometry, which is the

equilibrium geometry for SiC2. The linear structure is predicted to be a transition

state, as is the case with SiC2. However, this transition state connects the two

L-Shaped geometries, not the two T-Shaped structures. The predicted shape of the

ground state potential energy surface is given in Figure 4.4. Finally, it is important to

note that new experimental work will be necessary to come to definitive conclusions.



Chapter 5

Mono- and Di-bridged Isomers of Si2H3 and Si2H4: the True Ground

State Global Minima. Theory and Experiment in Concert.

104
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5.1 Abstract

Highly correlated ab initio coupled-cluster theories (e.g. CCSD(T), CCSDT) were

applied on the ground electronic states of Si2H3 and Si2H4, with substantive basis

sets. A total of ten isomers, which include mono- and di-bridged structures, were

investigated. Scalar relativistic corrections and zero-point vibrational energy correc-

tions were included to predict reliable energetics. For Si2H3, we predict an unan-

ticipated monobridged H2Si-H-Si like structure (Cs,
2A

′′

) to be the lowest energy

isomer, in constrast to previous studies which concluded that either H3Si-Si (Cs,

2A
′′

) or near-planar H2Si-SiH (C1,
2A) is the global minimum. Our results confirm

that the disilene isomer, H2Si-SiH2 is the lowest energy isomer for Si2H4, and that

it has a trans-bent structure (C2h,
1Ag). In addition to the much studied silylsily-

lene, H3Si-SiH, we also find that a new monobridged isomer H2Si-H-SiH (C1,
1A,

designated 2c) is a minimum on the potential energy surface and that it has com-

parable stability; both isomers are predicted to lie about 7 kcal/mol above disilene.

By means of Fourier transform microwave spectroscopy of a supersonic molecular

beam, the rotational spectrum of this novel Si2H4 isomer has recently been measured

in the laboratory, as has that of the planar H2Si-SiH radical. Harmonic vibrational

frequencies as well as infrared intensities of all ten isomers were determined at the

cc-pVTZ CCSD(T) level.

5.2 Introduction

Small silicon hydrides are of interest because of their potential applications in semi-

conductors and optoelectronics, in surface growth processes, and their possible exis-

tence in the circumstellar atmospheres of evolved carbon stars.75,98–105 They play

key roles in the plasma-enhanced chemical vapor deposition of thin-films and nano-

materials, which is an important but a poorly understood process.99,103,106,107 Unsat-
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urated silicon hydrides such as SiH, SiH2, and Si2H2 have been the subject of

numerous experimental investigations because silicon molecules are readily observed

in space: nearly 10 % of the presently identified astronomical molecules are silicon

bearing, and the silicon is central to the photochemistry of the carbon rich star

IRC+10216.

The ability of silicon to form mono- and di-bridged hydrides and existence of Si-Si

multiple bonds make the silicon hydrides very attractive systems for both experi-

mental and theoretical study. This is especially true for unsaturated silicon hydrides,

where determination of the ground state geometries and relative energies of the dif-

ferent isomers are quite challenging because the potential energy surfaces are often

flat and because of the existence of many possible isomeric arrangements. There-

fore, predictions of the equilibrium geometries requires careful, advanced quantum

mechanical investigations. Among Si2Hn family, the Si2H has been found to be mono-

bridged and Si2H2 to be di-bridged in their ground states on the basis of many

theoretical and experimental studies.102,108–116 These somewhat surprising findings

added a new dimension to the silicon chemistry, which had been widely assumed to

be similar to that of carbon.94,112,113,115,116

The equilibrium geometries for Si2H3 and Si2H4 are still not fully determined. In

1991, Sax and Kalcher117 reported a study of many silicon hydrides including Si2H3

and Si2H4. They used the MRCI technique with double and triple-ζ quality basis sets,

and investigated H3Si-Si (2A
′′

) and the near-planar H2Si-SiH like isomers of the Si2H3

molecule. They found H3Si-Si (2A
′′

) to be 1.1 kcal/mol more stable than the near-

planar H2Si-SiH. In 1991, Curtiss, Raghavachari, Deutsch, and Pople118 reported

that the lowest energy structure for the Si2H3 molecule is the H3Si-Si (2A
′′

) isomer,

with near-planar H2Si-SiH lying 1.3 kcal/mol higher in energy. They also reported

that all bridged structures were found to be significantly higher in energy. In 1997,

Gong, Guenzburger, and Saitovitch107 studied six different isomers of Si2H3: silylsi-
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lylidyne H3Si-Si (Cs); the near-planar H2Si-SiH (C1); two mono-bridged isomers,

HSi-H-SiH (C2) and H2Si-H-Si (Cs); a di-bridged; and a tri-bridged isomer. They

concluded that the lowest energy structure is the mono-bridged structure (HSi-H-

SiH, C2), while the other mono-bridged structure (H2Si-H-Si, Cs) is only 0.9 kcal/mol

(0.04 eV) higher in energy. They also reported that the H3Si-Si (Cs) like structure,

which was predicted to be the lowest energy isomer by both Kalcher117 and Pople118,

is 9.0 kcal/mol (0.39 eV) higher in energy. The tri-bridged isomer was found to be

significantly higher in energy (0.64 eV). In 2001, Pak, Rienstra-Kiracofe, and one of

us104 studied the H3Si-Si (Cs), the near-planar H2Si-SiH (C1), and the mono-bridged

(HSi-H-SiH, C2) isomers at the DFT level (B3LYP/DZP+). They reported that the

H3Si-Si (Cs) isomer and the near-planar H2Si-SiH (C1) isomer are isoenergetics,

and that the employed level of theory (B3LYP/DZP+) was not adequate to decide

which is more stable (only 0.02 kcal/mol energy difference was found between two

structures). The mono-bridged (HSi-H-SiH, C2) isomer, which was predicted to be

the ground state geometry by Saitovitch et al.107, was predicted to be 4.1 kcal/mol

higher in energy.

The shape of the minimum energy structure of the Si2H4 molecule has been

studied for almost twenty years. When isolated and characterized in 1981, by Michl,

West and co-workers119, the first disilene (Si2R4) was thought to be planar, like ethy-

lene. The ab initio studies have focused primarily on the two isomers of Si2H4, disi-

lene (H2Si-SiH2) and silylsilylene (H3Si-SiH). Although all of the theoretical studies

found that disilene (H2Si-SiH2) is the lowest energy isomer, they predict signifi-

cantly different structures. In 1986, Olbrich120 carried out SCF/TZP calculations

and collected the previous estimates about the minimum energy structure of dis-

ilene (H2Si-SiH2). According to Table 1 of his paper, six of the eleven previous

theoretical studies found disilene (H2Si-SiH2) to be planar, like ethylene, and five of

them found it to be trans-bent structure. His SCF/TZP calculations predicted the
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trans-bent structure to be of minimum energy. Recent theoretical predictions are

still not entirely in agreement whether the disilene (H2Si-SiH2) is planar or trans-

bent. In 1990, Trinquier121 favored the planar form, in 1991 Pople and co-workers

118 predicted the trans-bent structure, and in 2000, the DFT calculations of Pak

et. al.104 yielded a near-planar trans-bent structure. Very recent (in 2002) infrared

spectra taken by Andrews and Wang122 suggested a trans-bent structure for the dis-

ilene. Predictions for the relative energy of the silylsilylene (H3Si-SiH) isomer vary

between 5 kcal/mol and 10 kcal/mol.104,110,118,123–126 No bridged isomer of Si2H4 to

our knowledge has previously been studied.

The present theoretical studies were motivated in part by recent laboratory mea-

surements of the rotational spectra of two new silicon hydrides, detected by means of

Fourier transform microwave (FTM) spectroscopy of a supersonic molecular beam:

planar or nearly planar Si2H3 and an isomer of Si2H4 with experimental rotational

constants that do not agree with those predicted for disilene or silylsilylene. Because

of the somewhat contradictory theoretical predictions as to the true ground state

equilibrium structures and the apparent lack of ab initio studies which fully explored

the stability of bridge structures, we investigated Si2H3 and Si2H4 using highly cor-

related coupled-cluster theories [i.e. singles and doubles with a perturbative triples

[CCSD(T)], and singles, doubles, and full triples (CCSDT)]. To our knowledge, this

is the first time coupled-cluster theory has been used to study the ground electronic

states of these two silicon hydrides. Scalar relativistic corrections were also included

to determine accurate relative energies. A total of five isomers of Si2H3 and five

isomers of Si2H4 were found to be stable. We conclude on the basis of the close

agreement of the theoretical and experimental rotational constants that the new

silicon hydride that has been detected in the laboratory is monobridged Si2H4, a

low-lying isomer which is calculated to be quite polar (µ = 1.14 D) and to lie only

about 7 kcal/mol above disilene.
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5.3 Theoretical Methods

The zeroth order descriptions of all isomers were obtained using single configura-

tion SCF (restricted open-shell Hartree-Fock for Si2H3, and restricted closed-shell

Hartree-Fock for Si2H4) wave functions. Correlation effects were included using

coupled cluster with single and double excitations with perturbative triple exci-

tations [CCSD(T)].61 Correlation consistent polarized valence double-ζ (cc-pVDZ)

and triple-ζ (cc-pVTZ) basis sets73 were used for both hydrogen and silicon atoms.

The coupled cluster with single, double and full triple excitations (CCSDT),

and the newly developed CCSD(2) theory127 which has new class of correction

that involves perturbatively expanding the similarity-transformed Hamiltonian from

coupled-cluster gradient theory have also been employed for single point energy cal-

culations. The CCSDT calculations are not feasible with the cc-pVTZ basis set due to

the extremely high computational costs (a single point CCSDT/cc-pVTZ calculation

for Si2H3 would take around 20 days on a 2.4 GHz pentium-4 machine). Therefore,

the cc-pVDZ basis set was used for CCSDT calculations, whereas the larger cc-pVTZ

basis set was used for CCSD(2) calculations. The effects of full triple coupled cluster

excitations on relative energies were determined from the differences between the

cc-pVDZ CCSDT and cc-pVDZ CCSD(T) results, and these effects were included

on top of the cc-pVTZ CCSD(T) values to estimate the cc-pVTZ CCSDT results.

For the determination of the relativistic energy corrections, the one-electron

Darwin term, which is always positive, and the mass-velocity term, which is always

negative, were evaluated using first-order perturbation theory.23,24 The Darwin term

corrects the Coulomb attraction and the mass-velocity term corrects the kinetic

energy of the system. This simple relativistic treatment gives satisfactory results for

silicon compounds (and all atoms up to Z=40) compared to methods such as Dirac-
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Hartree-Fock (DHF) and the use of relativistic effective core potentials (RECP).

26,76

The geometries of the all isomers were optimized via analytic derivative methods

62,63 at the SCF and CCSD(T) levels. Harmonic vibrational frequencies were deter-

mined by means of finite differences of analytic gradients. Cartesian forces at opti-

mized geometries were required to be less than 10−6 hartree/bohr in all geometry

optimizations. Throughout our study, all computations were carried out using the

ACES II package,65 except for the CCSD(2) calculations which were performed using

the Q-Chem package.128 IBM RS/6000 workstations, an IBM SP2, and PC machines

were used.

5.4 Results and Discussion

The optimized equilibrium geometries at the cc-pVTZ CCSD(T) level of theory are

presented in Figure 5.1, 5.2, and 5.3 for isomers of Si2H3, and in Figure 5.5, 5.6, and

5.7 for isomers of Si2H4. The determined rotational constants for each isomer are also

given in the figures. Figure 5.9 shows the structure of the transition state between two

equivalent mono-bridged isomers of Si2H4. Experimentally obtained rotational spec-

trum of planar Si2H3 isomer is given in figure 5.4, and that of mono-bridged isomer

of Si2H4 is shown in figure 5.8. The predicted dipole moments, harmonic vibra-

tional frequencies, infrared intensities, and zero point vibrational energies (ZPVE)

are presented in Table 5.1 for Si2H3, and in Table 5.5 for Si2H4. Tables 5.2, 5.3,

and 5.4 report the relative energies of the different isomers of Si2H3, and Tables

5.6, 5.7, and 5.8 give the corresponding energies for the isomers of Si2H4. Tables 5.9

and 5.10 show the experimental and theoretical rotational constants of the planar

H2Si-SiH (structure 1a) and the mono-bridged H2Si-H-SiH (structure 2c) isomers,

respectively.



111

5.4.1 Structures

Si2H3

We have located five distinct minima on the doublet ground electronic state of Si2H3.

The corresponding structure for each minimum is presented in Figure 5.1, 5.2, and

5.3.

The much studied planar form (structure 1a, Cs,
2A

′′

) and the H3Si-Si isomer

(structure 1b, Cs,
2A

′′

) were correctly located as well as three different mono-bridged

structures; the H2Si-H-Si like isomer (Structure 1c, Cs,
2A

′′

), trans-like H-Si-H-Si-H

mono-bridged isomer (structure 1d, C2,
2A), and cis-like H-Si-H-Si-H mono-bridged

isomer (structure 1e, C1,
2A). The shortest Si-Si bond distance was found to be in

the H2Si-H-Si like mono-bridged isomer (structure 1c), which is 2.244 Å. The longest

Si-Si bond length was found to be 2.379 Å, corresponding to the Si-Si distance of

the H3Si-Si like isomer (structure 1b).

The geometrical parameters of the planar (structure 1a) and the H3Si-Si like

isomer (structure 1b) are very consistent with previous theoretical predictions,

104,111,118 except that all the previous studies found a near-planar (or quasi-planar)

form for the H2Si-SiH isomer. We did optimizations in both C1 and Cs symmetry,

and both of them gave the same perfectly planer structure with exactly the same

energy. However, the geometrical parameters are very consistent with what were

given for near-planar form. Two of the three mono-bridged isomers that we found,

the H2Si-H-Si like isomer (Structure 1c) and trans-like H-Si-H-Si-H mono-bridged

isomer (structure 1d) were also predicted by Gong et. al.107 However, although they

mentioned the relative energies, Gong did not report geometrical parameters. There-

fore, no literature data about these two mono-bridged isomers of Si2H3 have been

found to compare with our structures. In addition, a third mono-bridged isomer

(structure 1e) has been successfully optimized at all levels of theory employed here.
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Figure 5.1: The structures 1a and 1b.
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Figure 5.2: The structures 1c and 1d.
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Figure 5.3: The structure 1e.
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This newly predicted mono-bridged isomer (structure 1e) has no symmetry (C1),

and the distances of the bridged hydrogen to the two Si atoms are not equivalent.

The two non-bridged hydrogen atoms are slightly out of the plane that contains the

Si atoms (around 8 degrees and in the opposite directions). We have searched for a

possible di-bridged or a tri-bridged isomer of Si2H3, without success. The rotational

spectrum of planar Si2H3 (structure 1a) has recently been measured in the labora-

tory, as have those of its rare 29Si and 30Si isotopic species and Si2D3. As shown in

Fig. 5.4, owing to hyperfine structure from the three unequivalent hydrogen atoms

and electron spin-rotation, all of which are comparable in magnitude, each rota-

tional transition consists of many closely-spaced features. Conclusive evidence that

the carrier of the observed lines is planar H2SiSiH and no other molecule is provided

by the close agreement of B + C for the normal and isotopic species (Table 5.9).

A more complete account of the laboratory observations, including tabulations of

individual line frequencies and spectroscopic constants, will appear elsewhere. Labo-

ratory searches are now underway for the monobridged H2SiHSi whose fundamental

1 → 0 rotational transition is predicted to lie near 12.6 GHz.

Si2H4

The disilene (structure 2a, C2h,
1Ag) and the silylsilylene (structure 2b, Cs,

1A
′

)

have been extensively studied.104,110,111,118,120,129,130 In 1990, Trinquier121 carried out

DZP/CI calculations and found that two more di-bridged isomers, the trans di-

bridged (structure 2d, C2h,
1Ag) and cis di-bridged (structure 2e, C2v ,

1A1) should

be minima. To our knowledge, there has been no report of a mono-bridged form of

Si2H4. We have now located a mono-bridged isomer (structure 2c, C1,
1A) which is

very stable with respect to the other isomers [see the energetics section], and it is the

only structure which has no symmetry. The high computational cost of optimizations
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Figure 5.4: The 10,1 → 00,0 transition of planar Si2H3 showing the complex spec-
tral pattern which arises from spin-rotation of the unpaired electron and hyperfine
structure from the three inequivalent hydrogen atoms. The integration time was
approximately five hours.
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in C1 symmetry may be the reason it could not be located on the potential energy

surface in previous theoretical studies.

The geometrical parameters for the much-studied silylsilylene (structure 2b) are

in very good agreement with the literature values.104,110,111,118,120,129,130 For the dis-

ilene isomer (structure 2a), both planar and trans-bent structures were reported.

As explained in the introduction, Olbrich120 reported that six of the eleven previous

theoretical studies found disilene (H2Si-SiH2) to be planar, like ethylene, and five

of them found it to be trans-bent structure. Recently, the DFT calculations of Pak

et. al.104 found a near-planar structure. Very recently (in 2002) infrared spectra

taken by Andrews and Wang122 suggested a trans-bent structure for the disilene.

The reported deviations from the planarity predicted by previous theoretical studies

do not in agree with each other. Many different values within the range 0-40 degrees

were reported.104,110,111,118,120,129,130 Our best level of theory, cc-pVTZ CCSD(T),

gave a trans-bent disilene with a 18.9◦ deviation from the planarity. The predicted

shapes of the trans and cis di-bridged isomers reported by Trinquier121 are quite sim-

ilar to what we determined (structures 2d and 2e). The largest discrepancy between

our di-bridged structures and those given by Trinquier121 is seen to be in the angles

between the non-bridged hydrogens and the plane of two Si atoms. Angles of 89.1◦

and 94.2◦ were reported by Trinquier121 for trans and cis like isomers, respectively;

we determined the same angles to be 87.0◦ for structure 2d and 91.2◦ for stucture

2e. The reported Si-Si bond distances are in agreement with ours to within 0.01 Å

for both trans- and cis-like structures.

The experimental rotational constants of the new silicon hydride, plausibly an

isomer of Si2H4 on the basis of its rotational constants, are in extremely close agree-

ment with those predicted here for monobridged Si2H4 (structure 2c). As shown

in Table 5.10, rotational constants for the normal isotopic species are within 2% of

those predicted at the best level of theory, and this agreement alone makes it unlikely
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Figure 5.5: The structures 2a and 2b.
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Figure 5.6: The structures 2c and 2d.
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Figure 5.7: The structure 2e.
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that we have discovered some other molecule. By comparison B+C=12.25 GHz for

disilene (2a), 10.77 GHz for silylsilylene (2b), 12.21 GHz for the monobridged struc-

ture (2c), 10.19 GHz for the trans-like dibridged structure (2d), and 9.93 GHz for

cis-like dibridged structure (2e). On this basis, all but disilene and the monobridged

isomer can be eliminated from further consideration. Since disilene is nonpolar by

symmetry it too can be eliminated as a candidate, leaving only H2Si-H-SiH, which is

calculated to possess a dipole moment of 1.14 debye at the cc-pVTZ CCSD(T) level

of theory. Finally, conclusive evidence for the laboratory identification is provided

by the detection of the 29Si and 30Si isotopic species and D2SiDSiD at precisely the

expected isotopic shifts (see Table 5.10) for a molecule with this unusual mono-

bridged geometry. A detailed account of the Si2H4 laboratory measurements and

data analysis will appear separately.

There is evidence for inversion doubling in the rotational spectrum of mono-

bridged (2c) Si2H4, since each rotational line consists of a closely-spaced doublet of

equal intensity (Figure 5.8). The frequency separation between the two lines is so

small — typically several tens of kHz — that it is only resolved in the present exper-

iments because of the high spectral resolution of the FTM technique. This inversion

implies that the molecule is interconverting between two equivalent structures, the

magnitude of the splitting indicating that there is a fairly highbarrier to inversion

motion. To consider whether this explanation is correct, we searched for a possible

transition state (at the cc-pVDZ CCSD(T) level) that might lead to such motion. In

fact, we have located a transition state which is presented in figure 5.9. As given in

the figure, the structure has one imaginary harmonic vibrational frequency of 657i

cm−1 which corresponds to the replacement of the terminal hydrogen of the mono-

bridged isomer (structure 2c) with the bridged hydrogen, producing the equivalent

mono-bridged isomer. The barrier hight for this reaction is determined to be 10.9

kcal/mol at the cc-pVDZ CCSD(T) level. A single point computation at the cc-
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Figure 5.8: The 10,1 → 00,0 transition of monobridged H2Si-H-SiH showing the char-
acteristic doubling of each rotational line which arises from inversion. Each feature
possesses a double-peaked line shape owing to an instrumental artifact: the Doppler
splitting which results from the interaction of the supersonic axial molecular beam
with the standing wave of the confocal Fabry-Perot microwave cavity. The integra-
tion time was approximately 2 minutes.
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Figure 5.9: The structure of the transition state between two equivalent mono-
bridged isomers of Si2H4.
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Table 5.1: Dipole moments (debye), harmonic vibrational frequencies (cm−1), and
associated infrared intensities (km/mol, in parentheses) for the isomers of the Si2H3,
determined at the cc-pVTZ CCSD(T) level.

Structure µe ZPVE Harmonic vibrational frequencies
(symmetries, infrared intensities)

1a (H2Si-SiH, 2A
′′

) 1.04 13.97 319(a
′′

,2), 385(a
′′

,12), 414(a
′

,4),
470(a

′

,10), 709(a
′

,36), 976(a
′

,85),
2047(a

′

,157), 2214(a
′

,100), 2237(a
′

,106)

1b (H3Si-Si, 2A
′′

) 0.30 15.60 396(a
′′

,47), 416(a
′

,11), 486(a
′

,16),
898(a

′′

,291), 964(a
′

,48), 989(a
′′

,33),
2224(a

′

,105), 2266(a
′

,79), 2276(a
′′

,95)

1c (H2Si-H-Si, 2A
′′

) 1.07 14.53 409(a
′′

,7), 472(a
′

,2), 507(a
′

,26),
713(a

′′

,13), 955(a
′

,33), 1016(a
′

,382),
1664(a

′

,94), 2210(a
′

,143), 2221(a
′′

,101)

1d (H-Si-H-Si-H, 2A) 0.11 14.74 471(a,0), 623(b,108), 658(a,7),
731(a,0), 844(b,591), 1210(b,1049),
1532(a,70), 2109(a,2), 2129(b,331)

1e (H-Si-H-Si-H, 2A) 0.74 13.73 393(a,13), 423(a,5), 566(a,1),
643(a,47), 889(a,33), 1052(a,210),

1541(a,68), 2010(a,103), 2114(a,164)

pVTZ CCSD(T) level was carried out on the optimized transition state structure,

and an energy barrier of 10.0 kcal/mol were found.

5.4.2 Dipole Moments

Dipole moments were determined as first derivatives of the total energies with respect

to external electric fields. The cc-pVTZ CCSD(T) values for the dipole moments are

given in Table 5.1 for Si2H3 and in Table 5.5 for Si2H4 molecule. The Si2H3 predicted

dipole moments for the planar (structure 1a) and newly predicted mono-bridged
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(structure 1c) isomers are very close to each other (1.04 and 1.07 debyes respec-

tively). The trans-like mono-bridged isomer (structure 1d) has a very small dipole,

0.30 debye, whereas the cis-like mono-bridged isomer (structure 1e) has a relatively

larger dipole moment of 0.70 debye. The most polar isomer of the Si2H4 molecule is

the newly predicted mono-bridged isomer (structure 2c). It has a permanent dipole

moment of 1.14 debye which is close to that of mono-bridged isomer of Si2H3 (struc-

ture 1c). The Si2H4 disilene (structure 2a) and the trans dibridged (structure 2d)

isomers have no dipole moments by symmetry.

5.4.3 Harmonic Vibrational Frequencies

Although there are many theoretical studies of the structure and energetics of Si2H3

and Si2H4, there are only two literature studies that report the harmonic vibrational

frequencies. Both of these are for the Si2H4 molecule. Therefore, to best of our

knowledge, the present values for the harmonic vibrational frequencies as well as

infrared intensities of the isomers of Si2H3 are the first predictions. We present our

results in Table 5.1 for Si2H3. As seen in the table, all of the harmonic vibrational

frequencies (varying from 319 cm−1 to 2276 cm−1) are real, which confirms that

the optimized structures are true minima on the potential energy surface. For the

mono-bridged isomer of Si2H3 (structure 1c), predicted to be the lowest energy

isomer, an active mode with a infrared intensity of 382 km/mol is found. This mode

corresponds to the bending of two terminal hydrogens, along with the motion of

bridged hydrogen in the perpendicular plane. It has a
′

symmetry with a 1016 cm−1

harmonic vibrational frequency. This mode can be used to characterize our predicted

mono-bridged isomer if infrared spectrum of Si2H3 is obtained.

Trinquier121 predicted harmonic vibrational frequencies for three different iso-

mers of Si2H4; the disilene (structure 2a), the trans-like (structure 2d) and cis-like

di-bridged (structure 2e) isomers. However, he found a planar disilene at his level of
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computation (SCF/DZP). Therefore his results for disilene are quite different from

our predictions. His predictions concerning the di-bridged structures are generally

60-90 cm−1 larger than our results. This is expected because correlated levels usu-

ally produce smaller harmonic vibrational frequencies. Another study of Si2H4 was

reported by Andrews et. al.122 in 2002. They experimentally obtained an infrared

spectrum and also carried out B3LYP/6-31++G(d,p) calculations. They resolved

a 858.5 cm−1 SiH2 bending mode and a 2154.0 cm−1 Si-H stretching mode from

their spectrum. Based on their B3LYP/6-31++G(d,p) predictions, they concluded

that the observed peaks are associated with a trans-bent disilene. Their B3LYP/6-

31++G(d,p) results showed three harmonic vibrational frequencies with large inten-

sities. These are the two Si-H stretches, at 2264.0 cm−1 and 2231.1 cm−1, and a SiH2

bending mode. Our results showed that disilene has a bu Si-H stretching at 2247

cm−1 with a 110 km/mol intensity, an au Si-H stretching at 2277 cm−1 with a 128

km/mol intensity, and a bu SiH2 bending at 922 cm−1 with 182 km/mol intensity.

The experimentally observed values of 858.5 cm−1 and a 2154.0 cm−1 are close to

our active modes of bu Si-H stretching (2247 cm−1) and bu SiH2 bending (922 cm−1)

symmetry.

5.4.4 Relative Energies

Si2H3

Sax and Kalcher117 used the MRCI technique with double and triple-ζ quality basis

sets, and investigated H3Si-Si (2A
′′

) and the near-planar H2Si-SiH isomers of the

Si2H3 molecule. They predicted the H3Si-Si (2A
′′

) isomer to be 1.1 kcal/mol more

stable than the near-planar H2Si-SiH isomer. In the same year, Curtiss et. al.118

did G2 calculations and they reported that the lowest energy isomer is the H3Si-Si

(2A
′′

) structure, in agreement with the results obtained by Sax and Kalcher. They
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Table 5.2: Relative Energies (kcal/mol) for the isomers of the Si2H3 at different level

of theories (with the cc-pVTZ basis set).

Structure SCF CCSD(2) CCSD(T)

1a (H2Si-SiH, 2A
′′

) 5.48 0.29 0.98

1b (H3Si-Si, 2A
′′

) 0.00 1.15 0.00

1c (H2Si-H-Si, 2A
′′

) Not a Minimum 0.00 0.10

1d (H-Si-H-Si-H, 2A) 20.20 4.57 4.27

1e (H-Si-H-Si-H, 2A) 21.89 12.05 12.04

also stated that “mono-, di-, and tri- bridged structures were also investigated, but

all bridged structures were found to be significantly higher in energy”. However, in

1997, Gong et al107 predicted a mono-bridged structure (HSi-H-SiH, C2) to be the

lowest energy isomer, after investigating six different structures: silylsilylidyne H3Si-

Si (Cs); the near-planar H2Si-SiH (C1); two mono-bridged isomers, HSi-H-SiH (C2)

and H2Si-H-Si (Cs); a di-bridged; and a tri-bridged isomer. They also reported that

the H3Si-Si (Cs) like structure, which was predicted to be the lowest energy isomer

by both Kalcher117 and Pople118, is 9.0 kcal/mol (0.39 eV) higher in energy. The

tri-bridged isomer was found to be significantly higher in energy (0.64 eV). In 2001,

Pak et. al.104 reported B3LYP/DZP+ calculations and studied the H3Si-Si (Cs),

the near-planar H2Si-SiH (C1), and the mono-bridge (HSi-H-SiH, C2) isomers. They

reported that the H3Si-Si (Cs) isomer and the near-planar H2Si-SiH (C1) isomer are

almost equivalent in energy. Therefore, they pointed out that high level quantum

chemical methods should be employed in order to tell which isomer is the lowest in

energy.
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As seen in Table 5.2, the H3Si-Si (structure 1b) is the lowest isomer at the

SCF (Hartree-Fock) level, as predicted previously. At the same level of theory, the

mono-bridged isomer (structure 1c) could not be located. However, when the corre-

lated levels [cc-pVDZ CCSD(T) and cc-pVTZ CCSD(T)] were employed, the mono-

bridged isomer (structure 1c) was found (with all real harmonic vibrational frequen-

cies, see Table 5.1). The mono-bridged isomer (structure 1c) is stabilized by both

electron correlations and basis set expansion, as seen in Table 5.2 and 5.3. At the

cc-pVDZ CCSD(T) level, the relative energy of the mono-bridged form (structure

1c) with respect to the H3Si-Si (structure 1b) is +1.80 kcal/mol whereas at the

cc-pVDZ CCSDT level, it is -0.31 kcal/mol. The CCSD(T) level of theory predicts

the same energy difference as +0.10 kcal/mol with the cc-pVTZ basis set. When we

add the effect of full triple corrections [cc-pVDZ CCSDT - cc-pVDZ CCSD(T)] to

the estimated value at the cc-pVTZ CCSD(T) level (to predict cc-pVTZ CCSDT),

as well as with the zero-point vibrational energy (ZPVE) and relativistic corrections,

we found that the mono-bridged isomer (structure 1c) is 3.15 kcal/mol below the

H3Si-Si isomer (structure 1b), as given in Table 5.4. The planar Si2H3 isomer (struc-

ture 1a), previously predicted104,107,117,118 to be higher in energy than the H3Si-Si

(structure 1b), is found to be stabilized by both correlation effects and basis set

expansion. Although it is 5.48 kcal/mol higher in energy than the H3Si-Si (struc-

ture 1b) at the SCF level, it is only 0.98 kcal/mol higher in energy at the cc-pVTZ

CCSD(T) level. Including all effects (ZPVE, full triples, and scalar relativity) to the

cc-pVTZ CCSD(T) results, we predict that the planar form (structure 1a) is lower

in energy than the H3Si-Si isomer by 2.92 kcal/mol. The mono-bridged isomer in

C2 symmetry (structure 1d), which was predicted to be the lowest energy form by

Gong et al107, is found to be 4.20 kcal/mol higher than the mono-bridged structure

in Cs symmetry (structure 1c).
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Table 5.3: The effects of full-triple coupled-cluster excitations on the relative energies

of the isomers of the Si2H3, determined with the cc-pvDZ basis set [kcal/mol, values

are with respect to the mono-bridged (1c) isomer]

Structure CCSD(T) CCSDT Change

1a (H2Si-SiH, 2A
′′

) 0.15 0.03 -0.12

1b (H3Si-Si, 2A
′′

) -1.80 0.31 +2.11

1c (H2Si-H-Si, 2A
′′

) 0.00 0.00 0.00

1d (H-Si-H-Si-H, 2A) 4.46 4.36 -0.10

1e (H-Si-H-Si-H, 2A) 12.03 11.99 -0.04

Table 5.4: Effects of full-triple coupled-cluster excitations, relativistic (MVD) cor-

rections, and zero-point vibrational energy corrections on the relative energies of the

isomers of Si2H3. The best estimates for the relative energies include all corrections

on top of the cc-pVTZ CCSD(T) results [kcal/mol, all values are with respect to the

mono-bridged (1c) isomer].

Structure cc-pVTZ Full-Triples Relativistic ZPVE Best
CCSD(T) Corrections Corrections Corrections Estimates

1a (H2Si-SiH, 2A
′′

) 0.88 -0.12 +0.03 -0.56 0.23

1b (H3Si-Si, 2A
′′

) -0.10 +2.11 +0.07 +1.07 3.15

1c (H2Si-H-Si, 2A
′′

) 0.00 0.00 0.00 0.00 0.00

1d (H-Si-H-Si-H, 2A) 4.17 -0.10 -0.08 +0.21 4.20

1e (H-Si-H-Si-H, 2A) 11.94 -0.04 -0.10 -0.80 11.00
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Table 5.5: Dipole moments (debye), harmonic vibrational frequencies (cm−1), and

associated infrared intensities (km/mol, in parentheses) for the isomers of the Si2H4,

determined at the cc-pVTZ CCSD(T) level.

Structure µe ZPVE Harmonic vibrational frequencies
(symmetries, infrared intensities)

2a (H2Si-SiH2,
1Ag) 0.00 19.58 317(ag,0), 334(au,18), 441(bu,21),

514(au,0), 566(ag,0), 604(bg,0),
922(bu,182), 955(ag,0), 2247(bu,110),
2251(ag,0), 2267(bg,0), 2277(au,128)

2b (H3Si-SiH, 1A
′

) 0.23 19.34 99(a
′′

,10), 381(a
′

,9), 386(a
′′

,25),
434(a

′

,17), 716(a
′

,53), 879(a
′

,230),
947(a

′

,56), 970(a
′′

,36), 2058(a
′

,161),
2204(a

′

,67), 2217(a
′′

,96), 2239(a
′

,117)

2c (H2Si-H-SiH, 1A) 1.14 19.76 389(a,7), 475(a,2), 518(a,13),
645(a,6), 694(a,35), 878(a,69),

972(a,68), 1074(a,328), 1645(a,96),
2060(a,140), 2228(a,131), 2247(a,109)

2d (H-Si-H2-Si-H, 1Ag) 0.00 20.31 264(bu,2), 394(ag,0), 733(au,14),
858(bu,135), 859(ag,0), 871(bg,0),

1360(au,21), 1517(bg,0), 1527(bu,917),
1665(ag,0), 2074(ag,0), 2089(bu,340)

2e (H-Si-H2-Si-H, 1A1) 0.50 20.03 363(a1,0), 396(a1,0), 645(a2,0),
749(b1,88), 866(b2,14), 889(a1,24),

1334(b2,26), 1440(a2,0), 1465(b1,1214),
1656(a1,0), 2092(b1,20), 2115(a1,300)
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Table 5.6: Relative energies (kcal/mol) for the isomers of the Si2H4 at different levels

of theory (with the cc-pVTZ basis set).

Structure SCF CCSD(2) CCSD(T)

2a (H2Si-SiH2,
1Ag) 0.00 0.00 0.00

2b (H3Si-SiH, 1A
′

) 0.07 6.28 6.86

2c (H2Si-H-SiH, 1A) Not a Minimum 7.01 6.64

2d (H-Si-H2-Si-H, 1Ag) 22.34 19.54 19.20

2e (H-Si-H2-Si-H, 1A1) 24.65 22.23 22.13

Si2H4

All previous Si2H4 theoretical studies found that the disilene (structure 2a) lies lower

in energy than silylsilylene (structure 2b).104,117,118,120,122 We similarly predict that

disilene is 6.51 kcal/mol more stable than silylsilylene. However, the competition

here is found to be between the newly predicted mono-bridged isomer (structure

2c) and silylsilylene (structure 2b). As we mentioned earlier, the newly predicted

mono-bridged isomer is not found at the SCF level. At the cc-pVDZ CCSD(T) level,

the silylsilylene (structure 2b) is 1.49 kcal/mol more stable than the mono-bridged

form. However, at the cc-pVTZ CCSD(T) level, the mono-bridged isomer was found

to lie 0.22 kcal/mol lower than the silylsilylene (structure 2b, see Table 5.6 and 5.7).

In other words, basis set expansion favors the mono-bridged form with respect

to the silylsilylene. Both relativistic corrections and ZPVE corrections favor the

silylsilylene. As seen in Table 5.8, the relativistic corrections (MVD) lower the rela-

tive energy of silylsilylene by 0.27 kcal/mol, and increase the relative energy of the
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Table 5.7: The effects of full-triple coupled-cluster excitations on the relative energies

of the isomers of the Si2H4 (kcal/mol, with the cc-pvDZ basis).

Structure CCSD(T) CCSDT Change

2a (H2Si-SiH2,
1Ag) 0.00 0.00 0.00

2b (H3Si-SiH, 1A
′

) 6.44 6.60 +0.16

2c (H2Si-H-SiH, 1A) 7.93 8.15 +0.22

2d (H-Si-H2-Si-H, 1Ag) 19.42 20.12 +0.70

2e (H-Si-H2-Si-H, 1A1) 21.96 22.13 +0.17

Table 5.8: Effects of full-triple coupled-cluster excitations, relativistic (MVD) cor-

rections, and zero-point vibrational energy corrections on the relative energies of the

isomers of Si2H4. The best estimates for the relative energies include all corrections

on top of the cc-pVTZ CCSD(T) results [kcal/mol, all values are with respect to the

disilene (2a) isomer].

Structure cc-pVTZ Full-Triple Relativistic ZPVE Best
CCSD(T) Corrections Corrections Corrections Estimates

2a (H2Si-SiH2,
1Ag) 0.00 0.00 0.00 0.00 0.00

2b (H3Si-SiH, 1A
′

) 6.86 +0.16 -0.27 -0.24 6.51

2c (H2Si-H-SiH, 1A) 6.64 +0.22 +0.12 +0.18 7.16

2d (H-Si-H2-Si-H, 1Ag) 19.20 +0.70 -0.12 +0.73 20.51

2e (H-Si-H2-Si-H, 1A1) 22.13 +0.17 -0.11 +0.45 22.64
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Table 5.9: Experimental and theoretical rotational constants of isotopic planar

H2SiSiH (in MHz).

Isotopic Species B + C Percent Difference

Experiment Theory (%)
H2SiSiH 12067 11914 −1.3
H2

29SiSiH 11902 11748 −1.3
H2

30SiSiH 11748 11588 −1.4
H2Si29SiH 11872 11717 −1.3
H2Si30SiH 11689 11527 −1.4
D2SiSiD 10632 10484 −1.4

mono-bridged structure by 0.12 kcal/mol with respect to the disilene. The ZPVE

for the mono-bridged form is estimated to be 0.42 kcal/mol larger than that for the

silylsilylene (see Table 5.5). As a result, when we collected all of the corrections,

the silylsilylene (structure 2b) is found to be 0.65 kcal/mol below the mono-bridged

form. As seen in Table 5.6, the cc-pVTZ CCSD(2) level of theory also predicts the

silylsilylene to be more stable than the mono-bridged form by 0.73 kcal/mol. Both

the trans (structure 2d) and cis (structure 2e) di-bridged forms of Si2H4 are esti-

mated to be about 20 kcal/mol higher in energy than the disilene, the lowest energy

form. As expected, the trans-like di-bridged form is found to be more stable than

the cis-like di-bridged form. As a best value, 2.13 kcal/mol energy is estimated for

the energy gap between the latter two isomers.

5.5 Concluding Remarks

A total of ten stable isomers of the Si2H3 and Si2H4 molecules have been located on

the ground electronic state potential energy hypersurfaces. Scalar relativistic correc-

tions and zero-point vibrational energy corrections were included in order to predict

accurate energetic properties. For the first time, the mono-bridged H2Si-H-Si isomer
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Table 5.10: Experimental and theoretical rotational constants of isotopic mono-
bridged H2SiHSiH (in MHz).

Isotopic Species Rotational Constant Experiment Theory Difference (%)
H2SiHSiH A 73012(187) 74129 1.5

B 6243.731(1) 6229 −0.2
C 5987.703(1) 5976 −0.2

H2
29SiHSiH A 73012a 74113 · · ·

B 6156(1) 6142 −0.2
C 5911(1) 5895 −0.3

H2
30SiHSiH A 73012a 74097 · · ·

B 6077(1) 6058 −0.3
C 5836(1) 5818 −0.3

H2SiH29SiH A 73012a 74100 · · ·
B 6140(1) 6125 −0.2
C 5894(1) 5879 −0.3

H2SiH30SiH A 73012a 74072 · · ·
B 6045(1) 6024 −0.3
C 5804(1) 5786 −0.3

D2SiDSiD A 37518b 37518 · · ·
B 5561.0(5) 5529 −0.6
C 5171.9(5) 5144 −0.5

aConstrained to the value of the normal isotopic species.
bConstrained to the theoretical value of the fully deuterated isotopic species.

(Cs,
2A

′′

) is predicted to be the lowest energy structure on the ground potential

energy surface of Si2H3. One mono- and two di-bridged isomers are also found for

the Si2H4. In addition to the much studied silylsilylene, H3Si-SiH, we find that an

unexpected monobridged isomer H2Si-H-SiH (C1,
1A) is a minimum on the potential

energy surface. By means of Fourier transform microwave spectroscopy of a super-

sonic molecular beam, the rotational spectrum of this novel mono-bridged Si2H4, as

well as the for the planar (H2Si-SiH) isomer of Si2H3, have been measured. Excellent

agreement with theory has been observed. Harmonic vibrational frequencies as well
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as infrared intensities for all isomers are predicted at the cc-pVTZ CCSD(T) level

of theory.



Chapter 6

Conclusion

Challenging problems related with the electronic structures of the novel group IV

small molecules have been attempted with the very sophisticated quantum mechan-

ical ab initio methods such as coupled cluster with single and double excitations with

perturbative triple excitations [CCSD(T)] and with full triple excitations CCSDT

levels of theory. These problems include characterizations of the Renner-Teller split-

ting in the ground electronic states of HCSi and HCGe, the elusive ground state

equilibrium structure of the GeC2, and unanticipated mono- and di-bridged isomers

of the Si2H3 and Si2H4 molecules. Scalar relativistic corrections and corrections due

to the zero point vibrational energy (ZPVE) and core-valence interactions have been

included, and large basis sets such TZ3P(2f ,2d)+2diff and cc-pVQZ have been

employed. Equation of motion coupled cluster theories were employed in order to

determine some excited state properties that cannot be determined using standard

quantum mechanical methods due to possible variational collapses.

Some of the very important results can be listed as follows;

• We have found that relativistic corrections do have some effects in the amount

of Renner-Teller splitting. This is an indirect effect due to the relativistic

changes in bending harmonic vibrational frequencies (see chapter 3).

• The equilibrium geometry for the GeC2 molecule is predicted to be L-shaped.

Both T-shaped and linear configurations have found to be transition states.

This is a quite surprising finding because the isovalent SiC2 molecule was

136
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determined to be T-shaped in its ground state, after a 50 years wrong belief in

the linear structure. Both the scalar relativistic corrections and core-valence

corrections were found to favor the L-shape geometry with respect to T-shaped

one (see chapter 4).

• Ten stable isomers of the Si2H3 and Si2H4 molecules have been located on the

ground electronic state potential energy hypersurfaces. For the first time, the

mono-bridged H2Si-H-Si isomer (Cs,
2A

′′

) is predicted to be the lowest energy

structure. In addition, an unexpected monobridged isomer H2Si-H-SiH (C1,

1A) is determined to be a minimum on the potential energy surface of the

Si2H4 molecule. Collaborations with Harvard experimentalists confirmed that

the predicted new monobridged Si2H4 isomer is stable (see chapter 5).

• The relativity and core-valence interactions produce very noticeable effects on

the properties of the molecules that contain germanium atom. The effects are

observed to be even larger for the energy gaps between two different electronic

states. This is believed to be a consequence of the fact that total angular

momentum of an electronic state is important for the amount of relativistic

corrections.

In addition to the above results, physical and chemical properties such as bonding

characters, equilibrium geometries, dipole moments, harmonic vibrational frequen-

cies, rotational constants, excitation and relative energies, and infrared intensities

have been studied, and reliable values have been determined with the coupled cluster

theories. Comparison with the available experimental data suggested that coupled

cluster theory is able to predict bond distances within ±0.1 Å and energetic prop-

erties within ±1 kcal/mol accuracy when it is employed with large basis sets.
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[72] Schäfer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97, 2571.

[73] Extensible Computational Chemistry Environment Basis Set Database, Ver-

sion 1/29/01, as developed and distributed by the Molecular Science Com-

puting Facility, Environmental and Molecular Sciences Laboratory which is

part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington

99352, USA. http://www.emsl.pnl.gov:2080/forms/basisform.html.



144

[74] Jackson, P.; Diefenbach, M.; Schroder, D.; Schwarz, H. Eur. J. Inorg. Chem.

1999, 8, 1203-1210.

[75] Sari, L.; Gonzales, J. M.; Yamaguchi, Y.; Schaefer, H. F. J. Chem. Phys.

2001, 114, 4472.

[76] Ottschofski, E.; Kutzelnigg, W. J. Chem. Phys. 1995, 102, 1752.

[77] Venezuela, P.; Dalpian, G. M.; da Silva Antonio, J. R.; Fazzio, A. Phys.

Rev. B. 2001, 64, 193202.

[78] Benzair, A.; Bouhafs, B.; Khelifa, B.; Mathieu, C.; Aourag, H. Phys. Lett.

A. 2001, 282, 299.

[79] Jo, C.; Lee, K. J. Chem. Phys. 2000, 113, 7268.

[80] Li, S.-D.; Zhao, Z.-G.; Zhao, X.-F.; Wu, H.-S.; Jin, Z.-H. Phys. Rev. B.

2001, 64, 195312.

[81] Brazier, C. R.; O’Brien, L. C.; Bernath, P. F. J. Chem. Phys. 1989, 91,

7384.

[82] Jr., R. W. S.; Gingerich, K. A.; Kingcade, J. E. J. Phys. Chem. 1995, 99,

15294.

[83] Bruna, P. J.; Peyerimhoff, S. D.; Buenker, R. J. J. Chem. Phys. 1980, 72,

5437.

[84] Balasubramanian, K. J. Mol. Spectrosc. 1987, 123, 228.

[85] Izuha, M.; Yamanouchi, K. J. Chem. Phys. 1998, 109, 1810.

[86] Cangshan, X.; Taylor, T. R.; Burton, G. R.; Neumark, D. M. J. Chem.

Phys. 1998, 108, 1395.



145

[87] Merrill, P. W. Publ. Astron. Soc. Pac. 1926, 38, 175.

[88] Bondybey, V. E. J. Phys. Chem. 1982, 86, 3386.

[89] Green, S. Astrophys. J. 1983, 266, 895.

[90] Grev, R. S.; Schaefer, H. F. J. Chem. Phys. 1984, 80, 3552.

[91] Michalopoulos, D. L.; Geusic, M. E.; Langridge-Smith, P. R. R.;

Smalley, R. E. J. Chem. Phys. 1984, 80, 3552.

[92] Shepherd, R. A.; Graham, W. R. M. J. Chem. Phys. 1988, 88, 3399.

[93] Sari, L.; Yamaguchi, Y.; Schaefer, H. F. J. Chem. Phys. 2001, 115, 5932.

[94] Nielsen, I. M. B.; Allen, W. D.; Császár, A. G.; Schaefer, H. F. J. Chem.

Phys. 1997, 107, 1195.

[95] Cernicharo, J.; Guelin, M.; Kahane, C.; Bogey, M.; Demuynck, C.;

Destombes, J. L. Astron. Astrophys. 1991, 246, 213.

[96] Zhang, Y.; Zhao, C. Y.; Fang, W. H.; Lu, Z. H. J. Mol. Struct. 1998, 454,

31.

[97] Grev, R. S.; Janssen, C. L.; Schaefer, H. F. J. Chem. Phys. 1991, 95, 5128.

[98] Purnell, J. H.; Walsh, R. Proc. R. Soc. London Ser. A 1966, 293, 543.

[99] Ring, M. A.; O’Neal, H. E. J. Phys. Chem. 1992, 96, 10848.

[100] Newman, C. G.; Ring, M. A.; O’Neal, H. E. J. Am. Chem. Soc. 1978, 100,

5945.

[101] Agrawal, P. M.; Thomson, D. L.; Raff, L. M. J. Chem. Phys. 1988, 88, 5948.

[102] Colegrove, B. T.; Schaefer, H. F. J. Phys. Chem 1990, 94, 5593.



146

[103] Jasinski, J. M.; Meyerson, B. S.; Scott, B. A. Annu. Rev. Phys. Chem. 1987,

38, 109.

[104] Pak, C.; Rienstra-Kiracofe, J. C.; Schaefer, H. F. J. Phys. Chem. A 2000,

104, 11232.

[105] Tonokura, K.; Murasaki, T.; Koshi, M. J. Phys. Chem. 2002, 106, 555.

[106] Becerra, R.; Walsh, R. J. Phys. Chem. 1992, 96, 10856.

[107] Gong, X. G.; Guenzburger, D.; Saitovitch, E. B. Chem. Phys. Lett. 1997,

275, 392.

[108] Wirsam, B. Theor. Chim. Acta 1972, 25, 169.

[109] Blustin, H. P. J. Organomet. Chem. 1976, 105, 161.

[110] Sax, A. F. J. Comput. Chem. 1985, 6, 469.

[111] Ernst, M. C.; Sax, A. F.; Kalcher, J. Chem. Phys. Lett. 1993, 216, 189.
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