
Carbon Flux across Scales in a Changing Climate

by

Chao Song

(Under the Direction of Ford Ballantyne IV)

Abstract

Ecological patterns are scale dependent. Understanding how and why ecological patterns

vary across scales is a central problem in ecology. Stream metabolism and soil respiration,

two important processes in the global carbon cycle, are particularly scale dependent. In this

dissertation, I employed a dynamic modeling approach to address multiple aspects related to

the issue of scale in stream metabolism and soil respiration. Specifically, in chapter 2, I used

a dynamic model of dissolved oxygen to quantify the temperature sensitivity of whole-stream

metabolism in streams from six biomes, ranging from the tropics to the Arctic. I found that

warming leads to convergence in stream metabolic balance, realized as reduced inter-site

variability of GPP/ER. The GPP/ER ratio in streams with higher temperature and higher

current GPP/ER is predicted to decrease in response to warming, whereas in streams with

lower temperature and lower current GPP/ER it is expected to increase, although by a

smaller magnitude. In chapter 3, I compared reach-scale metabolism quantified using open

channel method and habitat-scale metabolism quantified using chamber incubations. I found

that the reach-to-habitat ratio of GPP and ER, standardized to the same light and temper-

ature conditions, decreased with the variance of habitat-scale metabolism within a reach. By

combining theoretical analyses and numeric simulations, I showed that the heterogeneity of

habitat-scale metabolism within a reach, the negative correlations between light and GPP



per light, and temperature used for habitat-scale incubations, could explain this pattern of

mismatch between reach and habitat scale metabolism. In chapter 4, I demonstrated the

importance of recognizing soil respiration as an aggregated process. I showed that aggre-

gating over space influenced temperature sensitivity, but aggregation over time did no alter

temperature sensitivity. I also demonstrated that recognizing soil respiration as the sum of

contributions from distinct substrate pools could explain several often observed relation-

ships between temperature sensitivity and temperature, and influenced interpretations of

the mechanisms driving changes in temperature sensitivity of soil respiration. Collectively,

these studies demonstrated scale dependency of soil respiration and stream metabolism, and

highlighted the utility of dynamic modeling as a central approach to tackling the issue of

scale.
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Chapter 1

Introduction

Ecological patterns are scale dependent. Understanding how and why ecological patterns

differ across scales is often viewed as a central problem in ecology (Levin, 1992; Chave, 2013).

which necessitates the consideration of scale in ecological studies. However, ecological studies

may not always explicitly consider scale in the design and interpretation (Sandel & Smith,

2009). A lack of consideration of scale may lead to the incorrect application of ecological

findings, and hinders our understanding of ecological problems of interest (Schindler, 1998).

Although it is ideal to design studies directly on the scale of interest, this is sometimes

infeasible in practice. For example, while many ecological problems of interest emerge on

large scales, understanding these problems often requires manipulative experiments, which

can only be done on a much smaller scale. Two promising general directions emerge to

explicitly tackle the problem of scale. On the one hand, we may employ novel approaches

to investigate ecological problems on the scales at which they are intended to be applied to.

On the other hand, we may establish a link between findings from studies on different scales

and understand how to translate ecological processes across scales.

Variability plays a central role in both approaches addressing the issue of scale. First,

the natural variability in abiotic environments and biotic processes may serve as natural

manipulative experiments on a relatively large scale where manipulative experiments are

not feasible. Leveraging this variability allows us to make inference about ecological patterns

of interest on large scales. For example, eddy flux data and daily temperature swings can be

used to infer the temperature sensitivity of respiration at the whole ecosystem level (Mahecha

et al., 2010). Second, the existence of variability creates mismatches in quantities identified

1
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on different spatial scales. The mismatch is not only an issue of representativeness of small-

scale studies to problems on a large scale, but also can result from an inherent mismatch

created by the interaction between nonlinearity and heterogeneity (Chesson, 2012; Melbourne

& Chesson, 2006). We need to address both sources of mismatch to translate ecological

processes across scales.

Dynamic modeling is the key method when addressing the issue of scale (Denny &

Benedetti-Cecchi, 2012). To directly make inference on large scales, it is necessary to quan-

titively describe the dynamics of measurable quantities and subsequently make inference on

the quantities not directly measurable. For example, formulating the dynamics of carbon flux

is key to estimate temperature sensitivity of respiration at the ecosystem level with eddy flux

data (Mahecha et al., 2010). To establish the link between quantities identified on different

scales, it is crucial to mechanistically characterize the dynamics of interests for two reasons.

First, it allows us to correct differences in experimental conditions and artifacts between

scales to resolve the representativeness issue. For example, measuring soil carbon efflux from

respiration over a large spatial extent using eddy flux technique often requires a daily time

span (Mahecha et al., 2010). Measuring respiration over the same spatial extent using an

in situ chamber requires measurements at multiple locations within the spatial extent, each

taking less than an hour. As a result, the temperature conditions for the two measurements

could be vastly different. While the large-scale measurement experiences daily temperature

swings, each chamber measurement is made only under the temperature at the measurement

time. If we want to compare the two respiration measurements under the same temperature

condition, we need to standardize both measurements to the same temperature condition.

Such standardization requires a mechanistic description of how temperature influences respi-

ration. Second, the mechanistic description of dynamics enables us to explicitly incorporate

the interaction between nonlinearity and heterogeneity to link measurements made on small

scales to large scales. As Chesson (2012) pointed out in scale transition theory, incorpo-

rating the effects of spatial or temporal heterogeneity in linking measurements on different
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scales requires an explicit formulation of how the spatial or temporal heterogeneous variables

influence the response variables of interest.

In this dissertation, I used dynamic modeling approaches to address the issue of scale in

ecosystem carbon flux, using stream metabolism and soil respiration as examples. Carbon

flux in soil and stream ecosystems are both ecologically important in the global carbon

cycle. While it is well appreciated that soil flux is a major contributor to the climate-carbon

feedback (Schlesinger & Andrews, 2000; Cox et al., 2000), the role of stream metabolism has

also been increasingly recognized in recent years (Battin et al., 2008, 2009; Hotchkiss et al.,

2015). In addition, the issue of scale is an important factor to consider in both systems. The

dendritic structure of stream networks defines several spatial scales naturally: watershed,

reach (50 − 500 m) and microhabitat (0.1 m)(Lowe et al., 2006), that correspond to the

common spatial scale of experiments and management practice. High spatial heterogeneity

in soils means that measurements are unlikely to be directly transferrable across scales.

Due to the practical usefulness and the natural emergence of specific scales of interests, soil

respiration, and stream metabolism provide two ideal systems to explore the effects of scale.

This dissertation utilized data sets from the collaborative project “Scale, Consumer,

and Lotic Ecosystem Rates”. The data sets contain whole stream metabolism, chamber

metabolism, and synoptic sampling of multiple streams along discharge gradients in six

biomes. The data sets spanning multiple biomes provided a unique opportunity to examine

multiple aspects of scale in ecosystem carbon flux in diverse ecological settings and contribute

to a general understanding of the scale dependence of ecosystem carbon flux. Specifically, in

the first chapter, I used a dynamic model of dissolved oxygen to estimate the temperature

sensitivity of whole-stream metabolism, which is often difficult to obtain from manipula-

tive experiments. The mechanistic characterization allowed me to estimate stream-specific

temperature sensitivities of gross primary production and ecosystem respiration, predict the

impact of warming on stream metabolic balance, and quantify the changes in carbon budget

due to streams metabolism globally in a warming world. In the second chapter, I explicitly
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linked stream metabolism quantified on different spatial scales. I demonstrated how mis-

match in metabolism rate might arise as a result of the interaction between physiology and

the environmental heterogeneity by dynamically modeling the dissolved oxygen concentra-

tion and estimating metabolism rate on both scales. In the third chapter, I demonstrated the

importance of recognizing soil respiration as an aggregated process when estimating the tem-

perature sensitivity of soil respiration. Soil respiration is inherently an aggregated process:

respiration on a large spatial scale is the aggregation of smaller patches within the spatial

extent; respiration on a longer time scale is the aggregation of respiration over all shorter

time intervals; total respiration is the result of respiration from all substrate pools. I used

simulation experiments and analyses of existing data sets to demonstrate how temperature

sensitivity of soil respiration may depend on the spatial and temporal scale of consideration

and thus provide a practical guide on how measurements made on one temporal and spatial

scale can be translated to another scale. I also showed how viewing soil respiration as an

aggregated process may influence our interpretation of the mechanisms driving the observed

changes in soil carbon fluxes.
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Chapter 2

Warming Induces Asymmetric Convergence of Stream Metabolic Balance

Streams play a significant role in the transport, storage, and transformation of organic

carbon globally (Battin et al., 2009; Butman et al., 2016). Recent estimates suggest that

0.8–1.8 petagrams (Pg) of carbon evade from streams and rivers to the atmosphere annually

(Cole et al., 2007; Raymond et al., 2013). This is comparable in size to the net annual

terrestrial–atmosphere and net ocean–atmosphere carbon exchange (Ciais et al., 2013).

Stream metabolism, which is governed by gross primary production (GPP) and ecosystem

respiration (ER), contributes substantially to the overall carbon flux out of streams. A recent

study estimated that stream metabolism is responsible for up to 28% of the total carbon

flux from streams to the atmosphere (Hotchkiss et al., 2015), resulting in an estimated net

flux of 0.12 Pg C per year (Battin et al., 2008). As GPP and ER are both temperature

dependent processes, sustained climate warming has the potential to profoundly alter the

rates of carbon flux in and out of streams. Over the past century, mean water temperature

in US rivers and streams increased at a rate of 0.009–0.077 °C per year (Kaushal et al.,

2010), and stream temperatures are predicted to increase by 1–3 °C with the doubling of

atmospheric CO2 concentration (Mohseni et al., 1999). Consequently, understanding the

feedback between stream metabolism and global warming is crucial when considering global

or regional carbon cycles.

Although it is tempting to use well quantified temperature responses of photosynthesis

and respiration at the cellular level to predict ecosystem level responses to warming, complex

interactions among organisms and their abiotic environments can confound the temperature

7
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responses of cellular processes at higher levels of organization. Taken at face value, the differ-

ential temperature sensitivities of photosynthesis and respiration at the cellular level defined

by activation energy in the Arrhenius equations (≈ 30.9 and 62.7 KJ mol−1 for photosyn-

thesis and respiration respectively (Allen et al., 2005)) prescribes a relatively faster increase

in ER than GPP in response to warming. Consequently, we would predict that streams will

become more heterotrophic (i.e. lower GPP/ER) as climate continues to warm. However, the

implicit assumption of such a prediction, that the activation energies of photosynthesis and

respiration at the cellular level are appropriate for describing the temperature sensitivities

of GPP and ER in streams at the ecosystem level, may not hold.

Intrinsic variation in the temperature dependence of multiple processes that comprise

aggregated ecosystem rates can cause the temperature sensitivities of whole ecosystem pro-

cesses to deviate from the temperature dependence of cellular level responses. For example,

variation in algal community composition can influence the temperature sensitivity of

ecosystem level GPP because the activation energy of photosynthesis varies across phyla

of algae (Galmes et al., 2015; Chen & Laws, 2017). Similarly, the chemical structure of

organic compounds influences the activation energy of decomposition reactions, and thus,

variation in respiratory substrate composition can affect the temperature sensitivity of ER

(Follstad Shah et al., 2017). Alternatively, if ecosystem level GPP and ER are influenced by

other temperature dependent processes, inferred temperature sensitivities of GPP and ER

may reflect the influences of these processes and not necessarily the temperature sensitivities

of cellular photosynthesis and respiration. For example, warming may accelerate the flux of

nutrients and organic carbon from sediments to the water column (Duan & Kaushal, 2013)

and transport of nutrients across cell membranes (Raven & Geider, 1988), both of which

could result in amplified temperature sensitivities at the ecosystem level (Anderson-Teixeira

et al., 2008). Conversely, the temperature sensitivities of GPP or ER at the ecosystem level

can be muted by nutrient limitation (Sand-Jensen et al., 2007; López-Urrutia & Morán,

2007) or reflect the temperature sensitivity of a process that constrains GPP or ER, such
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as nitrogen supply (Welter et al., 2015). Finally, variation in the responses of different

taxa to temperature variation can confound aggregate temperature sensitivity. For example,

differential responses to warming across decomposer taxa have even been shown to cancel

each other out, resulting in no net change in ecosystem carbon flux in response to warming

(Boyero et al., 2011).

In addition to the inherent complexity in ecosystem level temperature sensitivities of GPP

and ER, the varied approaches employed to quantify them also have the potential to influence

the inferred ecosystem level temperature dependence of GPP and ER. Incubations of stream

substrata at different temperatures (Acuna et al., 2008; Jankowski et al., 2014) or mesocosm

warming experiments(Yvon-Durocher et al., 2010) do not include the entire focal ecosystem

and may not encompass the processes key to determining the temperature sensitivities of

GPP and ER at the ecosystem level. Comparisons among streams or within one stream

over seasons (Sinsabaugh, 1997; Yvon-Durocher et al., 2012; Huryn et al., 2014; Demars

et al., 2011b; Perkins et al., 2012; Welter et al., 2015) yield ecosystem level estimates of

temperature sensitivities, but temperature independent differences among streams or seasons

due to hydrology (Demars et al., 2011a), geomorphology (Jankowski et al., 2014), nutrient

availability (Cross et al., 2015; Williamson et al., 2016), and light availability (Huryn et al.,

2014) can easily confound the responses of GPP and ER to temperature. These confounding

factors render the estimated temperature dependence not purely a response to temperature,

but an integrated response to the suite of temperature dependent and independent differences

across streams or seasons

Given the complexity of ecosystem level temperature sensitivities and the challenges asso-

ciated with quantifying them, it is not surprising that various patterns have been reported.

Some studies have found consistent temperature sensitivities of ER at the ecosystem and

the cellular levels (Acuna et al., 2008; Yvon-Durocher et al., 2010; Demars et al., 2011b;

Perkins et al., 2012), but others have demonstrated considerable deviation of ecosystem

level activation energies of GPP (Demars et al., 2011b; Yvon-Durocher et al., 2010; Demars
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et al., 2016) and ER (Yvon-Durocher et al., 2012; Welter et al., 2015) from the values of

their cellular analogs. In studies that simultaneously examined the temperature dependence

of GPP and ER in streams, a shift toward heterotrophy with warming has been observed

in some instances (Yvon-Durocher et al., 2010; Demars et al., 2011b), but a recent syn-

thesis based on geothermal streams concluded that warming increased GPP and ER to the

same extent and resulted in no net change in metabolic balance (Demars et al., 2016). To

date, simultaneous quantification of the temperature dependence of GPP and ER have been

constrained in mesocosm incubations or in geothermal streams. There is still considerable

uncertainty about whether streams will become more heterotrophic (decreasing GPP/ER) or

more autotrophic (increasing GPP/ER) in response to continued warming. Simultaneously

quantifying the ecosystem level temperature sensitivities of GPP and ER in streams across

broad bio-climatic regions is key to resolve such uncertainty.

When quantifying the ecosystem level temperature sensitivity of whole stream metabolism,

every effort should be made to include the entire focal ecosystem and exclude the effects of

temperature independent confounding factors. Estimating temperature dependence based

on responses to short term temperature variation minimizes confounding effects, given that

most confounding processes operate on a much longer time scale (Mahecha et al., 2010). For

whole stream metabolism, utilizing the response of dissolved oxygen (DO) concentration to

diel temperature variation circumvents confounding factors to a large extent, and enables

the temperature dependence of whole stream GPP and ER to be inferred (Holtgrieve et al.,

2016; Schindler et al., 2017). By dynamically modeling GPP and ER, which drive diel DO

dynamics, as explicit functions of temperature, and fitting the modeled DO trajectories to

observed diel DO dynamics, the activation energies of GPP and ER can be estimated. This

approach yields ecosystem level estimates of temperature dependence because DO dynamics

integrate GPP and ER from all contributing components of the focal stream ecosystem.

More importantly, using diel temperature variation to estimate temperature dependence of

GPP and ER excludes temperature independent confounding factors that remain relatively



11

constant on the daily time scale. Combining this modeling approach with high resolution

time series of light, temperature, and DO in streams across six biomes from the tropics to

the arctic allows us to quantify the temperature dependence of stream metabolism across

latitude and refine predictions of the feedback between stream metabolic balance and global

warming.

Estimating activation energies of GPP and ER

We estimated the ecosystem level activation energies of GPP and ER in streams across

six biomes by modeling diel changes in DO concentration. The six distinct biomes that

span a wide range of latitude (13°S – 68 °N) include tropical forest (Luquillo Experimental

Forest, Puerto Rico (LUQ)), tropical savanna (Litchfield National Park, North Territory,

Australia (AUS)), tallgrass prairie (Konza Prairie, Kansas, USA (KNZ)), temperate rain-

forest (Andrews Experimental Forest, Oregon, USA (AND)), boreal forest (Caribou-Poker

Creeks Research Watershed, Alaska, USA (CPC)), and arctic tundra (Toolik Lake Field

Station, Alaska, USA (ARC)). In each biome, we measured DO concentration, photosyn-

thetically active radiation, and water temperature at a 5 or 10 minute interval for 1–2 weeks

in multiple stream reaches throughout a watershed. We modeled the response of DO concen-

tration to diel temperature variation to estimate ecosystem level activation energies of GPP

and ER. Specifically, we modeled the dynamics of DO concentration as:

d[O2]

dt
= GPP − ER +K([O2]sat − [O2]) (2.1)

Here, [O2]sat is the saturated DO concentration and can be calculated from temperature

and barometric pressure (American Public Health Association, 1995). GPP , ER, and K

are instantaneous rates of primary production, respiration, and reaeration respectively. We

modified previously published models of aquatic metabolism (Riley & Dodds, 2012; Jassby &

Platt, 1976; Parkhill & Gulliver, 1999; Gulliver & Stefan, 1984; Elmore & West, 1961; Bott,

2006) by using the Arrhenius equation to describe the temperature dependence of GPP and
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ER. Specifically, GPP, ER, and K were modeled as :

GPP = Pmaxtanh(
αI

Pmax
)e
−Eap

R
( 1
T
− 1
T0

)
(2.2)

ER = RT0e
−Ear

R
( 1
T
− 1
T0

)
(2.3)

K = K20 × 1.024T−20 (2.4)

Here, Pmax (mg O2 L−1 min−1) is the maximum primary production rate, α (mg O2 L−1

s m−2 µE−1 min−1) is the slope of the light response curve of primary production at low

light intensity, RT0 (mg O2 L−1 min−1) is the respiration rate at reference temperature T0

(Kelvin), which we set at the average daily water temperature across all days for each stream

reach, K20 (min−1) is the reaeration coefficient at 20 °C, I (µE m−2 s−1) is photosynthetically

active radiation, T (Kelvin) is water temperature, R (8.314 KJ mol−1 Kelvin−1) is the ideal

gas constant, Eap (KJ mol−1) and Ear (KJ mol−1) are the activation energies of GPP and

ER respectively. We employed a Bayesian approach to estimate the parameters (Pmax, α,

RT0 , K20, Eap, Ear) in the model (Song et al., 2016), and calculated daily GPP, ER, and

GPP/ER using the estimated parameters and associated light and temperature profiles.

The estimated ecosystem level activation energies exhibited significant variability both

within and across biomes (Fig. 2.1), and varied substantially from the activation energies of

photosynthesis and respiration at the cellular level. Specifically, activation energies ranged

from 0.5 to 839.2 KJ mol−1 for GPP and from 0.4 to 837.2 KJ mol−1 for ER. The median

activation energies of GPP and ER were 68.2 KJ mol−1 and 67.5 KJ mol−1 respectively,

which is consistent with a recent study quantifying the temperature sensitivity of GPP and

ER in streams along a geothermal gradient (Demars et al., 2016). However, this does not

necessarily imply that warming will increase GPP and ER to the same extent. Due to the

nonlinear nature of temperature dependence and substantial variability in the activation

energies of GPP and ER, simply using the central tendency of the estimated activation
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energies will not accurately describe the thermal response of stream metabolism within and

across biomes. The inherent variation in activation energies underscores the importance of

quantifying the thermal response of stream metabolism using activation energies of GPP and

ER for individual streams rather than using the mean or median activation energies across

all streams.

Activation energy of GPP/ER decreases with GPP/ER and temperature

The simultaneous quantification of the activation energies of GPP and ER allowed us to

evaluate thermal response of stream metabolic balance across biomes. A common measure

of metabolic balance in streams is the ratio of daily GPP to ER, which for our formulation

of the instantaneous rates of GPP and ER is

GPP

ER
=
Pmaxtanh( αI

Pmax
)

RT0

e
−Eap−Ear

R
( 1
T
− 1
T0

)
. (2.5)

The formulation of GPP/ER has the form of an Arrhenius equation, and thus, Eap − Ear

is the apparent activation energy of GPP/ER and determines how instantaneous metabolic

balance changes with temperature. A positive Eap−Ear means that GPP/ER will increase as

temperature increases and a negative Eap−Ear means GPP/ER will decrease as temperature

increases.

Despite the significant variation in both Eap and Ear (Fig. 2.1), we observed that Eap−Ear

decreases significantly with daily GPP/ER (Fig. 2.2(a); linear mixed effects model, F1,39.14 =

8.23, P = 0.0066) and daily mean water temperature (Fig. 2.2(b); linear mixed effects model,

F1,44.28 = 8.4, P = 0.0058). However, given that Eap and Ear were fitted parameters used to

calculate daily GPP and ER, a relationship between Eap−Ear and GPP/ER may be expected.

To ensure that the observed relationship between Eap−Ear and GPP/ER was not merely a

statistical artifact, we performed simulations to establish the expected relationship between

Eap − Ear and GPP/ER under the assumption that parameters in equations 2.1–2.4 were

chosen randomly and independently (see methods for details). Using sets of representative

daily light and temperature measurements (Fig. 2.5), we observed a positive relationship
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between Eap − Ear and GPP/ER from simulations (Fig. 2.6). Consequently, the negative

relationship between Eap − Ear and GPP/ER (Fig. 2.2(a)) is not a statistical artifact, and

rather an emergent property of stream ecosystems.

The negative correlation between Eap − Ear and GPP/ER suggests a negative feedback

between stream metabolic balance and its temperature dependence. Specifically, streams

with a higher daily GPP/ER tended to have a lower, negative Eap−Ear (Fig. 2.2(a)). Thus,

we predict that streams with higher daily GPP/ER will shift towards greater heterotrophy

when temperature increases. Conversely, streams with lower GPP/ER tended to have a

higher, positive daily Eap − Ear, and are predicted to shift towards more autotrophy when

temperature increases. If the observed pattern based on streams across the six biomes is

generally applicable to stream ecosystems, we expect a convergence in stream metabolic

balance, characterized by reduced inter-site variability of daily GPP/ER, in response to

warming.

The significant decrease in Eap − Ear with mean daily water temperature (Fig. 2.2(b))

also gives rise to a prediction for how GPP/ER will change in response to warming along

the inter-biome temperature gradient. Specifically, streams experiencing higher mean daily

temperature will shift toward greater heterotrophy (i.e. lower GPP/ER), and streams with

lower temperature will shift toward greater autotrophy (i.e. higher GPP/ER) in response

to temperature increases. Because temperature is correlated with latitude, the relationship

between Eap−Ear and mean daily temperature allows us to predict the influence of warming

on stream metabolic balance across latitude. Since streams are mostly heterotrophic (Battin

et al., 2008), we expect streams in the tropics to be a relatively stronger carbon source and

streams in the arctic to be a relatively weaker carbon source on average as temperature

increases. However, given that daily GPP/ER also predicted the temperature sensitivity of

stream metabolic balance (Fig. 2.2(a)), the exact latitudinal pattern of changes in stream

metabolic balance will also depend on the effect size of GPP/ER and temperature, as well

as the spatial distribution of daily GPP/ER at specific latitudes.
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Warming induces asymmetric convergence in stream metabolic balance

A first step to assess warming induced changes in stream metabolic balance across biomes

is to quantify how changes in stream metabolic balance, as described by GPP/ER, can be

predicted by covariates that predict Eap − Ear. Since activation energy is proportional to

the percentage change in reaction rate in an Arrhenius equation (Sierra, 2012), the fact

that daily GPP/ER and temperature predict Eap −Ear indicates that they also predict the

percentage change in GPP/ER (∆GPP/ER) as temperature increases. We performed a sim-

ulated warming experiment to calculate ∆GPP/ER, and established a relationship between

∆GPP/ER and predictors of Eap − Ear, namely daily GPP/ER and mean water temper-

ature. Specifically, we added 1 °C to each recorded water temperature, which represents a

1 °C increase in mean daily water temperature while keeping daily temperature variability

constant. The 1 °C increase in mean water temperature is a realistic estimate of stream

temperature in the next century based on the current rate of warming in streams (Webb,

1996; Kaushal et al., 2010). With light measurements, the elevated temperature trajectories,

and parameters in the DO model (equation 2.1–2.4) estimated from field data, we calculated

the daily GPP and ER under this warming scenario. The change in metabolic balance can

then be calculated as

∆GPP/ER =
GPP/ERwarming −GPP/ERcurrent

GPP/ERcurrent

(2.6)

where GPP/ERcurrent and GPP/ERwarming are daily GPP/ER currently and under 1 °C

warming scenario respectively. We analyzed the effects of daily GPP/ER and mean water

temperature on ∆GPP/ER in a linear mixed effects model. As expected, ∆GPP/ER had

a significant negative relationship with both daily GPP/ER (Fig 2.3(a), F1,39.29 = 12.50,

P = 0.0011) and temperature (Fig 2.3(b), F1,42.41 = 7.60, P = 0.0086). Quantitatively,

∆GPP/ER can be predicted based on the fixed effects in the linear mixed effect model as

∆GPP/ER = 0.46− 0.45×GPP/ER− 0.019× Temperature.
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To establish how warming is likely to affect the metabolic balance in streams globally,

we assembled a stream metabolism data set of daily GPP, ER, and mean water temper-

ature based on two previous synthesis studies (Demars et al., 2016; Hoellein et al., 2013),

and applied the linear model for ∆GPP/ER as a function of both GPP/ER and mean

water temperature to the compiled data set. We selected data within the range of daily

GPP/ER (0.016–0.978) and daily mean temperature (2.2–26.3 °C) found in our study for

analyses, resulting in a total of 236 metabolism estimates (see supplementary materials).

Using the predictive equation of ∆GPP/ER identified in the simulated warming experi-

ment (i.e. ∆GPP/ER = 0.46 − 0.45 × GPP/ER − 0.019 × Temperature), we quantified

the ∆GPP/ER for each stream in the compiled data set and subsequently calculated the

GPP/ER with the 1 °C increase in temperature. Two patterns of warming induced changes

in stream metabolic balance emerged. First, the GPP/ER of streams converged under a 1

°C temperature increase, shown as a decrease in the inter-site variability of GPP/ER (Fig.

2.4(a)). The standard deviation of GPP/ER decreased from 0.26 currently to 0.20 with a 1

°C increase in temperature. Second, with a 1 °C increase in temperature, GPP/ER generally

increased in streams with lower temperatures and decreased in streams with higher tem-

peratures (Fig 2.4(b)). However, the direction and magnitude of changes in GPP/ER along

the temperature gradient was modified by daily GPP/ER. The linear model for ∆GPP/ER

establishes an isocline (0.46−0.45×GPP/ER−0.019×Temperature = 0), along which daily

GPP/ER is insensitive to changes in temperature. Thus the isocline represents the GPP/ER

streams converge to in response to warming (Fig. 2.4(b)). The isocline separates the combi-

nations of current daily GPP/ER and mean water temperature that give rise to an increase

in GPP/ER from the combinations that give rise to a decrease in GPP/ER in response to

warming. Notably, the magnitude of decrease in GPP/ER in streams with high temperatures

and high daily GPP/ER was larger than the magnitude of increase in GPP/ER in streams

with low temperatures and low daily GPP/ER. Such asymmetry suggests that warming will
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influence the metabolic balance of streams with high temperature and daily GPP/ER more

substantially, and change them into stronger carbon source (lower GPP/ER).

In conclusion, the temperature sensitivities of GPP and ER in streams quantified using a

dynamic modeling approach is, to our knowledge, the first consistent ecosystem level quan-

tification of the temperature sensitivities of stream metabolism across biomes. Based on

the relationship between the temperature sensitivity of stream metabolic balance, daily

GPP/ER, and the mean daily water temperature, we predict an asymmetric convergence

in stream metabolic balance in response to warming, with a larger magnitude of decrease in

GPP/ER in warmer, more autotrophic streams than the increase in GPP/ER in colder, more

heterotrophic streams. Our findings suggest that the thermal response of stream metabolism

cannot be simply extrapolated from the cellular analogs. Integrating the ecosystem level

thermal response of stream metabolism is critical for an accurate projection of the feedback

between stream metabolism and climatic warming.

Methods

Study sites and data collection

We conducted the study in six watersheds representing distinct biomes, including tropical

forest (LUQ), tropical savanna (AUS), tallgrass prairie (KNZ), temperate rainforest (AND),

boreal forest (CPC), and arctic tundra (ARC). Within each watershed, we selected 6–12

streams across a range of stream sizes to capture the physical gradients within the watershed.

A detailed description of the study sites can be found in ref Rüegg et al. (2016). In each

stream, we recorded DO concentration, water temperature, and barometric pressure using a

YSI ProODO handheld optical DO meter (YSI Instruments, Yellow Springs, Ohio, USA), and

photosynthetically active radiation using an Odyssey Irradiance logger (DataFlowSystems,

Christchurch, New Zealand) at a single location in each stream. The DO meter was calibrated

with water saturated air immediately before deployment. The readings from the irradiance

logger were converted to photosynthetically active radiation by comparing to a calibrated
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sensor. We recorded these data at an interval of 5 minutes (ARC) or 10 minutes (all other

sites) for 1–14 days. We collected data during base flow periods (Feburary–March 2013 and

March 2014 for LUQ, July–August 2013 for AUS, May–June 2013 and April–June 2014 for

KNZ, July–August 2015 for AND, July–August 2013 and 2014 for CPC, July–August 2013

and 2014 for ARC). In total, we collected 709 daily DO trajectories from 69 stream reaches

across the six biomes.

Estimating activation energies of GPP and ER

We modeled the dynamics of DO concentration with equations 2.1–2.4. We employed a

Bayesian approach for parameter estimation (Song et al., 2016). Specifically, for a given

set of parameters, we used the Runge-Kuntta 4th order method implemented in R package

deSolve (Soetaert et al., 2010) with a step size of 2.5 minutes to numerically solve the

differential equations describing DO dynamics (equations 2.1–2.4) and obtained a trajec-

tory of modeled DO concentration. Numerically solving the differential equations with high

accuracy requires the interpolation of discrete measurements of light and temperature. To

this end, we used linear interpolation to approximate continuous trajectories of light and

temperature from discrete measurements. We assumed that the differences between mod-

eled and measured DO were independent and identically distributed normal random errors.

Based on this assumption of error distribution, we computed the likelihood for any given

set of parameters. We used uniform priors for all parameters in the model, setting the lower

bound of the uniform priors at 0 and upper bound at values significantly larger than found

in previous studies to ensure that the posterior inferences were not overly constrained by

the prior distributions. In particular, we set the upper bound of the uniform prior for Eap

and Ear at 1000 KJ mol−1, which is significantly higher than found in existing literature

(Acuna et al., 2008; Yvon-Durocher et al., 2010; Demars et al., 2011b; Perkins et al., 2012;

Yvon-Durocher et al., 2012; Jankowski et al., 2014; Welter et al., 2015). We used Markov

Chain Monte Carlo to sample the posterior distributions of the parameters. Specifically, we
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implemented the adaptive random walk Metropolis-Hasting algorithm (Haario et al., 2001)

with the function metrop in R package mcmc (Geyer & Johnson, 2014). We ran each Markov

chain for half a million iterations and used a burn-in period of 300000 iterations to ensure

stationarity. We performed visual inspection and Geweke diagnostic (Geweke, 1992) of the

trace plots with R package coda (Plummer et al., 2006) for proper mixing and convergence

of the Markov chains. All parameters in the model (i.e. Pmax, RT0 , α, Eap, Ear, K20) were

simultaneously estimated. We used posterior means of the parameters for further statistical

analyses.

We took two special considerations when estimating parameters. First, low diel variability

in temperature in some streams prevented us from estimating Eap and Ear with confidence.

Thus, we only used Eap and Ear estimates with 95% highest posterior density intervals

narrower than 500 KJ mol−1 for further statistical analyses. This is to ensure that the

estimated Eap and Ear are mainly determined by the data, not by the uniform priors. With

this selection criteria, we obtained 292 estimated Eap and Ear from 48 reaches based on

the 709 daily DO trajectories collected from 69 reaches. The choice of 500 KJ mol−1 as

the threshold is arbitrary. Such an arbitrary choice influences the number of estimated Eap

and Ear for further statistical analyses, but does not affect the findings of this study (Fig.

2.7). Second, when estimating parameters, we divided the data from the same stream into

individual days, and estimated a unique set of parameters for each stream on each day after

realizing the potential for significant day to day variation of the parameters for the same

stream.

To obtain the posterior distributions of daily GPP and ER, we numerically integrated the

instantaneous rates of GPP and ER over a day based on each iteration of parameters in the

Markov Chain. We performed the same diagnostics of Markov chains to ensure stationarity,

proper mixing, and convergence. We obtained the posterior distributions of GPP/ER by

taking the ratio of the trace of daily GPP and ER. We reported the means of posterior
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distributions as point estimates for daily GPP, ER, and GPP/ER. The estimated Eap, Ear,

daily GPP, ER, and basic site information are included in the supplementary materials.

Expected relationship between Eap − Ear and GPP/ER

A relationship between Eap − Ear and daily GPP/ER may arise because Eap and Ear were

used to calculate daily GPP and ER. To ensure that the observed relationship between Eap−

Ear and GPP/ER was not a statistical artifact, we performed simulations to establish the

expected relationship between Eap−Ear and daily GPP/ER when all parameters in equations

2.1–2.4 are independent. Specifically, we chose parameter values randomly and independently

from uniform distributions. Without loss of generality, the ranges of the uniform distributions

for all the parameters were 0.1–0.2 mg O2 L−1 min−1 for RT0 , 0.2–0.5 mg O2 L−1 min−1 for

Pmax, 0.000035–0.000045 mg O2 L
−1 s m−2 µE−1 min−1 for α, 0.03–0.06 min−1 for K20,

10–500 KJ mol−1 for Eap, and 10–500 KJ mol−1 for Ear. With each set of randomly and

independently chosen parameters, we simulated a daily trajectory of DO concentration at

a 10-minute interval using representative daily trajectories of light and temperature chosen

from our field data (Fig. 2.5). We added normally distributed random observation errors to

the simulated trajectory of DO. The standard deviation (σ) of the observation error was

set (log(σ) = 2) to be representative of the data. With each simulated DO concentration

trajectory, we estimated GPP, ER, Eap, and Ear following the same methods outlined above.

We repeated the simulation and estimation 1200 times. Given that all the parameters in the

DO model (equations 2.1–2.4) were independent in the simulation study, any relationship

between Eap − Ear and daily GPP/ER based on the simulated data is purely driven by the

fact that Eap and Ear were fitted parameters used to calculate daily GPP and ER. Comparing

the expected relationship based on the simulations to the observed relationship allowed us

to examine whether the findings based on the field data is an emergent ecosystem property

or a statistical artifact.
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Simulated warming experiment

With parameter estimates in the DO model (equations 2.1–2.4) for the 292 days of

metabolism, we performed a simulated warming experiment to assess the response of

stream metabolic balance to temperature increase. We added 1 °C to each individual mea-

surement of water temperature. This warming scenario represents a 1 °C increase in daily

mean temperature without changing the daily temperature variability. We calculated the

daily GPP and ER under this warming scenario following the same procedure outlined

above. We performed the same diagnostics of the trace plots of daily GPP and ER in the

simulated warming experiment and excluded the estimates without proper convergence or

mixing. In total, we successfully calculated 288 daily GPP and ER under the 1 °C warming

scenario. The daily GPP and ER under the current temperature and the 1 °C warming

scenario were used to calculate the proportional change in GPP/ER (∆GPP/ER) as in

equation 2.6.

Statistical analyses

We analyzed the pattern of Eap−Ear as a function of current daily GPP/ER and daily mean

temperature with a linear mixed effects model. Since we estimated a unique set of activation

energies for each stream on each day, estimates of multiple days from the same stream could

be correlated. Therefore, we included random effects of each stream nested in biome in the

model to account for the repeated measurements. We treated the same streams measured in

different years as different streams when specifying the random effects. Specifically, we started

with a full model and performed backwards model selection to build the most parsimonious

model. The fixed effects of the full model included daily GPP/ER, daily mean water temper-

ature, and their interaction. The random effects of the full model included a random intercept

and random slopes of both daily GPP/ER and mean water temperature for stream nested

in biome. We first fit the full model using maximum likelihood and selected the adequate

structure of random effects based on AIC. We found that eliminating the biome random
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slopes and intercepts lead to a slight decrease in AIC (∆AIC = −0.86), but eliminating

the random intercept (∆AIC = 54.4), random slope of daily GPP/ER (∆AIC = 22.7), or

random slope of daily mean water temperature (∆AIC = 10.8) for each stream all resulted in

substantial increases in AIC. Therefore, we specified the random effects with a random inter-

cept and random slopes of GPP/ER and mean water temperature for each stream. We then

refit the model with restricted maximum likelihood and used F-tests with Kenward-Roger

approximation of degrees of freedom (Kenward & Roger, 1997) to select the fixed effects.

We found no significant interaction between daily GPP/ER and mean water temperature

(F1,25.71 = 0.24, P = 0.63). Thus, the most parsimonious model included daily GPP/ER

and mean water temperature as fixed effects, and a random intercept and slopes of both

daily GPP/ER and mean water temperature for each stream. We tested whether the fixed

effects slopes of daily GPP/ER and mean water temperature were zero using F-test with

Kenward-Roger approximation of degree of freedom to evaluate whether daily GPP/ER or

mean water temperature had a significant effect on Eap − Ear.

Given that the percentage change in reaction rate is proportional to the activation

energy in Arrhenius equation (Sierra, 2012), and that Eap − Ear is the activation energy

of GPP/ER (equation 2.5), it follows that predictors of Eap −Ear should also be predictors

of ∆GPP/ER. Therefore, we analyzed the effects of daily GPP/ER and mean water temper-

ature on ∆GPP/ER using the same modeling structure as the most parsimonious model for

Eap−Ear without performing the model selection. We fit all the linear mixed effects models

using function lmer in R package lme4 (Bates et al., 2015). F-test with Kenward-Roger

approximation of degrees of freedom was implemented using R package pbkrtest (Halekoh

& Højsgaard, 2014). All statistical analyses were performed in R 3.4.1 (R Core Team, 2017).
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Figure 2.1: Intrinsic ecosystem level activation energies of GPP (Eap) and ER (Ear) in

streams. Each point represents estimated Eap and Ear in a particular stream reach on one

day. Histograms on the axes show the frequency distributions of Eap and Ear. Dashed lines

are the medians of the frequency distributions.
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Figure 2.2: The empirical relationship between temperature sensitivity of GPP/ER, Eap−

Ear, and (a) current GPP/ER and (b) mean daily temperature. Dashed lines are predictions

based on fixed effects in the linear mixed effects model (Eap − Ear = 236.92 − 221.20 ×

GPP/ER−11.86×Temperature). In each panel, the prediction line is evaluated at the mean

of the other covariate.
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Figure 2.3: Proportional change in GPP/ER (∆GPP/ER) with a 1 °C increase in tem-

perature as a function of (a) current daily GPP/ER and (b) mean daily water tempera-

ture. Dashed lines are predictions based on fixed effects in the linear mixed effects model

(∆GPP/ER = 0.46− 0.45×GPP/ER− 0.019×Temperature). In each panel, the prediction

line is evaluated at the mean of the other covariate.
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Figure 2.4: (a) Frequency distribution of GPP/ER currently and with a 1 °C increase in

temperature. (b) Changes in GPP/ER with a 1 °C increase in temperature. Arrows indicate

direction and magnitude of changes in GPP/ER from current temperature (gray dots) to 1

°C temperature increase (red dots). Dashed line is the isocline defined by the fixed effects

from the linear mixed effects model (0.46 − 0.45 × GPP/ER − 0.019 × Temperature = 0),

where GPP/ER is insensitive to temperature changes.
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Figure 2.5: Trajectories of temperature and light used in the simulation study to establish

the expected relationship between daily GPP/ER and Eap − Ear as a result of statistical

artifact.
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Figure 2.6: Expected relationship between GPP/ER and Eap−Ear identified from simulated

data. Since all parameters were drawn independently and randomly, the relationship is purely

driven by the fact that Eap and Ear are fitted parameters used to calculated daily GPP and

ER.
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Figure 2.7: The empirical relationship between Eap−Ear, and (a, c) current GPP/ER and

(b, d) mean daily temperature based on different thresholds of choosing estimable activation

energies. Panel (a) and (b) use Eap and Ear estimates with 95% highest posterior density

interval narrower than 400 KJ mol−1; panel (c) and (d) use estimates with 95% highest

posterior density interval narrower than 200 KJ mol−1. Dashed lines are predictions based

on fixed effects in the linear mixed effects model. In each panel, the prediction line is evaluated

at the mean of the other covariate.



Chapter 3

Interaction Between Physiology and Environmental Heterogeneity

Determines Discrepancies in Stream Metabolism across Spatial Scales

Introduction

Ecological processes operate on a variety of scales in ecosystems. The perceived ecological

patterns are often strongly influenced by the scale of observation (Turner et al., 1989; Wiens,

1989). In addition, many ecological problems require investigations on multiple scales (O’Neill

et al., 1986; Levin, 1992; Hewitt et al., 2007). Therefore, the problem of scale is often acknowl-

edged as a central problem in ecology (Levin, 1992; Schneider, 2001; Chave, 2013). Stream

ecologists have long recognized the effects of spatial scales. Many general conceptual advances

in stream ecology emphasized the explicit consideration of scales in understanding stream

ecosystems (Vannote et al., 1980; Poff, 1997; Habersack, 2000; Thorp et al., 2006). In fact,

the issue of scale is inherently embedded in stream ecosystems due to the dendritic structure

of stream networks that naturally define distinct spatial scales. Stream habitats, character-

ized by distinct geomorphological and hydrological features, make up reaches, which connect

together to form stream networks. These naturally defined spatial scales often coincide with

characteristic scales on which ecological processes should be investigated. For example, while

the transformation and transport of carbon in streams are best characterized on the reach or

network scale (Battin et al., 2008, 2009), investigation of the biological mechanism driving

carbon flux in streams are best done on the habitat scale (Battin et al., 2016). Given the

multiple inherent scales nested in stream ecosystems, researchers have called for a multi-scale

approach to understanding stream ecosystems and suggested that this could be a promising

strategy for comprehending such complex systems (Cooper et al., 1998; Lowe et al., 2006).

37
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A multi-scale approach is particularly important to study stream metabolism. Different

applications of stream metabolism often require different spatial scales. In particular, reach

and habitat scales are commonly used spatial scales to study stream metabolism. Reach,

due to its relatively uniform hydrological characteristics, is usually considered as the basic

unit for estimating network, regional, or global scale carbon flux (e.g. Battin et al. (2008);

Raymond et al. (2013)). On the other hand, habitat scale manipulative experiments are often

employed to investigate the mechanisms controlling metabolism. Stream metabolism has

been extensively investigated on both reach and habitat scales. For example, the development

of open channel method (Odum, 1956; Marzolf et al., 1994; Young & Huryn, 1998) and

related modeling approach (Holtgrieve et al., 2010; Riley & Dodds, 2012; Grace et al., 2015)

have greatly facilitated studies of stream metabolism on the reach scale. At the same time,

stream ecologists have a long history of measuring metabolism on the habitat scale using

chamber incubations (Bott et al., 1978; Dodds & Brock, 1998; Benstead et al., 2009), leaf

packs (Woodward et al., 2012) or sediment cores (Grimm & Fisher, 1984; Jones et al., 1995).

These extensive investigations of stream metabolism on different spatial scales offer a great

potential to combine the mechanistic understanding of the processes and the estimates on

the desired spatial scale to comprehensively understand stream metabolism. However, a

crucial missing component in realizing such potential is to understand how measurements

made on different spatial scales relates to each other (Englund & Cooper, 2003). To date,

empirical evidence comparing stream metabolism across spatial scales remains rare. Given

the increasingly recognized importance of stream metabolism in global and regional carbon

cycle (Battin et al., 2008; Hotchkiss et al., 2015), investigating the scale dependence of stream

metabolism is imperative.

Ecological processes and patterns rarely translate across scales directly (Wiens, 1989;

Duffy, 2009). Differences between metabolism measurements made on different scales

could arise for multiple reasons. For example, abiotic conditions, such as light, temperature,

nutrient concentration, and flow velocity, could differ among measurements made on different
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spatial scales (Bott et al., 1997). The spatial scale of measurements poses size constraints of

sampling, causing over- or under-representation of particular types of substrata. Although

the issue of representativeness across scales could be minimized by careful design of experi-

mental equipment and control of experimental conditions, differences in metabolism across

spatial scales can be inherent. Differences may persist even if the sampling on one scale is

completely representative of another scale.

When biotic and abiotic conditions vary in space, large–scale dynamics differ from predic-

tions of small–scale dynamics due to interactions between spatial heterogeneity and nonlin-

earity in small–scale dynamics. This phenomenon has been formalized in the scale transition

theory (Chesson et al., 2005; Chesson, 2012; Melbourne & Chesson, 2005; Baldocchi et al.,

2005; Melbourne & Chesson, 2006; Benedetti-Cecchi et al., 2012). Mathematically, if function

f(xi) describes metabolism rate as a function of abiotic and biotic conditions (xi) on a small

scale, f(xi) is the metabolism rate on a larger scale because of the law of mass conservation.

This is generally different from metabolism predicted based the average small scale biotic

and abiotic conditions (i.e. f(x1, x2, ...) 6= f(x1, x2...)) unless function f(xi) is linear. The

differences across scales can be approximated with a second order Taylor expansion as

f(x1, x2...) = f(x1, x2, ...) +
1

2

∑
f ′′xi,xj(xi, xj)cov(xi, xj). (3.1)

The differences across scales shown as 1
2

∑
f ′′xi,xj(xi, xj)cov(xi, xj), comes from the non-

linear ecological dynamics, represented in f ′′xi,xj(xi, xj), and the existence of spatial variance

of biotic and abiotic conditions, represented as cov(xi, xj). The differences are the result of

the fallacy of averaging and is an example of Jensen’s inequality (Rastetter et al., 1992). The

existence of difference across scales only requires nonlinear dynamics (f(xi)) and the spa-

tial variation of biotic and abiotic conditions. The differences across scale can exist without

any experimental artifacts or sampling constraints, and therefore can be considered as an

inherent effect of scale and heterogeneity. The inherent differences across scales caused by the

interaction between nonlinear dynamics and spatial heterogeneity are especially important

for understanding stream metabolism across spatial scales. It is well known that metabolism
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depends on abiotic conditions in a nonlinear fashion. For example, the temperature depen-

dence of gross primary production (GPP) and ecosystem respiration (ER) and the light

dependence of GPP (Jassby & Platt, 1976) in aquatic ecosystems are all nonlinear. In addi-

tion, streams are extremely heterogeneous in biotic and abiotic conditions (Palmer & Poff,

1997; Palmer et al., 1997). The ubiquity of nonlinear dynamics and spatial heterogeneity

suggest that stream metabolism is particularly scale dependent.

At the core of differences across scales is variability (Wiens, 2002). In an entirely homoge-

neous ecosystem, sampling bias or any inherent differences caused by nonlinear dynamics and

heterogeneity would not exist. Therefore, proper incorporation and analysis of variability are

crucial to understanding the effects of scale. One promising approach to investigate the scale

dependence of stream metabolism is mechanistic modeling. On the one hand, mechanistic

models for stream metabolism characterize the environmental dependence of metabolism,

and thus allow for the standardization of metabolism measured on different spatial scales

to the same environmental conditions. This partially resolves the issue of sampling repre-

sentativeness. On the other hand, a mechanistic description of metabolism is required to

analyze the direction and magnitude of differences caused by the interaction between het-

erogeneity and nonlinearity (equation 3.1). Combining the mechanistic modeling approach

with metabolism measurements on multiple scales could be key in the multi-scale approach to

stream ecology and help elucidate the processes responsible for the differences in metabolism

across spatial scales.

Despite the widely recognized importance of scale in stream ecology and the extensive

research in stream metabolism on multiple spatial scales, empirical measurements to directly

test the effects of scale on metabolism are rare. A quantitative assessment of the inherent

differences in metabolism rate across scales could help elucidate the mechanism responsible

for the mismatch across scales and allow us to understand when and how metabolism mea-

surements can translate across spatial scales. In this study, we estimated stream metabolism

on the reach and habitat scales in six biomes to examine the scale dependence of stream
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metabolism. We aimed to understand 1) whether metabolism, standardized to the same light

and temperature conditions, differ across scales, and 2) whether the degree of differences

changes with spatial heterogeneity in a consistent fashion as predicted by the interactions

between spatial heterogeneity and nonlinearity. Specifically, we first analyze how differences

in metabolism between reach and local habitat scale may change with the heterogeneity

of habitat-scale metabolism based on scale transition theory. We then tested the expected

pattern derived from the theoretical analyses against empirical data.

Methods and Materials

Study sites

We conducted this study in six biomes across two years. The six distinct biomes included

tropical forest (Luquillo Experimental Forest, Puerto Rico (LUQ)), tropic savanna (Litchfield

National Park, North Territory, Australia (AUS)), tallgrass prairie (Konza Prairie Long-

term Ecological Research Station, Kansas, USA (KNZ)), temperate rainforest (Andrews

Experimental Forest, Oregon, USA (AND)), boreal forest (Caribou-Poker Creeks Research

Watershed, Alaska, USA (CPC)), and arctic tundra (Toolik Lake Field Station, Alaska,

USA (ARC)). A detailed description of the study sites can be found in Rüegg et al. (2016).

Within each biome, we chose three stream reaches for data collection each year, with some

streams being sampled twice over the two years. The streams we chose in each biome were

representative of the discharge gradients of the watershed. We collected data during base

flow periods. Specifically, the sampling time for each biome was February–March 2013 and

March 2014 for LUQ, July–August 2013 for AUS, May–June 2013 and April–June 2014 for

KNZ, July–August 2015 for AND, July–August 2013 and 2014 for CPC, and July–August

2013 and 2014 for ARC.
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Reach scale metabolism data collection

For reach scale metabolism, we recorded dissolved oxygen (DO) concentration, water tem-

perature and barometric pressure using a YSI ProODO handheld optical DO meter (YSI

Instruments, Yellow Springs, Ohio, USA) and photosynthetically active radiation (PAR)

using an Odyssey Irradiance logger (DataFlowSystems, Christchurch, New Zealand) at a

single location in the streams. The DO meters were calibrated to 100% saturation using

water saturated air. The records from the irradiance logger were converted to PAR by com-

parison to a calibrated PAR sensor. Prior to deployment in each biome, all DO probes and

irradiance loggers were run simultaneously at the same location to ensure consistency across

probes. We recorded DO concentration, water temperature, and PAR at an interval of 5

minutes (ARC) or 10 minutes (all other sites) for two weeks.

Expressing the metabolism estimates as areal rates requires measurements of stream

depth. We calculated the average depth of each stream reach based on discharge, velocity

and width of the stream (depth = discharge/(width× velocity)). Specifically, we measured

discharge and flow velocity of the streams by dilution gauging of short-term NaCl release

(Kilpatrick & Cobb, 1985) once during the period when DO data were collected. We measured

the wetted width of the streams at 10–20 transects along the streams. For streams reaches

where discharge measurements were not made, we directly measured the depth of the reach in

10–20 transects, with 5 measurements of depth evenly spread along the width of the stream

for each transect. Given that we collected reach scale metabolism data during the base flow

periods without significant changes in flow conditions, the one–time measurement of depth

was representative.

We measured the canopy cover above stream reaches in each cardinal directions using a

spherical densiometer in the middle of the stream, where we collected metabolism data in

CPC, KNZ, AUS, and LUQ. The average canopy cover of the four directions represented the

canopy cover at each location within the focal stream reach. We performed the canopy cover

measurements at 10–20 locations evenly distributed along each stream reach.
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Habitat scale metabolism data collection

We incubated benthic substrata in recirculation chambers to measure metabolism on the

habitat scale. We first filled plastic containers (10.0 cm×10.0 cm×6.6cm plastic containers

with a mesh size of 1cm) with substrata representative of the streams. We distributed a

set of five containers at each of the 8 to 10 locations in the reach. The containers were

buried in the sediments with the top of the container flush with the stream bed for 30

days. After the 30-day incubation, we removed three containers at each location within a

stream reach, and transported them to a sealed acrylic chamber. The chamber was equipped

with an internal propeller driven circulation system (Rüegg et al., 2015). Each chamber

was filled with a known volume of stream water (about 10L) and sealed. We attached a

YSI ProODO handheld optical DO meter (YSI Instruments, Yellow Springs, Ohio, USA)

to a pre-made port on the chamber lid. The chamber was filled full and completely sealed

to eliminate any air–water exchange of DO. PAR above each chamber was measured with

an Odyssey Irradiance logger (DataFlowSystems, Christchurch, New Zealand). We recorded

DO concentration, water temperature in the chamber, and PAR at a one minute or higher

frequency for at least 30 minutes. During the first half of the incubation, we covered the

chamber with a light impenetrable fabric. During the second half of the incubation, the

chamber was exposed to ambient light. We maintained a constant circulation rate within

the chamber by controlling the voltage supply to the propeller. All chamber metabolism

measurements were performed during the period of reach scale metabolism data collection.

Metabolism modeling

We modeled the dynamics of DO concentration to estimate stream metabolism. In general,

changes in DO concentration can be described as

d[O2]

dt
= P (I, T )−R(T ) +K(T )([O2]sat − [O2]) (3.2)
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Here, [O2] is DO concentration (mg L−1). [O2]sat is the DO concentration at saturation, which

can be calculated based on barometric pressure and temperature. P(I,T), R(T) and K(T) are

GPP, ER, and reaeration coefficient, respectively. We modified the model formulae in Riley

& Dodds (2012) to specify equation 3.2. Specifically, we calculated the [O2]sat as (American

Public Health Association, 1995)

[O2]sat = e
−139.3441+ 157570

T+273.15
− 66423080

(T+273.15)2
+ 12438000000

(T+273.15)3
− 862194900000

(T+273.15)4 × Pa× 0.998

101.3
(3.3)

where T is temperature (°C) and Pa is barometric pressure (kPa). The reaeration coefficient

K is temperature corrected (Elmore & West, 1961; Bott, 2006) as

K(T ) = K20 × 1.024(T−20) (3.4)

where K20 (min−1) is the reaeration coefficient at 20°C. We modeled respiration rate as a

temperature dependent process (Parkhill & Gulliver, 1999; Gulliver & Stefan, 1984) but use

an Arrhenius equation to describe the temperature dependence

R(T ) = RT0 × e
−−Ear

R
( 1
T
− 1
T0

)
(3.5)

where RT0 (mg L−1 min−1) is the respiration rate at reference temperature T0, and Ear

(KJ mol−1) is the activation energy of respiration. T0 was set at the average daily tempera-

ture for reach scale metabolism and average water temperature during incubation for habitat

scale metabolism to facilitate computational efficiency (Pinheiro et al., 2015). We modeled

GPP as a light saturating function (Jassby & Platt, 1976) with temperature dependence

described by an Arrhenius equation.

P (I, T ) = Pmax tanh(
αI

Pmax
)× e−

−Eap
R

( 1
T
− 1
T0

)
(3.6)

Here, I is PAR (µE m−2 s−1), α (mg L−1 min−1 µE−1 m2 s) is the slope of the photosynthesis-

irradiance curve at low light intensity at reference temperature T0, and Pmax is the photo-

synthesis rate at light saturation at reference temperature T0. T0 was specified the same way

as in equation 3.5.
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We employed a Bayesian approach to estimate parameters in equation 3.2–3.6 following

Song et al. (2016). Specifically, for a given set of parameters, we used Runge-Kutta 4th order

method with a step size of half of the DO probe logging interval to solve the differential

equation describing DO dynamics (equation 3.2–3.6) and obtained a trajectory of modeled

DO concentration. The Runge–Kutta 4th order method was implemented using function rk4

in R package deSolve (Soetaert et al., 2010). We used linear interpolation to approximate

a continuous trajectory of light and temperature from discrete measurements. We assumed

that the differences between modeled and measured DO were independent and identically

distributed normal random errors. Based on such a distributional assumption of error, we

computed the likelihood for any given set of parameters. We used uniform distributions

as priors for all parameters in the model. We set the lower bound of the uniform priors

at 0 and upper bound at values significantly larger than found in the literature for all

parameters (10 mg L−1 min−1 for RT0 , 10 mg L−1 µE−1 m2 s for α, 20 mg L−1 min−1 for Pmax,

10 min−1 for K20, 1000 KJ mol−1 for both Eap and Ear). We used Markov Chain Monte Carlo

to sample the posterior distribution of the parameters. Specifically, we implemented the

adaptive random walk Metropolis–Hasting algorithm (Haario et al., 2001) with the function

metrop in R package mcmc (Geyer & Johnson, 2014). We ran each Markov chain for half

a million iterations and used a burn-in period of 300000 iterations to ensure stationarity.

We performed the visual inspection and Geweke diagnostic (Geweke, 1992) of the trace plot

with R package coda (Plummer et al., 2006) to ensure proper mixing and convergence of the

Markov Chains. We calculated the 95% highest posterior density intervals for all parameters

and only used estimates with the width of the interval less than half of the range of the prior

distribution for further analyses to ensure that the estimated parameters in the DO model

(equations 3.2–3.6) are mainly determined by data, not by the uniform prior distributions.

We applied the same model as prescribed by equation 3.2–3.6 to reach scale and

habitat scale metabolism data. For reach scale metabolism, we simultaneously quan-

tified reaeration, GPP and ER. Because the habitat level metabolism was measured
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in sealed chambers without any air–water exchange of DO, we set K(T) in equation

3.2 to 0 for habitat scale metabolism. The parameter estimates for each scale was

obtained following the same computational methods as outlined above. Parameter esti-

mates for both reach and habitat scale metabolism (RT0 , α, and Pmax) were converted

from volumetric rates to areal units. For reach scale parameters, they were converted as

areal rate = volumetric rate/depth. For habitat scale parameters, they were converted as

areal rate = volumetric rate× chamber volume/surface area, where surface area was 30 cm2

for all chamber incubations.

Comparisons of metabolism across spatial scales

GPP and ER on the reach and habitat scale were not directly comparable because light and

temperature were different between whole stream metabolism measurements and chamber

incubations. Metabolism estimates on both scales should be standardized to the same light

and temperature conditions for comparison. One way to correct the differences in tempera-

ture and light conditions is to compare parameters in equations 3.2–3.6 (RT0 , α, and Pmax)

quantified on the reach and habitat scales. However, the chamber incubations for habitat

scale metabolism measurements were not performed during full light. As a result, saturating

photosynthetic rates Pmax was usually not estimable on the habitat scale for most cham-

bers. Thus, we were only able to compare RT0 and α between reach and habitat scales. In

addition, RT0 and α were estimated at a particular reference temperature for each reach

or chamber incubation. The reference temperature (T0) was set at the mean temperature

during the entire measurement period for reach scale metabolism and mean temperature

during the chamber incubation for habitat scale metabolism to facilitate computational effi-

ciency (Pinheiro et al., 2015). To account for the difference in the reference temperature when

comparing parameters across scales, we standardized reach level parameter estimates to the

habitat scale reference temperature based on the estimated reach level activation energies.

Specifically, to correct a reach level estimates made at temperature T0 to the habitat scale
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reference temperature T1, we first sampled from the Markov Chains of reach scale parame-

ters and used the following equations to obtain the posterior distribution of rates at T1. We

examined the width of the 95% highest posterior density intervals for RT1 and αT1 , and only

used those estimates with the interval width less than half of the prior for further analyses.

The mean of the posterior distribution of the research scale rates at T1 is then compared to

the corresponding rates on the habitat scale.

RT1 = RT0 × e
−Ear

R
( 1
T1
− 1
T0

)
(3.7)

αT1 = αT0 × e
−Eap

R
( 1
T1
− 1
T0

)
(3.8)

With such correction, the comparison between reach and habitat scale parameter esti-

mates were made at the same temperature. For each stream reach, we measured reach scale

metabolism over several days and habitat scale metabolism at multiple locations within the

stream reach. Thus, we used the average over time to represent the reach scale metabolism

and the average over space to represent the habitat scale metabolism. We calculated reach–

to–habitat ratio of metabolism rates standardized to the same temperature to quantify the

differences across scales.

Theoretical analysis of differences in metabolism across scales

The basic principle of analyzing the relationship between habitat and reach scale metabolism

is the law of mass conservation. If measurements of metabolism are perfectly accurate on

the habitat and reach scale, the sum of GPP and ER from all habitats within a focal reach

should be equal to the GPP and ER in the reach. Therefore, the per area rate of GPP and

ER on the reach scale should be equal to the average rate on the habitat scale. For GPP,

GPPreach = GPPhabitat(Pmax,i, αi, Ii, T ). (3.9)

Here, Pmax,i, αi, Ii and T are quantities for habitat i. We assume water temperature within

a reach does not vary among habitats.
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The habitat scale metabolism measurements were not made under full sunlight conditions,

preventing us from estimating habitat scale Pmax from most chamber incubations. Thus, we

focused on comparing α between reach and habitat scales. Given that α describes how GPP

changes with light at low light conditions, the estimation of α depends primarily on how

GPP responds to light when light intensity is low (Jassby & Platt, 1976). Therefore, for

comparison of α across scales, we can simplify the light response of GPP for theoretical

analyses. At low light conditions, the saturating function we used to describe light response

of GPP is approximately linear

Pmaxtanh(
αI

Pmax
) ≈ αI. (3.10)

With this approximation, we can simplify the relationship between reach and habitat scale

GPP as

GPPreach = αiIi × e−
Eap,i
R

( 1
T
− 1
T0

)
= αT,iIi. (3.11)

The light intensity of individual habitat within a reach is not homogeneous. At any given

average reach scale light I, let ai denote the light distribution within the reach such that

ai = 1 and Ii = aiI is the light intensity for habitat i. The reach scale GPP is

GPPreach = αiaiI = αiaiI. (3.12)

A second order Taylor expansion of the equation 3.12 led to:

GPPreach ≈ (αi ai +
1

2
cov(αi, ai))I = (αi +

1

2
ρα,a
√

var(αi)var(ai))I, (3.13)

where ρα,a is the correlation coefficient between αi and ai

We derived the relationship between reach and habitat scale ER based on the same

principle and analytical approach. Specifically, the reach and habitat scale ER can be linked

based on the law of mass conservation as:

ERreach = ERhabitat(RT0,i, T, Ear,i) = RT0,ie
(−

Ear,i
R

( 1
T
− 1
T0

))
, (3.14)
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where RT0,i and Ear,i are parameters for habitat i. After applying the second order Taylor

expansion,

ERreach ≈ (1 +
var(Ear,i)

R2
(

1

T
− 1

T0
)2 − cov(Ear,i, RT0,i)

RT0,iR
(

1

T
− 1

T0
))RT0,ie

−
Ear,i
R

( 1
T
− 1
T0

)
. (3.15)

The theoretical analyses above assume that the ER and GPP on the habitat scale sum

to the reach scale rates if measured accurately. The theoretically analyses demonstrate that

when using average habitat scale biotic properties (i.e. αi, RT0,i) and reach scale average

abiotic conditions (i.e. T and I) to describe reach scale metabolism, the light and temperature

dependence of GPP and ER on the reach scale, as approximated in equations 3.13 and 3.15,

does not follow the same functional form describing the light and temperature dependence of

GPP and ER on the habitat scale (equations 3.5 and 3.6). Consequently, if we apply the same

function of light and temperature dependence of GPP and ER to reach and habitat scale,

the estimated α and RT0 will differ across scales. Such difference exists even if measurements

on each scale are accurate and representative.

Specifically, equation 3.13 suggests that differences in α between reach and habitat scales

should depend on the variance of habitat scale α and light within a reach, and the direction

of the difference across scale as a function of habitat scale heterogeneity should depend on

the correlation between habitat scale α and light. The theoretical analyses motivated us to

examine how the differences in α between reach and habitat scales change with the variance

of habitat scale α and light. Since we did not directly quantify the spatial heterogeneity of

light within a stream reach, we used the variance of canopy cover as an indicator of the

light variability within a reach. Similarly, equation 3.15 shows that the variance of habitat

scale Ear, the covariance between habitat scale Ear and RT0 , and the temperature used for

comparing RT0 across scale are the key elements determining the direction and magnitude

of differences in RT0 across scales. Given that we only directly quantified habitat scale RT0 ,

the theoretical analyses led us to examine how differences in RT0 between reach and habitat

scales change with the variance of habitat scale RT0 .
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Expected differences in metabolism across scales based on simulations

The theoretical analyses identified variability of habitat scale RT0 and α as potential key

elements for differences in α and RT0 across scales, but a quantitative description of these

relationships is difficult to see directly from the theoretical analyses. Therefore, we performed

two sets of numerical simulations to establish the expected relationship between differences in

metabolism across scales and habitat scale variance. The overarching goal of the simulation is

to examine whether metabolism still differs across scales when GPP or ER from the habitat

sum to the rate at the reach scale.

We used the reach-to-habitat ratio of α and RT0 to quantify the differences in metabolism

across scales. As guided by the theoretical analyses, for comparison of α across scales, we

simulated how reach-to-habitat ratio of α changes with the variance of habitat scale α in

three scenarios: positive, negative, or no correlation between habitat scale α and light (i.e.

ai in equation 3.12). For comparison of RT0 across scales, we performed simulations with

positive, negative, and no correlation between habitat scale RT0 and Ear. For each scenario

of correlation, we chose three temperatures (i.e. T0) to which reach and habitat scale ER

were standardized for comparison, lower bound, upper bound and the mean of reach scale

daily temperature. We performed the first set of simulations using a hypothetical range of

light and temperature that encompass the typical range of light and temperature observed

in the streams we studied. We also carried out a second set of simulation using the actual

measurements of light and temperature. The details of the simulations can be found in the

appendix.

Statistical analyses of field data

As motivated by the theoretical analyses, we analyzed how reach–to–habitat ratio of α

changes with the variance of canopy cover and habitat scale α separately, and how reach-

to-habitat ratio of RT0 changes with the variance of habitat scale RT0 in linear mixed effects
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models. We log–transformed both dependent and independent variables for analyses to con-

form to the assumptions of linearity and homoscedasticity of variance. Specifically, we used

habitat scale variance of α and RT0 or variance of canopy cover as continuous predictors for

reach–to–habitat ratios of α and RT0 respectively. The most complex random effects struc-

ture included a random intercept and a random slope for each biome. We first fit the model

with maximum likelihood and performed backward model selection using AIC scores to select

an adequate structure of the random effects (Bolker et al., 2009). With a properly specified

random effects structure, we tested the effects of habitat scale variance on reach–to–habitat

ratio of α or RT0 using F tests. All statistical analyses were performed in R 3.4.1 (R Core

Team, 2017)

Results

Biome specific direction of differences in metabolism across scales

Metabolism quantified on different scales did not match in general. When directly comparing

GPP and ER between reach and habitat scale without accounting for the light and tempera-

ture differences, habitat-scale GPP and ER were generally higher (Fig. 3.1). When reach and

habitat scale metabolism was standardized to the same light and temperature conditions,

GPP and ER differed across scales as well (Fig. 3.2). We observed no consistent over- or

under- estimation of metabolism rates across scales. However, although the magnitude of

differences in metabolism across scales within each biome varied substantially, the direction

of differences between reach and habitat scale ER (i.e. RT0 ) and GPP (i.e. α) were gener-

ally consistent within a biome (Fig. 3.2). Notably, In LUQ, the reach scale RT0 and α were

generally larger than the habitat scale estimates. In contrast, the reach scale RT0 and α were

generally smaller than the habitat scale estimates in KNZ (Fig. 3.2). In ARC, we observed

larger reach scale α but smaller reach scale RT0 compared to the habitat scale estimates (Fig.

3.2).
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Reach–to–habitat ratio of metabolism decreased with within–reach hetero-

geneity

The reach to habitat ratio of RT0 and α decreased significantly with the habitat scale variance

of RT0 (Fig. 3.3a, F1,30 = 20.40, P = 9.09 × 10−5) and α (Fig. 3.3b, F1,31 = 17.46, P =

0.00022) within the reach respectively. In addition, the reach–to–habitat ratio of α decreased

significantly with the variance of canopy cover within a reach (Fig. 3.3c, F1,17 = 4.49, P =

0.049). We did not find evidence for variation in how the reach-to-habitat ratio of metabolism

changes with the variance of habitat scale metabolism within a reach or variance of canopy

cover as the models without random slope or intercept had the smallest AIC scores (Table

3.1).

Correlation between habitat scale metabolism and abiotic conditions

We quantified the correlations between habitat scale RT0 and Ear. As outlined in the

metabolism modeling section, T0 was set at the mean temperature during chamber incuba-

tions for computational efficiency, and thus differed from reach to reach. Therefore, we first

standardized RT0 to the same temperature (20 °C, the mean temperature of all chamber

incubations) according to equation 3.7 following the same procedure of standardizing reach

scale RT0 to chamber incubation temperatures. Due to the limited range of temperature

during chamber incubations, we were only able to estimate habitat scale Ear and standardize

RT0 to 20 °C for 13 chamber incubations from 3 reaches in KNZ. We observed a negative

correlation between habitat scale R20 and Ear (Pearson correlation coefficient, −0.48, n = 13,

Fig. 3.4b).

We also quantified the correlation between habitat scale α and light. Ideally, the correla-

tion between habitat scale α and light should be quantified using α and light measured on a

specific habitat, and α should be standardized to the same temperature. However, we only

measured light intensity at one location of the stream reach and did not directly measure the

light intensity in each habitat we sampled for incubation. Moreover, due to the limited range
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of temperature in chamber incubations and more parameters governing the GPP function

(equation 3.6), the habitat scale Eap was not estimable for almost all chambers. Thus, we

used the average habitat scale α within a reach without temperature correction and the

mean daily light intensity measured from the single location to approximate the correlation.

Given the large range of habitat scale α, we log–transformed habitat scale α for calculation

of correlation coefficient.We found a negative correlation between habitat scale α and light

(Pearson correlation coefficient, −0.42, n = 41, Fig 3.4a).

Expected pattern of reach–to–habitat ratio of metabolism along gradients

of habitat scale variance

The direction of correlation between habitat scale α and light determined how reach-to-

habitat ratio of α changed with the variance of habitat scale α. If habitat scale α and light

were uncorrelated, the reach and habitat scale α matched. The reach-to-habitat ratio of α

did not change with the variance of habitat scale α (Fig. 3.5e). When habitat scale α and

light were positively correlated, the reach-to-habitat ratio of α increased with the variance of

habitat scale α (Fig. 3.5f). In contrast, a negative correlation between the reach-to-habitat

ratio of α and the variance of habitat scale α arose if habitat scale α and light were negatively

correlated (Fig. 3.5d).

The temperature T0 used to compare reach and habitat scale RT0 dictated the relationship

between the reach-to-habitat ratio of RT0 and the variance of habitat scale RT0 . If T0 was

at the lower or upper bound of the daily temperature range, the reach-to-habitat ratio of

RT0 decreased with the variance of habitat scale RT0 (Fig 3.5a, c). When T0 was at the

mean daily temperature, the reach-to-habitat ratio of RT0 had a positive relationship with

the variance of habitat scale RT0 (Fig. 3.5b). The direction of correlation between RT0 and

Ear did not influence the direction of the how difference in metabolism across scales changes

with habitat scale heterogeneity for RT0 (Fig. 3.9).
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We used negative correlations between habitat scale α and light, and between RT0 and

Ear as identified in the field data (Fig. 3.4) when simulating the difference in RT0 across

scales based on field light and temperature conditions and the empirical mean and variance

of α and RT0 . We found that the reach-to-habitat ratio of α and RT0 both decreased with

the habitat scale variance under realistic field conditions (Fig. 3.6).

Discussions

Biome specific directions of differences in metabolism across scales

When not accounting for differences in temperature and light between reach and habitat

scale measurements, GPP and ER quantified on the habitat scale were generally higher than

estimates on the reach scale (Fig. 3.1), primarily due to the high temperature of chamber

incubation (Fig. 3.8). When standardized to the same light and temperature conditions,

GPP and ER quantified on reach and habitat scales did not match in general (Fig 3.2). Dif-

ferences between metabolism measurements made on different scales could arise for multiple

reasons. Samples used to measure metabolism on a small scale may not be representative. For

example, metabolism quantified with chamber incubations cannot fully include the contribu-

tions from the hyporheic zone, which could be a substantial part of total stream metabolism

(Grimm & Fisher, 1984; Naegeli & Uehlinger, 1997; Fellows et al., 2001). Metabolism often

differs in substrata of different types (Hoellein et al., 2009; Tromboni et al., 2017) or sizes

(Cardinale et al., 2002), which indicates that over– or under–representing substrata of a par-

ticular type or size in the sample could influence metabolism measurements. The differences

in metabolism across spatial scales could also result from inaccurate estimates of metabolism

on different scales associated with inherent shortcomings of the methods used to quantify

metabolism. Small scale measurements, such as chamber incubation or benthic cores, are

prone to experimental artifacts such as altering the flow velocity, turbulence, nutrient con-

centration, dissolved oxygen concentration, and various other ambient conditions that could

influence metabolic activities (Carpenter, 1996). On the other hand, although reach scale
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metabolism model includes key processes driving DO dynamics, it may not include all pro-

cesses affecting DO dynamics, such as groundwater input (McCutchan et al., 2002; Hall &

Tank, 2005), spatial heterogeneity of metabolism (Reichert et al., 2009), influence of riparian

vegetation (Dodds et al., 2017), and different sources of respiratory substrates (Schindler

et al., 2017), all of which could cause significant differences in estimated GPP and ER in

certain streams. Although we have standardized GPP and ER to the same light and temper-

ature conditions to compare across scales, the existence of differences after standardization

suggests that the differences and constraints associated with the methodology used on dif-

ferent spatial scales are still important.

The differences in metabolism rates between reach and habitat scales were biome specific

(Fig. 3.2). The direction of differences in metabolism across scales was generally consistent

within each biome. The biome specific direction of differences in metabolism across scales

suggests that the particular biotic and abiotic conditions of the streams in a biome may be

critical in determining the differences in metabolism measured on different scales. Although

we did not directly test specific mechanisms responsible for the differences in metabolism

across scales in each biome, previous studies on the drivers of metabolism could offer plausible

explanations. For example, Chestnut & McDowell (2000) found a substantial contribution of

carbon and nitrogen from riparian and hyporheic subsurface flow in LUQ streams. Therefore,

chamber incubation of stream substrata may cause underestimation of metabolism because

chamber incubation eliminates such supply of carbon and nitrogen, offering a plausible mech-

anism consistent with the observed high reach to habitat ratio of GPP and ER in LUQ. In

ARC, bryophytes are responsible for the majority of photosynthesis and nutrient uptake in

streams (Arscott et al., 1998; Stream Bryophyte Group, 1999). Since the benthic substrata

sampled for chamber incubations often under-represent bryophytes, we expect lower photo-

synthetic rates and higher nutrients availability in chamber incubations. As a result, chamber

incubations likely underestimate GPP but over-estimate ER, consistent with the observa-

tion in ARC. Conversely, the measured depth to anoxia in KNZ (Wilson & Dodds, 2009) is
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shallower than the depth of substrata baskets we used to quantify habitat scale metabolism.

Thus, taking the substrata basket out of the stream for chamber incubation may create a

more aerobic condition, increase nitrification, and decrease denitrification. As a result, the

higher oxygen concentration and nitrogen availability in chamber incubation may lead to an

overestimation of GPP and ER on the habitat scale. Overall, the biome-specific direction of

differences in metabolism across scales despite consistent methodology across biomes indi-

cates the importance of considering the particular conditions of the focal ecosystem when

relating metabolism across scales.

Interactions between physiology and heterogeneity lead to differences in

metabolism across scales

The reach–to–habitat ratio of α and RT0 both decreased significantly with the variance

of habitat scale α and RT0 (Fig. 3.3). Such a trend of difference across scales cannot be

explained by methodological differences used for measurements on different spatial scales,

but can be partially explained by the interactions between nonlinear dynamics and spatial

heterogeneity. The theoretical analyses showed that the functional form of the light and

temperature dependence of GPP and ER describing habitat scale metabolism does not apply

directly to the reach scale (equations 3.13, 3.15). As a result, if we fit the same function form

of light and temperature dependence of GPP and ER to reach and habitat scale data, the

estimated RT0 and α will differ across scales.

Specifically, if GPP responds to light linearly at low light conditions on the habitat scale

(i.e. GPPhabitat ≈ αiIi), the slope of the reach scale GPP–light relationship is not equal to

the average on the habitat scale αi (Fig. 3.7b). The reach scale α can be approximated as

αi + 1
2
ρα,a
√

var(αi)var(ai) (Equation 3.13). Thus, If the correlation between habitat scale α

and light is negative (i.e. ρα,a < 0), we expect a decreasing reach-to-habitat ratio of α with

the variance of habitat scale α and variance of habitat scale light. This was confirmed in our
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simulation under both hypothetical (Fig. 3.5d) and field light conditions (Fig. 3.6b). Mean-

while, based on the field data, we observed a negative correlation between habitat scale α and

light (Fig 3.4a). Thus, the decreasing reach-to-habitat ratio of α with the variance of habitat

scale α (Fig. 3.3b) was consistent with the theoretical prediction (Fig 3.5d, equation 3.13).

Additionally, although we did not directly quantify the variance of habitat scale light within

a reach, the variance of canopy cover determine the heterogeneity of light to a large extent

(Stovall et al., 2009; Warren et al., 2013, 2016). Therefore, the negative relationship between

reach-to-habitat ratio of α and variance of canopy (Fig. 3.3c) cover was also consistent with

the theoretical prediction.

Similarly, the form of the temperature dependence of ER on the habitat scale does not

directly apply to the reach scale (equation 3.15). If we describe the temperature dependence

of ER on the habitat scale with an Arrhenius equation, the temperature dependence of ER

on the reach scale, calculated by aggregating the habitat scale ER, does not follow the form

of an Arrhenius equation (equation 3.15). As a result, fitting an Arrhenius equation to the

reach scale data, as we did in modeling reach scale metabolism, will not recover the average

habitat scale RT0 (Fig. 3.7a).

To illustrate how differences in respiration standardized to the same temperature across

scales occur schematically, we plotted the logarithm of ER against the inverse of temperature,

known as the Arrhenius plot. If the temperature dependence of ER is described by Arrhenius

equation, we expect a linear relationship between the logarithm of ER and the inverse of

temperature. However, in the presence of spatial heterogeneity of Ear within a stream reach,

the relationship between the logarithm of ER and inverse of temperature on the reach scale

is convex (Fig. 3.7a). The curvature increases with the variance of habitat scale Ear. If a

higher variance of Ear corresponds to a higher variance of RT0 , a reasonable assumption

supported by a close association between RT0 and Ear observed in this study and studies

in terrestrial ecosystems (Fierer et al., 2005; Craine et al., 2010; Lehmeier et al., 2013), the

curvature also increases with the variance of habitat scale RT0 . Consequently, if T0 is near



58

the lower or upper bound of the daily temperature range, the fitted reach scale RT0 will

under–estimate the average habitat scale RT0 , and the reach-to-habitat ratio of RT0 will

decrease with the variance of habitat scale RT0 (Fig. 3.7a). Conversely, if T0 is near the mean

daily temperature, the fitted reach scale RT0 will over–estimate the average habitat scale

RT0 , and the reach-to-habitat ratio of RT0 will increase with the variance of habitat scale

RT0 (Fig. 3.7a). Such expectation based on the analysis of the Arrhenius plot is confirmed in

the simulation (Fig. 3.5a–c). Given that the chamber incubation temperature is often near

the upper end of the daily temperature range (Fig. 3.8), we expect a negative relationship

between the reach-to-habitat ratio of RT0 and the variance of habitat scale RT0 . This is

consistent with the field data (Fig. 3.3a) and simulation under realistic field conditions (Fig.

3.6a). The consistency among field data (Fig. 3.3a), simulation (Fig 3.5c) and theoretical

analyses (Fig 3.7a) indicates that the spatial heterogeneity in habitat scale ER is a plausible

explanation for the decreasing reach-to-habitat ratio of RT0 with the variance of habitat scale

RT0 .

The theoretical analyses above show two essential elements that gave rise to the observed

relationship between differences in metabolism across scale and habitat scale variance in

metabolism. The first key element is the existence of spatial variance of habitat scale GPP

and ER within a reach. It is well recognized that spatial variances of biotic properties are

ubiquitous in stream ecosystems (Palmer & Poff, 1997; Palmer et al., 1997). For example,

spatial variance of GPP and ER could arise from heterogeneity of abiotic environments, such

as flow velocity (Sobczak & Burton, 1996), nutrients concentrations (Dent & Grimm, 1999),

light availability caused by canopy cover (Keeton et al., 2007; Stovall et al., 2009; Warren

et al., 2013) or variation in substrata topography (Murdock & Dodds, 2007). Spatial variance

in GPP and ER can also be reinforced by self–organization of benthic communities along

heterogeneous abiotic environments (Dong et al., 2017; Warren et al., 2017). The second key

component for the decreasing reach-to-habitat ratio of α with habitat scale variance of α

is the negative correlation between habitat scale α and light. We consider this correlation
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a general phenomenon as it has well established physiological basis. Studies on the algal

photosynthesis–irradiance curve have shown that algae adapt to the low light environment

by increasing chlorophyll concentration per cell, resulting in a negative correlation between α

and light (Falkowski & Owens, 1980; Richardson et al., 1983; Neale & Melis, 1986). For stream

algae assemblages, shading experiments (Hill et al., 1995; Rier et al., 2006) or comparisons

among streams with different light availability (Guasch & Subater, 1995; Roberts et al.,

2004) showed a negative relationship between α and light availability. α has even been shown

to increase along the depth of the biofilms due to decreasing light intensity by self–shading

(Dodds et al., 1999). The ubiquity of spatial variance and the generality of physiology suggest

that the decreasing reach–to–habitat ratio of GPP and ER with habitat scale variance of

metabolism observed in this study is a general property of stream ecosystems.

Our findings showed that habitat scale heterogeneity in GPP and ER affect the differences

between reach and habitat scale metabolism (Fig. 3.3). We also observed that the habitat

scale heterogeneity in GPP and ER differ from biome to biome. For example, habitat scale

heterogeneity in GPP and ER is generally lower in LUQ but higher in CPC. The differences

in the heterogeneity in different biomes may stem from the differences in abiotic environ-

ment and the biotic communities of the streams. For example, metabolism in streams with

permafrost soils, such as streams in CPC, are strongly driven by dissolved organic carbon

and nutrient input (Petrone et al., 2007). As a result, the heterogeneity of hyporheic flow

from permafrost soils (Balcarczyk et al., 2009) could lead to high spatial heterogeneity in

local habitat scale respiration. On the other hand, ER in LUQ streams is primary driven

by allochthonous input from adjacent riparian forest (Wantzen et al., 2008). The relative

low habitat scale heterogeneity in ER may be the result of the relative similar allochthonous

input from the adjacent riparian forest. Together, this suggests that the magnitude of het-

erogeneity induced difference in metabolism across scales are likely dependent on biome.

In conclusion, we illustrated a predictable pattern of differences across scales along gra-

dients of spatial heterogeneity in stream metabolism. In essence, our findings highlight that
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mechanistic response functions, such as the GPP–light function and the ER–temperature

function, do not directly translate across scales. The interaction among nonlinear dynamics,

physiology, and spatial heterogeneity generates differences in metabolism across scales.

Given their generality, we argue that such interaction is a universal source of differences for

stream metabolism across scales, and thus should be considered when scaling up small–scale

metabolism measurements. Our approach combining scale transition theory (Chesson, 2012;

Melbourne & Chesson, 2005, 2006), mechanistic modeling (Denny & Benedetti-Cecchi,

2012), and numerical simulations explicitly quantified the contribution of such interaction to

the differences in metabolism across scales, and provide a means to analytically incorporate

the effects of such interaction when scaling tractable, small–scale observations to predictions

of large–scale patterns.
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Appendix

Simulating differences in metabolism across scales

We used numerical simulation to establish how differences in metabolism across scales change

with habitat scale metabolism. We used the reach-to-habitat ratio of α and RT0 to quantify

the differences across scales. As guided by the theoretical analyses, for comparison of α across

scales, we simulated how reach-to-habitat ratio of α changes with the variance of habitat scale

α in three scenarios: positive, negative, or no correlation between habitat scale α and light

(i.e. ai in equation 3.12).Specifically, we assumed a stream reach comprised of 50 habitats.

For each round of simulation, we randomly chose αi and ai in equation 3.12 for all habitats

from gamma distributions. The mean and standard deviation of the gamma distribution

for ai was 1 and 0.2. The gamma distribution for αi had a mean of 0.02 (mg min−1 µE−1 s)

and standard deviation chosen from a uniform distribution ranging from 0.005 to 0.05. The

randomly chosen standard deviation allowed us to obtain a gradient of the variability of

habitat scale α in different rounds of simulations. The mean and variance of αi represented

the realistic range of habitat scale α observed in the field data. When simulating under the

assumption of a positive correlation between habitat scale α and light, we order the randomly

chosen αi and ai such that the largest value of αi corresponds to the largest value of ai. When

simulating under the assumption of negative correlation between habitat scale α and light,

we order the randomly chosen αi and ai such that the largest value of αi corresponds to the

smallest value of ai. At any average reach light intensity, we calculated the GPP of habitat

i as αiaiI. The reach scale GPP was then calculated as the average of all habitat scale

GPP. We evaluated reach scale GPP over a range of average reach scale light (from 0 to 300

µmol m−2 s−1). We regressed GPP on the average reach scale light and obtained the slope as

the reach scale α.

For comparison of RT0 across scales, we performed simulations with positive, negative,

and no correlation between habitat scale RT0 and Ear. For each scenario of correlation, we
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chose three temperatures (i.e. T0) to which reach and habitat scale ER were standardized

for comparison, lower bound, upper bound and the mean of reach scale daily temperature.

Specifically, we randomly chose RT0 for the habitats from a gamma distribution with a mean

of 4 (mg m−2 min−1), and Ear for the habitats from a gamma distribution with a mean of

70 (KJ mol−1). We used the same method as in the simulations for α to simulate positive or

negative correlation between habitat scale RT0 and Ear. We varied the standard of the gamma

distributions for RT0 (from 0.5 to 3) and Ear (from 40 to 45) in different rounds of simulations

to obtain a range of variance of habitat scale RT0 . We further assumed that a stream reach

with a higher variance of habitat scale RT0 also had a higher variance of habitat scale Ear.

To implement this assumption in the simulations, we ensured that a higher variance of RT0

always corresponded to a higher variance of Ear in different rounds of simulations. With

habitat scale RT0 and Ear chosen, we calculated ER of habitat i at a particular temperature

T as RT0e
−Ear

R
( 1
T
− 1
T0

)
. The reach scale ER at temperature T was calculated as the average of

habitat scale ER. We assumed daily temperature ranged from 18 to 22 °C, and calculated the

reach scale ER over the hypothetical time series of daily temperature. We then fit a nonlinear

regression between reach scale ER and temperature according to equation 3.5 to obtain the

estimates of reach scale RT0 . The nonlinear regression was fit using Levenberg–Marquardt

algorithm (Levenberg, 1944; Marquardt, 1963) implemented in function nlsLM of R package

minpack.lm (Elzhov et al., 2016). As in the simulations for comparison of α, we quantified

how reach-to-habitat ratio of RT0 changes with the variance of habitat scale variance of RT0

in each of the nine scenarios of simulations. We performed the simulations 1000 times. All

simulations were done in R 3.4.1 (R Core Team, 2017).

We also performed simulations to examine how reach-to-habitat ratios of α and RT0

change with the variance of habitat scale α and RT0 under field light and temperature

conditions. To this end, we followed the same method above for simulations but made a few

modifications. For each stream reach, we randomly sampled habitat scale RT0 and α based

on the mean and variance estimated from chamber incubations in that reach, and evaluated
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reach scale GPP and ER over the daily light and temperature measurements in that stream

reach. The temperature to which ER was standardized for comparison was chosen at the

average temperature of chamber incubations for the reach. This was to mimic the fact that

we standardized the reach scale RT0 to the average chamber incubation temperature for

comparison in the analyses of the field data. We chose the direction of correlation between

habitat scale α and light, RT0 and Ear in the simulations based on the identified direction of

correlation from field data.
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Table 3.1: Backwards model selection using AIC for proper structure of the random effects.

β0 and β1 are fixed effects intercept and slope. b0i and b1i are random effect intercept and

slope for biome i. ε is random error.

Model AIC

log(
RT0,reach
RT0,habitat

) = β0 + β1 log(var(RT0,habitat)) + b0i + b1i log(var(RT0,habitat)) + ε 109.99

log(
RT0,reach
RT0,habitat

) = β0 + β1 log(var(RT0,habitat)) + b0i + ε 105.99

log(
RT0,reach
RT0,habitat

) = β0 + β1 log(var(RT0,habitat)) + ε 103.99

log( αreach
αhabitat

) = β0 + β1 log(var(αhabitat)) + b0i + b1i log(var(αhabitat)) + ε 150.39

log( αreach
αhabitat

) = β0 + β1 log(var(αhabitat)) + b0i + ε 147.98

log( αreach
αhabitat

) = β0 + β1 log(var(αhabitat)) + ε 145.98

log( αreach
αhabitat

) = β0 + β1 log(var(canopy)) + b0i + b1i log(var(canopy)) + ε 92.75

log( αreach
αhabitat

) = β0 + β1 log(var(canopy)) + b0i + ε 89.07

log( αreach
αhabitat

) = β0 + β1 log(var(canopy)) + ε 87.07
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Figure 3.1: Direct comparison of GPP and ER quantified on the reach and habitat scale.

GPP and ER shown here are not corrected for different light and temperature conditions

between reach and habitat scale measurements.
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Figure 3.2: Reach and habitat scale (a)RT0 and (b) α standardized to the mean temperature

of chamber incubations. Axes are in logarithm scale. Error bars represent one standard error

of mean. The dashed line is the 1:1 line.
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Figure 3.3: Reach–to–habitat ratios of (a) RT0 and (b) α decrease with the habitat scale

variance within a reach. (c) Reach–to–habitat ratio of α decreases with the variance of canopy

cover.
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Figure 3.4: (a) Negative correlation between habitat scale α and light. Each point is the

average daily light of a reach measured at one location and average habitat scale α within

the reach. (b) Negative correlation between habitat scale Ear and RT0 . Each point in the

figure is an estimate from one chamber incubation.
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Figure 3.5: Simulation demonstrating expected relationship between habitat-to-reach ratio

of RT0 and the variance of habitat scale RT0 when temperature for comparison (T0) was at

(a) lower bound, (b) mean, and (c) upper bound of daily temperature. Habitat scale RT0 and

Ear were chosen independently. Expected relationship between habitat-to-reach ratio of α

assuming a (d)negative, (e)no, or (f) positive correlation between habitat scale α and light.
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Figure 3.6: Simulation of the expected relationship between habitat-to-reach ratio of (a)

RT0 and (b) α based on field conditions. Reach scale light and temperature measurements

were used in the simulation. Habitat scale RT0 and α were randomly chosen based on the

mean and variance estimated from chamber incubations. We assumed negative correlations

between habitat RT0 and Ear, and between habitat scale α and light in the simulation.
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Figure 3.7: Diagram illustrating how differences in RT0 and α across scales occur. (a)

Reach scale ER calculated by aggregating habitat scale ER is a convex curve in Arrhenius

plot. Fitting an Arrhenius equation to the reach scale ER thus cause a discrepancy between

reach and habitat scale RT0 . The magnitude of discrepancy depends on the curvature, which

increases with the variance of habitat scale ER. (b) Reach scale GPP–light response curve

calculated by aggregating habitat scale GPP differs from prediction based on αi, the average

habitat scale α. The diagram assumes a negative correlation between habitat scale α and

light.
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Figure 3.9: Simulation of the expected relationship between habitat-to-reach ratio of RT0

and the variance of habitat scale RT0 when temperature for comparison (T0) was at (a, d)

lower bound, (b, e) mean, and (c, f) upper bound of daily temperature. Panels a, b, and c

show simulations assuming a positive correlation between habitat scale RT0 and Ear. Panels

d, e, and f show simulations assuming a negative correlation between habitat scale RT0 and

Ear.



Chapter 4

Soil respiration as an aggregated process: implications for scaling up and

data interpretation

Introduction

Soil respiration releases about 80 petagrams of carbon to the atmosphere annually (Schlesinger,

1977; Raich & Schlesinger, 1992; Raich & Potter, 1995; Raich et al., 2002). As the largest

source of CO2 flux from terrestrial ecosystems, soil respiration exerts a strong influence on

global climate (Schlesinger & Andrews, 2000). At the same time, global warming is expected

to accelerate soil respiration (Trumbore et al., 1996; Rustad et al., 2001; Bond-Lamberty &

Thomson, 2010), creating a positive feedback between global warming and carbon release via

soil respiration (Jenkinson et al., 1991; Cox et al., 2000). However, considerable uncertainty

remains in the predicted strength of the climate-carbon feedback (Friedlingstein et al.,

2006; Bradford et al., 2016). A key quantity to reduce such uncertainty is the tempera-

ture sensitivity of soil respiration (Jones et al., 2003; Luo, 2007; Todd-Brown et al., 2013;

Exbrayat et al., 2014). Practically, predicting the climate-carbon feedback on the global

or regional scale requires a relatively simple prescription of the temperature dependence

of soil respiration. However, it is well recognized that the temperature sensitivity of soil

respiration is driven by a myriad of biotic and abiotic processes (Subke & Bahn, 2010;

Conant et al., 2011; Davidson & Janssens, 2006; Davidson et al., 2006). In particular, the

varied temperature sensitivities of decomposition of heterogeneous soil organic carbon pools

have been considered key to an accurate description of soil carbon dynamics (Davidson

et al., 2000; Knorr et al., 2005; Luo & Weng, 2011). Since predicting the feedback between

86
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soil carbon dynamics and climate globally often requires simple description of the temper-

ature dependence, a fundamental question is how the temperature sensitivity of bulk soil

respiration relates to the temperature sensitivities of the decomposition of heterogeneous

soil organic carbon pools.

When linking temperature sensitivities of the bulk soil respiration and the decomposi-

tion of different substrate pools, we aimed at using the temperature dependence of pools

to describe the aggregate temperature dependence of bulk soil respiration. This is essen-

tially a problem of aggregation because the bulk soil respiration is the sum of respiration

from all contributing substrate pools. However, using the mean temperature sensitivity of

the decomposition of all contributing substrate pools may not appropriately represents the

temperature sensitivity of bulk soil respiration, due to the nonlinear nature of temperature

dependence of respiration (Rastetter et al., 1992). Early theoretical work extensively investi-

gated the conditions for appropriate aggregation (Iwasa et al., 1987) and the error associated

with it (O’Neill & Rust, 1979; Gardner et al., 1982; Iwasa et al., 1989). Gardner et al. (1982)

showed that aggregation error could be within 10% when turnover times of components to

be aggregated differ up to three times. However, the turnover times of different soil carbon

substrate pools differ substantially, ranging from years to hundreds of years (Trumbore et al.,

1996). This suggests that error introduced by aggregating respiration from multiple substrate

pools could not be ignored. Moreover, these theoretical studies showed that error associated

with aggregation also depends on the specific functional forms and the heterogeneity among

components to be aggregated. Therefore, although the general theoretical grounds of aggre-

gation has been extensively investigated, it is still necessary to analyze the specific form of

temperature dependence and the heterogeneity among substrate pools to understand the

relationship between temperature sensitivities of bulk soil respiration and decomposition of

contributing substrate pools.

More generally, insights into the relationship between temperature sensitivities of bulk

soil respiration and decomposition of multiple substrate pools may extend to aggregating soil
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respiration over space. The fact that bulk soil respiration is the aggregation of multiple sub-

strate pools is analogous to the fact that the total soil respiration over a large spatial extent

is the aggregation of respiration from all patches within the area. Since temperature sensi-

tivity of soil respiration is influenced by multiple biotic and abiotic factors that are spatially

variable (e.g., Boone et al. (1998); Davidson & Janssens (2006); Davidson et al. (2006)),

the temperature sensitivity of soil respiration is spatially heterogeneous (Qi et al., 2002;

Reichstein et al., 2003; Scott-Denton et al., 2003). As a result, the temperature sensitivity

of respiration on a small scale does not directly translate to a large spatial scale.

Understanding the temperature sensitivity of aggregated soil respiration over space is

practically useful. Temperature sensitivity of soil respiration is commonly measured using

controlled warming experiments on a smaller spatial scale, such as measurements made with

automatic chambers or incubations, but understanding the role of soil respiration in regional

or global carbon cycles often requires characterization of the temperature sensitivity on a rel-

atively large spatial extent. Even though the temperature sensitivity of soil respiration over

large spatial extent can be directly quantified using eddy covariance data (Baldocchi et al.,

2001) and novel statistical approaches (Sanderman et al., 2003; Mahecha et al., 2010), such

quantification is usually limited to observational studies. Small-scale manipulative experi-

ments are necessary to elucidate the biological mechanisms underlying the observed tem-

perature sensitivity, which are crucial for accurately predict how soil carbon dynamics will

respond to a changing climate (Allison et al., 2010; Wieder et al., 2013). As a result, investi-

gating how temperature sensitivity of soil respiration quantified on a small spatial scale can

translate to a large spatial scale is still practically useful.

Concurrent with aggregation over space often comes aggregation over time. Practically,

temporal scale usually increases with the spatial scale of measurements (Delcourt & Delcourt,

1988; Levin, 1992). For example, small spatial scale measurements of temperature sensitivity

are often based on automatic chambers or incubations that span minutes to hours while earth

system models usually simulate soil respiration on a daily or monthly time step (e.g., Anav
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et al. (2013); Arora et al. (2013); Todd-Brown et al. (2014)). The temperature sensitivity that

describes the thermal response of soil respiration on the scale of minutes or hours may not

adequately describe how soil respiration over a month or year responds to the mean monthly

or annual temperatures. Studies using spatial temperature gradients to estimate temperature

sensitivity showed that temperature sensitivity of annual respiration was lower than the

temperature sensitivity of soil respiration measured on a sub-daily time scale (Kirschbaum,

2010; Yvon-Durocher et al., 2012). However, studies based on comparisons across sites may

not represent the response of a single site (Lauenroth & Sala, 1992; Bradford et al., 2017).

For example, monthly or daily temperature in the arctic are more variable within a year

compared to the tropics. Thus, when estimating temperature sensitivity from the latitudinal

temperature gradient (Kirschbaum, 2010), the inferred the temperature sensitivity reflects

not only the effects of differences in mean temperature, but also the effects of difference

in temperature variability, which may not exist at a single site. It remains unclear how

temperature sensitivity of soil respiration at a single site might depend on the temporal

scale of aggregation.

Recognizing the fact that soil respiration is an aggregated process is also crucial for inter-

preting the observed changes in the temperature sensitivity of bulk soil respiration. Much

debate in the literature on the temperature sensitivity of soil respiration stems from whether

soil respiration is viewed as an aggregated process or not. For example, the constant resi-

dence time of soil organic matter or respiration rate along a temperature gradient could be

interpreted as the insensitivity of soil respiration to temperature when viewing soil respira-

tion as derived from a single pool (Liski et al., 1999; Giardina & Ryan, 2000), but could also

be explained by changes in the composition of carbon substrate pools, each with a unique

temperature sensitivity (Trumbore et al., 1996; Davidson et al., 2000; Knorr et al., 2005) or

changes in substrates quality (Ågren, 2000; Ågren & Bosatta, 2002). Furthermore, inference

on the mechanisms driving changes in temperature sensitivity may depend on how we concep-

tualize soil respiration. For example, changes in the temperature sensitivity of soil respiration
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in response to warming could result from adaptation or acclimation of microbial community

(Luo et al., 2001; Karhu et al., 2014), but quick depletion of labile carbon substrate may

offer an equally plausible explanation (Melillo et al., 2002; Kirschbaum, 2004, 2006). Different

mechanisms for observed changes in temperature sensitivity may lead to vastly different pre-

dictions of soil carbon dynamics in the future. For example, modeling studies showed that

explicitly incorporating the microbial processes, such as enzymatic kinetics (Allison et al.,

2010) or microbial carbon use efficiency (Wieder et al., 2013), and their responses to changes

in climate result in substantially different estimates of soil carbon stock in the future. There-

fore, when making inferences on the mechanisms driving observed changes in temperature

sensitivity of soil respiration, it is crucial to consider how aggregating multiple substrate

pools could lead to apparent changes in temperature sensitivity, and view it as a possible

mechanism to ensure a comprehensive conclusion from the data.

Although the view that soil respiration is an aggregated process is well recognized in the

literature (Davidson et al., 2000; Kirschbaum, 2004, 2006; Knorr et al., 2005), a comprehen-

sive analysis of how temperature sensitivity of bulk soil respiration may arise by aggregating

over space, time, or heterogeneous carbon substrate pools is still lacking. Therefore in this

study, we utilized numerical simulations and re-analyzed existing data sets to explore the

effects of aggregation over space, time, and multiple substrate pools on temperature sensi-

tivity. Specifically, we first used theoretical analyses and numerical simulations to identify

key factors determining the effects of aggregation over space on temperature sensitivity. We

then used continuously measured soil respiration data in Harvard Forest and Tibet alpine

grasslands to examine how activation energy of soil respiration depends on the time scale

of aggregation. Finally, we used simulations to demonstrate how temperature sensitivity of

bulk soil respiration may appear to be dependent on temperature, and used a published soil

incubation data set to demonstrate how viewing soil respiration as an aggregated process

may provide a possible explanation for observed changes in temperature sensitivity.
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Methods

Aggregation over space

We first explored how aggregation over space influenced temperature sensitivity of soil res-

piration analytically. The goal was to quantify the temperature sensitivity of total soil res-

piration over a particular spatial extent consisting of multiple patches, each with a unique

respiration rate and temperature dependence. The temperature dependence of respiration

for each patch can be described by an Arrhenius equation:

Ri = Aie
−Eai
RT , (4.1)

where i indicates patch number, Ri is the respiration rate per area of patch i, Ai is the

pre-exponential factor, Eai is the activation energy, R is the ideal gas constant, and T

is temperature in Kelvin. Similarly, we may use the Arrhenius equation to describing the

temperature dependence of soil respiration over a large spatial extent (Ragg):

Ragg = Aagge
−Ea,agg

RT , (4.2)

where Ragg is the total respiration over a large spatial extent, Aagg and Ea,agg are pre-

exponential factor and activation energy for respiration in the spatial extent of interests

respectively. After taking the logarithm of both sides in equation 4.2, we obtained:

log(Ragg) = log(Aagg)−
Ea,agg
R

1

T
. (4.3)

Equation 4.3 suggests that Ea,agg can be estimated with a linear regression between log(Ragg)

and 1/T . In a simple linear regression y = a+bx, the slope b is estimated as cov(y, x)/var(x).

Thus, Ea,agg is estimated as

Ea,agg =
cov(log(Ragg),

1
T

)

var( 1
T

)
(−R) (4.4)

When total respiration over a large spatial extent is not directly quantified, we use small

scale measurements of respiration to estimate Ragg. On a per area basis, the aggregated soil
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respiration is the average of patch respiration. Thus, the estimate of Ragg from small patch

respiration is

R̂agg = Aie
−Eai
RT . (4.5)

Combining equation 4.4 and 4.5, Ea,agg can be estimated as

Ea,agg =
cov(log(Aie

−Eai
RT ), 1

T
)

var( 1
T

)
(−R). (4.6)

When Ai and Eai follow a joint log-normal distribution, we can derive an analytical expression

of Ea,agg (see appendix for derivation) as

Ea,agg = Eai +
1

2
σe

[
ρ

√
log(

σ2
A

Ai
2 + 1)− σe

R

cov( 1
T 2 ,

1
T

)

var( 1
T

)

]
. (4.7)

Here, σe is the standard deviation of Eai, σA is the standard deviation of Ai, and ρ is the

correlation coefficient of Ai and Eai. Equation 4.7 relates the activation energy that describes

the temperature dependence (Ea,agg) of large spatial scale respiration to the naive estimate

if we direct extrapolate activation energy quantified on small scale (Eai) to the large scale.

We also performed numeric simulations to complement the theoretical analysis. To that

end, we assumed a spatial extent consisting of 50 patches. We randomly chose parameter

values (i.e.Ai and Ea,i) in equation 4.1 for each patch and calculated the total respirationRagg

as the sum of respiration from all patches (equation 4.5). We calculated the total respiration

Ragg over a temperature range of 10 to 20 °C, and estimated Ea,agg using a linear regression

between log(Ragg) and 1
T

. Specifically, for each round of simulation, Ai was chosen from

a gamma distribution with a mean chosen randomly from a uniform distribution between

0.5×1014 and 1.5×1014 (µmol C m−2 s−1) and a standard deviation uniformly chosen between

1×1013 and 1×1014. Eai was chosen randomly from a gamma distribution with mean chosen

randomly from a uniform distribution between 40 and 100 (KJ/mol) and a standard deviation

uniformly chosen between 10 and 50. To simulate different degrees of correlation between Ai

and Eai, we matched the largest Ai with the highest Eai for a positive correlation or lowest Eai

for a negative correlation. We performed 200 rounds of simulations with a positive correlation



93

between Ai and Eai and 200 rounds of simulations with a negative correlation between Ai

and Eai. In the simulations, the distributions of Ai and Eai were intentionally chosen to be

different from the distributional assumptions used in the theoretical derivation (equation

4.7) to demonstrate that the qualitative prediction from the theoretical derivation was not

driven by the particular form of distributions of these parameters.

Aggregation over time

We used two long-term in situ soil respiration measurements data sets to examine the effect

of aggregation over time on the temperature sensitivity of soil respiration. Both data sets

contain continuous in situ soil respiration measurements over 3–5 years. Briefly, the Harvard

Forest respiration data set includes soil temperature recorded at a depth of 5 cm and soil

respiration measurements using automatic chambers at the Environmental Measurement

Site in Harvard Forest (42°20’N, 72°11’W) from 2003 to 2006. The soil respiration rates and

soil temperature were measured at eight fixed locations at this site. Respiration rate and

soil temperature were logged every 4–5 hours from April to December. The Tibet grassland

respiration data set contains respiration measurements from two locations, a mesic grassland

location, and a meadow location, within the Haibei Alpine Grassland Ecosystem Research

Station (37°30’N, 101°12’E) located in the northeastern part of the Tibetan Plateau, China.

Respiration and soil temperature at 5 cm were recorded hourly with four automatic chambers

from 2008 to 2012 at the mesic grassland location and from 2010 to 2012 in the meadow

location. Respiration rates were only measured in growing season (May to September) due

to the below-freezing soil temperature during the non-growing season. Only daily mean

respiration for each site are available, resulting in two time series of daily respiration and

temperature for analyses. More detailed descriptions of the sites and measurement protocols

for Harvard Forest (Phillips et al., 2010; Giasson et al., 2013) and Tibet grasslands (Wang

et al., 2018) can be found in previously published studies.
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To examine the effects of the time scale of aggregation on the estimated temperature

sensitivity, we calculated the mean soil respiration rate and the mean soil temperature by

averaging all soil respiration and soil temperature measurements within the period of aggre-

gation. Specifically, to estimate activation energy describing the temperature dependence of

average respiration over n days, we calculated the mean respiration and mean soil tempera-

ture over each consecutive n days, and regressed the logarithm of mean respiration rate on

the inverse of mean temperature in Kelvin to obtain the activation energy. If days of mea-

surements within a year is not a multiple of the days averaged, we excluded the remainder

from the analyses. For example, if we calculated monthly mean respiration based on 182 days

of soil respiration measurements within a year, we obtained 6 monthly respiration rates and

excluded the remaining two days of data from the analyses. We explored how the activation

energy of soil respiration changed with the number of days averaged ranging from 1 to 30

days, which correspond to the typical time steps used in earth system models to simulate

carbon dynamics (Anav et al., 2013; Arora et al., 2013; Todd-Brown et al., 2014). Because

sub-daily records of soil respiration are available in the Harvard Forest data set, we also

calculated temperature sensitivity based on respiration measured every 4–5 hours for the

Harvard Forest data set.

We also examined the effects of aggregation over time using simulated time series of

respiration based on a constant activation energy and the actual temperature data in Har-

vard Forest and Tibet grasslands. Because seasonal variation in temperature sensitivity

(Xu & Qi, 2001; Janssens & Pilegaard, 2003) may cause deviation in temperature sensi-

tivity when aggregating over time, the simulated data sets, where soil respiration is purely

driven by temperature variation, allowed us to isolate the effects of aggregation over time.

Without loss of generality, we simulated soil respiration rate using the Arrhenius equation

with RT0 = 4 µmol s−2 s−1, T0 = 12 °C and Ea = 75 KJ mol−1 based on the soil temper-

ature measurements in the Harvard Forest and Tibet grasslands. The chosen values of the

parameters represented realistic values for in situ soil respiration rates at these two sites.
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We followed the same methods outlined above to calculate activation energy over a range of

days averaged.

Aggregation over multiple substrate pools

We quantified temperature sensitivity of bulk soil respiration when the total respiration is

the sum of respiration from heterogeneous substrate pools. We used first-order kinetics to

model the decomposition of each carbon substrate pool as commonly used in earth system

models. For a particular carbon substrate pool, the respiration rate from this pool is

dCi(t)

dt
= kiCi(t), (4.8)

where Ci(t) is the pool size of carbon substrate i at time t and ki is its decomposition rate.

The decomposition of all substrate pools can be represented in a matrix form:

dC(t)

dt
= AKC(t). (4.9)

Here, C(t) is a column vector describing the size of each carbon substrate pool at time t.

Matrices A allows the model to account for transfers among substrate pools. For example,

matrices A and C for a three–pool with transfer model are given by

A =


−1 0 0

f21 −1 0

0 f32 −1

 , K =


k1(T ) 0 0

0 k2(T ) 0

0 0 k3(T )

 . (4.10)

The elements fij in matrix A denote the transfer from pool j to i. Matrix K represents the

first order decomposition rates. T is temperature. We modeled the temperature dependence

of ki with Arrhenius equations

ki(T ) = ki(T0)e
−Eai

R
( 1
T
− 1
T0

)
. (4.11)

We can modify matrices A and K to represent other models. For example, a two pool

model can be represented by using the first two rows and columns of matrices A and K. A
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model without transfer among substrate pools can be represented by setting all fij to 0 in

matrix A. The system of differential equations represented by equation 4.9 can be solved as

C(t) = eAK(T )tC(0), (4.12)

and the total respiration rate at time t can be calculated as

1TReAK(T )tC(0), (4.13)

where 1 is a vector with all elements 1, and R is a matrix for the respiration rate. For a

three pool with transfer model, R is

R =


k1(T )(1− f21) 0 0

0 k2(T )(1− f32) 0

0 0 k3(T )

 . (4.14)

After establishing the mathematical representation of the multiple substrate models

(equations 4.8–4.12), we performed numeric simulations to explore how temperature sen-

sitivity of bulk soil respiration depends on temperature. Briefly, we assumed 50 distinct

carbon substrate pools and randomly chose values for ki(T ), fij, and Eai in equations 4.10

and 4.11 to describe the decomposition dynamics of each substrate pool. Without loss of

generality, we randomly chose fij from a uniform distribution (0, 0.5), Eai from a uniform

distribution (20, 150) (KJ/mol), and ki at 10 °C from a uniform distribution (1/3650, 1/365)

(day−1). We then simulated the pool size over 730 days according to equation 4.12 and cal-

culated respiration rate over time as in equation 4.13. We performed such simulation under

four temperatures (10, 12, 14 and 16 °C). At any particular time, we calculated three activa-

tion energies for total respiration based on different range of temperature: one by comparing

10 and 12 °C, one by comparing 12 and 14 °C, and one by comparing 14 and 16 °C. We

quantified the activation energy over time, resulting in 3 time trajectories of activation ener-

gies for total respiration, each quantified based on specific range of temperature. Because

soil respiration can be expressed in different units, we quantified activation energy based on
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respiration expressed in the unit of total respiration from all substrate pools and respiration

per unit carbon.

Integration of aggregation over space and substrate pools

The theoretical analysis (equation 4.7) showed that spatial variability of the temperature

dependence of respiration for each patch is critical for determining the difference between

patch average activation energy and the aggregated activation energy. When respiration of

each patch is the results of respiration from multiple substrate pools, changes in the composi-

tion of substrate pools, which may occur with increases in temperature (Kirschbaum, 2004),

could alter the spatial variability of the temperature dependence of patches and subsequently

influence aggregation over space. We performed a simulation study here to investigate how

warming may influence the difference in activation energy when aggregating over space by

changing the substrate composition of the patches.

We assumed a space consisting of 50 patches. The respiration from each patch is derived

from 10 substrates with distinct pool size, decomposition rate, and activation energy. Further,

we assumed that the input to each substrate pool at the current temperature (10 °C) balanced

the respiratory loss so that the carbon substrate pools were at steady state at the current

temperature. The inclusion of an input in the model allowed us to simulate the long-term

dynamics of soil carbon. Without input, all carbon in the soil will be eventually respired. We

then increased the temperature to 15 °C and simulated the carbon pools dynamics for each

patch. Mathematically, the dynamics of carbon pools within each patch can be described as

dC(t)

dt
= AKC(t) + I, (4.15)

whereA,K, andC(t) are defined the same way as in equation 4.9. I is a vector of input rates

to each carbon substrate pool and is assumed to be constant over time in the simulation.

Equation 4.15 can be solved analytically as

C(t) = eAKt + eAKt ∗ I, (4.16)
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where eAKt ∗ I denotes the convolution

eAKt ∗ I =

∫ t

0

eAK(t−u)Idu. (4.17)

For a constant I, equation 4.17 evaluates to Uκ, where U is a matrix with eigenvectors of

AK as the columns and κ is a column vector with element i

[(U−1I)i]
e−kit − 1

−ki
, (4.18)

When specifying equation 4.15 for each patch, we randomly chose decomposition rate ki,

transfer coefficient between substrate pools fij, and activation energy Eai for carbon pools

within each patch. Specifically, we chose ki from a uniform distribution between 1/36500 and

1/365 day−1. The choice of decomposition rates reflects the range of residence time of organic

carbon typically observed in soils (Trumbore et al., 1996). We chose transfer coefficient from

a uniform distribution between 0 and 0.5. The initial substrate pool size was chosen from

a uniform distribution (1, 20) mg g−1. Eai was chosen from a gamma distribution, where

the mean was randomly chosen from a uniform distribution (80, 120) KJ mol−1 and the

standard deviation was randomly chosen from a uniform distribution (45, 75) KJ mol−1

for each iteration of simulation. This is to generate the distribution for Eai with different

skewness in different iterations of simulation. We simulated the carbon pool dynamics for

500 years. At each time point during the simulation, we calculated activation energy for

each patch following the same methods outlined in the aggregation over multiple substrate

pools and used the same procedure as outlined in the aggregation over space to calculate

aggregated activation energy over space. We performed the simulation for 100 iterations.

Fitting multi-pool models to soil incubation data

We demonstrate how viewing soil respiration as an aggregated process could influence the

inferred mechanisms driving changes in temperature sensitivity by analyzing a data set from a

soil incubation experiment. Karhu et al. (2014) used a novel approach, cooling and rewarming

soils over the course of incubation, to infer the mechanism behind warming-driven changes
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in temperature sensitivity. Briefly, they sampled soils around the globe. Twenty replicates

of soil sampled from each particular location were incubated at a control temperature set

at 3 °C above the mean annual temperature of the sampling location. After 84 days, ten

replicates were cooled by 6 °C from the control temperature. After another 60 days, five of

the ten cooled soil replicates were rewarmed to the control temperature. Soil respiration rates

were measured weekly initially and biweekly later in the experiments. They compared the

respiration rate at the same amount of cumulative respiratory carbon loss in control, cooled

and rewarmed soils to infer mechanisms driving the changes in temperature sensitivity.

Karhu et al. (2014) established two criteria for defining an enhancing microbial commu-

nity response to warming: 1) a faster proportional decrease of respiration rate with cumulative

carbon loss for cooled soils, and 2) lower respiration rates of rewarmed soils compared to

the control at the same amount cumulative carbon loss. The opposite is defined as a com-

pensatory response, and no difference between cooled, rewarmed, and control soils regarding

the two criteria were defined as no response. Although the majority of the soils exhibited

enhancing responses, we selected data from 9 soils randomly from each category of response

for analyses.

To explore whether the observed changes in temperature sensitivity of bulk soil respi-

ration in this experiment can be explained by viewing soil respiration as an aggregation of

respiration from multiple substrate pools, we fit multi-pool models described by equations

4.9 and 4.10 to the data. Because the incubation experiment only had two temperature treat-

ments, we only considered two candidate models for the soil incubation data: two–pool and

two–pool with transfer (Liang et al., 2015). Each model can be specified by varying matrices

A and K in equation 4.9. For the two–pool without transfer model, we specify the transfer

coefficients fij in matrix A as 0.

We employed a Bayesian approach to estimate parameters in the models with various

structures of carbon substrate pools for its convenience in dealing with the identifiability

issues and constraining ranges of parameters in model fitting. For a particular set of param-
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eters in each model, we first calculated the size of each carbon substrate pool over time

according to equation 4.12. Specifically, for soils in control temperature throughout the

experiment, we specified matrix A and K as in equation 4.10 to calculate the carbon pool

size over time. For soils that were cooled after 84 days in the control temperature, we cal-

culated carbon pool size at the end of 84 days. The carbon pool size on day 84 was the

initial carbon pool size for the cooling treatment. We then used the decomposition rate in

the cooled temperature (equation 4.11) to calculate the carbon pool sizes over time at the

cooled temperature. For soils that were rewarmed following the cooling treatment, we cal-

culated the carbon pool size at the end of the cooling treatment as the initial carbon pool

size for the rewarming treatment. Since the soils were rewarmed to the control temperature,

we calculated the carbon pool size following the rewarming of soils using the same ki as the

control soils. After calculating the carbon pool sizes over time, we obtained the respiration

rate over time as in equation 4.13. We assumed that the differences between modeled and

measured soil respiration rates were independent and identically distributed random errors

following a normal distribution. With such an assumption of error distribution, we calculated

the likelihood for a particular set of parameters. We used uniformly distributed improper

priors for all parameters. We sampled the posterior distributions of the parameters using

Markov Chain Monte Carlo and reported the mean of the posterior distribution as the point

estimates for all the parameters. We implemented an adaptive Metropolis Hasting algorithm

for efficient mixing (Haario et al., 2001). We examined the trace plots visually and performed

Geweke diagnostic to ensure convergence. The adaptive Metropolis–Hasting algorithm was

implemented using function metrop in R 3.4.2 (R Core Team, 2017)

Results

Aggregation over space or time

The theoretical analysis (equation 4.7) showed that aggregation over space changed the tem-

perature sensitivity. Specifically, the difference between activation energy on a larger spatial
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extent (Ra,agg) and the average patch activation energy (Eai) depends on the variability

of Ai, Eai and the correlation between Ai and Eai (ρ). When ρ is negative, the activation

energy over large spatial extent is lower than the average patch activation energy. When

ρ is positive, and the coefficient of variation of Ai is relatively big compared to the varia-

tion of Eai, the activation energy over large spatial extent could be higher than the average

patch activation energy. The numeric simulation confirmed the results from the theoretical

analysis (Fig. 4.1). Depending on the particular values of ρ, σA, σe, the difference between

average patch activation energy and the activation energy over large spatial extent could be

substantial (Fig. 4.1).

We found that aggregation over time span ranging from hours to 30 days did not sys-

tematically change the activation energy in both the Harvard forest (Fig. 4.2a) and Tibet

grasslands data sets (Fig. 4.2b). Although activation energy appeared to decrease slightly

with the number of days averaged based on the simulated data sets (Fig. 4.2c, d), such

decreasing trend was not significant considering the minor magnitude of decrease and the

uncertainty in the estimated activation energy.

Aggregation over multiple substrate pools

The simulation showed that when soil respiration is the result of respiration from multiple

substrate pools, the activation energy of total soil respiration depends on the range of tem-

perature used to quantify the temperature sensitivity (Fig. 4.3). But the direction of the

temperature–activation energy relationship depends on the unit in which soil respiration is

expressed. When respiration is expressed as total respiration from all substrate pools, activa-

tion energy increases with the temperature used to quantify it. In contrast, when respiration

is in the unit of respired carbon per unit soil carbon, activation energy is likely to decrease

with the temperature used to quantify it. This simulation showed that an apparent tem-

perature dependence of activation energy could arise when soil respiration is the result of

aggregation over multiple substrate pools.
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Aggregation over space and multiple substrate pools

When examining how aggregation over multiple substrate pools could influence the aggre-

gation over space, we found that differences in the activation energy and the average patch

activation energy when aggregating over space showed a similar pattern as when the substrate

pool dynamics in each patch is not explicitly considered; the aggregated activation energy

was mostly lower than the patch average activation energy. Both the aggregated activation

energy and the patch average activation energy increased with warming, but the difference

between aggregated activation energy and patch average activation energy remained roughly

the same over time (Fig. 4.4).

Fitting multi–pool models to incubation data

We fit a two-pool model and a two–pool without transfer model to the soil incubation

data in Karhu et al. (2014). While the two–pool model can be fit with uniquely identifiable

parameters, the transfer coefficients (i.e. f21) in the two-pool with transfer model cannot

be estimated practically, primary due to the limited changes in soil carbon stock from a

relatively short term incubation (Subke & Bahn, 2010). Thus, we only presented the results

from the two-pool model (Table 4.1).

The two-pool model provided a visually good fit to the incubation data (Fig. 4.5). Unique

patterns of parameters in the two-pool model emerged for soils exhibiting different types

of responses. Specifically, soils exhibiting the enhancing responses typically had the fast

decomposing pool (i.e. high ki) with lower Eai. Soils consisting of two pools with roughly

the same activation energy often exhibited no response. In contrast, soils exhibiting the

compensatory response typically had the fast decomposing pool with high Eai.
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Discussion

Effects of aggregating over space

We showed through theoretical analysis and numerical simulations that the temperature

sensitivity of bulk soil respiration cannot always be represented by the average temperature

sensitivity of contributing patches when aggregating over space. When the pre-exponential

factor and temperature sensitivity of patches are spatially variable, the activation energy

of total respiration could be either higher or lower than the average activation energy from

all patches, depending primarily on the direction of correlation between the pre-exponential

factor and activation energy for patches (Fig. 4.1). Although the theoretical analyses (equa-

tion 4.7) relied on an additional assumption about form of the joint distribution of Ai and

Eai (see appendix), the numeric simulation that did not made such assumption showed the

same qualitative results about the effects of aggregation over space as the theoretical analysis

(Fig. 4.1). The consistency between the numeric simulation and theoretical analyses suggests

that the additional distribution assumption is not responsible for the effects of aggregation

over space.

We suggest that the temperature sensitivity of soil respiration over a large spatial extent

should be predominantly lower than that in the corresponding contributing patches. The

theoretical analysis showed that when Ai and Eai are negatively correlated and spatially

variable, aggregation over space leads to smaller activation energy over a large spatial extent

compared to the average patch activation energy. Both Ai and Eai were known to be spatially

heterogeneous at the plot scale (Xu & Qi, 2001; Qi et al., 2002; Scott-Denton et al., 2003). In

addition, in incubation studies on temperature sensitivity of substrates with varying qualities,

respiration rate was often negatively correlated with activation energy (Fierer et al., 2005;

Hartley & Ineson, 2008; Conant et al., 2008; Craine et al., 2010). If this pattern extends to

the spatial context, where patches with higher Ai have lower activation energy, we would
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expect lower activation energy on a large spatial extent than the average activation energy

in all contributing patches.

Lower activation energy as a result of aggregation over space may explain why activation

energy estimated for a larger spatial extent tended to be smaller. On a relatively large spatial

extent, Mahecha et al. (2010) reported an average Q10 of 1.4 based on eddy covariance data.

Zhou et al. (2009) used a model inversion approach and estimated an average Q10 of 1.72

for all the 1 °by 1 °grids globally. At the global mean temperature around 15 °C, these

values of Q10 are equivalent to activation energies of 23.5 and 37.9 KJ/mol respectively. In

contrast, on a relatively small spatial scale, Yvon-Durocher et al. (2012) synthesized field

warming and incubation studies and estimated an average activation energy of 0.65 eV (62.7

KJ/mol) for soil respiration. Although differences associated with methodologies, such as

using soil or air temperature (Xu & Qi, 2001; Graf et al., 2008; Kirschbaum, 2010; Phillips

et al., 2011) and inclusion of aboveground respiration in eddy flux measurements (Graf

et al., 2011), may contribute to the different estimates of activation energy in these studies,

our study demonstrated that aggregation over space may also be a source of differences in

activation energy on different spatial scales. The simulation procedure we used in this study

demonstrated one possible way to account for the difference caused by aggregation over

space and calculate activation energy on a large spatial scale based on multiple small-scale

measurements.

Effects of aggregation over time

We showed that aggregation over time did not significantly change the temperature sensi-

tivity of soil respiration. We did not detect a systematic trend of estimated temperature

sensitivity over the time span of aggregation in either field observations (Fig. 4.2a, b) and

simulated data sets (Fig. 4.2c, d). Our findings offered evidence that temperature sensitivity

quantified on the scale of hours-to-days might be directly applied to describe the tempera-

ture dependence of soil respiration on the scale of weeks to months, which are typically the
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time steps for simulating carbon dynamics in the earth system models (Anav et al., 2013;

Arora et al., 2013; Todd-Brown et al., 2014).

Our findings are in contrast to previous studies that showed a lower temperature sensi-

tivity on longer time scales (Kirschbaum, 2010; Yvon-Durocher et al., 2012). The contrasting

findings may arise from the different methods used to quantify temperature sensitivity. The

activation energy of soil respiration in these studies was derived from comparing respiration

rates over a spatial temperature gradient. Over space, locations with higher mean tempera-

ture have lower temperature variability (Mearns et al., 1984; Kirschbaum, 2010). This means

that colder locations experience relatively longer warm periods compared to warmer loca-

tions. Consequently, when comparing the average respiration over a period of time, the differ-

ence in respiration between colder and warmer locations is reduced by the larger variability

of temperature at the colder locations (Savage, 2004). However, the negative correlation

between mean and variability of temperature does not exist for a single location. At a single

location, warmer weeks or months do not necessarily have lower temperature variability. As

a result, when using single site data to examine the dependence of activation energy on time

scale of aggregation, we did not observe a changing activation energy with the time span of

averaging. More generally, our findings raise questions about the use of comparative analyses

across sites to parameterize ecosystem models and make predictions about single sites. Sites

often differ in multiple biotic and abiotic conditions, making it practically difficult to isolate

the effect of any one particular factor. Growing evidence suggests that equating cross-site

patterns to single-site patterns may lead to erroneous predictions (Lauenroth & Sala, 1992;

Bradford et al., 2014; Waring et al., 2016; Bradford et al., 2017).

Our findings demonstrated that aggregation over time itself does not systematically

change the temperature sensitivity. However, temperature sensitivity of soil respiration could

depend on the time span of aggregation for other reasons, especially on long time scales. For

example, temperature sensitivity of annual total respiration may reflect the temperature

sensitivity of primary production because long-term respiration could be constrained by the
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total amount of substrates produced from photosynthesis in terrestrial ecosystems (Vargas

et al., 2010; Yvon-Durocher et al., 2012; Giardina et al., 2014). Respiration on a longer time

scale may also exhibit stronger temperature dependence due to the faster accumulation of

resources necessary for respiration over the relatively longer time span (Anderson-Teixeira

et al., 2008). Although we showed no effects of aggregating over time spans ranging from

weeks to months on temperature sensitivity, cautions should be taken to examine whether

other biological processes may constrain respiration and subsequently influence temperature

sensitivity, especially on annual or longer time scales.

Effects of aggregating over multiple substrate pools

In the simulations demonstrating the effects of aggregating over multiple substrate pools,

we quantified activation energy by comparing soils that had been exposed to different tem-

peratures for some time. This mimics the common way by which temperature sensitivity of

soil respiration is quantified in the literature (e.g., Lloyd & Taylor (1994); Yvon-Durocher

et al. (2012)). We showed through simulations that activation energy of total soil respiration

depends on the range of temperature used to quantify it (Fig. 4.3), even if the parameters gov-

erning the decomposition kinetics of each substrate pool remain unaffected by temperature.

This occurs because warming not only alters the relative proportion of different substrate

pools, but also changes the pool size for each substrate. As a result, expressing respiration in

different units leads to different activation energy–temperature relationship (Fig. 4.3). The

different units we used in the simulation to express temperature sensitivity corresponds to

commonly used units for soil respiration. For example, respiration per unit soil carbon is

often used in incubation studies (Karhu et al., 2014). Respiration per area (Lloyd & Taylor,

1994) or respiration per unit weight of soil (Hartley & Ineson, 2008), which are equivalent

to total respiration from all substrate pools, are also common in field measurements and

incubation studies.
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Our finding that the temperature–activation energy relationship could depend on the unit

of soil respiration may reconcile the apparently contradictory findings from previous studies.

For example, several synthesis studies showed that temperature sensitivity of soil respiration

decreased with temperature (Lloyd & Taylor, 1994; Chen & Tian, 2005). But increasing

temperature sensitivity with warming has also been observed in a global scale incubation

experiment (Karhu et al., 2014). These studies differed in the units of soil respiration. Lloyd

& Taylor (1994); Chen & Tian (2005) used respiration per area to quantify temperature

sensitivity while Karhu et al. (2014) estimated temperature sensitivity from respiration per

unit soil carbon. Our simulation study demonstrated that the opposite activation energy–

temperature relationship might arise simply due to the different units of soil respiration used

in the study and are the results of aggregation over multiple substrate pools.

Integration of aggregation over space and substrate pools

We found that considering aggregation over multiple substrate pools for each patch does

not change how aggregation over space influences the activation energy of respiration. The

patch activation energy, which is aggregated over multiple substrate pools, increased during

warming (Fig. 4.4). This is to be expected based on the kinetic property of soil respiration

prescribed by the Arrhenius equation (Sierra, 2012). Warming often leads to the depletion

of carbon substrates with low activation energy (Kirschbaum, 2004) and therefore result

in a higher average activation energy (Craine et al., 2010). But because warming causes

similar shift in the composition of substrate pools and thus the activation energy for all

patches, it does not fundamentally alter the spatial variability of activation energy and the

correlation between activation energy and pre-exponential factors in the Arrhenius equation.

As a result, how aggregation over space changes the activation energy of soil respiration is

not influenced by warming. This result suggests that the differences in the activation energy

of soil respiration caused by aggregation over space will likely remain in a warming world.
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Data interpretation: the importance of considering soil respiration as an

aggregated process

We demonstrated that recognizing soil respiration as an aggregated process is important

for interpreting observed changes in the temperature sensitivity of soil respiration. While

Karhu et al. (2014) suggested microbial community changes as the mechanisms driving the

enhanced temperature sensitivity under warming, we showed that such observation might

occur without invoking any microbial mechanisms. A model with two carbon substrate pools,

each with a distinct temperature sensitivity, provided an equally adequate fit to the observed

respiration rates (Fig. 4.5) and thus offered an equally plausible explanation for the enhanced

temperature sensitivity of bulk soil respiration under warming.

The fundamental difference between the two interpretations stems from viewing soil res-

piration as derived from a single pool or multiple pools. Karhu et al. (2014) established two

criteria for defining an enhancing microbial community response to warming: 1) a faster

proportional decrease of respiration rate with cumulative carbon loss for cooled soils, and

2) lower respiration rates of rewarmed soils compared to the control at the same amount

cumulative carbon loss. They concluded that microbial community responses predominantly

enhanced temperature sensitivity under warming. Such conclusion is extricably tied to the

dynamic relationship between available carbon pool size and respiration rate prescribed by

the Q model (Ågren & Bosatta, 1996). The Q model is a single carbon substrate pool model

that includes the effects of substrate quality on decomposition kinetics. For the Q model to

exhibit the enhancing response, a change in one or more parameters that were synonymous

with microbial community responses must occur.

We showed that the pattern of soil respiration following the cooling and rewarming treat-

ments could also be generated by a two-pool model without transfer among pools (Fig.

4.5). Specifically, the enhancing responses, which were observed for the majority of soils in

the experiment, could occur if the substrate with higher activation energy has lower res-

piration rate (i.e. Ea1 > Ea2 and k1(Tcontrol) < k2(Tcontrol)) (Table 4.1). The reason such
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responses arose is that substrate with higher activation energy experienced a larger propor-

tional decrease in decay rate when cooled (Davidson & Janssens, 2006; Sierra, 2012). As a

result, the proportion of respiration derived from substrates with higher activation energy

and slower decomposition rate was lower, and the proportion of these substrates in total soil

organic matter was greater in the cooled soils than the control. Because respired soil carbon

was derived more from the fast decomposing substrates under cooling treatment, soils in

the cooling treatment experienced a more rapid proportional decrease in total respiration

rates as soil carbon got respired and lower respiration rates following rewarming. Evidently,

the negative correlation between activation energy and reaction rate is key for generating

the enhancing response in the two-pool model. Such negative correlation is consistent with

previous studies based on enzyme assays (Lehmeier et al., 2013) and soil incubations (Fierer

et al., 2005; Karhu et al., 2010; Craine et al., 2010). Thus, our findings showed that the two

pool model, with realistic parameters consistent with previous research, offered a plausible

explanation for the observed enhancing responses in this incubation experiment.

Whether viewing soil respiration as an aggregated process or not has generated a lot of

debate in the literature on what drives the observed changes in temperature sensitivity of

soil respiration. When soil respiration is viewed as derived from a single pool, changes in

temperature sensitivity is often interpreted as an indication of changes in the decomposer

community. In contrast, when viewing soil respiration as an aggregated process, changes in

the relative proportion of substrate pools may explain variation in the temperature sensi-

tivity of respiration. For example, Luo et al. (2001) attributed the warming-induced decrease

in temperature sensitivity of bulk soil respiration to acclimation while Kirschbaum (2004)

suggested that fast depletion of labile substrates in response to warming was an equally

plausible mechanism. Constant decomposition rate over a range of temperatures may be

interpreted as the insensitivity of organic matter decomposition to temperature (Giardina

& Ryan, 2000), but could also occur when multiple substrates with distinct temperature

sensitivities simultaneously decompose (Davidson et al., 2000; Knorr et al., 2005).
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Although viewing soil respiration as derived from one pool or multiple pools may both

reasonably explain the same pattern of temperature sensitivity observed in an experiment,

the different inferred mechanisms could lead to considerable differences in the predicted

soil carbon dynamics under future climate scenarios. For example, modeling studies showed

that explicitly incorporating how enzymatic kinetics and microbial carbon use efficiency

respond to warming leads to substantial differences in predicted soil carbon stocks compared

to the prediction purely based on the kinetic properties of soil carbon substrates (Allison

et al., 2010; Wieder et al., 2013, 2015; Luo et al., 2016). Therefore, it is important to make

comprehensive and robust inferences on what processes drive the variations in temperature

sensitivity. As our study demonstrated, it is at least necessary to consider a multi-pool model

as a candidate model describing the temperature sensitivity of soil respiration to adequately

access the confidence and uncertainty in the inferred mechanisms. In addition, our findings

suggest that respiration data along are unlikely to be sufficient to uniquely identify whether

changes in temperature sensitivity of soil respiration is driven by microbial mechanisms or

changes in substrates composition, even in a specifically designed experiment as in Karhu

et al. (2014). Experimental approaches to quantifying soil microbial dynamics and the kinetic

properties of biochemical processes involved in soil respiration could be key to elucidating

mechanisms driving the temperature dependence of soil respiration (Billings et al., 2015).

Conclusions

In conclusion, we demonstrated through numerical simulations and analyses of existing data

sets the importance of viewing soil respiration as an aggregated process. We showed that

aggregation over space influences activation energy. In particular, the spatial variability in

Ai and Eai for the Arrhenius equation describing small patch scale respiration, and the cor-

relation between Ai and Eai determine the differences between aggregated activation energy

and the small scale average activation energy. Practically, this suggests that quantifying the
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spatial variability of patch scale parameters (Ai and Eai) in the Arrhenius equation is crit-

ical when trying to use small scale measurements to infer the temperature sensitivity on a

large scale. The theoretical analyses provide a quantitative method to relate small scale mea-

surements to large scale temperature sensitivity. We further showed that incorporating the

dynamics of multiple substrate pools does not influence the effects of aggregation over space,

suggesting that the difference in activation energy when aggregating over space will likely

remain the same in a warming world. We also showed that aggregation over time does not

create a consistent trend of deviation in activation energy. This means that activation energy

quantified based on short term measurements could be directly applied to describing the

temperature dependence on longer time scales. Finally, explicitly considering the kinetics of

heterogeneous soil carbon substrate pools may not only explain commonly observed relation-

ship between temperature sensitivity and temperature, but also influence the interpretation

of observed changes in temperature sensitivity in experiments. Collectively, these findings

suggest that soil respiration is an inherently aggregated process. Recognizing such fact as a

candidate conceptual model when designing experiments and interpreting experimental data

is important.
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Appendix

Derivation of activation energy when aggregating over space

We first state the following properties that establish the relationship of mean or variance

between normal and log-normal distributions. These properties were used in the derivation of

activation energy when aggregating over space. First, if random variable x follows a normal

distribution N(µx, σ
2
x), e

x follows a log-normal distribution with mean eµx+
σ2x
2 and variance

(eσ
2
x−1)eµx+

σ2x
2 . Second, if random variable y follows a log-normal distribution with mean µy

and variance σ2
y, log(y) follows a normal distribution with mean log(µy)− 1

2
log(

σ2
y

µ2y
+ 1) and

variance log(
σ2
y

µ2y
+ 1). Third, if variable x and y follow a joint normal distribution, any linear

combination of x and y, ax+ by, follows a normal distribution N(aµx + bµy, a
2σ2

x + b2σ2
y +

abρxyσxσy), where µx is the mean of x, µy is the mean of y, σx is the standard deviation of

x, σy is the standard deviation of y, and ρxy is the correlation coefficient between x and y.

Following equation 4.6, Ea,agg is calculated as

Ea,agg =
cov(log(Aie

−Eai
RT ), 1

T
)

var( 1
T

)
(−R).

Thus, quantifying Ea,agg requires an explicit expression of Aie
−Eai
RT . Due to the nonlinearity

of Arrhenius equation, using the Delta methods to approximate respiration when activation

energy is heterogeneous is inaccurate. Thus, we took an alternative approach. We made

assumptions about the distributions of Ai and Eai that allow us to derive Aie
−Eai
RT analytically.

We assumed:

Eai ∼ N(Eai, σ
2
e); (4.19)

Ai ∼ logN(Ai, σ
2
A), (4.20)

where N stands for normal distribution, logN stands for log-normal distribution, σe and σA

are standard deviations of Eai and Ai respectively. Based on the definition of log-normal dis-

tribution, the logarithm of a random variable following a log-normal distribution is normally
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distributed:

log(Ai) ∼ N
(

log(Ai)−
1

2
log(

σ2
A

Ai
2 + 1), log(

σ2
A

Ai
2 + 1)

)
. (4.21)

We further assumed that log(Ai) and Eai follow a joint normal distribution. As a property

of multivariate normal distribution, log(Ai)− Eai
RT

, a linear combination of log (Ai) and Eai,

follows a normal distribution:

log(Ai)−
Eai
RT
∼ N

(
log(Ai)−

1

2
log(

σ2
A

Ai
2 + 1)− Eai

RT
,

log(
σ2
A

Ai
2 + 1) +

σ2
e

R2T 2
− ρ σe

RT

√
log(

σ2
A

Ai
2 + 1)

)
(4.22)

Because the exponential of a normally distributed random variable follows a log-normal

distribution, Aie
−Eai
RT = elog(Ai)−

Eai
RT follows a log-normal distribution, and the mean of the

log-normal distribution is

Aie
−Eai
RT = exp

(
log(Ai)−

Eai
RT

+
1

2

σ2
e

R2T 2
− 1

2
ρ
σe
RT

√
log(

σ2
A

Ai
2 + 1)

)
(4.23)

Plug equation 4.23 in equation 4.4, we obtain the expression for Ea,agg shown in equation

4.7:

Ea,agg = Eai +
1

2
σe

[
ρ

√
log(

σ2
A

Ai
2 + 1)− σe

R

cov( 1
T 2 ,

1
T

)

var( 1
T

)

]
.

Bayesian parameter estimates for the multiple pool models

We demonstrate the details of the Bayesian parameter estimate procedure for the two pool

without transfer model. Let θ be the vector of parameters. For a two pool without transfer

model, θ= (k1, k2, Ea1, Ea2, σ)T . For a given set of observed respiration rate over time y =

(yt1 , yt2 , ..., ytn)T , we assumed independent and identically distributed normal observational

errors. Thus, the likelihood for any set of parameter is

`(θ) =
tn∏
t=t1

1√
2πσ

e−
(yt−1T eAK(T )t)2C(0)

2σ2 . (4.24)

Let p(θ) be the prior probability density of parameter θ. Based on Bayes’ theorem, the

posterior probability density q(θ) is

q(θ) ∝ `(θ)p(θ) (4.25)
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Let g(θ′|θ) be the proposal density in the Metropolis–Hasting algorithm. We used a normal

distribution centered at θ for g(θ′|θ). Given that a normal proposal density is symmetric,

g(θ′|θ) = g(θ|θ′). Thus, the acceptance ratio is

α(θ′|θ) = min
(
1,
q(θ′)

q(θ)

)
. (4.26)

Then, sampling the posterior distribution of parameter θ using the Metropolis–Hasting algo-

rithm can be done in the following steps. First, start with an arbitrarily chosen parameter θ

and propose a new value of θ′ based on the proposal density g(θ′|θ). Based on the adaptive

Metropolis–Hasting algorithm by Haario et al. (2001), we set the variance–covariance matrix

of the proposal density as (2.38)2Σ/d, where Σ is the variance–covariance matrix of θ based

on the sampled values in the Markov Chain and d is the number of parameters. Second,

calculate the acceptance ratio α (equation 4.26). Third, move to the proposed value θ′ with

probability α. These steps are repeated for enough iterations until we reached stationarity.
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Table 4.1: Estimates of decomposition rates and activation energies for the two pool model

without transfer. Type of response following the cooling and rewarming treatments are

defined as Karhu et al. (2014). Unit for the decomposition rates k1 and k2 is day−1. Unit for

the activation energy Ea1 and Ea2 is KJ mol−1.

Soil ID k1 k2 Ea1 Ea2 Type of response

5E2 1.68× 10−3 6.74× 10−6 66.85 100.01 Enhancing

2H 2.60× 10−4 1.34× 10−6 35.32 211.97 Enhancing

1D 3.04× 10−4 5.82× 10−6 14.46 170.89 Enhancing

1H 2.07× 10−4 4.87× 10−6 19.77 230.39 Enhancing

1C 2.82× 10−4 3.45× 10−6 19.85 207.06 Enhancing

1A 7.32× 10−4 0.58× 10−6 156.59 154.53 No response

3A 3.18× 10−4 1.79× 10−6 261.20 19.96 Compensatory

2D 1.12× 10−3 3.36× 10−6 173.69 82.59 Compensatory

4G 1.92× 10−3 1.01× 10−5 100.96 80.06 Compensatory
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Figure 4.1: The temperature sensitivity of average soil respiration within a spatial extent

and the average patch activation energy when the correlation between Ai and Eai (ρ) was

positive or negative. The dashed line is the 1:1 line.
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Figure 4.2: Estimated activation energy based on the average respiration rate and tem-

perature over different number of days using data from (a) Harvard forest, (b) Tibet alpine

grassland, (c) simulated respiration using Harvard Forest temperature, and (d) simulated

respiration using Tibet grassland temperature. Shaded areas are 95% confidence interval

for the estimated activation energy. In each panel, each line corresponds to data from one

chamber
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Figure 4.3: Relationship between activation energy and temperature based on respiration

data expressed in the unit of (a) respiration per unit soil carbon and (b) total respiration

from all substrate pools.



129

35 40 45 50 55 60 65

35
40

45
50

55
60

65

Eai (KJ/mol)

E
a,
ag
g 
(K
J/
m
ol
)

Current
Warming

Figure 4.4: Effects of aggregation over space on temperature sensitivity when respiration

from each patch is consisted of respiration from multiple substrate pools. Black dots and

red dots represent the aggregated activation energy and patch average activation energy at
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Figure 4.5: Two pool model fit to the incubation data by Karhu et al. (2014). Each panel

shows data from incubation of one soil sample. Sample number for each soil matches the

numbers in Karhu et al. (2014)



Chapter 5

Conclusions

Examining patterns and mechanisms that explicitly consider scale is key to developing a

robust predictive theory for ecology, as almost all ecological problems are in the context of a

particular spatial and temporal scale (Wiens, 1989; Levin, 1992). Ideally, the scale of study

should match the scale of intended application (Hewitt et al., 2007). When this is infeasible,

understanding how patterns and mechanisms observed on one scale translate to the scale

of interests becomes critical. Throughout this dissertation, I strived to address the issue of

scale from these two approaches. In chapter 2, I used a dynamic model of dissolved oxygen

to directly estimate the temperature sensitivity of whole-stream metabolism. The modeling

approach allowed me to quantify the temperature sensitivity on the intended spatial scale.

In chapter 3, I investigated the role of spatial heterogeneity in driving differences in stream

metabolism across scale. In chapter 4, I explored how aggregation over space, time, and

heterogeneous carbon substrate pools influenced the perceived temperature sensitivity of

soil respiration. Collectively, these chapters share a common theme: ecosystem carbon flux

is the sum of its parts, but the property of carbon flux, such as the temperature sensitivity,

is not directly transferrable from the parts to the whole system.

Central to the explicit consideration of scale is a dynamic and mechanistic view of

ecosystem processes (Denny & Benedetti-Cecchi, 2012). The mechanistic view is neces-

sary for developing the modeling approaches to quantify temperature sensitivity of stream

metabolism on reach scale, which is difficult for direct experimental work. It also served

as the foundation to explicitly link metabolism across spatial scales, or link temperature

sensitivity of soil respiration across space, time, and ecological organizations. Based on the
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mechanistic view of ecological processes, this dissertation research followed two guiding prin-

ciples: first, inference and prediction were done in a consistent and rigorous way based on

a mechanistic understanding of the ecological processes (Clark et al., 2001; Dietze et al.,

2018). For example, the estimates of the temperature sensitivities of GPP and ER, and the

prediction of warming effects on stream metabolism were both based on the mechanistic

description of DO dynamics. Second, ecological patterns should be tested against predic-

tions derived explicitly from the mechanistic descriptions of the processes involved instead

of testing bivariate correlation empirically. For example, the difference in metabolism across

scales and its expected relationship with spatial heterogeneity is first derived from theoretical

analyses and then tested against empirical data. Such approach allows us to examine the

hypothesized pattern with multiple data sets and reduce the risk of data dredging.

Finally, this dissertation research provided several unique contributions to the research on

carbon dynamics. In particular, to my best knowledge, chapter 2 provided the first borad scale

quantification of the temperature dependence of stream metabolic balance, and presented

the pattern of warming-induced changes in metabolic balance that has not been discovered

before. Chapter 3 is the first cross-biome study that demonstrated how the physiology of

primary production and respiration determined the difference in metabolism across scales.

Chapter 4 made an conceptual synthesis and provided a potential unifying framework to

explain commonly observed pattern of the temperature sensitivity of soil respiration. The

progresses made in this dissertation shed lights to several future research directions.

One area for future investigation is to integrate stream and adjacent terrestrial ecosystems

when evaluating the feedback between carbon cycle and climatic warming. This dissertation

work predicted how warming is likely to influence metabolic balance in streams at the cur-

rent state of the stream ecosystems. However, changes in streams and adjacent terrestrial

ecosystems concurrent with warming may complicate this prediction. For example, warming

is expected to change the quantity and quality of allochthonous carbon inputs by stimulating

soil organic matter decomposition (Freeman et al., 2001) and altering riparian communities



133

(Kominoski et al., 2013). Thermal adaptation of benthic communities (Padfield et al., 2016,

2017) and changes in hydrology or nutrient availability (Cross et al., 2015; Demars et al.,

2015) may further amplify or damp the predicted convergence of metabolic balance. Devel-

oping more integrative models that incorporate the warming response of stream metabolic

balance identified in this study will improve our ability to quantify the feedback between

carbon dynamics and future climate changes.

Another future directions is to link reach scale and watershed scale measurements. While

this dissertation research quantified how habitat scale metabolism was linked to reach scale

metabolism, it remains a challenge to scale up reach scale measurements to the watershed or

landscape scale. To date, most watershed scale models are based on simple empirical relation-

ships that relate easily measurable abiotic quantities to the biological processes of interests.

Realistic parameterization of biological processes throughout the watersheds remains rare.

However, the more extensive application of automated sensors and development of compu-

tational approaches to data–model integration approach provide a promising way to more

realistically parameterize reach scale data over sufficient spatial extent and resolution, and

validate such parameterization against observations made on the watershed or landscape

scale (Luo et al., 2011; Peng et al., 2011). For example, our modeling approach to quantify

reach scale temperature sensitivity of GPP and ER, coupled with data from spatially dis-

tributed DO sensors and watershed models, may allow for the quantification of watershed

scale carbon budget in a warming climate.

Finally, modeling soil carbon dynamics at regional or global scales in a warming climate

remains a grand challenge. Different mechanistic descriptions of soil carbon dynamics lead

to substantially different predictions of soil carbon flux and storage in a warming climate

(Allison et al., 2010; Wieder et al., 2013). Debates on what mechanisms drive the temperature

dependence of soil organic carbon decomposition have persisted in the literature for years,

yet we have not reached a consensus on the best way to conceptualize and model soil carbon

dynamics (Wieder et al., 2015; Luo et al., 2016). This dissertation research demonstrated
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that shifts in the composition of carbon substrate pools as a result of the inherent differences

in the temperature sensitivity among substrates is a potential explanation for many observed

temperature-activation energy relationship. Thus, pool sizes and flux data alone are unlikely

to be sufficient to reveal the mechanisms driving the soil carbon dynamics uniquely. Studies

that directly quantify microbial properties, either in the field (Frey et al., 2013) or in highly

controlled experiments (Lehmeier et al., 2016), may be key to advance our understanding in

this area.

All together, this dissertation examined the patterns, causes, and consequences of the

scale dependence of ecosystem carbon flux and highlighted the scale dependence of ecosystem

carbon flux. The results provided novel insights into the differential impacts of climate

changes on ecosystem carbon flux on different spatial and temporal scales, and have also

critically allowed me to establish the link between carbon flux on different scales. The find-

ings suggest that properties of carbon flux, such as the temperature sensitivity, changes

across scales in the presence of heterogeneity and nonlinearity. Accounting for variance is

key to correctly link and translate ecological patterns across scales, and explicitly formal-

izing the dynamics of the ecological processes of interests is a powerful and versatile tool to

address the issue of scale in ecosystem ecology.



135

References

Allison, S.D., Wallenstein, M.D. & Bradford, M.A. (2010). Soil-carbon response to warming

dependent on microbial physiology. Nature Geoscience, 3, 336–340.

Clark, J.S., Carpenter, S.R., Barber, M., Collins, S., Dobson, A., Foley, J.A., Lodge, D.M.,

Pascual, M., Pielke, R., Pizer, W. et al. (2001). Ecological forecasts: an emerging imper-

ative. science, 293, 657–660.

Cross, W.F., Hood, J.M., Benstead, J.P., Huryn, A.D. & Nelson, D. (2015). Interactions

between temperature and nutrients across levels of ecological organization. Global Change

Biology, 21, 1025–1040.

Demars, B.O., Thompson, J. & Manson, J.R. (2015). Stream metabolism and the open

diel oxygen method: Principles, practice, and perspectives. Limnology and Oceanography:

Methods, 13, 356–374.

Denny, M. & Benedetti-Cecchi, L. (2012). Scaling up in ecology: mechanistic approaches.

Annual Review of Ecology, Evolution, and Systematics, 43, 1–22.

Dietze, M.C., Fox, A., Beck-Johnson, L.M., Betancourt, J.L., Hooten, M.B., Jarnevich, C.S.,

Keitt, T.H., Kenney, M.A., Laney, C.M., Larsen, L.G. et al. (2018). Iterative near-term

ecological forecasting: Needs, opportunities, and challenges. Proceedings of the National

Academy of Sciences.

Freeman, C., Evans, C., Monteith, D., Reynolds, B. & Fenner, N. (2001). Export of organic

carbon from peat soils. Nature, 412, 785–785.

Frey, S.D., Lee, J., Melillo, J.M. & Six, J. (2013). The temperature response of soil microbial

efficiency and its feedback to climate. Nature Climate Change, 3, 395.



136

Hewitt, J.E., Thrush, S.F., Dayton, P.K. & Bonsdorff, E. (2007). The effect of spatial and

temporal heterogeneity on the design and analysis of empirical studies of scale-dependent

systems. The American Naturalist, 169, 398–408.

Kominoski, J.S., Follstad Shah, J.J., Canhoto, C., Fischer, D.G., Giling, D.P., González, E.,
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