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ABSTRACT

This dissertation proposes low-order model development and controller design for various auto-

motive and manufacturing applications. The first task models a single wafer rapid thermal process

(RTP) using first-principles modeling. Then, making use of the linear parameter-varying (LPV)

state-space representation, we convert the nonlinear RTP model into an affine LPV model. For

controller design purposes, we reduce the number of scheduling variables and the order of the

model. Using this reduced-order model, we design a gain-scheduled H∞ controller for reference

tracking. In the second task, we reconfigure the model of a cooperative adaptive cruise control

platoon in order to account for the uncertain and time-varying parameters of the system dynamics

and communication delay. Using this model, we design a robust controller and reduce its order.

The reduced-order controller remains robust to the model. We validate the controller design by

performing experiments on the test bed to show the need for robust control. The third task uses

model order reduction techniques to design a low-order robust controller in a parabolic convection-

diffusion equation application.
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CHAPTER 1

INTRODUCTION AND LITERATURE SURVEY

1.1 INTRODUCTION

This dissertation proposes low-order model development and controller design for various auto-

motive and manufacturing applications. Here, we use the framework of linear parameter-varying

(LPV) state-space systems. LPV systems are linear dynamic systems whose state-space represen-

tation depend on time-varying parameters called scheduling variables. In this framework, nonlinear

models are described using linear dynamic relations between the inputs and outputs. This is defined

in the discrete time state-space representation as

x(k+1) = A(θ(k))x(k)+B(θ(k))u(k),

y(k) =C(θ(k))x(k)+D(θ(k))u(k), (1.1)

where k is the discrete time instant, x describes the state vector, u is the external input to the

system, y is the measurements, and θ(k) denotes the scheduling parameters (θ(k) denotes that the

scheduling variables are time dependent). The LPV framework introduces a modeling paradigm

that finds a middle ground between linear and nonlinear system dynamics [3].

When an LPV model is used for gain-controller design purposes, the controller is designed

using the same scheduling variables of the LPV model. Presently, the standard linear matrix

inequality (LMI) solutions for gain-scheduled controller synthesis requires solving 2n vertices of

the corresponding polytopic system, where n is the number of scheduling variables [4]. Given this

limitation in gain-scheduled controller design, the number of scheduling variables in the original

LPV model becomes nontrivial. The data reduction techniques of principle component analysis
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can be used to reduce the number of scheduling variables, and proper orthogonal decomposition

presents a data-driven method of reducing the model order of a system. Both of these techniques

can be used to derive a reduced model that is low in both number of scheduling variables and

order. A reduced-order model of this form is more suitable for controller design synthesis as the

low number of scheduling variables allows for increased mathematical tractability in controller

design using standard H∞ loop shaping LMI-based techniques.

Next, in the modeling case that system parameters are known to be time-varying or to vary

within a range but are unmeasureable, robust control theory can be applied to design a robust

controller. This approach can be conservative, but is suited for applications where the uncertainty

cannot be quantified in real-time. There are also several reasons to incorporate robustness into a

control design framework as there usually exist several sources of uncertainty within any dynamic

system. Fundamentally, there are always parameters that are only approximately known or are

modestly in error. Also, linear models may only be adequate for a small operating range, and

original measurements for parameter identification have inherent errors despite calibration [5]. For

robust controller design we use standard LMI solvers for H∞ loop shaping. If the controller order

is deemed too high, balanced truncation methods can be used to achieve a low-order controller.

1.2 LITERATURE SURVEY

We now examine the available literature on the selected topics presented throughout the disserta-

tion.

1.2.1 RAPID THERMAL PROCESSING

Thermal processes are very important in the fabrication of semiconductor devices. As such, the

semiconductor industry has relied on advancements in control and modeling for these purposes

[1], [6]. In rapid thermal processing, the longer a wafer is kept at elevated temperatures, the higher

probability it has of defects. As such, minimizing a metric called the thermal budget is very impor-

tant not only for heating cost purposes, but also for purity and defect reasons [6].

2



Several alternative approaches to modeling and control of single wafer RTP system have been

suggested in the literature. Review of an Steag Inc RTP system with first principles modeling

and genetic nonlinear model predictive control (NMPC) was proposed in [1]. An adaptive con-

trol model was presented in [7]. The authors in [8] studied the thermal behavior of large silicon

wafers. Decentralized control approach in the design of PI controllers was used in [9]. The authors

in [10] used proper orthogonal decomposition (POD) to reduce the order of an RTP system. A

linear quadratic gaussian (LQG) approach to control was taken in [11]. Furthermore, a run to run

approach was taken in [12], while [13] used internal model control (IMC). Finally, multivariable

and multizone control was presented in [14–16]. A survey of RTP processes was presented in [17].

As observed from the aforementioned literature, first principles-based modeling of the RTP

system is best represented by a partial differential equation (PDE) with varying coefficients and

nonlinear boundary conditions. However, direct control of such nonlinear system is not seen in

literature, nor are there modeling frameworks that present the plant in a control-oriented form.

In this paper, we propose a linear parameter-varying (LPV) modeling approach that directly and

systematically copes with the complex nonlinearities seen in the RTP processes. LPV techniques

have gained popularity as they have developed into effective tools to control multi-input multi-

output (MIMO) nonlinear systems [3]. Furthermore, the application of these methods has not been

explored for thermal processes including RTP systems, for which the well known nonlinear mate-

rial properties can be exploited in the LPV framework of scheduling variables.

1.2.2 COOPERATIVE ADAPTIVE CRUISE CONTROL

Connected vehicles are an example of a modern day cyber physical systems (CPS) that through

the use of Cooperative Adaptive Cruise Control (CACC) can provide an innovative solution to

the traffic congestion problem [18]. Traffic is becoming an increasing problem in today’s world

as congestion in many urban areas is growing at a much faster rate than the traditional means of

traffic alleviation can assuage [19]. CACC is a technology that seeks to reduce traffic congestion

by means of achieving higher traffic flow rates using advanced control systems to safely reduce

3



the allowable headway time between vehicles [20]. A widespread advantage of CACC over tradi-

tional means of increasing traffic throughput, i.e., road construction, is that CACC has the potential

to be implemented on any car without the additional high costs and delays associated with road

construction projects [21].

CACC technology is an extension of Adaptive Cruise Control (ACC), which in turn is an exten-

sion of conventional cruise control (CCC), a technology traditionally used to regulate a vehicle at

a constant highway speed [22]. ACC extends the CCC technology by regulating the so-called

headway distance between vehicles that are arranged together in a platoon [23]. ACC employs

radar (or lidar) sensors to measure the relative velocity and displacement with the preceding

vehicle, and a longitudinal control framework is then implemented to space the vehicles to an

appropriate headway [22] by adjusting the acceleration and deceleration of the vehicle. CACC

extends the ACC technology by adding inter-vehicle wireless communication [24]. This extension

enables smaller headway distances, which is critical for platoon technology to have a noticeable

impact on traffic mitigation [21, 25].

According to the 2010 Highway Capacity Manual, a study observing human drivers showed

that the maximum flow rate for a multi-lane highway (at 60 mi/h) equates to 1.1 seconds of

headway [21]. Herein lies the main drawback of ACC technology; the smallest stable headway

is larger than the average time-gap that human drivers naturally exhibit [19, 25], thus justifying

the need for CACC technology. The vehicles that are virtually connected to each other through

CACC technology must ensure an important metric called string stability [2]. This concept was

first introduced in [26] and later extended in [27], which led to the development of systems using

the nearest neighbor as a measurement. Essentially, string stability is a requirement that all distur-

bances introduced in the string be attenuated as they propagate in the downstream direction [23,27].

String stability is essential to ensuring the safety and feasibility of the string [2]. Not only do any

disturbances in position, velocity or acceleration create increased energy consumption, these dis-

turbances must also be mitigated in order to prevent the so-called ghost traffic jams [23], or even

in extreme cases, an accident [28]; hence, a control design formulation that can explicitly account
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for string stability inherently meets design objectives and exterminates the need for any ad-hoc

a posteriori tuning to achieve string stability. This notion of string stability has been studied in

several aspects such as Lyapunov stability, and input-output stability; however, these methods lack

the consideration of a measure of performance as seen in [29, 30], which give a frequency-domain

approach for controller synthesis.

Several approaches have been undertaken in designing a controller for a platoon of vehicles.

The system model considered to describe the vehicular motion is usually a thrid-order nonlinear

model [31, 32], where subsequently the plant is linearized by the use of feedback linearization

method. For the control design using the linearized model, several CACC experimental results

have been reported, e.g., in [23, 24, 33]. These recent works show the promise in using CACC.

Indeed, several aspects of CACC technologies have been studied. The authors in [28] developed a

sampled data approach to CACC design in the presence of sensors and actuator failures and [34]

studied strategies for worst case sensor failure scenarios. Model predictive control (MPC) has also

gained attention as a way to cast the CACC problem in a framework that can directly optimize fuel

economy. An MPC based CACC approach was designed for heavy duty vehicles, such as tractor

trailer trucks in [35], where smaller headway distances can be sacrificed for better fuel economies

as traffic throughput may not be the primary objective as is the case with urban rush hour highway

demands. CACC can also be viewed in light of the communication as a networked control system

where the effects of sampling, hold, and network delays can be taken into account. An H∞ formu-

lation of network controlled problems is given in [36]. Still, other works have investigated time-

varying communication delays and communication structures beyond the classical architecture as

in [37].

1.2.3 2-D PARABOLIC CONVECTION-DIFFUSION EQUATION

Convection-diffusion equations are representative of a class of fluid dynamic systems that accu-

rately describe a particular flow phenomenon, but are mathematically not suited for control design

purposes [38–40]. Recent developments in the control system community with respect to model

5



order reduction techniques have generated interest in applying relevant tools to fluid dynamic sys-

tems governed by partial differential equations (PDEs) [41, 42]. Therefore, in order to arrive at

lower-order models tractable for control design purposes, there is a need to use a suitable projec-

tion method [41]. Convection-diffusion processes are widespread in occurrence in many scientific

and engineering fields. A few common applications are: pollutant dispersal, vorticity transport in

the incompressible Navier-Stokes equations, atmospheric pollution, semiconductor equations, the

Stephan problem on a variable mesh, and viscous compressible flow [38]. The authors in [43, 44]

used finite element method to control the convection-diffusion equation; however, their primary

focus was on the mesh constraints related to optimality.

A great deal of work developed for model order reduction techniques has come within the

controls context, and many methods for model order reduction have been suggested [42]. Proper

orthogonal decomposition (POD) has become a well-accepted technique to obtain optimal basis

functions that lead to low-order models to accurately represent the original full-order models

[39–42, 45–48]. POD was first introduced by Lumley [49] in the context of turbulence, and the

method of snapshots was first suggested by Sirovich [50]. POD has the intrinsic property that it

is completely data dependent, and the modal decomposition used does not assume prior knowl-

edge of how the data is generated [45]. This property is advantageous as no apriori information is

needed to choose an ideal set of basis functions.

1.3 DISSERTATION AIMS AND ORGANIZATION

In this dissertation we propose low-order model development and controller design for var-

ious automotive and manufacturing applications. As the field of control systems has progressed,

researchers have developed advanced techniques for controller synthesis, especially for nonlinear

and uncertain systems. Traditionally, Jacobian linearization around an equilibrium point has been

used to linearize models for controller design purposes. The resulting linear system, however, only

describes the local behavior around that equilibrium point. Controller design from a linearized

system cannot guarantee closed-loop stability in the presence of uncertainties and unmodeled
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dynamics. Perturbations of the real system that move the dynamics away from the equilibrium

point would cause a decrease in closed-loop performance, and could also potentially destabilize

the closed-loop system, especially for systems with large uncertainties.

Robust control theory provides a direct methodology to model uncertainties and unmodeled

dynamics while presenting an explicit notion of robust stability and robust performance. However,

the design of a robust controller could be potentially conservative, especially if uncertain parame-

ters can be measured in real-time. To overcome this potential conservatism, LPV modeling takes

into the account the parameter variations of the state-space system dynamics by using scheduling

variables. An LPV model can be used in conjunction with a gain-scheduled controller.

This dissertation proposes low-order model development and controller design. Low-order con-

trollers are desired for ease in real-time computational implementation. This desire to develop a

low-order controller gives focus to the initial modeling assumptions and controller design method-

ology. By understanding the type of the uncertainties and nonlinearities within the model, different

control design approaches should be made to best achieve a low-order controller. We show this in

several tasks throughout the dissertation.

In chapters 2 and 3 we model a single wafer RTP. Here the use of an LPV model to describe

the RTP system is justified given the hard nonlinearities and available online temperature measure-

ment for scheduling variables calculations. The nonlinear RTP system is formulated into an affine

LPV model, and subsequently the number of scheduling variables and model order are reduced

for controller design purposes. We use the reduced-order model to design a gain-scheduled con-

troller and show closed-loop reference tracking. In chapters 4 and 5 we reformulate the model of a

cooperative adaptive cruise control platoon in order to account for the uncertain and time-varying

parameters of the system dynamics. We then design a robust controller, and validate a low-order

robust controller with an experimental laboratory test bed showing the need for robust control. The

final work in Chapter 6 uses model order reduction techniques to design a low-order robust con-

troller in a parabolic convection-diffusion equation application. Finally, concluding remarks about

the contribution of the dissertation are given in Chapter 7.
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CHAPTER 2

LINEAR PARAMETER-VARYING APPROACH FOR MODELING AND CONTROLLING RAPID

THERMAL PROCESSES

1

1Trudgen, Mark and Javad Mohammadpour. ”Linear parameter-varying approach for modeling and con-
trol of rapid thermal processes.” Submitted to the International Journal of Control, Automation and Systems,
November 2016.
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2.1 ABSTRACT

In the present paper, a new approach is presented to model and control single wafer rapid thermal

processing (RTP) systems. Within the past decade, RTP has achieved acceptance as the mainstream

technology for semiconductor manufacturing. Thermal processing is one of the most efficient ways

to control the phase-structure properties; moreover, the time duration of RTP systems reduces the

so-called thermal budget significantly compared to the traditional methods. RTP implementation is

based on the use of light from heating lamps to provide a heat flux. This process is highly nonlinear

due to the radiative heat transfer and material properties. By invoking the first principles-based

models, we develop in this paper a linear parameter-varying (LPV) model to directly account for

all the nonlinearities within the system. The model is discretized into a high-order affine LPV

system; thereafter, principal component analysis (PCA) method is utilized to reduce the number

of the LPV model’s scheduling variables, followed by the use of proper orthogonal decomposition

(POD) for model order reduction. From the reduced-order system, we design a gain scheduled

controller to satisfy an induced L2 gain performance for tracking of a temperature profile.

2.2 INTRODUCTION

Embedded deep in the heart of all electrical applications are integrated circuits (IC), primarily

composed of semiconductor devices made from a sequence of batch processes. With the continual

developments in IC technology, we see an increase in the demand for performance improvements

in terms of both quality variables and output yield resulting from the use of larger diameter silicon

wafers [17]. To achieve these increased yields, precise uniform temperature control of a wafer is

of paramount consideration. As such, the semiconductor industry has relied on advancements in

control and modeling for these purposes [1], [6].

Thermal processes are very important in the fabrication of semiconductor devices. The longer

a wafer is kept at elevated temperatures, the higher probability it has of defects. As such, mini-

mizing a metric called the thermal budget is very important not only for heating cost purposes,
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but also for purity and defect reasons [6]. The thermal budget is calculated as the integral of the

product of the diffusivity and the temperature over time. As wafer dimensions have shrunk down

into the micron range, there has been an increase in demand on uniform thermal processing. The

push to reduce the thermal budget, combined with the tight quality requirements, has given rise to

a new technology called single wafer processing (SWP). Traditionally, batch processes were used

where wafer holders called “boats” loaded many wafers onto a quartz substrate to be placed inside

a furnace. Although furnace construction included insulated walls to improve the isothermal nature

of the environment inside, wafer uniformity remains an issue. This issue has led to the develop-

ment of rapid thermal processing (RTP) technologies. Single wafer units are better alternatives to

meet temperature uniformity and a lower thermal budget; however, they must be able to heat up

and cool down quickly in order to compete with the volume output of batch processing. A typical

RTP system undergoes three phases: (1) rapid heating on the order of 50-250◦ C/s, (2) a pro-

cessing phase of constant temperature, and (3) a rapid cooling phase. Heating is made possible via

high powered lamps. The heating lamps are split into zones, and this allows for control flexibility.

Finally, optical pyrometers are used to feedback temperature measurements [51].

Several alternative approaches to modeling and control of single wafer RTP systems have been

suggested in the literature. From a modeling standpoint, [52] and [53] studied the feasibility of

modeling RTP chambers. Review of a Steag Inc RTP system with first principles modeling and

genetic nonlinear model predictive control (NMPC) was proposed in [1]. An adaptive control

model was presented in [7]. The authors in [8] studied the thermal behavior of large silicon wafers.

Decentralized control approach in the design of PI controllers was used in [9]. The authors in [10]

and [54] used proper orthogonal decomposition (POD) to reduce the order of an RTP system. A

linear quadratic gaussian (LQG) approach to control was taken in [11] and [55]. Furthermore, a run

to run approach was taken in [12], while [13] used internal model control (IMC). Finally, multi-

variable and multizone control was presented in [14–16]. A survey of RTP processes was presented

in [17].
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As observed from the aforementioned literature, first principles-based modeling of the RTP

system is best represented by a partial differential equation (PDE) with varying coefficients and

nonlinear boundary conditions. However, direct control of such nonlinear system is not seen in

literature, nor are there modeling frameworks that present the plant in a control-oriented form.

In this paper, we propose a linear parameter-varying (LPV) modeling approach that directly and

systematically copes with the complex nonlinearities seen in the RTP processes. LPV techniques

have gained popularity as they have developed into effective tools to control multi-input multi-

output (MIMO) nonlinear systems [3]. Furthermore, the application of these methods has not been

explored for thermal processes including RTP systems, for which the well known nonlinear mate-

rial properties can be exploited in the LPV framework of scheduling variables.

This paper is organized as follows: Section 2.3 describes the process and the first principles-

based model of the generic RTP systems. Section 2.4 reintroduces the system as a high-order

discretized state-space model. This model is then converted into an LPV model. In Section 2.5,

the number of scheduling variables in the high-order LPV model is first reduced using PCA, and

then order of the model is reduced using POD in Section 2.6. Section 2.7 uses the reduced LPV

model to design a gain scheduled controller. In Section 2.8 the RTP system is modeled, a gain

scheduled controller is designed, and closed-loop simulation results show tracking. Section 2.9

draws conclusions and proposes future work.

2.3 RTP PROCESS DESCRIPTION AND MODELING

2.3.1 THE TYPICAL RTP SETUP

In our modeling of RTP systems, we choose to use a single wafer setup as seen in [1], [6], [7],

[9], [11]. For a typical RTP system, a concentric lamp array, usually of halogen lamps, is located

above a quartz window. The lamp array is divided into zones, and the zone power percentage can

be adjusted independently in each zone in order to aid the uniform processing of large wafers.

The heating lamps and chamber are cooled by a cooling flow. The wafer is kept rotating in order to
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ensure uniformity. Finally, an optical pyrometer located underneath the wafer provides temperature

measurement. The setup is illustrated in Figure 2.1.

Concentric Lamp Array

Quartz Window

Guard Ring

Optical Pyrometer

Figure 2.1: Representative single wafer RTP setup.

2.3.2 THE FIRST PRINCIPLES-BASED MODEL

The first step in achieving a control-oriented model is to utilize a first principles-based model of

the RTP chamber. Energy balance on the wafer in the RTP chamber is given as [1]

ρC(T )
∂T
∂ t

= qk +qc +qr, (2.1)

where ρ , C, and T are the wafer density, specific heat, and temperature, respectively. Variable

t denotes continuous time. The heat transfer rates by conduction, convection, and radiation are

denoted by qk, qc, and qr, respectively.

In order to decrease the computational complexity of the model, we first make geometric sim-

plifications. We note that using cylindrical coordinates, the system has rotational symmetry, and

hence the full three-dimensional model (r,θ ,z) can be reduced to a two-dimensional problem in

(r,z). Next, we observe that in order to increase uniformity, the wafer is rotated during the oper-

ation, and this allows us to return the problem to Cartesian coordinates by representing the wafer

as a radial chord. We use the simplifications and write the energy balance in terms of (x,z) as a

partial differential equation (PDE) as follows

ρC(T )
∂T
∂ t

=
∂

∂x

(
k̃(T )

∂T
∂x

)
+

∂

∂ z

(
k̃(T )

∂T
∂ z

)
. (2.2)

Furthermore, the initial and boundary conditions are given as
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T (x,z,0) = Tinitial, (2.3)

k̃(T )
∂T
∂x

= 0 at x = 0, (2.4)

k̃(T )
∂T
∂x

=−he(T −Twall) at x = R, (2.5)

k̃(T )
∂T
∂ z

= F1ε1(T )σ(T 4−T 4
cool)+hw(T −Tcool) at z = 0, (2.6)

hw(x) = hi +(ho−hi)
( x

R

)4
, (2.7)

k̃(T )
∂T
∂ z

= ε2(T )Q(x, t)−F2ε2(T )σ(T 4−T 4
a ) at z = Z, (2.8)

where T is the wafer temperature; Tinitial is the initial wafer temperature; hw is the overall convec-

tive heat transfer coefficient; hi, ho, and he are the heat transfer coefficients at the center, edge, and

wafer edge, respectively [56]; Tcool is the temperature of the coolant; Ta is the temperature of the

quartz window; Twall is the temperature of side walls; C(T ) is the heat capacity; k̃(T ) is the thermal

conductivity; σ is the Stefan-Boltzmann constant; ε1 and ε2 are the emissivities of the lower and

upper wafer surfaces; F1 and F2 are the tunable reflective coefficients; x and z are the Cartesian

coordinates corresponding to the radial thickness Z, and the radial chord length X ; and Q(x, t) is

the heat flux as described by q(x,t)
A(x) . The heat power q(x, t) is described later in (2.14) and A(x) is

the effective wafer area at the chord position.

The initial condition in (2.3) makes the reasonable assumption that the entire wafer starts at a

uniform temperature. Next, we assume that the quartz window, the side walls, and cooling temper-

atures are held constant and equal (Ta = Tcool = Twall). The boundary condition (2.6) represents the

conduction heat losses made with the reactor walls by convection. We use the overall heat transfer

coefficient approach as in [56] in order to account for spatial variations. Lastly, the boundary con-

dition at z = Z as described in (2.8) relates the heat transfer in the wafer to the heat generation of

the heating lamps and also the heating losses in the quartz window.

Next, we must account for the operation range of the RTP systems. Typical RTP systems range

in temperature from 25 to 1200 ◦ C [1]. The material properties of silicon wafers are given in [57]
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and the thermal conductivity and heat capacity are given as

k̃(T ) = 802.99T−1.12
[

W
cmK

]
for T ∈ [300,1683]K, (2.9)

C(T ) = 0.641+2.473 × 104 T
[

J
gK

]
for T > 300K. (2.10)

Furthermore, the material properties of the emissivity is given by [58]

ε(T ) = 0.2662+1.8591 T−0.1996exp
[
− 1.0359 x 1025

T 8.8328

]
. (2.11)

For further computational simplicity, we notice that the wafer density can be taken as a constant,

ρ = 2330kg/m3, since this density does not strongly depend on temperature. Additionally, this

weak temperature dependence allows for a homogeneous energy balance assumption such that

(2.2) can be simplified to

ρC(T )
∂T
∂ t

= k̃(T )
(

∂ 2T
∂x2 +

∂ 2T
∂ z2

)
. (2.12)

2.3.3 MODELING HEATING LAMP INPUT FLUX

Radiation heat transfer is the main mode heat transfer mechanism that raises the wafer temperature.

The lamp array is located directly above the wafer and typically arranged into concentric rings of

heating zones. Radiation heat transfer is a complicated heat transfer mode as energy transfer is

based on both wavelength and geometry. Therefore, a theoretical model must also account for both

diffusive and reflective radiation heat transfer. However, in order to put the model in a form suitable

for controller design purposes, we first make the partial simplifying assumption of a diffusive grey

body. As seen in (2.11), the emissivity is still a function of temperature, but we relax the condition

that it also must be a function of wavelength.

Next, to calculate the heat flux transferred to the wafer, we follow the view factor formula given

in [1] that describes the geometric relationship between two areas given as

F1−2 =
1

A1

∫
A1

∫
A2

cos(θ1)cos(θ2)

πS2 dA2dA1, (2.13)

where F1−2 is the radiation fraction transmitted from surface 1 to surface 2 and θ1 and θ2 are the

normal angles at the surfaces while S is the distance between the surfaces, and A1 and A2 are the
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corresponding surface areas. Following [1], (2.13) is integrated on a differential annular heating

ring. We then recast into a generalized form for the multiple zones as

q(x, t) = α ·
n

∑
j=1

Fj−x(x,rin,rout) ·q( j), (2.14)

where α is a tunable parameter, j represents the ring number, n is the maximum number of zones,

rin and rout are the respective radial measurements of the local ring number, and q(x, t) represents

the heating ring power.

2.4 NONLINEAR MODELING OF RTP SYSTEMS

The two-dimensional heat equation (2.12) is given on the physical domain S = {x|x ∈ [0,χ]}∪

{z|z ∈ [0,ζ ]} and the temporal domain R= {t|t ∈ [0,τ]}. Now T : S×R→ T is the space and time

dependent temperature. An approximate discrete solution of (2.12) is then represented by

T k
i, j = T : Ŝ× R̂→ T, (2.15)

with the finite sets Ŝ = {s1, . . . ,smm×nn}, R̂ = {t1, . . . , tK}, where mm× nn is the number of grid

points, and K is the number of time samples.

2.4.1 DISCRETIZATION OF THE RTP MODEL

The partial differential equation (PDE) in (2.12) is discretized using a forward time-center space

(FTCS) discretization method, which gives

ρC(T k
i, j)

T k+1
i, j −T k

i, j

∆t
= k̃(T k

i, j)

[T k
i−1, j−2T k

i, j +T k
i+1, j

(∆x)2

+
T k

i, j−1−2T k
i, j +T k

i, j+1

(∆z)2

]
, (2.16)

where ∆x and ∆z represent the discretization step size in spatial directions, and ∆t is the time step;

i and j represent the two spatial indices in the x and z dimensions, and k represents the time index.

We also discretized the nonlinear boundary conditions subject to (2.5)-(2.8). A simulation result

of the discretized system is shown in Figure 2.2 at an arbitrary time instant, where ∆x = 1/20, ∆z
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= 1/4, and Tinitial = 303 K. The time step ∆t is chosen such that it obeys the limits of the FTCS

discretization stability restrictions.

T k
i−1, j =

k̃(T k
i+1, j)

k̃(T k
i−1, j)

T k
i+1, j at x = 0, (2.17)

T k
i+1, j =

−2∆xhe(T k
i, j−Twall)+ k̃(T k

i−1, j)T
k

i−1, j

k̃(T k
i+1, j)

at x = R, (2.18)

T k
i, j−1 =

2∆z
[
ε2(T k

i, j)
q(x,k)
A(x) −F2ε2(T k

i, j)σ [(T k
i, j)

4−T 4
cool]

]
k̃(T k

i, j−1)

+
k̃(T k

i, j+1)T
k

i, j+1

k̃(T k
i, j−1)

at z = 0, (2.19)

T k
i, j+1 =

−2∆z
[
F1ε1(T k

i, j)σ [(T k
i, j)

4−T 4
cool]+hw(xi)(T k

i, j−Tcool)
]

k̃(T k
i, j+1)

+
k̃(T k

i, j−1)T
k

i, j−1

k̃(T k
i, j+1)

at z = Z. (2.20)

∆t ≤ 1
2

ρC(T )∆x2∆z2

k(T )(∆x2 +∆z2)
, (2.21)

which is a limit due to the FTCS discretization method. These conditions are chosen to examine

the open-loop response to an input signal with typical wafer dimensions [1].

2.4.2 LINEAR PARAMETER-VARYING MODEL DERIVATION

It is observed that the system (2.2)-(2.8) is nonlinear, and remains so after discretization. There

exists several approaches to transform a nonlinear system represented by

x(k+1) = F(x(k),u(k)), (2.22)

into a linear model. A well known approach is the Jacobian linearization of (2.22) around an

equilibrium trajectory. The resulting linear system will then only describe the local behavior around

that trajectory. Another approach is based on rewriting (2.22) into an equivalent form, where the
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Figure 2.2: Simulation of the open-loop single wafer RTP setup.

nonlinearities can be hidden inside newly defined variables, the so-called scheduling variables.

Such a model is called a linear parameter-varying (LPV) model [3]. A discrete-time LPV model

can be represented in state space asx(k+1)

y(k)

=

A(θ(k)) B(θ(k))

C(θ(k)) D(θ(k))

x(k)

u(k)

 , (2.23)

where y(k) represents the control output. We rewrite the nonlinear model into an LPV form (2.23),

since this form is suitable for LPV controller synthesis. The state vector x(k) consists of the tem-

perature of the wafer at the discretized locations, with mm being the total number of steps in the x

direction, and nn being the number of steps in the z direction; the state vector is given by

x(k) = [x1(k), . . . ,xmm×nn(k)]>. (2.24)

The state vector x(k) is arranged with respect to the spatial coordinates, and thus the structure of

the elements of the state vector is as follows

x(k) =[T k
1,1, . . . ,T

k
mm,1, . . . ,T

k
1,nn, . . . ,T

k
mm,nn]

>. (2.25)
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Next, we define the scheduling variable vector in a similar fashion where θ1(T k
i, j)-θ4(T k

i, j) are

derived so that (2.23) is affine in the scheduling variables,

θ(k) = [θ1(T k
1,1), . . . ,θ4(T k

1,1), . . . ,θ1(T k
mm,nn), . . . ,θ4(T k

mm,nn)]
>. (2.26)

Remark 1: Each scheduling variable is unique as the scheduling variables are functions of the local

temperature at each unique spatial location. We make the definitions θ1 to θ4 noting that at each

unique spatial location, xi , z j, these scheduling variables are unique as they are functions of the

local temperature T k
i, j.

θ1(T k
i, j) =

k̃(T k
i, j)

C(T k
i, j)

, (2.27)

θ2(T k
i, j) =

σε(T k
i, j)(T

k
i, j)

3
(

1− T 4
cool

(T k
i, j)

4

)
C(T k

i, j)
, (2.28)

θ3(T k
i, j) =

ε(T k
i, j)

C(T k
i, j)

, (2.29)

θ4(T k
i, j) =

(
1− Tcool

T k
i, j

)
C(T k

i, j)
. (2.30)

Next, to write the model into an affine-in-scheduling-variables high-order LPV state-space model

with a large number of scheduling variables, we define the nine distinct zones as shown in Figure

2.3. These zones correspond to the boundary conditions in (2.17)-(2.20), where zones 1, 3, 7 and

9 are a combination of boundary conditions. Each zone temperature is given as:

1 4 7

2 5 8

3 6 9

Figure 2.3: Associated zone numbers of the discretization scheme.
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T k+1
1 = (1−2λxθ1−2λzθ1−2λz∆zF2θ2)T k

i, j+(2λxθ1)T k
i+1, j

+(2λzθ1)T k
i, j+1 +2λz∆zθ3Q(x,k), (2.31)

T k+1
2 = (1−2λxθ1−2λzθ1)T k

i, j +(2λxθ1)T k
i+1, j

+(λzθ1)T k
i, j−1 +(λzθ1)T k

i, j+1, (2.32)

T k+1
3 = (1−2λxθ1−2λzθ1−2λz∆zhw(xi)θ4)T k

i, j

+(2λxθ1)T k
i+1, j +(2λzθ1)T k

i, j−1, (2.33)

T k+1
4 = (1−2λxθ1−2λzθ1−2λz∆zF2θ2)T k

i, j +(λxθ1)T k
i+1, j

+(λxθ1)T k
i−1, j +(λzθ1)T k

i, j−1 +(λzθ1)T k
i, j+1

+2λz∆zθ3Q(x,k), (2.34)

T k+1
5 = (1−2λxθ1−2λzθ1)T k

i+1, j +(λxθ1)T k
i−1, j

+(λxθ1)T k
i+1, j +(λzθ1)T k

i, j−1 +(λzθ1)T k
i, j+1, (2.35)

T k+1
6 = (1−2λxθ1−2λzθ1−2λz∆zF2θ2−2λz∆zhw(xi)θ4)T k

i, j

+(λxθ1)T k
i−1, j+(λxθ1)T k

i+1, j+(2λzθ1)T k
i, j−1, (2.36)

T k+1
7 = (1−2λxθ1−2λzθ1−2λx∆xheθ5−2λz∆zF2θ2)T k

i, j

+(2λxθ1)T k
i−1, j +(2λzθ1)T k

i, j+1

+2λz∆zθ3Q(x,k), (2.37)

T k+1
8 = (1−2λxθ1−2λzθ1−2λx∆xheθ5)T k

i, j

+(2λxθI)T k
i−1, j+(λzθ1)T k

i, j−1+(λzθ1)T k
i, j+1, (2.38)

T k+1
9 = (1−2λxθ1−2λzθ1−2λx∆xheθ5−2λz∆zF2θ2

−2λz∆zhw(xi)θ4)T k
i, j +(2λxθ1)T k

i−1, j

+(2λzθ1)T k
i, j−1, (2.39)

where T k
ñ represents temperature in zone ñ at discrete time k with ñ = {1, . . . ,9}, λx =

∆t
ρ∆x2 and

λz =
∆t

ρ∆z2 . We use (2.31)-(2.39) to populate the parameter dependent matrices A(θ), B(θ), C(θ),
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D(θ) in (2.23), and we recall that each set of scheduling variables (θ1, . . . ,θ4) is unique for each

discretization point thus giving a large number of scheduling variables. The output matrix C(θ) is

populated with elements corresponding to the spatial locations of the optical pyrometers as seen in

Figure 2.1.

In formulating (2.23), the higher the order and the larger the number of scheduling variables in

the model, the more accurately the model will represent the original system in (2.2)-(2.8). Hence, a

trade-off must be made between model complexity, and the tractability of control design and com-

putational cost. Our objective now becomes to use order reduction techniques in order to achieve

a balance between accuracy of the model and the number of scheduling variables.

2.5 LPV MODEL REDUCTION USING PCA

The first step in developing a control-oriented LPV model of the RTP system is to reduce the

number of scheduling variables through the use of principal component analysis (PCA) [59]. To

apply PCA to the LPV scheduling variables data, one first needs to generate and collect data by

means of measurements or simulations [60], such that the data covers all regions within the oper-

ating range. Given the LPV model (2.23) and assuming that the measurable signals have been

sampled at time instants k ∈ {1,2, . . . ,K}, scheduling variables θ(k) ∈ Rm̃ are computed and col-

lected in the following m̃×K matrix

Θ =
[
θ(1) · · · θ(K)

]
=
[

f (T 1
i, j) · · · f (T K

i, j)

]
,

where m̃ represents the actual number of scheduling variables and K denotes the number of data

samples, with K ≥ m̃. PCA is then applied by solving an eigenvalue problem for the covariance

matrix. The covariance matrix is given by

C̄ =
1
K

ΘcΘ
>
c ,

where Θc = C (Θ) = Θ−θmean is the data matrix Θ normalized such that each row of Θ has zero

mean. We then solve an eigenvalue problem for the covariance matrix C̄, such that C̄vi = λ̃ivi, where
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λ̃i and vi are the ith eigenvalue and eigenvector, respectively. The eigenvectors are then sorted in

descending order of their corresponding non-zero eigenvalues, and the m principal components for

any test point θ(k), at a given time sample k, are extracted using

ρ(k) = g(T k
i, j) =V>m f (T k

i, j) =V>m θ(k),

where Vm denotes an m̃× l̃ matrix whose columns contain the l̃ eigenvectors associated with the

first l̃ significant eigenvalues. The approximation of the actual variable θ̂(k), corresponding to

ρ(k), can be easily computed as

θ̂(k) = C−1(Vmρ(k)), (2.40)

where C−1(Vmρ(k)) =Vmρ(k)+θmean. Henceforth, we also drop the time index k for better read-

ability and denote ρ(k) and θ(k) simply as ρ and θ , respectively. The PCA-based reduced LPV

model can be represented as

x(k+1) = Â(ρ)x(k)+ B̂(ρ)u(k),

y(k) = Ĉ(ρ)x(k)+ D̂(ρ)u(k). (2.41)

If m equals the number of non-zero eigenvalues, the mapping matrices Â(·), B̂(·), Ĉ(·), and D̂(·)

are related to the reconstructed scheduling variable θ̂ by [61]

Q̂(ρ) =

Â(ρ) B̂(ρ)

Ĉ(ρ) D̂(ρ)

=

A(θ̂) B(θ̂)

C(θ̂) D(θ̂)

= Q(θ̂). (2.42)
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We take m to be the number of significant eigenvalues, in which case, Q̂(ρ) will be an approxima-

tion of Q(θ̂); what constitutes significance is a user’s choice. We write the following:

Q̂(ρ) = Q(θ̂) = Q0 +
m̃

∑
i=1

Qiθ̂
i

= Q0 +
m̃

∑
i=1

Qi (Vmρ +θmean)
i

= Q0 +
m̃

∑
i=1

Qiθ
i
mean +

l

∑
i=1

Qi (Vmρ)i

= Q0 +
m̃

∑
i=1

Qiθ
i
mean︸ ︷︷ ︸

Q̂0

+
l̃

∑
j=1

m̃

∑
i=1

Qi[Vm]i, j︸ ︷︷ ︸
Q̂ j

ρ
j

= Q̂0 +
l̃

∑
j=1

Q̂ jρ
j, (2.43)

where θ i denotes the ith element of the vector θ , and [Vm]i, j denotes the {i, j} entry of the matrix

Vm. Equation (2.43) is a reduced model which is also affine in the reduced scheduling variables ρ .

2.6 PROPER ORTHOGONAL DECOMPOSITION

The next step is to reduce the order of the derived LPV model using the proper orthogonal decom-

position (POD) method. POD delivers a basis for model decomposition in order to extract dom-

inant trends and features [39]. Essentially, POD extracts a set of orthonormal basis functions

(OBFs) [62], usually with a few modes [39]. To approximate the function of interest over a domain,

we write the ensemble into coefficients to be determined,

T (x,z, t)≈ T̂ (x,z, t) =
M

∑
j=1

α j(x,z)ϕ j(t), (2.44)

where α j’s define the set of OBFs, and ϕ j’s denote the time-dependent coefficients. We employ the

method of snapshots [50], which solves an eigenvalue problem and only requires an ensemble of

appropriately organized data points [62]. Here we define D̃=mm×nn. The data needed is captured

as Tsnap ∈RD̃×K ,
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Tsnap =


T 1

1 · · · T K
1

... . . . ...

T 1
D̃ · · · T K

D̃

 , (2.45)

where D̃ corresponds to the number of discretization points and K corresponds to the number of

snapshots. In the finite-dimensional case, POD reduces to a singular value decomposition (SVD)

problem as

Tsnap = ΦΣV> =
[
Φr Φs

]Σr 0 0

0 Σs 0

V>r

V>s

 . (2.46)

The columns of Φ from the SVD form the set of basis functions {α1, · · · ,αD̃}. This type of pro-

jection captures the most energy for the reduced model. In (2.46), Φ ∈ RD̃×D̃ and V ∈ RK×K and

the sizes of Φr, Σr, and Vr each correspond to the M dominant singular values chosen. These basis

functions, called POD modes, are used to obtain accurate low-order dynamic models via Galerkin

projection [62].

Next, we examine the singular values to produce a reduced-order model. A representation of

the energy that is captured by the reduced-order model is given by the differences in the sum of the

squared singular values (2.47). A high percentage of energy preserved is always desired, meaning

a larger M, which indicates that the model retains more of the information contained in the original

snapshots. The preserved energy percent (PEP) is defined as [60]

PEP = 100× ∑
M
i=1 σ2

i

∑
D̃
i=1 σ2

i

, (2.47)

where we note that M is the user’s choice, and D̃ is the original order of the state-space system.

To obtain the reduced-order state-space LPV model, (2.41) is multiplied from both sides by the

truncated orthonormal matrix Φr ∈RD̃×M as

Φ
>
r x(k+1) = Φ

>
r Â(ρ)x(k)+Φ

>
r B̂(ρ)u(k). (2.48)

Recalling that x(k) is the state vector of the original high-order model, the reduced-order state

vector becomes

xr(k) = Φ
>
r x(k). (2.49)
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Since each element of xr(k) is a linear combination of the elements of x(k), substituting (2.49) into

(2.48) yields

xr(k+1) = Ar(ρ)xr(k)+Br(ρ)u(k)

yr(k) =Cr(ρ)xr(k)+Dr(ρ)u(k), (2.50)

with

Ar(ρ) = Φ
>
r Â(ρ)Φr, Br(ρ) = Φ

>
r B̂(ρ),

Cr(ρ) = Ĉ(ρ)Φr, Dr(ρ) = D̂(ρ). (2.51)

2.7 LINEAR PARAMETER-VARYING CONTROLLER DESIGN

In this section, gain-scheduled controller synthesis using the reduced LPV model is presented.

2.7.1 POLYTOPIC LPV MODEL

The low-order, low-scheduling variable model in (2.50) can be converted to a polytopic LPV model

where the parameter dependent matrices of (2.50) are to be determined and ρ(k) is the scheduling

parameter vector. The LPV model can be represented as a linear input-output map

P(ρ) =

Ar(ρ) Br(ρ)

Cr(ρ) Dr(ρ)

 . (2.52)

Introducing the compact set Pρ ⊂R l̃: ρ(k) ∈Pρ , ∀k > 0, this set is then the polytope defined by

the convex hull

Pρ :=Co{ρv1,ρv2, ...,ρvnv
}, (2.53)
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where nv = 2l̃ is the number of vertices. Next, we note that the system is parameter-affine since the

state-space matrices depend affinely on the scheduling parameters as

P(ρ) = P0 +
l̃

∑
i=1

ρiPi = P0 +ρ1P1 + · · ·+ρl̃Pl̃. (2.54)

Since any ρ(k) can be expressed as a convex combination of nv vertices, this is called a polytopic

LPV system where

P(ρ) ∈Co{ρv1,ρv2 , ...,ρvnv
}=

nv

∑
j=1

ξ jPj, (2.55)

where ∑
nv
j=1 ξ j = 1, ξ j ≥ 0 are the convex coordinates, and Pj’s are calculated at corresponding

vertex [62]. We note that since (2.50) is the reduced-order model, the low number of scheduling

variables allows for tractability in using standard solvers in order to design controllers.

2.7.2 LPV CONTROLLER SYNTHESIS

The LPV controller design configuration for the RTP system is shown in Figure 2.4. The polytopic

gain-scheduled controller, K(ρ), is designed based on the low-order, low-scheduling variables LPV

model P(ρ). In Figure 2.4, r denotes the reference input, u the controller output, T the temperature

output of the RTP system, and n the noise introduced into the temperature measurement. We design

K(ρ) such that the closed-loop system meets an induced L2 gain performance with the gain-

scheduled controller described as

K(ρ) : ζ (k+1) = AK(ρ)ζ (k)+BK(ρ)e(k),

u(k) =CK(ρ)ζ (k)+DK(ρ)e(k). (2.56)

We see from Figure 2.4 that the temperature measurement is used to calculate the original

scheduling variables θ , and then from the PCA analysis, we calculate the reduced-order scheduling

variables, which are sent to the controller.
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Figure 2.4: Control of the RTP system using an LPV controller K(ρ) designed based on the reduced
LPV model.

This control methodology is specific to LPV models with an affine dependence on the scheduling

variables ρ that vary within a fixed polytope. Next, we convert Figure 2.4 into the standard lower-

fractional transformation (LFT) given in Figure 2.5 where w is the external disturbance, z denotes

the controlled outputs, u represents the controller outputs, and y is the measurements.

P(ρ)
z

K(ρ)

w

yu

Figure 2.5: Gain-scheduled control design configuration in the lower fractional transformation.

From [4], we define the induced L2 gain performance as

‖Twz‖i,2 = sup
ρ

sup
w6=0

‖z‖L2

‖w‖L2

, (2.57)

where i denotes the selected induced norm. The gain indicates the worst-case output energy ‖z‖L2

over all bounded energy disturbances ‖w‖L2
for all admissible values of the scheduling variables

ρ . The closed-loop LPV system of Figure 2.5 has an induced L2 gain performance less than γ if
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there exists a symmetric positive-definite matrix X such that
A>cl(ρ)X +XAcl(ρ) XBcl(ρ) C>cl (ρ)

? −γI D>cl(ρ)

? ? −γI

≺ 0, (2.58)

for all admissible trajectories of ρ , where Acl,Bcl,Ccl , and Dcl are the closed-loop state-space

system matrices. From (2.58), we see why reducing the number of scheduling variables is critical

in LPV applications as the matrix X in the inequality (2.58) is found by solving a finite number of

linear matrix inequalities (LMIs). We see from the proof in [4] that for polytopic LPV represen-

tations with affine dependence on ρ , the inequality condition (2.58) holds for all trajectories of ρ

within the polytope, if it holds true at the vertices. This implies that if (2.58) is true, a closed-loop

L2 gain performance, denoted by γ , applies to the entire polytope of scheduling variables.

2.8 SIMULATION RESULTS AND DISCUSSION

We present simulation results starting with the first principle modeling to closed-loop simulations.

2.8.1 AFFINE LPV MODEL

First, we followed (2.16)-(2.20) and chose a high discretization of 10 steps in the x direction, and 3

steps in the z direction. We then used (2.31)-(2.39) to write a high-order, high-scheduling variable

affine LPV model. The coefficients F1, F2, and α were tuned to match the open loop response of

the STEAG RTP system in [1]. The input perturbation is given in 2.6 and the response is given in

Figure 2.7.
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Figure 2.6: The random input trajectory used in [1] to calibrate the tunable model parameters F1,
F2, and α .
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Figure 2.7: The open-loop response of the high-order, high-scheduling variables affine LPV system
to the input trajectory of Figure 2.6 tuned to match the Steag CVD RTP System.
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2.8.2 SCHEDULING VARIABLE REDUCTION

Next, we proceed with the analysis by generating a low-frequency sinusoidal input with multiple

frequency components. This signal was multi-layered to excite the dynamics of the system model.

Using this input, we proceeded to follow PCA analysis given in Section 2.5. Figure 2.8 shows

the results of the PCA analysis. We choose to map to 3 scheduling variables and retain 95.6% of

accuracy.

Remark 2: The LPV framework is a natural framework for RTP modeling since temperature is a

readily measureable scheduling variable and the nonlinearities seen are smooth.

Remark 3: All of the scheduling variables share the common thread in that they are all functionals

of temperature.
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Figure 2.8: Accuracy approximation of (2.40) as a function of the number of scheduling variables.

2.8.3 MODEL ORDER REDUCTION

Next, we used the POD method as described in Section 2.6 to reduce the order of the system. Using

(2.47)-(2.51) we reduced the high-order system to a 2rd order system while preserving 98% of the

energy. We find good agreement between the reduced-model and the original model.

Remark 4: Since RTP wafer recipes are known a priori we can expect to preserve a large amount

of energy in the reduced-order system to create a low-order system computationally inexpensive

enough to be run in a real time environment.

Figure 2.9 shows tbe comparison between the the low-order, low-scheduling variable system with

the nonlinear system. The low-order system was chosen to have 2 POD modes, and 3 scheduling

variables. Good agreement is seen around the operating temperatures.
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Figure 2.9: Comparison between the low-order, low-scheduling variable system with the nonlinear
system. Top: shows a node at the middle of the wafer. Bottom: shows a node at the edge of the
wafer.

2.8.4 LPV RTP CONTROLLER DESIGN

The design objective to track the reference trajectory given by r. For RTP systems this reference

trajectory is a ramp with a large soak time. For controller design purposes, a controller must: have

good steady state tracking, with preferably zero steady-state error. Overshoot beyond a few degrees

in unacceptable, actuator saturation is plausible, and fast ramp rates are needed. To accomplish

this we add loop-shaping filters as in Figure 2.10. We add a first-order low pass filter We to impose

tracking requirements, and Wu a first-order high pass filter to penalize the control effort on each

zone output. Figures 2.11 and 2.12 show the filters respectively. These filters are selected and tuned

by trial and error, seeking the minimization of the induced L2 gain from the external disturbance

w = [ r n ]> to the controlled outputs z = [ ze zu ]> in order to enforce the performance requirement.

For controller synthesis that is based on polytopic LPV models, the plant input and output

matrices, B and C, need to be independent of the scheduling variables [4]. This is not the case for

(2.50). Therefore, to put (2.50) in a suitable form for controller synthesis we filter the input with a
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low-pass filter of suitable bandwidth. We make note that C and D are not functions of ρ although

(2.50) has been formulated in a general sense.
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n

Figure 2.10: Generalized configuration of the closed-loop system composed of the reduced LPV
controller and loop-shaping filters.

10
-5

10
-4

10
-3

10
-2

10
-1

-25

-20

-15

-10

-5

0

5

10

15

20

M
ag
n
it
u
d
e
(d
B
)

Bode Plot of We

Frequency (rad/s)

Figure 2.11: Bode plot of the loop shaping filter We used to enforce reference tracking.
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Figure 2.12: Bode plots of the loop shaping filters Wu used to penalize the controller outputs.

2.8.5 CLOSED LOOP SIMULATION RESULTS

To simulate a realistic RTP process we assume that we only have a single temperature measurement

at the middle of the wafer. This temperature can be measured real time, and used to calculate the

scheduling variables. From the original scheduling variables we use the PCA analysis to schedule

the controller with the low-order scheduling variables in real time. Furthermore, we make the

assumption that all scheduling variables can be calculated from the single temperature measure-

ment since the wafer is desired to be at a uniform temperature. Next, we design K(ρ) to track the

temperature measurement. The closed-loop simulation results are given in Figure 2.13. For simu-

lation purposes we add noise to the temperature measurement to impose a 15 dB signal-to-noise

ratio. As an input reference trajectory we impose a 250 ◦ C ramp with a steady-state of 700 ◦ C.

The controller tracks the temperature measurement with only 15 ◦ C of overshoot.

In the closed-loop simulation, saturation blocks were placed after the controller output to sim-

ulate that the zone power can only be commanded between 0-100%. Figure 2.14 shows the con-

troller output. Given the saturation of zones 1 and 2, we also design a suitable antiwindup scheme

to prevent integrator windup.

32



0 5 10 15 20 25 30 35 40 45 50

Time (sec)

0

200

400

600

800

T
e
m

p
e
ra

tu
re

 (
C

)

Closed-Loop RTP Simulation Results

4 6 8 10 12 14 16

Time (sec)

680

690

700

710

720

730

T
e
m

p
e
ra

tu
re

 (
C

)

Closed-Loop RTP Simulation Results

Figure 2.13: Closed-loop simulation results for tracking the pyrometer temperature measurement.
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Figure 2.14: Controller output of the gain scheduled controller K(ρ).

Figure 2.15 gives the reduced-order scheduling variables. We note that the reduced-order scheduling

variables are synthetic; however, since all of the original variables are temperature dependent, we

see the expected result that the scheduling variables settle to a constant value when the temperature

in the closed-loop simulation converges.
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Figure 2.15: Reduced-order scheduling variables from the closed-loop analysis.

Using LPV modeling and gain-scheduled controller design presents a systematic first principles-

based procedure. Should the wafer material properties or RTP chamber geometry change, the

dynamics of the model can be readily updated, and the controller can be immediately retuned.

This is in comparison to purely data driven techniques, e.g., [1], where data is generated from a

single wafer setup, and numerical methods are used to fit a model to the data. By comparing the

results in [1] which use a nonlinear MPC controller, with the closed-loop simulation shown in

Figure 2.13, we see a reduced overshoot and an improved settling time from the gain-scheduled

controller. A numerical comparison between the two methods is shown in Table 2.1. We see from

the comparison in Table 2.1 that a controller derived from a model that uses the knowledge of the

underlying physics provides higher performance.

2.8.6 PID COMPARISON

Next, for comparison, we design a PID controller to control the reduced-order LPV model. Given

that a PID controller is a single input single output (SISO) system, the input to the PID controller

is the temperature error and the output is a global lamp power percentage. Since the lamps in the

RTP system are divided into different zones, as a solution to better wafer uniformity for SISO
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controllers, the literature has suggested different zone power percentages. So ultimately, a lamp’s

final power percentage is defined to be the product of the global PID controller’s output with the

local zone power percentage. We use the final zone power percentages presented in [1]. To help

properly tune the PID controller, we use MATLAB/Simulink’s PID tuning algorithms toolboxes.

We also implement an anti-windup scheme given that there exists controller saturation.

First, we allow overshoot, and tune the overshoot to match that of the gain-scheduled con-

troller. A closed-loop response of the system using the PID controller is given in Figure 2.16. A

comparison of figures 2.13 and 2.16 show that both controllers achieve a similar overshoot, how-

ever, the gain-scheduled controller achieves this in almost half the rise time. We see also that the

gain-scheduled controller brings the system to steady-state nearly three times faster. These results

justify the extra complexity needed in gain-scheduled controller implementation. Table 2.1 pro-

vides a numerical comparison. Since the controller is gain-scheduled, we are able to design a less

conservative controller since the dynamics are well modeled by the reduced-order LPV model.
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Figure 2.16: Closed-loop response of the RTP system using a PID controller that allows overshoot.

Figure 2.17 shows the PID controller’s output for the closed-loop simulation; we see the controller

saturates. Since the final lamp powers are a fixed percentages of the PID controller’s global output,

all zones will follow a scaled response of the controller’s output. This is conservative given that

each zone is only a percentage of the controller output, and a local zone may not be experiencing
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saturation even though the global controller is. Comparing Figure 2.17 with the gain-scheduled

controller output in Figure 2.14, the gain-scheduled controller is able to control each zone indi-

vidually and this results in an improved performance. We see in Figure 2.14 that two of the con-

troller outputs experience saturation, but this does not prevent the gain-scheduled controller from

increasing the output in the zones that are not saturating. Figure 2.18 shows the local zone power

percentages.
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Figure 2.17: Controller output response of the closed-loop RTP system using a PID controller that
allows overshoot.
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Figure 2.18: Zone inputs of the closed-loop RTP system using a PID controller that allows over-
shoot.

Due to the slow settling time seen in Figure 2.16, we tune the PID gains to prevent overshoot,

which prevents the wafer from remaining above the set point temperature. This response is shown

in Figure 2.19.
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Figure 2.19: Closed-loop response of the RTP system using a PID controller that prevents over-
shoot.

Overshoot is prevented, but at the cost of a slow rise time and a longer controller saturation period.

The corresponding controller output is given in Figure 2.20. Again, we find controller saturation,

and remark that since the final lamp powers are fixed percentages of the PID controller’s global

output, all zones will follow a scaled response of the controller’s output. Figure 2.21 shows the

local zone power percentages.
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Figure 2.20: Controller output response of the closed-loop RTP system using a PID controller that
prevents overshoot.
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Figure 2.21: Zone inputs of the closed-loop RTP system using a PID controller that allows over-
shoot.

Table 2.1: Closed-loop performance comparison between the gain-scheduled controller designed
using the LPV model, the nonlinear MPC controller designed using the data-driven model of [1],
and the well-tuned PID controllers, where PID 1 allows overshoot and PID 2 does not allow.

Gain-Scheduled Nonlinear MPC PID 1 PID 2

Rise Time (sec) 4 ∼7 7.35 37.5

Overshoot (◦ C) 12 ∼30 10 0

Settling Time to ± 1 ◦ C (sec) 15.2 ∼18 49.3 30.5

2.9 CONCLUDING REMARKS

In this paper, we used a well-established first principles-based modeling approach to develop an

affine LPV model for rapid thermal processes. We further employed PCA and POD to reduce the

dimensionality of the LPV model into a form tractable for controller design purposes. Reducing

the number of scheduling variables is desirable since it affects exponentially the number of linear

matrix inequality (LMI) constraints required to be solved for LPV control synthesis. Finally, we

designed a gain-scheduled controller to track a temperature reference profile. Closed-loop simula-

tion results show that a brief overshoot of less than 12 ◦ C subsides to good steady-state tracking.
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CHAPTER 3

LINEAR PARAMETER-VARYING APPROACH FOR MODELING RAPID THERMAL PROCESSES

1

1Trudgen, Mark, Syed Z. Rizvi, and Javad Mohammadpour. ”Linear parameter-varying approach for
modeling rapid thermal processes.” In American Control Conference (ACC), 2016, pp. 3243-3248. Amer-
ican Automatic Control Council (AACC), 2016. c©2016 IEEE. Reprinted here with permission of the pub-
lisher.

39



ABSTRACT

In the present paper, a new approach is presented to model rapid thermal processing (RTP) sys-

tems. Within the past decade, RTP has achieved acceptance as the mainstream technology for

semiconductor manufacturing. Thermal processing is one of the most efficient ways to control

the phase-structure properties; moreover, the time duration of RTP systems reduces the so-called

thermal budget significantly compared to the traditional methods. RTP implementation is based

on the use of light from heating lamps to provide a heat flux. This process is highly nonlinear

due to the radiative heat transfer and material properties. By invoking the first principles-based

models, we develop in this paper a linear parameter-varying (LPV) model to directly account for

all the nonlinearities within the system. The model is discretized into a high-order affine LPV

system; thereafter, principal component analysis (PCA) method is utilized to reduce the number

of the LPV model’s scheduling variables, followed by the use of proper orthogonal decomposition

(POD) for model order reduction. Finally, simulations demonstrate that the low-order LPV model,

which is in a form suitable for controller design purposes, retains the properties of the original

full-order model.

3.1 INTRODUCTION

Embedded deep in the heart of all electrical applications are integrated circuits (IC), primarily

composed of semiconductor devices made from a sequence of batch processes. With the continual

developments in IC technology, we see an increase in the demand for performance improvements

in terms of both quality variables and output yield resulting from the use of larger diameter silicon

wafers [17]. To achieve these increased yields, precise uniform temperature control of a wafer is

of paramount consideration. As such, the semiconductor industry has relied on advancements in

control and modeling for these purposes [1], [6].

Thermal processes are very important in the fabrication of semiconductor devices. The longer

a wafer is kept at elevated temperatures, the higher probability it has of defects. As such, mini-
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mizing a metric called the thermal budget is very important not only for heating cost purposes,

but also for purity and defect reasons [6]. The thermal budget is calculated as the integral of the

product of the diffusivity and the temperature over time. As wafer dimensions have shrunk down

into the micron range, there has been an increase in demand on uniform thermal processing. The

push to reduce the thermal budget, combined with the tight quality requirements, has given rise to

a new technology called single wafer processing (SWP). Traditionally, batch processes were used

where wafer holders called “boats” loaded many wafers onto a quartz substrate to be placed inside

a furnace. Although furnace construction included insulated walls to improve the isothermal nature

of the environment inside, wafer uniformity remains an issue. This issue has led to the develop-

ment of rapid thermal processing (RTP) technologies. Single wafer units are better alternatives to

meet temperature uniformity and a lower thermal budget; however, they must be able to heat up

and cool down quickly in order to compete with the volume output of batch processing. A typical

RTP system undergoes three phases: (1) rapid heating on the order of 50-200◦ C/s, (2) a pro-

cessing phase of constant temperature, and (3) a rapid cooling phase. Heating is made possible via

high powered lamps. The heating lamps are split into zones, and this allows for control flexibility.

Finally, optical pyrometers are used to feedback temperature measurements.

Several alternative approaches to modeling and control of single wafer RTP systems have

been suggested in the literature. Review of a Steag Inc RTP system with first principles mod-

eling and genetic nonlinear model predictive control (NMPC) was proposed in [1]. An adaptive

control model was presented in [7]. The authors in [8] studied the thermal behavior of large silicon

wafers. Decentralized control approach in the design of PI controllers was used in [9]. The authors

in [10] used proper orthogonal decomposition (POD) to reduce the order of an RTP system. A

linear quadratic gaussian (LQG) approach to control was taken in [11]. Furthermore, a run to run

approach was taken in [12], while [13] used internal model control (IMC). Finally, multivariable

and multizone control was presented in [14–16]. A survey of RTP processes was presented in [17].

As observed from the aforementioned literature, first principles-based modeling of the RTP

system is best represented by a partial differential equation (PDE) with varying coefficients and
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nonlinear boundary conditions. However, direct control of such nonlinear system is not seen in

literature, nor are there modeling frameworks that present the plant in a control-oriented form.

In this paper, we propose a linear parameter-varying (LPV) modeling approach that directly and

systematically copes with the complex nonlinearities seen in the RTP processes. LPV techniques

have gained popularity as they have developed into effective tools to control multi-input multi-

output (MIMO) nonlinear systems [3]. Furthermore, the application of these methods has not been

explored for thermal processes including RTP systems, for which the well known nonlinear mate-

rial properties can be exploited in the LPV framework of scheduling variables.

This paper is organized as follows: Section 3.2 describes the process and the first principles-

based model of the generic RTP systems. Section 3.3 reintroduces the system as a high-order

discretized state-space model. This model is then converted into an LPV model. In Section 3.4, the

number of scheduling variables in the high-order LPV model is first reduced using PCA, and then

order of the model is reduced using POD in Section 3.5. Section 3.6 shows simulation results and

Section 3.7 draws conclusions.

3.2 RTP PROCESS DESCRIPTION AND MODELING

3.2.1 THE TYPICAL RTP SETUP

In our modeling of RTP systems, we choose to use a single wafer setup as seen in [1], [6], [7],

[9], [11]. For a typical RTP system, a concentric lamp array, usually of halogen lamps, is located

above a quartz window. The lamp array is divided into zones, and the zone power percentage can

be adjusted independently in each zone in order to aid the uniform processing of large wafers.

The heating lamps and chamber are cooled by a cooling flow. The wafer is kept rotating in order to

ensure uniformity. Finally, an optical pyrometer located underneath the wafer provides temperature

measurement. The setup is illustrated in Figure 3.1.
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Figure 3.1: Representative single wafer RTP setup.

3.2.2 THE FIRST PRINCIPLES-BASED MODEL

The first step in achieving a control-oriented model is to utilize a first principles-based model of

the RTP chamber. Energy balance on the wafer in the RTP chamber is given as [1]

ρC(T )
∂T
∂ t

= qk +qc +qr, (3.1)

where ρ , C, and T are the wafer density, specific heat, and temperature, respectively. Variable

t denotes continuous time. The heat transfer rates by conduction, convection, and radiation are

denoted by qk, qc, and qr, respectively.

In order to decrease the computational complexity of the model, we first make geometric sim-

plifications. We note that using cylindrical coordinates, the system has rotational symmetry, and

hence the full three-dimensional model (r,θ ,z) can be reduced to a two-dimensional problem in

(r,z). Next, we observe that in order to increase uniformity, the wafer is rotated during the oper-

ation, and this allows us to return the problem to Cartesian coordinates by representing the wafer

as a radial chord. We use the simplifications and write the energy balance in terms of (x,z) as a

partial differential equation (PDE) as follows
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ρC(T )
∂T
∂ t

=
∂

∂x

(
k̃(T )

∂T
∂x

)
+

∂

∂ z

(
k̃(T )

∂T
∂ z

)
. (3.2)

Furthermore, the initial and boundary conditions are given as

T (x,z,0) = Tinitial, (3.3)

k̃(T )
∂T
∂x

= 0 at x = 0, (3.4)

k̃(T )
∂T
∂x

=−he(T −Twall) at x = R, (3.5)

k̃(T )
∂T
∂ z

= F1ε1(T )σ(T 4−T 4
cool)+hw(T −Tcool) at z = 0, (3.6)

hw(x) = hi +(ho−hi)
( x

R

)4
, (3.7)

k̃(T )
∂T
∂ z

= ε2(T )Q(x, t)−F2ε2(T )σ(T 4−T 4
a ) at z = Z, (3.8)

where T is the wafer temperature; Tinitial is the initial wafer temperature; hw is the overall convec-

tive heat transfer coefficient; hi, ho, and he are the heat transfer coefficients at the center, edge, and

wafer edge, respectively [56]; Tcool is the temperature of the coolant; Ta is the temperature of the

quartz window; Twall is the temperature of side walls; C(T ) is the heat capacity; k̃(T ) is the thermal

conductivity; σ is the Stefan-Boltzmann constant; ε1 and ε2 are the emissivities of the lower and

upper wafer surfaces; F1 and F2 are the tunable reflective coefficients; x and z are the Cartesian

coordinates corresponding to the radial thickness Z, and the radial chord length X ; and Q(x, t) is

the heat flux as described by q(x,t)
A(x) . The heat power q(x, t) is described later in (3.14) and A(x) is

the effective wafer area at the chord position.

The initial condition in (3.3) makes the reasonable assumption that the entire wafer starts at a

uniform temperature. Next, we assume that the quartz window, the side walls, and cooling temper-

atures are held constant and equal (Ta = Tcool = Twall). The boundary condition (3.6) represents the

conduction heat losses made with the reactor walls by convection. We use the overall heat transfer
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coefficient approach as in [56] in order to account for spatial variations. Lastly, the boundary con-

dition at z = Z as described in (3.8) relates the heat transfer in the wafer to the heat generation of

the heating lamps and also the heating losses in the quartz window.

Next, we must account for the operation range of the RTP systems. Typical RTP systems range

in temperature from 25 to 1200◦ C [1]. The material properties of silicon wafers are given in [57]

and the thermal conductivity and heat capacity are given as

k̃(T ) = 802.99T−1.12
[

W
cmK

]
for T ∈ [300,1683]K, (3.9)

C(T ) = 0.641+2.473 × 104 T
[

J
gK

]
for T > 300K. (3.10)

Furthermore, the material properties of the emissivity is given by [58]

ε(T ) = 0.2662+1.8591 T−0.1996exp
[
− 1.0359 x 1025

T 8.8328

]
. (3.11)

For further computational simplicity, we notice that the wafer density can be taken as a constant,

ρ = 2330kg/m3, since this density does not strongly depend on temperature. Additionally, this

weak temperature dependence allows for a homogeneous energy balance assumption such that

(3.2) can be simplified to

ρC(T )
∂T
∂ t

= k̃(T )
(

∂ 2T
∂x2 +

∂ 2T
∂ z2

)
. (3.12)

3.2.3 MODELING HEATING LAMP INPUT FLUX

Radiation heat transfer is the main mode heat transfer mechanism that raises the wafer temperature.

The lamp array is located directly above the wafer and typically arranged into concentric rings of

heating zones. Radiation heat transfer is a complicated heat transfer mode as energy transfer is

based on both wavelength and geometry. Therefore, a theoretical model must also account for both

diffusive and reflective radiation heat transfer. However, in order to put the model in a form suitable

for controller design purposes, we first make the partial simplifying assumption of a diffusive grey

body. As seen in (3.11), the emissivity is still a function of temperature, but we relax the condition

that it also must be a function of wavelength.
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Next, to calculate the heat flux transferred to the wafer, we follow the view factor formula given

in [1] that describes the geometric relationship between two areas given as

F1−2 =
1

A1

∫
A1

∫
A2

cos(θ1)cos(θ2)

πS2 dA2dA1, (3.13)

where F1−2 is the radiation fraction transmitted from surface 1 to surface 2 and θ1 and θ2 are the

normal angles at the surfaces while S is the distance between the surfaces, and A1 and A2 are the

corresponding surface areas. Following [1], (3.13) is integrated on a differential annular heating

ring. We then recast into a generalized form for the multiple zones as

q(x, t) = α ·
n

∑
j=1

Fj−x(x,rin,rout) ·q( j), (3.14)

where α is a tunable parameter, j represents the ring number, n is the maximum number of zones,

rin and rout are the respective radial measurements of the local ring number, and q(x, t) represents

the heating ring power.

3.3 NONLINEAR MODELING OF RTP SYSTEMS

The two-dimensional heat equation (3.12) is given on the physical domain S = {x|x ∈ [0,χ]}∪

{z|z ∈ [0,ζ ]} and the temporal domain R= {t|t ∈ [0,τ]}. Now T : S×R→ T is the space and time

dependent temperature. An approximate discrete solution of (3.12) is then represented by

T k
i, j = T : Ŝ× R̂→ T, (3.15)

with the finite sets Ŝ = {s1, . . . ,smm×nn}, R̂ = {t1, . . . , tK}, where mm× nn is the number of grid

points, and K is the number of time samples.
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3.3.1 DISCRETIZATION OF THE RTP MODEL

The partial differential equation (PDE) in (3.12) is discretized using a forward time-center space

(FTCS) discretization method, which gives

ρC(T k
i, j)

T k+1
i, j −T k

i, j

∆t
= k̃(T k

i, j)

[T k
i−1, j−2T k

i, j +T k
i+1, j

(∆x)2

+
T k

i, j−1−2T k
i, j +T k

i, j+1

(∆z)2

]
, (3.16)

where ∆x and ∆z represent the discretization step size in spatial directions, and ∆t is the time step;

i and j represent the two spatial indices in the x and z dimensions, and k represents the time index.

We also discretized the nonlinear boundary conditions subject to (3.5)-(3.8). A simulation result

of the discretized system is shown in Figure 3.2 at an arbitrary time instant, where ∆x = 1/20, ∆z

= 1/4, and Tinitial = 303 K. The time step ∆t is chosen such that it obeys the limits of the FTCS

discretization stability restrictions.

These conditions are chosen to examine the open-loop response to an input signal with typical

wafer dimensions [1].
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Figure 3.2: Simulation of the open-loop single wafer RTP setup.
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3.3.2 LINEAR PARAMETER-VARYING MODEL DERIVATION

It is observed that the system (3.2)-(3.8) is nonlinear, and remains so after discretization. There

exists several approaches to transform a nonlinear system represented by

x(k+1) = F(x(k),u(k)), (3.17)

into a linear model. A well known approach is the Jacobian linearization of (3.17) around an

equilibrium trajectory. The resulting linear system will then only describe the local behavior around

that trajectory. Another approach is based on rewriting (3.17) into an equivalent form, where the

nonlinearities can be hidden inside newly defined variables, the so-called scheduling variables.

Such a model is called a linear parameter-varying (LPV) model [3]. A discrete-time LPV model

can be represented in state space asx(k+1)

y(k)

=

A(θ(k)) B(θ(k))

C(θ(k)) D(θ(k))


x(k)

u(k)

 , (3.18)

where y(k) represents the control output. We rewrite the nonlinear model into an LPV form (3.18),

since this form is suitable for LPV controller synthesis. The state vector x(k) consists of the tem-

perature of the wafer at the discretized locations, with mm being the total number of steps in the x

direction, and nn being the number of steps in the z direction; the state vector is given by

x(k) = [x1(k), . . . ,xmm×nn(k)]>. (3.19)

The state vector x(k) is arranged with respect to the spatial coordinates, and thus the structure of

the elements of the state vector is as follows

x(k) =[T k
1,1, . . . ,T

k
mm,1, . . . ,T

k
1,nn, . . . ,T

k
mm,nn]

>. (3.20)

Next, we define the scheduling variable vector in a similar fashion where θ1(T k
i, j)-θ4(T k

i, j) are

derived so that (3.18) is affine in the scheduling variables,

θ(k) = [θ1(T k
1,1), . . . ,θ4(T k

1,1), . . . ,θ1(T k
mm,nn), . . . ,θ4(T k

mm,nn)]
>. (3.21)
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Remark 1: Each scheduling variable is unique as the scheduling variables are functions of the local

temperature at each unique spatial location.

In formulating (3.18), the higher the order and the larger the number of scheduling variables in

the model, the more accurately the model will represent the original system in (3.2)-(3.8). Hence, a

trade-off must be made between model complexity, and the tractability of control design and com-

putational cost. Our objective now becomes to use order reduction techniques in order to achieve

a balance between accuracy of the model and the number of scheduling variables.

3.4 LPV MODEL REDUCTION USING PCA

First, we reduce the number of scheduling variables through the use of principal component anal-

ysis (PCA) [59]. To apply PCA to the LPV scheduling variables data, one first needs to generate and

collect data by means of measurements or simulations [61], such that the data covers all regions of

operation within the operating range. Given the LPV model (3.18) and assuming that the measur-

able signals have been sampled at time instants k = {1,2, . . . ,K}, scheduling variables θ(k) ∈ Rl̃

with l̃ = 4×mm×nn are computed and collected in the following l̃×K matrix

Θ =

[
θ(1) · · · θ(K)

]
=

[
f (T 1

i, j) · · · f (T K
i, j)

]
,

where l̃ represents the actual number of scheduling variables and K denotes the number of data

samples, with K ≥ l̃. PCA is then applied by solving an eigenvalue problem for the covariance

matrix ΘΘ>. The covariance matrix is given by

C̄ =
1
K

ΘcΘ
>
c ,

where Θc = C (Θ) = Θ−θmean is the data matrix Θ normalized such that each row of Θ has zero

mean. We then solve an eigenvalue problem for the covariance matrix C̄, such that C̄vi = λ̃ivi, where

λ̃i and vi are the ith eigenvalue and eigenvector, respectively. The eigenvectors are then sorted in

descending order of their corresponding non-zero eigenvalues, and the m principal components for

any test point θ(k), at a given time sample k, are extracted using
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ρ(k) = g(T k
i, j) =V>m f (T k

i, j) =V>m θ(k),

where Vm denotes an l̃×m matrix whose columns contain the m eigenvectors associated with the

first m significant eigenvalues. The approximation of the actual variable θ̂(k), corresponding to

ρ(k), can be easily computed as

θ̂(k) = C−1(Vmρ(k)), (3.22)

where C−1(Vmρ(k)) =Vmρ(k)+θmean. Henceforth, we also drop the time index k for better read-

ability and denote ρ(k) and θ(k) simply as ρ and θ . The PCA-based reduced model can be repre-

sented as

x(k+1) = Â(ρ)x(k)+ B̂(ρ)u(k),

y(k) = Ĉ(ρ)x(k)+ D̂(ρ)u(k). (3.23)

If m equals the number of non-zero eigenvalues, the mapping matrices Â(·), B̂(·), Ĉ(·), and D̂(·)

are related to the reconstructed scheduling variable θ̂ by [61]

Q̂(ρ) =

Â(ρ) B̂(ρ)

Ĉ(ρ) D̂(ρ)

=

A(θ̂) B(θ̂)

C(θ̂) D(θ̂)

= Q(θ̂). (3.24)
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We take m to be the number of significant eigenvalues, in which case, Q̂(ρ) will be an approx-

imation of Q(θ̂); what constitutes significance is a user’s choice. We write the following:

Q̂(ρ) = Q(θ̂) = Q0 +
l̃

∑
i=1

Qiθ̂
i

= Q0 +
l̃

∑
i=1

Qi (Vmρ +θmean)
i

= Q0 +
l̃

∑
i=1

Qiθ
i
mean +

l

∑
i=1

Qi (Vmρ)i

= Q0 +
l̃

∑
i=1

Qiθ
i
mean︸ ︷︷ ︸

Q̂0

+
m

∑
j=1

l̃

∑
i=1

Qi[Vm]i, j︸ ︷︷ ︸
Q̂ j

ρ
j

= Q̂0 +
m

∑
j=1

Q̂ jρ
j, (3.25)

where θ i denotes the ith element of the vector θ , and [Vm]i, j denotes the {i, j} entry of the matrix

Vm. (3.25) is a reduced model also affine in the reduced scheduling variables ρ .

3.5 PROPER ORTHOGONAL DECOMPOSITION

The next step is to reduce the order of the derived LPV model using the proper orthogonal decom-

position (POD) method. POD delivers a basis for model decomposition in order to extract dominant

trends and features [39]. Essentially, POD extracts a set of orthonormal basis functions (OBF) [62],

usually with a few modes [39]. To approximate the function of interest over a domain, we write

the ensemble into coefficients to be determined,

T (x,z, t)≈ T̂ (x,z, t) =
M

∑
j=1

α j(x,z)ϕ j(t), (3.26)

where D̃ corresponds to the number of discretization steps and K corresponds to the number

of snapshots. In the finite-dimensional case, POD reduces to an SVD problem. This is done by

making use of SVD as

Tsnap = ΦΣV> =

[
Φr Φs

]Σr 0 0

0 Σs 0


V>r

V>s

 . (3.27)
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The columns of Φ from the SVD form the set of basis functions {α1, · · · ,αD̃}. This type of projec-

tion captures the most energy for the reduced model. In (3.27), Φ ∈ RD̃×D̃ and V ∈ RK×K

and the sizes of Φr, Σr, and Vr each correspond to the M dominant singular values chosen.

These basis functions, called POD modes, are used to obtain accurate low-order dynamic models

via Galerkin projection [62].

Next, we examine the singular values to produce a reduced-order model. A representation of

the energy that is captured by the reduced-order model is given by the differences in the sum of the

squared singular values (3.28). A high percentage of energy preserved is always desired, meaning

a larger M, which indicates that the model retains more of the information contained in the original

snapshots. The preserved energy percent (PEP) is defined as [63]

PEP = 100× ∑
M
i=1 σ2

i

∑
N
i=1 σ2

i
, (3.28)

where we note that M is the user’s choice, and N is the original order of the state-space system.

To obtain the reduced-order LPV state-space model, (3.18) is multiplied from both sides by the

truncated orthonormal matrix Φr ∈RD̃×M as

Φ
>
r x(k+1) = Φ

>
r Â(ρ)x(k)+Φ

>
r B̂(ρ)u(k). (3.29)

Recalling that x(k) is the state vector of the original high-order approximation, the reduced-order

state vector becomes

xr(k) = Φ
>
r x(k). (3.30)

Since each element of xr(k) is a linear combination of the elements of x(k), substituting (3.30) into

(3.29) yields

xr(k+1) = Ar(ρ)xr(k)+Br(ρ)u(k)

yr(k) =Cr(ρ)xr(k)+ D̂(ρ)u(k), (3.31)

with

Ar(ρ) = Φ
>
r Â(ρ)Φr, Br(ρ) = Φ

>
r B̂(ρ), Cr(ρ) = Ĉ(ρ)Φr. (3.32)
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3.6 SIMULATION RESULTS AND DISCUSSION

We present simulation results comparing the nonlinear model with the reduced-order LPV model

with a low number of scheduling variables.

Remark 2: The LPV framework is a natural framework for RTP modeling since temperature is a

readily measureable scheduling variable and the nonlinearities seen are smooth.

Remark 3: All of the scheduling variables share the common thread in that they are all functionals

of temperature.

3.6.1 SIMULATION RESULTS

In our nonlinear simulation we used ∆x = 1
20 and ∆z = 1

3 and the same geometry setup in [1]. Due

to the very high number of initial scheduling variables we averaged the temperature across three

zones of the wafer, thus beginning with 12 scheduling variables. Using the PCA analysis described

in Section IV we reduced the number of scheduling variables to 3 while retaining 97% of the

energy. Figure 3.3 shows a sample projection from the reduced scheduling variables back onto the

original high-order space.

Next we used the POD method as described in Section V to reduce the order of the system.

Using (3.28)-(3.32) we reduced the high-order system to a 3rd order system while preserving 99%

of the energy.

Remark 4: Since RTP wafer recipes are known a priori we can expect to preserve a large amount

of energy in the reduced-order system to create a low-order system computationally inexpensive

enough to be run in a real time environment.

Next, we compare the nonlinear model with the LPV model that has been reduced in order and

scheduling variables. Using a random zone power percentage input signal to both models, we see

in Figure 3.4 from two sample discretization points that the LPV model is a good representation.
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3.7 CONCLUDING REMARKS

In this paper, we used a first principles-based modeling approach to develop an affine LPV model

for rapid thermal processes. PCA and POD were used to reduce the complexity of the LPV model

into a form tractable for controller design purposes. Reducing the number of scheduling variables

is desirable since it affects exponentially the number of linear matrix inequality (LMI) constraints

required to be solved for LPV controller synthesis. Finally, using open-loop simulation results, we

observed an agreement between the high-order nonlinear model and the reduced-order LPV model.
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CHAPTER 4

ROBUST COOPERATIVE ADAPTIVE CRUISE CONTROL DESIGN AND VALIDATION FOR

CONNECTED VEHICLES

1

1Trudgen, Mark, Miller, Rebecca, and Javad Mohammadpour. ”Robust Cooperative Adaptive Cruise
Control Design and Validation for Connected Vehicles.” Submitted to the Journal of Intelligent Transporta-
tion Systems, November 2016.
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ABSTRACT

Cooperative adaptive cruise control (CACC) is an emerging technology that takes advantage

of onboard sensors and wireless technology working together in order to achieve smaller inter-

vehicle following distances than human drivers can provide. The CACC platoon following schemes

reported in the literature aim at ensuring string stability, meaning that disturbances are attenuated

down the stream of the platoon of vehicles. They also give much lower headway values than

adaptive cruise control technology is able to, thus providing a noticeable improvement in road

throughput. CACC technology, however, relies on real-time acceleration data from a leading

vehicle in which the difficulties and the inexact nature of wireless communication data transfer

present various challenges to CACC implementation. The complexity of modern vehicles and their

associated onboard computational burdens also grant that certain parameters can only be estimated

to be within a range. In order to implement a string stable CACC platoon following scheme while

also overcoming the inherent challenges of wireless communication and uncertain internal model

parameters, we design an H∞ controller that is robust to all aforementioned uncertainties. We

implement this controller on a laboratory-scale test bed and we particularly show that the con-

troller design is able to account for communication shortcomings. Inclusive in our design is also

an L2-gain performance based anti-windup compensator to account for saturation limitations in

our test bed.

4.1 INTRODUCTION

Connected vehicles are an example of a modern day cyber physical systems (CPS) that through

the use of Cooperative Adaptive Cruise Control (CACC) can provide an innovative solution to

the traffic congestion problem [18]. Traffic is becoming an increasing problem in today’s world

as congestion in many urban areas is growing at a much faster rate than the traditional means of

traffic alleviation can assuage [19]. CACC is a technology that seeks to reduce traffic congestion

by means of achieving higher traffic flow rates using advanced control systems to safely reduce

57



the allowable headway time between vehicles [20]. A widespread advantage of CACC over tradi-

tional means of increasing traffic throughput, i.e., road construction, is that CACC has the potential

to be implemented on any car without the additional high costs and delays associated with road

construction projects [21].

CACC technology is an extension of Adaptive Cruise Control (ACC), which in turn is an exten-

sion of conventional cruise control (CCC), a technology traditionally used to regulate a vehicle at

a constant highway speed [22]. ACC extends the CCC technology by regulating the so-called

headway distance between vehicles that are arranged together in a platoon [23]. ACC employs

radar (or lidar) sensors to measure the relative velocity and displacement with the preceding

vehicle, and a longitudinal control framework is then implemented to space the vehicles to an

appropriate headway [22] by adjusting the acceleration and deceleration of the vehicle. CACC

extends the ACC technology by adding inter-vehicle wireless communication [24]. This extension

enables smaller headway distances, which is critical for platoon technology to have a noticeable

impact on traffic mitigation [21, 25].

According to the 2010 Highway Capacity Manual, a study observing human drivers showed

that the maximum flow rate for a multi-lane highway (at 60 mi/h) equates to 1.1 seconds of

headway [21]. Herein lies the main drawback of ACC technology, that is the smallest stable

headway is larger than the average time-gap that human drivers naturally exhibit [19, 25], thus

justifying the need for CACC technology. The vehicles that are virtually connected to each other

through CACC technology must ensure an important metric called string stability [2]. This concept

was first introduced in [26] and later extended in [27], which led to the development of systems

using the nearest neighbor as a measurement. Essentially, string stability is a requirement that all

disturbances introduced in the string be attenuated as they propagate in the downstream direc-

tion [23, 27]. String stability is essential to ensuring the safety and feasibility of the string [2]. Not

only do any disturbances in position, velocity or acceleration create increased energy consumption,

these disturbances must also be mitigated in order to prevent the so-called ghost traffic jams [23],

or even in extreme cases, an accident [28]; hence, a control design formulation that can explicitly
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account for string stability inherently meets design objectives and exterminates the need for any ad-

hoc a posteriori tuning to achieve string stability. This notion of string stability has been studied in

several aspects such as Lyapunov stability, and input-output stability; however, these methods lack

the consideration of a measure of performance as seen in [29, 30], which give a frequency-domain

approach for controller synthesis.

Several approaches have been undertaken in designing a controller for a platoon of vehicles.

The system model considered to describe the vehicular motion is usually a thrid-order nonlinear

model [31, 32], where subsequently the plant is linearized by the use of feedback linearization

method. For the control design using the linearized model, several CACC experimental results

have been reported, e.g., in [23, 24, 33]. These recent works show the promise in using CACC.

Indeed, several aspects of CACC technologies have been studied. The authors in [28] developed a

sampled data approach to CACC design in the presence of sensors and actuator failures and [34]

studied strategies for worst case sensor failure scenarios. Model predictive control (MPC) has also

gained attention as a way to cast the CACC problem in a framework that can directly optimize fuel

economy. An MPC based CACC approach was designed for heavy duty vehicles, such as tractor

trailer trucks as [35], where smaller headway distances can be sacrificed for better fuel economies

as traffic throughput may not be the primary objective as is the case with urban rush hour highway

demands. CACC can also be viewed in light of the communication as a networked control system

where the effects of sampling, hold, and network delays can be taken into account. An H∞ formu-

lation of network controlled problems is given in [36]. Still, other works have investigated time-

varying communication delays and communication structures beyond the classical architecture as

in [37].

This paper offers an H∞ controller design framework that is robust to uncertainties in both

the acceleration received from the wireless communication and the internal vehicle parameters.

We also extend the CACC design problem to include an anti-windup controller that optimizes

L2−gain performance. In our formulation, we synthesized the CACC controller using the induced

energy-to-energy gain (or H∞ norm) due to the presence of uncertainty [5].
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This paper is structured as follows: Section 2 describes the platoon following technologies and

how the nonlinear model governing vehicles is linearized. We also illustrate simulation results

comparing different adaptive cruise control technologies showing why CACC is preferred over

ACC. Section 3 explains the design of our robust H∞ controller, whose order will then be reduced

while still retaining the desired robust properties. Section 4 describes our laboratory-scale test bed

that is used to appropriately model the CACC driving scenario. We then present simulation results

using the test bed and validate those results with experimental testing. Section 5 draws conclusions

and provides insights into further research.

4.2 COOPERATIVE ADAPTIVE CRUISE CONTROL TECHNOLOGY

The design of various longitudinal adaptive cruise control strategies has been studied in the liter-

ature (see, e.g., [22] and references therein). Figure 4.1 shows a representative view of a typical

string of vehicles equipped with cooperative adaptive cruise control (CACC), where the lead car

of the string sets a trajectory to follow and communicates its acceleration a0 only to the following

vehicle. Alongside the communicated acceleration, the following vehicle is equipped with onboard

sensors to measure the relative distance and velocity. Position sensing is typically done via the

use of radar (or lidar) technology [23]. In considering a platoon, the distance between vehicles is

broken into three segments: di is the desired static distance between vehicles, hvi is the product

of the minimum headway required and the velocity of the ith vehicle, and finally δi is an addi-

tional spacing parameter. The ith vehicle is said to be in the correct positioning when δi = 0. More

specifically, δi, the spacing policy, is given as [28]

δi = qi−1−qi−Li−hvi−d0, (4.1)

where h is the time gap (headway), d0 is a given minimum distance and Li is the length of the ith
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Figure 4.1: A string of vehicles equipped with cooperative adaptive cruise control technology.

vehicle. The system dynamics can be represented as [31, 32]

δ̇i = vi−1− vi−hv̇i,

∆v̇i = ai−1−ai,

ȧi = fi(vi,ai)+gici, (4.2)

where gi is given as

gi =
1

τimi
, (4.3)

where mi represents the ith vehicle’s mass, and τi is the engine time-constant of the ith vehicle. The

above model is nonlinear due to the nonlinear function fi(vi,ai) described as

fi(vi,ai) =−
1
τi

[
v̇i +

σAicdi

2mi
v2

i +
dmi

mi

]
− σAicdiviai

mi
,

(4.4)

where τiAicdi
2mi

is the air resistance, dmi is the mechanical drag, cdi is the drag coefficient and σ is the

specific mass of the air. To linearize the above nonlinear system dynamics, the following control

law is adopted [31, 32]

ci = uimi +
σAicdiv2

i
2

+dmi + τiσAicdiviai, (4.5)
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where ui is the new control input signal to be designed for the closed-loop system where ci < 0

and ci ≥ 0 correspond to brake and throttle actions, respectively. Using (4.5) results in a feedback

linearization, which combined with (4.2) gives

ȧi(t) =−
ai(t)

τi
+

ui(t)
τi

. (4.6)

Since ai−1(t) is sent from the preceding vehicle, a communication delay θi is induced so the accel-

eration arriving at the ith vehicle is ai−1(t−θi). Writing the CACC model in the state-space form

gives [28]

ẋi(t) = Aixi(t)+Bi1ui(t)+Bi2wi(t−θi)

yi(t) =
[
xT

i (t),wi(t)
]T

, (4.7)

where θi is the communication delay, xi = [δi,∆vi,ai]
T is the state vector, wi(t) = ai−1(t), and

yi(t) = [δi,∆vi,ai,wi]
T is the output vector, and additionally,

Ai =


0 1 −h

0 0 −1

0 0 −1/τi

 , Bi1 =


0

0

1/τi

 , Bi2 =


0

1

0

 . (4.8)

We follow [23,24,64] in assuming a low-level linearizing feedback controller. The system in (4.8)

gives the linearization for the ith vehicle, and the overall system is hence a decentralized platoon.

4.2.1 BLOCK DIAGRAM REPRESENTATION FOR CONNECTED VEHICLES

Assuming the linearized plant dynamics, we can cast the CACC design problem into a block dia-

gram representation. For the ith vehicle, we use the following notation: qi−1 denotes the preceding

vehicle’s position, qi denotes the local position, ei is the error signal inputted into the controller

K(s) and ui is the desired acceleration (that is used as an input to the linearizing controller, see,

e.g., [28]). Finally, di denotes an added static following distance, and Li is the length of the ith

vehicle. In addition, Gi(s) represents the system transfer function, and H(s) describes the spacing
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policy given as

Gi(s) =
qi(s)
ui(s)

=
1

s2(τis+1)
e−φis, (4.9)

H(s) = hs+1, (4.10)

where τi is the engine time constant, φi is the internal time delay, and h is the headway. We note

that the linearized model adequately describes the dynamics provided that linearizing accleration

controller takes into account parameters given in (4.5) [23].

Next, by introducing a dedicated short range communication (DRSC) protocol between vehi-

cles, the leading vehicle’s acceleration can be communicated to the following vehicle. As this

signal is transmitted through communication channel, there is a delay represented in the frequency

domain as

D(s) = e−θs, (4.11)

where θ is the delay associated with the wireless communication [23, 65]. By adding a stabilizing

controller, K(s), and using the communicated acceleration as a feedforward term, the block dia-

gram given between ui−1(s) and ui(s) is shown in Figure 4.2. Without the loss of generality, Li =

di = 0 can be assumed.
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Figure 4.2: CACC block diagram.

4.2.2 STRING STABILITY

From the configuration shown in Figure 4.2, we define the transfer function from ui−1 to ui as
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ΓCACC(s) =
1

H(s)
D(s)+Gi−1(s)Ki(s)

1+Gi(s)Ki(s)
. (4.12)

However, as in [2] we will assume homogeneity in the string such that Gi−1(s) =Gi(s). A complete

discussion of string stability is given in [30]. With respect to (4.12) it suffices to limit the discussion

of string stability to ensuring that

||ΓCACC( jω)||H∞
≤ 1, (4.13)

where ||·||H∞
denotes the system’s H∞ norm, is met. We recall that the overall goal is to reduce the

headway while remaining string stable. As noted in [25] for this technology to have a noticeable

impact on traffic mitigation, a headway significantly smaller than 1.1 sec must be realized as this

is the average headway achieved by human drivers [19].

From Figure 4.2, we see that setting D(s) = 0 would result in an adaptive cruise control (ACC)

scheme. Other smart cruise control schemes exist; the authors in [65] used an onboard estimator

to estimate ui−1 as a way to gracefully transition between CACC and ACC schemes. To validate

the need of CACC versus the previously mentioned ACC and so-called “dCACC” schemes, we

designed a proportional-derivative (PD) controller with a headway value of h = 0.6 sec and tested

the three schemes. Figure 4.3 shows the corresponding Bode plots of the three schemes, again

showing the need for CACC. It is seen from Figure 4.3 that the additional complexity needed in

CACC implementation is justified given the ability to achieve lower headway values. It is also seen

from Figure 4.3 that an onboard estimate of the previous vehicle’s acceleration cannot guarantee

string stability as effectively as CACC can.
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Figure 4.3: Frequency response associated with ACC, dCACC and CACC for a headway of h= 0.6
sec.

4.3 ROBUST CACC DESIGN

In this section, we discuss the design of a robust CACC system in the framework of robust H∞

control. To this purpose, we first introduce the sources of uncertainty and describe how to quantify

them.

4.3.1 SOURCES OF UNCERTAINTY

There are several reasons to incorporate robustness into a control design framework as there usually

exist several sources of uncertainty within any dynamic system. There are always parameters that

are only approximately known or are modestly in error. Also, linear models may only be adequate

for a small operating range, and original measurements taken to find parameters have inherent

errors despite calibration. As we developed our model through system identification methods, at

high frequencies the structure of the model can become unknown and uncertainties in parame-

ters always arise. Finally, there might be uncertainties within the controller [5]. There are several
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different approaches to model uncertainties, which could be classified under structured or unstruc-

tured uncertainties [5].

With respect to our CACC application, we expect uncertainty in all our identified parameters.

In our laboratory-scale test bed described in Section 4, τ will vary based on the battery voltage

level and the wear on the motor windings. Also, since we consider a lumped parameter model,

the exact value of τ for each motor is unknown. We also expect varying time delays due to the

computations and the communication packet-handling protocol.

4.3.2 CACC BLOCK DIAGRAM REFORMULATION

In order to account for the acceleration delay, due to the wireless communication, we reformulate

the block diagram shown in Figure 4.2 to Figure 4.4. First, we introduce the same delay, D(s),

to the controller output as experienced by the communication delay. While delays are parasitic to

controller design and should as a general rule be avoided, the means justify the end as this block

diagram reformulation now allows us to account for communication delay in our controller design

which is critical to CACC.

From Figure 4.3 we recall that only CACC is able to achieve string stability at low headway

values. In typical communication schemes, data loss and an uneven communication time is to be

expected. If there is not a dedicated microcontroller for communication, as in our laboratory test

bed, this non-uniform delay is even more common. By designing a robust controller we are able

to withstand the delays and minor packet losses without having to pull back the CACC scheme

into either a dCACC or ACC scheme to maintain string stability with a low headway value. This

is crucial as low headway values are needed to realize traffic congestion gains [18, 25]. The issue

of implementation where the controller and the communication are synced to share the same delay

timing is achieve via microcontroller programming. In fact, the main novelty in this work is the

introduction of robust control to account for varying parameters and a reformulation of Figure 4.2

to account for all uncertain parameters.
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4.3.3 REPRESENTING UNCERTAINTY IN THE CACC DESIGN FRAMEWORK

For the block diagram shown in Figure 4.4, the parameters φ , τ , and θ are assumed to have the

nominal values of τ̄ = 0.14 sec., φ̄ = 0.018 sec., and θ̄ = 0.02 sec. for our test bed. We also consider

a variation in the range of τ ∈ [0.10,0.17], φ ∈ [0.018,0.10], and θ ∈ [0.02,0.10]. To guarantee

the closed-loop system stability in the presence of the model uncertainty associated with the above

uncertain parameters, we first represent the lumped parameter multiplicative uncertainty as shown

in Figure 4.5 and equation (4.14).
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+

W
p

Δ
p
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G
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Figure 4.5: Lumped parameter multiplicative uncertainty.

Gp(s) = G0(s)(1+Wp(s)∆p(s)), (4.14)

where Gp(s) represents the perturbed model, G0(s) represents the nominal model, ‖∆p‖∞≤ 1, and

Wp represents the lumped uncertainties transfer function that satisfies [5]
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∣∣∣∣Gp( jω)−G0( jω)

G0( jω)

∣∣∣∣≤ |Wp( jω)|, (4.15)

for any frequency ω . We then let τ , φ and θ vary over each respective parameter set. Using a fine

grid, we plotted the left hand side of (4.15) on a Bode plot shown in Figure 4.6, where in (4.15),

Gp(s) is taken as the perturbed plant and G(s) is fixed as the plant designed at τ̄ , φ̄ , and θ̄ . Then, a

filter, Wp(s), was fitted to the Bode plot according to (4.15). This results in the following high-pass

filter

Wp(s) =
2.85s
s+7

. (4.16)
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Figure 4.6: Bode plots to find the multiplicative uncertainty weight.

4.3.4 LOOP SHAPING FOR H∞ CONTROL DESIGN

Next, we use the S/KS loop shaping approach [5] to design a robust controller that can guarantee

tracking with zero steady-state error and a low control effort for a headway value of 0.35 sec. The

value h= 0.35 sec was chosen as it is significantly lower than the human comparison of h= 1.1 sec.

This headway allows us to achieve both string stability and robustness. The corresponding block

diagram in Figure 4.7 depicts how disturbances and noise signals affect the closed-loop system.

Using this block diagram setup, the string stability requirement can be directly handled within the

H∞ framework. In standard loop shaping, weight We is tuned to penalize tracking error at low

frequencies. The weight We is selected to be a low pass filter, tuned to eliminate the steady-state
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error. Weight Wv is tuned to penalize controller output, and is selected to be a high pass filter. The

filters are tuned as

We(s) = 5 · 0.075
s+0.9

, (4.17) Wv(s) = 0.4 · s
s+50

. (4.18)

Next, we select the desired acceleration, ui, as an exogenous output signal [2]. Writing the

transfer function between the exogenous input, i.e., the previous vehicle’s acceleration ui−1, and

the desired acceleration ui yields

Ti(s) =
ui(s)

ui−1(s)
. (4.19)

If ||Ti( jω)|| ≤ 1 for any ω , we have achieved string stability. The weight Wp is a high pass filter

used to model the multiplicative uncertainties as discussed in the previous section. Note that as in

[5], this formulation of Wp allows us to capture the variation in delays in our system as uncertainty

inside Wp.
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Figure 4.7: Configuration of the closed-loop control system.

4.3.5 H∞ ROBUST CONTROLLER DESIGN FOR CONNECTED VEHICLES

After selecting the loop shaping weights, we use MATLAB to represent the system interconnection

shown in Figure 4.7 into the linear fractional transformation (LFT ) form. This is done by using the

MATLAB command sconnect. Next, we express the closed-loop system as
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z(s) = N(s)w(s), (4.20)

where z represents the vector containing controlled output signals, N(s) describes the closed-

loop system transfer function matrix and w represents the exogenous input signals [5]. Now, by

imposing the following requirement that

||N( jω)||∞≤ 1, (4.21)

string stability would be guaranteed. Next, the robust control design problem is solved by invoking

the MATLAB command hin f lmi. The controller obtained matches the model order of the plant,

and using model order reduction methods we reduce the order of the controller to 4th order. A com-

parison of the Bode plots of the reduced-order versus full-order controller shows a good approx-

imation over all frequencies. Next, we analyze the closed-loop properties of the system. Figure

4.8 illustrates that string stability requirement is met. We see from Figure 4.9 that we also achieve

closed-loop robust stability. This condition is given as ||Wp( jω)T ( jω)|| ≤ 1 for any ω .
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Figure 4.8: String stability of the closed-loop system.
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Figure 4.9: Robust stability of the closed-loop system.

Figure 4.10 shows the welcomed result that we have also achieved a level of robust performance

in our design.
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Figure 4.10: Robust performance of the closed-loop system.

Interestingly, we notice from figures 4.2 and 4.4 that the relationship

ui(s)
ui−1(s)

=
ei(s)

ei−1(s)
, (4.22)
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holds true. For our reformulated block diagram in Figure 4.4 we rederive

ei(s)
ei−1(s)

=
1

H(s)
D(s)+D(s)G(s)K(s)

1+D(s)G(s)K(s)
. (4.23)

4.3.6 ANTI-WINDUP COMPENSATOR DESIGN

To account for the actuator saturation that exists in our experimental test bed due to the hard limits

on actuators, we use the procedure given in [66] to augment our CACC system with an anti-windup

controller. First, we consider the CACC block diagram of Figure 4.7 as a general feedback system

without saturation as

ylin = P

 w

ulin

 , ulin = K

 r

ylin

 , (4.24)

where ulin ∈ Rnu,ylin ∈ Rny ,r ∈ Rnr , and w ∈ Rnw . The block diagram of the general feedback

system without saturation is shown in Figure 4.11.

K Pu
lin

y
linr

w

Figure 4.11: General feedback system.

With respect to Figure 4.11 we partition the plant, P(s), as

P , [P1,P2] =

[ Ap Bp1 Bp2

Cp Dc1 0

]
. (4.25)

Likewise, with respect to Figure 4.11 we partition the controller, K(s), as

K , [K1,K2] =

[ Ac Bc1 Bc2

Cc Dc1 Dc2

]
. (4.26)
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We choose to use the formulation in [66] because it is assumed that K(s) has already been designed

to guarantee closed-loop stability of (4.24) and to achieve desired performance metrics. Next, we

add an anti-windup compensation scheme as

y = P

w

u

 , u = φ(û), û = K̂


r

y

u− û

 , (4.27)

where u, û ∈Rnu,ylin ∈Rny . Now, φ is given as the saturation function and ψ denotes a deadzone

function, both are defined as

φ(v),
{ a · sgn(v), |v|> a

v, |v|≤ a

, ψ , v−φ(v), (4.28)

where a is used to characterize the saturation. Using (4.24) and (4.28), Figure 4.12 illustrates a

general feedback system with saturation.

K Pû
yr

w

^ ϕ u

+
-

Figure 4.12: General anti-windup system.

Now the controller, K(s), is augmented with feedback from the saturation block, and the aug-

mented controller, K̂(s), is defined as

K̂ , [K1,K2,K3] =

[ Ac Bc1 Bc2 Λ1

Cc Dc1 Dc2 Λ2

]
. (4.29)

The transfer functions of K1 and K2 are the same as (4.29) and Λ1 and Λ2 are constant matrices

introduced for anti-windup compensation. To solve for Λ1 and Λ2, the authors in [66] used a linear
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matrix inequality (LMI) based formulation to guarantee that

||y− yin||L2≤ ||ψ(Ulin)||L2, (4.30)

where y represents the output of the plant without the saturation, yin represents the output of the

plant with the saturation, ψ(ulin) represents a system between the linear and nonlinear systems,

and ||.||L2 denotes the vector’s two-norm. We solve the LMI condition to determine Λ1 and Λ2 and

augment our CACC system with the anti-windup compensator.

4.4 OUR LABORATORY-SCALE CACC TEST BED

In considering the selection for our test bed, we see from (4.9) that a simple first-order ordinary

differential equation can accurately represent the dynamics of the CACC problem. Indeed, [2]

verifies that the measured step response of an acceleration controlled test vehicle is well modeled

by (4.9). Using this knowledge we built a laboratory test bed model. Figure 4.13 shows a picture

of our test bed.

Figure 4.13: CACC test bed.
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4.4.1 TEST BED HARDWARE

For our laboratory test bed, we modified a DFRobot Baron 4WD Mobile platform to meet our

needs. Various technologies and sensors were added to realize the CACC concepts:

Drivetrain: The onboard DC motors are rated at 6V with a no-load current of 71 mA and a stall

current of 470 mA. The gear ratio is 1 : 120 and the torque is 1.92 kg · cm. Through testing,

the maximum voltage supplied to the motors from the microcontroller is found to be 4.1

V. The lowest voltage required to turn the motors under the weight of the vehicle is 1.5 V.

The velocities corresponding to the maximum and minimum voltages are 0.4 m/s and 0.14

m/s, respectively. Although scaled, these motor nonlinearities pose the same control related

conceptual issues as that of a full scale vehicle.

Microcontroller: The Romeo V2.2 (R3) is an expanded microcontroller printed circuit board and

it is programmable using the Arduino IDE software.

Communication: We chose to use XBee series 1 (S1) RF modules to communicate with each

other. The XBee’s implement the IEEE 802.15.4 protocol within the 2.4 GHz frequency

band to communicate. The radios transmit data at a rate of 250,000 bits per second (b/s), and

testing proved a serial interface data rate of 57,600 b/s to be the fastest reliable speed.

Wheel Encoders: The wheel encoders use a non-contact, optical method to track the rotation of

the wheels. We doubled the resolution of the original disk to a final resolution of 0.5 cm.

Proximity Sensor: To detect the distance between the vehicles we used the Paralax PING Ultra-

sonic proximity sensor. This sensor works by emitting a 40 kilohertz ultrasonic burst and

providing an output pulse that corresponds to the time it takes to receive an echo.

Accelerometer: An ADXL335 triple-Axis accelerometer was installed to measure onboard accel-

eration data.

Infrared Line Following Sensors: To mitigate the problem of longitudinal control, we installed

infrared line following sensors.
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4.4.2 SYSTEM IDENTIFICATION

For the purpose of creating a CACC test bed that is modeled by (4.9) and (4.11), we perform

system identification to find the internal time delay φ , the nominal communication delay θ , and

the time constant τ .

STEP RESPONSE

To identify our test bed parameters we applied a step function input. To do this, we exploit the

well known relation that voltage and velocity are related through a constant such that Velocity =

α ·Voltage where α is given in m
V ·s . We then command the onboard microcontroller to a maximum

step of 4.1 V . Figure 4.14 shows a plot of the corresponding interpolated acceleration data.
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Figure 4.14: CACC acceleration data collected from our test bed.

Figure 4.15 gives the corresponding velocity response. Through experimental testing we find

α = 10.32 m
V ·s . Next, we fit the model with the unknown parameters to the data. Writing a transfer

function from desired acceleration to position as in (4.9) yields

Gsys(s) =
qi(s)
ui(s)

=
0.0963

s2(0.14s+1)
e−0.018s. (4.31)
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Figure 4.15: CACC test bed step response.

ESTIMATING THE COMMUNICATION DELAY

To calculate the communication delay, first we establish the best and worst case scenarios. The

propagation delay, i.e., the time the data takes to travel through the air, is on the order of nanosec-

onds and is negligible in this case. In the best case scenario, the carrier channel is clear to send and

the total communication delay is 1.17 ms. In the worst case scenario, we consider packet delivery

is successful but takes the longest amount of time for channel assessment prior to transmission.

In this scenario, the communication delay is 9.44 ms. Therefore, the communication delay is the

inclusive set of ∈ = [1.17 ms, 9.44 ms].

4.5 SIMULATION AND EXPERIMENTAL RESULTS

We first created a 5-car platoon simulation model using the reduced-order robust controller. We

modeled the cars we have in our laboratory test bed in MATLAB/Simulink taking note to also

include the corresponding saturations and Coloumb friction characteristics.
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4.5.1 SIMULATION RESULTS

First, we utilized our simulation model to examine the closed-loop performance with the reduced-

order robust controller and nominal plant parameters. Figure 4.16 shows the corresponding error

responses, and Figure 4.17 shows the corresponding velocity responses.
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Figure 4.16: Error response of the 5-car simulation model using nominal system param-
eters.
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Figure 4.17: Velocity response of the 5-car simulation model using nominal system
parameters.
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In Figure 4.16, a positive error value indicates conservative behavior, whereas, a negative value

indicates that the following car is too close. From Figure 4.17, we observe that all cars start from

rest, and the lead car follows a smooth trajectory. The following cars are tuned to allow overshoot

in lieu of a faster settling time. After the lead car has reached 0.32 m/s, it undergoes a sharp

deceleration. This is reflected by the error going negative, but the controller quickly reestablishes a

zero steady-state tracking error (see, Figure 4.16). Next, we perturb both φ and θ to their respective

maximum values. The resulting simulation outputs are given in figures 4.18 and 4.19.

We see from the comparison of figures 4.16 and 4.17 with figures 4.18 and 4.19 that added delays

cause an increase in error, but that the robust controller is still able to provide the steady-state

tracking over the region of parameter perturbations.

4.5.2 EXPERIMENTAL RESULTS

Next, using our test bed, we programmed the lead car to follow the smooth trajectory of the 5-car

simulation. We discretize the blocks in Figure 4.4 with a 20 msec sampling time and implement on

the laboratory test bed.

ROBUST CONTROLLER

Figures 4.20 and 4.21 show the test bed results using the robust controller with nominal parameters.
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Figure 4.18: Error response for the 5-car simulation model using perturbed system
parameters.
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Figure 4.19: Velocity response for the 5-car simulation model using perturbed system
parameters.
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Figure 4.20: Error response of the experimental
test bed using nominal parameters.
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Figure 4.21: Velocity response of the experi-
mental test bed using nominal parameters.

Figures 4.20 and 4.21 show a comparison to figures 4.16 and 4.17. Similarly, we perturbed both

φ and θ to their respective maximum values and reran the experiments; the results are given in

figures 4.22 and 4.23.
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Figure 4.22: Error response of the experimental
test bed using perturbed parameters.
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Figure 4.23: Velocity response of the experi-
mental test bed using perturbed parameters.

We observe that figures 4.22 and 4.23 also show a good comparison with the results in figures 4.18

and 4.19 in that the robust controller still maintains a high level of performance despite the param-

eter variation. This is critical in the CACC application since we see that despite the parameter vari-

ations, the robust controller allows for significant headway impact (h = 0.35 sec. vs h = 1.1 sec.)

while maintaining string stability. We note that all the experimental testings show an increase of
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∼0.1 m on the initial acceleration when compared to the simulation results. This consistent dis-

crepancy is due to the initialization needed in the onboard microcontroller.

NOMINAL CONTROLLER

Next, we compare our results to a nominal H∞ controller designed around the nominal parameters:

τ̄ , φ̄ , and θ̄ . For the experimental case of a nominal controller using nominal parameters we achieve

performance gains over the robust controller design shown in figures 4.20 and 4.21. However,

when the nominal H∞ controller is experimentally tested using the perturbed case, we observe

unacceptably large overshoots illustrated in figures 4.24 and 4.25.
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Figure 4.24: Error response of the experimental
test bed with the nominal controller and per-
turbed parameters.
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Figure 4.25: Velocity response of the experi-
mental test bed with the nominal controller and
perturbed parameters.

Comparison of Figure 4.24 with Figure 4.22 shows that the nominal controller vastly overshoots

five times worst than the robust controller, and hence disturbances are magnified instead of attenu-

ated. Table 4.1 gives a comparison of the root mean square (RMS) values of the deceleration event.

We see the nominal controller’s RMS value of error doubles, but that the robust controller remains

small. This validates the need for the (proposed) robust controller design, given the overall need of

minimizing headway distance in traffic situations.
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Table 4.1: RMS value comparisons for experimental data where n represents nominal and p repre-
sents perturbed.

Robust (n) Robust (p) Nominal (n) Nominal (p)
0.0113 0.0117 0.0104 0.0250

4.6 CONCLUSIONS

In this paper, we have provided experimental results on the design and validation of a robust H∞

controller for cooperative adaptive cruise control (CACC) of connected vehicles. The proposed

design framework can account for the uncertainties in the vehicle model used for the CACC design

to ensure string stability. The control design process includes: (i) quantifying the effect of uncer-

tainties on the plant model, and (ii) employing the mixed-sensitivity, loop shaping-based H∞ con-

trol design. Simulation and experimental results demonstrate and validate that the robust controller

can achieve string stability and tracking performance over the region of parameter perturbations.

Experimental tests for a nominal H∞ controller are run showing the need for a robust controller

design.
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CHAPTER 5

ROBUST COOPERATIVE ADAPTIVE CRUISE CONTROL DESIGN FOR CONNECTED VEHICLES

1

1Trudgen, Mark, and Javad Mohammadpour. ”Robust Cooperative Adaptive Cruise Control Design
for Connected Vehicles.” In ASME 2015 Dynamic Systems and Control Conference, pp. V001T17A004-
V001T17A004. American Society of Mechanical Engineers, 2015. c©2015 ASME. Reprinted here with
permission of the publisher.
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ABSTRACT

In this paper, we design and validate a robust H∞ controller for Cooperative Adaptive Cruise Con-

trol (CACC) in connected vehicles. CACC systems take advantage of onboard sensors and wireless

technologies working together in order to achieve smaller inter-vehicle following distances, with

the overall goal of increasing vehicle throughput on busy highways, and hence serving as a viable

approach to reduce traffic congestion. A group of connected vehicles equipped with CACC tech-

nology must also ensure what is known as string stability. This requirement effectively dictates

that disturbances should be attenuated as they propagate along the platoon of following vehicles.

In order to guarantee string stability and to cope with the uncertainties seen in the vehicle model

used for a model-based CACC, we propose to design and implement a robust H∞ controller. Loop

shaping design methodology is used in this paper to achieve desired tracking characteristics in

the presence of competing string stability, robustness and performance requirements. We then

employ model reduction techniques to reduce the order of the controller and finally implement

the reduced-order controller on a simulation model demonstrating the robust properties of the

closed-loop system.

5.1 INTRODUCTION

Connected vehicles are an example of a modern day cyber physical system (CPS) that through

the use of Cooperative Adaptive Cruise Control (CACC) provide an innovative solution to the

traffic congestion problem [18]. Traffic is becoming an increasing problem in today’s world as

congestion in many urban areas is growing at a much faster rate than the traditional means of

traffic alleviation can assuage [19]. CACC is a technology that seeks to reduce traffic congestion

by means of achieving higher traffic flow rates using advanced control systems to safely reduce the

allowable headway time between vehicles [20]. A widespread advantage of CACC over traditional

means of increasing traffic throughput, i.e., road construction, is that CACC has the potential to
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be implemented on any car in highway system without the additional high costs and time delays

associated with road construction projects [21].

CACC technology is an extension of Adaptive Cruise Control (ACC), which in turn is an exten-

sion of conventional cruise control (CCC), a technology traditionally used to regulate a vehicle at

a constant highway speed [22]. ACC extends the CCC technology by regulating the so-called

headway distance between vehicles that are arranged together in a platoon [23]. ACC employs

radar (or lidar) sensors to measure the relative velocity and displacement with the preceding

vehicle, and a longitudinal control framework is then implemented to space the vehicles to an

appropriate headway [22] by adjusting the acceleration and deceleration of the vehicle. CACC

extends the ACC technology by adding wireless inter-vehicle communication [24]. This extension

enables smaller headway distances, which is critical for platoon technology to have a noticeable

impact on traffic mitigation [21, 25]. According to the 2010 Highway Capacity Manual, a study

observing human drivers showed that the maximum flow rate for a multilane highway (at 60 mi/h)

equates to 1.1 seconds of headway [21]. Herein lies the main drawback of ACC technology, that

is the smallest stable headway is larger than the average time-gap that human drivers naturally

exhibit [19, 25], thus justifying the need for CACC technology. The vehicles that are virtually

connected to each other through CACC technology must ensure an important metric called string

stability [2]. This concept was first introduced in [26] and later extended in [27], which led to the

development of systems using the nearest neighbor as a measurement. Essentially, string stability

is a requirement that all disturbances introduced in the string be attenuated as they propagate in

the upstream direction [23, 27]. String stability is essential to ensuring the safety and feasibility of

the string [2]. Not only do any disturbances in position, velocity or acceleration create increased

energy consumption, these disturbances must also be mitigated in order to prevent the so-called

ghost traffic jams [23], or even in extreme cases, an accident [28]; hence, a control design formu-

lation that can explicitly account for string stability inherently meets design objectives and exter-

minates the need for any ad-hoc a posteriori tuning to achieve string stability. This notion of string

stability has been studied in several aspects such as Lyapunov stability, and input-output stability;
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however, these methods lack the consideration of a measure of performance as seen in [29, 30],

which give a frequency-domain approach for controller synthesis.

Several approaches have been undertaken in designing a controller for a platoon of vehicles.

The system model considered to describe the vehicular motion is usually a 3rd order nonlinear

model [31, 32], where subsequently the plant is linearized by the use of feedback linearization

method. For the control design using the linearized model, several CACC experimental results have

been reported, e.g., in [23, 24, 33]. These recent works show the promise in using CACC. Indeed,

several aspects of CACC technologies have been studied. The authors in [28] developed a sampled

data approach to CACC design in the presence of sensors and actuator failures and [34] studied

strategies for worst case scenarios. Model predictive control (MPC) has also gained attention as a

way to cast the CACC problem in a framework that can directly optimize fuel economy. A CACC

MPC approach can be considered very useful for heavy duty vehicles, such as tractor trailer trucks

as in [35], where smaller headway distances can be sacrificed for better fuel economies as traffic

throughput may not be the primary objective as is the case with urban rush hour highway demands.

CACC can also be viewed in light of the communication as a networked control problem where

the effects of sampling, hold, and network delays can be taken into account. An H∞ formulation of

network controlled problems is given in [36]. Still, other works have investigated communication-

based time-varying delays and communication structures beyond the classical architecture as in

[37].

To the authors’ best knowledge, no previous work has extended the CACC framework to

include modeling uncertainties directly arising from the plant using a decentralized framework.

Fundamentally, all system models exhibit a level of model uncertainty [5]. Indeed, in the experi-

mental results of [23], it was noted that the parameters of the plant were found using a least squares

averaging technique, and it is known that uncertainty comes from the parameters describing the lin-

earized plant. In [64] time constant parameter variations were mentioned, but aside from ensuring

LHP stable poles, a robust control design framework was not considered. Similarly, although

packet loss and communication delays were considered in [37], no consideration was made with
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respect to parameter variations of a linearized plant. We consider in this paper a robust controller

design, where an H∞ controller is sought to be synthesized as the induced energy-to-energy gain

(or H∞ norm) is a natural norm to use in the presence of uncertainty [5], especially considering the

literature available on L2 string stability [2,30]. In our formulation, we choose to model the CACC

problem in a decentralized manner similarly to [2]. While other formulations exist for centralized

control such as [67], we choose the decentralized formulations as they have strong relevance to

every day traffic applications where there is no set leader. A decentralized implementation also

gives each driver in the string control over a range of headway values, which is desirable consid-

ering different driving abilities; however, an investigation of psychological aspects is not consid-

ered here, for which the reader is referred to references in [19].

This paper is structured as follows: Section 2 describes the platoon following technologies and

how the simple nonlinear model governing vehicles is linearized. We also show simulation results

comparing different adaptive cruise control technologies. Section 3 explains the design of a robust

H∞ controller, whose order will then be reduced while still retaining the desired robust properties.

Section 4 illustrates the results of a 5-car simulation, and Section 5 draws conclusions.

5.2 VARIOUS CRUISE CONTROL TECHNOLOGIES

Design of various longitudinal adaptive cruise control strategies have been studied in the literature

(i.e. [22] and references therein). Figure 5.1 shows a representative view of a typical string of

vehicles equipped with cooperative adaptive cruise control (CACC), where the lead car of the

string sets a trajectory to follow and communicates its acceleration a0 only to the following vehicle.

Alongside the communicated acceleration, the following vehicle is equipped with onboard sensors

to measure the relative distance and velocity. This is typically done via the use of radar (or lidar)

[23]. In considering a platoon, the distance between vehicles is broken into 3 segments: di is the

desired static distance between vehicles, hvi is the product of the minimum headway required and

the velocity of the ith vehicle, and finally δi is an additional spacing parameter. The ith vehicle is

said to be in the correct positioning when δi = 0.
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Figure 5.1: A string of vehicles equipped with cooperative adaptive cruise control technology.

More specifically, δi, the spacing policy, is given as [28]

δi = qi−1−qi−Li−hvi−d0, (5.1)

where h is the time gap (headway), d0 is a given minimum distance and Li is the length of the ith

vehicle. The system dynamics can be represented as [31, 32]

δ̇i = vi−1− vi−hv̇i

∆v̇i = ai−1−ai

ȧi = fi(vi,ai)+gi(vi)ci, (5.2)

where gi(vi) is given as

gi(vi) =
1

τimi
. (5.3)

Subsquently, the model is nonlinear due to the nonlinear function fi(vi,ai) which is described as

fi(vi,ai) =−
1
τi

[
v̇i +

σAicdi

2mi
v2

i +
dmi

mi

]
− σAicdiviai

mi
,

(5.4)
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where mi represents the ith vehicle’s mass, τi is the engine time-constant of the ith vehicle, τiAicdi
2mi

is the air resistance, dmi is the mechanical drag, cdi is the drag coefficient and σ is the specific

mass of the air. To linearize the above nonlinear system dynamics, the following control law is

adopted [31, 32]

ci = uimi +
σAicdiv2

i
2

+dmi + τiσAicdiviai, (5.5)

where ui is the new control input signal to be designed for the closed-loop system where ci < 0

and ci ≥ 0 correspond to brake and throttle actions, respectively. Using (5.5) results in a feedback

linearization, which combined with (5.2) gives

ȧi(t) =−
ai(t)

τi
+

ui(t)
τi

. (5.6)

Since ai−1(t) is sent from the preceding vehicle, a communication delay θi is introduced so the

acceleration arriving at the ith vehicle is ai−1(t−θi). Writing the CACC model in the state-space

form gives [28]

ẋi(t) = Aixi(t)+Bi1ui(t)+Bi2wi(t−θi)

yi(t) =
[
xT

i (t),wi(t)
]T

, (5.7)

where θi is the communication delay, xi = [δi,∆vi,ai]
T is the state vector, wi(t) = ai−1(t) and

yi(t) = [δi,∆vi,ai,wi]
T is the output vector, and additionally,

Ai =


0 1 −h

0 0 −1

0 0 −1/τi

 , Bi1 =


0

0

1/τi

 , Bi2 =


0

1

0

 . (5.8)

We follow [23,24,64] in assuming a low-level linearizing feedback controller. The system in (5.8)

gives the linearization for the ith vehicle, and the overall system is hence a decentralized platoon.
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5.2.1 ADAPTIVE CRUISE CONTROL

By setting ai−1 to zero in (5.2), the CACC model reduces to the ACC model, and the same feedback

linearizing controller given in (5.5) can be used to achieve a linear model. Next, by using the setup

proposed in [23], the corresponding block diagram is given in Figure 5.2.
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Figure 5.2: Adaptive cruise control block diagram.

For the ith vehicle, we use the following notation: qi−1 denotes the preceding vehicle’s position,

qi denotes the local position, ei is the error signal inputted into the controller K(s) and ui is the

so-called desired acceleration (that is used as an input to the linearizing controller, see, e.g., [28]).

Finally, di denotes an added static following distance, and Li is the length of the ith vehicle. Without

the loss of generality, Li = di = 0 is assumed. In addition, G(s) represents the system transfer

function, and H(s) describes the spacing policy given as

G(s) =
qi(s)
ui(s)

=
1

s2(τis+1)
e−φis (5.9)

H(s) = hs+1, (5.10)

where τi is the engine time constant and the nominal value is taken as τ̄ = 0.1 sec. and φ̄ = 0.2

sec is an associated nominal internal delay and h represents the designed headway value [23, 65].

We built a simulation model in MATLAB/SIMULINK that was composed of 5 cars using a simple

stabilizing controller is given by

K(s) = KDs+KP, (5.11)

where KD = 0.7 and KP = 0.2 [23].
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The headway time, h, is set to 0.6 sec. Using this headway value, we do not achieve string

stability in the ACC case. This headway value is chosen to illustrate that even lower headway

values can be achieved with communication, thus justifying additional model complexity required.

An inherent goal is to reduce the headway as this correlates to a better traffic mitigation.

5.2.2 DEGRADED COOPERATIVE ADAPTIVE CRUISE CONTROL

As a bridge between ACC and CACC, the authors in [65] propose the use of an onboard observer

that uses local measurements to estimate the accerlation of the previous vehicle. This can be used

when, e.g., a communication link experiences packet losses and before resorting to an ACC scheme

[65]. A block diagram of the degraded Cooperative Adaptive Cruise Control (dCACC) case is

shown in Figure 5.3, where T (s) is a Kalman estimator and Taa(s) is a smoothing filter. The boxed

section in Figure 5.3 is used to denote the estimation scheme. It is noted that this is an onboard

estimation scheme implemented in the ith vehicle. Using (5.11) again, we see that the dCACC has

improved damping compared to the ACC case, but still not being able to achieve string stability

for low headway values.
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Figure 5.3: dCACC block diagram.
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5.2.3 COOPERATIVE ADAPTIVE CRUISE CONTROL

Next, by introducing a dedicated short range communication (DRSC) protocol between vehicles,

the leading vehicle’s acceleration can be communicated to the following vehicle. As this signal is

transmitted through communication channel, there is a delay; hence,

D(s) = e−θs, (5.12)

where θ = 0.02 sec. is chosen as in [23, 65]. The implemented model in MATLAB/SIMULINK is

modified to now include these communication delays as shown in Figure 5.4.
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Figure 5.4: CACC block diagram.

In the case of a CACC scheme with a stabilizing controller, the block diagram is shown in

Figure 5.4 and the controller K(s) is the same as in (5.11) [23]. The communicated acceleration is

used as a feedforward term. Using the same headway value used in the previous cases, the CACC

scheme does achieve string stability. Although the error is non-zero, it does not increase along the

string.

STRING STABILITY

We denote the transfer function from qi−1 to qi as ΓCACC(s) given by

ΓCACC(s) =
1

H(s)
G(s)K(s)+D(s)

1+G(s)K(s)
. (5.13)

D(s) represents the delay associated with either the dCACC case or the CACC case. Setting D(s) =

0 yields the ACC case. Figure 5.5 shows the Bode plots corresponding to the three platoon control
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approaches described before for h = 0.6 sec. For string stability ||Γ( jω)||< 1 needs to be achieved

for any ω , which physically implies that the position of the vehicle qi remains behind the preceding

vehicle qi−1. From Figure 5.5, it is observed that only the CACC system satisfies this requirement.

As noted in [25] for this technology to have a noticeable impact on traffic mitigation, a headway

significantly smaller than 1.1 sec. already seen in the naturalistic driving must be achieved [19],

and the dCACC and ACC cases do not even achieve the naturalistic driving headway value.
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Figure 5.5: Frequency response associated with ACC, dCACC and CACC.

5.3 ROBUST CACC DESIGN

In this section, we discuss the design of a robust CACC system in the framework of robust H∞

control. To this purpose, we first introduce the sources of uncertainty and describe how to quantify

them.

5.3.1 SOURCES OF UNCERTAINTY

There are several reasons to incorporate robustness into a control design framework as there usu-

ally exist several sources of uncertainty within any dynamic system. There are always parameters

that are only approximately known or are modestly in error. Also, linear models may only be

adequate for a small operating range, and original measurements taken to find parameters have
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inherent errors despite calibration. If the model is obtained through system identification methods,

at high frequencies the structure of the model can become unknown and uncertainties in parame-

ters always arise. Finally, there might be uncertainties within the controller [5]. There are several

different approaches to model uncertainties, which could be classified under structured or unstruc-

tured uncertainties [5].

With respect to CCAC applications, the authors in [23] note that “the parameters were estimated

using a least-squares method.” Several other authors have noted that alongside parameter variations

seen in portion of (5.2) associated with the ith vehicle parameters, the use of radar (or lidar) and

the DRSC band gives other sources of uncertainties [22]. Indeed, since all CACC systems run on

onboard processors, albeit real-time systems, there is still a non-uniform processing time that adds

to the potential time delays resulting in uncertainties in the plant.

5.3.2 REPRESENTING UNCERTAINTY

For the plant given in (9), the parameters φ and τ are assumed to have the nominal values of φ̄ =

0.2 sec. and τ̄ = 0.1 sec., where we consider a variation with φ ∈ [0.05,0.5] and τ ∈ [0.02,0.2]. To

guarantee the closed-loop system stability in the presence of the model uncertainty associated with

φ and τ we first represent the lumped parameter multiplicative uncertainty as shown in Figure 5.6

and equation (5.14).

+
+

W
p

Δ
p

G

G
p

Figure 5.6: Lumped parameter multiplicative uncertainty.

Gp(s) = G(s)(1+Wp(s)∆p(s)), (5.14)

96



where Gp(s) represents the perturbed model, G(s) represents the nominal model, ‖∆p‖∞≤ 1, and

Wp represents the lumped uncertainties transfer function that satisfies [5]∣∣∣∣Gp( jω)−G( jω)

G( jω)

∣∣∣∣≤ |Wp( jω)|, (5.15)

for any frequency ω . We then let φ and τ vary over each respective parameter set. Using a fine

grid, we plotted the left hand side of (5.15) on a Bode plot shown in Figure 5.7, where in (5.15)

Gp(s) is taken as the perturbed plant and G(s) is fixed as the plant at φ̄ and τ̄ . Then, a high pass

filter, Wp(s) was fitted to the Bode plot according to (5.15). This results in the following high-pass

filter

Wp(s) =
6s+0.003

s+14
. (5.16)
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Figure 5.7: Bode plots to find the multiplicative uncertainty weight.

5.3.3 LOOP SHAPING FOR H∞ CONTROL DESIGN

Next, we use the loop shaping approach [5] to design a controller that can guarantee tracking

with zero steady-state error and a low control effort. The corresponding block diagram in Figure

5.8 depicts how disturbances and noise signals affect the closed-loop system. Using this block

diagram setup, as in [2], the string stability requirement can be directly handled within the H∞

framework. In standard loop shaping, weight We shown in Figure 5.8 is tuned to penalize tracking

error at low frequencies. The weight We is selected to be a low pass filter, tuned to eliminate the

steady-state error, as
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We(s) =
0.028

s+0.02
. (5.17)

Next, we select the desired acceleration, ui, as an exogenous output signal [2]. Writing the

transfer function between the exogenous input, i.e., the previous vehicle’s acceleration ui−1, and

the desired acceleration ui yields,

Ti(s) =
ui(s)

ui−1(s)
. (5.18)

If ||Ti( jω)|| ≤ 1 for any ω , we have achieved string stability. The weight Wp is a high pass filter

used to model the multiplicative uncertainties as discussed in the previous section.
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Figure 5.8: Configuration of the closed-loop control system.

5.3.4 H∞ ROBUST CONTROL DESIGN FOR CONNECTED VEHICLES

After selecting the loop shaping weights, we use MATLAB to represent the system interconnection

shown in Figure 5.8 into the linear fractional transformation (LFT ) form. This is done by using the

MATLAB command sconnect. Next, we express the closed-loop system as

z(s) = N(s)∗w(s), (5.19)

where z represents the vector containing controlled output signals, N(s) describes the closed-loop

system transfer function matrix and w represents the exogenous input signals [5]. In formulating
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the closed-loop system, the delays associated with (5.9) and (5.12) are approximated by using a

3rd order Padé approximation. Now, by imposing the requirement that,

||N( jω)||∞≤ 1, (5.20)

string stability will be achieved. Next, the robust control design problem is solved by invoking the

MATLAB command hin f lmi. A 13th order controller is synthesized to satisfy (5.20). We finally

use model order reduction methods to reduce the order of the controller. First, a Gramian-based

balancing of state-space realization is performed to isolate states with negligible contribution to

the input/output response. This results in an 8th order controller. We further reduce the controller

to 6th order by using a balanced truncation model order reduction. Comparing the Bode plot of

the 13th order system with the 6th order system shows a good approximation over all frequencies

while also satisfying the requirement in (5.20).

5.4 SIMULATION RESULTS AND DISCUSSION

Using the reduced-order controller designed in the previous section, we perform a 5-car simulation

with the nominal values of φ̄ = 0.2 sec and τ̄ = 0.1 sec. The results are shown in Figures 5.9

and 5.10 illustrating the string stable behavior, along with the desired tracking performance. For

the simulation we follow the same smooth velocity step as in the previous section, where the

lead car decreases velocity from 60 kph to 40 kph. Figure 5.10 shows a low value of the error in

the response, also demonstrating that after the first following car in the string, the error becomes

negligible all together.

Next, by inspecting the block diagram given in Figure 5.8, we write the sensitivity and com-

plementary sensitivity functions as
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Figure 5.9: Velocity simulation using the designed robust controller.

S(s) =
G(s)(1−D(s))
1+G(s)K(s)

, (5.21)

T (s) =
H−1(s)(G(s)K(s)+D(s))

1+G(s)K(s)
. (5.22)

Figure 5.11 shows the corresponding Bode plots, which illustrate that string stability is achieved

according to (5.18) as the complementary sensitivity transfer function T (s) is always less than

1 at all frequencies. Additionally, Figure 5.12 shows the corresponding robust stability margin

illustrating that in the given design, robust stability is achieved. This can be seen from Figure 5.12

since ||Wp( jω)∗T ( jω)|| ≤ 1 for any ω .

Next, using the reduced-order robust controller we perform the 5-car simulations for the param-

eter values of φ = 0.5 sec. and τ = 0.2 sec. We then also perform the same 5-car simulation with the

same perturbed parameter values for a standard (non-robust) H∞ controller designed in [2]. Figure

5.13 shows the velocity response of the robust controller, demonstrating that the brief undershoot is
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Figure 5.10: Error responses using the designed robust controller.

quickly damped out. Figure 5.14 shows that the non-robust controller experiences several oscilla-

tions before reaching steady state. For both controllers, only the response of the first following car

is considered non-trivial (similar to Figure 5.10), and a comparison of the error response between

the two controllers is given in Figure 5.15. Comparing the two sets of simulations, i.e., the pro-

posed robust design vs. the non-robust one, shows that the robust controller provides a much better

performance over the region of parameter perturbation.
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Figure 5.12: Plot showing the robust stability condition.
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Figure 5.13: Velocity profiles for perturbed 5-car simulations using the proposed robust controller.
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Figure 5.14: Velocity profiles for perturbed 5-car simulations using the (non-robust) controller
proposed in [2].
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Figure 5.15: Tracking error profiles for perturbed 5-car simulations for the proposed robust con-
troller and the H∞ controller designed in [2].
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5.5 CONCLUSIONS

In this paper, we have provided some new results on the design and validation of a robust H∞ con-

troller for cooperative adaptive cruise control (CACC) of connected vehicles. The proposed design

framework can account for the uncertainties in the vehicle model used for the CACC design to

ensure string stability. The control design process includes: (i) quantifying the effect of uncertain-

ties on the plant model, and (ii) employing the mixed-sensitivity, loop shaping-based H∞ control

design. Simulation results demonstrate that the robust controller can improve string stability and

tracking performance – compared to non-robust designs in the literature – over the region of param-

eter perturbations.
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CHAPTER 6

LUMPED-PARAMETER MODEL DEVELOPMENT AND ROBUST CONTROL OF SYSTEMS

GOVERNED BY 2-D PARABOLIC CONVECTION-DIFFUSION EQUATION

1

1Trudgen, Mark, and Javad Mohammadpour. ”Lumped-parameter model development and robust control
of systems governed by 2-D parabolic convection-diffusion equation.” In 2015 American Control Confer-
ence (ACC), pp. 607-612. IEEE, 2015. c©2015 IEEE. Reprinted here with permission of the publisher.
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6.1 ABSTRACT

In the present paper, proper orthogonal decomposition (POD) method is employed to derive a

lumped-parameter model for systems governed by two-dimensional (2-D) parabolic convection-

diffusion (PCD) equation. The POD method employs singular value decomposition (SVD) to

explore the content of a data set in order to identify the most and least variation to choose lower-

order basis functions that provide close approximations of the original data set. In this work, POD

is utilized to determine a low-order model that is suitable for control design purposes; using the

low-order model, an H∞ controller is then designed to ensure closed-loop system stability and

reference tracking. This control design framework is chosen since the low-order model presents

both parametric uncertainty and unmodeled high frequency dynamics arising from the derivation

of the low-order model. A loop-shaping design method is adopted to design a robust H∞ controller

to achieve desirable tracking and disturbance rejection in the closed-loop system. The simulation

results show that the robust controller designed on the basis of the low-order model provides satis-

factory reference tracking performance for the system described by the full-order PCD model.

6.2 INTRODUCTION

Recent developments in the control system community with respect to model order reduction tech-

niques have generated interest in applying relevant tools to fluid dynamic systems governed by par-

tial differential equations (PDEs) [41,42]. Often, the fluid flows are described by high-dimensional

and/or nonlinear equations, but the fully described fluid dynamical models are not suited for con-

trol design purposes [39, 40]. Fundamentally, we find the need to develop low-order models that

can capture and accurately represent the system dynamics so that a controller of reasonable order

can be designed [40].

Convection-diffusion equations are representative of a class of fluid dynamic systems that accu-

rately describe a particular flow phenomenon, but are mathematically not suited for control design
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purposes [38]. Therefore, in order to arrive at lower-order models tractable for control design pur-

poses, there is a need to use a suitable projection method [41]. Convection-diffusion processes

are widespread in occurrence in many scientific and engineering fields. A few common applica-

tions are: pollutant dispersal, vorticity transport in the incompressible Navier-Stokes equations,

atmospheric pollution, semiconductor equations, the Stephan problem on a variable mesh, and vis-

cous compressible flow [38]. The authors in [43, 44] used finite element method to control the

convection-diffusion equation; however, their primary focus was on the mesh constraints related

to optimality. Here, we extend the control design problem governed by the convection-diffusion

equation using a robust H∞ controller.

A great deal of work developed for model order reduction techniques has come within the

controls context, and many methods for model order reduction have been suggested [42]. Proper

orthogonal decomposition (POD) has become a well-accepted technique to obtain optimal basis

functions that lead to low-order models to accurately represent the original full-order models

[39–42, 45–48]. POD was first introduced by Lumley [49] in the context of turbulence, and the

method of snapshots was first suggested by Sirovich [50]. POD has the intrinsic property that it

is completely data dependent, and the modal decomposition used does not assume prior knowl-

edge of how the data is generated [45]. This property is advantageous as no apriori information is

needed to choose an ideal set of basis functions.

In this paper, POD is utilized as a basis for modal decomposition of an ensemble of functions.

Given a set of data that lies in a vector space, the problem is to find a subspace of fixed dimension

that minimizes the error between the two vector spaces [41]. We describe an infinite-dimensional

parabolic convection-diffusion (PCD) equation (see, e.g., [68]) and then represent it in the discrete

time domain. Using the method of snapshots to align the data together, we reduce the problem to

a singular value decomposition (SVD) analysis. SVD is a valuable tool for identifying dimensions

inside data sets that have the most and least variation [69]. We then form a reduced-order model

using Galerkin projection [39]. Lastly, we design an H∞ controller and show that this low-order

controller is a suitable choice to control the high-order PCD model as it is robust to the natural
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parametric uncertainties within the flow that the PCD equation describes, and is also robust to the

unmodeled high frequency dynamics that arise due to the use of POD for model reduction [5].

This paper is organized as follows: Section II describes the two-dimensional parabolic

convection-diffusion equation and the associated discretized state-space model. In Section III,

the high-order model is reduced via the application of POD. Section IV describes the associated

H∞ controller design process and simulation results, and Section V draws conclusions.

6.3 FULL-ORDER PCD MODEL AND THE DISCRETIZED MODEL

In this paper, we consider the two-dimensional parabolic convection-diffusion (PCD) equation

as [68]

ωt = µ(ωxx +ωyy)− c1(x,y)ωx− c2(x,y)ωy +b(x,y)u(t), (6.1)

over the spatial domain x, y ∈ [0,1], where ω is the velocity field [38], u(t) is the source, which is

treated as the control input, and the convection coefficients are

c1(x,y) =−x∗ sin(2πx)sin(πy), (6.2a)

c2(x,y) =−y∗ sin(πx)sin(2πy), (6.2b)

b(x,y) = 5∗ sin(πx)sin(πy). (6.2c)

The expression for b(x,y) is valid for x ≥ 0.5, and otherwise, b(x,y) = 0. The boundary condi-

tions for (6.1) are given as
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ωx(t,0,y) = 0, (6.3a)

ω(t,x,0) = 0, (6.3b)

ω(t,x,1) = 0, (6.3c)

ω(t,1,y) = 0. (6.3d)

Finally, the initial condition is assumed to be

ω(0,x,y) = 0. (6.4)

6.3.1 DISCRETIZATION OF THE PCD MODEL

The partial differential equation (PDE) in (6.1)-(6.2) along with the boundary conditions (6.3) is

discretized using a forward time-center space (FTCS) discretization method, which gives

ω
k+1
i, j −ωk

i, j

∆t
= µ

[
ωk

i+1, j−2ωk
i, j +ωk

i−1, j

(∆x)2

+
ωk

i, j+1−2ωk
i, j +ωk

i, j−1

(∆y)2

]
− c1(xi,y j)

[
ωk

i+1, j−ωk
i−1, j

2∆x

]
− c2(xi,y j)

[
ωk

i, j+1−ωk
i, j−1

2∆y

]
+b(xi,y j)uk, (6.5)

where ∆x and ∆y represent the discretization step size in spatial directions, and ∆t is the time step;

i and j represent the two spatial indices in the x and y dimensions, respectively, and k represents

the time index. Following the discretization procedure, xi and y j, appearing in the convection coef-

ficients and input distribution function, now represent the unique spatial location that corresponds

to the current ith or jth step, respectively.
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A simulation result of (6.5) at steady-state is shown in Figure 6.1, where ∆x = ∆y = 1/30, and

∆t = 0.0025 sec. A nominal value of µ = 0.1 is chosen for the diffusion coefficient, and the control

input is chosen to be a unit step function. These conditions are chosen to examine the open-loop

response to a constant input signal. In Figure 6.1 we see the boundary conditions and convection

coefficients represented.

Figure 6.1: Simulation of PCD equation.

A=



0 0 0 0 ··· 0 0 ··· 0 0 0 0

λ̄y−α2,1 1−2λ̄x−2λ̄y λ̄y+α2,3 0 ··· 2λ̄x 0 ··· 0 0 0 0

0 λ̄y−α3,2 1−2λ̄x−2λ̄y λ̄y+α3,4 ··· 0 2λ̄x ··· 0 0 0 0

0 0
. . . . . . . . . 0 0

. . . 0 0 0 0

0 0 0 0 ··· 0 0 ··· 0 0 0 0

0 0 ··· 0 0 0 ··· 0 0 0 ··· 0

0 λ̄x+βn+2,2 ··· λ̄y+αn+2,m+1 1−2λ̄x−2λ̄y λ̄y−αn+2,m+3 ··· 0 λ̄x−βn+2,2m+2 0 ··· 0

0 0 λ̄x+βn+3,3 ··· λ̄y+αn+3,m+2 1−2λ̄x−2λ̄y λ̄y−αn+3,m+4 ··· 0 λ̄x−βn+3,2m+3 ··· 0

0 0 0
. . . 0

. . . . . . . . . 0 0
. . . 0

0 0 ··· 0 0 0 ··· 0 0 0 ··· 0

0n(n−1)+1,1 0 ··· 0 0 0 ··· 0 0 0 ··· 0n(n−1)+1,m2...
... ···

...
...

... ···
...

...
... ···

...
0n2 ,1 0 ··· 0 0 0 ··· 0 0 0 ··· 0n2 ,m2



.

(6.6)
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6.3.2 STATE-SPACE MODEL DERIVATION

Next, using the discretized model (6.5), we derive a discrete time state-space model of the form

z(k+1) = Az(k)+Bu(k)

y(k) =Cz(k). (6.7)

The state vector z(k) consists of the discretized PDE variable ω , with n being the total number of

steps in the x direction, and m the number of steps in the y direction; the state vector is

z(k) = [z1(k), . . . ,zn×m(k)]T . (6.8)

The state vector z(k) is arranged with respect to the spatial coordinates, and thus the structure of

the elements of the state vector is as follows

z(k) =[ω1,1(k), . . . ,ω1,m(k), . . . ,ωn,1(k), . . . ,ωn,m(k)]T . (6.9)

Additionally, the state vector z(k) is arranged with respect to the given boundary conditions in (6.3).

The elements [ωk
1,1, . . . ,ω

k
1,m] in (6.9) correspond to the Neumann boundary condition in (6.3a). The

elements [ωk
2,1, . . . ,ω

k
n−1,m] correspond to the Dirichlet boundary conditions given in (6.3b)-(6.3c)

for the inner elements. Finally, the elements [ωk
n,1, . . . ,ω

k
n,m] correspond to the Dirichlet boundary

condition given in (6.3d) for the outer elements. This same generalized structure, representing the

given boundary conditions in (6.3), can be seen in the system matrix A. First, we introduce µ = µ̄

+ ∆µ , where µ̄ is the nominal value of µ in order to write the A matrix, in which λ̄x =
µ̄∆t
(∆x)2 , λ̄y =

µ̄∆t
(∆y)2 , αi, j =

∆tc2(xi,y j)
2∆y , and βi, j =

∆tc1(xi,y j)
2∆x . Additional discussion on µ̄ is given in Section 4. The

corresponding state matrix is given in (6.6).

The input matrix B is prearranged by populating its elements using (6.2c) as
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B =



5sin(πx1)sin(πy1)
...

5sin(πx1)sin(πym)
...

5sin(πxn)sin(πy1)
...

5sin(πxn)sin(πym)


. (6.10)

The C matrix, representing the system measurements, is formed by assuming that the sensor is

located at the middle of the spatial variables range. To verify the state-space representation of the

PCD model, i.e., (6.7), we used the same simulation conditions as before, i.e., with ∆x = ∆y = 1/30

and ∆t = 0.0025 sec., and the corresponding outputs replicate.

For analysis such as the one described above, where a PDE is discretized into a system of

ordinary differential equations (ODEs), the higher the order of the model, the more accurate repre-

sentation of the original system the model becomes. Thus, it is desirable to determine a high-order

model to achieve model accuracy. However, lower-order models are advantageous as they are com-

putationally less intensive and more tractable for control design purposes. Hence, a trade-off must

be made between model complexity and computational cost. The objective then becomes to use

model order reduction techniques to achieve the balance between maintaining the accuracy of the

model and obtaining a model of a relatively low order for both time and cost savings.

6.4 PROPER ORTHOGONAL DECOMPOSITION

Proper orthogonal decomposition (POD) method delivers a basis for model decomposition to

extract dominant trends and features [39]. POD is a linear procedure and its properties often make

it the preferred tool to use in various applications as it is an efficient way to capture the dominant

components of even an infinite-dimensional process [42]. Often, this information is captured with

only a few modes [39]. POD can be applied to spatio-temporal models, e.g., (6.1), where the goal

is to identify a low-dimensional subspace on which to construct a model via projection of the given

state-space model in (6.7) [40]. Essentially, POD extracts a set of orthonormal basis functions [62].
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First, to approximate any function of interest over a domain of interest, we write the ensemble into

coefficients to be determined [41]. For our problem on hand, we start the POD procedure by writing

ω(t,x,y)≈ ω̂(t,x,y) =
M

∑
k=1

αk(t)ϕk(x,y), (6.11)

where ϕk’s define the set of orthonormal basis functions, and αk’s denote the time-dependent coef-

ficients. We employ the method of snapshots - originally suggested by Sirovich [50] - that is a

numerical procedure. It solves an eigenvalue problem [39] and only requires an ensemble of appro-

priately organized data points [62]. The data needed is captured as ωsnap ∈RN×K ,

ωsnap =


ω1

1 · · · ωK
1

... . . . ...

ω1
N · · · ωK

N

 , (6.12)

where N corresponds to the number of discretization steps and K corresponds to the number of

snapshots. In the finite-dimensional case, POD reduces to an SVD problem. To see this connection,

we first start with the data matrix and write it as an eigenvalue problem. For a complete discussion

of the mentioned problem, see [39]. The SVD is written for ωsnap as

ωsnap = ΦΣV T . (6.13)

Using SVD, one can recorrelate data sets to expose various relationships within the data [39].

Also, relationships within the data set are identified and ordered from the most variation to the

least [69]. This is done by making use of SVD as

ωsnap = ΦΣV T =

[
Φr Φs

]Σr 0 0

0 Σs 0


V T

r

V T
s

 . (6.14)

The columns of Φ from the SVD form the set of basis functions {ϕ1, · · · ,ϕN}. This type of

projection captures the most energy for reduced model [39]. In (6.13), Φ ∈ RN×N and V ∈ RK×K
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and the sizes of Φr, Σr, and Vr each correspond to the M dominant singular values chosen. These

basis functions, called POD modes, are used to obtain accurate low-order dynamic models via

Galerkin projection [62].

Next, we examine the singular values to produce a reduced-order model. A representation of

how much energy is captured by the reduced-order model is given by the differences in the sum

of the squared singular values (6.15). A high percentage of energy preserved is always desired,

meaning a larger M, which indicates that the model retains more of the information contained in

the original snapshots. The preserved energy percent (PEP) is defined as

PEP = 100× ∑
M
i=1 σ2

i

∑
N
i=1 σ2

i
. (6.15)

Furthermore, to proceed with the analysis, we choose an input signal to the system. To gain

insight into the system dynamics, we analyzed the Bode plot of (6.7) corresponding to the dis-

cretized model with ∆x = ∆y = 1/30, and ∆t = 0.0025 sec. This corresponds to a high-order model

with 961 states. The Bode plot is shown in Figure 6.2, which represents multiple plots corre-

sponding to µ ∈ [0.06,0.1] as the flow develops.
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Figure 6.2: Bode plot of the discretized model (6.7).

From the Bode plots depicted in Figure 6.2, it is observed that the system passes through low-

frequency inputs, and that it attenuates high-frequency inputs. Therefore, to appropriately excite

the system, we use a low-frequency sinusoidal input with multiple frequency components.

The system experiences greater excitation from a low-frequency multi-layered sinusoidal input

rather than a single frequency input so we excited the system with the sum of sinusoidal signals

with frequencies ranging from 0 to 50Hz with varying amplitudes. The frequency spectrum of the

input signal is shown in Figure 6.3.

We used this analysis to determine the amount of captured energy that would be present in the

reduced-order models. Figure 6.4 plots the preserved energy percent versus the number of singular

values retained (i.e., the order of the reduced-order model or the number of retained POD modes).

As observed in Figure 6.4, the first mode retains 78% of the energy, while using the first three
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Figure 6.3: Frequency content of the system input.

modes retains approximately 94% of the energy, and the first five modes retain over 98% of the

energy of the original high-order model.

To obtain the reduced-order state-space model, (6.7) is multiplied from both sides by the trun-

cated orthonormal matrix Φr ∈RN×M as

Φ
T
r z(k+1) = Φ

T
r Az(k)+Φ

T
r Bu(k). (6.16)

Recalling that z(k) is the state vector of the original high-order approximation, the reduced-order

state vector becomes

zr(k) = Φ
T
r z(k). (6.17)

Since each element of zr(k) is a linear combination of the elements of z(k), substituting (6.17) into

(6.7) yields
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zr(k+1) = Arzr(k)+Bru(k)

y(k) =Crzr(k), (6.18)

with

Ar = Φ
T
r AΦr Br = Φ

T
r B Cr =CΦr. (6.19)

We reduce the full-order model to 5th order, which retains 98% of the energy of the high-order

model. We note that in the low-order model, Ar, Br, and Cr can be calculated offline. Next, the

reduced-order model is simulated to steady-state with the same conditions (∆x = ∆y = 1/30, ∆t =

0.0025 sec, and µ = 0.1) used to generate Figure 6.1. Simulation results illustrate a close agreement

between the low and high-order models (see Figure 6.5).
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6.5 CONTROLLER DESIGN AND CLOSED-LOOP SIMULATION RESULTS

In this section, we discuss the control design procedure in the robust H∞ framework, for which we

first introduce the sources of uncertainties and describe how to quantify them.

6.5.1 REPRESENTING UNCERTAINTY

An investigation into the natural phenomenon described by the PCD equation revealed that the

diffusion term does change as flow develops. We assume the parameter µ to vary in the range µ ∈

[0.06,0.11], with the nominal value of µ̄ = 0.1. Indeed, many convection-diffusion equations have

time-varying parameters but are instead described with lumped-parameter models for mathematical

tractability [38, 70]. However, from a control design perspective, we realize that if we let µ =

µ̄ +∆µ , where µ̄ is the nominal value and ∆µ represents uncertainty from the steady-state, we

can still perform model reduction using µ̄ and later account for the uncertainty ∆µ . Additionally,

the convection coefficients will have a level of uncertainty as (6.1) is derived from incompressible

flow assumptions. In light of the competing trade-offs, we choose to derive a model using µ̄ , and

then use a robust controller design framework to account for the variations in the parameters.

All physical systems realistically have a degree of uncertainty due to unmodeled high-frequency

dynamics [5], and this is especially true for (6.18) as it is a low-order representation of (6.1).

Therefore, we choose to model this as a multiplicative input uncertainty [5].

6.5.2 ROBUST STABILITY

To guarantee the closed-loop system stability for µ ∈ [0.06,0.11] and in the presence of the model

uncertainty due to the low-order approximation, we first write the lumped parameter multiplicative

uncertainty as

Gp(s) = G(s)(1+Wp(s)∆p(s)), (6.20)

where Gp(s) represents the high-order model, G(s) represents the low-order model, ‖∆p‖∞≤ 1,

and Wp represents the lumped uncertainties [5]. We then simplify to the expression
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∣∣∣∣Gp( jω)−G( jω)

G( jω)

∣∣∣∣≤ |Wp( jω)|. (6.21)

Figure 6.5 shows the Bode plot of the high-order model Gp, and the low-order system G at µ̄ = 0.1.
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Figure 6.5: Bode plot of the low-order vs high-order model.

Next, we determine an uncertainty weight Wp that satisfies (6.21) for various µ’s varying in the

interval [0.06,0.11]. This yields the high-pass filter given in (6.22).

Wp(s) =
1.85s+0.1906

s+2.097
(6.22)

6.5.3 LOOP SHAPING FOR CONTROL DESIGN

Next, we use loop shaping techniques [5] to design a controller that guarantees tracking with zero

steady-state error and a low control effort. The corresponding block diagram shown in Figure 6.6

depicts how disturbances and noise signals affect the closed-loop system.

In standard loop shaping, three weights We, Wp and Wu, shown in Figure 6.6, need to be tuned

to penalize the corresponding signals at specific frequency ranges. The weight We, selected to be

a low pass filter, is tuned to eliminate the steady-state error, Wu to penalize large control inputs

to the PCD model, and Wp is a high pass filter used to achieve system robustness with respect to
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Figure 6.6: Configuration of the closed-loop control system.

uncertainties. We is given in (2.11). The weight Wu is chosen to be a high-pass filter to penalize large

controller outputs [4]. Wu(s) is given in (6.24). The design of the third weight Wp was discussed

earlier and is given in (6.22).

We(s) =
0.15

s+1e−5 (6.23)

Wu(s) =
s+0.8
s+1.1

(6.24)

6.5.4 SIMULATION RESULTS AND DISCUSSION

To design the controller, we used the MATLAB Robust Control toolbox. To this end, we first

converted the block diagram shown in Figure 6.6 into the corresponding linear fractional trans-

formation (LFT) form. Next, we used the command dhin f lmi to design an 8th order controller.

The sampling frequency of the simulation was 400Hz, and to simulate the effect of noise n, we

corrupted the output signal y with a band-limited white noise with the power NP = 0.02. The

closed-loop system shown in Figure 6.6 also accounts for process disturbance corrupting u(k).

Finally, the high-order PCD model was discretized by considering ∆x = ∆y = 1/30, and from the

corresponding measurement setup given in (6.7), the C matrix was obtained. We then used a unit
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step input, and the simulation result is shown in Figure 6.7 that demonstrates the desired tracking

over the range of variation of µ . The designed robust controller guarantees the closed-loop stability

for the high-order PCD model with µ ∈ [0.06,0.11].
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Figure 6.7: Closed-loop response to a reference step input for the robust controller.

From Figure 6.7, it is observed that the robust controller yields a stable closed-loop system. In

addition, the H∞ controller yields an H∞ norm of γ ≈ 1 for the closed-loop system. A comparison

between the nominal and robust controller for the PCD model at µ̄ = 0.1 is shown in Figure 6.8. It

shows improved performance by the nominal controller which is not surprising since it is designed

specifically for µ̄ = 0.1. The robust controller is in fact designed for a region, whereas the nominal

controller is only designed for a single operating condition [5], and this allows for a better nominal

closed-loop performance at the design point.

6.6 CONCLUDING REMARKS

In this paper, we employed the proper orthogonal decomposition (POD) method to approximate an

infinite-dimensional parabolic convection-diffusion equation with a low-order lumped-parameter
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Figure 6.8: Closed-loop response to a reference step input comparing the performance of robust vs
nominal controller.

model while preserving a significant portion of the energy of the high-order discretized model. We

then synthesized an H∞ robust controller designed based on the reduced-order model. This was

done by implementing loop shaping method to achieve zero steady-state tracking error and robust-

ness against model uncertainties. Simulation results verified that the low-order robust controller

could provide the desired tracking for the full-order PCD model with varying coefficients.
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CHAPTER 7

CONCLUDING REMARKS

In this dissertation the use of low-order model development and controller design for various auto-

motive and manufacturing applications was presented.

7.1 RAPID THERMAL PROCESSING

In chapters 2 and 3, a new approach was presented for low-order modeling and control of a single

wafer RTP system. Using first principles-based models, we developed an LPV model to directly

account for all the nonlinearities within the system. The model was then discretized into a high-

order affine LPV system; thereafter, the PCA method was utilized to reduce the number of the

LPV model’s scheduling variables, followed by the use of POD for model order reduction. From

the reduced-order system, we designed a gain-scheduled controller to satisfy an induced L2 gain

performance and tracked a temperature reference profile.

We see validation for the necessity of low-order model development. The reduced second order

model with three scheduling variables approximated the original nonlinear model well. It retained

95.6% of the scheduling variable information, and 98% of energy of the model order informa-

tion. This method of modeling nonlinear partial differential equations using the discrete linear

parameter-varying state-space allowed for the nonlinear dynamics to be captured. Furthermore,

writing into an affine LPV form allowed for powerful model-reduction techniques to be used to

obtain low-order controllers. This reduced model was successful in that it allows for feasible gain-

scheduled controller design of a model based on first principles and it showed significant improve-

ment over classical PID control. However, a gain-scheduled controller required that sensors pro-

vide real-time information to schedule the controller. This adds additional cost and implementation
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complexity that might not be available to exiting rapid thermal processing systems. An additional

drawback included the lack of closed-form loop shaping weight selection for controller synthesis,

which required iterative tuning.

In order to continue development of the control of rapid thermal processing, further research

directions can be in the areas of:

• Using the reduced-order LPV model in an adaptive model predictive controller (AMPC) as

an AMPC design inherently can impose controller output constraints.

• Modeling RTP systems with other geometries.

• Using kernel based data reduction techniques to achieve a lower number of scheduling vari-

ables with comparable accuracy.

7.2 COOPERATIVE ADAPTIVE CRUISE CONTROL

We presented a reformulation of the CACC problem. CACC technology relies on real-time accel-

eration data from a leading vehicle in which the difficulties and the inexact nature of wireless com-

munication data transfer present communication delay, and onboard computational burdens also

grant that certain parameters are only estimated within a range. To overcome this, we designed a

H∞ controller that is robust to all aforementioned uncertainties. The low-order robust controller

was then experimentally verified on a laboratory test bed.

As predicted by the reformulated block diagram, the experimental test bed showed the need for

robust control. Furthermore, the low-order controller developed from the high-order robust con-

troller also provided a reduced computational burden and footprint on the onboard microprocessor

of the test bed which allowed for a faster sampling time while enforcing robust stability and robust

performance. The success of this controller is seen in the negligible RMS value change between the

nominal and perturbed parameters of the plant when controlled by the robust controller compared

with the nominal controller. The strengths of this method include reformulation of the communi-

cation delay into the model in order to design a controller that is robust to its variation. The robust
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controller design permits a lack of knowledge of uncertain parameters given that they are within

a known range. Improvements to the controller design could stem from the knowledge of other

system dynamics as the inherent model assumes a linear relationship.

In order to continue development of connected vehicles, future research should include:

• Expanding the test bed for multi-car testing.

• Expanding the longitudinal test bed to incorporate lane changing and maneuvering aspects.

7.3 2-D PARABOLIC CONVECTION-DIFFUSION EQUATION

POD was employed to derive a lumped-parameter model for systems governed by the two-

dimensional PCD equation. We derived a low-order model that is suitable for control design

purposes; using the low-order model, an H∞ controller was then designed via loop shaping to

ensure closed-loop system stability and reference tracking.

Partial differential equations, i.e. the PCD equations, are of infinite order. Using discretization

and model order reduction techniques, we were able to capture a high portion of the energy of

the model using a 5th order state-space representation. With the system represented in the state-

space, an LMI was solved to synthesize a low-order robust H∞ controller to introduce reference

tracking into the PDE PCD equation. This technique provides a straightforward methodology to

capture the dynamics of a PDE with parameter variation into the state-space where standard LMI

solvers can be used for loop-shaping robust controller design. However, because of the discretiza-

tion approach, the model is inherently simplified, whereas other approaches such as [71] perform

controller synthesis without using discretization.

In order to continue development of the control of the PCD equation, future research directions

should include:

• Applying robust control techniques to partial differential equations of similar structure.

• Performing experimental tests.
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7.4 FINAL REMARKS

Through the tasks undertaken in this dissertation, we show that understanding the type of the

uncertainties and nonlinearities within the model directs the choice of low-order control design

approach. An LPV model was only justified in one of the three tasks as both scheduling variable

reduction and model order reduction are needed for gain-scheduled controller design. However, if

parameters are uncertain or time-varying, robust control theory provides adequate modeling given

that only model order needs to be reduced. This desire to develop low-order controllers gives focus

to the initial modeling assumptions and controller design methodology since low-order controllers

are desired for ease in real-time computational implementation.
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