
FINDING OPTIMAL SPANNING K-TREES IN BACKBONE GRAPHS

by

Abdul Samad

(Under the Direction of Liming Cai)

Abstract

Many intractable problems on graphs are polynomial time solvable when the graphs have bounded

treewidth. An important class of the graphs with bounded treewidth is called k-trees, which are

formed by starting with a k-clique and then repeatedly adding vertices in such a way that each added

vertex has exactly k neighbors that form a new clique. Finding spanning k-trees has applications in

networks where it was first studied in networks, and was later shown to be NP-Complete even for

k=2.

Biomolecule (protein, RNA) structure prediction is a grand challenge which leads to many com-

putation methods in bioinformatics. We model the biomolecular structure prediction problem as

finding the maximum spanning k-tree on the backbone graphs, where the backbone graphs are char-

acterized by a linear sequence of the vertices. However, most of the traditional methods are not

powerful to search through the huge conformation space. This implies a strong demand for more

efficient models.

We prove that the problem is W[1]-hard for the objective function defined on the cliques of

the input graph. For solving the problem, we show that the problem can be solved in time

O(k.(n)k+1(k + 1)k+2) for every given k and we give evidence that our algorithm is very likely

to be optimal. Our algorithm also works for different objective function defined over the cliques of

the k-tree, which enables pertinent characterizations of real world problems.

INDEX WORDS : K-tree, Tree Decomposition, Dynamic Programming, Optimal .

FINDING OPTIMAL SPANNING K-TREES IN BACKBONE GRAPHS

by

Abdul Samad

B.S.C.S Balochistan University of Information and Technology &

Management Sciences, Pakistan, 2006.

A Dissertation submitted to the graduate faculty

of the university of Georgia in partial fulfillment

of the

requirement for the degree

DOCTOR OF PHILOSOPHY

ATHENS, GA

2013

© 2013
Abdul Samad

All Rights Reserved

FINDING OPTIMAL SPANNING K-TREES IN BACKBONE GRAPHS

by

Abdul Samad

Major Professor: Liming Cai

Committee: Robert W.Robinson

E. Rodney Canfield

Russell L. Malmberg

Electronic version Approved:

Maureen Grasso

Dean Of Graduate School

The University of Georgia

August 2013

Dedication

This is dedicated to my wife, father and mother.

iv

Acknowledgment

I am thankful to to my committee members. I wish to express my sincere gratitude to Liang Ding

and Dr. Goujun Li for providing helpful tips.

v

Contents

Acknowledgment v

List of Figures ix

List of Symbols 1

1 Introduction 1

1.1 Motivation 2

1.2 Contribution of the Dissertation 3

2 Preliminaries 5

2.1 Graph Theory 5

2.2 Properties of k-trees 7

2.3 Maximum Spanning k-trees 9

3 Properties of k-trees 12

4 Algorithms for MskT and MskT-C 17

4.1 2-trees 18

4.2 Finding Optimal k-trees for k=3 28

4.3 Algorithm Analysis 47

5 Hardness 53

6 K-trees as Stochastic Context Sensitive Grammars 56

6.1 Relationship of SCSGs with Backbone k-trees 57

6.1.1 Faithful k-trees and backbone k-trees 58

vi

6.2 CSGs for 2-trees 60

6.3 SCS Language Models 61

6.3.0.1 Probability distributions of strings 61

6.3.0.2 Algorithms 65

Conclusion 68

References 69

vii

List of Figures

4.1 2-tree 20

4.2 P{xi, xk, xk} 22

4.3 L{xi, xk, xk} 23

4.4 U{xi, xk, xk} 24

4.5 2-children 29

4.6 3-children 30

4.7 4-branches 30

4.8 M(1,1,1,1,r=1)(xi, xj , xm) 31

4.9 M(1,0,0,0,r=1)(xi, xj , xm) 35

4.10 M(0,1,0,0,r=2)(xi, xj , xm) 36

4.11 M(0,0,1,0,r=3)(xi, xj , xm) 37

4.12 M(0,0,0,1,r=4)(xi, xj , xm) 38

4.13 M(1,1,0,0,r=1){xi, xj , xm} 39

4.14 M(1,1,0,0,r=2){xi, xj , xm} 40

4.15 M(0,1,1,0,r=2){xi, xj , xm} 41

4.16 M(1,0,1,0,r=1){xi, xj , xm} 42

4.17 M(1,0,0,1,r=1){xi, xj , xm} 43

4.18 M(1,1,1,0,r=1){xi, xj , xm} 45

4.19 illustrates (a) duplicate siblings in a k-tree, and (b) transformation of the k-tree to

one without duplicate sibling 50

6.1 (a) “Parallel” and “nested” relationships between letters on string abcacbacafadeaeda

of length 17, characterizable with SCFG; (b) “crossing” relationships as the result of

including additional (red color) relationships, which cannot be modeled with SCFG. 57

viii

6.2 (a) A 3-tree faithful to a string of length 7, (b) after vertex 4 is added to the k-tree

in (a), it becomes a backbone 3-tree for the string, and (c) a 3-tree but not faithful

to the string. Bold indicates backbone edge. 59

6.3 One possible syntactic structure of 2-tree for string ACGUAC 61

6.4 (a) Illustration for generation of a 3-tree with 7 vertices (b) Tree topology represen-

tation of the 3-tree in (a). 62

ix

Chapter 1

Introduction

It has been observed that many important intractable problems on graphs are polynomial

time solvable when the graphs are constrained to having small treewidth [40]. The notion

of treewidth, introduced by Robertson and Seymour [34], has many important implications

in algorithm design and computational complexity, resulting efficient algorithms that can

recognize graphs of bounded treewidth, determine bounds of treewidth for various classes of

graphs, and construct graph tree decompositions [32, 33]. An important class of constrained

graphs is the class of k-trees, where integer k ≥ 1, which can be defined recursively as follows:

(1) A k-clique is a k-tree of k-vertices; and (2) connecting a new vertex to any k-clique in

an existing k-tree of n vertices forms a k-tree of n + 1 vertices. When k = 1, a k-tree is a

tree in the general sense. Since the treewidth of a k-tree is bounded by k, many NP-hard

problems are solvable on k-trees in time O(f(k)P (n)), where P (n) is a polynomial the input

size n and f(k) is some function, often exponential such as 2O(k) [39, 37, 38, 36, 35].

An early application for k-tree was the design of reliable networks, for instance minimal

IFI networks are exactly 2-trees [47, 48]. It was shown [12] that deciding whether a graph

contains a spanning k-tree is NP-complete, for each fixed k ≥ 2. The problem remains NP-

complete for restricted classes of graphs such as split graphs, graphs with maximum degree

3k + 2, or planar graphs with maximum degree 6 [13].

1

1.1 Motivation

Biological macromolecules such as protein or RNA are building blocks of an organism. Know-

ing the structure of such a molecules is important for understanding it’s function [15] which

may allow us to comprehend roles of different biomolecules and thus overall biological pro-

cess. Such knowledge is important, for example in drug discovery, to design new molecules

with desirable functions [1, 2].

Experimentally determining the structure of a protein or RNA using NMR and X-ray

crystallography is a complicated and laborious task which is time-consuming and may not

yield the structures with high throughput processes [3]. Computational determination of

biomolecule structure based on the sequence of residues, and possibly other easily obtain-

able information, is becoming useful and successful in a number of biomecule research

[4]. However, often such structure prediction problems are computationally intractable

[6, 7, 8, 5, 11].

A single stranded biomolecule is a linear sequence X = x1x2...xn of length n consist of n

residues xi ∈ Σ; the sequence is also called primary structure of the molecule. For RNA the

alphabet is Σ = {A, C, G, U}, and for proteins the alphabet is the set of 20 amino acids.

The interactions due to chemical bonds among the residues cause the molecule sequence

to fold back onto itself [9, 10]. Folding causes two higher level structures, the secondary

structure that is due to local interactions and tertiary structure because of the additional

global interactions. This dissertation was first motived by the task to predict the structure

of RNA given the primary structure as input. However, the work applies to prediction of

proteins structure as well.

In the RNA secondary structure, canonical base pairs between residues, such as the

Watson-Crick base pairs (AU and GC) and wobble pair GU, almost always occur in the

nested fashion [46]. Non-nested base pairs give rise to pseudoknots. Residue interactions

consume energy; a secondary structure with the minimum free energy is the most stable

2

structure for a given sequence. For an RNA sequence of 200 base long, there are over 1050

possible base paired structures [50]. Since not all of these structures are biologically relevant,

the biologically correct structures need to be distinguished from incorrect ones. Computa-

tionally, this is done by introducing an objective a function which assigns higher scores

to biologically more relevant structures. Desirable algorithms are sought to evaluate and

identify the maximum score corresponding to the most plausible structure.

There have been a number of algorithms developed for RNA secondary structure predic-

tion. For example, Nussinov’s folding algorithm uses recursion to calculate the best structure

for every smaller sub-sequences, and works towards larger sub-sequences [16]. To achieve the

fold stability, Nussinov’s algorithm computes to maximize the total number of base-pairs.

Zuker et al. [17] proposed an extended approach in which the free energy of secondary struc-

ture is calculated from the approximation of sums of contributions of the structural units

such as stems and loops which are present in the structures. Current programs such as

Mfold [19] and RNAfold [18] all use this strategy.

Programs such as PFold [26, 21] and CONTRAfold [24] have been developed from the

probabilistic models for RNA structure [27, 23]. Stochastic context free grammars (SCFGs)

have been used to model the secondary structure of RNA. An SCFG is formed from a CFG

by associating a probability distribution with the productions of each nonterminal. Com-

pounding the probabilities of rules used in a specific generation process for a string gives rise

to the probability for the specific syntactic structure admitted by the string. Computing the

secondary structure with the maximum probability can be accomplished by well-known CYK

algorithm [25, 22]. However, these mentioned algorithms do not consider the psuedoknots.

1.2 Contribution of the Dissertation

This dissertation proposes a new algorithm for finding optimal spanning k-trees on given

3

constrained graph which can also be used for de novo structure prediction for biomolecules

(i.e., RNA and protein). The research was motivated by the investigation of the interaction

topology graph model for biomolecules [14]. In this model, the vertices in the graph represent

nucleotides and edges represent potential interactions among nucleotides. The problem of

RNA structure prediction for a given RNA molecule sequence is thus formulated as finding

an optimal spanning k-tree from the corresponding interaction topology graph. This is based

on the observation that most of the RNA structures have small treewidth [49].

In the second chapter we will define some graph theory concepts which will be used in

the remaining chapters. We will formally define backbone graphs to be graphs containing

the primary structure. We will pose the optimization problem as that of finding a spanning

k-tree containing the backbone while maximizing an objective function of a general form.

In Chapter 3 we discuss the properties of spanning k-trees which contains the backbone

edges. We will specialize the discussion to the 2-trees (k = 2). A O(n3) time algorithm will

be presented for finding an optimal spanning 2-tree for a given graph.

In chapter 4 the algorithm for 2-tree is generalized and extended for k-trees. Complete

details are given for 3-trees, and a framework is presented for k > 3. An algorithm for

finding a optimal spanning k-tree is given for given graph G = (V, E) and an integer k, with

running time O(nk+1(k + 1)k+2k).

In chapter 5 we will discuss the hardness results for spanning k-tree problem. W[1]

hardness result of the problem is also discussed.

In chapter 6 a new stochastic model is introduced for processing a mildly context sensitive

language. The modeled structures are k-trees, which can be defined with recursive rules. We

are going to associate a probability distribution with syntactic rules and use the algorithm

developed in the chapter 4 for statistical analysis with k-tree structure.

4

Chapter 2

Preliminaries

2.1 Graph Theory

In this section, some of the basic notation of graph theory is discussed. Graphs are math-

ematical structures which are used to model pairwise relations between objects. They have

proven to be an effective modeling tool in many disciplines, where vertices in the graph

model are objects in the problem domain, and the edges between the vertices are used to

model the corresponding interactions among the objects.

Definition 2.1.1. A graph G is defined as tuple (V, E), where V is the set of vertices and

E is the set of edges. An edge e = {u, v} is an unordered pair of distinct vertices; thus the

graph we consider are always simple (no loops or multiple edges) and undirected.

Given an edge e = {u, v} we say that u and v are the endpoints of e. A vertex is incident

to an edge if it is one of the endpoints of that edge, so for any given two distinct vertices

in a graph, we say that they are adjacent if they are both incident to a common edge. If

there is an undirected edge {u, v} in G, we say that u and v are adjacent. Often {u, v} is

abbreviated as uv. The vertices adjacent to a vertex u are called its neighbors. A path in

G is a non-empty graph P = (V ′, E ′), V ′ ⊆ V and E ′ ⊆ E, where V ′ = {v1, v2, . . .,vk},

E ′ = {v1v2, v2v3, . . . , vk−1vk} and the vi are all distinct. A cycle C = (V ′, E ′) is defined

similarly with the exception that v1 = vk. Graph G is called connected if there is path

between every pair of vertices in G. A graph is said to be disconnected if it is not connected.

A tree T is a connected graph with no cycles. In a rooted tree one of the vertices is

distinguished as the root. In a rooted tree, for any two neighboring vertices the one closer

5

to the root is called the parent and the other is called the child.

Given a graph G, a vertex v ∈ V , and an edge e ∈ E, then G − v denotes the graph

(V \ {v}, E \ {e ∈ E : e is incident to v}) and G − e denotes the graph (V,E \ {e}). These

two operations are called deleting a vertex and deleting an edge, respectively. Any graph

that can be obtained via these two operations is a subgraph of G. If all the vertices of the

graph G = (V, E) are pairwise adjacent, then G is called complete and is denoted by Kn

where n is the number of vertices. E.g., K2 is an edge and K3 is a triangle. A clique is a

complete subgraph. A subgraph G′ = (V ′, E ′) of G = (V, E) is called induced if E ′ contains

all of the edges in E which have both endpoints in V ′. A set S ⊂ V is a separator of of the

graph G = (V, E) if the subgraph of G induced by V − S is disconnected. The set S is a

uv-separator if u and v are in different connected components of subgraph of G induced by

V −S. A uv separator S is minimal if no subset of S separates u and v. The book by Diestel

[51] is a good source of further terminology and information about the graph theory.

It is often the case that a problem which is intractable for general graphs becomes easy

to solve when restricted to graphs with simple structures, such as trees. The reason can

be intuited in the following way: Let T be rooted tree and Tu denote the subtree induced

by u and its descendants. Then if v1, v2, . . . , vk are the children of u, the solution of Tu
is obtained from solutions on Tv1 , Tv2 , . . . , Tvk

considering how they interact at u. Many

NP-hard graph problems can be solved efficiently when the underlying graph is restricted to

be a tree or tree-like structure. The notion of Tree-decomposition was introduced to view

sparse graphs as tree like structures.

Definition 2.1.2. A tree-decomposition of a graph G = (V, E) is a pair

({Xi|i ∈ I}, T = (I, F))

where {Xi|i ∈ I} is a family of subsets of V , one for each node of T , and T is a tree such

that

6

1.
⋃
i∈I Xi = V ;

2. For each edges {u, w} ∈ E, there is an i ∈ I with u ∈ Xi and w ∈ Xi;

3. For all i, j, k ∈ I: if j is on the path from i to k in T , then Xi ∩Xk ⊆ Xj.

The treewidth of a tree-decomposition ({Xi|i ∈ I}, T = (I, F)) is maxi∈I |Xi| − 1. The

treewidth of graph G is the minimum treewidth over all possible tree-decompositions of G

[52]. Computing the treewidth and finding a corresponding tree-decomposition of a graph is

an NP-hard problem [55].

Research in algorithmic graph theory has revealed that many hard problems are easy when

restricted to graphs of small treewidth. This applies to classes of graphs with the property

that there is an upper bound on the tree width of the graphs in that class. Examples of such

classes are trees (treewidth≤1), series parallel networks (treewidth≤2) and k-trees (treewidth

k) [54]. We will restrict our discussion from now on to k-trees.

2.2 Properties of k-trees

Definition 2.2.1. A k-tree is a graph that can be generated via the following rules [53].

1. A k-clique is a k-tree of k vertices.

2. A k-tree G on n+ 1 vertices (n ≥ k) can be obtained from a k-tree H with n vertices

by adding a new vertex and k edges which join it to some k-clique in H.

Definition 2.2.2. A partial k-tree is a subgraph of a k-tree.

7

Theorem 2.2.3. [55] A G is a partial k-tree if and only if G has tree width at most k.

Theorem 2.2.4. [13] Let k be a positive integer, T be a k-tree with n vertices, and v be a

vertex of T . Then the following are true;

• T contains no chordless cycle of length at least 4,

• T contains no clique of size (k + 2),

• T has exactly kn−
(
k+1

2

)
edges,

• T has exactly n− k cliques of size (k + 1),

• either T is a k-clique or every maximal clique of T is of size (k + 1), and

• the neighborhood of any vertex of T is (k − 1)-tree.

An early work on k-trees [53] characterized k-trees in terms of disconnection properties and

forbidden subgraphs.

Theorem 2.2.5. A graph G = (V, E) is a k-tree if and only if every minimal xy-separator

of G is k-clique.

Assume G = (V, E) is connected graph. Let S be a separator of G such that the induced

graph G(V −S) has two or more connected components, say Ci = (Vi, Ei). Then subgraphs

G(Vi ∪ S) are the leaves of G with respect to S [53].

Note: We will use the term branches as compared to leaves. Because leave is standard term

in graph theory used for the vertices with degree 1.

Theorem 2.2.6. [53] Let G = (V, E) be a k-tree with S a separation clique. Then each

8

branch of G with respect to S is a k-tree.

2.3 Maximum Spanning k-trees

From now any graphG = (V, E) on n vertices is assumed to have vertex set V = {x1, x2, . . . , xn}

or simply {1, 2, · · · , n} for convenience.

Definition 2.3.1. Let G = (V, E) be a graph. A spanning k-tree of G is a k-tree T ,

T = (V, E ′), with vertex set V and edge set E ′ ⊆ E.

There may be many spanning k-trees for a given graph. We can define various objective

functions over a spanning k-tree. The most straightforward objective function is the weight

sum of its edges. The problem to maximize this objective function can be expressed as

follows.

Problem: maximum spanning k-tree (MskT)

Input: Graph G = (V, E) with weight function w : E → R≥0, and integer k ≥ 1.

Output: A spanning k-tree which maximizes the sum of its edge weights.

The minimization version of this problem was suggested by Farley [47], and it was shown

by Bern [12] that the decision version of determining existence of a spanning k-tree is NP-

complete for each fixed k ≥ 2, for general graphs. We consider the maximum spanning k-tree

problem restricted to graphs and spanning k-trees which contain a specified Hamiltonian

path, called a backbone.

Definition 2.3.2. In an any graph G = (V, E) with V = {x1, x2, ..., xn}, the backbone is

the edge set B = {x1x2, x2x3, . . . , xn−1xn} or else the graph, (V, B). If B ⊆ E then G is

said to be a backbone graph or graph with backbone.

9

For our maximization problem the most general objective function considered is deter-

mined by a user defined non-negative weighting of the cliques. The weight for a graph is the

sum of the weights of the cliques.

Definition 2.3.3. Let clique(G) denote the set of non-trivial cliques in G and w a weight-

ing

w : clique(G)→ R≥0

then w is extended to an arbitrary subgraph H of G by setting

ŵ(H) =
∑

k∈clique(H)
w(k)

General maximum spanning k-trees with backbone (MskT-G)

Input: A complete backbone graph G = (V, E) with weight function w, integer k ≥ 1 and

objective function, where w : clique(G)→ R≥0.

Output: A backbone spanning k-tree, T such that ŵ(T) is maximized w.r.t objective func-

tion.

For convenience we will still call a problem MskT even it when it is restricted to backbone

graphs, as follows.

Maximum spanning k-trees edge-weighted with backbone (MskT)

Input: A complete backbone graph G = (V, E) with weight function w and integer k ≥ 1,

where w : E → R≥0.

Output: A backbone spanning k-tree, T = (V, F), F ⊆ E, such that ∑(x,y)∈F w(x, y) is

maximized.

10

In many applications, the weights defined on the cliques will be more interesting as the

weight function on the (k + 1)-clique may not simply be replaced with the sum of edge

weights in the clique. This is particularly true in the bio-molecule structure modeling for

which interaction energy function tend to be multi-bodies instead of binary. If clique(G)

denote only the set of (k + 1)-clique in G , we get another restricted version of the problem

expressed as follows

Maximum spanning backbone k-trees on weighted (k+1)-cliques (MskT-C)

Input: A complete backbone graph G = (V, E) with weight function w and integer k ≥ 1,

where w : clique(G)-clique→ R≥0.

Output: A backbone spanning k-tree, T = (V, F), F ⊆ E, such that∑τ∈T w(τ) is maximized,

where τ is (k + 1)-clique.

Since every spanning k-tree needs to include all the backbone edges, the total weight of

the backbone edges is invariant for the given graph when the objective is to maximize the

edge weight sum.

Proposition 2.3.4. In the computation of MskT, we can ignore the weights of B.

11

Chapter 3

Properties of k-trees

In this chapter we will discuss some of the properties of spanning k-trees, especially on

backbone graphs, which will facilitate discussion of algorithms for the problems MskT and

MskT-C.

We first introduce a representation for k-trees. From [53] we know that a k-tree T = (V, E)

cannot contain a (k + 2)-clique. An addition sequence for a k-tree T with n > k vertices is

a sequence of a (k + 1)-cliques

S =< κ0, κ1, . . . , κm > (m = n− k − 1)

where κ0 is the called base clique of the sequence and for each j > 0, κj is created through

replacing some vertex in some earlier (k+ 1)-clique by the new vertex [12]. That is, for each

j = 1, 2, ..., m, the clique κj is defined as

κj = κi \ {x} ∪ {y}

for some i < j such that x ∈ κi and y /∈ κl, ∀ l < j. This relationship will be dented by

κj = κi|xy .

Proposition 3.0 We define a rooted tree topology R(S) for a k-tree T from an addition

sequence S for T by taking, for each j > 0, the parent of κj to be κi for the largest i, i < j,

such that κj = κi|xy for some x and y. call κj a child of κi and κi the parent of κj.

We also define a descendent of κi to be a child of κi or, recursively, a child of a descendent

12

of κi. Let Uκi
= {v ∈ κ : κ is a descendent of κi}∪κi, i.e., the set of all vertices contained

in κi and its descendants. For the root clique κ0, Uκ0 = {1, 2, ˙..., n}. A special case of this

clique sequence is a k-path where i = j − 1 whenever κj = κi|xy .

Proposition 3.1. For κi, κj ∈ addition sequence for a k-tree, κj = κi|xy , where i < j then

the following properties hold

1. Uκj
⊂ Uκi

;

2. y ∈ Uκi
and x /∈ Uκj

;

3. for every child clique κl of κi, if l 6= j, then y /∈ Uκl
.

Definition 3.2 Children cliques of the same parent are called duplicate sibings if they have

a k-clique in common.

Note that due to Proposition 3.1 there will be no duplicate siblings in R(S) when S is an

addition sequence for a k-tree.

Proposition 3.3. Let S =< κ0, κ1, ..., κm > be an addition sequence for a k-tree G =

(V, E). Then

1. ∀v ∈ V, v ∈ κ for some clique κ in S.

2. ∀(u, v) ∈ E, (u, v) ∈ κ some clique κ in S.

3. For any pair of cliques κi and κj in the S, κi ∩ κj ⊆ κ for every clique κ on the path

between κi and κj in the tree induced by S.

13

Proof: (1) and (2) are obvious from the definition of a k-tree. For (3) by proposition 3.2 we

know that S defines a tree topology T . In T there exists unique undirected path P between

κi to κj and this path contains κ. For the contradiction we assume that there exists a vertex

x ∈ κi, κj but x /∈ κ. Since κ lies on this P , Uκ will contain at least one of κi, κj assume

κi ⊂ Uκ; so then there exists κm ⊂ Uκ where x was first introduced but x is introduced in

some κp where κp 6= κm because x ∈ κj, violating the generation of k-tree.

Now we will derive some of the properties of k-trees on backbone graphs.

Definition 3.4. Let κ be a clique in a spanning k-tree with backbone on n vertices and

v /∈ κ. Then the stretch of v in κ is the maximal set of consecutive vertices on the backbone

which contains v but none of the vertices in κ. We denote this set by stretch(κ, v) and call

it a κ-stretch.

For example, if κ = {x1, x2, ..., xk+1} with x1 < x2 < ... < xk+1, v /∈ κ and xi < v < xi+1

then for some i, stretch(κ, v) = {xi + 1, . . . , v − 1 , v , v + 1 , . . . , xi+1 − 1}. We consider

x0 = 0 and xk+2 = n+ 1 by convention in this context.

Proposition 3.5. For any (k + 1)-clique κ in a k-tree with backbone there are at most

(k + 2) non-empty κ-stretches.

Theorem 3.6. Let κ in an addition sequence S for a backbone k-tree T = (V, E) and

v ∈ V and v /∈ κ. Then stretch(κ, v) ⊂ Uκ or stretch(κ, v) ∩ Uκ = ∅.

Proof: Suppose stretch(κ, v) ∩ Uκ 6= ∅. We will show that stretch(κ, v) ⊂ Uκ. For some

vertex w we have w ∈ stretch(κ, v)∩Uκ. We claim that any vertex w′ /∈ κ which is consecutive

with w is also in Uk. Then {w, w′} in T , since it is a backbone edge, so there must be a

clique κ′ such that {w, w′} ∈ κ′. If κ′ is a descendant of κ then w′ ∈ Uκ. So assume that

κ′ is not a descendant of κ. Since w ∈ stretch(κ, v) ∩ Uκ we have that w is in some clique

κ′′ which is a descendant of κ. Then by Proposition 3.2, w must appear in every clique on

the path from κ′ to κ′′. But κ must lie on this path, contradicting with the fact w /∈ κ, so

14

in fact w′ ∈ Uκ as claimed. Applying the claim inductively we find that stretch(κ, v) ⊂ Uκ

since stretch(κ, v) forms a path of consecutive vertices along the backbone.

Corollary 3.7. Let κ, κ′ be in an addition sequence for a backbone k-tree such that κ =

{x1, x2, ..., xk+1} with x1 < x2 < ... < xk+1. If κ′ = κ|xi
y , for some i and y /∈ κ, 1 ≤ i ≤ k+ 1

and 1 ≤ y ≤n, then

1. stretch(κ, y) ⊂ Uκ′ ;

2. stretch(κ′, xi) ∩ Uκ′ = ∅.

Definition 3.8. Let κ belong to an addition sequence for a k-tree. The importable set Ik,

of κ is the set of vertices contained in the descendent cliques of κ, excluding those vertices

that are already in κ, i.e., Iκ = Uκ\κ.

Proposition 3.9. Let κ′ and κ′′ are children of κ in the topology associated with a given

addition sequence for a backbone k-tree. Then

1. If κ′ = κ|xy then Iκ′ = Iκ \ stretch(κ′, x) \ {y};

2. If κ′ = κ|x1
y1 and κ′′ = κ|x2

y2 , for y1 6= y2, then Iκ′ ⊆ Ik \ stretch(κ′, y2);

3. If κ′ = κ|x1
y1 and κ′′ = κ|x2

y2 , for y1 6= y2, then Iκ′ ∩ Ik′′ = φ.

Lemma 3.10. Let κ be in an addition sequence S for a backbone k-tree. Then Ik consists

of at most k + 2 non-empty stretches, and at most k + 1 if κ is not the base clique of S.

Proof: For the base (k + 1)-clique κ0 = {x1, x2, . . . , xk+1}, x1 < x2 < ... < xk+1, Ik0 =

Uκ0\κ0, it is clear that there are at most (k+2) disjoint non-empty sets of consecutive vertices

due to Proposition 3.5 (1). Let κi = κ0|xi
yi

be the children cliques of κ0. By proposition 3.9,

15

Iκ = Iκ0 \ stretch(κ0, xi) \ {yi}. The removal of stretch(κ0, xi) reduces the number of disjoint

sets to k. Now we consider the effect of including yi to Iκ, yi must fall in between xj−1 and

xj for some j 6= i. yi may split the set of consecutive vertices stretch(κ0, yi) in Iκ0 into two,

resulting in at most (k + 1) disjoints set in Iκ. So in every child κi the non-empty stretches

are at most (k + 1). Assume κm ∈ Uκi
for some i, κi 6= κm, has at most (k + 1) disjoint

set in Iκm . Now consider any child clique κj of κm, κj = κm|
xj
yj , for some j. Similarly the

removal of stretch(κm, xj) reduces the disjoint set to at most k and the inclusion of yj in Iκj

increases the disjoint set to at most (k + 1).

Theorem 3.11 Let κ′ and κ′′ be children of κ in the some k-tree topology for a backbone

k-tree, suppose that κ′ = κ|xi
yi

and κ′′ = κ|xj
yj ,where yi and yj are in the same κ-stretch. Then

κ′ = κ′′ .

Proof: We have yi ∈ Uκ′ and yj ∈ Uκ′′ directly. Since yi and yj are in the same k-stretch,

then also yj ∈ Uκ′ by Corallary 3.7.1. Thus yj must belong to every (k+1)-clique on the path

from κ′ to κ′′ in the given tree topology. If κ′ 6= κ′′ this path must include κ by Proposition

3.3.3. Since yj /∈ κ we must have κ′ = κ′′.

Theorem 3.12. Let S be in an addition sequence for a backbone k-tree. In the rooted tree

structure of S the base clique has at most (k+ 2) children and all other cliques in S have at

most (k + 1) children.

Proof: By Theorem 3.11, κ has at most one child per stretch, so the bounds follow from

Lemma 3.10.

16

Chapter 4

Algorithms for MskT and MskT-C

Definition 4.0.1. Given any k-clique K = {x1, x2, . . . , xk} in a spanning k-tree on n ver-

tices with backbone B, the backbone B can be decomposed at most into B1, . . . , Bk+1 smaller

backbones, where Bi is backbone among the consecutive vertices between xi−1 and xi includ-

ing xi−1 and xi. For convention x0 = 1 and xk+1 = n. Define Li to be V (Bi)\{xi−1, xi}.

Lemma 4.0.2. Let K = {x1, x2, . . . , xk}; then by proposition 3.4 if u ∈ Li then

Li = stretch(K, u).

By Lemma 3.10 for a k-clique K= {x1, x2, . . . , xk}, with x1 < x2 < · · · < xn the

importable sets IK consist of at most k + 1 disjoint non-empty sets delimited by the k

vertices. We represent importable sets with vectors {0, 1}k+1. For K the corresponding

importable set {l1, l1, . . . , lk+1}, li = 0 and li = 1 respectively represents the exclusion and

inclusion of the vertices in Li.

The generation of (k+ 1)-clique {x1, x2, . . . , xk, xp} from k-clique {x1, x2, . . . , xk} does

not depend only on the importable set, because we need an indicator r which will help us

identify the the first i where a new vertex xp ∈ Li will be introduced among all intervals

with li = 1.

Definition 4.0.3. For given k-clique K = {x1, x2, . . . , xk} and importable set

I{l1, l2, . . . , lk+1}, we let MI{l1, l2,...,lk+1}{x1, x2, . . . , xk} denote the set of all k-trees on the

vertex set V (K)∪ ⋃(V (Bi) : li = 1) with edge set containing E(K)∪⋃(E(Bi) : li = 1) and

17

for which K is not a seperating set. This means each of these k-trees is a single branch at

K. To avoid overlapping notation the set of trees is defined to be the empty set if li = 0

and Li = ∅ for some i. Then for each i let MI{l1, l2,...,lk+1,r=i}{x1, x2, . . . , xk} be the set

of k-tree topologies for trees in MI{l1, l2,...,}{x1, x2, . . . , xk} which have root clique equal to

{x1, x2, . . . , xi−1, xp, xi, . . . , xk} for some xp ∈ Li. If li = 0 there is no such xp, so the

specified set of topologies are empty.

Definition 4.0.4.

M I{l1, l2,...,lk+1}{x1, x2, . . . , xk} ≡def
⋃

1≤i≤k+1
M I{l1, l2,...,lk+1,r=i}{x1, x2, . . . , xk}.

Definition 4.0.5.

M ′I{l1, l2,...,lk+1,r=i}{x1, x2, . . . , xk} ≡def max({w(T) : T ∈MI{, l2,...,lk+1,r=i}{x1, x2, . . . , xk}}).

Here w(T) is the weight of T for which we are maximizing.

4.1 2-trees

Lemma 4.1.1: A spanning 2-tree T = (V, E) with backbone can not have K4 as a minor.

Lemma 4.1.2. Let T be a spanning 2-tree with backbone B. If T contains the 3-cliques

{xi, xj, xp} and {xi, xj, xq} then xp and xq must lie in different components of B−{xi, xj}.

Proof: We begin with 5 edges in {xi, xj, xp} and {xi, xj , xq}. Assume for the contradiction

18

that xp and xq lie in the same component of B\{xi, xj}. Then there exists a path from xp

to xq on that component which is vertex disjoint from {xi, xj}, giving the sixth edge (after

contraction) for the K4 minor. This is contrary to the Lemma 4.1.1.

Note For a 2-tree, choice of a root clique determines a unique tree topology on its 3-cliques.

Therefore, in this section of the dissertation the topology is assumed when discussing a 2-tree

with a designated root clique. Also in this section a 2-clique is usually referred to as an edge

and a 3-clique as a triangle.

Definition 4.1.3 We find it convenient to introduce special notation to describe spanning

2-trees with backbone which are branches at a given root edge {xi, xj}.

1. Let P (xi, xj) = MI{1,0,0}{xi, xj} and let P{xi, xk, xj} denote the members with root

clique {xk, xi, xj} for some k < i.

2. Let S(xi, xj) = MI{0,0,1}{xi, xj} and let S{xi, xk, xj} denote the members with root

clique {xi, xj, xk} for some j < k.

3. Let I(xi, xj) = MI{0,1,0}{xi, xj} and let I{xi, xk, xj} denote the members with root

clique {xi, xk, xj} for some i < k < j.

4. Let L(xi, xj) = MI{1,1,0}{xi, xj} and let L{xi, xk, xj} denote the members with root

clique {xi, xk, xj} for some i < k < j.

5. Let R(xi, xj) = MI{0,1,1}{xi, xj} and let R{xi, xk, xj} denote the members with root

clique {xi, xk, xj} for some i < k < j.

6. Let U(xi, xj) = MI{1,0,1}{xi, xj} and let U{xi, xk, xj} denote the members with root

clique {xi, xk, xj} for some k < i or k > j.

7. Let A(xi, xj) = MI{1,1,1}{xi, xj} and let A{xi, xk, xj} denote the members with root

clique {xi, xk, xj} for some i < k < j.

19

Note that MI(0,0,0){xi, xj} is just the edge {xi, xj} itself.

Lemma 4.1.4. The four following classes are always empty: MI{1,1,1,r=1}{xi, xj},

MI{1,1,1,r=3}{xi, xj}, MI{1,1,0,r=1}{xi, xj}, and MI{0,1,1,r=3}{xi, xj}.

Proof. Suppose for example that Z is a branch in the class MI{1,1,0,r=1}{xi, xj}. By

definition the vertices of Z consist of the disjoint sets L1, {xi}, L2 and {xj} where L1 and

L2 are non-empty backbone segments. Since Z is is a single branch {xi, xj} there must be

some edge joining L1 directly to L2; Let {xm, xp} be such an edge, where xm ∈ L1 and

xp ∈ L2. Thus by contracting L1 we obtain a K4 minor in Z as shown in the figure 4.1. This

is contradictory so no such Z exists. Similar arguements hold for the other three classes.

Figure 4.1: 2-tree

Lemma 4.1.5. Let a branch at edge e an e-branch. Then the classes P (e), S(e), I(e),

L(e), R(e), U(e) and A(e) partition the set of all e-branches of 2-trees with backbone when

n >= 3.

Proof It’s obvious from Definition 4.1.3, Lemma 4.1.4 that the classes correspond to dif-

ferent importable set sequences (so the classes are disjoint), and they represent all possible

importable set sequences except for I{0, 0, 0}, which is empty for n >= 3.

Note that if 2-clique {xi, xj} does not give rise to 3-component then the triangle types will

be less than mentioned in Lemma 4.1.5.

Lemma 4.1.6. Let T be a spanning 2-tree with backbone having two or more e-branches.

Then the branches must fall in to one of the following cases:

20

1. I(e), P (e) and S(e);

2. L(e) and S(e);

3. R(e) and P (e);

4. U(e) and I(e).

Proof: These are the only patterns of classes which satisfy the restrictions that distinct

e-branches can’t share any non-empty stretch (Proposition 3.9.3).

Note that a 2-tree consisting of a single e-branch must belong to one of the seven classes of

Definition 4.1.3 when n ≥ 3.

We now consider how each e-branch of the seven types can be decomposed at its base

triangle, that is, at the unique 3-clique containing e.

Decomposition of e-branches

For a branch Z of a backbone 2-tree rooted at edge e = {xi, xj} with base triangle

{xi, xk, xj} we have seven cases. In stating the results we use the convention that I ′(xi, xk) =

I(xi, xk) ∪ {{xi, xk}}, and so on for the other six classes of branches.

1. Claim: If Z∈ I{xi, xk, xj} then Z = Z ′ ∪ Z ′′ ∪ {{xi, xj}} where Z ′ ∈ I ′(xi, xk) and

Z ′′ ∈ I ′(xk, xj).

Proof: Let Z ′ be the branch of Z at {xi, xk} which does not contain xj, if any, and

let Z ′ be the edge {xi, xk} if there is no such branch. Likewise Z ′′ will be {xk, xj}

if Z is a single branch at {xk, xj}, and otherwise is the branch of Z at {xk, xj} not

containing xi. Note that the backbone [xi, xj] of Z becomes [xi, xk]∪ [xk, xj] where xk
is introduced. Thus if Y is a branch of Z at {xi, xk} it must contain of all (xi, xk) or

all of (xk, xj], but not both if (xi, xk) 6= ∅. If (xi, xk) = ∅ then Z ′ = [xi, xk]. Otherwise

Z ′ ∈ I(xi, xk) since its vertex set is [xi, xk]. Similarly Z ′′ = [xk, xj] or else has vertex

21

set in [xk, xj] and belongs to the class I(xk, xj). Now it is easily seen that E(Z) is the

disjoint union of {{xi, xj}}, E(Z ′), and E(Z ′′).

Each of the remaining six cases can be proved by similar arguements concerning the

posibilities for branches of Z at {xi, xk} and {xk, xj}. Below we simply state the

results.

2. Claim: If Z∈P{xi, xk, xj} then (Figure 4.2)

a) Z = Z ′ ∪ {{xi, xj}, {xj, xk}} for Z ′ ∈ L′(xk, xi),

b) Z = Z ′ ∪ Z ′′ ∪ {{xi, xj}, {xj, xk}} for Z ′ ∈ I ′(xk, xi) and Z ′′ ∈ P ′(xk, xi), or

c) Z = Z ′ ∪ Z ′′ ∪ {{xi, xj}} for Z ′ ∈ I ′(xk, xi) and Z ′′ ∈ P ′(xk, xj).

Figure 4.2: P{xi, xk, xk}

3. Claim: If Z∈S{xi, xk, xj} then

a) Z = Z ′ ∪ {{xi, xj}, {xi, xk}} for Z ′ ∈ R′(xj, xk),

b) Z = Z ′ ∪ Z ′′ ∪ {{xi, xj}, {xi, xk}} for Z ′ ∈ I ′(xj, xk) and Z ′′ ∈ S ′(xj, xk), or

c) Z = Z ′ ∪ Z ′′ ∪ {{xi, xj}} for Z ′ ∈ I ′(xj, xk) and Z ′′ ∈ S ′(xi, xk).

22

4. Claim: If Z∈L{xi, xk, xj} then (Figure 4.3)

a) Z = Z ′ ∪ Z ′′ for Z ′ ∈ I(xi, xk, xj) and Z ′′ ∈ P ′(xi, xj), or

b) Z = Z ′ ∪ Z ′′ ∪ {{xi, xj}} for Z ′ ∈ I ′(xk, xj) and Z ′′ ∈ L′(xi, xk).

Figure 4.3: L{xi, xk, xk}

5. Claim: If Z∈R{xi, xk, xj} then

a) Z = Z ′ ∪ Z ′′ for Z ′ ∈ I(xi, xk, xj) and Z ′′ ∈ S ′(xi, xj), or

b) Z = Z ′ ∪ Z ′′ ∪ {{xi, xj}} for Z ′ ∈ I ′(xi, xk) and Z ′′ ∈ R′(xk, xj).

6. Claim: If Z∈U{xi, xk, xj} then (Figure 4.4)

a) Z = Z ′ ∪ Z ′′ ∪ {{xi, xj}} for Z ′ ∈ I ′(xj, xk) and Z ′′ ∈ U ′(xi, xk), or

b) Z = Z ′ ∪ Z ′′ ∪ {{xi, xj}} for Z ′ ∈ I ′(xk, xi) and Z ′′ ∈ U ′(xk, xj).

7. Claim: If Z∈A{xi, xk, xj} then Z = Z ′ ∪ Z ′′ ∪ {{xi, xj}} for Z ′ ∈ L′(xi, xk) and

Z ′′ ∈ R′(xk, xj) .

The cliques which may be wighted in a 2-tree T will either be edges or triangles. Then the

objective function for T may be

23

Figure 4.4: U{xi, xk, xk}

1.

ŵ(T) =
∑

e∈E(T)
w(e), or

2.

ŵ(T) =
∑

α∈∆(T)
w(α)

where ∆(T) is the set of triangles (3-cliques) in T .

Let Î(xi, xj) = max{w(T) : T ∈ I(xi, xj)}, and so on for the other six classes of branches

at {xi, xj}. For a weight function of type 1 we obtain recursive equations for Î(xi, xj), etc.,

from the decomposition claims in the obvious way, making use of the independence of choices

for the sub branches Z ′ and Z ′′ in each case.

Î(xi, xj) = maxi<k<j


w{xi, xj} if i+ 1 = j,

w{xi, xj}+ Î(xi, xk) + Î(xk, xj) otherwise.

24

P̂ (xi, xj) = maxk<i



0 if i = 1, or else

w{xi, xj}+max



Î(xk, xi) + P̂ (xk, xi),

Î(xk, xi) + P̂ (xk, xj),

L̂(xk, xi).

Ŝ(xi, xj) = maxj<k



0 if j = n, or else

w{xi, xj}+max



Î(xj, xk) + Ŝ(xi, xk),

R̂(xj, xk),

Î(xj, xk) + Ŝ(xj, xk).

L̂(xi, xj) =



Î(xi, xj) if i = 1, or else

max


Î(xi, xj) + P̂ (xi, xj),

maxi<k<j

{
w{xi, xj}+ Î(xk, xj) + L̂(xi, xk)}.

R̂(xi, xj) =



Î(xi, xj) if j = n, or else

max


Î(xi, xj) + Ŝ(xi, xj),

maxi<k<j{w{xi, xj}+ Î(xi, xk) + R̂(xk, xj)}.

25

Û(xi, xj) = w{xi, xj}+



maxk>j


max


P̂ (xj, xn) +Î(xj, n)

P̂ (xi, xj) +Î(xj, n)
if k = n, or else

Î(xj, xk) + Û(xi, xk).

maxk<i


max


Ŝ(x1, xj)+ Î(1, xi)

P̂ (xi, xj)+ Î(1, xi)
if k = 1, or else

Î(xk, xi) + Û(xk, xj). else

Â(xi, xj) = max{w{xi, xj}+ L̂(xi, xk) + R̂(xk, xj) : i < k < j}.

Similarly for a weight function of type 2 we obtain recursive equations for Î(xi, xj), etc.

Î(xi, xj) = maxi<k<j


0 if i+ 1 = j,

w{xi, xk, xj}+ Î(xi, xk) + Î(xk, xj) otherwise

P̂ (xi, xj) = maxk<i



0 if i = 1, or else

w{xk, xi, xj}+max



Î(xk, xj) + P̂ (xk, xi),

Î(xk, xi) + P̂ (xk, xj),

L̂(xk, xi).

26

Ŝ(xi, xj) = maxj<k



0 if j = n, or else

w{xi, xj, xk}+max



Î(xj, xk) + Ŝ(xi, xk),

R̂(xj, xk),

Î(xj, xk) + Ŝ(xj, xk).

L̂(xi, xj) =



Î(xi, xj) if i = 1, or else

max


Î(xi, xj) + P̂ (xi, xj),

maxi<k<j

{
w{xi, xk, xj}+ Î(xk, xj) + L̂(xi, xk)}.

R̂(xi, xj) =



Î(xi, xj) if j = n, or else

max


Î(xi, xj) + Ŝ(xi, xj),

maxi<k<j{w{xi, xk, xj}+ Î(xi, xk) + R̂(xk, xj)}.
else

Û(xi, xj) = w{xi, xj, xk}+



maxk>j


max


P̂ (xj, xn) +Î(xj, n)

P̂ (xi, xj) +Î(xj, n)
if k = n, or else

Î(xj, xk) + Û(xi, xk).

maxk<i


max


Ŝ(x1, xj)+ Î(1, xi)

P̂ (xi, xj)+ Î(1, xi)
k = 1

Î(xk, xi) + Û(xk, xj).

27

Â(xi, xj) = max{w{xi, xk, xj}+ L̂(xi, xk) + R̂(xk, xj) : i < k < j}.

Theorem 4.1.7 The maximization problems Ms2T and Ms2T-C can be solved for a given

weighted complete graph on vertex set {1, 2, · · · , n} in time O(n3) and space O(n2).

Proof: The answer is Ŝ(1, 2), where the maximization is with respect to a weight function

of type 1 for Ms2T and type 2 for Ms2T-C. In either case the recurrences above enable

computation of the values Î(i, j), etc., for 1 ≤ i < j ≤ n. By storing these O(n2) values

progressively, each new value can be computed in O(n) time in terms of already stored values.

For Î(i, j) the recursion is based on the difference d = j − i starting with d = 1. For Ŝ(i, j)

the recursion will be on d = n− i, etc.

The computation of Î(i, j), etc., can be modified in the usual way by memoization to

allow for the recovery of a k-tree with maximum weight, again in time O(n3) and space

O(n2).

4.2 Finding Optimal k-trees for k=3

In this section we will look through the example of finding optimal spanning k-tree, k = 3,

in detail.

Assume spanning 3-tree T is grown from a 3-clique {xi, xj, xm}, i < j < m. The

introduction of a new vertex xk in any open region will give rise to a 4-clique. This 4-clique

has 4 3-cliques as shown in the figure 4.10 with 5 open regions. We can express this 4-clique

as a combination of 4 3-cliques such that the 5 open regions will be distributed into these

4 3-cliques. Each clique can be visualized as a child of the (k + 1)-clique and at most there

will be (k+ 1) children. Recursively each 3-clique represent a spanning 3-tree rooted at this

clique with open regions.

28

If the spanning 3-tree rooted at {xk, xi, xj, xm} has two, three or four children then the 5

open regions will be distributed among two, three or four 3-cliques correspondingly as shown

in figure 4.5, 4.6, 4.7.

Figure 4.5: 2-children

29

�

Figure 4.6: 3-children

Figure 4.7: 4-branches

30

Recursive equations for the fixed 3-clique {xi, xj, xm}

The number of recursive equations which we need to consider for the fixed clique 3-clique

{xi, xj, xm} is
(

4
1

)
+
(

4
2

)
× 2 +

(
4
3

)
× 3 + 4 = 32. We will only document the representative

recursive equations for this fixed 3-clique. We will sometime use the encoding {xi, xj, xm} =

{i, j, m} and I{1, 1, 1, 0, r = 1, 2, 3} = {1110, 123} whenever necessary.

Figure 4.8: M(1,1,1,1,r=1)(xi, xj , xm)

31

Recursive equation for M′
{1,0,0,0,r=1}{i, j,m} (see Figure 4.8).

M ′I{1,1,1,1,r=1} = Maxk<i

{
f(k, i, j,m)+



M ′I{1,1,1,0,r=1,2,3}{k, i, j}+M ′I{0,0,1,1,r=3,4}{k, j, m}

M ′I{0,1,1,0,r=2,3}{k, i, j}+M ′I{1,0,1,1,r=1,3,4}{k, j, m}

M ′I{1,1,0,0,r=1,2}{k, i, j}+M ′I{0,1,1,1,r=2,3,4}{i, j, m}

M ′I{1,1,1,0,r=1,2,3}{k, i, j}+M ′I{0,0,1,1,r=3,4}{i, j, m}

M ′I{1,1,0,0,r=1,2}{k, i, m}+M ′I{0,1,1,1,r=2,3,4}{i, j, m}

M ′I{1,1,0,1,r=1,2,4}{k, i, m}+M ′I{0,1,1,1,r=2,3,4}{i, j, m}

M ′I{1,1,1,0,r=1,2,3}{k, i, j}+M ′I{0,0,0,1,r=4}{k, i, m}+M ′I{0,0,1,0,r=3}{k, j, m}

M ′I{0,1,1,0,r=2,3}{k, i, j}+M ′I{1,0,0,1,r=1,4}{k, i, m}+M ′I{0,0,1,0,r=3}{k, j, m}

M ′I{1,0,1,0,r=1,3}{k, i, j}+M ′I{0,1,0,1,r=2,4}{k, i, m}+M ′I{0,0,1,0,r=3}{k, j, m}

M ′I{0010,3}{k, i, j}+M ′I{1101,1,2,4}{k, i, m}+M ′I{0010,3}{k, j, m}

M ′I{1010,1,3}{k, i, j}+M ′I{0100,2}{k, i, m}+M ′I{0011,3,4}{k, j, m}

M ′I{0110,2,3}{k, i, j}+M ′I{1000,1}{k, i, m}+M ′I{0011,3,4}{k, j, m}

M ′I{0010,3}{k, i, j}+M ′I{1100,1,2}{k, i, m}+M ′I{0011,3,4}{k, j, m}

M ′I{0110,2,3}{k, i, j}+M ′I{0001,1}{k, i, m}+M ′I{1010,1,3}{k, j, m}

M ′I{0010,3}{k, i, j}+M ′I{0100,2}{k, i, m}+M ′I{1011,1,3,4}{k, j, m}

M ′I{1110,1,2,3}{k, i, j}+M ′I{0001,4}{k, i, m}+M ′I{0010,3}{i, j, m}

32



M ′
I{0110,2,3}{k, i, j}+M ′

I{1001,1,4}{k, i, m}+M ′
I{0010,3}{i, j, m}

M ′
I{1010,1,3}{k, i, j}+M ′

I{0101,2,4}{k, i, m}+M ′
I{0010,3}{i, j, m}

M ′
I{0010,3}{k, i, j}+M ′

I{1101,1,2,4}{k, i, m}+M ′
I{0010,3}{i, j, m}

M ′
I{0110,2,3}{k, i, j}+M ′

I{1000,1}{k, i, m}+M ′
I{0011,3,4}{i, j, m}

M ′
I{1010,1,3}{k, i, j}+M ′

I{0100,2}{k, i, m}+M ′
I{0011,3,4}{i, j, m}

M ′
I{0010,3}{k, i, j}+M ′

I{1100,1,2}{k, i, m}+M ′
I{0011,3,4}{i, j, m}

M ′
I{1000,1}{k, i, j}+M ′

I{0101,2,4}{k, i, m}+M ′
I{0110,2,3}{i, j, m}

M ′
I{0100,2}{k, i, j}+M ′

I{1001,1,4}{k, i, m}+M ′
I{0110,2,3}{i, j, m}

M ′
I{1100,1,2}{k, i, j}+M ′

I{1101,1,2,4}{k, i, m}+M ′
I{0110,2,3}{i, j, m}

M ′
I{1000,1}{k, i, j}+M ′

I{0100,2}{k, i, m}+M ′
I{0111,2,3,4}{i, j, m}

M ′
I{0100,2}{k, i, j}+M ′

I{1000,1}{k, i, m}+M ′
I{0111,2,3,4}{i, j, m}

M ′
I{1101,1,2,4}{k, i, m}+M ′

I{0010,3}{k, j, m}+M ′
I{0100,2}{i, j, m}

M ′
I{1100,1,2}{k, i, m}+M ′

I{0011,3,4}{k, j, m}+M ′
I{0100,2}{i, j, m}

M ′
I{0101,2,4}{k, i, m}+M ′

I{1010,2,4}{k, j, m}+M ′
I{0100,2}{i, j, m}

M ′
I{0100,2}{k, i, m}+M ′

I{1011,1,3,4}{k, j, m}+M ′
I{0100,2}{i, j, m}

M ′
I{1100,1,2}{k, i, m}+M ′

I{0010,3}{k, j, m}+M ′
I{0101,2,4}{i, j, m}

M ′
I{0100,2}{k, i, m}+M ′

I{1010,1,3}{k, j, m}+M ′
I{0101,2,4}{i, j, m}

M ′
I{0101,2,4}{k, i, m}+M ′

I{1000,1}{k, j, m}+M ′
I{0110,2,3}{i, j, m}

M ′
I{1100,1,2}{k, i, m}+M ′

I{0001,4}{k, j, m}+M ′
I{0110,2,3}{i, j, m}

M ′
I{0100,2}{k, i, m}+M ′

I{1001,1,4}{k, j, m}+M ′
I{0110,2,3}{i, j, m}

M ′
I{0100,2}{k, i, m}+M ′

I{1000,1}{k, j, m}+M ′
I{0111,2,3,4}{i, j, m}

33



M ′I{0110,r=2,3}{k, i, j}+M ′I{1000,1}{k, i, m}+M ′I{0010,3}{k, j, m}+M ′I{0001,4}{i, j, m}

M ′I{0110,2,3}{k, i, j}+M ′I{1000,1}{k, i, m}+M ′I{0010,3}{k, j, m}+M ′I{0001,4}{i, j, m}

M ′I{1010,1,3}{k, i, j}+M ′I{0100,2}{k, i, m}+M ′I{0010,3}{k, j, m}+M ′I{0001,4}{i, j, m}

M ′I{0010,3}{k, i, j}+M ′I{1100,1,2}{k, i, m}+M ′I{0010,3}{k, j, m}+M ′I{0001,4}{i, j, m}

M ′I{0010,3}{k, i, j}+M ′I{0100,2}{k, i, m}+M ′I{1010,1,3}{k, j, m}+M ′I{0001,4}{i, j, m}

M ′I{1010,1,3}{k, i, j}+M ′I{1000,1}{k, i, m}+M ′I{0010,3}{k, j, m}+M ′I{0001,4}{i, j, m}

M ′I{1100,1,2}{k, i, j}+M ′I{0001,4}{k, i, m}+M ′I{0010,3}{k, j, m}+M ′I{0100,2}{i, j, m}

M ′I{1000,1}{k, i, j}+M ′I{0101,2,4}{k, i, m}+M ′I{0010,3}{k, j, m}+M ′I{0100,2}{i, j, m}

M ′I{0100,2}{k, i, j}+M ′I{1001,1,4}{k, i, m}+M ′I{0010,3}{k, j, m}+M ′I{0100,2}{i, j, m}

M ′I{0100,2}{k, i, j}+M ′I{0001,4}{k, i, m}+M ′I{1010,1,3}{k, j, m}+M ′I{0100,2}{i, j, m}

M ′I{0010,3}{k, i, j}+M ′I{1100,1,2}{k, i, m}+M ′I{0001,4}{k, j, m}+M ′I{001,0,3}{i, j, m}

M ′I{1010,1,3}{k, i, j}+M ′I{0100,2}{k, i, m}+M ′I{0001,4}{k, j, m}+M ′I{0010,3}{i, j, m}

M ′I{0110,2,3}{k, i, j}+M ′I{1000,1}{k, i, m}+M ′I{0001,3}{k, j, m}+M ′I{0010,3}{i, j, m}

M ′I{0110,2,3}{k, i, j}+M ′I{0001,4}{k, i, m}+M ′I{1000,1}{k, j, m}+M ′I{0010,3}{i, j, m}

M ′I{0010,3}{k, i, j}+M ′I{0101,2,4}{k, i, m}+M ′I{1000,1}{k, j, m}+M ′I{0010,3}{i, j, m}

M ′I{0010,3}{k, i, j}+M ′I{0100,2}{k, i, m}+M ′I{1001,1,4}{k, j, m}+M ′I{0010,3}{i, j, m}

M ′I{1000,1}{k, i, j}+M ′I{0100,2}{k, i, m}+M ′I{0010,3}{k, j, m}+M ′I{0101,2,4}{i, j, m}

M ′I{0100,2}{k, i, j}+M ′I{1000,1}{k, i, m}+M ′I{0010,3}{k, j, m}+M ′I{0101,2,4}{i, j, m}

M ′I{1000,1}{k, i, j}+M ′I{0100,2}{k, i, m}+M ′I{0001,4}{k, j, m}+M ′I{0110,2,3}{i, j, m}

M ′I{0100,2}{k, i, j}+M ′I{1000,1}{k, i, m}+M ′I{0001,4}{k, j, m}+M ′I{0110,2,3}{i, j, m}

M ′I{1000,1}{k, i, j}+M ′I{0001,4}{k, i, m}+M ′I{1000,1}{k, j, m}+M ′I{0110,2,3}{i, j, m}

M ′I{0100,2}{k, i, j}+M ′I{1000,1}{k, i, m}+M ′I{1000,1}{k, j, m}+M ′I{0011,3,4}{i, j, m}

M ′I{1000,1}{k, i, j}+M ′I{0100,2}{k, i, m}+M ′I{1000,1}{k, j, m}+M ′I{0011,3,4}{i, j, m}

34

Figure 4.9: M(1,0,0,0,r=1)(xi, xj , xm)

Recursive equation for M′
I{1,0,0,0,r=1}){xi, xj , xm} (see Figure 4.9).

MI{1,0,0,0,r=1}){xi, xj , xm} = maxk<i{f(xk, xi, xj , xm)+

max



M ′I{0,1,0,0,r=2}{xk, xi, xm} +M ′I{1,0,0,0,r=1}{xk, xj , xm}

M ′I{1,0,0,0,r=1}{xk, xi, xm} +M ′I{0,1,0,0,r=2}{xk, xi, xj}

M ′I{0,1,0,0,r=1}{xk, xi, xm} +M ′I{1,0,0,0,r=2}{xk, xi, xj}

M ′I{0,1,0,0,r=1}{xk, xi, xm}

M ′I{0,1,0,0,r=2}{xk, xi, xm}

M ′I{0,1,0,0,r=1}{xk, xi, xj} +M ′I{1,0,0,0,r=2}{xk, xj , xm}

M ′I{1,1,0,0,r=1}{xk, xi, xj}

M ′I{1,1,0,0,r=2}{xk, xi, xj}

35

Figure 4.10: M(0,1,0,0,r=2)(xi, xj , xm)

Recursive equation for M′
I{1,0,0,0,r=1}{xi, xj , xm} (see Figure 4.10).

MI{0,1,0,0,r=2}{xi, xj , xm} = maxi<k<j{f(xi, xk, xj , xm)+

max



M ′I{0,1,0,0,r=2}{xi, xk, xj} +M ′I{0,1,0,0,r=2}{xk, xj , xm}

M ′I{0,0,1,0,r=3}{xi, xk, xj} +M ′I{0,1,0,0,r=2}{xi, xk, xm}

M ′I{0,1,1,0,r=2}{xi, xk, xj}

M ′I{0,1,1,0,r=3}{xi, xk, xj}

M ′I{0,1,0,0,r=2}{xi, xk, xm} +M ′I{0,1,0,0,r=2}{xk, xj , xm}

36

Figure 4.11: M(0,0,1,0,r=3)(xi, xj , xm)

Recursive equation for M′
I{1,0,0,0,r=1}{xi, xj , xm} (see Figure4.11).

MI{0,0,1,0,r=3}{xi, xj , xm} = maxj<k<m{f(xi, xj , xk, xm)+

max



M ′I{0,0,1,0,r=3}{xj , xk, xm} +M ′I{0,0,1,0,r=3}{xi, xj , xk}

M ′I{0,1,0,0,r=2}{xj , xk, xm} +M ′I{0,0,1,0,r=3}{xi, xk, xm}

M ′I{0,1,1,0,r=2}{xj , xk, xm}

M ′I{0,1,1,0,r=3}{xj , xk, xm}

M ′I{0,0,1,0,r=3}{xi, xk, xm} +M ′I{0,0,1,0,r=2}{xi, xj , xk}

37

Figure 4.12: M(0,0,0,1,r=4)(xi, xj , xm)

Recursive equation for M′
I{0,0,0,1,r=4}{xi, xj , xm} (see Figure 4.12).

MI{0,0,0,1,r=4}{xi, xj , xm} = maxm<k{f(xi, xj , xm, xk)+

max



M ′I{0,0,0,1,r=4}{xi, xm, xk} +M ′I{0,0,1,0,r=3}{xj , xm, xk}

M ′I{0,0,1,0,r=3}{xi, xm, xk} +M ′I{0,0,0,1,r=4}{xj , xm, xk}

M ′I{0,0,1,1,r=4}{xi, xm, xk}

M ′I{0,0,1,1,r=3}{xi, xm, xk}

M ′I{0,0,1,0,r=3}{xj , xm, xk} +M ′I{0,0,0,1,r=4}{xi, xj , xk}

M ′I{0,0,0,1,r=4}{xj , xm, xk} +M ′I{0,0,1,0,r=3}{xi, xj , xk}

M ′I{0,0,1,1,r=3}{xj , xm, xk}

M ′I{0,0,1,1,r=4}{xj , xm, xk}

38

Figure 4.13: M(1,1,0,0,r=1){xi, xj , xm}

Recursive equation for M′
I{1,1,0,0,r=1}{xi, xj , xm} (see Figure 4.13).

MI{1,1,0,0,r=1}{xi, xj , xm} = maxm<k{f(xk, xi, xj , xm)+

max



M ′I{0,0,1,0,r=3}{xk, xi, xj} +M ′I{1,1,0,0,r=1,2}{xk, xi, xm}

M ′I{1,0,1,0,r=1,3}{xk, xi, xj} +M ′I{0,1,0,0,r=2}{xk, xi, xm}

M ′I{0,1,1,0,r=2,3}{xk, xi, xj} +M ′I{1,0,0,0,r=1}{xk, xj , xm}

M ′I{1,1,0,0,r=1,2}{xk, xi, xj} +M ′I{0,1,0,0,r=2}{xi, xj , xm}

M ′I{1,1,0,0,r=1,2}{xk, xi, xm} +M ′I{0,1,0,0,r=2}{xi, xj , xm}

M ′I{1,1,1,0,r=1,2,3}{xi, xm, xk}

M ′I{1,0,0,0,r=1}{xk, xi, xj} +M ′I{0,1,0,0,r=2}{xk, xi, xm}+M ′I{0,1,0,1,r=2}{xi, xj , xm}

M ′I{0,1,0,0,r=2}{xk, xi, xj} +M ′I{1,0,0,0,r=1}{xk, xi, xm}+M ′I{0,1,0,0,r=2}{xi, xj , xm}

M ′I{0,1,0,0,r=2}{xk, xi, xj} +M ′I{1,0,0,0,r=1}{xk, xj , xm}+M ′I{0,1,0,0,r=2}{xi, xj , xk}

M ′I{0,0,0,1,r=4}{xk, xi, xj} +M ′I{0,1,0,0,r=2}{xk, xi, xm}+M ′I{1,0,0,0,r=1}{xk, xj , xm}

M ′I{0,1,0,0,r=2}{xk, xi, xm} +M ′I{1,0,0,0,r=1}{xk, xj , xm}+M ′I{0,1,0,0,r=2}{xi, xj , xm}

39

Figure 4.14: M(1,1,0,0,r=2){xi, xj , xm}

Recursive equation for M′
I{1,1,0,0,r=2}{xi, xj , xm} (see Figure 4.14).

M ′I{1,1,0,0,r=2}{xi, xj , xm} = maxi<k<j{f(xi, xk, xj , xm)+

max



M ′I{1,0,1,0,r=1,3}{xi, xk, xj} +M ′I{0,1,0,0,r=2}{xi, xk, xm}

M ′I{0,1,1,0,r=2,3}{xi, xk, xj} +M ′I{1,0,0,0,r=1}{xi, xk, xm}

M ′I{0,0,1,0,r=3}{xi, xk, xj} +M ′I{1,1,0,0,r=1,2}{xi, xk, xm}

M ′I{0,1,1,0,r=2,3}{xi, xk, xj} +M ′I{1,0,0,0,r=1}{xi, xj , xm}

M ′I{1,1,0,0,r=1,2}{xi, xk, xj} +M ′I{0,1,0,0,r=2}{xk, xj , xm}

M ′I{1,1,0,0,r=1,2}{xi, xk, xm} +M ′I{0,1,0,0,r=2}{xk, xj , xm}

M ′I{0,0,1,0,r=3}{xi, xk, xj} +M ′I{0,1,0,0,r=2}{xj , xk, xm}+M ′I{1,0,0,0,r=1}{xi, xj , xm}

M ′I{1,0,0,0,r=1}{xi, xk, xj} +M ′I{0,1,0,0,r=2}{xi, xk, xm}+M ′I{0,1,0,0,r=2}{xk, xj , xm}

M ′I{0,1,0,0,r=2}{xi, xk, xj} +M ′I{1,0,0,0,r=1}{xi, xk, xm}+M ′I{0,1,0,0,r=2}{xk, xj , xm}

M ′I{0,1,0,0,r=2}{xi, xk, xj} +M ′I{1,0,0,0,r=1}{xi, xj , xm}+M ′I{0,1,0,0,r=2}{xk, xj , xm}

M ′I{0,1,0,0,r=2}{xi, xk, xm} +M ′I{1,0,0,0,r=1}{xi, xj , xm}+M ′I{0,1,0,0,r=2}{xk, xj , xm}

40

Figure 4.15: M(0,1,1,0,r=2){xi, xj , xm}

Recursive equation for M′
I{1,0,1,0,r=1}{xi, xj , xm} (see Figure 4.15).

M ′I{0,1,1,0,r=2}{xi, xj , xm} = maxi<k<j{f(xi, xk, xj , xm)+

max



M ′I{0,1,1,0,r=2,3}{xi, xk, xj} +M ′I{0,0,1,0,r=3}{xi, xj , xm}

M ′I{0,1,0,0,r=2}{xi, xk, xj} +M ′I{0,1,1,0,r=2,3}{xk, xj , xm}

M ′I{0,1,1,0,r=2,3}{xi, xk, xj} +M ′I{0,0,1,0,r=3}{xk, xj , xm}

M ′I{0,1,0,0,r=2}{xi, xk, xm} +M ′I{0,1,1,0,r=2,3}{xk, xj , xm}

M ′I{0,1,0,0,r=2}{xi, xk, xm} +M ′I{0,0,1,0,r=3}{xi, xj , xm}+M ′I{0,1,0,0,r=2}{xk, xj , xm}

M ′I{0,0,1,0,r=3}{xi, xk, xj} +M ′I{0,1,0,0,r=2}{xi, xk, xm}+M ′I{0,0,1,0,r=3}{xi, xj , xm}

M ′I{0,0,1,0,r=3}{xi, xk, xj} +M ′I{0,1,0,0,r=2}{xi, xk, xm}+M ′I{0,0,1,0,r=3}{xk, xj , xm}

M ′I{0,1,0,0,r=2}{xi, xk, xj} +M ′I{0,0,1,0,r=3}{xi, xj , xm}+M ′I{0,1,0,0,r=2}{xk, xj , xm}

41

Figure 4.16: M(1,0,1,0,r=1){xi, xj , xm}

Recursive equation for M′
I{1,0,1,0,r=1}{xi, xj , xm} (see Figure 4.16).

M ′I{1,0,1,0,r=1}{xi, xj , xm} = maxk<i{f(xk, xi, xj , xm)+

max



M ′I{1,1,0,0,r=1,2}{xk, xi, xj} +M ′I{0,0,1,0,r=3}{xi, xj , xm}

M ′I{1,1,0,0,r=1,2}{xk, xi, xj} +M ′I{0,0,1,0,r=3}{xk, xj , xm}

M ′I{1,1,0,0,r=1,2}{xk, xi, xm} +M ′I{0,0,1,0,r=3}{xi, xj , xm}

M ′I{1,1,0,0,r=1,2}{xk, xi, xm} +M ′I{0,0,1,0,r=3}{xk, xj , xm}

M ′I{0,1,0,0,r=2}{xk, xi, xj} +M ′I{1,0,0,0,r=1}{xk, xi, xm}+M ′I{0,0,1,0,r=3}{xk, xj , xm}

M ′I{1,0,0,0,r=1}{xk, xi, xj} +M ′I{0,1,0,0,r=2}{xk, xi, xm}+M ′I{0,0,1,0,r=3}{xk, xj , xm}

M ′I{0,1,0,0,r=2}{xk, xi, xj} +M ′I{1,0,0,0,r=1}{xk, xj , xm}+M ′I{0,0,1,0,r=3}{xi, xj , xm}

M ′I{1,0,0,0,r=1}{xk, xi, xj} +M ′I{0,1,0,0,r=2}{xk, xj , xm}+M ′I{0,0,1,0,r=3}{xi, xj , xm}

42

Figure 4.17: M(1,0,0,1,r=1){xi, xj , xm}

Recursive equation for M′
(1,0,0,1,r=1)(xi, xj , xm) (see Figure 4.17).

MI(1,0,0,1,r=1)(xi, xj , xm) = maxk<i{f(xk, xi, xj , xm)+

43



M ′I{1,1,0,0,r=1,2}{xk, xi, xm} +M ′I{0,0,0,1,r=4}{xi, xj , xm}

M ′I{0,1,0,1,r=2,4}{xk, xi, xm} +M ′I{1,0,0,0,r=1}{xk, xj , xm}

M ′I{1,1,0,0,r=1,2}{xk, xi, xm} +M ′I{0,0,0,1,r=4}{xk, xj , xm}

M ′I{0,1,0,1,r=2,4}{xk, xi, xm} +M ′I{1,0,0,0,r=1}{xk, xi, xj}

M ′I{1,0,0,1,r=1,4}{xk, xi, xm} +M ′I{0,1,0,0,r=2}{xk, xi, xj}

M ′I{1,1,0,0,r=1,2}{xk, xi, xj} +M ′I{0,0,0,1,r=4}{xk, xj , xm}

M ′I{0,1,0,0,r=2}{xk, xi, xj} +M ′I{1,0,0,1,r=1,4}{xk, xj , xm}

M ′I{1,1,0,0,r=1,2}{xk, xi, xj} +M ′I{0,0,0,1,r=4}{xi, xj , xm}

M ′I{1,1,0,1,r=1,2,4}{xk, xi, xm}

M ′I{1,0,0,0,r=1}{xk, xi, xj} M ′I{0,0,0,1,r=4}{xk, xj , xm}+M ′I{0,1,0,0,r=2}{xk, xi, xm}

M ′I{0,1,0,0,r=2}{xk, xi, xj} M ′I{1,0,0,1,r=1}{xk, xj , xm}+M ′I{0,0,0,1,r=4}{xk, xi, xm}

M ′I{1,0,0,0,r=1}{xk, xi, xj} M ′I{0,0,0,1,r=4}{xk, xj , xm}+M ′I{1,0,0,0,r=1}{xk, xi, xm}

M ′I{0,0,1,0,r=3}{xk, xi, xj} M ′I{1,0,0,0,r=1}{xk, xi, xm}+M ′I{0,0,0,1,r=4}{xi, xj , xm}

M ′I{1,0,0,0,r=1}{xk, xi, xj} M ′I{0,1,0,0,r=2}{xk, xi, xm}+M ′I{0,0,0,1,r=4}{xi, xj , xm}

M ′I{1,0,0,0,r=1}{xk, xj , xm} M ′I{0,1,0,0,r=2}{xk, xi, xm}+M ′I{0,0,0,1,r=4}{xi, xj , xm}

M ′I{0,1,0,0,r=2}{xk, xj , xm} M ′I{1,0,0,0,r=1}{xk, xi, xm}+M ′I{0,0,0,1,r=4}{xi, xj , xm}

44

Figure 4.18: M(1,1,1,0,r=1){xi, xj , xm}

Recursive equation for M′
I(1,1,1,0,r=1)(xi, xj , xm) (see Figure 4.18).

M ′I{1,1,1,0,r=1}{xi, xj , xm} = maxk<i{f(xk, xi, xj , xm)+

max



M ′I{1,1,1,0,r=1,2,3}{xk, xi, xj} +M ′I{0,0,1,0,r=3}{xk, xj , xm}

M ′I{0,1,1,0,r=2,3}{xk, xi, xj} +M ′I{1,0,1,0,r=1,3}{xk, xj , xm}

M ′I{1,1,1,0,r=1,2,3}{xk, xi, xj} +M ′I{0,0,1,0,r=3}{xi, xj , xm}

M ′I{1,1,0,0,r=1,2}{xk, xi, xj} +M ′I{0,1,1,0,r=2,3}{xi, xj , xm}

M ′I{1,1,0,0,r=1,2}{xk, xi, xm} +M ′I{0,1,1,0,r=2,3}{xi, xj , xm}

M ′I{1,0,1,0,r=1,3}{xk, xi, xj} +M ′I{0,1,0,0,r=2}{xk, xi, xm}+M ′I{0,0,1,0,r=3}{xk, xj , xm}

M ′I{0,0,1,0,r=3}{xk, xi, xj} +M ′I{1,1,0,0,r=1,2}{xk, xi, xm}+M ′I{0,0,1,0,r=3}{xk, xj , xm}

M ′′I{0,1,1,0,r=2,3}{xk, xi, xj} +M ′I{1,0,0,0,r=1}{xk, xi, xm}+M ′I{0,0,1,0,r=3}{xk, xj , xm}

M ′I{1,0,0,0,r=1}{xk, xi, xj} +M ′I{1,0,0,0,r=1}{xk, xi, xm}+M ′I{0,1,1,0,r=2,3}{xi, xj , xm}

M ′I{0,1,0,0,r=2}{xk, xi, xj} +M ′I{1,0,0,0,r=1}{xk, xi, xm}+M ′I{0,1,1,0,r=2,3}{xi, xj , xm}

45



M ′I{1,0,1,0,r=1,3}{xk, xi, xj}+M ′I{0,1,0,0,r=2}{xk, xi, xm}+M ′I{0,0,1,0,r=3}{xi, xj , xm}

M ′I{0,1,1,0,r=2,3}{xk, xi, xj}+M ′I{1,0,0,0,r=1}{xk, xi, xm}+M ′I{0,0,1,0,r=3}{xi, xj , xm}

M ′I{0,1,0,0,r=2}{xk, xi, xj}+M ′I{1,0,0,0,r=1}{xk, xj , xm}+M ′I{0,1,1,0,r=2,3}{xi, xj , xm}

M ′I{0,1,0,0,r=2}{xk, xi, xj}+M ′I{1,0,1,0,r=1,3}{xk, xj , xm}+M ′I{0,1,0,0,r=2}{xi, xj , xm}

M ′I{0,1,1,0,r=2,3}{xk, xi, xj}+M ′I{1,0,0,0,r=1}{xk, xj , xm}+M ′I{0,0,1,0,r=3}{xi, xj , xm}

M ′I{1,1,0,0,r=1,2}{xk, xi, xm}+M ′I{0,0,1,0,r=3}{xk, xj , xm}+M ′I{0,1,0,0,r=2}{xi, xj , xm}

M ′I{0,1,0,0,r=2}{xk, xi, xm}+M ′I{1,0,1,0,r=1,3}{xk, xj , xm}+M ′I{0,1,0,0,r=2}{xi, xj , xm}

M ′I{0,1,0,0,r=2}{xk, xi, xm}+M ′I{1,0,0,0,r=1}{xk, xj , xm}+M ′I{0,1,1,0,r=2,3}{xi, xj , xm}

M ′I{1000,1}{k, i, j}+M ′I{0100,2}{k, i,m}+M ′I{0010,r3}{k, j,m}+M ′I{0100,2}{i, j,m}

M ′I{0100,2}{k, i, j}+M ′I{1000,1}{k, i,m}+M ′I{0010,3}{k, j,m}+M ′I{0100,2}{i, j,m}

M ′I{0010,3}{k, i, j}+M ′I{0100,2}{k, i,m}+M ′I{1000,1}{k, j,m}+M ′I{0010,3}{i, j,m}

These recursive equations slightly modified can also work edge weight, e.g.,

Recursive equation for M′
I(0,0,1,0,r=3){x, xj , xm}

M
′

I(0,0,1,0,r=3){xi, xj , xm} = maxj<k<m{

max



M
′

I(0,0,1,0,r=3){xj , xk, xm} +M ′

I(0,0,1,0,r=3){xi, xj , xk}+ w{xi, xm}

M
′

I(0,1,0,0,r=2){xj , xk, xm} +M ′

I(0,0,1,0,r=3){xi, xk, xm}+ w{xi, xj}

M
′

I(0,1,1,0,r=2,3){xj , xk, xm} +w{xi, xj}+ w{xk, xi}+ w{xi, xm}

M
′

I(0,0,1,0,r=3){xi, xk, xm} +M ′

I(0,0,1,0,r=2){xi, xj , xk}+ w{xk, xj}

46

4.3 Algorithm Analysis

In this section, we will introduce some new notations to introduce a dynamic programming

algorithm for the MskT-C and MskT problem on backbone graph, which runs in polynomial

time O(nk+1) for every fixed k.

Algorithm.

Our algorithm comes from the following observation: every (k + 1)-clique in any an

addition sequence of a k-tree can be obtained by adding a new vertex to an existing k-clique.

By the properties in Section 3, the resulted (k+ 1)-clique has at most k+ 2 children and the

(k + 1)-clique consists of k + 1 number of k-cliques, from which the children, each being a

(k+ 1)-clique, can be formed independently and recursively. We present some details in the

following.

Let K = {x1, x2, · · · , xk} represent a k-clique and by Proposition 3.5(1) it has at most

k + 1 stretches. Let AK denote the set of all non-empty stretches for K. For any subset

S ⊆ AK , we denote U(S) = ⋃
s∈S s, i.e., the union of all stretches s in S. For any vertex

p ∈ U(S), we use K ∪ {p} to denote the (k + 1)-clique formed by K together with p.

This (k + 1)-clique K ∪ {p} also results in at most (k + 2) stretches by splitting one of the

stretches in S into two with vertex p. Let us denote these new set of stretches by [S, p].

Also, we define Ki = K|xi
p for i = 1, 2, . . . , k and Kk+1 = K and let [K, p] denote the set

{Kr | 1 ≤ r ≤ k + 1}. We then define

Φ(K, S, p) = {ϕ |ϕ : [S, p]→ [K, p]}

The stretches in [S, p] can be seen as balls and k-cliques in [K, p] as bins. So, the problem

can also be modeled as how many ways exist of throwing |[S, p]| balls into |[K, p]| bins.

We observe that every stretch in [S, p] can only be mapped to one of (k − 1) k-cliques in

[K, p], except the first and the last stretches which can be mapped to one of k k-cliques.

47

So the functions ϕ ∈ Φ are constrained. To be specific, let K ∪ {p} = {x1, x2, · · · , xk+1},

with x1 < x2 < · · · < xk+1. Then any stretch (ball bi) with vertices in between xi and xi+1

can only be mapped to some k-clique containing vertices xi and xj and the number of such

k-cliques is k − 1.

Let G = (V, E) be an input backbone graph with V = {1, 2, . . . , n}. Then for any k-

clique K ⊆ V , subset of stretches S ⊆ AK , and vertex p ∈ U(S), we define M(K, S) to be

the maximum objective function value of a k-tree rooted at (k+ 1)-clique K ∪{p}, for some

p ∈ U(S). Then we introduce

M(K, S) = 0 if S = ∅ (4.1)

M(K, S) = max
p∈U(S)

max
ϕ∈Φ(K,S, p)

P (K, S, p, ϕ) + w : (K ∪ {p}) (4.2)

P (K, S, p, ϕ) =
∑

1≤r≤k+1
Kr∈[K, p], φ−1(Kr) 6=∅

M(Kr, ϕ
−1(Kr)) (4.3)

Depending on the objective function above recurrences are formulated for MskT-C, MskT

problems such that if it is defined on the edge weight then

w : (K ∪ {p}) =
∑

e∈(K∪{p}).s.t. e contains p
edgeweight(e)

else it will be defined on the (k + 1)-clique. For the optimality of the algorithm we want to

maximize the following function for for all k-cliques of vertices drawn from V :

max
K∈[n]K

M(K, AK) (4.4)

48

where [n]k is the set of all k-cliques in V .

Since the algorithm computes the maximum weight of a spanning k-tree rooted at a (k+1)-

clique formed by some k-cliqueK. So, recurrence (4.4) will give us the initial step by covering

all k-cliques K ∈ [n]k with all the possible stretches that K has. The algorithm examines

every vertex p from the given allowed stretches S and k-clique K. A new (k + 1) clique is

formed by adding p to K whose weight contribution is defined as w : (K ∪ {p}). The new

set of stretches [S, p] after the addition of p is the same as S, except the stretch in S, from

which p was chosen, is split into two by p. This newly (k+ 1)-clique created also has (k+ 1)

number of k-cliques Kr. The function ϕ maps these new set of stretches to the newly created

k+ 1 number of k-cliques Kr, with each such clique using the stretches ϕ−1(Kr) assigned by

ϕ to recursively and independently children (k + 1)-cliques for the sought spanning k-tree.

Recurrence (4.2) maximizes the weight of the spanning k-tree by considering all possible

vertices p and functions ϕ. Recurrence (4.3) branches the computation by independently

computing based on every one of the k + 1 k-clique Kr and sum the total weights in all

branches. The algorithm is terminated when there are no stretches available any more, i.e.,

S = ∅ shown by Equation (4.1).

In the following paragraphs, we formally prove that the recurrences (4.1)-(4) are correct

for MskT-C and MskT.

For convenience we restate Definition 3.2.

Definition 4.3.1. In a spanning k-tree with backbone, children cliques of the same parent

are called duplicate sibings if they have k-clique in common.

E.g., In the figure 4.19 κ1, κ2 and κ3, κ4, κ5 are duplicate siblings. Duplicate siblings will

cover different open regions, e.g, in κ1 region in before 4 is covered where as in κ2 a region

b/w 4 and 8 is covered.

Lemma 4.3.2 For any k-tree T there is a k-tree topology for T in which there are no

49

duplicate siblings.

Proof: Let S be an addition sequence for T ; then T (S) has this property, by Proposition

3.

Figure 4.19: illustrates (a) duplicate siblings in a k-tree, and (b) transformation of the k-tree to
one without duplicate sibling

Theorem 4.3.3: The algorithm for MskT examines all spanning k-trees without dupli-

cate siblings.

Proof: Let T be any spanning k-tree without duplicate siblings with addition sequence

κ0, κ1, · · · , κm. Assume base clique κ0 = {x1, x2, · · · , xk+1}. Then κ0 can be produced by

our algorithm. This is because in equation (4.4) traverses all possible k-clique, K ∈ [n]k.

Thus there must exist one K = κ0 \ {xi} for some 1 ≤ i ≤ k + 1. then in equation (4.2),

the algorithm introduces a new vertex xi as vertex p to form the desired (k + 1)-clique

K ∪ {xi} = κ0.

Now inductively assume that (k + 1)-clique κi is produced by the algorithm, with im-

50

portable set Iκi
. So there must exist some K with set of stretches S and there is some vertex

p ∈ U(S) such that κi = K ∪ {p}. It is clear that Iκi
= U([S, p]). Let the children of κi be

κi1 , κi2 , · · · , κij (1 ≤ j ≤ k+ 1). Since T doesn’t have duplicate siblings, each k-clique from

{κi∩κi1 , κi∩κi2 , · · · , κi∩κij} must be unique. By recurrence (4.2) and (4.3), the algorithm

maximizes over all possible ways to map the stretches of κi to the above k-cliques. In par-

ticular, for l = 1, 2, . . . , j, if (k+ 1)-clique κil has importable set Iil , through recurrence the

algorithm can assign the set of stretches Sil to k-clique κi ∩ κil such that Iil = U([Sil , pil])

where pil ∈ κil \ κi that can be picked by recurrence. And the algorithm produces (k + 1)-

clique (κi ∩ κil) ∪ pil , i.e., κil , as a child of κi. Since T doesn’t have duplicate siblings, the

k-clique from {κi ∩κi1 , κi ∩κi2 , · · · , κi ∩κij} are different. Therefore, the mapping functions

in ϕ guarantee that Iκl
∩ Iκt = ∅ for 1 ≤ l, t ≤ j and l 6= t, a necessary condition for

importable sets stated in Proposition 3.9.

Claim: Running time of the algorithm is O(nk+1(k + 1)k+21.44k).

As Any k-clique can be the root clique so we traverse all the k-clique in [n]k needs O(nk) time

in equation (4.4). So for as fixed k-clique K with S By Lemma 3.5 it has at most (k + 1)

available stretches. In equation (4.2), the maximization over p in these U(S) takes O(n)

time. These give the O(nk+1) polynomial factor. Since κ = K ∪ {p} can be expressed as

combination of (k+ 1) k-cliques Kr where each ϕ−1(Kr) cover stretches. When the stretches

in |[S, p]| =(k + 2) for K ∪ {p} this would be like throwing (k + 2) different balls into [K, p]

different bins. As functions ϕ ∈ Φ are constrained because of the observation that every

stretch in [S, p] can only be mapped to one of (k − 1) k-cliques in [K, p], except the first

and the last stretches which can be mapped to one of k k-cliques. So the |[S, p]| =(k + 2),

|Φ| = k2(k − 1)k;

For the same k-clique K, K∪{p}, |[S, p]| =(k+1), then (k+1) open regions can be chosen

from (k+2) possible regions, the number of such cases will be
(
k + 2
k + 1

)
and we have the similar

question to ask: how the (k + 1) are distributed into are distributed into (k + 1) k-cliques.

By the above analysis, the total number such cases, i.e., |Φ| ≤
(
k + 2
k + 1

)
k2(k − 1)k−1.

51

Similarly, for the same K if |[S, p]| =k; The number of cases overall is ≤
(
k + 2
k

)
k2(k−

1)k−2.

Following the same analysis, the total number of cases for any k-clique K is

k2(k − 1)k +
(
k + 2
k + 1

)
k2(k − 1)k−1 +

(
k + 2
k

)
k2(k − 1)k−2 + · · ·+

(
k + 2

1

)
k

< kk+2 +
(
k + 2
k + 1

)
kk+1 +

(
k + 2
k

)
kk + · · ·+

(
k + 2

1

)
k

= (k + 1)k+2.

The summation in recurrence (4.3) takes O(k) time. Therefore, the running time of the

algorithm is O(k(k+1)k+2nk+1). Also derived from the above analysis is the space complexity

O(2k+1nk).

52

Chapter 5

Hardness

We would like to know if there are polynomial algorithms for the problem MskT and MskT-

C , with a polynomial degree independent of k or a polynomial degree d for some d < k + 1

(d may be a function of k). We prove problem MskT-C remains NP-hard. In particular,

We construct a reduction from the k-Clique problem to MskT-C that essentially preserves

the parameter k.

For any (k + 1)-clique {x1, x2, · · · , xk, xk+1} in G = (V, E) with weight w : E→ R≥0, we

define function

λ(E(x1, x2, . . . , xk, xk+1))

where E(x1, x2, . . . , xk, xk+1) = 〈w(x1, x2), w(x1, x3), . . . , w(xk, xk+1)〉, i.e., the m-tuple of

weights of all edges in the (k + 1)-clique {x1, x2, . . . , xk, xk+1}, for m = 1
2k(k + 1), and λ is

a mapping: λ :
⋃∞
m=1R

m
≥0 → R≥0 .

Problem Decision MskT-C:

Input: integer k ≥ 1, backbone graph G = (V, E), weight w : E→ R≥0 and W > 0.

Question: Does G have a spanning k-tree H = (V, F) such that ∑τ∈H λ(E(τ)) ≥ W?

where τ ∈ H is to represent the statement that (k + 1)-clique τ belongs to k-tree H.

Theorem 5.1: The problem Decision MskT-C is NP-complete.

53

Proof: Given a spanning k-tree H, it is not difficult to see that it will take polynomial time

to determine if the defined objective function value is at least W . Therefore, the problem is

in NP.

The hardness is proved with a reduction from k-Clique. Given a graph G = (V, E),

where V = {x1, x2, . . . , xn} as an instance of k-Clique, we construct an instance of complete

backbone graph G′ = (V ′, E ′) as follows in polynomial time:

1. V ′ = {1, 2, . . . , n};

2. E ′ = {{i, j} : i < j and i, j = 1, 2, . . . , n};

3. backbone B = {{i, i+ 1} : i = 1, 2, . . . , n− 1};

4. k′ = k − 1; W = 1;

5. weight function w(i, j) = 1 if (xi, xj) ∈ E; w(i, j) = 0 otherwise.

Now consider a simple function λ :
⋃∞
m=1R

m
≥0 → R≥0 such that for any m ≥ 1 and

〈e1, e2, · · · , em〉 ∈ Rm
≥0,

λ(〈e1, e2, . . . , em〉) = 1 if and only if ei > 0, ∀i 1 ≤ i ≤ m.

For given k ≥ 3, if the constructed G′ has a spanning k′-tree H with objective function

value at least 1, where k′ = k − 1, the contribution of the value must have come from at

least one (k′)-clique in the spanning tree. Let this clique be κ = {i1, i2, . . . , ik} in H. Since

the function w′ on the clique has value 1 if and only if every e ∈ E ′(κ) ⊆ E, Based on the

construction of G′, these edges are among the vertex set {xi1 , xi2 , . . . , xik} in the original

graph G. Thus G has a clique of size k.

54

On the other hand, if G has a clique of size k, then G′ has a spanning k′-tree H of objective

function value ≥ W = 1. To see this, let the clique of size k in G be {xi1 , xi2 , · · · , xik}.

Let k-clique κ0 = {i1, i2, . . . , ik}. We show in the following that there is a spanning k-tree

rooted at κ0 for G′.

Without loss of generality, we assume i1 < i2 < · · · < ik in κ0. By section 3, κ0 can

have s non-empty stretches, for s ≤ k + 1. Then on backbone graph G′ a (k − 1)-tree

H rooted at κ0 with at most s branches can be constructed with each branch covering a

stretch. In particular, for every j = 0, 1, . . . , k, the jth stretch is {ij+1, ij+2, . . . , ij+1−1}.

Let mj = ij+1 − ij − 1, the length of the jth stretch. If mj 6= 0, the jth stretch yields a

branch of k-cliques represented by the following k-clique sequence: κ0, κj1 , κj2 , . . . , κjmj
,

where κj1 = κ0|
ij
ij+1, κj2 = κj1|

ij+1
ij+2, . . . , κjmj

= κjmj−1|
ij+mj−1
ij+mj

(note that ij +mj = ij+1 − 1).

Details of boundary cases j = 0 and j = k are only slightly different from the general case

and thus are omitted. H covers all backbone edges of G′ and is a spanning k-tree for G′. In

addition, since w′(κ0) = 1, the weight of this (k − 1)-tree is ≥ w(κ0) ≥ W .

The proof of the above Theorem constructs a reduction that is actually also a parameter-

preserving polynomial time reduction between the two parametrized problems.

Because k-clique is W[1]-complete [56] and it cannot be solved in time f(k)no(k) for any

function f unless W[1]=FPT [57], we conclude

Corollary 5.1. Decision MskT-C is W [1]-hard.

Theorem 5.2. Unless the W-hierarchy collapses, the MskT-C problem cannot be solved

in time f(k)no(k) for any function f .

55

Chapter 6

K-trees as Stochastic Context Sensitive Grammars

In formal language systems any generation process of a string is some sequence of syntactic

rules applied and thus yields a syntactic structure associated with (the objects on) the

string. In stochastic formal language there is more than one syntactic process to generate

the same string [57, 58]. A probability distribution is associated with rules. If we sum up the

probabilities of those rules which are used in that generation process of a string then we will

get the probability for the specific syntactic structure admitted by the string. Therefore, a

stochastic formal language system defines a probability space for all the strings in a defined

language. At the same time, it defines, for every given string, a probability space for all the

syntactic structures admitted by the string.

A biomolecule consists of a string of linearly arranged residues that can spatially interact

to fold the sequence into a three-dimension structure. Such a structure can be predicted

as a syntactic structure of the molecule string through statistical computation with the

stochastic context free grammar model. The recursive context-free rules enable dynamic

programming algorithms (of running time O(n3)) efficient for structure decoding (CYK),

probability computation (Inside) with SCFG models and SCFG model learning algorithms,

e.g., Inside-Outside [46, 59].

The capability of SCFG, however, is limited to modeling context-free structures, which

include “nested” and “parallel” relationships of objects on a linear string (Figure 6.1 (a)).

With SCFG, it is not possible to model objects arbitrarily “crossing each other” (Figure

6.1(b)), which also often arise from important applications. This is typically the case in RNA

pseudoknot prediction. Theoretically, such crossing relationships are characterizable with

56

formal context-sensitive grammars, but general context-sensitive rules are less convenient to

use and incur computation intractability [57, 59].

Figure 6.1: (a) “Parallel” and “nested” relationships between letters on string abcacbacafadeaeda
of length 17, characterizable with SCFG; (b) “crossing” relationships as the result of
including additional (red color) relationships, which cannot be modeled with SCFG.

Backbone k-trees make it possible to introduce a new schochastic linguistic modelas as

a natural extension from SCFG that can characterize mildly context-sensitive structures.

k-trees have the ability to model constraint “crossing” relationships among the objects on

a string. Such constrained context-sensitive relationships can be found in a number of im-

portant applications. Typically our studies have revealed that residue relationship graphs

formed by resolved biomolecule 3D structures have treedecompositions with treewidth typi-

cally k = 3 or 4 (occasionally higher). Such applications have motivated our current work to

seek feasible probabilistic modeling of definable over linear chains of objects (i.e., strings).

6.1 Relationship of SCSGs with Backbone k-trees

Previous studies showed that learning and statistical analysis problems over general networks

are extremely difficult, for instance NP-hard even for k = 2, thus excluding the possibility to

57

establish feasible implementation of such a framework [60]. However, with the linear chain

constraint on k-trees, we are able to show, for the first time, that these problems are feasible,

namely solvable in polynomial-time for every fixed value of k. Here we will be considering a

generalized rooted tree topology for a rooted k-tree where each non-base clique κj is assigned

a unique parent κi such that κj = κi|xy for some x 6= y. Note that duplicate siblings are

allowed in a generalized rooted tree topology.

6.1.1 Faithful k-trees and backbone k-trees

Now we introduce k-trees for strings of a language. Let Σ be finite alphabet for language

and s ∈ Σ∗ a string. By |s|, we denote the length of s, i.e., the number of symbols in string

s. Assume |s| = n; we use [n] = {1, 2, . . . , n} for the set of indexes of all symbols in s and

s(i) for the ith symbol, i ∈ [n].

Definition 6.1.1.1 Let s be a string of length n. A (labeled) graph G = (V, E) is faithful

to s if

1. V ⊆ [n];

2. ∀ i ∈ V , vertex i is labeled with s(i); and

3. ∀ i, j ∈ V , if i < j and ¬∃l ∈ V such that i < l < j, then (i, j) ∈ E.

A labled k-tree satisfying the above three conditions is called a k-tree faithful to s.

Proposition 6.1.1.2 Given any string s of length n, the set of all k-trees faithful to s are

inductively defined as follows:

1. A (k + 1)-clique of vertices in [n] faithful to s is a k-tree faithful to s;

2. Let G = (V, E) be a k-tree faithful to s and y ∈ [n] − V . Then for any k-clique C in

G containing the highest index (in G) below y (if it exists) and the lowest index (in G)

58

above y (if it exists), the graph

G′ = (V ′, E ′), where V ′ = V ∪ {y}and E ′ = E ∪ {(y, i) | i ∈ C})

is a k-tree faithful to s.

We are interested in k-trees faithful to s which cover all vertices in [n] to characterize

structures imposed on the whole string s. For convenience, we call a k-tree faithful to

the string s a backbone k-tree for s if it includes exactly all vertices in [n]. Figure 6.2(a)

shows a 3-tree faithful to a string s of length 7, (b) a backbone 3-tree for s, and (c) a 3-tree

but not faithful to s.

Figure 6.2: (a) A 3-tree faithful to a string of length 7, (b) after vertex 4 is added to the k-tree in
(a), it becomes a backbone 3-tree for the string, and (c) a 3-tree but not faithful to the
string. Bold indicates backbone edge.

Proposition 6.1.1.3 Let G = (V, E) be a k-tree faithful to s of length n, where V =

{v1, v2, . . . , vm} for some m < n such that vi < vi+1 for all i = 1, 2, . . . , m − 1. Let

v ∈ [n] − V . Assume vj < v < vj+1 for some vj, vj+1 ∈ V . Then creating a new k-tree

faithful to s by connecting v to G satisfies the following constraints:

1. ∃ U ⊆ V, a k-clique, such that v forms a (k + 1)-clique with U , and

2. vj, vj+1 ∈ U .

59

6.2 CSGs for 2-trees

In this section we give an idea towards a formal formulation of CSG for 2-trees, which may

be extended to the CSGs of general k-trees. For any alphabet Σ let G(Σ) be the grammar

with terminal set Σ, non-terminal set {S0, I, P, S, I
′, I ′′, L, R}, start symbol S0, and the set

of rules which are obtained from schemata 1-9 below by all possible substituions of symbols

in Σ for the variable x, y and z. We also allow any of the non-terminals in the body of the

rule to be omitted, as if each of them can be nullified. So for example schema 2 generates a

total of 4 · |Σ|3 rules in G(Σ).

1. S0 → PxIyS|LxI ′yS|PxI ′′yR|LxI ′zI ′′yR

2. xIy → xIzIy

3. PxIy → PzIxIy|LzI ′xIy|P ′zy

4. P ′zy → PkIzy|LkIzy

5. xIyS → xIyIzS|xIyI ′′zR

6. LxI ′y → LxI ′zIy|PxIzIy

7. xI ′yS → xI ′yIzS|xI ′yI ′′zR

8. PxI ′′y → PzIxI ′′y|LxIzI ′′y

9. xI ′′yR→ xIzI ′′yR|xIzIyS

We present an example of generating a string ACGUAC with alphabets Σ = {A, C, G, U}.

Figure 6.3 shows the syntatic structure admittied by this generation process.

1. S0 → PCI ′′AR rule 1.1

60

2. → PAICI ′′AR rule 7.1

3. → AICI ′′AR P empty

4. → ACI ′′AR I empty

5. → ACIUI ′′AR rule 8.1

6. → ACIGIUI ′′AR rule 2

7. → ACGIUI ′′AR I empty

8. → ACGUI ′′AR I empty

9. → ACGUACS variant of rule 9.2

10. → ACGUAC S empty

Figure 6.3: One possible syntactic structure of 2-tree for string ACGUAC

6.3 SCS Language Models

6.3.0.1 Probability distributions of strings

We represent any k-tree G with a pair G = (BG, TG), in which BG is the collection of all

(k+ 1)-cliques in G and TG is a tree topology connecting these (k+ 1)-cliques. Figure 6.4(a)

illustrates generation of a 3-tree; and (b) gives a tree topology representation in (a).

Given a string, there may be more than one associated backbone k-tree. Proposition

61

Figure 6.4: (a) Illustration for generation of a 3-tree with 7 vertices (b) Tree topology representation
of the 3-tree in (a).

6.1.1.2 provides a nondeterministic processes to generate faithful k-trees and backbone k-

trees. Different backbone k-trees for the same string correspond to different processes to

generate the string, thus cfunctionorresponding to different possible syntactic structures for

the string. We model such structures statistically.

Let κ = {v1, v2, . . . , vk+1} be a (k + 1)-clique in any k-tree faithful to some string s.

For convenience, we assume the vertices are always ordered increasingly as 1 ≤ v1 < v2 <

. . . vk+1 ≤ n. We associate κ with two pieces of information:

1. Cκ = 〈s(v1), s(v2), . . . , s(vk+1)〉;

2. Dκ = 〈v2 − v1, v3 − v2, . . . , vk+1 − vk〉.

Two (k + 1)-cliques κ1 and κ2 are called equivalent if both Cκ1 = Cκ2 and Dκ1 = Dκ2

hold. We denote the class of equivalent (k + 1)-cliques to given κ by Eκ. Thus the space

of (k + 1)-cliques is partitioned into exclusive classes of equivalent (k + 1)-cliques with a

probability distribution. Such a distribution can be estimated as follows from a sufficiently

large population of backbone k-trees for strings which is presumably available.

Note: Let t ≥ 1 be a threshold, which we treat as a parameter to be determined by the

availability of the data. κ1 is equivalent to κ2 iff Cκ1 = Cκ2 and for each i, 1 ≤ i ≤ k, the

ith member of Dκ1and Dκ2 are equal or both > t.

Let G be a k-tree faithful to some string and TG be a representation of G as a rooted

k-tree topology. We will define the probability of TG inductively.

62

First, in the atomic case that G is a (k + 1)-clique, the probability p(G) of G is the ratio

of the number of occurrences of (k + 1)-cliques in EG over the number of occurrences of all

(k + 1)-cliques.

Second, in the case of a more general k-tree topology TG, we can compute the probability

of a TG as follows based on the inductive generation of k-trees given in Proposition 6.1.1.2.

Assume κ to be the base clique of TG, with m children κ1, . . . , κm, for some m ≥ 1, in tree

TG. For i = 1, 2, . . . , m, let TGi
be the k-tree topology for child clique κi and its descendents

in TG.

Then the probability p(TG) is computed as

p(TG) = p(κ, TG1 , TG2 , . . . , TGm) = p(κ|TG1 , TG2 , . . . , TGm)p(TG1 , TG2 , . . . , TGm)

in which, due to the independence of k-tree topologies TG1 , TG2 , . . . , TGm ,

p(TG1 , TG2 , . . . , TGm) = p(TG1)p(TG2) . . . p(TGm)

and the independence of separated components in a k-tree,

p(κ|TG1 , TG2 , . . . , TGm) = p(κ|κ1, κ2, . . . , κm)

where the relationships among κ and κi, for all i = 1, 2, . . . , m, satisfy the Parent-Children

relationship. We call this set of (k + 1)-cliques {κ, κ1, κ2, . . . , κm} a k-tree m-claw. Then

the probability p(κ|κ1, κ2, . . . , κm) is evaluated from a sufficiently large database to be the

frequency of k-tree m-claws equivalent with the k-tree m-claw

{κ, κ1, κ2, . . . , κm}.

That is the ratio of the number of occurrences of such k-tree m-claws over the total number

63

of occurrences of k-tree m-claws .

Now we are ready to define probability distributions for strings of languages. For the

convenience of discussion, we use the notation BbkT (TG, s) for the predicate asserting that

TG is a tree topology of a backbone k-tree G for string s. Let θ be the probability dis-

tribution drawn from some data source for atomic k-trees and k-tree m-claws. Then the

aforementioned probability p(TG) for k-tree topology TG should be conditional p(TG|θ).

Distribution θ defines a language Lθ as follows.

s ∈ Lθ ⇐⇒ ∃TG BbkT (TG, s) & p(TG|θ) > 0

Therefore, the membership of s can be determined by checking whether

functionProb(s|θ) =
∑

BbkT (TG, s)
Prob(s, TG|θ) =

∑
BbkT (TG, s)

p(TG|θ) > 0.

P rob(s|θ) is called the total probability of s being produced by the defined system θ, or of

belonging to the language Lθ.

Often, instead of computing the probability of all possible tree topologies of backbone k-

tree for s, we may need to find a tree topology for s which is the most likely. Such a topology

corresponds to the most “plausible” syntactic structure of the string s. In particular, the

following formulates the most probable topology of backbone k-tree for s:

G∗ = arg max
BbkT (G,s)

p(G|θ)

In the next section, we will present efficient algorithms developed to compute both total and

maximum probabilities of any given string s.

64

6.3.0.2 Algorithms

Technically, a k-tree topology faithful to string s covers some (possibly discontiguous) vertices

ordered from 1, 2 to n = |s|. Let G be such a k-tree topology. Then it can be specified

with two pieces of information 〈RG, IG〉, where RG is a (k + 1)-clique, the base of the tree

topology corresponding to G, and IG is an importable vector :

IG = (b0, b1, . . . , bk+1), bi ∈ {0, 1}, i = 0, 1, . . . , k + 1

where, assume RG = {v1, v2, . . . , vk+1} with 1 ≤ v1 < v2 < · · · < vk+1 ≤ n, the boolean

indicator bi indicates if all vertices between vi and vi+1 are included in G, for 0 ≤ i ≤ k + 1

(v0 = 1 and vk+2 = n by default).

We obtain important relationships of importable sets associated with k-tree topologies.

Let (k + 1)-clique RG1 be a child of RG in the tree topology TG and RG1 is the root of the

tree topology of some k-tree G1 contained in G. Let IG = (b0, b1, . . . , bk+1). Then there

exists some i and j, either j < i− 1 or j ≥ i+ 1, such that

1. bj = 1, and

2. RG1 = RG|vi
y for some y, vj < y < vj+1.

In addition, if j ≥ i+ 1, then

IG1 = (b0, . . . , bi−1, 0, bi+2, . . . , bj−1, b
′
j, b
′′
j , . . . , bk)

if where b′j = 1 unless vj−1 = y − 1, and b′′j = 1 unless vj = y + 1. The case j ≤ i − 1 is

similar. If in addition, RG2 , the root of tree topology for k-tree G2, is another child of RG

in the tree topology, with RG2 = RG|wz , for some w ∈ RG, then

3. IG2 has 0 in its jth component.

65

The above conditions (1)-(3) constrain RG to have at most k + 2 children.

We now establish recurrences for probabilities of k-tree topologies faithful to s. Let G be

such a k-tree topology with base RG and importable vector IG. Let the total probability for

s to admit G (with the importable vector IG) be t(RG, IG). Then

t(RG, IG) =
k+2∑
m=1

m∏
pc(RG, IG, RGi

, IGi
), i=1

t(RGi
, IGi

)× p(RG|RG1 , . . . , RGm) (6.1)

where predicate pc(RG, IG, RGi
, IGi

) asserts that (k+1)-clique RG is the parent of RGi
in the

tree topology for G, given their importable sets. The above probability includes all possible

situations of RG having m children, m ≤ k + 2. The probability p(RG|RG1 , . . . , RGm) was

defined in the previous section.

The base case of t(RG, IG) is when RG has no child with IG = ∅, which is the case that G

is simply a (k+ 1)-clique. Therefore t(RG, ∅) = p(RG), which is also defined in the previous

section.

The recurrence (6.1), together with the base case, offers a dynamic programming algorithm

for computing the total probability t(RG, IG). This is to establish a table with entries for

storing t(RG, IG) for all k-tree topologies G. The table has dimensions O(nk+1) × 2k+2

since there are O(nk+1) different (k + 1)-cliques in total. Each entry needs time O(k2n)

to compute, with total time complexity O(nk+22k+2k2). For a fixed value of k the time

complexity is O(nk+2). For small k the hidden constant should be small enough to allow for

practical implementations of the algorithm.

The total probability of s is then defined as

Prob(s|θ) =
∑
G

t(RG, I
∗)

where importable vector I∗ = (1, 1, . . . , 1) is of all 1’s, meaning to include all vertices

66

{1, 2, . . . , n}.

Often, instead of computing the total probability of s, it is desirable to know the most

likely syntactic structure the string s may possess. This is to compute the maximum prob-

ability of a backbone k-tree topology faithful to s:

G∗ = arg max
BbkT (G, s)

p(G|θ)

For this purpose, we define z(B, I) to be the maximum probability of a k-tree topology

faithful to s with base B (and importable vector I). Then we have a recurrence resembling

(6.1) in which the summation is replaced by maximization:

z(B, I) = k+2max
m=1

m∏
pc(B, I,Bi ,Ii), i=1

z(Bi, Ii)× p(B|B1, . . . , Bm). (6.2)

The base case for z(B, I) is when I = ∅ and the corresponding k-tree is simply B, a

(k + 1)-clique, resulting in z(B, ∅) = p(B).

The backbone k-tree G∗ for s corresponding to B such that z(B, I∗) achieves the maxi-

mum value in the table. In this case, B = RG∗ .

Finally, it is not difficult to see that, like computing p(B, I), computing z(B, I) can be

done in dynamic programming as well with same asymptotic computational time require-

ment.

If the effect of tree topologies with duplicate siblings can be neglected then the non trivial

algorithm presented in the Chapter 4 can be adapted to calculate p(B, I) and z(B, I). The

table for this algorithm has dimensions O(nk)×2k+1 since there are O(nk) different k-cliques

in total. Each entry needs time O((k + 1)k+2n) to compute, with total time complexity

O(k(k + 1)k+2nk+1).

67

Conclusion

We introduced a polynomial time algorithm for finding the maximum spanning k-trees on the

family of backbone graphs. There is a strong evidence that the algorithm has the optimal

order of growth in input size n for each k greater than 2. The reason is that, backbone

spanning k-trees characterize graph relationships among linearly connected vertices (on the

backbone), and they are also applicable to relationships between symbols on sentences of

formal languages. Then the algorithm introduced in section 4 implies that mildly context-

sensitive languages can be syntactically defined and their sentences can be parsed in time

O(nk+1) for every fixed k. The family of languages for k = 2 includes all context-free

languages as a special case. Parsing of general context-free languages can be accomplished

in O(n3) [61, 62]. A faster algorithm (i.e., of time O(nk+1−ε), for any ε > 0) for Maximum

Spanning k-Tree would imply a sub-cubic algorithm to parse general context-free languages,

breaking the longstanding barrier of θ(n3) for practical algorithms.

The recursive rules for backbone k-tree generation have allowed us to associate probability

distributions with k-trees in a natural way. This leads to efficient dynamic programming al-

gorithms for probability computation of backbone k-trees with a stochastic context sensitive

language model, suitable for statistical analysis of real-world structures that can be modeled

upon strings of a language. The probability computation algorithms we developed are in the

spirit of CYK and Inside algorithms (as with SCFG), we are optimistic that there will emerge

EM learning algorithms for the newly introduced model in the spirit of Inside-Outside (as

with SCFG).

68

References

[1] C. Laing, T. Schlick. Computational approaches to RNA structure prediction, analysis

and design. Curr Opin Struct Biol, 21(3)306-318, June 2011.

[2] W.R. Taylor, C. A. Orengo. Protein structure alignment. Journal of Molecular Biology,

208(1)1-22, 5 July 1989.

[3] R.B. Lyngsø. Computational Biology: Ph.d. Dissertation BRICS, Computer Science

Department, University of Aarhus, 2000, 173 pages.

[4] J. Xu, F Jiao, B. Berger. A Tree-Decomposition Approach to Protein Structure Predic-

tion. Proceedings of the 2005 IEEE Computational Systems Bioinformatics Conference,

Pages 247-256.

[5] R.H. Lathrop. The protein threading problem with sequence amino acid interaction

preferences is NP-complete. Protein Engineering, 7:1059-1068, 1994.

[6] T. Akutsu, S. Miyano. On the approximation of protein threading. Theoretical Computer

Science, 210:261-275, 1999.

[7] N. A. Pierce, E. Winfree. Protein design is NP hard. Protein Engineering, 15(10):779-

782, 2002.

[8] T. Akutsu. NP-hardness results for protein side-chain packing. Genome Informatics,

8:180-186, 1997.

[9] A. Sali, E. Shahknovich, and M. Karplus. How does a protein fold ? Nature, 369:248-251,

1994.

69

[10] Tinoco I Jr, Bustamante C. How RNA Folds. J Mol Biol, 22;293(2):271-81, Oct 1999.

[11] R.B. Lyngsø. Complexity of pseudoknot prediction in simple models (2004), Automata,

Languages and Programming Lecture Notes in Computer Science,3142:919-931, 2004.

[12] Bern, Marshall Wayne. NETWORK DESIGN PROBLEMS: Steiner Trees and Spanning

K - Trees. University of California, Berkeley, 1987, 148 pages.

[13] Leizhen Cai and FrCdkric Maffray. On the SPANNING k-TREE problem. Discrete

Applied Mathematics, 44:139-156, 1997 North-Holland.

[14] Yinglei Song, Chunmei Liu, Xiuzhen Huang, Russell L. Malmberg, Ying Xu, and Lim-

ing Cai. Effecient parameterized algorithms for biopolymer structure-sequence align-

ment. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 3:423-

432, 2006.

[15] Lorena Nasalean, Jesse Stombaugh, Craig L. Zirbel, and Neocles B. Leontis. RNA 3D

Structural Motifs: Definition, Identification, Annotation, and Database Searching Non-

Coding RNAs. Springer Series in Biophysics, 13:1-26, 2009.

[16] Ruth Nussinov, George Piecznik, Jerrold R Griggs, and Daniel J Kleitman. Algorithms

for loop matching. SIAM Journal on Applied Mathematics, 35(1):68-82, 1978.

[17] M. Zuker. Computer prediction of RNA structure. Methods in Enzymology, 180:262-288,

1989.

[18] I.L. Hofacker. Vienna RNA secondary structure server. Nucleic Acids Research, 31:3429-

3431, 2003.

[19] M. Zuker. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic

Acids Res., 31(13):3406-3415, 2003.

70

[20] M. Zuker and P. Steigler. Optimal computer folding of larger RNA sequences using

thermodynamics and auxiliary information. Nucleic Acids Research, 9:133-148, 1981.

[21] B Knudsen and J Hein. RNA secondary structure prediction using stochastic context-

free grammars and evolutionary history. Bioinformatics, 15(6):446-454, 1999.

[22] Tadao Kasami. An effcient recognition and syntax-analysis algorithm for context-free

languages. Technical report, Air Force Cambridge Research Lab, Bedford, MA, 1965.

[23] Elena Rivas and Sean R. Eddy. Secondary structure alone is generally not statistically

signicant for the detection of noncoding rnas. Bioinformatics, 16(7):583-605, 2000.

[24] Chuong B. Do, Daniel A. Woods, and Seram Batzoglou. CONTRAfold: RNA sec-

ondary structure prediction without physics-based models. Bioinformatics, 22(14):e90-

e98, 2006.

[25] Daniel H. Younger. Context-free language processing in time n3. Switching and Au-

tomata Theory, 1966., IEEE Conference Record of Seventh Annual Symposium on, pages

7-20.

[26] B. Knudsen, and J. Hein. Pfold: RNA secondary structure prediction using stochastic

context-free grammars. Nucleic Acids Research, 31:3423-3428, 2003.

[27] Robin Dowell and Sean Eddy. Evaluation of several lightweight stochastic context-free

grammars for RNA secondary structure prediction. BMC Bioinformatics, 5(1):71, 2004.

[28] Das R, Baker D. Automated de novo prediction of native-like RNA tertiary structures.

Proc Natl Acad Sci, 104(37):14664-14669, USA 2007.

[29] Sharma S, Ding F, Dokholyan NV. iFoldRNA: three-dimensional RNA structure pre-

diction and folding. Bioinformatics, 24:1951–1952, 2008.

71

[30] Jonikas MA, Radmer RJ, Laederach A, Das R, Pearlman S, Herschlag D, Altman RB.

Coarse grained modeling of large RNA molecules with knowledge-based potentials and

structural filters. RNA, 15:189–199, 2009.

[31] Parisien M, Major F. The MC-Fold and MC-Sym pipeline infers RNA structure from

sequence data. Nature, 452:51-55, 2008.

[32] H.L. Bodlaender. A linear time algorithm for finding tree-decompositions of small

treewidth. SIAM Journal on Computing, 25:1305–1317, 1996.

[33] H.L. Bodlaender and, T. Kloks. Efficient and constructive algorithms for the pathwidth

and treewidth of graphs. J. Algorithms, 21(2):358–402, 1996.

[34] N. Robertson, and P. D. Seymour. Graph minors. III. Planar tree-width. J. Combin.

Theory Ser. B, 36(1):49–64, 1984.

[35] S. Arnborg, and A. Proskurowski. Linear time algorithms for NP-hard problems re-

stricted to partial k-trees. Discrete Applied Mathematics, 23(1):11–24, 1989.

[36] S. Arnborg, A. Proskurowski, and D. Seese. Monadic second order logic, tree automata

and forbidden minors. Computer Science Logic Lecture Notes in Computer Science 533,

pages 1–16, 1990.

[37] S. Arnborg. Efficient algorithms for combinatorial problems on graphs with bounded

decomposability-a survey. BIT , 25(1):2–23, 1985.

[38] Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for treedecomposable

graphs. J. Algorithms, 12(2):308–340, 1991.

[39] H.L. Bodlaender. Dynamic programming on graphs with bounded treewidth. Automata,

Languages and Programming Lecture Notes in Computer Science , 317:405-118, 1988.

[40] Jon Kleinberg , Éva Tardos. Algorithm Design. Addison-Wesley, 2005.

72

[41] C.H. Papadimitriou. Computational Complexity. Addison-Wesley Publishing Company,

inc.,1994.

[42] R. Nussinov and A. B. Jacobson. Fast algorithm for predicting the secondary structure

of single-stranded RNA. Proceedings of the National Academy of Sciences of the United

States of America, 77(11):6309–6313, 1980.

[43] J.T. Ngo and J. Marks. Computational complexity of a problem in molecular-structure

prediction. Protein Engineering, 5(4):313–321, 1992.

[44] R. B. Lyngsø. Computational aspects of biological sequences and structures. Master’s

thesis, Department of Computer Science, University of Aarhus, June 1997.

[45] Dan Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and

Computational biology. Cambridge University Press, 1997.

[46] Richard Durbin, Sean R. Eddy , Anders Krogh , Graeme Mitchison. Biological Sequence

Analysis: Probabilistic Models of Proteins and Nucleic Acids . Cambridge University

Press, 1998.

[47] M. Farley. Networks immune to isolated failures. Networks, 11(3) 255-268, 1981.

[48] Joseph A. Wald, Charles J. Colbourn. Steiner trees, partial 2–trees, and minimum IFI

networks. Networks, 13(2) 159-167, 1983.

[49] Pooya Shareghi Arani. Graph Generating Systems for Predicting Biological Structures.

Ph.d. Dissertation, Computer Science Dept., UGA, 2012.

[50] Michael Zuker and David Sanko. RNA secondary structures and their prediction. Bul-

letin of Mathematical Biology , 46:591-621, 1984.

[51] Reinhard Diestel. Graph theory. Graduate Texts in Mathematics, volume 173. Springer-

Verlag, 2nd edition, 2000.

73

[52] H.L. Bodlaender. A Tourist Guide through Treewidth. Acta Cybernetica, (1993).

[53] Donald. J. Rose. On simple characterization of k-trees . DISCRETE MATHEMATICS

7(1974) 317-322 North-Holland Publishing company.

[54] Andreas Krause. Bounded Treewidth Graphs-A Survey. German Russian Winter School

St.Petesburg, Russia , Technical University of Munich, 2003.

[55] H.L. Bodlaender . A Partial K-Arboretum of Graphs With Bounded Treewidth. Theo-

retical Computer Science, 209(1-2):1-45, 1998.

[56] R.G. Downey and M.R. Fellows. Fixed-parameter tractability and completeness ii: On

completeness for W[1]. Theoretical Computer Science, 141(1-2):109-131, 1995.

[57] Hopcroft, J.E., Motwani, R., and Ullman, J.D. Introduction to Automata Theory, Lan-

guages, and Computation. Addison-Wesley, 3rd edition 2006.

[58] Salomaa, A. Jewels of Formal Language Theory, Computer Science Press, 1981.

[59] Lari, K. and Young, S.J. The estimation of stochastic context-free grammars using the

Inside-Outside algorithm. Computer Speech and Language, 4:35-56, 1990.

[60] Srebro, N. Maximum likelihood bounded tree-width Markov networks, Artificial Intel-

ligence, 143:123–138, 2003.

[61] T. A. Sudkamp. Languages and Machines: An Introduction to the Theory of Computer

Science. Addison-Wesley, 2005.

[62] J. Earley. An effcient context-free parsing algorithm. Communications of the ACM ,

13(2), 1970.

[57] J. Chen, X. Huang, I. A. Kanj, and G. Xia. Strong computational lower bounds via

parameterized complexity. Journal of Computer and System Sciences, 72(8):1346-1367,

74

2006.

75

	Acknowledgment
	List of Figures
	List of Symbols
	1 Introduction
	1.1 Motivation
	1.2 Contribution of the Dissertation

	2 Preliminaries
	2.1 Graph Theory
	2.2 Properties of k-trees
	2.3 Maximum Spanning k-trees

	3 Properties of k-trees
	4 Algorithms for MskT and MskT-C
	4.1 2-trees
	4.2 Finding Optimal k-trees for k=3
	4.3 Algorithm Analysis

	5 Hardness
	6 K-trees as Stochastic Context Sensitive Grammars
	6.1 Relationship of SCSGs with Backbone k-trees
	6.1.1 Faithful k-trees and backbone k-trees

	6.2 CSGs for 2-trees
	6.3 SCS Language Models
	6.3.0.1 Probability distributions of strings
	6.3.0.2 Algorithms

	Conclusion
	References

