
A three-tier design for allowing thin clients

using XML lathered in soap to access

legacy applications

by

Joseph Daniel Procopio

(Under the direction of Walter D. Potter)

Abstract

Two common problems, which face organizations today, are the lack of a generic
application integration framework that encapsulates an organization’s legacy appli-
cations and the inability to access those same applications via the World Wide Web.
Several application integration technologies exist today. To varying extents, frame-
works built using each of these technologies can be web-enabled.

This thesis first examines the predominant component integration technologies
available today and identifies the pros and cons of using each. It also briefly surveys
generic integration framework design options. Finally, it focuses on the Web Services
technologies of XML and SOAP as the recommended integration technologies. This
thesis proposes that XML and SOAP be used to create a knowledge-based applica-
tion integration framework, which uses wrappers or translators to abstract both the
user interface and the legacy applications from the core knowledge engine giving the
framework a large degree of extensibility and flexibility.

Index words: XML, SOAP, COM, DCOM, CORBA, Java RMI, EAI,
Knowledge Based Systems, Application Integration

A three-tier design for allowing thin clients

using XML lathered in soap to access

legacy applications

by

Joseph Daniel Procopio

B.S., The University of Georgia, 1994

A Thesis Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Master of Science

Athens, Georgia

2002

c© 2002

Joseph Daniel Procopio

All Rights Reserved

A three-tier design for allowing thin clients

using XML lathered in soap to access

legacy applications

by

Joseph Daniel Procopio

Approved:

Major Professor: Walter D. Potter

Committee: Hamid R. Arabnia

Daniel M. Everett

Electronic Version Approved:

Gordhan L. Patel

Dean of the Graduate School

The University of Georgia

May 2002

Dedication

I dedicate this Master’s thesis to my parents.

iv

Acknowledgements

I would like to thank Dr. Walter D. Potter for giving me the opportunity to complete

this Master’s Thesis. They say that when a student is ready, a teacher will appear.

It took me a while to be ready, but I was happy to find him waiting for me when

I was. I would like to thank him for his encouragement, advice, and direction as I

worked on this thesis. Also, I would like to thank my committee members, Dr. Hamid

Arabnia and Dr. Dan Everett for their advice and encouragement. Additionally, I

would like to thank Dr. John Miller for helping me get approval to complete what I

had started.

A special thanks goes out to everybody who encouraged to me to finish my

thesis. Specifically, I would like to thank Ed McInerney, a great friend, for both

his suggestions and his constant encouragement. I would like to thank my former

managers: Anne Anderson, Jonathan Foulkes, and David J. Smith for their support,

encouragement, and understanding while I worked on this project. I would like to

thank all of my former co-workers at Attachmate Corp. and DoubleClick Inc. for

being there for me over the years and helping me grow as a Software Engineer. L.P.

Fu, Danny Llewallyn, John Moore, and Robert Stam are just a few of the people that

need to be thanked in this category. I would like to thank Tanya Crowe, Suzanne

Moore, and Tara Powell for reminding me that a degree is important and worth

the effort it takes to complete. I would like to thank Craig Boles, Vivian “Choi”

Fonger, and Chenchen Hsiao for always being there when I needed them. A special

thanks goes Marc DiMaggio for his editorial advice and to Rev. Bob Googe for his

friendship and encouragement.

v

vi

I would also like to thank my parents and my sister for always being there for

me. I would like to thank them for constantly reminding me that I can do whatever

I put my mind to. If it were not for them, this thesis would not exist today.

Table of Contents

Page

Acknowledgements . v

List of Figures . x

List of Tables . xi

Chapter

1 Introduction . 1

1.1 Web application integration 1

1.2 Knowledge-based systems 3

1.3 Goals and organization of this thesis 5

2 Distributed Computing . 7

2.1 A brief history of distributed computing 7

2.2 A brief history of the World Wide Web 9

2.3 Distributed computing architectures 14

3 Component Integration Technologies 20

3.1 Integration technology considerations 20

3.2 COM as an integration technology 23

3.3 CORBA as an integration technology 34

3.4 Java as an integration technology 40

3.5 XML as an integration technology 49

4 XML Technologies . 54

vii

viii

4.1 XML – a new way to encapsulate data 54

4.2 The basics of XML . 56

4.3 Validating XML Documents 63

4.4 An overview of some existing XML vocabularies . . 65

4.5 XML Parsers . 73

4.6 XSLT . 79

4.7 SOAP . 85

5 Survey of existing integration designs 99

5.1 Web Services . 100

5.2 Agents . 106

5.3 Knowledge-based Systems 110

5.4 Conclusion . 120

6 Design . 122

6.1 Design Goals . 122

6.2 The Proposed Architecture 124

6.3 Data Source Registration 130

6.4 Client Sources and Destinations 132

6.5 Wrappers . 136

6.6 Latency . 139

6.7 Conclusion . 142

7 Implementation . 143

7.1 Proof-of-Concept Problem Space 143

7.2 The Sample Applications 144

7.3 A sample GAIA session 145

7.4 The Implementation Technologies 148

7.5 The Prototype Implementation 151

ix

7.6 Conclusion . 155

8 Conclusions and future work 157

Bibliography . 160

Appendix

A GAIA Registration SOAP Files 166

A.1 The currentPriceWrapper XML file 168

A.2 The marketAnalysisWrapper XML File 169

A.3 The portfolioManagerWrapper XML file 170

A.4 The valueCalculatorWrapper XML File 174

B Knowledge Database Schema 177

B.1 The RegisteredWrappers Table 177

B.2 The Methods Table . 178

B.3 The UserExposedFunctionality Table 178

B.4 The InParameters Table 179

B.5 The OutParameters Table 179

B.6 The Definitions Table 180

B.7 The ComplexTypeMap Table 180

B.8 The 2DStringArrayValue Table 181

C Sample Wrapper Code . 182

C.1 currentPriceWrapper.xml 182

C.2 currentPriceWrapper.wrapperMainThread() 182

D Glossary of acronyms . 190

List of Figures

3.1 The COM v-table mechanism . 26

3.2 DCOM’s Architecture . 30

3.3 CORBA’s Architecture . 36

3.4 Java’s RMI Architecture . 44

4.1 The SOAP 1.2 Envelope . 92

5.1 UDDI data structure relationships. 102

5.2 The Generic Knowledge-Based System Integration Solution 112

5.3 The DCOM-based Integration Framework. 115

5.4 The IIS Framework. 117

6.1 The Generic Application Integration Architecture (GAIA). 125

7.1 GAIA Prototype Implementation. 146

7.2 GAIA Prototype Controller Threads. 151

7.3 GAIA Prototype Wrapper Implementation. 153

x

List of Tables

7.1 Sample Applications and Methods. 144

7.2 The Sun Java XML Pack. 149

A.1 The GAIA Registration Grammar . 167

The RegisteredWrappers Table . 177

The Methods Table . 178

The UserExposedFunctionality Table . 178

The InParameters Table . 179

The OutParameters Table . 179

The Definitions Table . 180

The ComplexTypeMap Table . 180

The 2DStringArrayValue Table . 181

xi

Chapter 1

Introduction

1.1 Web application integration

As technology continues to evolve and application requirements continue to change,

it becomes cost prohibitive to rewrite existing applications in order to make use

of the new technology. Instead, legacy applications need to be integrated into new

application frameworks that both leverage the latest technology and enhance the

existing feature set.

Legacy applications are locked to the technologies they were created with. Not

long ago, all applications were command-line driven. They lacked graphical user

interfaces (GUIs) and the ability to communicate with other applications. These

applications were generally small and performed specific well-defined tasks. Then

more sophisticated, GUI driven, applications began to appear. These new applica-

tions were built using component libraries or application programming interfaces

(APIs). These new libraries allowed data to be shared between applications. Gen-

erally, the applications had to be installed on a local workstation. The local nature

of the application and its data restricted its accessibility. Then, the World Wide

Web appeared. With the Web came web-based applications. With appropriate secu-

rity rights, users gained the ability to access web applications from any computer

connected to a corporate intranet or the global Internet.

The wide acceptance and availability of the World Wide Web has pushed busi-

nesses to make information available through the web. Today, most businesses are

1

2

creating web-enabled applications that securely access internal databases providing

both their clients and their customers with the ability to find the information they

require in a timely fashion. Assuming that a business has legacy applications built

on top of relatively new extensible technologies, the business could decide to just

invest in adding a web interface to those applications. On the other hand, if existing

legacy applications were built years ago using older less extensible technologies, the

business probably wants to find a way to integrate its existing applications into a

secure, distributed, and extensible web-based application framework. By integrating

their legacy applications into such a framework, businesses can leverage their existing

investment without having to spend more money on the creation of new web-enabled

applications that essentially perform the same functions as their existing applica-

tions.

Application integration is a nontrivial problem. Legacy applications that need to

be integrated with each other could run on different operating systems and hardware

platforms. They could have been developed using different programming languages

or incompatible versions of the same language. Likewise, they could have been devel-

oped before there was a focus on reuse and extensible APIs. It is possible that some

applications can only run on proprietary systems, which have not evolved to support

the latest networking standards. In the last case, it might not even be possible to

integrate the legacy application into a new application framework.

Assuming that the legacy applications can be integrated, there are many issues

that need to be resolved in building a common web-enabled framework. For instance,

the performance of each application must be considered. Users expect web applica-

tions to return their results very quickly. If an integrated application takes more

than a minute to return its results, the framework needs to either return status

information at regular intervals or have a mechanism for allowing the user to access

the results at a later point in time. Likewise, a web application must be scalable.

3

Many users could be accessing the application at the same time. It is best if multiple

instances of the legacy application can be loaded and executed at once. Otherwise,

if the legacy application is accessed frequently, it may need to be distributed across

multiple machines. Furthermore, the integration framework and the mechanism used

for accessing the individual legacy applications must be secure.

Since the Web is accessible twenty-four hours a day and seven days a week, the

entire system needs to have some level of redundancy. The framework or some default

web page needs to always be accessible. Users do not appreciate it when they get

a browser error stating that a page is unavailable. Whether or not the underlying

applications and databases need to be redundant is another matter. It might be

sufficient to allow the framework to inform the user that a requested resource is

currently not available. However, if the application and underlying databases are

critical to the business, it is worth the extra cost to build a redundant system.

1.2 Knowledge-based systems

Another important issue to consider is how the framework will access legacy appli-

cations. If a legacy application either does not have APIs or the APIs cannot be

directly accessed by the technology used to build the new framework, a new applica-

tion known as a translator or wrapper will need to be written to act as an interface

between the framework and the legacy application. The wrapper will need to know

how to work with the legacy application. Likewise, it will need to know how to

interact with the framework and possibly with other legacy applications.

Generally the wrapper is not part of the framework although the framework

needs to be aware of it. In many current integration designs, the framework needs to

be modified in order for a new application to be integrated. Also, the framework gen-

erally does not have a way to know if an integrated application is still available. The

4

framework controls the wrapper. The framework instantiates the wrapper when the

wrapper is required, and the wrapper’s life cycle ends after it successfully completes

its task and passes the results back to the framework.

This thesis proposes a different approach to wrappers. Instead of creating wrap-

pers with limited life cycles controlled by the framework, we propose keeping a

wrapper alive and giving it additional functionality that not only allows the wrapper

to keep the framework aware of its existence but also allows the wrapper to initially

register with the framework. This approach means that the wrapper is responsible

for defining new functionality that can be added to framework and for updating the

framework with those definitions. This approach makes the wrapper more complex

to develop but adds extensibility and flexibility to the framework.

Although wrappers could be used to directly add a web interface to legacy appli-

cations, a better approach is to have the wrappers accessed by a knowledge-based

system (KBS) or mediator, which in turn presents a consistent view of all integrated

legacy data sources to the end user (Papakonstantinou et al. 1996). The KBS needs

to be aware of the features available in the integrated legacy applications. The KBS,

also, needs to know if any of the integrated applications have duplicate features. If

duplicate features exist, it needs to know which application implements the feature

best. Likewise, the KBS needs to know if the data being provided needs to be pre-

processed before it is sent to the requested function. In the case that preprocessing

is required, the preprocessing function could actually be in a different application.

The KBS needs to be able to handle such a situation. Also, if data needs updating in

multiple data stores and the update fails in one data store, the KBS needs to know

how to rollback all of the successful updates so that the various data stores remain

synchronized.

Knowledge-based systems generally consist of at least three main components

(Somasekar 1999). First, there is the client interface. In the case of web applications,

5

the client interface is normally a web browser displaying HTML or DHTML. Then,

there is a middle-tier application. The middle-tier is often referred to as the Intel-

ligent Information Module (IIM). The end-user accesses the IIM through the client

interface. Finally, there are back-end legacy applications. The IIM is responsible

for determining which back-end legacy applications need to be accessed in order to

satisfy a user’s request.

Choosing to design the framework as a knowledge-based system has a couple

of benefits. First, the end user does not need to know which application is being

accessed or even what steps are required to handle their request. The user simply

enters the request via the client interface, and the IIM takes care of the rest. Second,

the framework does not have to be modified each time a legacy application is added

or removed. An intelligent framework can accept new applications as they become

available. Based on information sent to the framework by the wrapper, the framework

becomes aware of the newly registered application’s features and can make those

features available to the user by changing how it dynamically builds the client UI.

It can also periodically check the status of known applications. If, in its checks, the

framework notices that an application is no longer available, it can remove those

features from its knowledge base and no longer provide those features as options to

the client.

1.3 Goals and organization of this thesis

The goal of this thesis is to provide a generic, extensible, standard-based, multi-

tiered framework for accessing legacy applications through a common web-based

interface. The application framework that is proposed should be generic enough

to apply to any problem space where an interoperable architecture is desired. A

standard communication mechanism and data exchange format will be defined for

6

wrapper applications giving them the ability to automatically update the framework

with their status and the features they provide. The only thing that is required to add

an application to the framework will be the creation of a new wrapper application.

This thesis proposes such a design and implements a proof-of-concept using XML

and SOAP as the communication mechanism between the wrapper applications and

the various components that make up the framework.

This thesis is organized into eight chapters. The first chapter introduces the sub-

ject. The second chapter briefly discusses the history of distributed computing and

gives an overview of the evolution of the Internet so far. The second chapter con-

cludes by discussing the properties of a good distributed architecture. Chapter three

provides an overview of the most popular component integration technologies used

today. The pros and cons for using each technology as the basis of the proposed

solution are given. Chapter three concludes with a discussion on the benefits of

using XML-based technologies to integrate legacy data sources. Chapter four gives

a primer on XML, XSLT, and SOAP. Chapter five surveys other extensible applica-

tion framework designs that are being developed to solve the problem of accessing

legacy data sources. Chapter six discusses the proposed framework design in detail.

Chapter seven describes the prototype and how it was implemented. Finally, chapter

eight proposes possible future enhancements to the prototype and discusses future

directions for research.

Chapter 2

Distributed Computing

2.1 A brief history of distributed computing

Although the advent of the Internet has taken the concept of distributed computing

to a new level, distributed computing is not a new concept. The first computer

systems consisted of large expensive mainframes. The price of these systems pro-

hibited many corporations from owning more than one or two. In order to allow

multiple employees to access these systems, dumb terminals were created (Thai

1999). Over time these terminals became smarter, gaining the ability to communi-

cate with mainframes using specialized protocols. With the appearance of personal

computers (PCs), software-based terminal emulators began replacing the specialized

mainframe terminals. Initially, these emulators acted just like the dumb terminals

they replaced. They presented a window into the mainframe or Unix server. As PCs

increased in speed and processing power, terminal emulators gained macro languages

that allowed users to record their interaction with the mainframe and then with a

single key sequence or mouse click replay their actions.

In recent years, middleware tools have appeared. These new middleware tools

allow new application specific graphical user interfaces (GUIs) to replace the stan-

dard green screen of the emulator. A PC or client-side user no longer has to under-

stand the specifics of interacting with a mainframe. Instead, they can interact with

a client side GUI that transparently communicates with the mainframe using a High

Level Language Application Programming Interface (HLLAPI). More importantly,

7

8

these new middleware tools allow new business modules to be created on the client

that can then leverage legacy mainframe applications as needed.

A similar revolution has been occurring with regard to PCs used in businesses.

Standalone PCs started to be networked together shortly after their introduction.

At first, data files and peripherals like printers were shared between computers. The

actual applications resided on the individual PCs. In time, servers started to host

applications, although initially the application physically ran on the client computer.

Many of these early PC applications were small command line or batch-driven pro-

grams. As applications started to get larger and more complex, processing was split

between client PCs and more powerful servers. A user could logon to a local com-

puter, which was connected to the network, and run a GUI client application that

behind the scenes transparently used a communication protocol to communicate

with either a single server or multiple servers.

A two-tier system consisting of a client computer communicating with a more

powerful server machine is referred to as a client/server system. Under this model,

the client computer is often responsible for performing the business logic and most

calculations. The server is responsible for passing client requests to database and

returning an appropriate response. If the data needs to be translated or massaged,

the server handles that task as well.

The main limitation with client/server computing is the client computer itself.

As applications became more sophisticated, the smaller, normally PC based, client

computers fell behind in their ability to process the necessary business logic and

computations (Thai 1999). To solve this problem, three-tier or n-tier systems, also

commonly referred to as distributed systems, replaced the two-tier client/server com-

puting systems.

The client PC, also known as a thin client in distributed computing, is responsible

for providing a user interface, validating data, and transmitting data and requests to

9

a middle-tier server. The middle-tier is responsible for processing the CPU intensive

business logic. When the business logic becomes too resource intensive, middle-tier

processes can be spread across multiple machines leading to an n-tier system. Finally,

the third-tier or back-end server is responsible for data persistence and database

communication.

2.2 A brief history of the World Wide Web

The best-known and largest distributed system is the Internet. Originally designed

to connect military and educational research institutions to the few publicly avail-

able super computers, the Internet has grown into a massive worldwide network of

commercial, government, and private computers. The Internet is really a collection

of services based on standardized or widely accepted protocols. The World Wide

Web is the most talked about service although in reality email is the most used.

The Web was established so researchers could easily share text and graphical

documents with other researchers around the world. When the Web was born in

1991, the first web browsers were text based (Blum 1996). It wasn’t until 1993 that

the first graphical web browsers appeared. In 1994, the first commercial web sites

started to appear.

The first web browsers were not much different than the simple PC file servers

and print servers described earlier. They could only return and render documents

written in the Hypertext Markup Language (HTML). Early web servers were limited

to returning HTML pages or transmitting documents back to client using another

service, the File Transfer Protocol (FTP).

As more people started to use the Web, demand grew for interactive web pages.

Instead of just retrieving static content, people wanted to be able to retrieve cus-

tomized information as well as submit information to a web site. The Common

10

Gateway Interface (CGI) was created to give web sites the ability to process forms.

Using forms to transmit and request data from server side applications, the next

generation of browsers became the equivalent of dumb terminals. Requests and data

could be posted to a web server. In turn, the server would launch an application

that processed the requests or data and returned either a result or an error code.

CGI was limiting in that it only worked on the server. The client browser could

still only display static HTML. It took the introduction of a couple new technologies

to address this problem. The first technology introduced was the Java program-

ming language. Java, with its ability to create applets, brought the web into the

client/server era. Applets could be requested from the server and downloaded to the

client machine where they would run inside the context of the browser.

Second, a new generation of web browsers appeared that supported scripting lan-

guages. The two most popular client-side scripting languages today are Netscape’s

JavaScript, also known as ECMAscript, and Microsoft’s VBScript. This new gener-

ation of web browsers exposed HTML elements to these scripting languages through

a Document Object Model (DOM). The manipulation of HTML by scripts accessing

the DOM is known as Dynamic HTML (DHTML). Using scripts to interact with

HTML allows web pages to be updated based on user actions without always having

to return to the server for another page. For instance, scripts combined with HTML

can be used to create a mortgage calculator. An end-user, who is looking to purchase

a house or refinance a loan, might access a bank’s website looking for more infor-

mation. The bank could provide the user the option of using a mortgage calculator

to calculate his or her monthly payment under various scenarios. Instead of each

scenario requiring a request being sent back to the bank’s server, the web applica-

tion could send the mortgage calculator and the bank’s current rates to the user’s

web browser in the form of a DHTML page. As the user enters numbers and selects

11

operations to perform on those numbers, the script running in the context of the

client’s browser can update the HTML to show the results of the user’s calculations.

As the popularity of the Web grew, Microsoft started to get more involved in the

development of web technologies. Microsoft added new features to its VBScript and

JScript scripting languages. One such feature was the ability to work with Active-

X controls and other Component Object Model (COM) technologies. COM objects

form the underpinnings of the Microsoft Windows family of operating systems. Users

running Microsoft Internet Explorer (IE) on Windows gained the ability to access

standard functions such as copy and paste as well as the ability to access COM-based

applications through their web browser.

On the server-side, Microsoft enhanced its web server, Internet Information

Server (IIS), to be extendable by adding the Internet Server Application Pro-

grammer’s Interface (ISAPI). In IIS, there are applications known as ISAPI

extensions and applications known as ISAPI filters (Crouch, 2000). Both types

of applications exist as Window’s dynamic link libraries (DLLs) instead of as exe-

cutables. Both applications run in the same memory space as IIS. ISAPI extensions

are essentially Microsoft’s answers to CGI applications. The main benefit of using

an ISAPI extension over a CGI application is that the CGI application uses more

memory and is not necessarily multi-threaded. ISAPI filters, on the other hand, sit

between the incoming client request and IIS. When a request is sent to an ISAPI

filter, the request never reaches the server. Instead, the filter intercepts the request,

performs whatever operations are required, and returns the result to the client. The

best-known ISAPI filter intercepts Active Server Page (ASP) requests. ASPs are

HTML pages with the extension .asp. ASPs have embedded scripts that are executed

on the server before the resulting HTML is sent to the client browser. Although

other scripting languages can be used, the most popular scripting languages for

ASPs running under IIS are JScript and VBScript. JScript and VBScript running

12

on the server can access COM objects just like they can on the client side. This

includes COM objects built into IIS that make retrieving form data easier than with

CGI.

The introduction of client-side scripting, server-side scripting, and the Document

Object Model (DOM) has led to web applications having more control over both a

client’s browser and the results being returned from the server. Server-side scripts

in the form of either CGI scripts or ASPs have led to n-tier web applications being

created. The client-side use of COM objects, Java Applets, and Java Beans has

led to dynamic web applications capable of performing any task that a standalone

application can perform.

Problems do exist with both COM and Java based technologies. The problem

with COM objects is that they are essentially limited to Windows environments.

Although COM has been implemented on other platforms, those implementations

are seldom completely compatible with the Microsoft COM implementations. Java

also has its problems. Java applets and beans do not perform well on all platforms

and are not available on many emerging technologies. Another problem with using

COM objects and Java components on the client-side is that these objects must be

downloaded and installed when they are first accessed. This is a time-consuming

task. Also, most COM objects and Java components use proprietary methods to

communicate with server-side objects limiting their usability in some environments.

If a web application needs to be compatible with any platform, the client appli-

cation is limited to being a web browser and all data delivered by the server must

be embedded in HTML. The required use of HTML limits the client’s ability to

create custom views. In order to present the data in a different manner, another

request must be made to the web server. On receiving the request, the server will

then generate a new HTML document based on the parameters sent in the request.

The resulting document will then be sent back to the client (Martin et al. 2000).

13

The Extensible Markup Language (XML) combined with the XML DOM and

Extensible Style Language for Transformations (XSLT) addresses these issues. XML

separates the data from the presentation layer. Instead of the server passing data

embedded in HTML back to a client application, XML is passed back. The client

application then processes the returned XML and can use XSLT to transform the

raw data into the appropriate format for presentation purposes. If the data is to be

presented in a standard web browser, XSLT will transform the XML into HTML.

However, the use of XML and XSLT does not limit the client application to HTML

or the client to being a PC. XML could, for instance, be transformed into a Wireless

Markup Language (WML) document and transported using the Wireless Access

Protocol (WAP) to a WAP-enabled cell phone.

A combination of XML, XSLT, and HTML can be used to facilitate the creation

of advanced web applications. However, XML is not limited to just carrying data for

eventual transformation into displayable documents. XML is becoming popular for

other things as well. For instance, the Simple Object Access Protocol (SOAP) is an

XML specification that is starting to replace older middleware technologies such as

Microsoft’s Distributed Component Object Model (DCOM) and The Object Man-

agement Group’s (OMG) Common Object Request Broker Architecture (CORBA)

in enabling interoperability between applications. SOAP takes the minimum tech-

nology of XML for data encoding, the stateless nature of the Hypertext Transfer

Protocol (HTTP) for data transportation, and combines them to define a common

way to access services, objects, and servers in a platform independent manner (Skon-

nard 2000).

The primary focus of the software development industry at this time is to XML-

enable and SOAP-enable new applications. One such massive effort is demonstrated

by Microsoft’s new .NET application framework. .NET can use either SOAP or the

less powerful HTTP Get and HTTP Post to enable communication between clients

14

and web services (Kirtland 2000). Likewise, software companies such as Oracle are

XML-enabling their database applications. Many organizations are beginning to

use XML to solve Enterprise Application Integration (EAI) issues. These organiza-

tions are also defining corporate-wide and industry-wide Document Type Definitions

(DTDs) or XML-Data schemas. The availability and acceptance of DTDs and XML

schemas is turning XML into a viable Electronic Data Interchange (EDI) format

(Linthicum 1999).

In short, n-tier distributed applications are beginning to communicate with client

technologies such as web browsers, cell phones, and traditional GUIs using platform

neutral XML-based technologies. Users will quickly get used to the flexibility of

accessing information and raw data via a variety of client side technologies unre-

stricted by geographic location and, in the case of cell phones, direct landline con-

nections. As such, users will demand that older legacy applications either be modified

or rewritten to become web-enabled. Already companies like Microsoft and Sun are

looking at transforming traditionally undistributed applications, like word proces-

sors and spreadsheets, into web-based applications that can then be accessed anytime

and anywhere.

2.3 Distributed computing architectures

The term distributed computing is often used to described three-tier or n-tier archi-

tectures. As described above, a three-tier architecture consists of a front end, middle

tier and back end. The front end is usually mapped to a desktop workstation and

provides the end-user with a set of user interfaces and presentation tools capable

accessing and managing the rest of the system. The front-end workstation is nor-

mally a PC running Windows.

15

There is usually a midsize server running the middle tier. The middle tier consists

of a variety of auxiliary applications. Primarily, the middle tier delivers a common

uniform and coherent user experience as well as performs complex business pro-

cessing (Agosta 2000). The middle tier normally runs on a server operating system

like Windows NT, Windows 2000 Server, Unix or Linux.

Finally, there is the back end. The back end maps to a data store. For most appli-

cations, the data store is a relational database. Other possible data stores include

ERP systems, CRM Systems, e-commerce systems, data warehouses, and legacy

applications. The back end usually resides on mainframe or high-end workstation.

Although the presentation, application, and database layers are usually imple-

mented running in an environment with at least one CPU associated with a given

tier, they could all run on a single-processor machine. Depending on the complexity

of the application and the number of computations performed, this single-processor

machine might need to be a mainframe or high-end workstation (Agosta 2000). Like-

wise, the presentation layer and the application layer could reside on the same box

and the data source could be on another box. With the ever-increasing power of

PCs, it is becoming more and more common to see n-tier applications running on a

single consumer-class PC.

There is no rule stating that an n-tier application must be running on multiple

machines. Also, there is no rule that states each layer must have its own processors.

For this reason, it is not unusual to see n-tier applications being developed and

tested on a single-processor machine. Often these n-tier applications only ever run

on a single processor. The main benefit of developing an application as a three-tier

or n-tier application instead of as a single-tiered application is that, if developed

correctly, the application should scale both vertically and horizontally. This means

that as the applications usage and requirements increase, the application does not

have to be rewritten in order to support additional users or features. Instead, the

16

application could be moved to a more powerful workstation or mainframe. Even

better, its various tiers could be spread across multiple computers. The ability to

move components to multiple computers is especially useful in the case where one

tier or one distributed component is becoming a bottleneck. The one tier or single

component could be configured to run as multiple instances on multiple computers

in order to handle the load.

A distributed software application requires at least four things (Scribner et al.

2000):

• The call to a remote object’s method must be serialized into a form that can

be transmitted over a network.

• Some form of transport layer must be implemented in order to move data

between the local system and the remote system.

• Some mechanism must exist for locating the desired object on the remote

system and managing it for the duration of the remote call.

• A security infrastructure needs to be in place to protect both the local system

and the remote system.

The workflow of a distributed application normally starts in the presentation

layer. An end user wants to do something. If the application is secure, the end

user will first have to log into the system. Otherwise, the end user can just make a

request. In either case, the UI accepts the user’s input as a data stream. The UI then

decides if it can handle the request locally or if it needs to access a remote object or

component. In the web environment, most of the requests will need to be forwarded

to a remote object as only simple requests, like sorting the data or searching for a

piece of data that is already present on the local machine, can be accomplished.

17

More complex user requests need to be bundled into a packet of information.

The packet must then be transmitted across the network to a remote server that

hosts an object capable of addressing the user request. The act of packaging a local

object’s data so it can be transmitted across the network’s raw data stream is known

as marshaling (Thai 1999).

As mentioned above, it is possible that the server is running on the same machine

as the client. If that is the case, a loop back occurs. For a web application, either

the local machine’s IP address or the special name “localhost” will be used to refer

to a server running locally.

Whether or not the server is really remote, the server is responsible for accepting

the request from the UI, unmarshaling the raw data stream into usable format, and

invoking the requested object. Once it is invoked, the requested object performs

some task and then returns the result back to the client. When the result appears

in the client-side UI, the end-user is able to see the result and decide whether or

not to act on it. In most distributed applications, it is likely that a single request

will result in multiple objects being invoked to perform some work before a collated

result is returned.

The most common network protocol in use today is TCP/IP. This is the under-

lying protocol that the World Wide Web, electronic email, and the file transfer

protocol use. It is both a connectionless packet delivery service and a reliable stream

transport service (Comer 2000). In simple terms, connectionless packet delivery

means that data transmitted between two computers is divided into packets known

as datagrams. The datagrams are sent out individually across the network. Only

address information attached to each packet header can be used to deliver the con-

tent to the appropriate computer. The reliable stream transport service, on the other

hand, defines a virtual connection. This means it allows a stream of data to pass

18

between two computers by keeping track of all packets. If a packet does not make

it, TCP/IP requests the packet again.

The value of TCP/IP over other network protocols is that it is technology inde-

pendent (Comer 2000). It works across hardware from many different vendors. Also,

it allows for universal interconnection. Any two computers connected to a given

TCP/IP network can communicate with each other. This works because each con-

nected computer is assigned a unique address. As such, a datagram can be sent

from a computer connected to the Internet to any other computer connected to the

Internet. TCP/IP provides end-to-end acknowledgements of datagram transmission

even if both machines are not connected to a common physical network.

TCP/IP has been around long enough for many different application protocol

standards to be developed around it. HTTP, HTTPS, RPC, and FTP are examples

of such application protocol standards. Web browsers always default to connecting to

port 80 on a given machine and transmit their data stream using HTTP or HTTPS.

Remote Procedure Call (RPC) endpoint mappers default to port 135 (Scribner et

al. 2000), and FTP uses port 21 (Comer 2000). A port is simply an abstraction for

a destination on a remote computer. Applications communicate by opening a socket

at a port and sending a data stream to another port. A receiving application needs

to be listening to the destination port in order to receive the data. It is possible to

change the port that an application listens to. Often, ports are changed for security

reasons. For example, many corporate web sites assign port 8080 or some arbitrary

port above 1000 as the port their web server listens to.

Although the Internet has made TCP/IP very popular, other network protocols

exist and are used. It is possible that a new network protocol will be created in the

future. However, as a result of the Internet’s universal popularity and acceptance,

the majority of networks including many internal corporate networks use TCP/IP.

For this reason, creating a new network protocol, although an interesting exercise

19

would not be very useful. Also, most distributed applications that are being built

today use technology that either assumes TCP/IP will be the underlying network

communication protocol or works with TCP/IP as well as other protocols.

Likewise, although one could create a distributed software architecture, several

standard architectures already exist. The next chapter will examine four common

architectures and describe the pros and cons of using each of them as the basis of a

web-based distributed application.

Chapter 3

Component Integration Technologies

3.1 Integration technology considerations

Distributed software has several benefits. From a performance point of view, dis-

tributed applications have vertical scalability. Resource intensive components can

be isolated on their own machines in order to reduce contention. From a reusability

point of view, a new application can remotely access existing distributed compo-

nents. Libraries of distributed components can greatly reduce development time.

More importantly, an end user does not need to have direct access to the machine

a component is installed on in order to execute it. Instead, the end user is able to

access the component from any client machine connected to the same network as the

component’s machine. End users might not even be aware that they are accessing a

remote component. Well-designed systems are capable of accessing remote compo-

nents transparently.

However, there are several issues that need to be addressed in order to create a

distributed system. Standards for communicating between the various components

have to be established. A wire protocol or transmission protocol has to be defined.

The encoding of the data that is transmitted must be agreed upon.

Most existing component integration technologies are based on binary protocols.

As such, agreements need to be made at the byte level for components running in

different environments. Take for example one component running on a CISC-based

Intel 80x86 processor and another running on a RISC-based Sun SPARC processor.

20

21

At the processor level, the binary machine code that is generated at compile time is

different. Also, data and text is encoded differently. At the binary level PCs encode

text in ASCII while mainframes encode text in EBCDIC. To make matters worse,

RISC processors and CISC processors, also, encode multibyte characters differently.

This difference is referred to as endianness. All of these differences must be handled

by a distributed application’s communication protocol.

As long as all components are developed using the same technology, such as

COM or Java, the integration is fairly straightforward. However, integrating mul-

tiple components based on different integration technologies becomes complicated.

Most existing component integration technologies are really proprietary in nature.

Wrapper applications must be created to translate one technology into the other.

These wrapper applications must also deal with issues such as type compatibility.

For instance, an integer defined in one technology may be too large to be represented

as an integer in another technology.

The issue of integration becomes even more complicated when trying to integrate

applications that were originally designed as standalone applications. Legacy systems

are often stovepipe systems. They lack the ability to easily adapt to the evolving

needs of users and businesses (Somasekar 1999). In order to integrate stovepipe

legacy systems, wrapper objects must be created. These wrapper objects need to

perform two functions. They must allow access to the legacy application, and they

must handle the communication with other legacy applications or the controlling

system.

Modern component integration technologies evolved from two sources. They

evolved from transaction processing (TP) monitor systems such as IBM’s Customer

Information Control System (CICS) or BEA’s Tuxedo. They, also, evolved from

object request broker (ORB) systems (Monson-Haefel 2001).

22

A TP monitor is essentially an operating system for procedural business applica-

tions. A TP monitor controls an application’s environment (Monson-Haefel 2001).

TP monitors support transaction management, resource management, and fault tol-

erance to various degrees. A TP monitor environment allows for communication

between procedures and applications through the use of remote procedure calls

(RPCs). Applications on a TP monitor can be invoked by synchronous or asyn-

chronous messages using RPCs.

ORBs, on the other hand, are a communication backbone. A client application

uses ORBs to locate and interact with remote objects (Monson-Haefel 2001). Objects

are instantiated as instances of a class. A single class can be used as the template to

instantiate many different objects. This model becomes an issue when a client appli-

cation is trying to access an object that maintains state information. On receiving a

request for a stateful object, the ORB must be capable of locating the correct object

instance. A remote method invocation (RMI) call, instead of a RPC call, is used to

request a remote object.

ORBs, unlike TP monitors, do not resemble operating systems. ORBs are not

designed to handle concurrency, transaction management, or fault tolerance. As

such, developers must create their own solutions to manage resources and handle

transactions.

Modern component integration technologies, sometimes referred to as Compo-

nent Transaction Monitors (CTMs), are a hybrid of TP monitors and ORBs. These

CTMs work with object-oriented technologies. In fact, CTMs are created as dis-

tributed objects. They form a framework that provides both TP monitor features like

transaction management and ORB technology that features efficient object access.

Several CTMs are popular today including COM+ over CLR, CORBA, and

Enterprise JavaBeans. However, using a CTM might not be the best solution for a

given problem. The decision of whether or not to use a CTM or a remoting archi-

23

tecture, such as DCOM, SOAP, or Java RMI, often depends on the task and the

homogeneity of the objects that need to be accessed. In many cases, the less compli-

cated and less resource intensive distributed remoting architectures are more than

adequate. The next few sections will examine four popular distributed integration

technologies.

3.2 COM as an integration technology

Microsoft’s COM+ and the component language runtime (CLR) are the latest archi-

tectures that build upon their years of research into component integration technolo-

gies. The road that leads to COM+ and CLR started with Microsoft’s research into

developing a compound document architecture. The current version of Microsoft

Office is a perfect example of the benefits of a compound document architecture.

Compound documents look like a single document but integrate objects or ele-

ments created in different applications. For instance, tables created in Excel can

be embedded into Word. Likewise, images created in Visio can be embedded in

PowerPoint.

The first compound document technology introduced by Microsoft was known

as Object Linking and Embedding (OLE). Like most new technologies, the first

version of OLE was not perfect (Chappell 1996). There were issues with stability.

OLE also limited what could be embedded. Microsoft’s second attempt at creating

a robust compound document technology appeared with the introduction of OLE

2. The second version of OLE was built on a new foundation known as the compo-

nent object model (COM). COM addressed more than just the problem of creating

compound documents. COM was a common framework that allowed all types of

applications to interact with each other. As the Internet became popular, Microsoft

released another technology, ActiveX, to help developers create powerful Internet

24

applications. ActiveX, like OLE, was built using COM. In fact, OLE and ActiveX

are really the same technology. The only differentiating factor is that OLE is used

in Windows applications and ActiveX is used in Internet applications.

COM is a binary standard that defines a means for allowing heterogeneous com-

ponents to seamlessly interact with each other (Thai 1999). As a binary standard,

COM defines an interface that specifies rules for memory organization and instruc-

tion execution (Rosen et al. 1998). Although the binary standard was based on

features in the C++ programming language, COM is not tied to C++. In fact,

most modern programming languages now have libraries or routines that support

the compilation of code into COM objects.

In order understand COM, it helps to take a look at C++ and how C++ objects

were shared before COM. C++ was designed with the idea of allowing programmers

to write user-defined types (UDTs) that could be reused in other applications (Box

1998). Initially, this type of sharing was provided through class libraries. The problem

with early class libraries was that developers using a library had to understand it.

To a large extent, understanding how to use a library meant reading the source

code. Another problem with class libraries is that they are compiled into the same

executable as the application code. If a bug is found in the library or the library is

updated, the entire application needs to be recompiled.

Dynamic Link Libraries (DLLs) were introduced as a solution for getting around

the problem of having to recompile an entire application if a library used by the

application was updated. Using DLLs, all a developer has to do is link the DLL into

the application in order to access the library code. The compiler’s linker provides

references to the DLL at compile-time. The linker also provides stubs for the public

methods and variables that are exposed by the DLL. At runtime, an application’s

loader uses the stubs to dynamically load the DLL into memory and locate the

25

desired methods. This results in the physical package of the library class being

decoupled from application code (Box 1998).

The use of DLLs was not without problems. First, DLLs are not standardized

at the binary level. The lack of standardization becomes an issue when different

compilers are used to create the application and the DLL. C++ compilers mangle

the names of methods in different ways in order to support the object-oriented

concept of method overloading. As such, a DLL created using one C++ compiler

will more than likely not be accessible to a client application compiled with a different

compiler. Similarly, the use of encapsulation in C++ creates a problem because it

is defined as a syntactic standard but not as a binary standard. At the binary level,

C++ objects are simultaneously an interface and an implementation (Box 1998).

Aside from these technical problems, DLLs also suffer from a lack of version

management. DLL location problems and DLL conflicts can occur when multiple

instances or versions of a DLL exist on the same computer. Also, different applica-

tions might be tied to different versions of a DLL. To make matters worse, under

Microsoft Windows, all DLLs are normally stored in a single folder and registered

using the same name in the system registry.

The lack of a binary standard and name mangling in DLLs can be resolved by

separating the interface from the implementation. The interface can be defined as an

abstract class that uses virtual functions. All C++ compilers use the same technique

for handling virtual functions. They create a static array of function pointers known

as a virtual function table (vtbl). The vtbl contains one function pointer for each

virtual function defined (Box 1998). When an instance of an object that has virtual

functions is running, a virtual function pointer (vptr) is initialized and points to the

vtbl. When a client application calls a virtual function, the vptr is dereferenced into

the vtbl in order to retrieve a pointer to the actual implementation of the function.

As a bonus, the use of vptrs and vtbls enables object level polymorphism to be

26

Remote Object

1st Pointer to v-table
 vptr

vptr

other values

Remote Method1

Remote Method2

Remote Method3

Remote Method1

Remote Method4

Remote Method5

2nd Pointer to v-table

Figure 3.1: The COM v-table mechanism

achieved. Polymorphism is the ability to use the same method or object name to

refer to different implementations of the method or object.

The next question that needs to be resolved is how to extend the object’s func-

tionality. DLLs really could not be extended. Instead, new versions of the DLLs were

created. As mentioned above, multiple versions of DLLs often resulted in applica-

tions accessing the wrong version. The solution is to allow for the creation of multiple

interfaces. In order to do this a generic well-defined abstract interface needs to be

created. The generic interface can then be used to query the object for its exposed

abstract interfaces and return a pointer to the desired interface at runtime.

This is what the COM specification achieves. It specifies the ability to define

multiple virtual interfaces that share a binary standard and can be accessed through

a commonly defined interface. In order to decouple the interfaces themselves from the

languages that they are implemented in and remove any ambiguity in the interface

specification, an Interface Definition Language (IDL) is used to define the interfaces.

27

The COM IDL is an implementation of the Open Software Foundation Dis-

tributed Computing Environment Remote Procedure Call (OSF DCE RPC) IDL

with a few object-oriented extensions added (Box 1998). The COM IDL is a pro-

gramming language-neutral method for describing remote procedure calls. Addition-

ally, COM supports object-oriented features such as inheritance and polymorphism.

DCE RPC only supports location transparency in the functional world. It does not

support object-oriented transparency (Thai 1999). The COM IDL is compiled using

the Microsoft Interface Language Definition (MIDL) compiler.

The MIDL compiler generates several files. One file is a header file that contains

type definitions for both C and C++ compilers. Another file is a binary file known

as a type library. COM aware environments or languages such as Microsoft Visual

Basic and Java use type libraries. The MIDL compiler, also, generates a Globally

Unique Identifier (GUID) for each interface. The GUID, sometimes referred to as an

Interface ID (IID), is a 128-bit number. In order to achieve uniqueness, GUIDs are

generated based on either a computer’s Ethernet card, which in theory has a unique

ID, or on the computer’s date and time when the interface was compiled. Every time

an interface is recompiled it gets a new GUID.

The MIDL compiler generates additional files to assist in marshaling code. In

COM terminology, marshaling code is referred to as proxy/stub code. Marshaling is

used to create location transparency. When a client object wants to call a method

in a remote object, the marshaling code on the client side, known as the proxy,

marshals the object’s intelligent data into raw data that is then transmitted along

the network using MS-RPC to the server object whose marshaling code, known as

the stub, unmarshals the raw data back into intelligent data (Thai 1999).

COM uses Microsoft RPC (MS-RPC) as the underlying transport layer. MS-RPC

is based on DCE-RPC. MS-RPC and DCE-RPC transfer data following a specifi-

28

cation known as the Network Data Representation (NDR). NDR defines a common

format for handing issues with how data is represented on different platforms.

In order to create a COM object, which can be compiled either as a DLL or

as an executable (EXE), the object’s interfaces first need to be generated by the

MIDL compiler. The compiled interfaces are then implemented in the COM object.

A special interface known as IUnknown must also be implemented. IUnknown is the

generic well-defined interface that is used to dynamically discover other interfaces

implemented in the COM object. IUnknown uses the vtbl to retrieve access to the

other interfaces and methods. All custom interfaces must inherit from IUnknown.

IUnknown defines three methods that must always be present. These methods are

the QueryInterface method, the AddRef method, and the Release method. Query-

Interface is used at runtime to discover the COM interface that a client application

wishes to use. Addref and Release are used for reference counting. Since client objects

can pass object interface pointers to other client objects, the client that instantiates

an object cannot safely kill the remote object. Instead the remote object, itself, needs

to know when it can be released. Every time a client receives an object pointer, it

must use the addref method to increment the reference count. When the client is

finished with the remote object, it needs to call the remote object’s release method.

Once all references are released the COM object terminates.

The requirement that client code must always call the object’s AddRef method

when it receives a non-null interface pointer is a problem with the design of COM.

The client code must also call the Release method before it releases the reference

to the COM object. Otherwise, the object will never die and a memory leak occurs.

This task is not handled automatically. A developer, who creates an application,

that uses the IUnknown interface to access COM objects must manually handle the

calls to the AddRef and Release methods.

29

Microsoft defines a number of other standard interfaces for COM objects. IDis-

patch is one such interface. IUnknown only works in languages that are compiled.

IUnknown will not work in scripting languages like VBScript and JScript where

it is impossible to use type libraries (Box 1998). The IDispatch interface is used

to get around this issue. IDispatch is used for dynamic invocation also known as

automation. IDispatch uses generic marshaling code known as the Automation mar-

shaler. As such, IDispatch does not require the use of proxy/stub DLLs (Thai 1999).

Although languages normally evolve to support the normal COM interfaces, it is a

good idea to create COM objects with a dual interface. A dual interface is simply

an interface that supports both IDispatch automation and IUnknown vtbl binding.

Supporting both interfaces means that the COM object will work with both inter-

pretive scripting environments and environments that can bind directly to statically

defined COM interfaces.

COM supports four types of interoperation that are generally looked for in a com-

ponent technology. It supports in-memory interoperation through its use of C++-like

virtual functions (Box 2000a). By supporting in-memory interoperation, COM gains

a high level of general performance. COM also gains the ability to provide more

CTM-like services while taking less of performance hit.

COM supports source code interoperation. The COM library and APIs are fairly

consistent across platforms. This means that COM source code can be recompiled

on any platform that supports the COM library and APIs.

Likewise, COM supports type information interoperation. COM supports text-

based type interoperation through the use of the COM IDL. It supports binary

type information interoperation through the type libraries that are generated by the

MIDL compiler. API-level type information interoperation is supported through the

use of typelib methods and interfaces.

30

SCMs and Registries
Client Proxy

Client Object
 Remote Object

 SCM

Registry

 SCM

Registry

COM

Runtime

RPC Channel

OXID Resolver

Ping client/server

Server Stub

COM

Runtime

Figure 3.2: DCOM’s Architecture

COM supports wire interoperation via DCOM. The Distributed Component

Object Model (DCOM) is simply a distributed framework supporting services that

allow COM objects running on different networked machines to communicate. There

is no DCOM without COM. The DCOM wire protocol, known as the Object Remote

Procedure Call (ORPC), is built on top of MS-RPC. The services provided by DCOM

include location transparency, remote activation, connection management, and secu-

rity (Thai 1999).

In many ways, DCOM follows the COM communication model. A local client

object makes a request to access to a remote object. Since the details of the remote

object are known at compile time, the request is sent to the local client proxy.

The local client proxy calls the local Service Control Module (SCM). The SCM is

responsible for starting the server that activates both regular COM objects and the

remote client objects that exist on the same machine as the client object.

31

In the case of objects distributed across the network, the SCM is responsible for

using the remote system’s information delivered from the proxy or retrieved from

the operating system’s registry to contact the SCM on the remote machine (Scribner

et al. 2000). It is the job of the remote SCM to instantiate the remote object and

pass the remote object’s reference back to the local SCM. The local SCM then gives

the reference to the client object. At this point the client object and the remote

object communicate using ORPC. ORPC handles security, packet encoding, and

communication between the client object and the remote object.

As far as distributed frameworks are concerned, DCOM is one of the most com-

plex (Scribner et al. 2000). As such it is not extremely scalable. Its garbage collection

and connection management overhead greatly hinder DCOM’s scalability. While a

local object is connected to a remote object, DCOM verifies that both objects are

still online by requiring both objects to send ping messages to both servers every

two minutes.

Therefore, as the number of clients using DCOM to access remote objects

increases so does the network traffic. This impacts system performance. Addition-

ally, the instantiation of a remote object requires several roundtrips. This also

impacts system performance. Part of the reason for the large number of roundtrips

is the need to authenticate that the calling object has the right to access the remote

object (Scribner et al. 2000).

DCOM manages state. In fact, it has to mange state in order to support location

transparency. State information is used to verify that all connected objects are still

alive. If the server does not receive a ping from the client system in six minutes, the

DCOM garbage collector destroys the remote object. Both state management and

garbage collection add to the complexity of DCOM.

Finally, DCOM supports several levels of security. Data can be transmitted

between objects as plain unencrypted text, completely encrypted or via some secu-

32

rity model that fits in between. Likewise, DCOM supports authentication. This

means that DCOM verifies that the client is really who the client says it is. DCOM

also supports various levels of authorization. Although all of these security features

add to the complexity of DCOM and impacts its performance, the ability to secure

communication between remote objects is necessary.

COM+ implements additional services that can be used by COM objects. COM+

was originally known as the Microsoft Transaction Server (MTS). COM+ imple-

ments a framework that is intended to help make the creation of scalable distributed

business objects easier (Ewald 2001). COM+ keeps the application developer from

having to worry about system-level concerns such as transaction management, con-

currency, and resource management (Monson-Haefel 2001). COM+ also handles

things like just-in-time (JIT) activation, object construction, and object pooling.

The services provided by the COM+ runtime environment are implemented using

contexts (Ewald 2001). A COM object must reside in the context that provides the

services it requires. When a COM object in one context calls a COM object in

another context, a proxy intercepts the call and lets the COM+ runtime handle

any of the object’s preprocessing or post-processing needs such as transaction man-

agement. Classes that use one or more COM+ services are marked with attributes

identifying the services that are used. These classes are referred to as configured

classes. Nonconfigured classes are classes that do not use COM+ services. When a

configured class is instantiated, COM+ makes sure the object is placed in the correct

context. Objects instantiated by nonconfigured classes remain in the context of the

creating object.

Like MTS did before it, COM+ uses a catalog to store a class’s declarative

attribute values. Declarative attribute values are what COM+ uses to identify the

COM+ services that the class uses. The developer is responsible for adding entries

to the catalog. The developer can either write a script to setup the catalog entry

33

or use the Component Services Explorer management console to manually add the

appropriate declarative attribute values.

As an integration technology, COM is about to be replaced by the common

language runtime (CLR). CLR is at the heart of .NET. CLR is backward compatible

to support COM objects; however, it is not based on COM. It is a new framework

that in many ways resembles the Java Virtual Machine (JVM). Instead of having

to create COM objects, .NET developers create managed objects (Monson-Haefel

2001). CLR improves on COM by adding metadata that describes both the types

that a component creates and the types that a component relies on. CLR also adds

support for things like object serialization. Although COM is being replaced by CLR,

COM+ is not being replaced. COM+ still works with CLR and is even easier to use.

For instance, instead of requiring a developer to add declarative attribute values to

the COM+ catalog, the attribute classes can be added to a CLR class’s metadata.

One of the main problems with COM+ is that it is a proprietary standard. COM+

is only implemented on Microsoft platforms. Objects on other platforms cannot use

COM+ as a CTM. Likewise, the .NET CLR has yet to be implemented for non-

Microsoft platforms. Several initiatives are underway to create an open source CLR

as well as an open source version of C#. C# is one of the two primary development

languages provided by Microsoft in the .NET framework. Until the initiatives to

create an open source CLR are complete, .NET will remain a Microsoft-only frame-

work. .NET does have the benefit that it supports SOAP for communicating with

other CTMs and distributed object architectures. However once SOAP is being used

as the distributed architecture, it becomes the integration technology and not .NET.

34

3.3 CORBA as an integration technology

The Common Object Request Broker Architecture (CORBA) is a distributed object

management framework specified by the Object Management Group (OMG). Unlike

DCOM, which was specified as an extension to COM and only works with COM

objects, CORBA is just a series of standards and protocols for distributed object

communication in a heterogeneous environment (Olson 1999). CORBA does not

specify a complete object-oriented binary format like COM does. Also, there is no

definitive CORBA implementation. OMG, a consortium of about 800 technology

companies, does not write software (OMG 2001). It only produces specifications

based on the ideas of its members. Once defined, both member companies and third

parties can implement OMG specifications.

The openness of the CORBA standard has resulted in numerous implementations

from a multitude of vendors. The specification does not constrain CORBA to a

single platform or programming language. It is a true heterogeneous solution. As

long as a programming language on a given platform has access to the CORBA

Object Request Broker (ORB) libraries and there is an OMG IDL available for the

platform, that language can be used to create CORBA compliant applications (Raj

1998).

The OMG did not initially specify standards or protocols to define a mechanism

for server side interoperability between different ORB implementations. As a result,

ORBs from different vendors initially could not communicate with each other.

The OMG addressed this issue in the CORBA 2 specification. CORBA 2 defines

a standard transfer syntax known as the General Inter-ORB Protocol (GIOP). It

also specifies how to implement GIOP over TCP/IP. This standard implementation,

known as the Internet Inter-ORB Protocol (IIOP), allows objects to bridge ORBs.

Although most vendors now implement support for IIOP bridging, CORBA still

35

suffers from the perception that ORBs are vendor proprietary and that implementing

a distributed system using CORBA locks the system to a single vendor.

Another initial problem with CORBA was the up front cost of purchasing an

ORB implementation. Whereas DCOM, Java RMI, and SOAP have had free or

essentially free implementations available for some time, only recently have free

CORBA implementations become available. Like the implementations from different

vendors, the free or open source implementations of CORBA vary in their compliance

with the CORBA standard. The ORB that Sun provides as part of the Java SDK

is one of the most compliant CORBA implementations.

Finally, the CORBA standard is still evolving to add additional features. The

current CORBA standard is missing a middleware component comparable to COM+

or Enterprise JavaBeans (EJBs). This shortcoming is supposed to be addressed in

the CORBA 3 standard (Raj 1998). Also, as new standards might require changes in

a particular vendor’s current ORB implementation, it is possible that future versions

of the vendor’s ORBs might not be backward compatible with previous versions. This

means some client code might have to be rewritten or at the very least recompiled

in order to work with an updated ORB.

At a high level, the current CORBA standard resembles DCOM. A client appli-

cation that wishes to access a remote object makes a request to the CORBA Object

Request Broker (ORB). In turn, the ORB locates the requested object and returns

an object reference to the client. The client can then access methods and variables

exposed by the remote object.

The ORB is at the core of the CORBA standard. The ORB is responsible for

all communication between the client and the remote object. It provides the infras-

tructure that allows the client to transparently invoke operations on the remote

object. The ORB locates the requested object implementation, prepares the object

to receive the request, and passes input parameters to the requested object. The

36

ORB

Interface

IDL

Stub

Interface

Dynamic

Invocation

Interface

Dynamic

Skeleton

Interface

IDL

Skeleton

Interface

ORB Core

Object Adaptor

GIOP/IIOP

Client Object
 Remote Object

Figure 3.3: CORBA’s Architecture

ORB knows if it contains the requested implementation or if the request needs to

be routed to another ORB on another machine (Olson 1999).

Every object defined in an ORB must have an implementation and be linked

to an object adaptor. The object adaptor allows objects implemented on an ORB

to access the services that the ORB provides such as, object reference generation,

security, method invocation, registration of implementations, and the activation and

deactivation of implementations (OMG 2000). Object adaptors release the ORB

from having to keep track of object implementations.

The ORB vendor can define many different object adaptors. However, as of the

CORBA 2 specification, every vendor must define the Portable Object Adaptor

(POA). The POA replaces the Basic Object Adaptor (BOA) that was mandatory

under the initial CORBA specification (Olson 1999). The POA is designed as an

object adaptor that minimizes the amount of the code that needs to be rewritten

for each vendor’s ORB implementation. Since the POA is specified in OMG IDL,

languages that can access CORBA libraries should have no problem accessing it.

37

The client can request an object in one of two ways. The client can either make

a request dynamically using the Dynamic Invocation Interface (DII) or statically

using an OMG IDL stub. Also, the client can access some functions in the ORB by

calling the ORB interface (OMG 2000).

The objects available on an ORB can be found by perusing the Interface Repos-

itory (IR). The IR also stores descriptions of all operations that an object can per-

form. A client application that uses DII needs to know what parameters to pass to

DII for the requested object. Unless the client developer knows what parameters are

required, the developer will need to create a generic object that accesses the IR at

runtime in order to discover the required parameters.

All CORBA interfaces inherit from the base object CORBA.Object. As such

each CORBA object inherits a default set of methods. In order to access a remote

object through DII, the get interface method of the remote object must be called

to get an interface definition (Vinoski 1993). Using the interface definition, the

describe interface method is called in order to learn what operations the object

supports. Calling the create request method of the remote object creates a request

object. Arguments or parameters are added to the request object using the add arg

method of the request object. Finally, the invoke method of the request object can

be called to access the DII stub which then passes the request to the ORB. Since

the use of DII requires multiple calls to access an object and may require navigating

the IR, it is considered a costly way to access an object.

The most efficient and easiest way to access a remote object is through CORBA’s

static invocation. With static invocation, an OMG IDL stub is accessed when an

object’s bind method is called. The IDL stub passes the request for the remote

object to the ORB. ORB then obtains the object reference for the client. Once

the client has the object reference, the client accesses the remote object just like it

38

would access any other object. OMG IDL stubs for a given programming language

are generated by a ORB vendor’s IDL compiler.

As with COM, the remote object developer writes an object’s interface in IDL

and then compiles the interface using the vendor supplied IDL compiler. The IDL

compiler generates stub and skeleton code for the various supported programming

languages as well as adds the interface to IR. In CORBA, a stub is also known as

an IDL stub and sits on the client side. A skeleton is a server-side stub.

Skeletons sit on top of the object adaptor and can be used to access an object

implementation. Using a skeleton instead of the object adaptor itself to access an

object is referred to as an up-call. Just like with client side stubs, CORBA supports

both static IDL Skeletons and Dynamic Skeletons (OMG 2000).

A complete client call to a remote object begins with the client object calling

either the IDL stub or the Dynamic Stub. The stub then passes the request to the

ORB. The ORB knows if the requested object is local or remote. If a remote ORB is

called, the ORB marshals the request into a binary format that can be transmitted

across a wire protocol to the remote ORB. If the ORBs come from the same vendor,

proprietary protocols can be used to transmit the request and the results. Otherwise,

the General Inter-ORB Protocol (GIOP) should be used to transmit the request.

Inside GIOP, parameters and return values are encoded in a text format known as

the Common Data Representation Protocol (CDR). As mentioned earlier, the GIOP

and more specifically the TCP/IP version of GIOP known as the Internet Inter-ORB

Protocol (IIOP) were precisely defined in order to allow for communication between

ORBs implemented by different vendors.

The way an ORB accesses objects remotely is vendor specific (Olson 1999). One

common way is for each object on the ORB to have an Interoperable Object Refer-

ence (IOR). The IOR specifies an IP address and port for each remote object. The

information in the IOR can then be mapped to the actual location of the object on

39

a remote computer (Scribner et al. 2000). The problem with IORs is that they must

be published to the client machine. A popular solution is for the remote ORB to

bind all of its object references to a name in a naming service server. The client ORB

will then be able to call the naming service server in order to retrieve the remote

object’s reference (Olson 1999).

On receiving a request, the remote ORB unmarshals it. The remote ORB then

forwards the unmarshaled request to the adaptor object. The adaptor object takes

the request and either directly invokes the remote implementation or uses a skeleton

to invoke the remote implementation. Once the implementation is invoked, its object

reference is passed back through the architecture to the client. The client code can

then access the remote object using its reference.

In comparing CORBA to COM, it should be noted that CORBA does not support

all four of the categories of interoperation that COM supports (Box 2000a). CORBA

does not support in-memory interoperation as it was originally only designed to

create an object-based RPC system. Likewise, CORBA does not support binary

type information interoperation. CORBA does, however, support text-based type

information interoperation through the use of the OMG IDL. It also supports source

code interoperation through the use of the POA and common ORB object interfaces.

Since all compiled IDL files put information in the CORBA Interface Repository

(IR), CORBA is able to achieve API-level type information interoperability. Finally,

the addition of IIOP to the CORBA standard gives CORBA wire interoperability.

When it comes to other metrics on which component integration technologies

should be measured, CORBA has its good points and its bad points. CORBA has

a stateful programming model (Scribner et al. 2000). As such, it is not as scalable

as a stateless architecture would be. However, CORBA does provide the ability to

select its process activation mode (PAM). CORBA objects are activated based on

their policies. One such policy is the Shared Server Policy. The Shared Server Policy

40

enables an object to support Shared Activation. With Shared Activation thread

pools are used to manage requests. This results in less resources being used and

greater scalability being achieved.

Regardless of the server policy used to activate an object, CORBA performs very

efficiently. Once the client has received an object reference, CORBA is no longer in

the picture. The client simply uses the object reference to access the remote object

resulting in direct client/server interaction (Scribner et al. 2000).

CORBA lacks garbage collection and some security features. The primary reason

that CORBA does not support garbage collection is because CORBA does not

define a mechanism for reference counting. CORBA only manages references and

not objects or clients. As such, it does not know whether the object or the client is

still around. Regarding security, CORBA primarily supports the Secure Socket Layer

(SSL). SSL comes into play when accessing remote objects using IIOP (Scribner et

al. 2000). The only other security layer specified by CORBA is the Secure Inter-ORB

Protocol (SECIOP). SECIOP is a secure layer that sits between the ORB and the

GIOP/IIOP. CORBA does not support authentication or authorization.

3.4 Java as an integration technology

Unlike COM and CORBA, which are generic solutions for distributed computing

that can be used in any programming language supporting access to their respective

libraries, Java is a general-purpose programming language and an application run-

time environment. The current version of the Java Development Kit (JDK) includes

libraries, referred to as packages. Some of these packages support CORBA. Moreover,

Java even ships with its own CORBA compliant ORB. Java packages that support

the development of COM objects also exist. Finally, Java packages that support

41

XML and SOAP are being developed. One such package, JAXP, was recently added

to the Java environment as part of the Java 1.4 software development kit (SDK).

Whereas COM was initially specified by Microsoft to address the problem of cre-

ating compound documents, and CORBA was designed by the OMG to address the

problem of distributed computing, Sun Microsystems’s Java platform was originally

designed to be a development environment for interactive digital cable TV boxes

(Naughton 1996). However, Sun found itself unable to get any major cable vendors

or set-top manufacturers to license what was then referred to as Oak. About this

time, the World Wide Web was starting to gain popularity. Sun, wanting to be at

the forefront of web-based solutions, transformed Oak into what is now called Java

and released it for free. Although Sun Microsystems currently maintains control of

the Java standard and sells advanced enterprise versions of the Java SDK as well

as additional Java tools, it does license the right to build Java Virtual Machines

(JVMs) and Java environments to third-party vendors thus making Java an open

environment.

The core Java programming language is closely related to SmallTalk, C, and

C++. Java is a true object-oriented programming language along the lines of

SmallTalk with a C-like syntax. As such, an object represents almost everything in

Java. The eight defined primitive types are the exception to the rule. However, even

the primitive types have object wrappers defined for them. The object wrappers are

required so that primitive types can be passed to methods that only accept objects

as input.

Not only is Java a programming language, it is also a runtime environment. Java

was designed from the beginning to be platform independent. Most programming

languages compile code into a binary format that is appropriate for the platform that

the code will be run on. If the code needs to run on another platform, it will have to

be recompiled for that platform. Java achieves platform independence by having its

42

objects run on a software layer that hides the specifics of the platform. When a Java

class is compiled, bytecode is produced instead of binary code. The compiled class,

now represented by bytecode, can only be executed in the Java runtime environment.

The Java runtime environment is usually referred to as the Java Virtual Machine

(JVM). Today, JVM’s exist for just about every conceivable platform ranging from

Mainframes to Personal Digital Assistants (PDAs). As long as a Java object does

not use any platform-specific code or access any non-Java code it can run in any

environment that has a JVM.

The fact that Java is both compiled and interpreted gives it advantages over

most other languages. The big benefit of being compiled is that bytecode, like binary

code, is smaller and easier to transmit across a network than script files and text.

Another benefit of Java being compiled is compile-time type checking and declaration

verification. In purely interpreted languages, it is not known until the code is run if

the syntax for various functions and methods is correct. For very complex interpreted

applications, some of these issues might not appear until the code has been released

and in use for a while. Finally, bytecode was designed specifically with performance

in mind.

Since Java objects are interpreted, they benefit from the fact that the JVM

manages memory and garbage collection. The JVM also makes it easier to handle

security. Certain types of Java objects, applets for instance, run in what is referred

to as a sandbox. These objects that are normally downloaded from the Internet to a

local machine are restricted as to what they can access and do on the local system.

Java is a young language and runtime environment. It was first released in late

1994. Java initially generated excitement because of what it called applets. Applets

are Java programs that are dynamically downloaded across a network, usually the

Internet, and execute locally in the context of a browser that has a JVM. Applets

43

changed the World Wide Web from being a technology that delivered static HTML

pages to being a technology that can deliver any imaginable application.

Java 1, which includes all JDKs before version 1.2, was limited in many ways.

Its most important shortcoming was that applications and applets written in Java

performed poorly. Java applications could be optimized to execute only about half

as fast as comparable C++ applications. Later versions of the JVM addressed this

issue by not only becoming optimized for the platforms they were implemented on

but also by adding features like Just-In-Time (JIT) compilation where the bytecode

is translated into native binary code before it is executed.

The initial release of Java also lacked many of the general-purpose features that it

has today. Initially, Java did support applets. However, although general applications

could be written in Java, Java’s Abstract Windows Toolkit (AWT) was rather weak

for creating GUIs. Java did provide a couple of really powerful object abstractions

such as the java.net objects for creating sockets and transmitting data across a

network using TCP/IP. However, it did not provide a high-level mechanism for

distributed computing. It also did not have any CTM features.

Java 2 addressed this issue. Java 2 is considered to be all JDKs from 1.2 up to

and including the current JDK, which is version 1.4. Since its introduction, Java

has continued to develop quickly. The number of APIs that are available continue

to grow and promise to provide standard interfaces to just about everything (Eckel

2000). The shear number of choices available now can make it difficult to figure out

which APIs and packages to use in a given project.

In the distributed computing arena, the latest version of Java provides multiple

solutions that may or may not be appropriate depending on the task at hand. If the

goal is to deliver content to an end-user who is accessing an application via a web

browser, servlets can be used. If the content needs to be dynamically modified, Java

Server Pages (JSPs) can be used. Applet and JavaBean objects can be downloaded

44

RMI Registry

Client Code
 Remote Object

Client Stub

TCP/IP Socket

Remote

Reference Layer

Transport Layer

Server Skeleton

Remote

Reference Layer

Transport Layer

Figure 3.4: Java’s RMI Architecture

to the client-side and executed locally. Databases can be accessed using the Java

Database Connectivity (JDBC) API. In cases where transaction management and

security management is desired, Enterprise JavaBeans (EJBs) can be created to

separate business logic from connectivity issues such as database access (Eckel 2000).

Finally, in order to access remote objects, Java provides at least three different

mature solutions in addition to the java.net package. The first distributed object

access solution Sun provided in Java was the Java Remote Invocation Interface

(RMI). Later solutions included RMI-IIOP and Java IDL.

Java RMI was first released as part of JDK 1.1. Because other Java APIs, espe-

cially the Java Object Serialization class, are core to Java RMI’s implementation

both the client and server objects must be implemented in Java (Raj 1998). Ini-

tially, Java did not support remote object activation. All remote objects had to

be started manually before they could be accessed (Seshadri 1999). The lack of

dynamic remote object activation created a few problems. First, if the server object

crashed, its state would be lost and the client would be unable to resume at the

45

point of failure. Second, somebody with access to the server would have to restart

the remote object before it could be accessed again. Finally, every remote object

that might be accessed had to be running. For large distributed applications, this

could result in hundreds of remote objects running at the server. The Java 2 platform

implementation of RMI addressed the problem of dynamic activation by adding a

Remote Object Activation (ROA) mechanism.

To use RMI, a developer writing a client-side Java class needs to import the

java.rmi packages in order to access RMI related methods. Before a Java client

object accesses a remote object it should also install a security manager (Raj 1998).

The security manager can either be the RMISecurityManager or a custom security

manager. The primary reason for installing a security manager is to allow the client

object to handle serialized objects that were not defined in a local class file. If the

client does have access to the definition of all objects returned, then the security

manager does not have to be set. However, this greatly reduces some of the conve-

nience of Java RMI.

When the client object is ready to access a remote object, it must first call the

RMI Naming.lookup() method to access the server side RMI naming mechanism

known as the RMIRegistry. The RMIRegistry holds information about all available

server objects. By default, the RMIRegistry is located at port 1099 on the server

although it could be setup to listen to any port. If the RMIRegistry is not listening

to port 1099, the client call to Naming.lookup() will need to include the id of the

port that the RMIRegistry is listening to. The call to the RMIRegistry must made

be to the desired remote object’s interface and not its class or else an exception will

occur (Eckel 2000). Once RMI knows the location of the remote object, it downloads

the stub to the client if the client stub is not already present (Scribner et al. 2000).

The fact that the client stub does not have to reside on the local machine is a big

difference between RMI and other distributed architectures. The biggest advantage

46

of this fact is that the client-side developer does not need to have access to files

generated by the RMI compiler. It also means that the client-side object does not

really need to know anything about a remote object until it is ready to call it.

Once the client object has the handle to the remote object, it treats the remote

object just like a local object. The only noticeable difference is that remote methods

throw the RemoteException (Eckel 2000). When the client calls methods on the

remote object, the client stub passes the request to the remote reference layer. The

client-side remote reference layer forwards the stub request to the server-side stub

using the Java RMI Wire Protocol (JRMP) as the transport layer (Juric et al. 2000).

JRMP uses two protocols in transmitting data between distributed JVMs. JRMP

uses the Java Serialization object to marshal data for transmission across the network

(Juric et al. 2000). Parameters and return values are transmitted across the network

as either serialized objects or by reference depending on the interface that the value

object implements (Eckel 2000). If the value object implements the Remote interface,

it is passed back to the client by reference. Otherwise, the object must implement

the serializable interface so serialized objects can be passed back to the client.

JRMP uses either direct sockets or HTTP to communicate between JVMs. Direct

sockets are significantly faster than HTTP but like most protocols require openings

in any firewalls that might be present. Most firewalls allow HTTP data through by

default. For HTTP transmission, the RMI data is encapsulated in the HTTP Post.

On the server side, the remote object’s interface must be defined as a Java public

interface. The remote object interface must also extend java.rmi.remote and throw

the RemoteException (Raj 1998). The actual implementation class must extend

either java.rmi.server.UnicastRemoteObject or java.rmi.activation.Activable. If Uni-

castRemoteObject is extended, the remote object must be started manually. If the

Activation object is subclassed, the ROA mechanism will activate the remote object

on the first request from a client (Seshadri 1999).

47

If the remote object extends UnicastRemoteObject, the implementation must

have a constructor defined that takes in a string parameter. The string parameter

is used in the implementations Naming.bind or Naming.Rebind method to add the

remote object to the RMIRegistry. Activatable objects must have a constructor that

takes an ActivationID parameter and a MarshalledObject parameter. Activatable

objects can maintain state between instantiations by persisting the state of the

object before the object exits and then reloading the serialized object on restart.

The ActivationID is used in activating the object.

As with client-side objects, server-side objects must first establish a security

model before binding to the RMIRegistry. For UnicastRemoteObjects a separate

server object with a main method must be created to start the remote object. This

separate main object is responsible for setting the security policy before it creates

an instance of the remote object. The server object then loops until the server is

shut down. Activatable objects need a bootstrap program to configure their security

policies, setup their ActivationGroupIDs, and setup their MarshalledObject. Before

the bootstrap application exits, it will need to call Naming.rebind to add the remote

object to the RMIRegistry.

Like remote objects in CORBA, RMI remote objects need to have skeletons

defined. The RMI Compiler, called rmic, is used to create both client-side stubs and

server-side skeletons for the remote object. As mentioned earlier, RMI itself takes

care of sending the stub to the client object at runtime.

Once the server-side object code has been written, it needs to be compiled by

the Java Compiler, javac, to generate the remote class files. Then if the objects

are Activatable, the RMI daemon process, rmid, must be started. For both Unicas-

tRemoteObjects and Activatable objects, the rmiregistry needs to be started. If the

remote object is Activatable, the bootstrap application needs to be run in order to

48

register the object. For UnicastRemoteObjects, the server main object must be run

in order to instantiate the remote object.

At this point when a client request is transmitted over JRMP to the remote

reference layer, the remote JVM is able to access the remote object skeleton. The

remote object skeleton then returns the remote object reference.

The second solution provided by Java for accessing distributed objects is Java

IDL. Java IDL is a completely Java native CORBA implementation (Juric et al.

2000). Java IDL implements CORBA’s ORB and naming service. It uses GIOP with

CDR mapping over IIOP to transmit data between both JVMs and CORBA objects

developed in any language and running in any environment. Using JDK version 1.2,

Java IDL was noticeably slower than RMI. This was especially noticeable when

handling large data sets (Juric et al. 2000). In JDK version 1.3, both RMI and Java

IDL performed about the same (Juric et al. 2001).

The benefits of using RMI over Java IDL include the fact that RMI is pure

Java and implemented like other Java based technologies. RMI is easier to learn

than CORBA. RMI also supports object passing by value, dynamic class and stub

downloading, URL-based object naming, and utilizes the Java garbage collector

(Juric et al. 2000). The primary advantage of using Java IDL over RMI is that Java

IDL can communicate with any CORBA object in any environment whereas RMI

can only communicate with other RMI objects running on a JVM.

Sun and IBM cooperated in developing Java’s third distributed object solution,

RMI-IIOP (Juric et al. 2001). RMI-IIOP was released as part of JDK version 1.3.

RMI-IIOP is designed to make RMI compatible with CORBA. As can be guessed

by its name, RMI-IIOP uses the standard CORBA IIOP to transmit data. It also

keeps most of the existing RMI API. In order to work with RMI-IIOP, the CORBA

specification has been extended to support a couple of RMI specific features such as

passing objects by value as well as Java to IDL mapping.

49

RMI-IIOP performs equivalently to RMI and Java IDL under Java 2 version 1.3

(Juric et al. 2001). As such, RMI-IIOP is already beginning to replace RMI as the

Java distributed component architecture of choice.

When it comes to the four interoperability categories supported by COM, Java

is for the most part able to handle all four of them (Box 2000a). In-memory interop-

eration is supported by the JVM and therefore by RMI. However, Java IDL, based

on the fact that it is CORBA, does not support in-memory interoperation. With

RMI-IIOP it depends on whether both the client object and remote object are run-

ning in JVMs or not. The same mixed answer goes for Binary-type information

interoperability. The Java class files support it. CORBA objects do not. For RMI,

the Java programming language, itself, gives support to source code interoperation

and text-based type information interoperation. Java’s ability to use reflection to

determine information about an object’s methods means that Java supports API-

level type information interoperation. Finally, wire interoperation is supported by

RMI-JRMP, RMI-IIOP, and RMI-HTTP.

3.5 XML as an integration technology

COM, CORBA, and Java RMI are binary-based complex distributed communication

architectures that have tightly coupled component models (Martin et al. 2000). A

client application wishing to access a remote object must know what technology the

remote object was written in. In an enterprise, legacy applications could have been

written using all three technologies as well as proprietary distributed technologies.

There are two ways for an application framework to integrate such distributed legacy

applications. First, the framework could be written so that it knows how to work

with each technology that was used and is able to associate each remote application

or object with the appropriate technology. Alternatively, each remote application or

50

object could be wrapped in a common technology. In this case, the client application

will only need to know how to work with the wrapper technology.

The problem with the first solution is threefold. First, if RMI was used anywhere,

the framework will have to be written in Java. Although Java is a very powerful

language, there may be reasons why another language would be preferred. Second,

any application that works with multiple distribution technologies quickly becomes

very complicated. Finally, the client needs to have a mechanism for knowing which

application or object used which technology. If the client is being designed to work

with remote applications over the Internet this is probably not possible.

The second solution is much better in that it limits the developer of the client

application to only having to worry about a single communication mechanism. How-

ever, the problem with the integration technologies already examined is that they are

fairly complex to implement and carry a certain degree of overhead. Wrapping any

of these technologies with another one of these technologies doubles that overhead.

This is where the Extensible Markup Language (XML) comes in. Like HTML,

XML is a subset of the Standard Generalized Markup Language (SGML). SGML

is a complex and elaborate standard for validating and structuring documents. The

International Standards Organization (ISO) approved SGML in 1986 (Agosta 2000).

Because of its complexities, most developers consider SGML unpractical. However,

subsets of SGML have been defined. These subsets have proven to be extremely

useful. HTML is just a well-defined subset of SGML tags. The problem with HTML

is the document structure is hard-coded and therefore set. HTML parsers are built

into web browsers. When a web browser comes across a tag it does not recognize, it

just ignores it.

XML was proposed as a way of extending HTML. XML, like HTML, is text-

based. It is also open. Anybody can define a set of XML tags. An advantage of the

text-based open nature of XML is that its tags are self-documenting. The text-based

51

nature of XML has an additional advantage over binary formats in that it can be

visually inspected and easily understood by humans (Deadman 1999).

The structure and types defined in a XML file can be verified using either Docu-

ment Type Definitions (DTDs) or XML Schemas. Of course, XML does not require

DTDs or XML Schemas. XML is loosely typed if DTDs or XML Schemas are not

present. The ability to create loosely typed XML is very important in being able to

create generic data-driven application frameworks. Loosely typed XML is also useful

for using XML to return database record sets (Box 2000a).

Aside from the fact that XML is self-documenting and can be validated, XML

also has the advantage that it can be translated into XML or any other document

format. The Extensible Stylesheet Language (XSL) provides a powerful mechanism

for transforming one XML vocabulary into another XML vocabulary. XSLT can

also be used to transform XML into a completely different vocabulary. XSLT was

originally defined as a means of transforming XML into HTML for display purposes.

Now, as XML becomes a standard way for applications to communicate with each

other, XSLT is being used to convert different XML definitions representing similar

concepts into a common XML format that can be used by applications that are

unable to handle their original formats. This type of transformation normally occurs

between different corporate transaction management systems.

With these strengths, XML has become recognized as a simple and easy way to

pass data between distributed applications. Several wire protocols have been defined

to transport XML payloads across a network. The wire protocol that is currently

getting the most attention and being integrated into most existing technologies is

the Simple Object Access Protocol (SOAP). The initial SOAP specification proposal

specified the use of HTTP as its protocol (Scribner et al. 2000). However, later

specifications opened the door for SOAP to be transported using other protocols.

52

Using XML encapsulated in SOAP as a component integration technology has

both advantages and disadvantages. The biggest advantage is that XML is open. It is

very easy to create XML parsers and SOAP nodes in languages that do not already

have them. SOAP uses HTTP as its protocol. Also, most distributed systems run

behind firewalls. Normally, these firewalls block all but a few specific ports. Port

80, the port used by HTTP, is normally left open. Whereas DCOM, CORBA, and

RMI like to open their own ports thus requiring changes to corporate firewalls,

SOAP can avoid this issue entirely by default. Since HTTP is stateless, SOAP is

stateless. HTTP is known to be a very scalable protocol making SOAP just as

scalable (Scribner et al. 2000).

XML and SOAP are especially useful for moving large amounts of data. Unlike

object-oriented distribution technologies, which must keep objects in memory in

order to work with them, XML payloads can be saved to disk. The Simple API for

XML (SAX) can then be used to parse the XML file. SAX reads data in as needed

(Deadman 1999). Since SAX does not require XML data to be read in all at once,

memory usage can be managed.

Compared to the other distributed technologies, XML and SOAP lack several

features. SOAP is just a wire protocol so it does not have a default client-side

or server-side framework. Also, XML and SOAP do not support object activation.

Additional integration middleware like request brokers and XML parsers must be

available for each object that uses SOAP. The SOAP specification explicitly states

that garbage collection will not be supported by SOAP. Also, SOAP’s security is

currently limited to application-level security and secure sockets in HTTPS (Scribner

et al. 2000). SOAP does not currently provide any security mechanism of its own

although several security mechanisms are in the process of being developed (Herzberg

2002).

53

Obviously, with these limitations, XML has no support for in-memory interop-

eration. However, the XML Document Object Model (DOM), SAX, or other XML

parsers do give XML support for source code interoperation (Box 2000a). DTDs and

XML Schemas give XML support for both text-based and binary-based interopera-

tions. Finally, the SOAP standard gives XML support for wire interoperation.

Returning to the problem of wrapping one distributed technology with another

distributed technology in order to simplify the development of an application inte-

gration framework, SOAP appears to be an excellent solution. SOAP is a lightweight

protocol that does not require a specific framework. The one consideration that must

be kept in mind when using SOAP is that as currently defined, it cannot transport

references. SOAP only transports data. This weakness of SOAP may result in extra

work being required in order to serialize objects for transport.

If the goal is to make a generic application that integrates multiple heterogeneous

distributed components, SOAP is an extremely viable solution. COM, Microsoft

.NET, CORBA, and Java already either intrinsically support SOAP or have libraries

that support SOAP. With minimal reworking, distributed objects created using these

technologies can communicate. For legacy applications that do not support SOAP,

any of the more complex distributed integration technologies can be used to create

a wrapper that supports SOAP.

The next chapter next discusses XML and its related technologies in detail.

Chapter 4

XML Technologies

4.1 XML – a new way to encapsulate data

There has always been a requirement to encapsulate and transport data. Likewise,

there has always been a need for application configuration files. Finally, there has

also always been a need for a way to persist or save application data. XML is suitable

for use in all of these roles.

Before the advent of XML, data was transported between e-commerce applica-

tions using standardized binary formats, delimited file formats such as the Comma

Separated Value (CSV) format, Electronic Data Interchange (EDI) formats, and

various proprietary formats. Each of these exchange formats has its advantages and

disadvantages.

As mentioned in the previous chapter, the main problem with binary formats is

that it is often not possible for humans to interpret the data stream. Although this

can be good from a security perspective, it is not good from a debugging perspective.

On the other hand, binary data streams are normally extremely compact making

them the fastest way to transmit data. The compactness also means that binary

data streams require less bandwidth than other formats.

Delimited file formats are really the precursors to XML file formats. Delimited

files are text files where each row represents a record and each field in the record is

separated by a delimiter. For example, CSV files are delimited by commas. Other

54

55

popular file delimiters include pipes, double pipes, and tabs. Depending on the def-

inition of the file format, each record could have either the same number of fields

or a varying number of fields. Delimited files might have a header that defines what

each field in the record means. If a header is not defined, the meaning of each field

might be difficult if not impossible to interpret. Sometimes the file’s format defini-

tion only exists in source code or user documentation. This can make the creation

of new parsers capable of handling the format more difficult, especially if the source

code or documentation is no longer readily available. Also, in order to keep delimited

files small, developers often use numeric values to encode data. This makes the data

stream more difficult for humans to interpret.

EDI is another popular encoding mechanism for electronic transactions. EDI for-

mats have been around for more than 30 years (Martin et al. 2000). Two popular EDI

formats are X12 defined by the Data Interchange Standards Association (DISA) and

the United Nations Electronic Data Interchange for Administration, Commerce and

Transport (UN/EDIFACT) overseen by the UN Economic Commission for Europe’s

Centre for Facilitation of Administration, Commerce and Trade (CEFACT). Many

other de facto standards also exist including the standard that allows Automated

Teller Machines and credit card verification terminals to communicate with their

home banks.

EDI standards define transaction-based messages that can be transported over

pre-defined wire protocols. The message formats are often dynamic, evolving with

businesses. A schema, which must be accessible to all parties wishing to use the stan-

dard for electronic transactions, defines message formats. EDI messages have data

segments and elements that are wrapped in structures referred to as envelopes. The

envelopes are preceded by headers and followed by trailers. EDI message formats

are really the precursors of SOAP. However, unlike SOAP, which uses easy to read

English tags, EDI elements are represented by numeric codes making it extremely

56

difficult for humans to interpret. Today, many e-commerce sites are working to rede-

fine EDI standards as XML and SOAP standards.

In the realm of application configuration, text files of varying formats have been

used for years to configure various application features. Unix operating systems use

config files to customize the Unix environment, itself, and various Unix applications.

Likewise, .ini files were once used extensively for Windows applications. All of these

file formats shared a common problem. It was often difficult to know which settings

should be modified and which should not. Also, it was often difficult to figure out

the meaning of the various settings. Moreover, specialized parsers had to be created

for each configuration file.

XML files are now starting to be used for configuration purposes. The readability

of XML tags and the ability to use standard parsers make XML files a desirable

alternative to previously used ad hoc formats.

Finally, many applications including word processors and spreadsheets save or

export data using proprietary formats. These proprietary formats make it difficult

for the data to be used in third-party applications. As a result, many of these appli-

cations are starting to save and export data as XML. By exporting a format that

is easy to read and manipulate, these applications are opening the door for sharing

data with third-party applications. Depending on the richness of the XML schema

that is used, presentation information might be lost. However, in many cases where

XML is exported, it is the structure of the data and not the presentation that is

important.

4.2 The basics of XML

The Extensible Markup Language (XML) is a subset of the Standard Generalized

Markup Language (SGML). XML is also related to the Hypertext Markup Language

57

(HTML). Like HTML, XML is text based. Unlike HTML, which is case insensitive,

XML is case-sensitive (Martin et al. 2000). The primary reason for this is that

most human languages do not divide the alphabet into separate cases. Even some

languages that use the Roman alphabet do not have a one-to-one mapping between

upper and lower case letters.

International considerations can be also seen in the fact that legal XML char-

acters include ASCII characters and almost all Unicode characters (Martin et al.

2000). The goal of Unicode is to allow plain text for all languages in the world to be

encoded (Dürst et al. 2002). Most Unicode characters are stored using either the Uni-

code Character Set 2 byte format (UCS-2) or the Unicode Transformation Format

8 bit encoding form (UTF-8). UCS-2 characters always consume two bytes of space.

UTF-8 characters require from one to four bytes of space. In UTF-8 encoding, stan-

dard ASCII characters still only take a single byte. For this reason UTF-8 is often

used in databases and for text files. However, UCS-2 characters are often used to

represents strings in applications as UCS-2 does not require each byte to be exam-

ined in order to determine if it is part of a multi-byte character. Other Unicode

formats include UTF-16 and UCS-4. At the very least, XML parsers are required to

support UTF-8 and UTF-16.

A well-formed XML document conforms to the XML standard. A well-formed

XML document that is both associated with either a Document Type Definition

(DTD) or an XML Schema and complies with the associated DTD or schema is said

to be valid. DTDs or XML Schemas can be thought of as metadata. They are really

an IDL that defines the structure and vocabulary of an XML document.

A well-formed XML document may consist of up to three sections. The legal

sections in an XML document are the prolog, the body, and the epilog. Each section

will be examined in turn.

58

4.2.1 XML Document Prolog

The first section in an XML Document is referred to as the prolog. It is optional

although the XML Declaration almost always appears. The XML Declaration is a

tag that identifies the version of XML used in the document. The XML Declaration

for XML version 1.0 appears below.

<?xml version="1.0" ?>

XML Declarations may also contain optional attributes. The most common

optional attribute is encoding. The encoding attribute is used to identify whether

UTF-8, UTF-16, or ISO-8859-1 (Latin 1) was used to encode the file (Martin et al.

2000). The following XML Declaration identifies the file as being encoded in UTF-8.

<?xml version="1.0" encoding="UTF-8"?>

The XML Declaration could also contain the standalone attribute. The stan-

dalone attribute states whether or not the XML document refers to an external

entity, DTD, or XML Schema. If no external documents are referenced then the

standalone attribute should equal “yes” (Armstrong et al. 2002).

Other items that might appear in the prolog include comments and a possible

document type declaration. Comments begin with the “<!--”character sequence and

end with the “-->” character sequence. Comments cannot include the “--” string

literal. Also, comment text should not end with a hyphen.

<!-- This is a comment -->

The document type declaration is used to declare either an external DTD or

to declare an in-line DTD. DTDs will be discussed in the next section. DTDs are

used to validate XML files. A validating parser is used to parse XML files that are

59

associated with a DTD. A non-validating parser is used to parse XML files that do

not declare a DTD.

The document type declaration begins with the “<!DOCTYPE”command and ends

with a “>”. External document type declarations come in two forms: system and

public (Martin et al. 2000). Both forms are shown below.

<!DOCTYPE documentname SYSTEM "system_URI">

<!DOCTYPE documentname PUBLIC "public_identifier" "system_URI">

Normally, a Uniform Resource Identifier (URI) is nothing more than a Uni-

versal Resource Locator (URL) or web address. Although, other unique names for a

resource can be used. The Public document type declarations are used to reference

DTDs that are stored in some fashion other than those defined by the XML spec-

ification. Normally, Public DTDs are kept in some domain specific document store

(Homer 1999). As such, Public DTDs are not portable beyond the applications and

organizations that both know about the DTD and have the right to access it. System

Document Type Declarations specify the URI where the DTD actually exists. When

System is used, the parser goes directly to the specified URI in order to retrieve the

DTD.

Internal document type declarations allow a subset of the DTD to be defined in

line. The benefit of an internal DTD is that the DTD is always associated with the

XML file and always available when the XML file is available. DTD entities declared

internally can add declarations to an externally defined DTD as well as override

external declarations (Martin et al. 2000).

Another construct that can appear in the prolog is a Processing Instruction (PI).

PIs are a mechanism for giving applications hints about how to process a document.

The syntax for a PI is an instruction string enclosed in “<?” and “?>” tags. The

most common PI is the xml-stylesheet PI. It allows a cascading style sheet (CSS)

60

document to be associated with an XML document. Although PIs can be defined

in an XML file, there is no guarantee that the application working on the file will

know what to do with one.

4.2.2 XML Document Body

The body is the only required section of a well-formed XML document. A well-formed

XML document body consists of one or more elements that form a hierarchical tree.

A well-formed XML document has one and only one root element. Elements may

contain other elements, character data, comments, and other less common constructs

such as character and entity references (Martin et al. 2000).

All XML elements must have a start tag and an end tag. The fact that an element

must always have an end tag is one the requirements that differentiates XML from

HTML. For instance, in HTML the <P> or paragraph start tag does not require a

matching </P> or paragraph end tag. XML, on the other hand, does require the

matching end tag. A new variant of HTML, XHTML, has been defined that follows

XML’s strict tag requirements.

Element tags consist of the element name enclosed by a pair of angle brackets just

like HTML tags. The end tag has a forward slash before the element name. XML also

defines a special tag construct for empty tags. Instead of having to define an empty

tag like <empty_tag></empty_tag>, an empty tag can be defined as <empty_tag/>.

Only pure nesting is allowed in XML documents. Unlike in HTML where over-

lapping tags are allowed for formatting purposes, XML strictly prohibits the use of

overlapping tags. The reason for this is that if tags overlap it is impossible to build

a hierarchical tree. Moreover, the structure of the data becomes ambiguous.

Elements may have attributes. Elements can be thought of as nouns, whereas

attributes can be thought of as adjectives (Martin et al. 2000). Attributes may

appear in either an element start tag or an empty tag. Attributes appear after the

61

element name and consist of an attribute name followed by an equals sign and then an

attribute value in quotes. The fact that the attribute value must always be delimited

by quotes also differentiates XML from HTML where both numeric and undelimited

attribute values are allowed. In other words, <element_name attribute=attrib/>

is not legal. On the other hand, <element_name attribute ="attrib"/> is legal.

Since XML documents are designed to use multiple DTDs and since XML doc-

uments are designed to be extensible by allowing anyone to create an XML vocab-

ulary, unqualified element and attribute names used in the XML document present

the risk of ambiguity and name collision. The concept of namespaces addresses this

issue. Namespaces are specified using the special “xmlns” attribute set to a URI. An

example namespace could be something like xmlns="http://www.somewhere.com/

some.dtd". In order to qualify the element and attribute names, an alias, also known

as the namespace prefix, can be associated with the namespace and then used when

specifying the element or attribute name. The format for specifying a namespace

alias is “xmlns:alias name” followed by the equals sign and the namespace’s URI.

Element and attribute names can then be qualified by using the alias name colon

the element name as shown in the example below.

<Root_Element>

<Child_Element xmlns:alias="www.jprocopio.net">

<alias:Grandchild alias:age="10">data</alias:Grandchild>

<\Child_Element>

</Root_Element>

Namespace attributes can be defined in any element including the root element.

If a namespace attribute does not define an alias, then the namespace automatically

applies to every child element under the declaring element in the hierarchy. If another

namespace without an alias is declared at a lower level, that namespace will become

the default for all children elements under it. The scope of namespaces works the

62

same way as scopes for variable declarations in programming languages. So another

way to write the previous XML document using the XML scoping rules appears

below.

<Root_Element>

<Child_Element xmlns="www.jprocopio.net">

<Grandchild age_attribute="10">data</Grandchild>

<\Child_Element>

</Root_Element>

When XML documents are rendered, the rendering application might not pre-

serve white space by default. For this reason a special attribute with the “xml”

namespace was specified. The “xml:space” attribute can take either the enumerated

value “preserve” or “default”. If “xml:space” is not declared then it is up to the

application whether or not to preserve white space. Also, once “xml:space” is set, it

applies not only to the element it is present in but to any child elements as well.

Another predefined attribute in the “xml” namespace is the “xml:lang” attribute.

XML by default is concerned with encoding data and not about rendering data

(Martin et al. 2000). The “xml:lang” attribute can be used to pass rendering infor-

mation to the application that will be rendering the XML data.

There are a few other interesting constructs that are useful to know about when

writing XML documents. Character references can be used to represent displayable

characters using their decimal or hexadecimal Unicode character encodings. The

string literal “&#” precedes decimal encodings and the string literal “&#x” precedes

hexadecimal encodings.

As with most other markup languages including HTML, TeX and LaTeX, XML

has special characters that cannot appear in XML documents without being escaped.

These characters are the following five characters: “&<>’"”. Entity references can be

used to insert these characters into an XML document. The entity references for

63

the preceding characters are & < > ' and " respectively. Each

entity reference ends with a semi-colon.

Finally, like most markup languages, there is a construct that allows for the

addition of text that would normally be recognized as markup characters. This

construct begins with the “<![CDATA[” tag, includes the desired text, and then ends

with the “]]>” tag. The primary reason for using the CDATA tag is to encapsulate

HTML or XML constructs as data in the XML document.

4.2.3 XML Document Epilog

The XML 1.0 specification allows for an optional epilog to be included in an XML

document. In general, the epilog is not used. One reason for this is that the XML

specification does not define an end-of-document indicator. As a result, many appli-

cations and parsers use the root element end tag as the end-of-document indicator

(Martin et al. 2000). Epilogs may contain comments, white space, and processing

instructions. Since all of these constructs are legal in both the prolog and the body it

is generally advisable to put them in one of those locations instead of in the epilog.

4.3 Validating XML Documents

An XML document that is designed to follow the rules described in the previous

section is referred to as well-formed XML. For many purposes, well-formed XML is

all that is required. In fact for generic frameworks, loosely typed well-formed XML is

preferred. However, for use in some transactions and configuration files, loosely typed

data structures are not satisfactory. Strong typing is sometimes required to precisely

describe XML data structures and define any restrictions on these structures (Mikula

et al. 2000).

64

Today, there are two popular solutions for enforcing strong typing in XML Doc-

uments. Of the two solutions, the oldest is the Document Type Definition (DTD)

specification. The DTD specification dates at least as far back as the SGML specifi-

cation (Mikula et al. 2000). The second solution, which is still a W3C working draft,

is the XML Schema specification. A well-formed XML document that is validated

by a parser using either of these metadata definitions is referred to as valid XML.

DTDs work well for documents and simple data structure descriptions. However,

for other areas where XML is now being applied such as databases, remote object

communication and object serialization, DTDs have serious shortcomings (Mikula

et al. 2000). DTDs are not XML or SGML documents. They are based on Extended

Backus Naur Form (EBNF). As such, they are much more difficult to read and

understand than standard XML files (Martin et al. 2000). Since DTDs are not XML,

they require separate parsers to process them before the XML parser can begin

validating incoming XML files. Applications that use the XML Document Object

Model (DOM) to work with XML data cannot verify that data against the DTD via

the DOM. Also, DTDs are not extensible. They lack support for namespaces and

cannot reference other sources. Likewise, DTDs do not support any data types other

than text. Finally, DTDs have no way of describing inheritance.

XML Schemas are beginning to replace DTDs as the preferred way to validate

XML files. Before the W3C working draft for XML Schema’s was released, a number

of XML-based schema language proposals were developed including the Document

Content Description (DCD), the Schema for Object-Oriented XML (SOX), the Doc-

ument Definition Markup Language (DDML formally known as XSchema), and

XML-Data (Martin et al. 2000). The W3C considered all of these proposals as well

as others in developing its working draft for XML Schemas. Probably the biggest

benefit that XML Schemas provide is that they are valid XML files. Additionally,

the current working draft of the XML Schema specification defines many primitive

65

data types other than just text-based types. Booleans, floating point, binary, and

date primitive types are defined (Fallside 2000). Namespaces and complex object-like

types can also be expressed using XML Schemas.

Since only well-formatted XML and not valid XML will be used in the imple-

mentation of the prototype for this thesis, a full description of DTD syntax will not

be provided here. There are many books and articles available on this topic. The

XML Schema format will be touched on briefly in the next section as an example

XML grammar.

4.4 An overview of some existing XML vocabularies

The real power of XML is its open-ended expressiveness. XML elements and

attributes can be defined by anybody to encapsulate any type of data. This open-

ness has resulted in many different XML vocabularies being created. In a later

section, the grammar for Extensible Stylesheet Language Transformations (XSLT)

will be described. XSLT is a language written in well-formed XML. XSLT is used

to transform well-formed XML documents into other structures. Also, the Simple

Object Access Protocol (SOAP) will be examined in a later section. SOAP is

really only a well-formed XML Document that describes a standard format for

transmitting XML packages.

Three well-known XML vocabularies are briefly examined in this section. The

goal of this section is not to fully document their grammars but to give a flavor of how

flexible XML vocabularies are. First, the XML Schema vocabulary will be examined.

As mentioned in the previous section, the XML Schema specification was designed to

validate flexible and powerful XML vocabularies. Next, will be a quick discussion on

the XML-based configuration file for mapping entity Enterprise JavaBeans to data

66

sources. Finally, this section will wrap up with a quick look at Microsoft’s BizTalk

tag specification for allowing e-commerce applications to exchange information.

4.4.1 XML Schemas

The XML Schema specification was defined as solution for validating XML docu-

ments. XML Schemas are built using XML-based technologies. The XML Schema

document is defined as a well-formed XML document. A sample XML schema

appears below. The sample schema is based loosely on the standard sample that

appears in multiple sources including the W3C working draft.

<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns="http://www.w3.org/2000/O8/XMLSchema">

<annotation>

<documentation>

A simple sample student schema for cs.uga.edu

</documentation>

</annotation>

<element name="StudentRecord" type="StudentRecordType"/>

<element name="Descr" type="string"/>

<complexType name="StudentRecordType">

<sequence>

<element name="StudentName" type="StudentNameType"/>

<element name="Courses" type="CoursesType"/>

</sequence>

<attribute name="matriculated" type="date"/>

</complexType>

<complexType name="StudentNameType">

<sequence>

<element name="FirstName" type="string"/>

<element name="MiddleName" type="string"/>

<element name="LastName" type="string"/>

<element name="SSNumber" type="decimal"/>

</sequence>

</complexType>

67

<complexType name="CoursesType">

<sequence>

<element name="Course" minOccurs="0" maxOccurs="*"/>

<complexType>

<element name="CourseName" type="string"/>

<element name="DeptCode" type="string"/>

<element name="CourseNumber" type="decimal"/>

<element ref="Desc" minOccurs="1" maxOccurs="1"/>

</complexType>

</sequence>

</complexType>

</schema>

Just by looking at the above XML Schema document, it is easy to determine

the basic grammar for XML Schemas. Like most XML documents, XML Schema

documents can have a prolog that specifies the XML Declaration. The root element

is specified by the <schema> tag. The <schema> tag also specifies a namespace that

identifies the document as an XML Schema.

Between the <schema> tags are child elements that define how elements and

content should appear in an instance of an XML document that is validated by this

schema. The most notable child elements that appear in this schema are <element>

and <complexType>. The <annotation> element is really only used as to comment

on the schema and does not affect the validation of an XML document instance.

Elements that appear in the XML document instance are declared by the

<element> tag. Most of the <element> tags shown in the sample schema above

have “name” and “type” attributes. Ultimately, all elements must be associated with

a “name” attribute and a “type” attribute. However, the last <element> tag in the

schema declares a reference, using the “ref” attribute, to another <element> where

the “name” and “type” are declared. This way, one element can inherit another

element. This is especially useful for schemas that define e-commerce transactions

where the billable address might not be the same as the shipping address. Both

the billing address top-level element and the shipping address top-level element can

68

inherit the address element by referencing it. If address is not an element but a

complex type, they can both have their type set to the address type.

Not shown in the example above is the <simpleType> tag. The <simpleType>

tag can be used to define primitive types, such as float and integer, whose value is

restricted in some way. If a primitive type does not need additional restrictions, it

can be defined simply by its name.

The <complexType> tag normally defines a set of elements (Fallside 2000). The

elements defined by a complex type are not really types; rather they are associations

between element names and the constraints that specify how the names will appear

in XML document instances.

The current definition of the XML Schema also defines attributes like “minOc-

curs” and ”maxOccurs” which govern if an element can be repeated. The default

is that an element will appear only once in an associated XML document instance.

There are many other features and constructs available in the XML Schema lan-

guage. All of these features and constructs give XML Schema’s the ability to validate

complex well-formed XML documents.

4.4.2 EJB jaws.xml configuration file

Enterprise JavaBeans were introduced with the Java 2 Enterprise Edition Software

Development Kit (J2EE SDK). Unlike regular JavaBeans that define client-side

objects typically used to build Java GUIs, EJBs are server-side objects. The ini-

tial J2EE specification defined two types of EJBs. Session beans are defined as

being server-side objects that represent business logic or work flow on the behalf

of a client object. Entity beans are defined as being server-side objects that repre-

sent persistent data and the behavior of that data (Eckel 2000). If an entity bean is

associated with a database table, the entity bean can be thought of as representing

a single record in that table. If multiple records need to be accessed and modified,

69

then an entity bean will need to be created for each record. After the initial release

of EJBs, message beans were added as server-side objects that further abstract the

Java Messaging Service (JMS).

EJBs reside in the context of an EJB container. The EJB container controls all

aspects of the life span of the EJB. The container is responsible for instantiating

the EJB, managing its memory, and eventually garbage collecting the EJB object

instance.

The EJB container is made aware of EJBs by importing a deployment descriptor

file. The deployment descriptor file, normally named ejbjar.xml describes the entity

and sessions beans that the container is responsible for. In the case of entity beans,

an additional configuration file is required to map the EJBs internal data mapping

variables to actual persisted data or database fields. The XML file that does this is

the jaws.xml file. The existence of the jaws.xml file is important because the EJB

container framework hides the JDBC communication that occurs between the entity

bean and the database from both developer and the client. A very simple sample

jaws.xml file appears below.

<?xml version="1.0" encoding="UTF-8"?>

<jaws>

<enterprise-beans>

<entity>

<ejb-name>SampleEJB</ejb-name>

<table-name>DFEMLG_SAMPLE</table-name>

<create-table>false</create-table>

<select-for-update>true</select-for-update>

<cmp-field>

<field-name>id</field-name>

<column-name>ID</column-name>

</cmp-field>

<cmp-field>

<field-name>name</field-name>

<column-name>NAME</column-name>

</cmp-field>

70

<cmp-field>

<field-name>status</field-name>

<column-name>STATUS</column-name>

</cmp-field>

</entity>

</enterprise-beans>

</jaws>

The sample jaws.xml file is a well-formed XML document. Like most XML doc-

uments, it has a prolog consisting of the XML Declaration. Its root element is the

<jaws> tag. The <jaws> element currently only has a single child defined. The

child tag is named <enterprise-beans>. The structure of the jaws file implies

that additional object types or technologies could be added at a later date. The

<enterprise-beans> element can then contain one or more <entity> elements

where each <entity> is associated with a single entity bean.

The <entity> elements contain elements that define the name of the bean, the

table that the bean is mapped to, whether or not the entity bean should create the

table if it does not already exist, and whether or not the entity bean has permission

to update the persisted data store. The mappings between the internal entity bean

representation of the persisted data fields and the actual field names follow the

permission section.

The structure of the jaws.xml configuration file makes it very easy to read. Like-

wise, if the persisted data store or database is updated to include more columns, it

will be easy for someone coming behind the original developer to update the EJB

configuration file.

4.4.3 The BizTalk tag specification

The BizTalk framework is an initiative started by Microsoft to investigate the cre-

ation of a solution that integrates applications and enables ecommerce (Scribner et

al. 2000). The primary technologies being used to build this infrastructure include

71

XML, XML Namespaces, and XML Schemas. Currently, the BizTalk framework

does not use the W3C working draft XML schema specification. Instead, it uses

Microsoft’s XML Data-Reduced Schema (XML-DR). Microsoft and other industry

groups involved in the BizTalk effort have committed to moving to XML Schemas

once the W3C formalizes the specification and makes it a recommendation (Martin

et al. 2000).

The goal of the BizTalk project is to create a library of schemas available for every

industry. BizTalk.org has been established to provide a repository of XML Schemas

known as the BizTalk library. Any party interested in allowing their partners’ systems

or other third-party systems to integrate with their systems and applications can

publish a schema in the BizTalk library. Interested partners and third parties can

then retrieve the schema definition, along with a sample XML document, and a

description of the schema from the library. Using the schema, partners and third

parties can configure their systems for data exchange. (Martin et al. 2000).

Microsoft has developed a product called the BizTalk Server. The BizTalk Server

is designed to help businesses with applications running on the Windows platform

transition their inter-application communications to the BizTalk framework. The

most recent version of the BizTalk framework is designed to run on Microsoft’s

.NET platform.

The BizTalk tag specification describes a document structure that contains three

sections. First, there is the mandatory <bizTalk_1> root element that also defines

the BizTalk namespace. Next is the optional BizTalk header element. The BizTalk

header element allows delivery information and manifest information to be specified.

Finally, there is the mandatory body element. The body element is what is used to

define the schema for the actual business process being modeled.

The individual industry schemas in the BizTalk library just define what goes

between the <body> tags. For instance, the following sample XML Document, which

72

was retrieved from the BizTalk library, defines a standard for flight schedules as

established by Virgin Atlantic. In a complete BizTalk document, the following sample

would appear between BizTalk <body> tags.

<?xml version="1.0" encoding="ISO-8859-1"?>

<flightSchedules

xmlns="http://schemas.biztalk.org/virginatlantic_com/xsd/

flightSchedule.xml"

xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"

xsi:schemaLocation="http://schemas.biztalk.org/

virgin-atlantic_com/xsd flightSchedule.xml">

<flightSchedule serviceType="J" effectiveDate="2000-12-31"

discontinueDate="2001-01-03" timeMode="LOCAL">

<flightNumber designator="VS" number="0001"/>

<dayOfOperation dayOfWeek="SUNDAY"/>

<dayOfOperation dayOfWeek="TUESDAY"/>

<leg legNumber="1" originIATACode="LHR" destinationIATACode="EWR"

departureTime="21:00" departureDateOffset="0" arrivalTime="06:20"

arrivalDateOffset="1" aircraftType="744" subFleet="XYZ"

equipmentCode="A01" advanceEquipmentCode="0A1">

<configuration>

<cabin classOfService="J" capacity="14"/>

<cabin classOfService="W" capacity="32"/>

<cabin classOfService="Y" capacity="428"/>

</configuration>

<codeShare agreementType="BLOCKED SPACE" operator="VS">

<partner name="British Midland">

<flightNumber designator="BD" number="0001"/>

</partner>

</codeShare>

</leg>

<segment originIATACode="LHR" destinationIATACode="EWR">

<trafficRestriction IATACode="N"/>

</segment>

</flightSchedule>

</flightSchedules>

Although every XML Schema in the BizTalk library is submitted with documen-

tation describing the meaning of all of the elements and attributes defined, looking

73

at the sample XML document should be just as useful for people familiar with the

industry.

4.5 XML Parsers

The description of the XML file format is only part the picture. Another part of the

picture is the ease with which applications can extract and manipulate XML data.

In order for applications to work with XML data, they must first parse the XML

file or data stream and extract its contents. A developer can either write an XML

parser or use an existing parser.

There are two popular XML parser APIs available today. Many different imple-

mentations of both exist. The two popular APIs are the XML Document Object

Model (DOM) and the Simple API for XML (SAX). When it comes to implemen-

tations of these APIs, SAX parsers are the most consistent with their specification

and each other. DOM implementations, on the other hand, vary in their compati-

bility with the W3C DOM recommendations. In fact, many DOM implementations,

especially the early Microsoft implementations, add proprietary features.

Although both APIs are designed to parse XML documents, they are funda-

mentally very different from each other. XML DOM internally represents an XML

document as a tree structure. In order to build the tree, the entire XML document

must be loaded into memory. Large XML documents may not load if there is not

enough memory available. SAX, on the other hand, is designed around an event-

driven model much like a GUI interface (Scribner et al. 2000). SAX reads an XML

file one element at a time. When a start tag is read, an event is triggered resulting

in a call to an event handler. The event handler either does something with the tag

or ignores it.

74

Since SAX reads an XML document one element at a time, it has a small memory

footprint. As result, SAX has no problem parsing XML documents that are too

large to load into memory. Another big advantage SAX has over DOM is that it is

significantly faster when processing the same file. SAX just needs to read an element

and hand it off to an event handler whereas DOM needs to read in all elements and

construct a tree structure before it can begin to work with individual elements. SAX

is also better than DOM for constructing high-level data structures since it does not

spend time representing low-level structures. Likewise, SAX is a better solution in

instances when only a subset of the XML data needs to be accessed (Martin et al.

2000).

DOM has its own strengths and benefits. In cases where the low-level structures

and not just the content of the XML document are important, DOM is a better

solution. An application using SAX as the parser will need to construct its own in

memory tree to represent low-level XML structures (Martin et al. 2000). DOM is

also much better suited for randomly accessing XML elements in a document. Since

all of the elements are loaded into memory, DOM can quickly locate the required

element. SAX must parse the XML file from the beginning in order to find a random

element. Random access is especially useful in cases where elements and attributes

reference other elements and attributes. Of course, the biggest strength of DOM is

probably the fact that most web browsers support it to some level whereas most web

browsers do not currently support SAX.

4.5.1 The XML DOM

The XML DOM was originally based on the HTML DOM. However as a result

of XML’s generic nature, the HTML DOM can be thought of as a special case of

the XML DOM (Martin et al. 2000). The main problem with the HTML DOM is it

limits what developers have access to. Part of this is a result of the HTML definition,

75

itself. HTML does not conform to the strict rules that XML conforms to. Also, the

HTML DOM is hard coded to work with the HTML specification and not generic

XML specifications. The W3C has created a specification for an implementation of

HTML that follows XML’s stricter rules. This implementation of HTML is known

as XHTML and can be parsed by both the XML DOM and the HTML DOM.

An XML DOM implementation must be available in order to use the XML DOM

with either a browser or a programming language. Since different DOM implemen-

tations are not consistent with each other or the W3C DOM recommendation, it is

important to figure out which features are supported by a given DOM implementa-

tion and which features are not supported.

The first thing a developer needs to do in order to use DOM is create an instance

of the DOM object. When the DOM object is instantiated, a Document object is

created. The Document object extends the Node object. Node is a generic base

object that is used to extend most of the objects defined by DOM.

The Document object provides parser-specific functions including the ability to

load XML documents. As the Document object loads an XML file, it validates the

XML file and creates a tree structure in memory. Two load methods are defined.

The simple “load” method takes an URL as the input parameter and loads the XML

file specified by the URL. The “loadXML” method takes an XML string as input

and generates the XML tree based on the string.

XML files can either be loaded synchronously or asynchronously. How a file is

loaded depends on the value of the Document object’s “async” property. The “async”

property defaults to true, meaning that XML files will be loaded asynchronously.

This is especially useful in web-based applications where loading the XML file syn-

chronously locks the browser. The Document object also provides a “save” method

that can be used to persist the Document object, as XML, to some destination data

store.

76

Child objects associated with the Document object can be used to manipulate

the internal structure of the XML tree. They can also be used to render different

branches of the tree. For example, the “documentObject.documentElement.text”

property can be called to output the XML contents of a Document object. The

documentElement property returns a reference to the root element of the XML tree.

The text property returns the content of the current node and all its children. In

this case, the content of every node including the root node will be returned.

The document can also be used to transform XML into another format using

XSL. This is done by first loading the XML document and XSL document into DOM

objects. Then the XML Document object will call its documentElement’s trans-

formNode method on the XSL Document object’s documentElement. In other words,

the “documentObject.documentElement.transformNode(xslDocumentObject.

documentElement)” call results in transformed data being returned. If the trans-

formation is being done in the context of an HTML browser and the transformed

output is HTML, the result can be passed to the innerHTML property of an HTML

frame so the web browser can render it.

The DOM provides several other objects that inherit from Node. These objects

include the Element object, the Attribute object, and the Text object. Basically,

every component of an XML file can be thought of as a node on the XML tree

generated by the DOM. All XML elements are really nodes. As such, they inherit

the Node object’s methods and can be stored in NodeList collections.

Two very important properties defined by many of the objects that inherit Node

are the “attributes” and “childNodes” properties. The “attributes” property returns

a NodeList of Attribute objects for every attribute associated with the object. Like-

wise, the childNodes property returns a NodeList containing all child nodes associ-

ated with the object. Using the Attribute or childNodes properties, an application

can walk the XML tree. On receiving a NodeList, an application can query for

77

individual Node objects and their childNodes. Other properties supported by Node

objects give information about the Node. For instance, the nodeName property

returns a node’s name and the nodeType property returns the type.

Node-based objects also provide many useful methods. The appendChild and

insertBefore methods can be used to add nodes to a tree. The removeChild method

can be used to delete a child node. There are methods for creating nodes and cloning

nodes. Methods also exist for searching child nodes.

In short, the DOM API provides a rich set of properties and methods that allow

for the parsing, manipulation, and export of XML documents. However, with this

level of functionality comes performance costs and memory overhead.

4.5.2 SAX

The SAX API is much simpler than the DOM API. SAX is not structured as an

object model; rather it is structured as set of Java interfaces (Martin et al. 2000). To

use SAX, an application developer must create a class that implements one or more

SAX parser interfaces. The application only needs to have implementations for the

SAX interfaces it will be using. The rest or the SAX interfaces do not have to be

implemented. At runtime, the application will need to instantiate the parser class

and register the supported interfaces with the parser class (Musayev 2001).

Unlike DOM, SAX does not have an official specification and is not being worked

on by a standards body. The closest thing to a standard implementation of SAX is

written for Java. However, SAX is completely open and in the public domain. As a

result, implementations exist for languages other than Java (Megginson 2001). For

instance, the latest version of Microsoft’s MSMXL contains support for both DOM

and SAX.

The main problem with SAX not being an official standard is that the interface

definitions can change quickly making it difficult to port code from one version of

78

SAX to another. For example in SAX 1, the Java class that implemented a custom

event handler extended the HandlerBase class. The HandlerBase class is now dep-

recated. SAX 2 requires that the custom event handler extend the DefaultHandler

class. As SAX 1 and SAX 2 are fairly different, the rest of this section will focus on

SAX 2.

An event handler class that extends the DefaultHandler class and an instance of

an XMLReader needs to be created in order to use SAX 2 in an application. The

exact syntax for instantiating the XMLReader object depends on both the language

and the SAX 2 library being used. After the XMLReader object is instantiated, it

needs to be associated with an instance of the handler class. This is accomplished

through the use of one or more of the setHandler methods.

The SAX 2 API defines five event handler interfaces. These interfaces are the

ContentHandler, DTDHandler, ErrorHandler, LexicalHandler and DeclHandler. The

ContentHandler is the most commonly implemented handler as it reports basic

parser events. The custom class that implements the ContentHandler interface is reg-

istered with the XMLReader object by calling the XMLReader.setContentHandler

method and passing in an instance of the implemented ContentHandler class.

In order to make the ContentHandler class useful, its interface methods need to

be implemented. The ContentHandler defines several interfaces including startDocu-

ment, endDocument, startElement, endElement and characters. The startDocument

method is triggered when the parser starts parsing an XML document. The end-

Document method is triggered when the parser has finished parsing the document.

The startDocument method can be thought of as a constructor and the endDocu-

ment method can be thought of as destructor. They can be used to pre-process and

post-process data.

The startElement method receives an event each time a start tag is encountered

by the SAX parser. In SAX 2, the startElement parameter list gives the method

79

access to the URI or namespace associated with an element, its local name, its

fully qualified name, and the element’s attribute list. The endElement method is

triggered when an end tag is found. The endElement has access to everything that

the startMethod receives except for the attribute list.

The characters method is triggered when an element’s value is encountered.

Depending on the SAX parser being used, all characters in the element’s value might

be returned at once or only chunks of characters might be returned. As such, the

characters method receives not only an array of characters but also the start position

in the array and the number or characters returned by the most recent event. Using

the startElement, endElement, and characters methods, every element, attribute,

and value can be read into an application.

Once the handler’s methods are implemented and the handler class is registered

with the XMLReader, an XML file needs to be read in. In Java, associating the

XML file with a FileReader object does this. The FileReader object must then be

wrapped in an InputSource object. The InputSource object can be passed into the

XMLReader.parse method. Once the XMLReader.parse method is executed, the

XMLReader starts parsing the XML file and firing events as appropriate.

4.6 XSLT

There are times when an XML document will need to be transformed into another

format. As such it is important to understand how XML can be transformed. XML

transformations generally fall into one of three categories (Martin et al. 2000). First,

the XML document’s grammar or structure could be translated into another XML

structure. This category of transformation is useful in cases where two applications

use different but similar XML grammars. Second, XML documents may need to

be dynamically modified. For instance, an end user accessing the XML document

80

through a web browser might want to sort or filter data in the document. Third, the

XML document can be transformed into some other non-XML format. The most

common transformation in this category is to transform XML data into HTML for

presentation purposes.

An application that uses one of the standard parsers to manipulate the structure

and vocabulary of the XML document can transform XML. In many cases, writing

code to exploit the functionality of a parser works well. However, when a parser

like the XML DOM is used to modify XML, a procedural language controls the

manipulations. The problem with this is that procedural languages can sometimes

add complexity to the transformation process. Also, the applications or scripts that

do the transformation are not nearly as portable as the XML document itself.

This is where the Extensible Stylesheet Language (XSL) comes in. The XSL

language is an XML grammar. As such, an XSL document is an XML document.

This makes XSL as portable as any other XML document.

Speaking about XSL can be confusing. XSL was initially defined as single

grammar consisting of a single specification. Today, however, XSL is a family of

three related specifications: XSL Transformations (XSLT), XPath, and XSLF. XSLT

transforms XML documents into other formats. XPath adds the ability for XML

elements to reference other XML elements or documents. XSLF is used to render

XML into displayable formats. Both XSLT and XPath are being standardized by

the W3C. A standards committee, on the other hand, is not currently formalizing

XSLF. It is unknown at this time whether or not a standards body will create an

official XSLF specification.

The rest of this section focuses on XSLT and mentions XPath where appropriate.

XSLF is beyond the scope of this document although several good resources can be

found on it.

81

The XSLT specification explicitly states that XSLT was defined as a language

that transforms XML into another XML format. Although the XSLT specification

does not discuss using XSLT to transform XML into other non-XML formats, it is

common practice to use XSLT for such purposes. XML, HTML, and text are the

most common XSLT output formats. However, just about any text-based format

can be produced by XSLT.

Unlike the XML DOM or SAX, XSLT is not a procedural language. XSLT is a

declarative language. Instead of writing code that specifies how an XML document

should be declared, XSLT declares how the resulting document should look. This is

accomplished through the use of templates that map to nodes in the XML source

document and that specify the resulting output for each matched node.

XSLT also differs from DOM and SAX in that it consists of a text file and not an

object library. As such, XSLT requires a processor, sometimes known as the XSLT

engine, to perform the actual transformation. The XSL processor reads in both

the source XML file and the XSLT file. The processor then builds an internal tree

structure to represent the XML file. It also builds an internal structure to represent

the XSLT file. The internal structure for the XSLT file could be a tree or could be

some other structure that helps optimize the transformation process (Martin et al.

2000). Once the structures are built, the XSL processor starts at the XML source

document’s root node and walks the XML tree trying to match nodes with the

templates defined in the XSLT structure. When a match is found, the template’s

instructions are followed, and the result is added to a result tree. If no matching

template can be found for a given node, no result is output for that node, and the

XSL processor continues walking the tree.

Many XSL parser implementations exist. However, not all of the available XSL

parsers support the full W3C recommendation. Also, some XSL parsers support

additional proprietary features. For example, the XSL parser that ships as part of

82

the Microsoft MSXML DOM does not completely implement the XSL specification.

MSXML’s differences from the standard are important to consider if XSLT docu-

ments are going to be processed within the context of the Microsoft Internet Explorer

web browser.

There are benefits and negatives that need to be considered when to performing

XSL transformations on either the server or the client. The biggest benefit of server-

side transformations is that the developer does not need to worry about whether

or not the client has an XSL processor. The developer also does not have to con-

sider compatibility issues between his implementation of XSLT and the client’s XSL

processor. On the other hand, sever-side transformations consume valuable server

resources and as such can reduce the number of clients the server can support at any

given point in time. Another negative to server-side transformations, is that clients

lose the ability to dynamically change their view of the XML data. Transforming

XML on the client side, allows clients to be given more control over how the data

that exists within the context of their web browser is presented. Client-side trans-

formations can be used to give clients the ability to do things like filter and sort the

data in their view.

As with any other XML file, an XSLT document starts with a prolog. The prolog

defines the XML Declaration and defines the XSL name space.

<?xml version="1.0"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

After the prolog, an optional xsl:output element can be defined. The xsl:output

element has a single attribute named “method”. The “method” attribute can declare

any output value. The most common output values are html, xml, and text.

<xsl:output method="html"/>

83

The IE5 implementation of the XSL processor does not support the xsl:output

element. So if the XSLT document is to be transformed at the client in the context

of the IE5 web browser, the xsl:output element should not be used.

The rest of the XSLT document is made up of templates. Pattern matching is

used to match an XML tree node to a template.

<xsl:template match = "/">

<html>

<head>

<title>A Sample XML to HTML transformation</title>

</head>

<body>

<xsl:apply-templates select="//childElement" />

</body>

</html>

</xsl:template>

In the example above, the xsl:template element has a single attribute named

“match”. The value of the “match” attribute is what the pattern matching engine

attempts to match with an element in the XML document. XPath, which is used by

XSLT, defines the forward slash, “/”, as the root of the document. When the XSL

processor starts parsing the XML document, the first thing it will find will be the

root element. The root element will match the template shown above because of the

forward slash and a standard HTML file template will be generated.

The next construct of interest is the xsl:apply-templates element. In this

particular case, the xsl:apply-templates element has a “select” attribute associ-

ated with it. The value of the “select” attribute begins with two forward slashes.

The two forward slashes are another XPath command. They tell the XSL parser

to find every element node that is a descendent of the current element node

with the name “childElement” and match those elements to a template. If the

<xsl:apply-templates/> element had appeared without attributes, then the XSL

84

parser would have built a node list of all child nodes and started trying to match

each of them to a template.

<xsl:template match = "childElement">

<div>

<xsl:value-of select="."/>

</div>

<\xsl:template>

The “childElement” template now simply returns whatever value was stored in

the “childElement” node. The period, “.”, in XPath is used to represent the current

node. It is analogous to the “this” statement in C++ or Java. Moreover, the period

and the double forward slash, “.//”, can be combined to mean select all children

under the current node. This is especially useful if you append a node name so that

all children under the current node with a given name are returned in a node list.

Using the four simple XSLT constructs described above, an XML document can

be transformed into an HTML document. However those four constructs just barely

scratch the surfaced of the XSLT language. XSLT has constructs for including and

importing other XSLT files. It defines ways to access, modify, and create attributes

for elements. XSLT also defines a loop construct and conditional processing con-

structs. For looping, XSLT defines the <for-each> construct. The <xsl:if> and

<xsl:choose> constructs are used for conditional processing.

Although the MSXML XSL processor does not completely conform to the XSLT

standard, it does add a couple of very powerful features. The most powerful feature

it adds is the ability to embed scripts in XSL files that can then be executed at

runtime. Another powerful feature that MSXML adds is the ability for scripts to

access the XML DOM. These extra proprietary features give a developer a lot of

flexibility. They also give a developer the ability to expand the capabilities of the

XSLT language.

85

4.7 SOAP

Now that XML parsing and document manipulation technologies have been dis-

cussed, the next part of the XML picture that needs to be examined is how XML

documents can be transmitted between remote objects. Many existing technologies

can be used to transport XML documents. The File Transfer Protocol (FTP) and the

Simple Mail Transfer Protocol (SMTP or email) are two popular document transport

protocols. Although these protocols are great for transmitting documents, they are

not great for connecting to remote applications. FTP and SMTP files are delivered

to a remote system. However, using FTP or SMTP will not result in a remote object

being instantiated unless there is a daemon watching for the file’s arrival.

Another way XML can be transmitted is using HTTP. In fact, this is how XML

is sent to a web browser. HTTP works much like a Remote Procedure Call (RPC)

protocol (Box 2000b). HTTP makes a request to a remote server and then waits for

a response. If the server receives the message, it is required to send back a response.

Whether or not the connection between the client and server stays open after the

server response is sent depends on the version of HTTP being used and how it is

configured. In HTTP version 1.1, the client and server have the ability to control

whether a connection is maintained after the response. Applications that require a

complex dialog benefit by keeping the connection alive.

The HTTP protocol is very simple. HTTP uses TCP/IP to communicate between

the client and the server. By default, HTTP messages are sent to port 80. As men-

tioned in previous sections, most firewall applications leave port 80 open so clients

inside the firewall can access the Internet. Another benefit of HTTP is that HTTP

headers and content are transmitted as text. This makes both writing and debugging

applications that communicate via HTTP easy. The biggest benefit of HTTP is of

course the fact that it has become ubiquitous.

86

HTTP has two request commands: GET and POST. The GET command is

used in basic web surfing. It simply requests remote pages. The POST command

is used for inter-application communication. The Post command allows data to be

transported to the server.

A simple HTTP POST request consists of the HTTP header followed by a blank

line, specified by a carriage-return/line-feed sequence, and then the payload. The

payload can be anything including XML documents.

At a minimum, the HTTP POST request header will have four lines. The first line

must start with the POST command followed by the request URI and the version of

HTTP being used. Today, HTTP/1.1 is the default version. The next line must pass

in the HOST construct with a valid URI. This should be followed by the Content-

Type on the next line and then the Content-Length. Optionally, a Connection tag can

be passed. The Connection tag can either have the value “Keep-Alive” or “Close”.

A very simple HTTP request appears below.

POST /Test.exe HTTP 1.1

HOST 123.45.67.89

Content-Type: text/plain

Content-Length: 65

Connection: Keep-Alive

<Function name="Test.exe">

<Parameter>123</Parameter>

</Function>

The HTTP response is even simpler. Like the HTTP request, it has a header

followed by a blank line, and then the payload. The HTTP response header con-

sists of a status code on the first line, the Content-Type on the second line, and

the Content-Length on the third line. The Connection tag can also be passed. An

example response appears below.

87

200 OK

Content-Type: text/plain

Content-Length: 27

Connection: Keep-Alive

<Status value="Complete"/>

HTTP defines a set of standard error codes. Status code 400, for instance, means

bad request. If a bad request is made, the following response is returned to the client.

400 Bad Request

Content-Length: 0

At a basic level, as long as the recipient of the HTTP request knows how to

handle XML data, simple HTTP and XML can be used as a RPC substitute. The

problem with this is that the actual structure of the XML data being sent is ad hoc.

The receiving application on the server side might not know what to do with the

XML. Also, if an error occurs in the remote application, the server might send back

a response, specifically an error response, that is not recognized by the client.

The Simple Object Access Protocol (SOAP) and its predecessor XML-RPC were

developed to define a formal structure for XML documents being transported across

the network. Moreover, both of these protocols were designed with the goal of

allowing XML to marshal data between client objects and remote objects. SOAP

and XML-RPC are not the only RPC serialization formats that have been proposed

for XML. Some of the other XML-based RPC format proposals include XML Meta-

data Object Persistence (XMOP), Electronic Business XML (ebXML), and Web

Distributed Data eXchange (WDDX). However, XML-RPC and SOAP are arguably

the most popular XML-based RPC formats in use today.

XML-RPC gained popularity because of its simplicity and its use of HTTP for

its transport layer. However, XML-RPC is currently being replaced by SOAP. SOAP

88

keeps many of XML-RPC’s best features including support for HTTP as the trans-

port layer. SOAP also addresses several issues that people had with XML-RPC.

These issues will be discussed shortly.

The biggest factor in the rise of SOAP is the fact that most major industry

players, including Microsoft, IBM, and Sun, now support it. Microsoft has integrated

SOAP support into its .NET framework. IBM is working on a couple of different

SOAP libraries for its products. The recently released Java Web Services Package

provided by Sun contains two SOAP enabled libraries. Also, SOAP nodes are now

available for most programming languages. If a SOAP node is not available, one can

be easily written.

4.7.1 XML-RPC

The two most important aspects of XML-RPC are that uses HTTP as its trans-

port layer and that its payload definition is simple. An XML-RPC request payload

consists of a root node named <methodCall>. The <methodCall> element has a

child named <methodName> that describes the remote method to be invoked. The

<methodName> element, in turn, has a child element named <params> that contains

elements describing the remote method’s parameters. A sample XML-RPC payload

appears below.

<?xml version="1.0" ?>

<methodCall>

<methodName>sampleMethod</methodName>

<params>

<param>

<value><string>aStringParameter</string></value>

<param>

</params>

</methodCall>

89

A limited number of scalar types are defined in XML-RPC. The defined types are

int, boolean, string, double, dateTime.iso8601 and base64. The iso8601 specification

defines the date and time format as “YYYYMMDDTHH24:MM:SS”. XML-RPC

does not associate timezone information with the dateTime value. The base64 scalar

type is used to reference a binary file. The base64 type does not actually encode the

binary data (Martin et al. 2000).

Arrays and scalars may also be defined in the XML-RPC request. An array is

denoted by the use of the <array> tag. An <array> is made up of <data> elements

whose children are <value> elements. Although XML-RPC does not require the data

in an array to be of a single type, it would probably be better to have an array of

structures than to mix and match types. An array can contain any type supported

by XML-RPC including other arrays thereby allowing multi-dimensional arrays to

be created.

<?xml version="1.0" ?>

<methodCall>

<methodName>sampleMethod</methodName>

<params>

<param>

<array>

<data>

<value><string>Answer</string></value>

<value><int>42</int></value>

</data>

</array>

<param>

</params>

</methodCall>

XML-RPC’s support of structures works similarly. Instead of <array> and

<data> tags, structures use <struct> and <member> tags. Each <member> element

must contain a single <name> and <value> element as shown below.

90

<?xml version="1.0" ?>

<methodCall>

<methodName>sampleMethod</methodName>

<params>

<param>

<struct>

<member>

<name>Answer</name>

<value><int>42</int></value>

</member>

</struct>

<param>

</params>

</methodCall>

XML-RPC responses resemble XML-RPC requests. XML-RPC responses sup-

port the same parameter types as the request payload. The big differences between

the response payload and the request payload are the names of the root elements

and the number of parameters that can be passed. Instead of the <methodCall>

tag being the root element, the <methodResponse> tag is the root element for an

XML-RPC response. Also, because XML-RPC is designed to work with functions

and methods, only a single <param> element with a single <value> element can be

passed back. As with functions in standard programming languages, the way to pass

back multiple values is to use either an array or a structure.

XML-RPC also provides its own set of error code responses. If a successful

response cannot be returned, an error code must be returned. An error response

contains the <fault> element under the <methodResponse> element. The <fault>

element defines a single value that holds a structure. The fault structure has two

members: the “faultCode” and the “faultString”.

<?xml version="1.0" ?>

<methodResponse>

<fault>

<value>

91

<struct>

<member>

<name>faultCode</name>

<value><int>873</int></value>

</member>

<member>

<name>faultString</name>

<value><string>ErrorMessage</string></value>

</member>

</struct>

</value>

</fault>

</methodResponse>

4.7.2 SOAP

XML-RPC has two major weaknesses. First, its grammar is very verbose. XML-

RPC’s required tags consume a lot of extra space and bandwidth. This is especially

noticeable with large documents. Second, XML-RPC data really has no type. Data

type information is stored in an element like everything else in XML-RPC. Most

other XML-based definitions either use an attribute or an external schema to encode

data types. An XML-RPC parser can only determine the type of a particular value

by looking for an element that is named after a type (Martin et al. 2000).

SOAP addresses both of these issues. SOAP has a much less verbose grammar.

The SOAP request payload defines only three tags. These tags are <Envelope>,

<Header>, and <Body>. The SOAP envelope is the root element of the SOAP pay-

load. It contains both the optional SOAP header, and the mandatory SOAP body.

However, SOAP is not without its share of problems. As a standard, SOAP is

still rapidly evolving. In early drafts and implementations of SOAP, where HTTP

was used exclusively, although never mandated, the HTTP header had to contain

the “SOAPMethodName” header along with the regular HTTP POST headers. The

“SOAPMethodName” contained the URI and name of the function or method to

92

SOAP Envelope

SOAP Header

Header Block 1

Header Block 2

SOAP Body

Body sub-element 1

Body sub-element 2

Figure 4.1: The SOAP 1.2 Envelope

93

call. The URI and the method name had to be separated by a “#”. Also, the first

element in the SOAP body had to be named after the method name and be in the

URI namespace. This allowed remote HTTP servers to validate the consistency of

the name in both the SOAP body’s child element and the header. If the names did

not match, the server could refuse the SOAP message. In SOAP version 1.1, the

“SOAPMethodName” was changed to “SOAPAction”. The “SOAPAction”, like the

“SOAPMethodName” was initially defined as required.

Another change between SOAP 1.0 and SOAP 1.1 was the additional requirement

that SOAP namespaces had to be declared as an attribute of the SOAP envelope.

Since this was not a requirement in earlier SOAP drafts, older SOAP based appli-

cations might not be able to communicate with newer ones. Below is a valid SOAP

1.1 example HTTP POST request.

POST /IObject HTTP/1.1

HOST 123.45.67.89

Content-Type: text/xml

Content-Length: 152

SOAPAction: urn:someObjectNameSpace#methodToInvoke

<SOAP-Env:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

<n:methodToInvoke xmlns:n="urn:someObjectNameSpace">

<theAnswer>42</theAnswer>

</n:methodToInvoke>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Unlike XML-RPC, SOAP does not require parameters to be defined as such or

types to be enforced. It is assumed in SOAP that the name of the method call is

94

the name of the SOAP body’s child tag. The grandchildren of the SOAP body are

assumed to be parameters.

In SOAP, requests are sent between SOAP nodes. The SOAP sender is the node

that the message originated from. The SOAP receiver is the message destination. It

is not required that SOAP messages be sent directly from the SOAP sender to the

SOAP receiver. Instead, the SOAP message path could go through any number of

SOAP intermediary nodes. The optional SOAP header may contain header blocks

that give instructions to any SOAP intermediary nodes that the message passes

through. SOAP intermediaries can be used to pre-process requests and post-process

responses. As such, SOAP intermediaries can perform tasks like logging. When a

SOAP message is sent over HTTP, a SOAP response is expected. If a SOAP message

is sent over some other transport technology, such as SMTP, a response might not

be expected or required.

Like the SOAP request, the SOAP response is less verbose than the XML-RPC

response. The SOAP envelope and SOAP body tags are still required. The SOAP

header is still optional. The biggest difference is that the name of the called method

now has “Response” appended to it.

HTTP/1.1 200 OK

Content-type: text/xml

Content-length: nnnn

<SOAP-Env:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

<n:methodToInvokeResponse xmlns:n="urn:someObjectNameSpace">

<result>Forgotten Question</result>

</n:methodToInvokeResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

95

The optional SOAP header may contain header blocks. Header blocks are really

designed to extend the SOAP message in a flexible and decentralized manner. SOAP

header blocks are associated with namespaces that allow them to target SOAP nodes

along the message path. When a SOAP node receives a SOAP message, it acts in

one or more of the roles that are defined in the SOAP header. Every SOAP node

acts the role of “http://www.w3.org/2001/soap-envelope/actor/next”. If a SOAP

header element contains the SOAP “next” URI attribute, the next SOAP node

that processes the SOAP message must process the “next” node. If a SOAP header

block does not have a SOAP actor attribute, the header block is assumed to be

for the anonymous actor also known as the SOAP receiver. Additionally, there is

an http://www.w3.org/2001/soap-envelope/actor/none” role defined. Header blocks

with the “none” actor are never processed although they may carry data that aids

in the processing of other blocks (Gudgin et al. 2001a).

Not only do SOAP headers define instructions that SOAP nodes can choose to

process, SOAP, headers also define attributes that indicate if the actor must process

a given node. The “mustunderstand” attribute is used to indicate that the SOAP

node specified by the actor’s URI attribute must process the header block or else

throw a mustunderstand fault.

Like XML-RPC, SOAP defines a fault management system. If an error occurs

at a SOAP node, a SOAP fault is returned. A SOAP fault is required to be an

immediate child of the SOAP body. SOAP version 1.0 defined three mandatory fault

elements and one optional fault element. The mandatory elements are “faultcode”,

“faultstring”, and “runcode”. The optional element is “detail”. SOAP 1.1 does away

with the mandatory “runcode” element and adds an optional “faultactor” element.

The “faultcode” is a qualified name. SOAP 1.1 defines four fault codes: Mus-

tUnderstand, VersionMismatch, Client, and Server. MustUnderstand is returned if

a SOAP node does not know how to perform the role it is assigned in a given header

96

block that has a “MustUnderstand” attribute value equal to one. The “VersionMis-

match” fault is returned when an unrecognized or invalid SOAP namespace appears

in the SOAP envelope element. SOAP client faults cover the class of errors where the

SOAP message is either not formed correctly or does not have the necessary data.

A SOAP server fault occurs when the message could not be processed although the

content of the message is correct (Scribner et al. 2000).

A text message stating what error occurred is also returned. This error message

is stored in the “faultstring” element.

The SOAP 1.2 working draft keeps the VersionMatch fault and the MustUnder-

stand fault. It changes the name of the Client fault to Sender fault and the name

of Server fault to Receiver fault. It also adds faults for DTDNotSupported and

DataEncodingUnknown (Gudgin et al. 2001a).

In SOAP 1.0, the “runcode” returned whether or not the function call was passed

to the application even though a fault occurred (Martin et al. 2000). Possible “run-

code” values were 0 through 2, where 0 means maybe, 1 means no, and 2 means

yes. In most cases, a runcode of 1 would be returned. The detail element is used to

return application fault information. The detail element should not be used when

there is a SOAP processing fault.

In SOAP 1.1, the “faultactor” is used to return which SOAP node faulted.

The “faultactor” does not make sense if a direct HTTP connection exists between

the SOAP sender and the SOAP receiver. In that case, a Server or Receiver fault

would be returned. However, if the SOAP message passes through intermediaries,

the “faultactor” may come in very handy when trying to identify which intermediary

caused the problem.

If a SOAP fault occurs, the HTTP response header still returns a “200 OK”

status. The reason for this is that HTTP did not encounter an error. The error

occurred at a SOAP node. If an HTTP error occurs, the SOAP 1.2 working draft

97

specifies that information about the HTTP error could be returned in the SOAP

envelope just like any other fault. However, this is currently not required.

A simple sample SOAP 1.1 error response appears below. Since the error is a

SOAP fault and not an HTTP error, the HTTP status code is returned as “200

OK” or successful.

HTTP/1.1 200 OK

Content-type: text/xml

Content-length: nnnn

<SOAP-Env:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/2001/12/soap-envelope"

xmlns:f="http://www.w3.org/2001/12/soap-faults"?

<SOAP-ENV:Body>

<SOAP-ENV:Fault>

<faultcode>SOAP-ENV:MustUnderstand</faultcode>

<faultstring>SOAP Must Understand Error</faultstring>

</SOAP-ENV:Fault>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

SOAP, like XML-RPC, can define types that are associated with SOAP body

elements. However, unlike XML-RPC, types are usually defined in either an XML

Schema or at the SOAP receiver. Types are almost never specified in the SOAP

message itself.

SOAP supports all of the primitive types built into the XML Schema specification

such as int, float, boolean and string. The XML Schema “type” attribute can also be

used to define primitive types in the XML Schema as describe earlier in this chapter.

Since SOAP is tied to the XML Schema specification, it also supports the same

complex types that the XML Schema specification supports. SOAP elements can

be defined as arrays and structures. SOAP values can reference other SOAP values.

SOAP elements can even be complex values. Basically, SOAP can define any of the

types supported by XML-RPC and more.

98

The SOAP 1.2 working draft is making SOAP messages even more flexible. In

the latest SOAP specification, “SOAPAction” is now optional (Gudgin et al. 2001b).

The SOAP 1.2 working draft also allows for the definition of multiple method calls in

a single SOAP body (Mitra 2001). This could possibly lead to less roundtrips being

required. The only remaining real requirement with regard to method invocation

is that the direct children of SOAP body must be namespace qualified (Gudgin et

al.2001a). Without the namespace, it is impossible to know which method should

be invoked.

Overall, XML and SOAP provide a wide range of solutions enabling complex dis-

tributed applications to work together. As mentioned in the previous chapter, SOAP

still has some shortcomings. However, the fact that it is both becoming ubiquitous

and still evolving means that there is a good chance many of the remaining issues

will be addressed in future revisions of the standard. As it stands today, SOAP can

adequately handle most distributed tasks.

Chapter 5

Survey of existing integration designs

Enterprise Application Integration (EAI) is a catch phrase used in conjunction with

a couple of unique problem spaces. At a high level, EAI refers to both applica-

tion integration and data integration. Application integration refers to the subset

of EAI problems dealing with the integration of different business process compo-

nents. These are components or applications that map directly to how a business

functions. Business process components handle everything from interactions with

remote purchasing and vendor systems to updating the payroll system.

The other part of EAI is data integration. The data integration problem space

consists of locating the desired data sources, querying multiple distributed databases,

and mining both structured and unstructured documents.

The goal of this chapter is to give a brief survey of a few existing EAI designs. The

chapter begins by looking at the web application transaction management problem

space and describing how web services are being developed to aid business in discov-

ering and interfacing with remote web-based transaction systems. Next, web agents

are briefly described. A research project focused on the creation and management of

agents is discussed. Following that, knowledge-based systems are examined at a high

level and previous research efforts into the creation of knowledge-based application

integration architectures are discussed.

99

100

5.1 Web Services

Web search engines have been around for years. They are essentially the phone books

of the Internet. Search engines use applications called web crawlers to go out and

follow links from web site to web site logging information about the content of each

site they encounter. At a high level, this seems like a good way to map the Internet.

However, attempting to map web sites only through discovery, results in many sites

being missed. To get around this problem, web search engines allow web site creators

to register their sites. Once a site is registered, the search engine can send out a web

crawler to map the site and its links.

Although web search engines are great for finding sites that contain general

information about specific topics, there are fundamental flaws inherent in trying to

use web search engines for web service discovery. Web search engines generally only

log keywords. Some search engines do attempt to record semantic data, but generally

this information is not detailed or specific enough to allow for a truly refined search.

Also, search engines generally only deal with web pages.

Human interaction is normally required to examine the list of sites returned

in order to determine which, if any, are relevant to the task at hand. Today, it is

not feasible for an intelligent application to use a web search engine in order to

find a potential business partner’s web-enabled business applications let alone deter-

mine how to communicate with those business applications and submit transaction

requests without human intervention. In fact, it is often not possible for an applica-

tion developer to discover the details of a third party web service without contacting

the appropriate people inside the third party company.

One way to address this problem is to provide directories of businesses and their

web-enabled applications. From a developer’s point of view, the BizTalk library,

which was briefly discussed in the last chapter, is such a directory. The BizTalk

101

library gives developers access to XML standards published by organizations wishing

to provide open access to their e-commerce applications. The problem with the

BizTalk library is that it just defines the communication standard. BizTalk does not

tell the developer where a given e-commerce application is located. It also cannot

be mined by applications seeking potential business partners on the behalf of some

user.

Another way to address this problem is through the use of Universal Description,

Discovery and Integration (UDDI) registries. UDDI registries are being developed

specifically to support the promotion and discovery of remote web services (uddi.org

2000).

The heart of UDDI is the UDDI Business Registry and the business registra-

tion XML files it stores. UDDI business registration XML files are used to provide

information about the web services provided by a business. The UDDI business reg-

istration XML files contain three distinct types of information. Conceptually, the

distinct types of information can be thought of as the white pages, the yellow pages

and the green pages. The UDDI white pages store information related to a company

including the company’s name, address, and contact information. The UDDI yellow

pages describe a company’s industrial categorizations. The green pages describe both

the web services offered by a company and how to access those services.

The UDDI registry defines five data structures. These five data structures are

used to store all the information that UDDI knows about a business (Ehnebuske

et al. 2001). The five structures are the businessEntity, the businessService, the

bindingTemplate, the publisherAssertion, and the tModel.

The businessEntity structure stores the white page information. It holds the

top-level information about a business or entity such as the name of the business

or entity and a description of the business or entity (Ehnebuske et al. 2001). The

businessService structure stores information about a particular service offered by a

102

businessEntity
 : Contains

information about a family of

services

businessService:
 Describes

a particular service

bindingTemplate:
 Provides

technical information about a

service's entry point and

specification

publisherAssertion:
 Describes

relationships between business entities

tModel:
 General, searchable

descriptions of services

Figure 5.1: UDDI data structure relationships.
Adopted from Ehnebuske et al. 2001

103

businessEntity. A businessEntity may be associated with one or more businessSer-

vices. However, a businessService can only be associated with one businessEntity.

The businessService can conceptually be thought of as a container that holds a group

of web services that are somehow related.

Closely tied to the businessService is the bindingTemplate. The bindingTemplate

provides the technical description of a single web service and holds the access point

to that web service. Since a businessService is really just a container of web services,

it can be associated with one or more bindingTemplates. A bindingTemplate, on the

other hand, can be associated with one and only one businessService.

Metadata about a businessService is stored in the tModel. The tModel can define

anything that might be useful to applications searching for a particular businessSer-

vice. In database terms, the tModel is really the key to a particular businessService.

One interesting side affect of having tModels point to a businessService is that other

EDI formats can point to the tModel. So, applications that are not UDDI aware but

are EDI aware can access a businessService (Ehnebuske et al. 2001).

In UDDI, relationships between businesses are defined using the publisherAsser-

tion structure. Large enterprises and businesses that provide a diverse range of ser-

vices often need to use more than one businessEntity structure in order to logically

group the services they provide. However, these businesses might still want to have

a way to associate their businessEntitys so that potential third party clients know

what other services they offer. The publisherAssertion is used to identify describe

this relationship.

The UDDI 2.0 API consists of about forty SOAP messages that can be accessed

against any UDDI compliant registry (Ehnebuske et al. 2001). These forty SOAP

messages are categorized into roughly twenty-five request messages and fifteen

response messages. The UDDI registration APIs can be used by an application

to register a business and its web services. An application can also use the UDDI

104

inquiry APIs to search the registry for a specific business, category of businesses, or

specific services. Based on the information returned by the UDDI API, it is feasible

that the application could then use the green page data to communicate via SOAP

with the services it found (Shohoud 2001).

Microsoft has identified UDDI as one part of its Web Services architecture

(Microsoft 2001). The other parts of the Microsoft Web Services architecture are

XML, SOAP, and the Web Service Description Language (WSDL). UDDI serves

as the discovery service used for locating other web services. XML is the common

format used to describe data. SOAP is the transportation layer. It transports XML

documents between web services. Finally, WSDL is used to describe the functions

provided by a given web service. A SOAP node can use the information contained in

a WSDL document to generate a SOAP message containing an XML payload that

a remote web service will be able to understand. Taken together all four parts of the

Microsoft XML Web services architecture allow web services to interact with any

object model programmed in any language on any device.

WSDL defines a standard way for web services to describe their functionality.

WSDL documents consist of five sections that can be divided into two groups

(Tapang 2001). The first group consists of abstract definitions. The abstract def-

initions describe SOAP messages using an application and platform neutral format.

The abstract group consists of the Types section, the Messages section, and the

PortTypes section. The second group is the concrete description group. The concrete

descriptions define site-specific information. The two concrete description sections

are the Bindings section and the Services section.

If there are no data type declarations or namespaces that need to defined, the

<types> section can be omitted from the WSDL document. As such, the first sec-

tion that must appear in the WSDL document is the <messages> section. The

105

<messages> section is used to define the input and output parameters for the web

service function being defined in the WSDL document.

All input parameters must be defined in one <messages> section and all output

parameters must be defined in another. Parameters that are both input and output

need to be defined in both the input and the output <messages> collections. The

parameter type can be any type that an XML Schema Definition, SOAP definition,

or WSDL document can support.

The <portType> elements are used to define the web service functions. The

<portType> is also used to encapsulate the parameters that are being sent to the

web service function. (Tapang 2001).

Because the three definitions in the abstract section only deal with data content

and not with the specifics of data transmission, the concrete section is required to

define those specifics. The <binding> section defines the protocol, function serializa-

tion, and wire encoding specifications. Tasks that might be done in the <binding>

section include setting the binding style to RPC and defining the soapAction

attribute to call the appropriate method when the SOAP envelope is received.

The <service> elements are used to link a physical location on the network to a

<binding>.

The specifications for the various technologies that make up the XML Web ser-

vices architecture are still in a state of flux. UDDI has not been submitted to a

standards committee. WSDL is just a note and not a standard. And, as mentioned

earlier, SOAP is still evolving as the W3C works on updates to its specification.

Stability and maturity concerns aside, the XML Web services architecture as it

stands today is fairly effective. The Web services architecture offers solutions for

directory lookup, serialization, and message transport. However, at this early stage,

many of the features commonly found in other high level distributed technologies

are not present in the Web services architecture. For instance, developers are not

106

shielded from the specifics of the transportation layer. The individual applications

are responsible for opening and maintaining the communication channel. The indi-

vidual applications are also responsible for handling security and ensuring the cor-

rectness of the message format. Likewise, if any garbage collection is required, the

individual applications must handle that as well.

Since UDDI is designed for a one time or periodic search, it does not fill the roll

of an Object Request Broker. It cannot verify that a resource is currently available.

Also, unless there is some type of janitor process maintaining the UDDI repositories,

it is possible that some businessEnitity definitions will be left in the UDDI repos-

itories after they become invalid. As a result, searches might return pointers and

technical information about services that no longer exist.

Finally, the end user may have to actively partake in the execution of transactions

using web service based systems. They may have to know exactly what web service

they are interacting with and the specifics of its interface. The end user might also

need to know what parameters to pass into the web service. In short, the web service

architecture does not provide an abstract uniform view of all integrated web services.

5.2 Agents

Agent-based transactions operate at a level of sophistication above standard appli-

cation transactions. Agents are autonomous applications that co-exist as part of a

community (Hayes 1999). Agents are designed to both carry out a subset of instruc-

tions on their own and to work with other agents in order to complete their tasks.

The autonomy of agents allows an agent team to form a robust system. Even when

some of the agents in the community are no longer accessible by the system, other

agents can continue to perform at least part of their assigned tasks. The community

aspect of agents means that they either work together as a team to achieve common

107

goals or compete with each other for resources. In other words, although an agent

application is designed to exhibit a degree of autonomy, it is still influenced by the

other agents around it.

By their very nature, agents are capable of integrating disparate systems spread

across the Internet. Agents are a merger of object-oriented design technologies with

knowledge-based systems (Papazoglou 2001). Agents add a level of reasoning, basic

communication, and negotiation skills to standard object-oriented technologies. For

example, an agent can go out and communicate with other agents in order to nego-

tiate the best deal for a given purchase based on some pre-configured requirements.

The requirements could be as simple as purchasing a product for the lowest price

available, or the requirements could be more complex. For instance, the agent could

be programmed with rules requiring it to take into consideration high-level concerns

such as company reputation, support policies and product availability. As such,

agents could be used for things like bidding in online auctions, negotiating a pur-

chase with multiple vendors, or monitoring just-in-time demand for products in a

given supply chain.

Many different types of agents can be defined in an e-commerce environment.

Application agents, for instance, are agents specialized in various business processes

or that have knowledge of various product offerings (Papazoglou 2001). An appli-

cation agent can work in conjunction with other application agents to handle all

aspects of a business including everything from purchasing to order processing.

Another agent type is the personal agent. Personal agents can be used help end

users customize their view of a portal environment. Personal agents can also be used

to search the Internet for information that might interest the client. The latest wave

of digital television recorders really use personal agent technology. Based on a user’s

pre-selected preferences balanced by the user’s actual viewing habits, these devices

108

decide which television programs to record. As the user’s viewing habits change, the

device adjusts its selection criteria.

The general business activity agent is part of another agent class (Papazoglou

2001). Agents, in this class, provide a variety of services ranging from searching

through directories of potential clients or partners, such as the UDDI, to negotiating

deals with agents representing potential clients and partners. Other agent types

include interoperation agents, which can be created to wrap legacy data into a

format that can then be shared with another agent, and security agents, which

provide authentication and authorization services.

Combined, all of these agent types lend themselves to creating an integrated

business environment that can leverage legacy applications while providing a frame-

work for future adaptability. However, there are few problems with agent-based

solutions. First, most agent design and management frameworks are still research

projects. Agent design and management frameworks have not entered the main-

stream (Rogers et al. 2000). The framework projects that do exist are either weak in

agent theory or suffer from gaps of unimplemented functionalities. Currently, agent

technologies also have problems similar to other technologies reviewed in this thesis.

The most common issue being that agents created and running in one framework

often cannot communicate with agents implemented in another framework. Also,

there are issues with how agents access legacy data and how agents can be reused

as agent technologies evolve.

Many research groups are now looking into the overall agent architecture and

framework space. One such project is the Interactive Maryland Platform for Agents

Collaborating Together (IMPACT) system (Rogers et al. 2000). IMPACT is a data

structure-based system. Agents in the IMPACT system make decisions based on the

data contained within arbitrary data structures.

109

The IMPACT system consists of an Agent Development Environment, the

IMPACT server, the Agent Roost, IMPACT connections, and the Agent Log

(Rogers et al 2000). Developers use the Agent Development environment to create

agents. In IMPACT, an agent is essentially an intelligent wrapper that abstracts

legacy code. An IMPACT agent’s intelligence wrapper needs to understand the

data structures supported by the underlying legacy applications’ API and have the

ability to manipulate those structures. IMPACT provides an infrastructure that

allows agents to send and receive messages. When an agent receives a message, the

agent has the ability to decide if it is in a state where it is capable of acting on the

message. The state of the agent is represented by the messages that the agent has

received and values in the underlying data structure. An agent can then perform

actions that modify its current state. However, these actions are constrained by a

predefined set of integrity and action rules.

Once an agent has been created in the Agent Development Environment it can

be deployed to the IMPACT Server. The IMPACT Server provides several services

that assist deployed agents. These services include a registration service, a yellow

pages service, a types service, a thesaurus service, and a translation service. The reg-

istration and yellow pages services behave like similar services in UDDI and BizTalk.

They allow an agent to expose what functionality it provides as well as let the agent

know what functionality other agents provide. The Type Service allows developers

to define relationships between the data types that an agent supports. Types can

be marked as equivalent or as subtypes of other types. The Thesaurus Server works

in conjunction with the Yellow Page Server. It assists the Yellow Page Server in

returning appropriate responses to an agent’s queries. The translation or ontology

service allows agents that are programmed to communicate in one human language,

such as English or Japanese; to communicate with an agent designed to communicate

in another human language.

110

The Agent roost manages deployed IMPACT agents. The Agent roost is respon-

sible for waking agents when they receive a message, handling inter-agent commu-

nication, and locating agents that are not part of its agent set. Active agents are

agents that are currently performing a task. Once an agent’s task is complete the

active agent can either go to sleep and wait for the Agent roost’s next wakeup call,

set an internal alarm clock and sleep until the clock goes off, or remain awake. The

Agent roost keeps track of which state each agent is in.

IMPACT also provides support for the Agent log. The Agent log is a bulletin

board style messaging service. Agents can read and post messages to the Agent log.

The Agent log is useful for both debugging agents and monitoring the interaction

between agents.

Finally, the IMPACT architecture provides a generic connections library, known

as IMPACT connections. IMPACT connections allows IMPACT agents to commu-

nicate with applications and services residing outside the IMPACT environment.

IMPACT agents can use IMPACT connections to communicate with agents residing

in another framework. Also, IMPACT agents can use IMPACT connections to com-

municate with external database servers and web service applications. The IMPACT

connections library gives the IMPACT architecture a degree of extensibility.

5.3 Knowledge-based Systems

Agent-based technologies are great for building transaction-based loosely coupled e-

commerce systems. However, if the goal is to create a single tightly coupled integrated

application, agents are not the best way to go. The main problem with agents, from

the perspective of an integrated application, is the lack of centralized control. Agents

are autonomous by nature and make independent decisions. The results returned by

an agent depend as much on the agent’s current state as they do the underlying

111

data structures that are being manipulated. Also, the autonomous nature of agents

means that knowledge is distributed. Agent-based systems normally do not have a

central knowledge repository.

For frameworks that need to consist of tightly coupled applications, knowledge-

based systems (KBS) are a better solution. Unlike agents, which fall into the cate-

gory of expert systems and are designed to be as effective as humans in performing

their specific tasks, KBS are helper systems. They are designed to assist users who

are attempting to solve problems within a given domain (Tsai 1999). Many KBS

manipulate data from dynamically changing heterogeneous data sources. As such,

the knowledge system has to be capable of adapting to the data source changes.

A lot of research in the area of knowledge-based systems is focused on database

integration issues. There are a couple of different scenarios where the ability to

integrate data from multiple databases is extremely useful. One such scenario is

where critical data needs to be monitored across multiple heterogeneous databases

in order for a user to make real-time decisions (Seligman et al. 2000). It is difficult for

an individual to monitor data constantly coming in from different sources, determine

what data is relevant in a timely fashion, filter out the rest of the data, and then make

a decision based on the relevant data. However, a KBS could be created to analyze

the incoming data and then pass only the data that appears relevant, stripped of

redundancies and inaccuracies, to the end user.

The second scenario where a KBS might be useful is in allowing a user to make a

single query that behind the scenes interacts with multiple distributed heterogeneous

data sources to return a single result (Papakonstantinou et al. 1996). This second

scenario also applies to other data sources such as semi-structured documents.

In both these cases, the generic KBS solution is the same. An end user makes a

request using some form of user interface. The UI transmits the request to a knowl-

edge engine or mediator. The knowledge engine takes the request and determines

112

User Interface

Knowledge

Engine

Data

Source 1

Data

Source 2

Data

Source 3

Wrapper 1
 Wrapper 2
 Wrapper 3

Figure 5.2: The Generic Knowledge-Based System Integration Solution

which data sources satisfy the request. The knowledge engine then sends the pos-

sibly reformatted request to a wrapper or translator. A wrapper is just a layer of

abstraction that sits between the knowledge engine and data source. The wrapper is

responsible for receiving the request from the knowledge engine and then translating

it into a form that can be used to query the data source it wraps. When the wrapper

receives a response, it translates the response into the format the knowledge engine

is expecting and sends the translated response back to the knowledge engine. Once

the knowledge engine receives all of the responses that satisfy the user’s request, it

integrates the data into a single reply, which is then sent back to the end user.

Although some KBS deal only with databases and semi-formatted document

data, other KBS take on the additional task of integrating legacy applications. Data

113

access is important. However, not all aspects of a problem can be solved by intelligent

data access. Sometimes the results of business logic, business processes, or business

simulations are just as important as the raw data, if not more so.

The use of KBS to access legacy applications is being researched across many

different problem domains. One such domain is the forestry domain (Liu 1998;

Somasekar 1999). Forest ecosystems are complex and dynamic. Every element in

an ecosystem has an effect on every other element (Rauscher 1999). The art and sci-

ence of managing these elements, in order to understand how to develop and control

the composition of forest ecosystems, is known as silviculture (Rauscher et al. 2000).

Representing the complexities of a silviculture system is a nontrivial task. Over

time and after a lot of experimentation, forest ecosystem management decision sup-

port systems (FEM-DSS) have been developed to aid foresters in creating plans to

manage the life cycle of tree stands in order to achieve a pre-determined set of goals

(Rauscher et al. 2000). Most of these FEM-DSS have been independently designed

to model and suggest possible solutions for various forest management problems.

Today, over thirty-three separate FEM-DSS have been created to address problems

ranging from regional assessments and forest level planning to project level planning

and economic impact analysis (Rauscher 1999). Most of these systems were devel-

oped in isolation as large, monolithic, standalone applications that model various

aspects of ecosystem management from different points of view (Rauscher 1999).

Existing FEM-DSS applications have man-years of development already invested

in them. As such, it is not economically feasible to write new FEM-DSS applications

that replace existing ones. However, many of the existing applications only focus on

one problem classification type such as selecting species-site combinations for refor-

estation, determining the effect of insects and disease on stand growth, or predicting

the result of different fertilization techniques (McRoberts et al. 1991).

114

Even those FEM-DSS that could be considered full service systems fail to address

all forest ecosystem analysis issues (Liu 1998, Somasekar 1999). The best way to

achieve a truly complete FEM-DSS would be to integrate existing DSS systems

therefore leveraging the category specific knowledge they already provide (Potter et

al. 1999, Somasekar 1999). Reusing existing systems is also more cost effective than

developing new software with similar features.

The Intelligent Information System (IIS) framework is one result of recent

research into developing techniques for integrating multiple FEM-DSS. The initial

IIS framework design had to satisfy a couple of requirements (Liu 1998). First, the

framework needed to be programming language-independent. Second, the framework

needed to be extensible. A mechanism for allowing additional DSS to be added in

the future had to be created. The initial design specified a DCOM-based architecture

running on the Microsoft Windows platform. The MS Windows platform limitation

was acceptable since most of the existing major FEM-DSS run on MS Windows.

CORBA was not chosen as the integration technology because at the time it was

cost prohibitive. Also, the web technologies that are the primary focus of this thesis

were not used as they were just beginning to appear.

The initial IIS design consisted of three components: a user interface, a con-

troller, and the legacy FEM-DSS (Liu 1998). The user interface communicated with

the controller through a dialog-based interface written in Microsoft C++ using the

Microsoft Foundation Classes (MFC). The controller behaved much like an ORB. It

was responsible for receiving the caller request and forwarding it to the appropriate

legacy application. However, it also had additional duties such as managing the con-

versation with the caller and acting as a true middle tier. The legacy FEM-DSS, like

most data sources in a KBS, was called through a wrapper that acted as the proxy

or marshaler between the legacy FEM-DSS and the controller. DCOM was used to

communicate between the controller and the wrapper.

115

Caller

Controller

Wrapper 1
 Wrapper 2
 Wrapper 3

DCOM

Application 1
 Application 2
 Application 3

Figure 5.3: The DCOM-based Integration Framework.
Adopted from Liu 1998

The initial IIS prototype, which was developed by Liu, integrated two FEM-DSS.

It integrated NED-1 and FVS. The Northeast Decision model or NED was originally

designed for managing national forests in the Northeast United States. It has since

evolved into a tool for managing both public and private forests in the eastern United

States (Nute et al. 1999). NED is a goal-driven FEM-DSS designed to help managers

plan for timber, wildlife, ecology, water and landscape objectives (Nute et al. 1999).

NED-1 consists of a user interface, a data manager, a knowledge-base system, and a

logic server (Liu, 1998). NED-1 is a client-server application. All user access to the

NED-1 system is through its user interface. The NED-1 user interface passes infor-

mation through proprietary interfaces to its back-end data management modules.

As Liu points out in his thesis, NED-1 is not language and platform independent.

NED-1 does not support the Internet nor does it incorporate a way to access other

legacy applications.

116

The Forest Vegetation Simulator (FVS) is a standalone DOS application that

runs in batch mode (Liu 1998). It accepts forest inventory or stand examination

data as input to the vegetation simulator. The stand data must be stored in specially

formatted FVS and keyword (KEY) files. After FVS runs, its results are stored in

OUT and TRL files. The OUT and TRL files can then be sent to a post-processor

in order to further refine the results for specific analysis needs (Liu 1998, Somasekar

1999).

Somasekar’s research extended the framework proposed by Liu. From the user

experience perspective, the dialog driven interface of the initial version of IIS was

replaced by a single common interface that handled all of the user’s requests. The new

interface transparently interacted with all of the applications that were integrated

into the framework.

Another design change introduced into IIS by Somasekar was the addition of a

knowledge base and inference engine to the middle tier. Combined with the con-

troller, the knowledge base and inference engine form what is referred to as the

Intelligent Information Module (IIM). The controller performs the same tasks in

this framework as it did in Liu’s. Its primary function is to take client requests and

pass the information to application wrappers. The wrappers, in turn, pass translated

requests to the legacy applications.

In order to store information relevant to the processing of a user’s queries, the

knowledge base was added to the IIS framework. When a legacy application is inte-

grated into the IIS framework, details about the functions the application supports,

interfacing with those functions, and where the application, itself, resides are stored

in the knowledge base.

The inference engine sits between the controller and the knowledge base. When

a user request comes into the IIM, the controller passes the request to the infer-

ence engine. The inference engine interprets the request and queries the knowledge

117

Client

Client Interface Module

Wrapper 1
 Wrapper 2
 Wrapper 3

Application 1
 Application 2
 Application 3

Intelligent Interface Module

Controller
 Inference Engine

Knowledge

Engine

Figure 5.4: The IIS Framework.
Adopted from Somasekar 1999

base for information regarding functions that satisfy the request. Once the inference

engine has retrieved the data from the knowledge base, it tells the controller which

applications it needs call in order to process the user’s request.

Like the original IIS prototype, the framework designed by Somasekar was written

using Microsoft Visual C++. DCOM was still used as the communication layer. The

Microsoft Active Template Library (ATL), because of both its size and simplicity,

was used to write the IIM components. Somasekar chose to integrate three legacy

FEM-DSS into IIS. These legacy FEM-DSS were FVS, FIBER, and Silviculture of

Alleghany Hardwoods (SILVAH). Where she could, she leveraged existing user inter-

faces. For instance, she reused the FVS SUPPOSE interface in the client application.

The rest of the interfaces and supporting dialog boxes were developed using MFC.

118

Based on the successful implementation of the frameworks described above, the

NED programming team has started an initiative to rewrite NED as an exten-

sible application that can integrate other third party FEM-DSS. The NED-2 project

moves NED from a 16-bit code base implemented in the C++ Views development

environment to a 32-bit code base implemented using LPA Prolog, Visual C++,

Visual Basic, and Microsoft Access (Thomasma et al. 1999). Current plans are for

the new design to keep the NED-1 UI while updating the underlying architecture

to utilize COM and DCOM for binding the various components. The data storage

system will be transitioned from the current proprietary NED-1 format to the more

standard Microsoft Access 2000 database system.

As described by Thomasma et al., the heart of NED-2 was initially designed as

an Intelligent Module Manager (IMM). On start, the IMM would query a module

knowledge base, also referred to as a blackboard, for its configuration information

and select a UI to present to the user. As in NED-1, the user would only interact

with the UI. All requests would be sent from the UI to the IMM. The IMM would

then figure out which application modules or problem solving modules (PSMs) need

to be accessed in order to fill the user’s request. Once the PSMs were determined,

the IMM would request parameter information from the Data Manager Module

(DMM) to pass to the PSMs. After the application modules ran, the results would

be returned to the user.

The initial NED-2 architecture design specified two types of application modules

or PSMs. Both types of modules were to be accessed through a common plug-and-

play interface. The two types of modules were native modules and foreign modules.

Native modules were designed to communicate with the IMM using COM. Foreign

modules, on the other hand, were to communicate with the IMM using DCOM and

a wrapper much like the solution presented in the IIS design.

119

Since the original NED-2 design, the module knowledge base has evolved into an

agent-based blackboard architecture (Potter et al. 2002). The blackboard consists

of a database, knowledge agents, and control modules (Chinthamalla et al. 2002).

When a user makes a request of the NED-2 system, the user interface agent posts the

request to the blackboard. Knowledge agents monitoring the blackboard for tasks to

perform can decide whether or not they know how to handle a posted task. When

an agent sees a task that it can perform, it takes the task off the blackboard and

starts processing it. At any point in time, the agent might discover that it needs

some other data in order to finish processing the task (Potter et al. 2002). If such

an event occurs, the agent can add a new task to the blackboard. It can also store

its partial results on the blackboard thus allowing another agent to pick up where it

left off.

The new NED-2 design integrates the prolog-based blackboard facts with a

database (Potter et al. 2002). It is anticipated that most of the data a user needs

to access will appear as a fact posted to the prolog-based blackboard. However, if

the fact is not available on the blackboard, the database can be queried for the fact.

Once a knowledge agent has the facts it needs, it can either post the result to the

blackboard or it can use the facts to create an execution plan for accessing other

internal or external modules that will perform additional processing on the facts.

The new NED-2 design maintains a centralized knowledge base in the form of

the blackboard while decentralizing the IIS controller. This makes the new design

much more modular and extensible. However, the latest NED-2 design still does

not address the issues of NED’s somewhat dated and inflexible user interface or the

integration of external data sources (Potter et al. 2002). It is hoped that the ideas

presented in this thesis might influence future solutions to these issues.

120

5.4 Conclusion

Discovering and accessing legacy applications is a nontrivial problem. Depending

on the specific problem space being examined, different solutions can be proposed.

There is no perfect solution. Instead, frameworks are being designed to try and solve

specific problems.

These frameworks share similar traits. In some form or fashion, knowledge about

the problem space is built into the framework. The knowledge may be stored in

a centralized repository as in the cases of the Web service architecture and the

knowledge-based systems, or knowledge could be distributed among a community

of processes as in the case of agents-based architectures. Also, as with the case

of the forthcoming NED-2 architecture, knowledge could be both centralized and

distributed.

The frameworks also implement some sort of communication infrastructure,

which is used to access other applications or components that are known to the

framework. The communication infrastructure could be as simple as a point-to-point

data channel or as complex as an intelligent messaging service. The communication

infrastructure acts as the glue that binds distributed applications and processes

together.

All integration frameworks have shortcomings. Web service architectures gener-

ally lack a strong intelligence engine. Agent technologies lack a central controller,

which depending on the problem space could either be a positive or a negative. If

the objective is to create a consistent user experience, the lack of a central controller

and the random nature of the agent community can be a negative. Knowledge-based

systems often require changes at the middle tier in order to integrate new applica-

tions.

121

As technology continues to evolve, all frameworks start to look antiquated. The

primary objective in the creation of a new framework should be to make the frame-

work as extensible and flexible as possible. The more extensible and flexible the

framework is, the longer it will satisfy the ever-changing needs of users.

The distributed application integration framework proposed by thesis is described

in the next chapter. Flexibility and extensibility are the primary goals of the design.

Many of the ideas used in the design are based on the integration solutions described

in this chapter.

Chapter 6

Design

6.1 Design Goals

The goal of this thesis is to design a generic, extensible, standards-based, multi-

tiered framework for accessing legacy applications through a common web-based

interface. This thesis builds off of the designs proposed and implemented by Liu and

Somasekar. The primary goal of this thesis is to make their overall design even more

extensible and flexible.

Extensibility and flexibility will be added in three ways. First, no assumption

will be made about the client-side application other than the fact that it is network-

enabled. The client-side application must be capable of communicating with a trans-

lator running on a remote machine. The communication protocol used by the client-

side application is not important so long as it can be received and interpreted by a

translator.

Second, the middle tier will move from being a COM-based C++ architecture

to being a SOAP-enabled Java architecture. The switch in architecture from C++

and COM to Java and SOAP makes the architecture platform independent. The

proposed framework is designed to run on any platform that has a Java Virtual

Machine, a network connection, and supports the proposed framework’s resource

requirements.

Third, the only assumption that will be made about the back-end data sources

is that they can be wrapped in a technology that supports the sending and receiving

122

123

of SOAP messages. From the architectures’ point of view, it does not matter what

wrapper technology is used. The thing that is important is that the wrapper can

both communicate with the architecture using SOAP and communicate with the

legacy data source it wraps

Furthermore, the addition and removal of components should not impact the

middle tier. Component wrappers should register and unregister the component

with the middle-tier controller. On registration, the individual wrappers are required

to tell the controller what services are provided by the components they wrap. The

controller is then responsible for publishing those services to the client on the client’s

next interaction with the framework.

The wrappers should also periodically inform a monitor on the middle tier that

they are still alive and that the components they wrap are ready to receive user

requests. If a wrapper fails to notify the monitor of its existence, the monitor should

check to see if the wrapper is still up and running. If the wrapper has died, the

monitor is responsible for unregistering the wrapper and removing the features it

supported from the framework’s feature list.

The condition where a single user request requires combining results from mul-

tiple legacy data sources also needs to be handled by the framework. In this scenario,

the middle-tier controller needs to know how to divide the user’s request into mul-

tiple tasks. It will also need to know which remote application to assign each task

to and how to reassemble the individual results into a combined response that can

be sent back to the client.

Finally, the framework should be able to save or cache query results. If an end

user chooses to perform a different action on a result set, the results should not

have to be recalculated. Ideally, only the request and not the previous result data

would need to be transmitted back to the middle tier. For standard web browsers

running on a PC or for PC-based applications, the storage or caching requirement is

124

not really an issue. However, for cell phones and other devices where Internet access

is charged by the minute, by bandwidth usage, or by a combination of both, the

ability to reuse a result set in another request without having to retransmit the data

is extremely important.

6.2 The Proposed Architecture

The Generic Application Integration Architecture (GAIA) is being proposed to

address the requirements specified in the previous section. GAIA is a three-tiered

architecture. The client side consists of any application located on any computer or

device that can send and receive messages over the Internet. For instance, one user

could access a GAIA system from their handheld while another accesses it using

a web-enabled cell phone. A third user could access GAIA using a standard PC

running a web browser.

The way to achieve this level of flexibility is to define a Client Interface Layer

(CIL) on the middle tier that communicates with or hosts modules known as trans-

lators. Each supported client application and device needs a translator designed for

it. The translator can communicate with the client using any protocol that the client

accepts. If a client application accepts multiple data formats, a translator can be

created for each format that GAIA needs to support.

The translators communicate with the CIL through a SOAP data stream. The

SOAP payload consists of a well-defined XML document. For messages being sent

from the CIL to the client, the XML document basically consists of the data being

passed back. User interface hints might also be passed in the SOAP payload. The

translator, using the UI hints, will transform the data into a format appropriate for

transmission to the client. For browser-based clients, XSL can be used to perform

125

Wrapper 2
 Wrapper 3

Application 2
 Application 3
 Application 4

Wrapper 4

Client Application
 Client Browser
 Client PDA
 Client WAP Phone

Knowledge

Database

Inference Engine
 Controller

Monitor

Application Interface Layer

Wrapper 1

Application 1

Wrapper 5

Application 5

Application

Interface Translator

Browser Interface

Translator

PDA Interface

Translator

WAP Interface

Translator

Client Inteface Layer

Figure 6.1: The Generic Application Integration Architecture (GAIA).

126

the transformation. However, the use of XSL is not mandatory. Any transformation

routine that produces the desired output format is acceptable.

Client requests must also go through an appropriate translator. A translator

that knows how to handle the client data format will take the incoming data and

transform it into an XML document. Again, XSL could be used to perform the

translation. All that is important, is that the request is transformed into a format

that the CIL can understand. After the XML document is transformed, the translator

will send it to the CIL using a SOAP data stream.

There are two benefits of having a well-defined XML document format for passing

information between the CIL and a translator. First, the CIL does not need to worry

about accepting requests and sending responses in multiple formats. This makes the

implementation and maintenance of the CIL much simpler. Second, all the CIL

needs to know is where to send the results of a request. The CIL does not need

to know how many translators are defined in the system or what formats a given

translator produces. This means that a new translator can be added to the framework

anytime. All the translator needs to know is how to find the CIL, how to send a

SOAP data stream, and how to conform to the XML grammar standard supported

by the framework.

The CIL is also responsible for authenticating and authorizing user requests. Any

security model can be used in the CIL. The important thing is that the CIL rejects

requests from individuals who do not have permission to access the GAIA system. It

is important that the CIL passes the authorization information on to the controller

so that the controller can limit a given user to accessing only the data he or she is

authorized to view.

The back end in many ways mirrors the front end. The goal of the back end

design is to abstract both the implementation details and the physical location of

the legacy data sources. In this case, the middle tier needs to know what data

127

sources or applications are available. However, it should not have to worry about

communicating with these data sources or applications through the use of their

natively supported APIs. The middle tier should be able to assign tasks and receive

the results without having to know if the legacy application has a Java-based API

or a Pascal-based API. The middle tier should not have to know whether or not the

legacy source is a database that requires a SQL query or a COM object that returns

record sets. The middle tier just needs to know what functionality a given back-

end data source supports and what parameters need to be passed in when calling a

particular function.

Hiding the implementation details of the legacy sources is achieved through the

use of wrappers. Much like the translators that communicate with the client side,

wrappers are used on the back end to communicate with the middle tier using a

well-defined XML format and a SOAP data stream. This means the middle tier

only has to support well-known SOAP calls and not a variety of data protocols.

The wrappers communicate with legacy applications or data sources using whatever

format is appropriate. GAIA only requires that a wrapper be able to encapsulate

a legacy application, provide a facility for performing the required transformations,

and communicate with the middle tier using SOAP. No assumption is made as to

what technology is used to wrap the legacy data source. If wrapping the legacy data

source with a COM interface is the best solution, then that is what should be done.

Likewise, if the legacy application is written in Java, the wrapper should more than

likely be written in Java.

Wrappers send data to a listener or SOAP node known as the Application Inter-

face Layer (AIL). The AIL sits on the middle tier and is little more than a SOAP-

enabled web server. When it receives a SOAP payload, it reads the SOAP header

data and figures out which middle-tier component is the target of the message. Once

128

the AIL identifies the middle-tier component targeted by the message, it simply

forwards the SOAP payload to the target.

Any request being sent to a wrapper from a component in the middle tier to a

registered back-end application must have the address of the appropriate wrapper

in the request header. The AIL simply reads the request header and then forwards

the message to the appropriate wrapper.

The core of GAIA is the middle-tier intelligence engine. As defined, the intelli-

gence engine consists of four components. These components are the Controller, the

Inference Engine, the Knowledge Database, and the Monitor. In the future addi-

tional helper components could be added to the intelligence engine. However, for

the time being, these are the only four required middle-tier components.

The controller is the heart of the architecture. The controller is responsible for

coordinating communication between the client-side application and the back-end

legacy data sources. The controller is also responsible for assigning tasks to the other

intelligence engine components. The controller is the component that is responsible

for both preparing and sending SOAP requests to the back-end wrappers and SOAP

responses to the front-end translators.

The inference engine is the brain of the framework. It works with the knowledge

database to determine how best to respond to a user’s query and then creates the

execution plan that is sent to the controller. Depending on the applications that

GAIA is integrating, the inference engine can either be a simple application designed

to follow a straightforward set of rules or a complex application that uses artificial

intelligence techniques to determine the best possible execution plan for a given

user’s query.

The knowledge database is the framework’s memory. The knowledge database

is a data repository. It stores at least four categories of data. First, it stores every-

thing that the system needs to know about the registered legacy data sources. This

129

includes the location of the legacy data source’s wrapper, the methods supported by

the wrapper, the parameters required by the methods, and the return parameters.

Second, the knowledge database stores pointers to all of the supported XML format

definitions. This gives wrapper developers a single place to look for the supported

grammars. The knowledge database might also include a dictionary of terms that

are commonly used in the problem domain. Third, the knowledge database stores

user queries and results. Depending on the domain that the system is being designed

to support, this could either be a very useful feature or a feature that is ignored. In

many domains, a lot of client requests are common. By saving both the queries and

the results, the inference engine can elect to just return the cached results instead of

recalculating them. Fourth, it stores named user data sets. Named user data sets are

normally just results that an end user has decided to save for use in future queries.

Named sets of parameters can also be saved for future use.

The system watchdog is the monitor. It is responsible for making sure all of

the registered legacy data sources are still active. When a registered data source

no longer appears to be active, it is the monitor that is responsible for removing

or inactivating the data source’s definitions in the knowledge database. Depending

on how GAIA is being used, removing an application’s definition from the database

might not be the best solution. If an application is expected to be available most of

the time, it does not make sense to remove its definitions during down periods only

to have to reload the definitions later on. For a problem domain where supported

applications are always supposed to be up, the monitor could be programmed to

send an email to or a page to the application’s support staff whenever there is a

problem with an application.

130

6.3 Data Source Registration

When a GAIA-based environment initially starts, it is not required to know anything

about back-end data sources although it is possible to pre-register data sources.

For tightly coupled GAIA solutions, where the inference engine was designed to be

extremely knowledgeable about the problem domain, the pre-registration of data

sources that should always be available might be a good idea. Knowing what data

sources are available beforehand, means the inference engine might be able to resolve

more user requests without having to request additional information from the users.

The knowledge database and the inference engine could be designed specifically for

the known integrated applications instead of for generic applications. This, in turn,

could result in richer data being captured about the integrated data sources and

better rules being developed for the inference engine.

However, for use in loosely coupled systems where there is less control over the

accessibility of remote data sources, GAIA supports the concept of data source

self-registration. An Application or data source’s wrapper is required to register

information about the application or data source with the middle-tier knowledge

database. When an application’s wrapper is launched, the first thing it does is send

a message to the GAIA application interface layer to see if the GAIA middle tier is

up and running. If the GAIA middle tier is not up, the wrapper can either terminate

with a system error or it can periodically check to see if the middle tier is running

again.

If the AIL is accessible, it will reply to the wrapper. The wrapper, in turn, will

request permission to register with GAIA. The wrapper’s request only needs to

contain basic identification information. The AIL will forward the wrapper’s basic

identification to the controller. The controller will pass the identification information

to the inference engine, which will check the knowledge database to see if the wrapper

131

and its associated application have already been registered with the system. If the

application is already registered or its data definitions just need to be reactivated

instead of resent, the inference engine will request that the knowledge database

activate the application’s settings and then send a successful registration response

back to the wrapper. Otherwise, if the knowledge database does not know anything

about the wrapper and its application, the inference engine will request that the

wrapper submit its data definitions.

A wrapper’s data definitions are sent as a SOAP message. The SOAP payload

contains metadata that describes each function published by the application through

the wrapper. Each function definition lists the parameters the function requires, the

optional parameters it accepts, and the result it returns. The data type of each

parameter is also stored in the metadata payload. It is possible to define default

values for each parameter. All of this information is then stored in the knowledge

database and made available for the inference engine to query on the behalf of a

client application.

A relationship matrix is useful in the case where a user makes a request that

requires additional information to be collected. Depending on how the GAIA infer-

ence engine was designed, it could either try to figure out if it knows how to determine

the missing data or simply default to querying the user for the missing information.

Relationship matrices are simply hints that might make it easier for the GAIA infer-

ence engine to fill in missing information without requiring additional user interac-

tion. For instance, an end user might want to know the value of a given stock in his

or her portfolio but not specify the number of shares owned. The inference engine

could either directly ask the user for the number or shares owned, already know how

many shares are owned as a result of a recent or saved user query, or know about a

function that it can call in order to get the number of shares owned. For dynamically

changing environments, it is difficult to keep the rules in the interface engine up-to-

132

date. However, if there is a rule that says check the available relationship matrices

to see if there is a function that can address a specific problem, the inference engine

achieves an additional level of extensibility.

Once the data definitions are stored in the knowledge database, the wrapper

and its associated data source are registered. At this point, the GAIA monitor is

notified of the wrapper’s existence. The monitor periodically checks to make sure

all registered applications are still accessible. When a user connects or refreshes an

existing connection to the GAIA system, the GAIA intelligence engine is able to add

the new data source’s functionality to the list of functionality presented.

6.4 Client Sources and Destinations

Unlike back-end data sources, the client application or device does not have to

register with GAIA. Client requests to GAIA are sent over the Internet. In most

cases, the TCP/IP packet and the protocol riding on top of it, such as HTTP, will

contain enough information to tell GAIA where the message originated.

Also, the client’s request will be directed at a specific translator or translator

group. For instance, if a web browser is used to access GAIA, the request will be

sent to a web server that directs the message to an appropriate translator. Since all

web browsers have their unique characteristics, it is possible that a translator could

exist for each generally available web browser. Different versions of a particular web

browser could also have different translators. The collection of browser translators

can be thought of as a translator group. The web server is responsible for reading

the incoming HTTP header to know which translator to send the message to.

A translator needs to perform a couple of tasks when it receives a message from

a client. First, it needs to assign the request a unique identifier and associate that

identifier with the source address of the message. In most cases, the response from

133

GAIA will be sent back to the requesting source. The translator then needs to take

the original message, which can be in any format, and transform it into an acceptable

XML format. Once the XML formatted message has been created, the translator will

add its own address to the XML file so the CIL will know to send responses back

to it. The translator will also add the unique identifier to the XML file. The unique

identifier must be returned in the response from the CIL in order for the translator

to know which client receives the response. The unique identifier could be the source

address, itself, or simply a number that maps into some data table internal to the

translator.

In GAIA, only the translator needs to know where a request came from. Every

response must, as a first step, go through the same translator that accepted the

request. GAIA only knows about a translator through the address it adds to the XML

request payload. The GAIA middle-tier intelligence engine is completely unaware of

what translators exist and what communication protocols they support. As men-

tioned earlier, the benefits of this are that communication between the four intelli-

gence engine components are kept simple and the intelligence engine components do

not need to be updated every time a new client device, protocol format, or binary

distributed technology is introduced.

Likewise, GAIA does not know anything about the user interface. Depending on

the client application that is accessing the GAIA system, this may not be an issue.

Individual translators are responsible for taking the XML data sent from the CIL

and generating the final response for the client. The individual translators might also

be responsible for defining an acceptable presentation style. Custom applications on

the client-side will probably have their own user interface that is designed to present

whatever data GAIA sends back. The biggest issue with custom applications might

be the output format. CSV or pipe delimited records might be required instead of

pure XML. Additionally, if custom applications were not written to be flexible, they

134

might not be able to access newer features of the GAIA system. Custom applications

also might not be able to handle unexpected but valid results.

Web browsers, on the other hand, always expect a HTML or DHTML page to

be returned. In this case, the translator might simply take the XML response and

transform it using XSL into an HTML page. Or the translator could build a page

from scratch using an XML parser to parse the response from the GAIA intelligence

engine while building a web page for the client. It is up to the developer of the

translator to determine how appealing they want to make the presentation of the

result.

Another scenario is that an end user will make a request using one application

or device as the source and want the result sent to another application or device.

For example, a user using a web browser might know ahead of time that a request

could take minutes or hours to process. Instead of wanting to wait around for the

result, the user may want the result emailed to his or her cell phone. The design of

GAIA does not prevent this from happening.

Although the CIL and the rest of the GAIA middle tier do not know anything

about the translators that are available, there is no rule that says the developer

of a translator must keep the translator from knowing about other translators. For

instance, in the case of a Microsoft Internet Explorer (IE) translator, the developer

might choose to write the IE browser translator in such a way that it is aware of a

SMTP translator. The client device or application could then inform the translator in

some agreed upon fashion, most likely through a parameter on the URL or embedded

in the HTTP Post, that the result should be returned through email. Once the

response is sent to the IE translator, it will forward the response to the SMTP

translator. The SMTP translator will then email the response to the client.

Currently, the general design of GAIA does not require that translators be added

to a translator registry. However, it may make sense to create such a registry for

135

GAIA implementations where it is expected that requests will be received from one

source and responses will be sent to another. A client could then pass the destination

type and address as parameters in the call to a GAIA translator. The GAIA trans-

lator could then store the destination address and type with the request’s unique

ID. On receiving a response from the GAIA intelligence engine, the translator could

look up the destination type in the translator registry and forward the response to

the appropriate translator.

It should be noted, that in the general GAIA design, translators reside on the

middle tier and not on the client, whereas back-end legacy data source wrappers

normally exist on the server with the legacy data source. There are a couple of

reasons why translators should not be designed to reside on the client-side. First

and foremost, if a translator is sitting on a particular client computer it is likely not

possible for other clients to share that translator. Instead, each client would need

to have its own local copy of the translator. Updating translators becomes an issue.

Users would have to proactively get the latest version of the translator unless an

auto-update mechanism was built into the translator. Of course, such a mechanism

would increase the complexity and overhead of the translator.

This leads to the second issue. Local translators take up client resources. For

personal computers, the presence of a translator probably is not an issue. However,

for cell phones and PDAs where system resources are still very limited, the presence

of a translator could be a major problem.

Third, users might not always be accessing the GAIA system from the device

that they installed the translator on. Instead of forcing them to install a translator

on another device, it is just easier to have the translator located in a well-known

easily accessible location such as the middle tier.

It is for these reasons that GAIA suggests translators be rolled out on the middle

tier. Of course there is no reason that translators could not be rolled out to a tier of

136

their own turning GAIA into a n-tier architecture. In fact, if a particular translator

or translator group is frequently accessed it might make sense to move the translator

to its own tier so it does not consume resources required by other GAIA components.

It is difficult to make similar arguments for moving wrappers to the middle tier.

First, where most users will be using a web browser to access GAIA and can therefore

share a common translator, each legacy data source being integrated into GAIA will

normally require its own wrapper. Second, most legacy data sources will be running

on computers and as such will not suffer from the resource limitations that might

occur if they were running on other devices. Finally, many older legacy applications

have no mechanism for being accessed by distributed objects. For these applications,

the wrapper must exist on the same machine.

6.5 Wrappers

No one implementation technology or design applies to the development of all wrap-

pers. In fact, the implementation and design of a wrapper is completely influenced

by the nature of the legacy system being wrapped (Somasekar 1999). The implemen-

tation details of the legacy system often force wrappers to use one technology and

not another. Also, the extent to which a legacy data source can be wrapped depends

on how it was implemented and what platform it was implemented on. Some legacy

data sources cannot even be wrapped. If a legacy data source has no APIs and does

not support batch processing, it is very likely that data source cannot be wrapped

unless the source code is accessible and well documented.

The easiest data sources to wrap are recently developed data sources that have

SOAP-based interfaces. In the unlikely case that a data source was designed for a

specific GAIA system, a wrapper will not be necessary unless it exists simply to

support queuing messages or to provide some form of load balancing. Otherwise for

137

SOAP and XML based interfaces, the wrapper could simply be a small application

that performs XSL transformations on messages as they pass through. Complicated

XML parsers could also be used, but more than likely a straightforward XSL trans-

formation based approach would be more efficient.

Accessing API driven legacy applications is also straightforward. For API driven

data sources, a one-to-one mapping can be created between the function call and

an XML data file. The wrapper is then responsible for populating the appropriate

parameters before calling the function and generating the XML with the appropriate

result.

COM-based and CORBA-based legacy applications can simply be wrapped by

another COM-enabled or CORBA-enabled application. In this case, the wrapper

needs to serialize the object data and transform it into an acceptable XML format.

If the legacy application is passing objects by reference, things get more complicated.

The wrapper will either need to instantiate a local copy of the object that can then

be serialized, extract all of the relevant data out of the object by essentially building

a local version of the object, or use some other mechanism that keeps the rest of the

GAIA system from having to work with the referenced object.

Wrappers around Java applications should normally be written as SOAP-enabled

Java objects. The exception, of course, is for Java applications that use non-Java

distributed technologies. For instance, a Java application could already be using a

SOAP method for accessing its objects. In that case, it would be better to access

the Java application using its SOAP interface. Java could also be using COM or

CORBA for its distributed technology. In that case, it is really up to developer to

decide what interface should be wrapped.

Batch-driven applications can be wrapped as well. Normally, a batch process pulls

its input from either a file or a database. Likewise, the batch process normally puts

its results in either a file or a database. In order to wrap a batch process, the wrapper

138

needs to know the source and destination of the batch process. The developer of the

wrapper must understand the batch process’ input and output formats. In some

cases, these formats might not be well documented. It is possible that trial and error

could lead to an understanding of the file format. However, it is also possible that

the data is encoded making it impossible to determine the format without access to

the source code. As long as the input and output locations and formats are known,

all a wrapper needs to do is construct the input for the batch process and place it

in the appropriate location then call the batch application to start processing. Once

the batch application starts processing the input, the wrapper needs to watch for

the processing to complete and then retrieve the results from the output location.

If an application does not expose an API or it is not batch based, more than likely

it cannot be wrapped. There are a couple of exceptions to this general rule. First, if

the source code for the application is available and the application was developed in

a language that supports web access, it might be possible to add the desired wrapper

modules directly to the application’s code base. The risk of adding a wrapper directly

to an application’s source code is that new bugs could be introduced into the system.

As with any application source code changes, the application will need to be fully

regression tested. This adds to the overall cost of integration.

Another possible workaround for applications without an exposed API is screen

scraping. A screen scraper is an application or utility that has the ability to record

and play back messages sent to another application. In essence, a screen scraper is an

external macro facility that remotely controls another application. There are several

excellent third party applications that support screen scraping. Quality assurance

teams commonly use screen-scraping applications to validate new iterations of in-

house development efforts. These tools work by monitoring messages or events that

are sent to a UI and recording snapshots of the UI as changes occur. By linking

events and snapshots, these tools can be used to write scripts that manipulate the

139

UI. The Microsoft Windows environment helps to make this type of solution possible

by providing message and journal hook APIs (Schildt 1999). The Microsoft Windows’

hook APIs can be used to intercept messages sent between individual threads in a

single application or to intercept all messages sent by all applications running on

the Microsoft Windows operating system. Unfortunately, this type of solution adds

to the system’s overhead and requires that each individual function provided by the

wrapper first be recorded as a script that can be executed by the screen scraper.

6.6 Latency

GAIA is a three-tiered architecture that requires the use of translators and wrappers.

GAIA is also designed to communicate with legacy applications that can be running

on any machine located anywhere in the world. As such, latency is an important

issue. Technically, latency is defined as the time it takes for a message to leave the

sender and reach the receiver. From the user’s point of view, latency is the time

between sending a request and receiving a response. This is also known as response

time.

If the results of a user’s query cannot be returned in a maximum of thirty to

forty-five seconds, the GAIA framework should return a message asking the user to

check back later for their results. The response will free the user to perform other

tasks. Hopefully, when the user gets around to checking back with GAIA, his or her

query results will be ready. Otherwise, the framework should inform the user that it

is still processing the request.

Every distributed system has some inherent latency. First, there is the time it

takes a message to travel from the sender to the receiver. In a packet-based system,

it is often necessary for the receiver to acknowledge the arrival of a packet before

140

the sender transmits the next packet. This bi-directional communication takes time.

Likewise, the processing time needs to be taken into consideration.

The intelligence engine is another source of overhead. The design of both the infer-

ence engine and the controller impact how quickly results are returned. Depending

on the sophistication and the complexity of the algorithms used in the inference

engine, it could easily take the inference engine longer than forty-five seconds to

create an execution plan. Likewise, if multiple result sets need to be collated by the

controller before they can be returned to the client, additional processing time will

be required.

Then, there is the issue of the legacy data sources. It is very likely that many of

these data sources were not designed for quick responses. If the legacy data source

is slow, there really is nothing that can be done to speed up the response time short

of redesigning the data source. For most problem domains this issue is probably

expected. Sophisticated integrated systems are designed to solve real world problems.

These problems are seldom trivial and often require resource intensive solutions. As

such, most of the time spent in handling a request will be consumed by the legacy

data source, itself.

Although GAIA does not attempt to provide a generic solution for latency issues,

the framework is flexible enough for many different solutions to be implemented

within it. The easiest thing to do, of course, would be to set proper expectations for

the end user. Failing that, another simple solution might be to periodically send back

a response informing the user of the percent of the request that has been processed.

This is what most software installation tools do.

As mentioned earlier, the GAIA intelligence engine can send a response

requesting that users check back later for their results. A step above this generic

message would be to give an estimate as to when the results might be available.

An even better solution might be to use push technology to dynamically update

141

the client as partial results become available. Once the processing is complete, the

end-user will have the entire result set. Also, GAIA could be designed to trigger an

email when the user’s results are ready. Depending on the results, the results could

either be embedded in the email or the email could contain a link to the results

The fact that GAIA allows queries and results to be saved into the knowledge

database can be used to help reduce system latency. When GAIA receives a query

whose result is already known, the inference engine has the option of returning the

known result set instead of reprocessing the query. For commonly requested result

sets, the GAIA system could be built with a scheduler that executes common queries

during off-peak access times. This could be useful in a problem domain where a

specific analysis needs to be performed on a regular basis. Moreover, the intelligence

engine could be designed in such away that it is aware of the current system load.

When the load falls below a certain threshold, the inference engine could analyze

the knowledge database looking for the most common requests and possibly tell the

controller to pre-run the queries for those requests.

Of course, there may be a problem with pre-running queries. Some information

might be required in real-time. The GAIA inference engine will need to know which

functions can be pre-run and which must be run in real-time. A good place to store

this information is in the relationship matrix that was described earlier.

Finally, load balancing can be used to help keep the most popular queries from

queuing up. If multiple copies of a given data source could be running on multiple

machines, a load balancer can be used to manage the load and reduce a query’s wait

time by allowing the data source to scale vertically.

142

6.7 Conclusion

The goal of this thesis is to design a generic, extensible, standards-based multi-tiered

framework for accessing legacy applications through a common web-based interface.

It is believed that GAIA addresses this goal and more. Important features of GAIA

are listed below.

• In general, GAIA does not make any assumptions about the client-side appli-

cation that is making a request or the server-side legacy application that is

being asked to process the request.

• GAIA makes no assumptions about the physical location of either the client

application or the legacy data sources.

• Both the client application and the server-side legacy data source implemen-

tation details are hidden from the core GAIA intelligence engine.

• Translators and wrappers are used to transform proprietary legacy communi-

cation protocols into standards-based XML and SOAP data streams

• The four primary components that make up the GAIA intelligence engine are

written in Java giving the intelligence engine the ability to run on a variety of

hardware platforms.

• The inference engine can be as tightly or loosely coupled to the problem domain

as is appropriate.

• GAIA is designed to be straightforward to customize for a variety of problem

domains.

Chapter 7

Implementation

7.1 Proof-of-Concept Problem Space

This chapter discusses the implementation of a proof-of-concept prototype based

on GAIA. The goal of the prototype is to show that a GAIA implementation is

both feasible and meets the stated objective of creating a generic, extensible, and

flexible framework. The prototype is designed to demonstrate the basic concepts

presented in the GAIA design. The only translator that is implemented is an HTML

web browser translator. This allows anybody with a web connection to access the

GAIA prototype. The HTML web browser translator can be used as a template for

additional translators.

For the proof-of-concept, it was decided to create a few simple sample applications

to integrate. By creating our own sample applications, the focus stays on the GAIA

framework and the technology used to build the framework instead of the integration

issues related to wrapping complex legacy data sources. Using custom sources also

allows for the exploration of a variety of scenarios that might not occur naturally in

randomly selected legacy data sources.

In order to keep the problem space from distracting users of the GAIA system,

it was decided that the sample applications should deal with a problem space that

most people are comfortable with. The data sources in the GAIA prototype are

components that would make up a standard portfolio management package.

143

144

Application Method
currentPrice getStockPrice

getStockSymbol
portfolioManager createRecord

deletePortfolio
deleteRecord
getPortfolio

valueCalculator getValue
marketAnalysis getMarketAnalysis

Table 7.1: Sample Applications and Methods.

7.2 The Sample Applications

Four applications were created for the prototype. The four applications are the cur-

rentPrice application, the portfolioManager application, the valueCalculator appli-

cation, and the marketAnalysis application. All four applications were written in

Java. Their user interfaces were created using the Java Swing classes.

The currentPrice module is a Java class that supports two methods: the getPrice

method and the getTickerSymbol method. The getPrice method is an overloaded

method. It accepts either a string ticker symbol or an array of ticker symbols as

input and returns an object array where each object consists of the ticker symbol

and its current price. The current price can be retrieved in one of two ways. If there is

an Internet connection available, the getPrice method will request the current price

from Yahoo!. Otherwise, the getPrice method will randomly generate a price between

a penny and a hundred dollars. The random routine is useful for demonstrating GAIA

in locations where Internet access is not available.

145

The getTickerSymbol method takes a company name as input and returns an

array of ticker symbols. Each element in the ticker symbol array is a ticker symbol

that might match the company name. If an Internet connection is available, the

search request will be sent to Yahoo!. Otherwise, the first three letters of the company

name will be returned.

The portfolioManager module consists of a Java class that communicates with a

Microsoft Access database. The portfolioManager has a series of methods that allow

users to input their portfolios. Users can input the ticker symbols for the stocks

they purchased, the purchase dates, the price of each stock, and the transaction

fee. The portfolioManager also has functions that allow users to retrieve the data

they submitted. Several sample portfolios will already exist in the profolioManager

database.

The valueCalculator is a simple Java class. It takes as input a purchase price,

purchase date, current price, and optional tax percentage. It then returns either the

gross or net value of the shares.

Finally, the marketAnalysis module is a Java class that accepts a ticker symbol

and a stock price as input. It then tries to retrieve the stock’s high and low value for

the past year from Yahoo!. Based on the percentage difference between the current

price and the one-year average value, the marketAnalysis component returns a buy,

sell, or hold recommendation.

7.3 A sample GAIA session

Separately, these modules are only mildly interesting. Combined they provide a

decent test bed for the GAIA framework.

Many different scenarios can be demonstrated using these modules. For example,

a user could connect to GAIA and request the gross value of their portfolio. The

146

portfolioManager

Wrapper

valueCalculator

Wrapper

portfolioManager

Application

valueCalculator

Application

marketAnalysis

Application

marketAnalysis

Wrapper

Client Browser

Knowledge

Database

Inference Engine

Controller
Monitor

currentPrice

Wrapper

currentPrice

Application

Browser Interface

Translator

Figure 7.1: GAIA Prototype Implementation.

147

GAIA intelligence engine needs to be able to figure out from the request that as

the first step in the execution plan, the controller the needs to query the portfo-

lioManager application for any information it has regarding the user’s portfolio. If

no information is available, GAIA will have to use the portfolioManager’s function

definitions to create a web form to send back to the user requesting his or her

portfolio data. Otherwise, GAIA will retrieve the information it requires from the

portfolioManager.

Once GAIA has the user’s portfolio, it will have to know how to access the

currentPrice module to receive the current price for each stock in the user’s portfolio.

The GAIA controller will then need to send the number of shares and current price

to the valueCalculator in order to get the gross value of each stock the user owns.

Once the controller has all of the totals, it will need to add them together in order

to calculate the total gross value of the user’s portfolio. This value will then be sent

back to the client.

In this example, the user sees three screens at most. The user will always see

the initial query screen and the result screen. Depending on what the system knows

about the user, the user may or may not see the web form requesting his or her

portfolio data. Since the user only sees three screens, the user is totally unware

of what applications are being accessed on the back-end. The user does not need

to know anything about these applications as GAIA takes care of the back-end

interactions

This one example tests GAIA’s ability to accept a request and formulate an

execution plan that accesses multiple data sources. It also tests GAIA’s ability to

perform basic manipulations on the returned data.

As another example, the user might want to know the value of sell recommen-

dations generated by the system. The GAIA inference engine will need to create

an execution plan that takes the value results returned in the last query and com-

148

bines them with information retrieved from the marketAnalysis manager filtering

out everything but the sell recommendations.

This additional step exercises GAIA’s storage mechanism. It also tests whether

or not the GAIA intelligence engine is capable or realizing that most of the data it

needs has already been collected in the previous query. Finally, it tests the controller’s

basic filtering functionality.

The user can continue to create high-level queries. More than likely, each query

will require GAIA to access multiple components and perform basic manipulations

or aggregations in order to calculate the requested result.

7.4 The Implementation Technologies

The GAIA prototype was programmed using the Sun Java 2 Software Development

Kit standard edition version 1.3.1 that ships with Borland JBuilder 6 Personal Edi-

tion. Java was selected as the development language for several reasons. First, the

standard edition of the Sun Java SDK is available from Sun for free. This means there

is no initial cost to start programming using the Java language. Second, the Java

Virtual Runtime (JVM) is available for a variety of operating systems and hardware

platforms. Anybody that wants to experiment with the GAIA framework should be

able to run in it on whatever computer they have available to them. Third, there are

several freeware development environments available to assist in programming Java

including NetBeans, Sun Forte Community Edition, and Borland JBuilder Personal

Edition. Finally, Java is a feature rich environment that provides a large number of

powerful libraries.

The Sun Java Web Services Developer Pack version 1.0 Early Adopter edition

is also used by the prototype. The Java WSDP, provides several useful technologies

in one convenient package. The Java WSDP ships with the Apache Tomcat servlet

149

API Name Functionality Provided
JAXP Java API for XML Processing DOM, SAX, and XSL processing
JAXM Java API for XML Messaging Messaging over SOAP
JAX-RPC Java API for RPC SOAP and XML-base RPC calls
JAXR Java API for XML Registries Web service registry support

Table 7.2: The Sun Java XML Pack.

and JSP container. It also ships with the Ant build tool, a WSDP Registry Server,

and the Java XML Pack.

The Java XML Pack contains four APIs that are useful for manipulating XML

data within a Java program. The four APIs are the Java API for XML Processing

(JAXP), the Java API for XML Messaging (JAXM), the Java API for XML-based

RPC (JAX-RPC), and the Java API for XML Registries (JAXR).

JAXP is used by the prototype to process XML documents. JAXP allows any

XML parser to be used by a Java application. The current version of JAXP supports

XML DOM parsers, SAX parsers, and the XSLT standard. Although JAXP has a

pluggability layer that allows any XML processor to be plugged into it, the prototype

was developed using the Apache Xerces 2 XML parsing engine and the Apache Xalan

XSLT engine that shipped as part of the Java WSDP. Apache Xerces 2 consists of

both a DOM parser and a SAX parser.

The Java WSDP ships with two APIs that support SOAP messages. Both JAXM

and JAX-RPC wrap SOAP requests. JAX-RPC works like any other RPC. Under

normal circumstances it sends a message and expects a response. JAX-RPC is specif-

ically designed to work with web services. Not only does JAX-RPC support SOAP,

but it also has built in support for WSDL documents.

150

Although JAXM can work with a standalone client, it normally works with a

messaging provider in order to send messages from point-to-point. JAXM supports

asynchronous messaging, routing a message through multiple SOAP intermediaries,

and guaranteed delivery. Compared to JAX-RPC, JAXM is a high-end SOAP mes-

saging API (Armstrong et al. 2002). The GAIA prototype was implemented using

JAXM without a messaging provider. The prototype makes use of Java’s threading

support so as to not lock the actual component applications while waiting for a

JAXM response.

Since, JAXM is being used without messenger, a server-side container is not used.

However, the WSDP does provide the Apache Tomcat container for applications

that need a server-side container. Apache Tomcat is capable of hosting both Java

Servlets and Java Server Pages (JSPs). In order to demonstrate how GAIA can be

implemented using any development enviroment, it was decided that GAIA would

not make use of Java Servlets of Java Server Pages.

The knowledge database and the portfolioManager database are Microsoft Access

2000 databases. Access was chosen because it is easy to distribute and widely avail-

able. Microsoft SQL Server would really be a better technology to build the knowl-

edge database on top of. However, it is a larger database system, not easily dis-

tributable, requires more system resources, and really provides more power than the

current prototype needs. More importantly, Microsoft Access is distributed as part

of Microsoft Office while SQL Server is a separate, more expensive product. There

are a couple of freeware and open source databases available including Postgres and

MySQL. However, they are not as portable or as easy to configure as Microsoft

Access.

151

Controller

Inference Engine

Thread

Monitor Thread

Application Listener

Thread

Application Call

Thread

Browser Translator

Thread

JAXM

JAXM

JAXM

JAXM

JAXM

Application

Wrapper

Knowledge

Database

JAXM

JAXM

JDBC

Figure 7.2: GAIA Prototype Controller Threads.

7.5 The Prototype Implementation

The GAIA prototype is a minimal implementation of the complete GAIA design.

Aside from the four sample applications that are being integrated into GAIA, the

GAIA prototype is implemented as three Java applications.

Since only one translator is created and the role of the Client Interface Layer is

fairly limited, the CIL was combined with the Controller application. This means,

the Controller assumes the extra task of keeping track of which translator it received

a request from. The CIL part of the controller was implemented in a generic fashion

so that additional translators can be added without modifying the controller code.

The controller simply stores the source address of the translator it received the

message from in table. When the controller is ready to return a response, it looks up

the translator’s address in the table and then sends the response back to the source

address.

152

Likewise, the Application Interface Layer has also been implemented as part

of the controller. When the controller launches, it starts a thread that lives until

the controller exits. This special thread listens for applications registering with the

framework. By default it listens to port 8080 although this is configurable. Also,

when the controller calls one of the four integrated applications, it launches a new

thread for that call. The new thread is responsible for handling all communication

with the remote application during that one call. After the call is over and the

application has returned its results, the thread exits.

The web browser translator, the controller, the inference engine, the monitor,

and the wrappers are all SOAP-enabled. They use SOAP over HTTP data streams

to communicate with each other. The JAXM API was used to abstract the details of

sending and receiving the SOAP messages. Also, the inference engine and the monitor

communicate with the knowledge database using the Java Database Connectivity

(JDBC) API.

The controller, the monitor, and the inference engine were really developed as a

single application. The controller class contains the Java main method. When the

controller is launched, it first task is create a single instance of the monitor and a

single instance of the inference engine. Both the monitor and the inference engine

run on their own thread and have their own SOAP nodes. This allows all three

components to act independently of each other.

Since HTTP listeners cannot share ports, each GAIA application and wrapper is

designed to accept port information from the command line. By default, the GAIA

controller is expected to be listening to port 8080 and the web browser translator is

expected to be listening to port 80. If the controller is listening to another port, that

port information will need to be passed into the other applications as they launch.

The web browser translator is a middle-tier Java application. It accepts an HTTP

Get or Post from a standard web browser and parses the HTTP request in order to

153

Controller Application

Listner Thread

Controller Application

Caller Thread

currentPrice

Application

currentPrice Wrapper

XML

XML

JAXM

Figure 7.3: GAIA Prototype Wrapper Implementation.

generate an XML request. It also accepts an XML response from the controller. On

receiving an XML response, the translator transforms the XML into HTML using

the JAXP XSLT API. In this prototype, the generated UI is not very fancy. It only

creates simple HTML pages to send back to the client.

The web browser translator stores the client specific information in a Java

HashMap. The key to the HashMap is a unique id for each user request. The value

is the source of the request.

The wrapper applications perform a couple of different tasks. First, they are

responsible for telling the GAIA intelligence engine what methods are available. A

WSDL-like format is used to pass this information to the controller via a JAXM

generated SOAP message. Second, they are responsible for determining which

module methods to call. Exploiting the nature of Java, the wrapper applications

have direct access each sample application’s class objects. The wrapper application

simply imports the class objects it needs to access and therefore can directly invoke

the sample application’s public methods.

154

As mentioned earlier, the Monitor is a Java class that runs on its own thread.

All it does is ping the registered wrapper classes at a given interval. If it does not

receive a response, it unregisters the wrapper and its associated functionality.

The remaining two components, the controller and the inference engine, are the

most interesting pieces of the GAIA prototype implementation. The controller and

inference engine are tightly coupled. The controller’s SOAP node receives and queues

requests and responses from the client, the inference engine, and the AIL. The con-

troller then reads the queue and works with one SOAP message at a time to figure

out what it needs to do.

If the message is from the client, the controller extracts the XML payload. It then

passes the XML payload to the inference engine so the inference engine can generate

an execution plan. If the message is from the AIL, the controller reads the message

to figure out which client request it refers to. It then checks the execution plan to

see if any more server-side processing is required. If not, it checks the execution plan

to see if the response needs to be combined with any other responses. If responses

need to be collated, the controller checks its cache to see if the other responses are

available. In the case where all responses are available, the controller combines the

responses into an appropriate XML document and adds the document to a SOAP

envelope. Once the SOAP envelope is ready, the controller sends it to the web browser

translator using the JAXM API. Otherwise, the response is cached until the rest of

the responses arrive.

The controller also checks for new execution plans from the inference engine.

When it receives a new plan, it begins following the plan step-by-step. Execution

plans normally consist of one or more round trips to the server-side legacy data

sources. However, it is possible that an execution plan might contain all of the data

required to generate a response for the client.

155

The controller, itself, has the ability to perform some basic manipulations on

data. It has the ability add, subtract, multiply, and divide numeric various. It can

also sort and group string data.

Intelligence is incorporated into GAIA through rules added to the inference

engine. For the prototype, only reaction rules were added. The inference engine

accepts an XML document from the controller. It parses the document, looking for

the methods that a user wishes to access. Once the inference engine retrieves the

list of methods, it queries the knowledge database for the required method param-

eters. It then compares the parameters submitted by the user with the parameters

required by each method. If a parameter is missing, the inference engine queries

the database to see if there is a method defined that can be used to determine the

missing parameter. If such a method exists, the inference engine must decide if it

knows the parameters required by that method. Either the newly found method will

be called to get the required parameters, or the execution plan will require that the

user fill in the missing data. Once a list of methods and their parameters has been

generated, the inference engine sends the list back to the controller as part of the

execution plan.

7.6 Conclusion

The GAIA prototype successfully integrates four Java applications into a single

framework that is web accessible. Since the GAIA prototype was designed to focus

primarily on the communication channels between the internal GAIA components

and to demonstrate the plug-and-play nature of the framework, many of the integra-

tion issues normally encountered by an application integration framework were not

experienced. For instance, the implementation of the prototype did not deal with

issues generally encountered when accessing legacy applications such as the lack of

156

source code and design documents. Likewise, the GAIA prototype only implements

a fairly simplistic inference engine. AI techniques can be used to create a much more

intelligent inference engine. However, from a structural point of view, we were able

to demonstrate the potential of the GAIA architecture.

Chapter 8

Conclusions and future work

As technology continues to evolve there is a major need for extensible and flexible

frameworks that allow existing legacy data sources to be accessed by a wide variety of

client-based applications and platforms. End users are no longer content with only

accessing their data from a specific personal computer or workstation. There is a

desire to access legacy data sources from a variety of web-enabled devices including

personal digital assistants and cellular phones. Likewise, there is a desire to hide

the implementation and application specific details from the end user. Also, it is

often desirable to present the end user with a single consistent user experience that

abstracts the specifics of the legacy applications’ user interface. The use of a single

consistent interface means the end user is only required to learn one application

instead of a variety of potentially very different applications.

This thesis proposes a design for an extensible and flexible server-based frame-

work and implements a prototype that demonstrates the potential of the proposed

framework. The proposed framework only assumes that client applications or devices

are web-enabled and that the server-based legacy applications can be wrapped with

a technology that is able to use SOAP as a remote method invocation mechanism.

Older, less platform and implementation neutral, technologies such as DCOM,

CORBA, and Java RMI were examined as potential candidates for the frame-

work’s communication infrastructure. Although these technologies can be used over

a TCP/IP based network, they require specific technologies to be implemented on

157

158

both the client and the server. SOAP, even though it lacks many of the advanced

features that are available in the older and more mature technologies examined in

this thesis, is an acceptable communication standard that can be carried over any

number of protocols including the now ubiquitous HTTP.

The prototype implemented as part of this thesis contains an intelligence engine

that has reaction rules built into it. The reaction rules make extensive use of a data

repository that stores metadata about currently accessible legacy data sources. The

legacy data sources and their associated wrappers are responsible for registering

themselves with the framework. This is a major change from previous framework

designs where the infrastructure had to be modified in order to add additional legacy

data sources. Although this change makes legacy data source wrappers more complex

to implement and maintain, it also means that legacy data sources can be added

and removed without any code changes to the middle tier. The plug-and-play nature

of the framework almost always ensures that the end user is only presented with

functionality that is currently available in the framework.

Now that a working prototype exists, it can be adapted to work in many different

problem spaces and with many different client devices. Future work will consist of

integrating real world legacy applications into the framework, expanding the pro-

totype’s limited vocabulary, and adapting the intelligence engine’s rules to better

address the problem space represented by the integrated real world applications.

Additional work can be done to create translators for WAP-enabled cellular phones

and personal digital assistants.

The integration of distributed legacy data sources into a single framework is a

challenging task. Although new technologies are making the task easier, there will

always be legacy data source specific issues that need to be dealt with. It is hoped

that the framework proposed in this thesis will help simplify the task of integrating

legacy applications while maximizing the integration options available. It is also

159

hoped that the ideas and insights presented in this thesis are valuable and contribute

to the ever evolving and growing body of research in this area.

Bibliography

Agosta, Lou (2000). The Essential Guide to Data Warehousing, Upper Saddle River,

NJ: Prentice Hall PTR.

Armstrong, Eric; Bodoff, Stephanie; Carson, Debbie; Fisher, Maydene; Green, Dale;

Haase, Kim (2002). The Java Web Services Tutorial. Palo Alto, CA. Sun

Microsystems.

http://java.sun.com/webservices/downloads/webservicestutorial.html

Blum, Adam (1996). Building Business Web Sites, New York, NY: MIS: Press.

Box, Don (1998). Essential COM. Reading, MA: Addison-Wesley Longmann, Inc.

Box, Don (2000a) House of COM. MSJ 15(1): 87-92.

Box, Don (2000b) A Young Person’s Guide to the Simple Object Access Protocol:

SOAP Increases Interoperability Across Platforms and Languages. MSDN

Magazine 15(3): 67-81.

Chappell, David (1996). Understanding ActiveX and OLE. Redmond, WA: Microsoft

Press.

Chinthamalla, D.; Muthyala, H.; Potter, W. D. (2002). Information Integration Using

the Blackboard Technique. Raleigh, NC: SE-ACM Conference.

http://webster.cs.uga.edu/ potter/dendrite/SE-ACM-Final2.doc

Comer, Douglas E. (2000). Internetworking with TCP/IP Vol 1: Principles, Proto-

cols, and Architecture Fourth Edition, Upper Saddle River, NJ: Prentice Hall

PTR.

160

161

Crouch, Matt J. (2000). Web Programming with ASP and COM, Reading, Mas-

sachusetts: Addison-Wesley.

Deadman, Richard (1999). XML as a Distributed Application Protocol. Java Report

4(10): 16-21.

Dürst, Martin; Freytag, Asmus (2002). Unicode in XML and other Markup Lan-

guages: Unicode Technical Report #20.

http://www.w3.org/TR/2002/NOTE-unicode-xml-20020218

Eckel, Bruce (2000) Thinking in Java: Second Edition, Upper Saddle River, NJ:

Prentice Hall PTR.

Ehnebuske, David; Rogers, Dan; Riegen, Claus Von (Ed.). (2001). UDDI Version 2.0

Data Structure Reference. uddi.org

http://www.uddi.org/pubs/DataStructure-V.200-Open-20010608.pdf

Ewald, Tim (2001). COM+ Integration: How .NET Enterprise Services Can Help

You Build Distributed Applications. MSDN Magazine 16(10): 42-50.

Fallside, David C. (Ed.). (2000). XML Schema Part 0: Primer.

http://www.w3.org/TR/2000/WD-xmlschema-0-20000407

Gudgin, Martin; Hadley, Marc; Moreau, Jean-Jaques; Nielsen, Henrik Frystyk (Ed.).

(2001a). SOAP Version 1.2 Part 1: Messaging Framework.

http://www.w3.org/TR/2001/WD-soap12-part1-20011217/

Gudgin, Martin; Hadley, Marc; Moreau, Jean-Jaques; Nielsen, Henrik Frystyk (Ed.).

(2001b). SOAP Version 1.2 Part 2: Adjuncts.

http://www.w3.org/TR/2001/WD-soap12-part2-20011217/

Hayes, Caroline C. (1999). Agents in a Nutshell – A very brief Introduction. IEEE

Transactions on Knowledge and Data Engineering 11(1) 127-132.

Herzberg, Amir (2002). Securing HTML. Dr. Dobb’s Journal 334: 56-62.

162

Homer, Alex (1999). XML IE5 Programmer’s Reference, Birmingham, UK: Wrox

Press.

Juric, Matjaz B.; Rozman, Ivan (2000). Java 2 RMI and IDL Comparison. Java

Report 5(2): 36-48.

Juric, Matjaz B.; Rozman, Ivan (2001). RMI, RMI-IIOP, and IDL Performance

Comparision. Java Report 6(4): 26-34.

Kirtland, Mary (2000). The Programmable Web: Web Servces Provide Building

Blocks for the Microsoft .NET Framework. MSDN Magazine 15(9): 73-82.

Linthicum, David S. (1999). XML: It’s EAI For the Rest of Us. Enterprise Develop-

ment 1(13): 12-16.

Liu, Shanyin (1998). Integration of Forest Decision Support Systems: A search for

Interoperability. Master’s Thesis, Athens, GA: The University of Georgia.

Martin, Didier; Birbeck, Mark; Kay, Michael; Loesgen, Brian; Pinnock, Jon; Liv-

ingstone, Steven; Stark, Peter; Willaims, Kevin; Anderson, Richard; Mohr,

Stephen; Baliles, David; Peat, Bruce; and Ozu, Nicola (2000). Professional

XML, Birmingham, UK: Wrox Press.

McRoberts, Ronald E.; Schmoldt, Daniel L.; Rauscher, H. Michael (1991). Enhancing

the Scientific Process with Artificial Intelligence: Forest Science Applications.

AI Applications 5(2): 5-26.

Megginson, David (2001). SAX Faq. http://www.saxproject.org/?selected=faq

Microsoft (2001). Delivering .NET: Visual Studio .NET and the .NET Framework.

Microsoft ad 1-9.

Mikula, Norbert; Levy, Ken (2000). Schemas Take DTDs to the Next Level. XML

Magazine 1(1): 81-82.

163

Mitra, Nilo (Ed.). (2001). SOAP Version 1.2 Part 0: Primer.

http://www.w3c.org/TR/2001/WD-soap12-part0-20011217

Monson-Haefel, Richard (2001). Enterprise JavaBeans, Third Edition. Sebastpol,

CA: O’Reilly & Associates Inc.

Musayev, Eldar A. (2001). SAX2: A Simple API for XML. Dr. Dobbs Journal #321:

130-133.

Naughton, Patrick (1996). The Java Handbook, Berkeley, California, Osborne

McGrawHill.

Nute, Donald; Kim, Geneho; Potter, Walter D.; Twery, Mark J.; Rauscher;

Thomasma, Scott; Bennett, Deborah; Kollasch, Peter (1999). A Multi-

criterial Decision Support System for Forest Management. Enviromental

Decision Support Systems and Artificial Intelligence, Papers from the AAAI

Workshop 74-81. http://www.srs.fs.fed.us/pubs/viewpub.jsp?index=1533

Olson, Mike (1999). Introduction to CORBA, Part 1: CORBA basics to get you

started.

http://www.linuxworld.com/linuxworld/lw-1999-09/lw-09-corba 1 p.html

OMG (2000). The Common Object Request Broker Architecture Specification v2.4.

http://cgi.omg.org/cgi-bin/doc?formal/00-10-01.pdf

OMG (2001). About the Object Management Group.

http://www.omg.org/gettingstarted/gettingstartedindex.htm

Papakonstantinou, Yannis; Garcia-Molina; Ullman, Jeffery (1996). MedMaker: A

Mediation System Based on Declarative Specifications.

http://www-db.stanford.edu/pub/papers/medmaker.ps

Papazoglou, Mike P. (2001). Agent -Oriented Technology in Support of E-Business.

Communications of the ACM 44(4): 71-77.

164

Potter, W.; Nute, D.; Wang, J.; Maier, F; Twery, M.; Rauscher, M.; Knopp, P.;

Thomasma, S.; Chinthamalla, D.; Muthyala, H.; Dass, D.; Uchiyama, H.

(2002). The NED IIS Project – Forest Ecosystem Management. Montreal:

IIOP 2002 Conference.

http://webster.cs.uga.edu/ potter/dendrite/NED-IIS-2002IIPc.doc

Potter, W.D.; Somasekar, S.; Kommineni, R; Rauscher, H.M. (1999). NED-IIS: An

Intelligent Information System for Forest Ecosystem Management. Presented

at AAAI Workshop on Intelligent Information Systems, Orlando, July 1999.

Raj, Gopalan Suresh (1998). A Detailed Comparison of CORBA, DCOM and

Java/RMI. http://gsraj.tripod.com/misc/compare.html

Rauscher, Michael H. (1999). Ecosystem management decision support for federal

forests in the United States: A review. Forest and Ecology Management 114:

173-197.

Rauscher, Michael H.; Lloyd, F. Thomas; Loftis, David L; Twery, Mark J. (2000).

A practical decision-analysis process for forest ecosystem management. Com-

puters and electronics in agriculture 27: 195-226

Rogers, T. J.; Ross, Robert; Subrahmanian, V. S. (2000). IMPACT: A System for

Building Agent Applications. Journal of Intelligent Information Systems, 14:

95-113.

Rosen, Michael; Curtis, David (1998). Integrating CORBA and COM Applications.

New York, NY: John Wiley & Sons Inc.

Schildt, Herb (1999). Windows Programming Annotated Archives. Berkely, CA:

Osborne/McGraw-Hill.

Scribner, Kennard; Stiver, Mark C. (2000). Understanding SOAP, Indianapolis, IN:

Sams Publishing.

165

Seligman, Len; Lehner, Paul; Smith, Ken; Elsaesser, Chris; Mattox, David (2000).

Journal of Intelligent Information Systems 14: 29-50.

Seshadri, Govind (1999). Remote Object Activation . Java Report 4(19): 60-68.

Shohoud, Yasser (2001). Getting the Web Services You Need. XML Magazine.

. http://www.fawcette.com/Archives/premier/mgznarch/xml/2001/

06jun01/ys103/ys0103.asp

Skonnard, Aaron (2000). SOAP: The Simple Access Protocol. Microsoft Internet

Developer 5(1): 24-33.

Somasekar, Sugithra (1999). An Intelligent Information System For Integration of

Forest Decision Support Systems. Master’s Thesis, Athens, GA: The Univer-

sity of Georgia.

Tapang, Carlos C. (2001). Web Services Description Language (WSDL) Explained.

Microsoft. http://msdn.microsoft.com/library/en-us/dnwebsrv/html/

wsdlexplained.asp.

Thai, Thuan L. (1999). Learning DCOM, Sebastpol, CA: O’Reilly & Associates Inc.

Thomasma, Scott; Kim, Geneho; Bennett, Deb; Twery, Mark; Rauscher, Mike; Nute,

Don; Potter, Don (1999). NED-2 System Design. June 8, 1999.

http://www.fs.fed.us/ne/burlington/research/ne4454/ned/developers/

NED-2/Ned2Design.doc

Tsai, Wei-Tek (1999). Verification and Validation of Knowledge-Based Systems.

IEEE Transactions on Knowledge and Data Engineering 11(1) 202-211.

uddi.org (2000). UDDI Technical White Paper.

http://www.uddi.org/pubs/Iru UDDI Technical White Paper.pdf

Vinoski, Steve (1993). Distributed Object Computing with CORBA.

http://www.cs.wustl/~schmidt/PDF/docwc.pdf.

Appendix A

GAIA Registration SOAP Files

The GAIA prototype uses XML files sent in SOAP envelopes over HTTP to describe

the functionality encapsulated by an application wrapper. On receiving the SOAP

envelope, the GAIA Controller’s Application Listener thread parses the XML file

and stores the values in the GAIA Knowledge database. The GAIA Listener and the

GAIA Monitor can then use the data stored in the Knowledge database in order to

complete their tasks.

An XML Schema-like grammar was created to describe the functionality of the

sample applications. The vocabulary of the grammar is straightforward and follows

the standard SOAP format. The actual XML data is stored between SOAP Envelope

and SOAP Body tags. Under the SOAP body tag is the required SOAP Body Name

tag that identifies the remote function being invoked and the location of the function.

A dummy SOAP Body Name must appear in the SOAP registration file. GAIA will

replace the dummy value with the real value once SOAP file is loaded.

The rest of the grammar is described in the table that appears below. The sections

after the table contain the XML definitions for the four sample applications that were

integrated into the GAIA prototype.

166

167

Element Name Definiton
Definitions Root element of the XML registration

Grammar
wrapperApplicationURL The URL of the wrapper’s application lis-

tener. GAIA calls this URL to invoke a
method.

wrapperMonitorURL The URL of the wrapper’s monitor lis-
tener. The GAIA monitor calls this URL
to verify that the wrapper is still alive.

methods Encapsulates all of the methods exposed
by the wrapper for use by GAIA.

method Completely describes a single method.
name The method name.
verb The action performed by the method. The

verb is used for display purposes if the
selectable attribute is set to true.

noun The object that the action is being per-
formed on. The noun is used for display
purposes if the selectable attribute is set
to true.

result The value returned by action performed on
the object. The verb is used for display
purposes if the selectable attribute is set
to true.

input Encapsulates the method call’s in parame-
ters.

output Encapsulates the method call’s out param-
eters.

value Describes a parameter with simple types.
The type attribute identifies parameter
types. Valid types are String, int, float,
and currency. The displayName attribute
describes how the value should be labeled.
If a value is both an input and an output
value, the redundant attribute needs to be
set to true.

array Defines an array type. Arrays must be of a
simple type and must eventually contain a
value element.

Table A.1: The GAIA Registration Grammar

168

A.1 The currentPriceWrapper XML file

<?xml version=’1.0’ encoding=’utf-8’?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

<n:Register xmlns:n="localhost:8080">

<Definitions>

<wrapperApplicationURL></wrapperApplicationURL>

<wrapperMonitorURL></wrapperMonitorURL>

<methods>

<method>

<name>getStockPrice</name>

<verb selectable="true">get</verb>

<noun selectable="true">stock</noun>

<result selectable="true">current price</result>>

<input>

<value type="String" displayName="Stock Ticker Symbol">

stockTicker

</value>

</input>

<output>

<array type="String">

<array type="String">

<value type="String" displayName="Company Name">

companyName

</value>

<value type="String"

displayName="Stock Ticker Symbol"

redundant="true">

stockTicker

</value>

<value type="currency" displayName="Last Trade">

currentPrice

</value>

</array>

</array>

</output>

</method>

<method>

<name>getStockSymbol</name>

<verb selectable="true">get</verb>

169

<noun selectable="true">stock</noun>

<result selectable="true">ticker symbol</result>

<input>

<value type="String" displayName="Company Name">

companyName

</value>

</input>

<output>

<array type="String">

<array type="String">

<value type="String" displayName="Company Name"

redundant="true">

companyName

</value>

<value type="String"

displayName="Stock Ticker Symbol">

stockTicker

</value>

</array>

</array>

</output>

</method>

</methods>

</Definitions>

</n:Register>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

A.2 The marketAnalysisWrapper XML File

<?xml version=’1.0’ encoding=’utf-8’?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

<n:Register xmlns:n="localhost:8080">

<Definitions>

<wrapperApplicationURL></wrapperApplicationURL>

<wrapperMonitorURL></wrapperMonitorURL>

<methods>

<method>

<name>getMarketAnalysis</name>

170

<verb selectable="true">get</verb>

<noun selectable="true">stock</noun>

<result selectable="true">analysis</result>

<input>

<value type="String" displayName="Stock Ticker Symbol">

stockTicker

</value>

<value type="currency"

displayName="Purchase Price per Share">

purchasePrice

</value>

</input>

<output>

<value type="String" displayName="analysis">

analysis

</value>

</output>

</method>

</methods>

</Definitions>

</n:Register>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

A.3 The portfolioManagerWrapper XML file

<?xml version=’1.0’ encoding=’utf-8’?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

<n:Register xmlns:n="localhost:8080">

<Definitions>

<methods>

<wrapperApplicationURL></wrapperApplicationURL>

<wrapperMonitorURL></wrapperMonitorURL>

<method>

<name>creatRecord</name>

<verb selectable="true">create</verb>

<noun selectable="true">portfolio record</noun>

<result selectable="false">result value</result>>

<input>

171

<value type="String" displayName="Portfolio Name">

portfolioName

</value>

<value type="String"

displayName="Stock Ticker Symbol">

stockTicker

</value>

<value type="int" displayName="Number of Shares">

shares

</value>

<value type="currency" displayName="Price per Share">

purchasePrice

</value>

<value type="date" displayName="Purchase Date">

purchaseDate

</value>

<value type="currency" displayName="Transaction Fee">

fees

</value>

</input>

<output>

<value type="int" displayName=""

definition="resultValue">

resultValue

</value>

<definition>

<resultValue value="!0"

displayName="Record Created">

success

</resultValue>

<resultValue value="0"

displayName="Error creating record value">

failure

</resultValue>

</definition>

</output>

</method>

<method>

<name>deletePortfolio</name>

<verb selectable="true">delete</verb>

<noun selectable="true">portfolio</noun>

<result selectable="false">result value</result>

<input>

172

<value type="String" displayName="Portfolio Name">

portfolioName

</value>

</input>

<output>

<value type="int" displayName=""

definition="resultValue">

resultValue

</value>

<definition>

<resultValue value="!0"

displayName="Portfolio Deleted">

success

</resultValue>

<resultValue value="0"

displayName="Error deleting portfolio">

failure

</resultValue>

</definition>

</output>

</method>

<method>

<name>deleteRecord</name>

<verb selectable="true">delete</verb>

<noun selectable="true">portfolio record</noun>

<result selectable="false">result value</result>

<input>

<value type="String" displayName="Portfolio Name">

portfolioName

</value>

<value type="String" displayName="Portfolio Record ID">

portfolioRecordID

</value>

<input>

<output>

<value type="int" displayName=""

definition="resultValue">

resultValue

</value>

<definition>

<resultValue value="!0"

displayName="Portfolio Deleted">

success

173

</resultValue>

<resultValue value="0"

displayName="Error deleting portfolio">

failure

</resultValue>

</definition>

</output>

</method>

<method>

<name>getPortfolio</name>

<verb selectable="true">get</verb>

<noun selectable="true">portfolio</noun>

<result selectable="false">portfolio</result>

<input>

<value type="String" displayName="Portfolio Name">

portfolioName

</value>

</input>

<output>

<array type="String">

<array type="String">

<value type="int"

displayName="Portfolio Record ID">

portfolioRecordID

</value>

<value type="String" displayName="Portfolio Name"

redundant="true">

portfolioName

</value>

<value type="String"

displayName="Stock Ticker Symbol">

stockTicker

</value>

<value type="int" displayName="Number of Shares">

shares

</value>

<value type="currency"

displayName="Price per Share">

purchasePrice

</value>

<value type="date"

displayName="Purchase Date">

purchaseDate

174

</value>

<value type="currency"

displayName="Transaction Fee">

fees

</value>

</array>

</array>

</output>

</method>

</methods>

<Definitions>

</n:Register>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope

A.4 The valueCalculatorWrapper XML File

<?xml version=’1.0’ encoding=’utf-8’?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

<n:Register xmlns:n="localhost:8080">

<Definitions>

<wrapperApplicationURL></wrapperApplicationURL>

<wrapperMonitorURL></wrapperMonitorURL>

<methods>

<method>

<name overloaded="true" interfaceNumber="1">getValue</name>

<verb selectable="true">get</verb>

<noun selectable="true">stock value</noun>

<result selectable="true">gross</result>>

<input>

<value type="String" displayName="Last Trade">

currentPrice

</value>

<value type="int" displayName="Number of Shares">

shares

</value>

</input>

<output>

<value type="currency" displayName="Gross Value">

175

grossValue

</value>

</output>

</method>

<method>

<name overloaded="true" intefaceNumber="2">getValue</name>

<verb selectable="true">get</verb>

<noun selectable="true">stock value</noun>

<result selectable="true">gross delta</result>

<input>

<value type="String" displayName="Purchase Price">

purchasePrice

</value>

<value type="String" displayName="Last Trade">

currentPrice

</value>

<value type="int" displayName="Number of Shares">

shares

</value>

</input>

<output>

<value type="currency" displayName="Gross Delta">

grossDelta

</value>

</output>

</method>

<method>

<name overloaded="true" interfaceNumber="3">getValue</name>

<verb selectable="true">get</verb>

<noun selectable="true">stock value</noun>

<result selectable="true">gross delta less fees</result>

<input>

<value type="String" displayName="Purchase Price">

purchasePrice

</value>

<value type="String" displayName="Last Trade">

currentPrice

</value>

<value type="int" displayName="Number of Shares">

shares

</value>

<value type="currency" displayName="Transaction Fees">

fees

176

</value>

</input>

<output>

<value type="float" displayName="Gross Delta less fees">

grossDeltaLessFees

</value>

</output>

</method>

<method>

<name overloaded="true" interfaceNumber="4">getValue</name>

<verb selectable="true">get</verb>

<noun selectable="true">stock value</noun>

<result selectable="true">net value</result>

<input>

<value type="String" displayName="Purchase Price">

purchasePrice

</value>

<value type="String" displayName="Last Trade">

currentPrice

</value>

<value type="int" displayName="Number of Shares">

shares

</value>

<value type="currency" displayName="Transaction Fees">

fees

</value>

<value type="float" displayName="Percent Tax">

tax

</value>

</input>

<output>

<value type="float" displayName="Net Value">

netValue

</value>

</output>

</method>

</methods>

</Definitions>

</n:Register>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Appendix B

Knowledge Database Schema

The Knowledge database is the brains of the GAIA system. All information regarding

integrated legacy applications is stored in the Knowledge database. The GAIA pro-

totype uses Microsoft Access as the database engine. Some Microsoft Access specific

types are used in the schema definitions. However, it is believed that the Access

specific types used should be easily ported to other database engines.

The XML files, described in the previous Appendix, map directly to tables in

the Knowledge database. Much like the wrapper XML files, the Knowledge database

tables can be viewed as being hierarchical. As such, the tables will be presented

hierarchically instead of alphabetically.

B.1 The RegisteredWrappers Table

Field Name Data Type Description
wrapperID AutoNumber Primary key and unique ID for this

wrapper
applicationURL Text The URL GAIA should use to call

methods in the legacy application
wrapperMonitorURL Text The URL the GAIA Monitor should

use to verify that the legacy appli-
cation is still alive

active Number The active state of the application.
0=inactive; 1=active

177

178

B.2 The Methods Table

Field Name Data Type Description
methodID AutoNumber Primary key and unique ID for this

method
wrapperID Number The ID of the wrapper that defines

this method
methodName Text Name of the method being declared

B.3 The UserExposedFunctionality Table

Field Name Data Type Description
functionID AutoNumber Primary key and unique ID for this

function.
methodID Number Identifies the method this function

is associated with.
verb Text The action this method performs
isVerbSelectable Number 0=No; 1=Yes
noun Text The object this method manipu-

lates.
isNounSelectable Number 0=No; 1=Yes
result Text The result of the action on the

object manipulated by this method.
isResultSelectable Number 0=No; 1=Yes

179

B.4 The InParameters Table

Field Name Data Type Description
inID AutoNumber Primary key and unique ID for this

input parameter.
methodID Text Identifies the method this param-

eter belongs to.
name Text The name of this parameter
type Text The type of this parameter. Valid

types include String, int, currency,
float, and date.

displayValue Text The string to display when pre-
senting or requesting this param-
eter in the UI.

B.5 The OutParameters Table

Field Name Data Type Description
outID AutoNumber Primary key and unique ID for this

return parameter.
methodID Text Identifies the method this param-

eter belongs to.
name Text The name of this parameter
type Text The type of this parameter. Valid

types include String, int, currency,
float, and date.

redundant Number Is this value also an in parameter?
0=No; 1=Yes

displayName Text The string to display when pre-
senting this parameter in the UI.

definition Number Are display results for this param-
eter defined? 0=No; 1=Yes

isComplex Number Are arrays or other complex types
used? 0=No; 1=Yes

180

B.6 The Definitions Table

Field Name Data Type Description
definitionID AutoNumber Primary key and unique ID for this

definition.
parameterType Number 0 = out parameter; 1 = in param-

eter; 2 = 2DStringArrayValue.
parameterID Number Id of the parameter this definition

is associated with.
value Text Value of the parameter this defini-

tion applies to.
name Text The name of this definition
displayName Text The string to display when pre-

senting this parameter in the UI.

B.7 The ComplexTypeMap Table

Field Name Data Type Description
complexID AutoNumber Primary key for this complex type.
parameterType Number 0 = out parameter; 1 = in param-

eter
parameterID Number Id of the parameter this definition

is associated with.
type Text The name of the complex type. In

the GAIA prototype only 2D String
Arrays are supported.

181

B.8 The 2DStringArrayValue Table

Field Name Data Type Description
stringArrayID AutoNumber Primary key and unique ID for this

value.
complexTypeID Text ID of the complex type this value

belongs to.
parameterType Number 0 = out parameter; 1 = in param-

eter
parameterID Number Id of the parameter this value is

associated with.
name Text The name of this value.
castType Text Alternative type this String can be

cast to.
redundant Number Is this value both an in and out

parameter? 0=No; 1=Yes
definition Number Are display results for this param-

eter defined? 0=No; 1=Yes
displayName Text The string to display when pre-

senting this parameter in the UI.

Appendix C

Sample Wrapper Code

C.1 currentPriceWrapper.xml

<?xml version=’1.0’ encoding=’utf-8’?>

<currentPriceWrapperConfiguration>

<monitorListenerPort>9050</monitorListenerPort>

<controllerListenerPort>9051</controllerListenerPort>

<applicationListenerURL>

http://localhost:8080

</applicationListenerURL>

</currentPriceWrapperConfiguration>

C.2 currentPriceWrapper.wrapperMainThread()

package currentpricewrapper;

/**

* <p>Title: currentPriceWrapper</p>

* <p>Description: Wrapper for the currentPriceApplication</p>

* <p>Copyright: Copyright (c) 2002</p>

* <p>Company: UGA Master’s Thesis</p>

* @author Joseph Daniel Procopio

* @version 1.0

*/

import java.io.*;

import java.net.*;

import javax.xml.parsers.*;

import javax.xml.transform.*;

import javax.xml.transform.dom.*;

import javax.xml.transform.stream.*;

import org.xml.sax.*;

182

183

import org.w3c.dom.*;

import java.util.*;

import javax.xml.soap.*;

import javax.xml.messaging.*;

public class wrapperMainThread {

//Used to Listen for pings

private static String monitorListenerPort = "";

//Used to listen for requests

private static String controllerListenerPort = "";

//Used to Register Wrapper

private static String applicationListenerURL = "";

public wrapperMainThread() {

getConfigurationData(); // sets the Port values

}

public static void main(String[] args) {

System.out.println("currentPriceWrapper started");

wrapperMainThread wrapperMainThread1 = new wrapperMainThread();

System.out.println("Registering with GAIA");

int status = wrapperMainThread1.registerFunctionality();

System.out.println("Exiting with status = " + status);

}

public void getConfigurationData()

//Loads an XML configuration file that contains listening port

//information. The default XML configuration file assumes all

//prototype apps will be running on the same machine.

{

if (controllerListenerPort != "")

return;

try {

//Set the configuration directory

//NOTE: if the directory strutucture changes this code

//will need to be modified

String strClass = System.getProperty("user.dir");

int parentDirectoryPos = strClass.lastIndexOf("\\");

if (parentDirectoryPos != - 1) {

strClass = strClass.substring(0,parentDirectoryPos);

}

// Set the configuration File

184

File configFile = new File(strClass +

"/Config/currentPriceWrapper.xml");

if (!configFile.exists()) {

System.err.println

("currentPriceWrapper.xml does not exist");

}

// Use the XML DOM to pull in the Configuration File

Document document;

DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();

DocumentBuilder builder = factory.newDocumentBuilder();

document = builder.parse(configFile);

//Get the rootElement and then find the configuration

//elements and save their values

Element rootElement = document.getDocumentElement();

NodeList childElements =

rootElement.getElementsByTagName("monitorListenerPort");

if (childElements.getLength() > 0) {

monitorListenerPort =

childElements.item(0).getLastChild().getNodeValue();

}

childElements =

rootElement.getElementsByTagName("applicationListenerURL");

if (childElements.getLength() > 0) {

applicationListenerURL =

childElements.item(0).getLastChild().getNodeValue();

}

childElements =

rootElement.getElementsByTagName

("controllerListenerPort");

if (childElements.getLength() > 0) {

controllerListenerPort =

childElements.item(0).getLastChild().getNodeValue();

}

}

catch (ParserConfigurationException e) {

System.err.println

("wrapperMainThread.getConfigurationData:" +

"ParserConfigurationException");

}

catch (java.io.IOException e) {

185

System.err.println

("wrapperMainThread.getConfigurationData: IOException");

}

catch (org.xml.sax.SAXException e) {

System.err.println

("wrapperMainThread.getConfigurationData: SAXException");

}

}

private int registerFunctionality() {

//Retrieve Application method definitions from an XML File

Document document = loadApplicationDefinitions();

if (document == null) {

return 0;

}

//Setup listener URL values

insertListenerURLValues(document);

//Generate a SOAP message to transmit the Application

//Definitions

int result = createAndSendSOAPRegMessage(document);

return result;

}

private Document loadApplicationDefinitions() {

//Retrieves the Application Method definitions from an XML File

Document document = null;

try {

//Set the configuration directory

//NOTE: if the directory strutucture changes this

//code will need to be modified

String strClass = System.getProperty("user.dir");

int parentDirectoryPos = strClass.lastIndexOf("\\");

if (parentDirectoryPos != - 1) {

strClass = strClass.substring(0,parentDirectoryPos);

}

// Set the configuration File

File applicationDef = new File

(strClass + "/applicationDefs/currentPriceAppDef.xml");

if (!applicationDef.exists())

{

186

System.err.println

("currentPriceAppDef.xml does not exist");

}

// Use the XML DOM to pull in the Configuration File

DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();

factory.setNamespaceAware(true);

DocumentBuilder builder = factory.newDocumentBuilder();

document = builder.parse(applicationDef);

}

catch (ParserConfigurationException e) {

System.err.println

("wrapperMain.loadApplicationDefinitions: " +

" ParserConfigurationException");

}

catch (java.io.IOException e) {

System.err.println

("wrapperMain.loadApplicationDefinitions: IOException");

}

catch (org.xml.sax.SAXException e) {

System.err.println

("wrapperMain.loadApplicationDefinitions: SAXException");

}

return document;

}

private void insertListenerURLValues(Document document) {

//Find the IP address of the local host.

//If an error occurs use localhost;

String strHostAddress = "";

try {

InetAddress a = InetAddress.getLocalHost();

strHostAddress = a.getHostAddress();

}

catch (UnknownHostException er) {

strHostAddress = "localhost";

}

//Now update the empty configuration elements in the AppDef

//wrapper with the local IP address and the configured port

NodeList appURLList =

document.getElementsByTagName("wrapperApplicationURL");

187

if (appURLList.getLength() > 0) {

if (appURLList.item(0).getNodeType()

== Element.ELEMENT_NODE) {

Element appURLElement = (Element) appURLList.item(0);

String strAppURL = strHostAddress + ":" +

controllerListenerPort.trim();

appURLElement.appendChild

(document.createTextNode(strAppURL));

}

}

NodeList wrapperMonitorURLList =

document.getElementsByTagName("wrapperMonitorURL");

if (wrapperMonitorURLList.getLength() > 0) {

if (wrapperMonitorURLList.item(0).getNodeType()

== Element.ELEMENT_NODE) {

Element wrapperMonitorURLElement

= (Element) wrapperMonitorURLList.item(0);

String strWrapperURL = strHostAddress + ":" +

monitorListenerPort.trim();

wrapperMonitorURLElement.appendChild

(document.createTextNode(strWrapperURL));

}

}

//Update the SOAP body name element

NodeList insertNameSpaceList = document.getElementsByTagName

("n:Register");

if (insertNameSpaceList.getLength() > 0) {

if (insertNameSpaceList.item(0).getNodeType()

== Element.ELEMENT_NODE) {

//Get the Body Name Element and set it to a W3C DOM

//node (as opposed to a SOAP DOM)

org.w3c.dom.Node nameSpaceNode

= insertNameSpaceList.item(0);

//Get a pointer to the Body Name Element Parent node

org.w3c.dom.Node pNode

= nameSpaceNode.getParentNode();

//Create a new element with the correct NameSpace and

//method invocation information

Element newElement = document.createElement

("n:Register");

newElement.setAttributeNS

188

("http://www.w3.org/2000/xmlns/", "xmlns:n",

applicationListenerURL);

//Find the Definitions node and perform a deep clone

//so the clone can be appended to the new element

Element nameSpaceElement = (Element) nameSpaceNode;

NodeList definitionsNodeList

= nameSpaceElement.getElementsByTagName

("Definitions");

org.w3c.dom.Node childNode = null;

if (definitionsNodeList.getLength() > 0) {

childNode

= definitionsNodeList.item(0).cloneNode(true);

}

//Append the new childNode containing the rest of the

//DOM tree to the new element

if (childNode != null) {

newElement.appendChild(childNode);

}

//Delete the children under the parent node

NodeList pNodeChildList = pNode.getChildNodes();

for (int i=pNodeChildList.getLength()-1; i >= 0; i--)

{

pNode.removeChild(pNodeChildList.item(i));

}

//Append the newElement and the parent node

pNode.appendChild(newElement);

}

}

}

private int createAndSendSOAPRegMessage(Document document) {

//Use JAX-M to communicate with the AppListener

try {

//Get a SOAP connection

SOAPConnectionFactory connFactory

= SOAPConnectionFactory.newInstance();

SOAPConnection connection

= connFactory.createConnection();

//Get a SOAP message

189

MessageFactory messageFactory

= MessageFactory.newInstance();

SOAPMessage message = messageFactory.createMessage();

//Get SOAP part and add the document object to it

SOAPPart soapPart = message.getSOAPPart();

DOMSource domSource = new DOMSource(document);

soapPart.setContent(domSource);

SOAPEnvelope envelope = soapPart.getEnvelope();

//Get SOAP header

SOAPHeader header = envelope.getHeader();

if (header != null)

header.detachNode();

message.saveChanges();

URLEndpoint endpoint

= new URLEndpoint(applicationListenerURL);

SOAPMessage reply = connection.call(message, endpoint);

return 1;

}

catch (SOAPException er) {

System.err.println(er.getMessage());

System.err.flush();

return 0;

}

}

}

Appendix D

Glossary of acronyms

A

AIL: GAIA Application Interface Layer

API: Application Programming Interface

ASCII: American Standard Code for Information Interchange

ATL: Microsoft Active Template Library

AWT: Java Abstract Windows Toolkit

B

BOA: CORBA Basic Object Adaptor

C

CDR: CORBA Common Data Representation Protocol

CEFACT: United Nation’s Economic Commission for Europe’s Centre for Facili-

tation of Administration, Commerce and Trade

CGI: Common Gateway Interface

CICS: IBM’s Customer Information Control System

CIL: GAIA Client Interface Layer

190

191

CISC: Complex Instruction Set Computer

CLR: Component Language Runtime

CORBA: Common Object Request Broker Architecture

COM: Component Object Model

CPU: Central Processing Unit

CRM: Customer Relationship Management

CSS: Cascading Style Sheet

CSV: Comma Separated Value

CTM: Component Transaction Monitor

D

DCD: Document Content Description

DCE: Distributed Computing Environment

DCOM: Distributed Component Object Model

DDML: Document Definition Markup Language

DHTML: Dynamic Hypertext Markup Langauge

DII: Dynamic Invocation Interface

DISA: Data Interchange Standards Association

DLL: Dynamic Link Library

DOM: Document Object Model

192

DTD: Document Type Definition

E

EAI: Enterprise Application Integration

EBCDIC: Extended Binary Coded Decimal Interchange Code

EBNF: Extended Backus Naur Form

ebXML: Electronic Business XML

EDI: Electronic Data Interchange

EJB: Enterprise Java Bean

ERP: Enterprise Resource Planning

EXE: Executable

F

FEM-DSS: Forest Ecosystem Management Decision Support System

FVS: Forest Vegetation Simulator

FTP: File Transfer Protocol

G

GAIA: Generic Application Integration Architecture

GIOP: CORBA General Inter-ORB Protocol

GUI: Graphical User Interface

GUID: Globally Unique Identifier

193

H

HLLAPI: High Level Language Application Programming Interface

HTML: Hypertext Markup Language

HTTP: Hypertext Transfer Protocol

HTTPS: Hypertext Transfer Protocol, Secure

I

IDL: Interface Definition Language

IE: Microsoft Internet Explorer

IIM: Intelligent Information Module

IIOP: CORBA’s Internet Inter-ORB Protocol

IIS: Intelligent Information System

IIS: Microsoft Internet Information Server

IMM: Intelligent Module Manager

IMPACT: Interactive Maryland Platform for Agents Collaborating Together

IOR: Interoperable Object Reference

IP: Internet Protocol

IR: CORBA Interface Repository

ISAPI: Internet Server Application Programmer’s Interface

ISO: International Standards Organization

194

ISO-8859-1: Latin 1 Character Encoding

J

J2EE: Java 2 Enterprise Edition

J2SE: Java 2 Standard Edition

JAWS: Just Another Web Service

JAXM: Java API for XML Messaging

JAXP: Java API for XML Processing

JAXR: Java API for XML Registries

JAX-RPC: Java API for XML RPC

JDBC: Java Database Connectivity

JDK: Java Development Kit

JIT: Just-In-Time

JMS: Java Messaging Service

JRMP: Java RMI Wire Protocol

JSP: Java Server Page

JVM: Java Virtual Machine

K

KBS: Knowledge Based Systems

195

M

MFC: Microsoft Foundation Classes

MIDL: Microsoft Interface Language Definition

MS: Microsoft

MS-RPC: Microsoft Remote Procedure Call

MTS: Microsoft Transaction Server

N

NED: The Northeast Decision Model FEM-DSS

NDR: RPC Network Data Representation

O

OLE: Object Linking and Embedding

OMG: Object Management Group

ORB: Object Request Broker

OSF: Open Software Foundation

OXID: DCOM Object Exporter Identifier

P

PAM: Process Activation Mode

PC: Personal Computer

PDA: Personal Digital Assistant

196

PI: XML Processing Instruction

POA: CORBA Portable Object Adaptor

PSM: Problem Solving Module

R

RISC: Reduced Instruction Set Computer

RMI: Remote Method Invocation

ROA: Remote Object Activation

RPC: Remote Procedure Call

S

SAX: Simple API for XML

SOX: Schema for Object-Oriented XML

SCM: DCOM Service Control Module

SDK: Software Development Kit

SECIOP: CORBA Secure Inter-ORB Protocol

SILVAH: Silviculture of Alleghany Hardwoods FEM-DSS

SGML: Standard Generalized Markup Language

SMTP: Simple Mail Transport Protocol

SOAP: Simple Object Access Protocol

SPARC: Sun’s Scalable Processor Architecture

197

SQL: Structured Query Language

SSL: Secure Socket Layer

T

TCP: Transmission Control Protocol

TP: Transaction Processing

U

UCS-2: Unicode Character Set 2 byte encoding

UCS-4: Unicode Character Set 4 byte encoding

UDDI: Universal Description, Discovery and Integration

UDT: User-defined Type

UGA: The University of Georgia

UI: User Interface

UNECE: United Nations Economic Commission for Europe

UN/EDIFACT: United Nations Electronic Data Interchange for Administration,

Commerce and Transport

URI: Uniform Resource Identifier

URL: Universal Resource Locator

URN: Uniform Resource Name

UTF-8: Unicode Transformation Format 8 bit encoding

198

UTF-16: Unicode Transformation Format 16 bit encoding

V

VPTR: C++ Virtual Function Pointer

VTBL: C++ Virtual Function Table

W

W3C: World Wide Web Consortium

WAP: Wireless Access Protocol

WDDX: Web Distributed Data Exchange

WML: Wireless Markup Language

WSDL: Web Service Description Language

WSDP: Web Services Developer Pack

WWW: World Wide Web

X

XHTML: Extensible Hypertext Markup Language

XML: Extensible Markup Language

XML-DR: Microsoft XML Data-Reduced Schema

XMOP: XML Metadata Object Persistence

XSLF: Extensible Stylesheet Language for Formatting

XSLT: Extensible Stylesheet Language for Transformations

