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Introduction

Our goal is to give a description of certain components for Springer fibers in the excep-
tional types G5 and Fj, so we need to introduce Springer fibers. Before describing the fibers,
we begin with a discussion of important terminology. Let G denote a connected complex
simple Lie group, and let g denote the Lie algebra of G. Then let B denote the collection
of all Borel subalgebras of g, and let N denote the cone of nilpotent elements of g. Recall
that an element = € g is nilpotent if for any finite dimensional representation 7 : g — gl(V'),
m(x) is a nilpotent operator on V. For a given Borel subalgebra b C g and chosen Cartan
subalgebra h C g contained in b, we can write b = h +n~ for some maximal nilpotent ideal
n . Let Ad : G — GL(g) denote the adjoint representation of GG, and let g.x represent
Ad(g).x for any g € G and x € g. If we define B = Stabg(b) to be the stabilizer of b in G,
then we have an isomorphism of G/B with the flag variety B given by ¢B — ¢.b.

With these objects in place, we can introduce a variety from which Springer fibers are
built. Since the subspace n~ of g is B-stable, we can define the algebraic variety G xZ n~
to be the quotient of G x n~ by the equivalence relation defined in the following way. For
any pair of elements (g1,n1) and (g2,n2) in G X n™, (g1,n1) ~ (g2, n2) if there exists some
element b in B such that (g1,n1).b = (g1b,b".n1) = (go,n2). To define Springer fibers, we

introduce the Springer resolution

p:GxBnm = N,



which is a proper morphism given by ,u((g, n)) = g.x forany g € GG and z € n™. Details about
the variety structure of G x?n~ including various isomorphic descriptions of the variety can
be found in [Spr81] and [Jan04]. One such interpretation is that G' x” n™ can be identified
with the cotangent bundle TB of B, so p gives a map from the cotangent bundle onto the

set of nilpotent elements of g.

Definition 1.1. Given an arbitrary nilpotent element f € N, the preimage of f with respect

to p is called a Springer fiber.

To outline the specific components of = *(f) that we wish to describe, we need to in-
troduce Cartan decompositions and real forms. These Cartan decompositions will play an
important role because they help us describe certain components of Springer fibers, and then
these components will tell us information about certain real forms of G. Let Gy denote a
noncompact real form of G with associated Lie algebra gy obtained from an involution 6
of g. Since 6 is an involution, i.e., a Lie algebra automorphism such that §* = 1, we have
a decomposition of g = € + p where £ is the +1 eigenspace and p is the —1 eigenspace
with respect to 6. Define © to be the involution of G that is the lift of # to G, and let
K ={g € G:0(g) = g} denote the fixed point subgroup of G. In general, the connected
subgroup of G with Lie algebra ¢ and the fixed point subgroup K may differ by a non-trivial
discrete group, although [KRT7I, Proposition 1] tells us that they have the same Lie algebra
€. There are many complex simple Lie groups including those considered in this paper for
which K is necessarily connected.

Since we will be focusing on nilpotent elements in p, let Ny = N N p denote the set of
those elements. Refer to [KRT71], [Dok8§|, and [Kin92] for more information on nilpotent
G-orbits and nilpotent K-orbits for elements f € Ny. Our goal is to describe certain ir-
reducible components of 1 *(f) associated to closed K-orbits in B when f is a specialized
element called a “generic” element. The remainder of this chapter will involve an outline

of the ingredients necessary to understand these components, which can be found in [BZ0S§|,
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Section 2].
The fixed point subgroup K acts on B with finitely many orbits, so let O = K - b denote
one of these orbits. If we let Kp denote the intersection of K with B, then the conormal

bundle to O in the cotangent bundle of B is identified with

THB = K x¥5 (n™ np).

Define a map 9o : T5B — N to be the restriction of u to the closure of the conormal bundle
T5HB contained in T°B. Understanding the image is important and leads us to one of two
lemmas, which will be used throughout this paper. Lemmas and are clearly known

and used frequently in [BZ08], but we include original proofs here for completeness.

Lemma 1.2. The image of 1o is the subset of Ny given by the closure of K.(n™ Np), and

is the closure of a single K-orbit having the greatest possible dimension.

Proof. Since p restricted to T8 has image K.(n” Np) and p is a closed map, we know that

K.(n=1p) = iT5B) C n(T6B) = w(T5B) = vo(T5B).

On the other hand, p is a continuous map, so

bo(THB) = w(IHB) € w(THB) = K.(n= Np),

hence the image of ¥ is the closure of K.(n~ Np). To prove the second part of the lemma,
define the map
A Kox (nNp)— K,.(n” Np)

by (k,v) — k.v where K, represents the identity component of K. Since K, X (n~ Np) is

an irreducible variety, the image of A is as well, i.e., K,.(n™ Np) is an irreducible variety.



Now, Kostant and Rallis show in [KR71] that there are finitely many K-orbits in N N p,
and also finitely many K,-orbits in A/ N p, hence K,.(n~ N p) is a finite union of nilpotent
K,-orbits. As a result, write Ko.(n" Np) = O U Oy --- U O, and note that the closure
is Ko.(n=Np) =0, U0, ---UDO,. Since K,.(n~ Np) is irreducible there must be some 0y
that is equal to m In particular, O; is dense in m, and the dimension
of O; is the same as the dimension of K,.(n=Np). Let {ky,..., kn} denote a set of coset
representatives for K /K,. Since O; = K,.f is dense in m and k; K,.f is dense in
kiK,.(n= N p), it follows that

0 kiKo.f =K.f

i=1

is dense in

ki (n=np) = JkiKo.(n-Np) = K.(n=p).
i=1 =1

Finally, any two distinct K-orbits in K.(n~ N p) must have empty intersection, so any other
K-orbit lives in the boundary K.f — K.f. By Proposition 8.3 in [Hum75|, the orbits in the
boundary have strictly smaller dimension, so the maximal dimensional dense K-orbit K.f is

unique. ]

The above lemma actually proves more than we need since K happens to be connected as
a subgroup of G and F);, but it is nevertheless true in a more general setting. Understanding
the components of the Springer fibers this dissertation will describe hinges on exploring this
particular orbit, so it is appropriate to name the elements of this K-orbit as they are defined

in [BZ0S).

Definition 1.3. The elements f € n~ Np such that the image of ¥ is K - f are referred to

as generic elements.

We are going to be looking at closed K-orbits, so we need to consider how this affects

the map 9. If O is a closed K-orbit of B, then T5B is closed in 7*B and the image of



Yo is K.(n™ Np). Moreover, the closed K-orbit O is necessarily a flag variety for the fixed
point subgroup K. To prove this fact, observe that the stabilizer subgroup of b in K is
the subgroup Kp. Then consider the isomorphism of varieties from K/Kp to K.b given by
kKp — k.b. Since O is closed in B, it follows that K/Kp is closed in B and projective, so
Kp is a parabolic subgroup of K. Then Ky = K N B is solvable, so it follows that Kp is a

Borel subgroup. For a generic element f € n~ N p, we have the following description of the

preimage 15" (f):

Vo' (f) = {(k.n) € TGB | kn = f}
={(k,k"Lf) €THB |k .f en Npl.

Now, the natural projection from T*B — B takes ¢, (f) isomorphically onto its image, so
we have

Vo' (f) = {(k.b | k~'.f €n” Np} [BZOS, Section 2].

If we let N(f,n~ Np) be the subset of K defined by

N(fn np)={ke K :kfen np},

then

Vo' (f) = N(f,n Np)~tbCO. (1.1)

Therefore, ¥, (f) for any f € n™ Np is identified with a subvariety of the flag variety O for
the fixed point subgroup K.

At this point, we should discuss the relationship between p~'(f) and ¢5'(f). By [BZ,
Section 1], it turns out that each irreducible component of p~'(f) for f € Ny is contained
in the closure of a single conormal bundle T, associated to a K-orbit O in the flag variety

of G. Moreover, if the K-orbit O is closed, then all of the components of p~'(f) contained
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in the closed conormal bundle T;B are permuted by the elements of a component group
associated to f. Therefore, we will use the above isomorphism frequently when we
describe the irreducible components of ' (f) contained in the closed conormal bundle Tp, 1.
The following proposition illustrates the transitivity of the irreducible components under the
action of the component group, which will help us describe p~'(f) N T5HB, but first we need

to define these component groups.

Definition 1.4. Given an element f € N, let K7 denote the stabilizer subgroup of f in K.
Then the component group of f in K, denoted Ak (f), is defined to be the quotient group

K7 /K! where K7 denotes the identity component.

Proposition 1.5. If O = K.b is a closed K-orbit in B and Cy is an irreducible component
of u(f) contained in THB for f € Ny, then the component group Ax(f) acts transitively

on the irreducible components of u~*(f) contained in TyB. In other words,

vo'th= U = ¢

1
Moreover, the irreducible components all have the same dimension: dim B — 5 dim G.f.
Proof. See [BZ] for proofs and a complete list of references. ]

The fibers 1, (f) for a generic element f € n~ N p associated to closed K-orbits for the
noncompact real forms of Gy and Fj have a nice description. Most of the components are
homogeneous, but there are few closed K-orbits for which the associated Springer fiber com-
ponents are non-homogeneous. We will spend several chapters building all of the necessary

tools to prove that 1, (f) takes the form of exactly one of

L.b,ZyL.b,ZLb~ Z x?"“ Q/Kpg, or ZL.b (1.2)



where L is a reductive subgroup of K, Z is a centralizer subgroup of K7, and @ is a parabolic
subgroup of K containing L. It is important to note that the specific groups above depend
on the closed K-orbit and will be described in the subsequent chapters. Moreover, we will
know for each closed K-orbit, the specific isomorphism type of 1/)51 (f) among the possibilities
given in . This structure will be important for the applications to real forms discussed
in Chapter

The last preliminary piece of information that we need involves describing the closed
K-orbits. From now on, we will be considering Lie algebras g such that the rank of K is
the same as the rank of G. As a result, we will choose our Cartan subalgebra such that
h C £ Let ®(h,g) (resp., (h,t)) represent a system of roots (resp., compact roots) for b
in g (resp., b in ), let A(h, g) represent a system of simple roots, and fix a positive system
d*(h, g) (resp., @ (h,€)) for b in g (resp., h in €). The following lemma will tell us how to

find and count the possible K-orbits.

Lemma 1.6. Suppose that the rank of K equals the rank of G. There is a one to one cor-
respondence between positive systems ®* for ®(h,g) such that ®*(h,€) C ®* C &(h,g)
and closed K-orbits in B. Moreover, the number of such positive systems is given by

(W /Wi | = [Wx\W| where W (resp., Wy ) denotes the Weyl group of G (resp., K ).

Proof. We need to define a map from

{Closed K-orbits O} to {®T | ®T(h,€) C & C d(h,g)}

where @ is a positive system for ®(h, g). Given a closed K-orbit O, choose b in O such
that b is contained in b, and write b = b + n~ for some maximal nilpotent ideal n~. This is
possible because h C £, so we can conjugate the Cartan subalgebra for a Borel in O to our
fixed Cartan b by an element of K. Then let ®*(b) be the set consisting of those roots « such

that g_, is a root space contained in n~. Choose the unique element [w] € Wk (w € K) such
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that [w].(®*(b) N ®(h, €)) = & (h,€). Then the Borel subalgebra w.b is the unique element
of O = K.b for which w.b D h and ®*(w.b) contains ®*(h, £). To see the uniqueness, note
that the only elements of K that fix h are elements w of the normalizer of H = Euxp(h)
in K. Then acting by any nontrivial element [w] € Wy will permute the roots so that
®*(b) no longer contains ®*(h,£). Now, we need to define the inverse mapping. Observe
that from such a positive system ®', we obtain a Borel subalgebra b = h + n~ by letting
n~ consists of the root spaces g¢ for all roots € in —®™. Since the positive system used to
construct b contains the positive system for f in €, €Nb is a Borel subalgebra in €. Therefore,
KN B is a Borel subgroup of K, so K/(K N B) is isomorphic to the flag variety for K. Since
K.b ~ K/(KNB), we see that the K-orbit K.b is closed. The cardinality follows immediately
because all positive systems for g are obtained by applying Weyl group elements [w] € W to
a fixed positive system ®*. As in the proof above, there is a unique [w'] € Wy such that the

positive system [w']([w]®") contains ®* (b, £). A simple computation shows that the map

Wi\W — {27 | @7(h,t) C &7 C (b, g)}

given by sending the right coset Wi [w] to the positive system [w']([w]®") gives a bijection.
0

The Borel subalgebras that appear in this work will always be put together in this manner.
In the future, we may refer to the corresponding nilradical n defined by the positive roots

instead of the negative roots.



2

The Exceptional Lie Algebra g,

In order to start computing some irreducible components of the Springer fibers for G =
G5, we begin by constructing the Lie algebra g of G. Let h denote a fixed Cartan subalgebra

of g, and let ®(h, g) denote a root system relative to . Recall that relative to a choice of

Cartan subalgebra b, we can write

g=be P e

£ed(b,g)

for the root space decomposition of g into its root spaces g and two dimensional Cartan

subalgebra §.

B

Figure 2.1: Dynkin Diagram for g

Let A(h,g) = {«, 8} denote a base for ®(h, g) where « is the short simple root and f is

the long simple root. Then the positive roots relative to A(h, g) for type go are

ot (h,g9) = {a, B, a+ B8,2a + 3,3a + B3, 3a + 23}

Note that Figure [2.1| gives the Dynkin diagram for g,. For our efforts, we will choose to



work with a Chevalley basis, which is defined by the content of the following proposition in
[Hum72, Prop. 25.2].

Proposition 2.1 (Existence of a Chevalley Basis). It is possible to choose root vectors

ze € go(a € O(h,g) satisfying:
(a) [xe, 7 ¢] = he
(b) If &, € and £ + € are roots such that [xe, x.] = Ce Zepe, then cge = —C_¢ .

We will give details about this basis for g, but let us first introduce a notation for such

a basis. Let

U tedu U {re=leeod]

£c@(h,g) §€A(h,g)

represent a Chevalley basis for g where x¢ denotes a basis vector in g for each

{=ta+jp € (b, g)

If § = ia+j 3, we will write z(; ;) = x¢, and the notations will be freely interchanged whenever
it is clear which root is being referenced. Lastly, we may refer to the elements of h generated
by the nonsimple root vectors, so let he denote those elements [z¢, z_¢] for all £ € 7 (b, g).

Now, it will be useful at this point to construct generators for a Chevalley basis for g.
First, we choose the simple root vectors as prescribed by the Cartan matrix, and then use

the Lie bracket to generate all of g. In other words, let

represent the Cartan matrix associated to g. Choose simple root vectors satisfying the

relations in Table below, and then use the Lie bracket to extend to the basis for g given

10



P10y, T1,0)] = 22010 P10y, T(0,1)] = —3x(0,0)
[h(o,1),I(1,0)] = —Z(1,0) [h(0,1)733(0,1)] = 236’(0,1)
[h(1,0)756(—1,0)] = —255(—1,0) [h(l,o),x(o,—l)] = 31’(0,—1)
[h(0,1),37(—1,0)] = T(-1,0) [h(0,1)795(0,—1)] = —21'(0,—1)

Table 2.1: Lie Brackets |

T, = —[2,0:Z01)] T(-1,-1) = [T(-1,0)s T(0,-1)]
z1) = —1/2[z00, 0] | T-2-1) = 1/2[r(10), T(-1,-1)]
zi31) = —1/3[raop el | Ts-1) = 1/3[r(10), T(—2-1)]

T3,2) = —[T(0,1), (3,1 T(—3-2) = [T(0-1), T(-3,-1)]

Table 2.2: Lie Brackets 11

in Table [2.2] Note that the basis given in Tables and is a Chevalley type basis that
agrees with the mathematical software package GAP. The complete multiplication tables
have been worked out, and the results are given in Appendix |D| for reference.

As we build some Springer fiber components, we will place an assortment of calculations
that are necessary into the appendices as opposed to the main sections. From now on, if
a calculation is included in Appendix X, then it will be followed by a “(see Appendix X)”
marker. Most of the calculations can be done using the multiplication tables and linear
algebra. Alternatively, some calculations involving the fixed point subgroup K can be made
more explicit if we appeal to a representation of g and G' by matrices. By the Weyl dimension
formula, we know that there exists a faithful, irreducible representation of gs of dimension

7. Before giving such a representation, we consider the following lemma.
Lemma 2.2. There exists an embedding of G = Gy as a closed subgroup of GL(7,C).

Proof. Let m : g — gl(7,C) be a faithful representation of g = g,. Then viewing g as a

subalgebra of gl(7, C), we know from [Kna02, Chapter 1, Section 10] that there is a complex

11



analytic subgroup G’ of GL(7,C) with Lie algebra isomorphic to g. Since g is simple, we know
from [Hel78, Chapter 2, D.4.IV] that G’ is necessarily a closed Lie subgroup of GL(7,C).
As there is only one connected complex simple Lie group of type G, G’ is simply connected
of type Gy (see [Ale05, Proposition 4.1]). Therefore, G’ is isomorphic to G, hence G can be

viewed as a closed subgroup of GL(7,C). O

To describe such a representation of g, we will use the notation £;'; to denote the n x n
matrix with a 1 in the {i,j} entry and 0’s elsewhere. Following Howlett et al., we’ll choose
the representation 7 : g — gl(7,C) found in [HRTO0I, Section 3.6] with generators for a
Chevalley basis given in Table 2.3 As one might hope, these generators completely agree
with our first description of g given abstractly in terms of the bracket relations on the
generators. Moreover, the representation is faithful, so one can drop the 7 from the notation
without encountering any problems. Since G is simply connected, 7 determines a unique
map from G — GL(7,C) that commutes with the exponential mappings. Therefore, we will
sometimes view the exponential mapping Fxp : g — G as the matrix exponential, and the

adjoint action in terms of matrix conjugation. The complete list of matrices is provided in

Appendix D]

Root Vector x 7(x)
To E17,2 + 2E§74 + EZ,5 + Eg,?
T_q E27,1 + EZ,3 + 2E5774 + E;,6
LB E27,3 + E57,6
T_p Eg,Q + Eg,s

Table 2.3: Generators for g, C gl(7,C)

12



3

Generic Elements: Split Real Form G

A real simple Lie algebra g is called a real form of a complex simple Lie algebra g if the
complexification gy ®g C is isomorphic to g. In the theory of real Lie algebras, a real form gg
can be constructed from an enhanced Dynkin diagram called a Vogan diagram. These Vogan
diagrams are formed by taking the usual Dynkin diagram of a complex simple Lie algebra
and attaching extra data to the simple roots, which is then used to construct an involution
6 of g. From the associated complex Cartan decomposition of g, the real Lie algebra gy can

be extracted.

Ezample 3.1. The Dynkin diagram for A; = sl(2,C) consists of a single simple root. There
are two non-isomorphic Vogan diagrams to consider for A;. For the first Vogan diagram,
the only simple root « is left unpainted, which means that the involution 6 takes the corre-
sponding simple root vector z, to itself. As a result, 6 is the trivial isomorphism and g is
the compact real form su,. For the second, the only simple root « is painted, which means
that the involution # takes the corresponding simple root vector z, to —x,. The resulting
real Lie algebra g is the split real form s[(2,R). In general, a complex Lie algebra always
admits at least two real forms: a compact real form and a split real form, although these are

the only real forms for s[(2, C) up to isomorphism.

Vogan diagrams are important because they are essential in the development of the clas-
sification theory of all real simple Lie algebras. Every real simple Lie algebra arises uniquely

from a fixed Vogan diagram, although different Vogan diagrams can lead to the same real Lie

13



algebra. To address this issue, a theorem of Borel and de Siebanthal can be used to eliminate
redundant Vogan diagrams, so that no two Vogan diagrams give the same gy ([Kna02, cf.
Chapter VI]). Cartan involutions will play an important role in this paper not only because
of their relationship with real forms, but also with how they are essential in understanding

Springer fibers and discrete series representations.

O==0

& B

Figure 3.1: Vogan diagram for the split real form of g,

According to Figure 6.2 in [Kna02, Chapter VI, Section 10], the split real form is the only
noncompact real form for the exceptional simple Lie algebra of type g, up to isomorphism.
This split real form, denoted G35, will be the only real form of type G for which we will
describe Springer fiber components. To build the Cartan decomposition discussed in Chapter
[1] define an involution 6 : g — g by first defining 6(x,) = o and 6(x3) = —x5 on the simple
root vectors, and then extend to all of g using 0([z¢, z.]) = [0(z¢),0(z.)]. This is illustrated
by a Vogan diagram (Figure where a simple root vector is in £ whenever the associated
simple root is not painted, and a simple root vector is in p whenever the simple root is
painted. Since g is generated by the simple root vectors, it follows that 0(x¢) = z¢ or
O(x¢) = —x¢ for every root € in ®(h, g), so every root vector is in exactly one of £ or p. See
[Kna02, Chapter VI] for more details.

Let ®(h,¢) denote the set of roots for which the associated root vector is in ¢, and let
I', denote the set of roots for which the associated root vector is in p. The roots in ®(b, £)
are called compact roots, while the roots in I', are called noncompact roots. Since [€, €] C €,
[€,p] C p, and [p, p] C €, we see that the positive roots in ®(h, ) are @7 (h, ) = {@, 3a+253}

and the positive roots in I', are F;f = {5, a+06,2a+0, 3(1—1—5}. Note that the roots associated
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to p do not define a root system. For reference, the associated €, and p, are given by

30:SpanR< U {z’hv}u U {xv—x_W}U U {i(atﬁ,—ka:_v)}) and

v€A(h,9) yEDT(,8) yEDT(,8)

pa = SpanR( U fife, )} u U {=, +x_w})

veFﬁ veFj
although we will not need these subspaces in our description of the fibers.
With the partition of the positive roots, we have the decomposition of g into a six

dimensional subalgebra

t=ho P e
)

£ed(bt

that is isomorphic to
5[(27 C) S 5[(27 C) = h ©® J+a S g:t(3a+2,8)7

plus an eight dimensional subspace

PZZQ&-

gely
The Weyl group, Wy, relative to ®(h,¢) is a dihedral group of order 4. Also, the Weyl
group, W, relative to ®(h, g) is a dihedral group of order 12. Therefore, W/Wyg has order
3, so there are 3 positive systems (IDj such that ®*(h,€) C q)j C ®(h, g). The three positive
system along with their associated simple systems A; are given in Table . It is clear that
the sets <Dj+ in Table contain ®*(h, £), but that they are actually positive systems with the
corresponding simple system A, requires a calculation (see Appendix . When searching
for the generic elements, one finds that there are an abundance of generic elements from
which to choose. However, we will have many reasons for working with certain choices over

others because some make determining the structure of the fibers more difficult. Although
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Positive System Roots Simple Roots
o {o, 8,0+ B,2a + 8,30+ 8,3+ 26} {a, B}
Ry {a,—B,a+ 8,2a+ B,3a+ B3,3a + 28} {-B,a+p}
Ry {a,-B,—a—B,2a+ B,3a+ 3,3a+ 28} | { —a—5,3a + 28}

Table 3.1: Positive and Simple Systems Containing ® (b, €)

Generic Element dim K.f;

J1 =211 F 721 5
fo=T01) +T(1,-1) 6
J3 = T(—2,-1) + T0,1) 5

Table 3.2: Generic Elements f; € n; Np

the basic root vectors given above are not generic elements, we can find generic elements that
are linear combinations of basic root vectors with nice coefficients. Now, let us introduce

some generic elements.

Proposition 3.2. Let n; represent the sum of the root spaces for all roots in —<I>j+. Table

lists a generic element f; inn; Np along with the dimension of K. f;.

Naturally, with three possible positive systems, we will separate the discussion and proofs
about these generic elements into three cases. As a remark, we will keep a consistent no-
tation using subscripts to relate the closed K-orbits, the generic elements chosen, the sl
triple containing f;, the Springer fiber components relative to these generic elements, and

any other objects that relate to a particular choice of positive system.

Positive System ®: As described above, define n] to be the sum of the root spaces

for roots in —®;". Therefore, ny Np = Spanc({x(07_1)7I(_17_1)7I(_27_1),I(_37_1)}). We will
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show that f; is a generic element by giving an upper bound for the dimension of any orbit

in K.(n; Np), and then show that f; necessarily attains this upper bound.

Proof of Proposition (f1 is generic). The dimension of an orbit K.f is equal to dim K —
dim K/ where K7 is the stabilizer subgroup of f in K. Moreover, the dimension of K7 is
equal to the dimension of ¢/ where ¢/ = {v € €|[v, f] = 0} is the centralizer of f in £ For

the remainder of this chapter, let

k = cihg 4 cohg + Z Ceg
£ed(ht)
denote an arbitrary element of . Let us compute the dimension of €' with f; as above.
Using the Lie brackets above, [k, fi1] = 3¢(—1,0)%(—3,-1) + (2¢(—1,0) — 1)@ (—2,-1) + (1 + 2¢(1,0) —
C2)T(—1,-1) +3C(1,0)T(0,—1) T C(3,2)T(1,1) — €(3,2)T(2,1), 50 [k, f1] = 0 if and only if ¢; = ¢o = c10) =
c(-1,0) = €¢@3,2) = 0. As the dimension of ¢/t = 1, it follows that K.f; is a 5-dimensional K-
orbit. On the other hand, ¢/ is at least one dimensional for all elements f € ny Np since any
element of the root space g_s,_os is in €/. Specifically, any negative root added to —3a — 23

is not a root and f € n] Np is a sum of root vectors associated to negative roots only. The

dimension of K. f; is maximal, so by Lemma , K.fy is dense in K.(n] Np). O

Positive System ®7: For ®f, we have n; Np = Spang ({z(0,1), 2(—1,-1), T(—2,-1), T(—3,-1)})-
Since f; lives in n; N p, one might hope that it defines a generic element in this case as
well. However, the dimension of K.(n; Np) increases, which forces us to consider a different
generic element. In this case, K.(ny Np) meets the principal nilpotent orbit in g, so we chose

a principal nilpotent element.

Proof of Proposz'tz'on (f2 is generic). First, we begin with a general observation about
orbits K.f with f € n~ N p whose dimension happens to be equal to the dimension of K.

Since K.(n~ N p) has a dense K-orbit, it is always bounded above by the dimension of K.
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Hence, it follows that if K.f has the same dimension as K, then it must be the unique
orbit in K.(n” Np) of maximal dimension. Therefore, f is necessarily a generic element. In
any such case, our discussion in the previous proposition implies that it suffices to show &/
has dimension zero. Since [k, fo] = —c(—3,-2)%(—3,-1) + 2¢(-1,0)T(—2,-1) + (€1 — C2)T(—1,-1) +
3ca,00%0,-1) + (2c2 — 3c1)T(0,1) — C(1,00%(11) — €32)%2,1) = 0 if and only if ¢; = ¢2 = ¢ ) =

C(-1,0) = €(32) = ¢(~3,—2) = 0, it follows that 2 has dimension zero. O

Positive System ®7: For ®], we have ny Np = Span(c({x(gyl),x(li),x(_g,_l), $(_3’_1)}). It
turns out that K.(ny N p) has dimension 5, but proving this will require a bit more work
than the previous cases. Showing that f3 is generic will serve as a good illustration for some

of the methods that will be used when we pass to Fj.

Proof of Proposition (fs is generic). Given an arbitrary element

f=

> aere
ge—oinry
of ﬂg ﬂp, we have [k‘, f] = (-301&(,3,,1) —I—CQQ(,g,,l) —1—30(,1,0)&(,27,1) - C(,g,,g)a(()’l))l'(,g’,l) +
(—era-2,-1) + c1,0a(-3,-1) + €(-3-201,1))T(—2,-1) + (2¢1,0a(-2,-1))T(-1,-1) + (=3c1a001) +
20261(0,1)—0(3,2)@(—3,—1)—30(—1,0)61(1,1))$(0,1)+(—01€L(1,1)‘1‘0261(1,1)—0(1,0)61(0,1)‘FC(3,2)CI(—2,—1))117(1,1)—1‘

(—2¢(1,0)0(1,1))T(2,1). Now, the equation [k, f] = 0 translates into the matrix equation

Since being an element of ¢/ is equivalent to being an element of the nullspace of the relations

18

—361(—3,—1) a(—3,-1) 0 0 3@(72,71) —0(0,1) C1
—0(-2,-1) 0 a(—3,-1) 0 0 a(1,1) Ca
0 0 2a(_2, 1) 0 0 0 Ca _o
—3a(0,1) 26l(o,l) 0 —0a(-3,-1) —361(1,1) 0 C3a+23
—a(1,1) a(1,1) —0(0,1) a(—2,-1) 0 0 C_a
i 0 0 —2a1,1 0 0 0 | C—3a—28 ]



matrix, the dimension of K.f is completely determined by the rank of the matrix. Observe
that rows 3 and 6 are linearly dependent, so the rank is bounded above by 5. Therefore,

K.(ny Np)is at most 5 dimensional. For our choice of f3, the matrix becomes

(0 0 0 0 3 -1
10 0 00 0
0 0 2 00 0
32 0 00 0
0 0 -1 10 0
(000 0 00 0|

and it is clear that the matrix has rank exactly five. Therefore, we have found an element

whose K-orbit dimension is maximal, so f3 is generic. O
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4

Springer Fiber Components: Split Real Form G2

In order to describe certain components of the Springer fibers for each generic element
defined above, we need to introduce some parabolic subgroups associated to the three positive
systems given in the previous chapter. Recall our discussion from Chapter 1| which illustrates
that understanding N ( f;, n; Np) is key to describing the Springer fiber components. It follows
that we want to explore which elements of K live in the subset N(f;,n; Mp). The defining
property for N(f;, n; N p) does not imply that it is necessarily a subgroup of K, but we
can hope to find certain groups contained in N(f;,n; Np) from which we can construct the
fibers.

In many classical cases, there are instances where N(f,n~Np)~'.b is built up from several

groups, and the fibers take the form

Vo' (f) = LyLn—y---Ly1.b

for particular choices of reductive subgroups L; of K. Such descriptions can be found in
[BZ08] for the groups SU (p, q). However, the structure of the fibers can be quite complicated
for other types. For type Gg, the fibers are necessarily homogeneous and built from a
well-chosen parabolic subgroup of K. Let us now introduce the procedure for constructing
parabolic subgroups contained in N(f;, n; N p).

To build these parabolic subgroups, let I; = ®(h,€) N A; denote the simple compact
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roots in @j, and let ®;, C ®(h, £) denote the root system associated to I; with positive roots

CIDZ_ = ®; N®*(h,¢). Then define a parabolic subalgebra

qj:(b‘i‘zg'y)"‘ Z gf'y:[j_’_u;

VEPL; 7€¢’+(h,?)\¢’1+j

of £, and let Q); (resp., L;) denote the connected subgroups of K with Lie algebras q; (resp.,
[;). The Springer fiber components for each closed K-orbit O in the flag variety of G5 have
a nice description, and the remainder of Section |4 will be devoted to proving the following

theorem.

Theorem 4.1. Let b; denote the Borel subalgebra constructed from the positive system @j,
and let O; = K.b; denote the associated closed K-orbit in the flag variety of Go. For each

generic element f;, wé}(fj) is itsomorphic to L;.b;.

It was noted above that w(;j(fj) ~ N(f;,n; Np)~".by, so it suffices to show that
Lj.bj = N(fj,nj_ N p)b]

Recall that our strategy consists of locating an irreducible component C, and then deter-
mining how the component group acts on Cy. Using the group L; defined above, we want
to show that Cy, = L;.b; constitutes an irreducible component in @Dajl( f;) for each generic
element f;. The necessary steps to prove this fact represent the content of the following

lemma.
Lemma 4.2. The following properties hold.
(a) Lj stabilizes ny Np, so Ly C N(f;,n; Np)

(b) L;.b; is a closed, irreducible subset of wajl(fj)
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(¢) The dimension of L;.b; is equal to the dimension of ¢571(f])

Proof. To begin, consider the parabolic subgroup of g given by

q; = (b+ >, 97)+ > e, =L+

YEPy,

The corresponding parabolic subgroup Qj of G stabilizes u; and K stabilizes p, so the
group Qj N K stabilizes u; N p. Since the nilradical n; consists of the root spaces for all
roots in —® and 1; consists of the root spaces for all roots in — (@} \ @} ), it follows that
intersecting with p corresponds to removing all compact roots from both sets. As a result,
n; Np = u; Np ([BZOS, cf. Remark 3.5]), so the group Q;NK stabilizes n; Np. Finally, fj =
and L; C Qj N K, so L; stabilizes n; Np. To prove part (b), note that L; is connected, hence
irreducible, so part (a) implies that L;.b; is an irreducible subvariety of w(_ojl( f;)- Since [;Nb;
is a Borel subalgebra of |; relative to the reductive subgroup L;, it follows that L;.b; is a flag
variety for L;, hence L;.b; is closed in B. For part (c), we begin with the observation that
1/2dim G.f = dim K.f (JCM93|, cf. Remark 9.5.2]), so the dimension formula of Proposition
only requires us to know the dimension of €. Specifically, dim K = dim B = 6, so dim
wajl( fi) = 6 — dim #/. From Proposition , Vo, (f2) has dimension zero, so part (c) is
trivial for that case. As for the cases where j = 1 or 3, we need to show that L;.b; is one
dimensional. Let 7; denote the only positive root in ®;,, and let A; = Exp(C - x,,) denote
the subgroup of L, having dimension one. Since A; completely misses B; = Stabg(b;), the

dimension of A;.b; is at least one, hence the dimension of L;.b; is at least one as well. By

Propositions and , L;.b; has the same dimension as wéj( fi)- O

Now that we have found these irreducible pieces, we know from Proposition that
1%}( f;) consists of the orbit under the component group of f;. Fortunately, the components

groups are classified and will be extensively referenced in what follows. However, even
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though the component groups are known finite groups, finding coset representatives is quite
challenging. Specifically, the component groups are known abstractly, but we do not know
the elements explicitly for a given generic element. Without knowing more about them,
we will not know how many irreducible components occur in a given fiber. One idea is
to hope that finding elements of the stabilizer subgroup amounts to finding solutions to or
making deductions from some algebraic equations. Indeed, we do have embeddings in terms
of matrices, but the large dimensions can complicate things.

Alternatively, one may hope to find at least where the coset representatives are located
inside of K in order to understand the fibers. Unfortunately, the exceptional groups carry an
added level of difficulty given that they lack some of the algebraic clarity that the classical
types possess. In many cases, we will need to utilize as much of the Lie algebra structure
as possible. For G, the fixed point subgroup K is very nice because we will be able to use
some SLs theory, whereas for Fy, we will need to dig a bit deeper. Before embarking on a

journey to understand K, we state a useful theorem found in [Loo69, Chapter IV].

Theorem 4.3. Let GG be a connected Lie group and let 6 be an involutive automorphism of
G. Then the fixed point set K of 6 has finitely many connected components, and the quotient
of K by its identity component K, is isomorphic to the direct product of cyclic groups of

order two. If G is simply connected, then K is connected.

To compute the component groups, we will utilize our matrix representation 7. Since
G = (5 is necessarily simply connected, we know from the above theorem that K is con-
nected as a subgroup of G. Therefore, K must be isomorphic to the connected subgroup
K' of GL(7,C) generated by the exponential map whose Lie algebra m(£) is isomorphic to
sly @ sly. From our knowledge of covering groups, this implies that K is isomorphic to the
quotient of SLy X SLy by some discrete subgroup C' of the center of SLy x SLy. The cen-
ter of SLy is £15 where I, € SL, denotes the 2 x 2 identity matrix, so C' must be one of
{I2, L}, {(£L, L)}, {(£12, L)}, {(L2, £1)}, or {£(12, 1)}
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Since we will utilize an assortment of sl triples throughout this paper, we need to intro-
duce a consistent notation for such triples. From now on, such triples will be written as a
set {h,e, f} or {h;,e;, f;} with an sl, correspondence given by:

1 0 0 1
h < hj < ,  etrej ,and  f & f; <
0 -1 0 0
Let €, (resp., £3,4+23) denote the copy of sl, in € associated to the root a (resp., 3o + 2).
Using some SLy theory, let us define maps from SL, into GL(7,C) whose image lies in K.
For &,, let e = x(10), f = 2(—1,0), and h = h(19) denote such a triple, and recall the following

identifications under 7:

m(e) = m(xa,0) = E17’2 + 2E§74 + EZ,5 + E'6777 and

7(f) = m(v-10) = E27,1 + Ez,s + 2E57,4 + E;,6'

By using linearity of the bracket and the equation [E;fj,

Ey] = 6;xE — 6By ([Hum72,

Section 1]), an easy calculation gives
m(h) = 7(hwo) = E17,1 — B, + 2E§,3 —2E5 5+ E67,6 - Eg,?-

Now, C” decomposes into 2 irreducible sl, representations each of dimension two and 1
irreducible sly representation of dimension three. If {b1,bs,...,b,} represents a standard

basis for C", then this decomposition is given by

Spang ({b1,b2}) @ Spanc ({3, b, bs}) @ Spanc ({bs, br}).

Since SLy is simply connected, we know that there is a corresponding SLy representation

I, : SLy — GL(7,C) with image in K’ defined by II; (Ezp(X)) = Exp(n(X)) for X € &,.
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By [FH96, Section 23], this map is uniquely determined by its derivative map 7|y, because
SL, is simply connected. Motivated by the sl, representations above, define a map ¢; :

SLy — GL(7,C) where

a b 0 0 0 0 0
c d 0 0 0 0 0
0 0 d? 2ab ¥ 0 0
a b
¢1< )IOOac ad+bc bd 0 0
c d
0 0 ¢ 2¢d d* 0 0
00 0 0 0 a b
00 0 0 0 ¢ d

Thinking of SLs representations in terms of SL, acting on homogenous two variable poly-
nomials of dimension n motivates defining ¢, in this manner. To show that we have found
the correct part of K’ lying above £,, we will need to show that ¢, = II;. It suffices to
show that d¢; is equal to dIl; = 7l|e, since a homomorphism between closed linear groups is
determined by its derivative. Since d¢; and 7 are both linear, it is only necessary to show

this property on a basis. As a result, let

0 1 1 ¢
ce(t) = Exp| t = :
0 0 0 1

1 t
cn(t) = Exp| t 0 _ e 0
0 -1 0 e

Applying ¢; gives us the following matrices in GL(7,C):
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1t 0 0 0 00 1 00 0 00O
01 0 0 0 0 0 t 1.0 0 000
00 1 2t t2 0 0 00 1 0 00 0
drlce) =10 0 0 1 ¢ 0 0| .¢lcs@®)=10 0 ¢+ 1 0 0 0f,and

000 0 1 00 0 0 t* 2t 1 0 0
000 0 0 1 ¢t 00 0 0 010
000 0 0 0 1 00 0 0 0 ¢ 1]

e 0 0 0 0 0 0

0 et 0 0 0 0 0

0 0 e 0 0 0 0

drlen®)) =10 0 0 1 0 0 0

0 0 0 0 e? 0 0

0 0 0 0 0 € 0

00 0 0 0 0 e

Differentiating with respect to ¢ and evaluating at ¢t = 0, we see that d¢,(e) = w(e), do1(f) =
7(f), and dg;(h) = w(h), hence d¢; = ml,. Since ¢y = Iy, the image of ¢; lies inside of K’
and is isomorphic to SLs.

Now, consider the subalgebra €3,423. The sl; correspondence here is e = x(32), f =

T(—3,_2), and h = I3 ), so we have

m(e) = m(rs2) = —Els — By,
m(f) = m(x(3-2) = —E(zl - E%Q, and

m(h) = 7T(h(w)) = E17,1 + E27,2 - Eg,G - E;,T

We have C7 expressed as two copies of the natural representation and three copies of the
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trivial representation:

Spanc ({b1,be}) @ Spanc ({bs}) @ Spanc ({bs}) @ Spanc ({b5}) ® Spang ({bs, b7}).

Again, there is a corresponding SL, representation Ily : SLy — GL(7,C) defined by
IIh(Exp(X)) = Exp(n(X)) for X € t34425. Define ¢g : SLy — GL(7,C) where

a 0 0 0 0 —=b 0
0O a 0 0 0 0 =b
0O 0 1 0 0 0 0
a b
¢2< >=0001000
c d
0O 0 001 0 0
¢« 0 0 0 0 d 0
0 —c 0 0 0 0 d

A similar argument shows that the image of ¢y, which is also isomorphic to SLs, lies inside
of K’ since ¢y = II,.

To determine C' and therefore K ~ (SLy x SLy)/C, we need to understand the solutions
to the equation Fxp(w|e(X)) = I for X € h C ¢. Exploring these solutions is sufficient since
the discrete subgroup must lie inside of the Cartan subgroup H = Exp(w(h)) ([FH6L cf.

Section 23]). An arbitrary element of this Cartan subgroup takes the form

ab 0 0 0 0 0 0
0 a'v 0 0 0 0 0
0 0 a 0 0 0 0
0O 0 0 1 0 0 0
0 0 0 0 a? 0 0
0 0 0 0 0 ab'! 0
0 0 0 0 0 0 a_lb_l_
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for @ and b in C*. Then the equation Exp(n|¢(X)) = I gives us equations ab = 1,4 'b =
1,a* = 1,a? = 1,ab™" = 1, and a'b~! = 1 whose only solutions are a = b = 1 or
a =0b= —1. It follows that C' = £(Iy,15) C SLy x SLy. The following proposition

summarizes this discussion.

Proposition 4.4. The fized point subgroup K is isomorphic to (SLy x SLs)/ £ (I, 1) and
the map ¢ : SLy x SLy — GL(7,C) given by ¢(x,y) = ¢1(x)p2(y) induces an isomorphism
of K with the connected subgroup K' of GL(7,C) with Lie algebra 7w(€) ~ sly & sly.

Proof. The first statement about K has already been proved in the discussion above. For
the second statement, note that representations of K are completely determined by repre-
sentations of S Ly X S Lo, which are trivial on C. It is clear that ¢ is trivial on C, so it induces
a representation ¢x : K — GL(7,C). The injectivity of ¢ follows from the computation
for C' given above, and the surjectivity of ¢ onto K’ comes from the fact that the images
of ¢; and ¢ are the two copies of SL, that cover K'. Therefore, ¢x yields the desired

isomorphism, and provides the embedding of K into GL(7,C). O

For each generic element f;, let us identify the nilpotent orbit associated to it. This will
allow us to look up which type of component group is associated to f;. By the Jacobson-
Morosov theorem described in [KR71], f; may be embedded in an sl, triple {h;, e;, f;} with
e;, f; € p and h; = [ej, f;] € £ Note that such triples with the nilpotent elements in p
and semisimple element in ¢ are refered to as normal triples. Dokovic gives a complete
classification of all possible nilpotent K-orbits in p in a series of tables found in [Dok8§].
Since there are instances of multiple K-orbits in Ny with the same dimensions, we will need
to introduce another piece of data from these tables that distinguishes the orbits. Altering

the notation from Dokovic’s slightly to keep track of our generic elements, define the subset

0(j,2) ={X €p:[h;, X] = 2X}.
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Then the dimension of the orbit together with the dimension of g(j,2) will tell us precisely
which orbit contains f;. When one references the tables, observe that Dokovic denotes the
subset g(7,2) simply by g(1,2) since there is no need to give a notation to any specific
nilpotent in that case. Once we identify the orbit for f;, we can cross-reference with [Kin92]
to determine the related component group.

From the multiplication tables, we see that Table contains choices for the nilpositive
and semisimple elements of sl triples containing f;. For each generic element f;, we have
dim g(1,2) = 4,dim ¢(2,2) = 2, and dim g¢(3,2) = 2 (see Appendix [A]), so it follows from
[Kin92] that the component groups Ag(f;) are as listed in Table In general, there are
several nilpotent K-orbits of a particular dimension, so such data is usually required in order
to identity the component group. Since there is only one maximal 6-dimensional nilpotent
K-orbit according to [Dok88|, Ax(fs) is trivial (see [Kin92]). Consequently, we could have
omitted the computation of the corresponding sl, triple and the dimension of g(2,2). Now, let
us begin the search for representatives of the component groups. To describe the component

group for fi, define generators r and s for S5 C (SLy X SLy)/ £ (I3, Iy) where

3

and note that the relations > = s> = 1 and srs = r~! for S; are satisfied. There is no need

J Nilpositive Element e; Semisimple Element h;
1 —4/337(071) + 2/31’(1,1) + 2/33?(271) — 4/31’(3’1) 2ha + 4h/3
2 10$(07,1) + 61‘(171) 6hy + 8hﬁ
3 Z(0,-1) T Z(2,1) 2h, + Zhﬁ

Table 4.1: sy triples {e;, f;, h;}
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Component Group Isomorphism Type

Ak (f1) Sz (Symmetric Group)
Ak (f2) 1
Ak (fs3) Ly

Table 4.2: Component Groups Ag(f;)

to work hard for f, since the component group is trivial. As for f3, choose the generator

for a subgroup

ZQ C (SLQ X SLQ)/ + (IQ,IQ).

To motivate these elements, recall that our effort to describe K and f; in terms of matrices has
its benefits because we are able to use linear algebra to unearth these generators. Different
choices of generic elements yield isomorphic components groups, but the generic elements
provided above simplify the algebra and produce nice representatives. There are actually
other methods to discover coset representatives and work with the component groups that
will be used for type Fj, but the fixed point subgroup K for GG, allows us to exploit SLo
representations.

Now, it is easy to show that embedding these generators according to Proposition 4.4] give
elements which stabilize f; (see Appendix. However, we must ask ourselves whether these
elements actually give a complete set of coset representatives for the component group.
We must be careful that we have not found elements that belong to the same connected
component. Fortunately, the following lemma will allow us to navigate this issue, but first

we need a definition. Note that the definition and lemma are true for any fixed point
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subgroup K of an involution of G.

Definition 4.5. For any sl, triple {h, e, f}, the subgroup K"/} will denote the stabilizer

subgroup in K of the triple {h,e, f}.

Lemma 4.6. The component group Ag(f) =~ K{h’e’f}/Kih’e’f} where K1 denotes the

identity component of K/,

Proof. See Lemma 1.5 in [Kin92] for the details. Note that in his paper the fixed point
subgroup is denoted G?. The idea is that the stabilizer subgroup can be separated into
a semidirect product of K"/ with a connected unipotent part, which disappears in the

quotient group. ]

The lemma illustrates that finding elements stabilizing f; amounts to finding elements
that stabilize a normal triple containing f;. One advantage to this approach is that finding
Kthieitit is generally easier than finding K7%. Our motivation involves the fact that the
tables in [Kin92] actually give us the isomorphism type of K {hef} for most nilpotent K-
orbits when K is connected. In our case, K {"¢/i} is the same as the component group Ss
(resp., 1, Zy) for the generic element f; (resp., fa2, f3). The elements r, s, and z stabilize their
respective triples (see Appendix , so these elements are precisely coset representatives for

Ak(f;). Now, we have all of the tools necessary to finish our main theorem in this section.

Proof of Theorem . The only part we have left to prove according to Proposition [1.5/and
Lemma [4.2] is that

J kLjb;=L;b;
keAk(fj)

First, notice that @);.b; = L;.b; since the part of (); that is disjoint from L; is contained in
the stabilizer of b; in K. Therefore, it suffices to show that the component group is contained
in ;. For j = 2, there is nothing to prove since Ag(f>) is trivial. For j = 1, the direct

factors of r and s coming from the portion of K lying above &, live in L; C )7 since « is
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in I;. On the other hand, the direct factors of » and s coming from the portion of K lying
above €3, 94 live in the Cartan subgroup H C )y corresponding to h. Since both factors in
the direct products for » and s are contained in @)y, it follows that r, s, and any powers are

as well. For j = 3, observe that z is actually an element of H, hence an element of (3. [
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5

The Exceptional Lie Algebra {4

To begin work on the Springer fiber components for the two noncompact real forms for
type Fy, we need to build the Lie algebra. Let h denote a fixed Cartan subalgebra of g = {4,

and let ®(h, g) denote a root system relative to h. Then write

s=bo P e
)

£e@(h,g

for the root space decomposition of g into its root spaces ge and four dimensional Cartan
subalgebra h. Let A(h,g) = {«, 3,7,0} denote a base for ®(h, g) where a and 3 constitute
the long roots, while v and § constitute the short roots. Figure gives the corresponding

Dynkin diagram for §,.

O—0O=>—=0—-20

(o B Y 0

Figure 5.1: Dynkin Diagram for f,

Using the algorithm for determining root strings found in [HumT72, Section 10.1], we see
that the positive roots relative to A(h, g) for type f, are precisely those roots in Table .
Let

U {z=tu U {hfz[xs>$§]}

£€2(h,g) E€A(h,g)
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Qo B 8

) a+f B+
y+0 a+ [+ B+ 2y
B+~vy+0 a+ 8+ 2y at+fB+y+9
B+2y+0 a+28+2y a+B+2y+4

B+ 2v+26 a+28+2yv+0 | a+p+2y+26
a+204+37v+0 |a+284+27v+20 | a+28+3y+20
a+28+4y+20 | a+38+4y+20 | 2a+ 38 +4y+20

Table 5.1: Roots ®(h, g) for f4

represent a Chevalley basis for g where x¢ denotes a basis vector in g for each

E=ia+jB+ky+106€ Db, g).

Since we may find it useful to write z(; j ¢ instead of z¢, the two notations should be freely
interchanged. Lastly, we may refer to the elements of h generated by the nonsimple root
vectors, so let he denote those elements [z, 2_¢] for all £ € DT (b, g).

First, we choose the simple root vectors as prescribed by the Cartan matrix, and then

use the Lie bracket to generate all of g. Let

be the Cartan matrix for f4. Then choose simple root vectors satisfying the relations in
Table and then use the Lie bracket to extend to a basis for g (see Table [5.3). Note

that this basis is a Chevalley type basis that agrees with the mathematical software package
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[h(1,0,0,0),$(1,0,0,0)] = 296‘(1,0,0,0) [h(1,0,0,0),$(0,1,0,0)] = —Z(0,1,0,0)
[h(1,0,0,0), $(0,0,1,0)] =0 [h(l,o,o,o), 36’(0,0,0,1)} =0
[h(O,l,0,0);x(l,0,0,0)] = —(1,0,0,0) [h(0,1,0,0)737(0,1,0,0)] = 213(0,1,0,0)

[h(o,l,o,o),x(o,o,l,o)] = —X(0,0,1,0) [h(O,L0,0)u 36(0,0,0,1)} =0
[h(0,0,1,0), x(l,o,o,o)] =0 [h(0,0,1,0), x(O,l,0,0)] = —233(0,1,0,0)

[h(0,0,l,O)ax(0,0,LO)] = 235(0,0,1,0) [h(0,0,1,0),$(0,0,0,1)] = —%(0,0,1,0)
[R(0,0,0,1) £(1,0,0,0)] = 0 [1(0,0,0,1) Z(0,1,0,0)) = 0

[h(0,0,0,1)7 $(0,0,1,0)] = —X(0,0,1,0) [h(0,0,0,1)> 35(0,0,0,1)] = 295(0,0,1,0)

Table 5.2: Relations for {4

GAP. Recall that if £, € and £ + € are roots such that [z¢, x| = c¢eeye, then cee = —c_¢ .
Therefore, we will omit half of the bracket relations. The complete multiplication tables are
given in Appendix [E] for reference.

Recall that in Chapter [2| we introduced a faithful representation of g, C gl(7,C) as a
means to better understand the fixed point subgroup K. This representation proved useful
because we were able to classify K as well as find the nontrivial component groups in a con-
crete manner. Naturally, we would like to implement that strategy for F, as well. However,
the jump in dimension makes viewing K C F} in terms of matrices more complicated as the
smallest faithful irreducible representation of f; is 26-dimensional. Of course, we know the
isomorphism type of the Lie algebra of K, but finding an actual embedding of K in GL(26,C)
becomes an enormous task. Fortunately, the fibers can be described without relying heavily
on a representation of Fj provided we make good choices for the generic elements.

The methods that will be used for f, could have been implemented in g, as well, but we
would have lost the information gained about K C Gs. As for Gy, many of the fibers ¥, (f)
for F; have one component, but we will prove this with other strategies. If we can show that

nontrivial component groups are necessarily contained in the groups used to build the fibers
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L(1,1,0,0) = —[I(LO,O,O), $(0,1,0,0)] L0,1,1,0) = [96(0 1,0,0)> £(0,0,1,0) ]
Z0,0,1,1) = [96(0,0,1,0)7 x(o,o,o,l)] T(1,1,1,0 [36(1 1,0,0)5 £(0,0,1,0 ]
T0,1,2,0) = 1/2[55(0,1,1,0), 17(0,0,1,0)] T0,1,1,1) = [13(0 1,1,0)> £(0,0,0,1 ]
T(1,1,2,00 = 1/2[56(1,1,1,0) (0, 0,1,0)] T1,1,1,1) = [13(1,1,1,0 (0,0,0,1 ]
T0,1,2,1) = [35(0,1,2,0), (0,0,0 1)] T(1,2,2,0) = [913(1,1,2,0 (0,1,0,0 ]
T(11,21) = [£(1,1,2,0)> £(0,0,0,1)] T01,2,2) = 1/2[T01,2,1), ©(0,0,01)]
T(1,2,2,1) [33 (1,1,2,1)» £(0,1,0, 0)] T(1,1,2,2) = 1/2[1’(1,1,2 1) 96’(0,0,0,1)]
T(1,2,3,1) [$ (1,2,2,1), (0 0,1,0)] T(1,2,2,2) 1/2[33(1 2,2,1) 37(0,0,0,1)]
T(1,2,3,2) [33 (1,2,3,1), L 0001)] T(1,24,2) = 1/2[3?(1232 37(0,0,1,0)]
T(1,3,4,2) = —[$(1,2,4,2), $(0,1,0,0)] T(2,3,4,2) = —[517(1,3,4,2)7 53(1,0,0,0)]

Table 5.3: Lie Brackets for f4

¢51( f), then we will eliminate the need to actually find the elements representing the com-
ponent group. However, one of the fibers @/}51( f) for the split real form of F consists of two
irreducible components, so we will be looking for generators of the component group. The
generator will be defined independent of any representation, but building a representation
of f, does offer some insight into finding the elements of ¢ defining the generator.

There is only one complex connected simple Lie group of type Fy ([Ale05] cf. Proposition
4.1]). Tt follows that this group is necessarily simply connected. Therefore, we can build a
representation of G = Fj in GL(26,C) from a faithful representation of g = f4 in gl(26,C).
Let MT represent the matrix transpose for any matrix M. Following [HIRTOI], we'll choose
the representation 7 : g — gl(26,C) with generators for a Chevalley basis given in Table
Just like the go case, these generators agree completely with the generators given above

purely in terms of bracket relations.
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Generic Elements for F)

6.1 Generic Elements: Split Real Form F

In Chapter [5, we discussed that there are two different noncompact real forms of the
complex Lie algebra of type f;. Our next goal for this paper will be to give results similar
to the results given in type G2 for both of these forms. Let us begin by building the Cartan
decomposition for the split real form F}. To build the split real form, define an involution
6 : g — g by first defining 0(z,) = —z,, 0(xp) = 3, 0(x,) = z,, and 0(x;) = x5 on the
simple root vectors, and then extend to all of g so that # commutes with the Lie bracket.
Again, this is illustrated by a Vogan diagram (see Figure where a root vector is in &
whenever a simple root is not painted, and a root vector is in p whenever a simple root is

painted.

e (O0=>—_C—-7=0

o B Y 0

Figure 6.1: Vogan diagram for the split real form of fy

As in the g case, we have a partition of the roots into the set of compact roots ®(h, £)
and the set of noncompact roots I'y. A simple calculation shows that the positive roots in

®(h, t) are given in Table and the positive roots in I'y are given in Table Finally,
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B gl 0 B+ Y+0
B4+2v|B+y+d|B+27v+0 | f+2y+25 | 2a+35+4y+20
Table 6.1: Compact Roots ®* (b, €)

! a+p a+ B+ a+ [+ 2y
atfB+y+9 o+ 28+ 2y a+B84+2y+6 | a+26+2y+9

a+B8+2v+20 | a+28+3y+0 | a+268+2y+20 | a+268+3y+26
a+20+4y+26 | a+30+4y+ 2

Table 6.2: Noncompact Roots Iy

note that we have a decomposition of g into a 24-dimensional subalgebra

t=ho P ge=5l(2,C)@5p(6,C),
£e(h.t)

plus a 28-dimensional subspace

PZZQ&-

gely
See [Kna02] for the complete details about this real form. In particular, the subspaces £,
and po will be omited as they are defined the same way as for type G3.

The Weyl group for f4 relative to ®(h, g), denoted W, is a group of order 1152. Also,
the roots corresponding to the copy of sl(2,C) in ¢ are the two roots 2a + 35 + 4y + 2J and
—2a — 38 — 4y — 26 whose root spaces gont35+4y+26 and g_oq—33-4y—25 commute with the
other root spaces g¢ for roots £ € ®(h,€) \ £{2a + 38 + 4y + 26}. As a result, the Weyl
group relative to ®(h, £), denoted Wy, is built from the Weyl group of A; together with the
Weyl group of Cs. Since W, is a group of order 2! x (2 x 3!) = 96, W/Wy has order 12, so

there are twelve positive systems (IDj such that & (b, &) C <I>3-F C ®(h, g). Since the positive
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Root System (Mg s Mgy - - - 5 Meyy)

o (—-1,1,1,1,1,1,1,1,1,1,1,1,1,1)

o (=1,-1,1,1,1,1,1,1,1,1,1,1,1,1)

o (-1,—-1,—-1,1,1,1,1,1,1,1,1,1,1,1)
o (-1,-1,-1,1,-1,1,1,1,1,1,1,1,1, 1)
o (-1,—-1,-1,-1,1,1,1,1,1,1,1,1,1, 1)
ot (-1,-1,-1,—-1,1,-1,1,1,1,1,1,1,1, 1)
iRy (-1,-1,-1,—-1,—-1,1,1,1,1,1,1,1,1, 1)
iRy (-1,-1,-1,-1,-1,1,—-1,1,1,1,1,1,1, 1)
G (-1,-1,-1,-1,-1,1,-1,1,-1,1,1,1,1, 1)
G (-1,-1,-1,-1,-1,—-1,1,1,1,1,1,1,1, 1)
o, (-1,-1,-1,-1,-1,—-1,-1,1,1,1,1,1,1, 1)

Table 6.3: Scalars ne, for <I>;r

systems must contain ®*(h,£), we know that such a positive system has the form

or(h, ) U | {ne¢}
gery

for particular scalars ne € {1, —1}. Use the ordering for F; introduced across the rows of Ta-
ble to enumerate the roots {&;, &, ..., &4} Omitting the positive system @ = &7 (b, g)
with simple system Aj, the possible scalars (ng,,ng,,...,ne,) that define the remaining
eleven positive systems are given in Table [6.3] The fact that these are actually positive sys-
tems with the corresponding simple system in Table requires some work (see Appendix
. With so many choices of coefficients, these positive systems are computed by running a
simple loop in Mathematica® based on the definition of a positive system.

Now, let us introduce a set of generic elements. Root vectors associated to simple roots

will not usually serve as generic elements, but we have worked hard to give relatively simple
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Simple System Simple Roots
A {—a,7.6,a+ 5}
Ry {B.0,—a—B,a+B+7}
Ag {B,—a—=B—va+B+2v,a+F+7+5}
B3 {8.0,—a—B—y—da+p+2}
A {v.—a=B-2v,a+B+7+05a+28+27}
A {B,v,a+B+7+0,—a—28-27}
Ag {-a—p—-2v,—a—F—7y—-0a+260+2y,a+5+2y+d}
Ay {y,—a— B =2y —6,a+26+2y,a+p+2y+ 26}
Ao {7,0,—a— B —2v—20,2a + 35+ 4y + 20}
An {B,—a=B—y—0—a=28-2y,a+3+2y+0}
ANP {v,—a— 28— 2y, —a — B — 2y — 0,20 + 30 + 4y + 26}

Table 6.4: Simple Systems for ®;

linear combinations of basis elements. We will discuss why certain choices for generic ele-
ments are preferred later when we begin building the Springer fiber components. The proofs
that these elements have the corresponding K-orbit dimension can be found in Appendix [B]
However, the proofs that these elements are actually generic will appear in the next chapter
once we introduce the subgroups of F used to build the fibers. Naturally, we would like to
carry out the method used for the positive system @ in type g, where we compute an upper
bound for the rank of the relations matrix resulting from the equation [k, f] = 0. However,
these matrices are significantly larger for f4, so finding these ranks can be a challenge. For-
tunately, the dimension of K. (n; Np) can be computed for most of the fibers independent of

finding these relations matrices, so we will only need to utilize this method for a few cases.

Proposition 6.1. Let n; represent the sum of the root spaces for all roots in —@;“. Table

lists a generic element f; inn; N p along with the dimension of the orbit O = K. f;.

40



Generic Element dim K.f;
J1 = 221,000 + T(=1,-2,—2,—-1) T T(=1,—2,~4,-2) 15
J2 = 21,000 + T(-1,-1,00) + T(-1,-1,-2,-1) 21
J3=201100) +T(1,-1,-1,-1) + T(—1,-2-20) 21
Ji=Jfe =T1100 +T1110 + T(1,-1-1,-1) + T(—1,-2,-20) 23
fs =110 T T+ T(1,-2-20) F T(-1,-1,-2,-2) 22
Jr=20110) +T1220 + T(-1,-2-2-1) + T(-1,-2-4,-2) 20
e =Ta120 T Ta,11,1) + T(—1,-2,-2,0) T T(—1,-1,—2,-1) 24
Jo=12a120 +Ta1,1,1) + T(—1,-2,—2,0) T T(=1,-1,-2,—2) 23
Jio = 21,10+ T1,1,20) T T(—1,-2,-2,0) T T(—1,-2,-4,—2) 20
Jiu =xa 120 t T 1) T OC1-1,-2,-1) T T(1,-3,-4,-2) 22
fiz=2a,120 +Ta1,10) + T—1,—2-2-1) + T(—1,-1,-2,—2) 22

Table 6.5: Generic Elements f; € n; Np

6.2 Generic Elements: Real Form F; %

Every complex simple Lie algebra has both a compact and split real form. In the case
of g, these are the only two real forms of g, up to isomorphism. For f,, there is precisely
one additional real form that is noncompact and nonsplit, which we will now describe.
Consider the involution 6 : g — g by first defining 0(x,) = 24, 0(2g) = 3, 8(z,) = =, and
0(x5) = —xs on the simple root vectors, and then extend to all of g so that § commutes with
the Lie bracket. For this real form, the Vogan diagram is similar to the split case except

that the paintings are reversed on the o and § roots (see Figure .

o B Y 0

Figure 6.2: Vogan diagram for the noncompact and nonsplit real form of f,
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o g gl a+p
B+ a+ B+ B+ 2y a+ B+ 2y
a—+ 20+ 2y B+ 2v+26 a+B+2v+20 | a+28+2v+26
a+2043v+20 | a+260+4y+2) | a+38+4y+20 | 2a+ 308 + 4y + 26

Table 6.6: Compact Roots ®* (b, €)

J Y+ B+y+9 atfB+y+9
B+2v+d | a+B+2y+6 | a+28+2y+6 | a+28+3y+46

Table 6.7: Noncompact Roots F;f

We have a partition of the roots into the set of compact roots ®(h, ) given in Table
and the set of noncompact roots I', given in Table [6.7] For this real form, we have a
decomposition of g into a 36-dimensional subalgebra £ isomorphic to s0(9, C) obtained from
the 16 positive compact roots plus a 16-dimensional subspace p associated to the 8 positive
noncompact roots. The Weyl group for type f4 relative to ®(h, g), denoted W, is a group of
order 1152, and the Weyl group relative to ®(h, £), denoted Wy, is the Weyl group associated
to By = s0(9,C). Therefore, Wj is a group of order 2* x 4! = 384, hence W/Wyg has order
3. Consequently, there are three positive systems (ID;-|r such that ®*(h, ) C @j C ®(b,g).
Since the positive systems must contain ®*(h,€), we know that such a positive system has

the form

or(h,e) U | {ne¢}

+
¢eT

for particular scalars ne € {1,—1}. Use the ordering for T'; introduced across the rows
in Table to enumerate the roots {&;, &, ..., &}. Omitting the positive system @] with

simple system A; such that ®7 = ®* (b, g), the possible scalars (ng,, ng,, . . ., ng,) that define
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Root System (Mgy, Mgy - - M)
o} (-1,1,1,1,1,1,1,1)
o} (—1,-1,1,1,1,1,1,1)

Table 6.8: Scalars ng, for (b, )

Simple System Simple Roots
A2 {05,6, _577—’_5}
AS {057’77 _7_576—’_27_}_25}

Table 6.9: Simple Systems for ®;

the other two positive systems are given in Table [6.8 Refer to Appendix [C] to see that A;
given in Table constitutes a simple system.

We conclude this chapter with a list of generic elements for the noncompact and nonsplit
real form. What is interesting to note for this real form is that the number of nilpotent K-
orbits in Ny has considerably dropped in comparison to the split case. In particular, the K-
orbits in Ny miss the principal nilpotent orbit, so we will always have nontrivial Springer fiber
components. As the dimension of ¢ has increased, while the dimension of p has decreased,
we would expect a change in the number of nilpotent K-orbits. However, there are actually
only two such orbits besides the zero orbit, which is perhaps a little surprising. This real
form presents some different challenges than the split case. The component groups for this

nonsplit case are trivial, but N(f;,n; Np) becomes more complicated to understand.

Proposition 6.2. Let n; represent the sum of the root spaces for all roots in —(IJ;. Table

lists a generic element f; inn; Np along with the dimension of the orbit O = K. f;.

Proof of Proposition[6.3. The nilpotent K-orbit in N, with largest possible dimension is

15 according to the tables in [Dok88]. As a result, verifying these orbit dimensions of the
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elements listed in Table will automatically imply that these elements are generic (see

Appendix [C]). ]
Generic Element dim K.f;
fi=xi1,-1,-1) + To,-1,-2,-1) 15
J2 = T(0,0,0,1) + T©0,0,-1,-1) 15
fs=x1-1,-1,-1) + T(0,—1,-2,—1) 15

Table 6.10: Generic Elements f; € n;y Np
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7

Springer Fiber Components for F}

To build the Springer fiber components for the real forms Fj and F; *, we need to
introduce several parabolic subgroups of K contained in N(fj,n; Np). In the G, case, one
parabolic subgroup constituted a subset of N(f;, n; N p) whose dimension was large enough
to describe the whole fiber. For the most part, this same behavior holds true in F; and
F;?° but there are a few fibers where additional groups in N(f;, n; M p) must be included.
Before describing the fibers specific to each real form, we begin this chapter with a review
of the useful constructs in both cases.

As before, let I; = ®(h,€) N A; denote the simple compact roots in <I>;r, and let ®;, C
(b, £) denote the root system associated to I; with positive roots CD*; =&y, N®*(h,€). Then

define a parabolic subalgebra

qj:<b+zgv)+ Z g—W:[j+u;

YePy, ve<1>+(h,£)\<1>}j

of £, and let Q); (resp., L;) denote the connected subgroups of K with Lie algebras q; (resp.,
[;). Regardless of the structure of the fibers for each of the closed K-orbits, these groups
will always be used in constructing a substantial part of the fiber or the whole fiber. As we
proceed, we will need to verify that we have found a subset of N(fj,n; Np) of large enough
dimension. The following well-known lemma adapted from [BZ, Lemma 4.12] will be used

to count dimensions.
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Lemma 7.1. Let n; denote the sum of the root spaces ge for all £ € @j, and let N; denote

the connected subgroup of G with Lie algebra n;. There exists a map
T: n; — Nj.bj

yielding an isomorphism of varieties.

Proof. First, the map T} : N;/Staby, (b;) — N;.b; in [Jan04, Section 2.1] given by n — n.b;
yields an isomorphism of varieties. Since our Borel subalgebras are built from —<I)j+ rather
than (IDj, it follows that Staby,(b;) is trivial. By [Spr81], Section 8.2], there exists a B;-

equivariant isomorphism 75 : n; — N; given by

T = Z Cee — H Exp(cexe) € N;.

(edr ¢edf
Therefore, the composition T" = T} o T} gives our desired isomorphism. O]

Finally, when we introduce candidates for the components of the Springer fibers, we will
want to know that they are closed subvarieties. In some cases, we will have to take closures
in B to get the components. However, there are a few cases where we can utilize the next

proposition.

Proposition 7.2. Let G be an algebraic group acting rationally on a variety V. Suppose

that a parabolic subgroup P of G stabilizes a closed subset A of the variety V. Then the

union
GA=|]gA
geG
is closed in V.
Proof. See §0.15 in [Hum95| for the details. O
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7.1 Springer Fiber Components: Split Real Form Ff

Our first order of business is to argue that the elements listed in Proposition are
generic. To accomplish this, we take advantage of part (a) from Lemma . The idea is
that because L; stabilizes n; Np regardless of a choice of generic element f € n; Np, we will
automatically obtain an upper bound on the dimension of K.(n; Np). Observe that Lemma

4.2| was cast in terms of gy, but the result holds for f4 as well with the same proofs.

Proof of Proposition [0.1. Begin by using Lemma [7.1] to see that
@7 | < dim ¢! (f) = dim B — dim K. f (7.1)

for any generic element f in n; MNp. Indeed, the span of the root vectors for roots in (ID}; is
contained in [;, so the span has dimension }CDZ‘ and maps via T' into ¢51( f). Hence for any
generic element f, dim K.f < dim B — ‘QD}; | This implies that for any f’ € n; Np, if dim
K.f" = dim B— dim ‘(13}; |, then K.f" is a K-orbit of maximal dimension in n; Np, so f is
generic. Since the cardinalities of q)lt and @Zl are not large enough to make above an
equality, we prove that f;5 and f; are generic in Appendix . For the positive system (ID};,
K. fs has the maximum possible dimension (dim K.fs = 24 = dim K), so fs is automatically
generic. For all of the remaining cases, dim B — ‘<I)}S| listed in Table equals the dimension

of K.f; listed in Table[6.5 so f; is necessarily generic. O

Most of the fibers can be described right away based on what has already been proved
. . . . -1
in Chapter . For the generic elements f; with j # 3,11, the subset Cy, = L;b; of Yo, (f;)
will again represent closed irreducible components of the Springer fibers. For the remaining
fibers though, we need to introduce a few more subgroups because L; is not large enough
by itself to build irreducible components of the fibers. The most natural place to look is

the stabilizer subgroup K7 since K7 is contained in N (f,n= Np). For <I>}r3, consider the sl,
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Positive System Roots dim B — ‘(I)Z’
of (0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,0), (0,0,1, 1), 15
(0,1,1,1),(0,1,2,0),(0,1,2,1),(0,1,2,2)
oF (0,0,1,0),(0,0,0,1),(0,0,1,1) 21
) =) (0,1,0,0),(0,0,0,1) 22
of =) (0,1,0,0) 23
<1>;6 = @}9 (0,0,1,0) 23
o (0,1,0,0),(0,0,1,0),(0,1,1,0),(0,1,2,0) 20
@? None 24
8
oy (0,0,1,0),(0,0,0,1),(0,0,1,1),(2,3,4,2) 20
, (0,0,1,0),(2,3,4,2) 22

Table 7.1: Positive Systems (ID};

subalgebra

33 = Spanc({ Xy, = 2100,1,1,0) + 270,0,0,1)s Yf3 = T(0,~1,-1,0) T £(0,0,0,~1)5

Hypy = [ Xy, Y] = 4h0,1,00) + 2h0,0,1,0) + 2h0001)})

contained in #/*. Then use the connected SL, subgroup Z 4w CK s whose Lie algebra is 3 f3
to define Cy, = Z5,L3.bg C ¢5;(f3>. It turns out that Cy, is precisely the fiber, but this will
require some work. For ®] | consider the one-parameter subgroup Zy,, = {Exp(tXy,) : t €

C} contained in K7/ where

X = T0,1,1,0) T T(234,2) — 3T(0,-1,-2,0) T T(0,—1,~1,~1)-

Let Cy,, = Zy,,L11.b11 denote the subset of 15! (fi1) where U denotes the closure of U in

B. In contrast to the previous case, we include the closure here because #/!! is too small to
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afford a subgroup from which CY,, will necessarily be closed. We omit closures in defining
(', since we will prove momentarily that it is closed. Our first step toward describing the

fibers is the content of the following proposition.

Proposition 7.3. For each generic element f;, Cy, C B constitutes a closed, irreducible

subvariety of @bé]l(fj) whose dimension is the same as that of the corresponding 1/}5]1(fg)

Proof. For j # 3,11, the same proofs used for Lemma prove that C'y, = L;b; is a closed,
irreducible subvariety of waj (fj)- The dimension follows from Lemma because @}; defines
a subspace of n; of the same dimension as 1#5;( f;) that maps via 7" into Cy,. To finish the
proof, we need to work on CID}; and @Zl.

It is clear that Z;, L1y C N(fi,ny; Np)~" since Zy,, fixes fi; and Ly, stabilizes nj; Np.
As a result, C},, is a closed subvariety of 1/}5111( fi1). The vectors Xy, and xp are linearly
independent, so Spanc({X,,zs}) represents a 2-dimensional subspace that maps via 7' to
a 2-dimensional subvariety of C'y,,. Since K.fi; has dimension 22, it follows that walll( fi1)
is 2-dimensional, hence CY,, has the same dimension as walll( fi1). To show that Cy, is
irreducible, consider the morphism Zy,, x Ly; — B given by (z,{) — z{.by;. Then the image
is an irreducible topological space since Zy,, X Lq; is irreducible, although the image need
not be a variety itself. Taking closures, we see that CY,, is irreducible, hence represents an
irreducible component of walll (fi1)-

For Cf,, Zs,Ls C N(fs,ny Np) ' since Z;, fixes f3 and Ly stabilizes ny Np. To show
that Cy, is closed, define the two one-parameter subgroups Ty, = {Exp(tHy,) : t € C} and
U;, = {Exp(tYy,) : t € C} that together yield a Borel subgroup B, = Ty, U, of Zy,. Since
By C Qs and

Bj L3.by = By, (3.b3 = (Q3.b3 = L3.bs,

Proposition tells use that Cy, = Zp L3.bs is closed because the Borel subgroup B,

stabilizes the closed subset Lj3.bs of B. The same argument as above shows that Cy, is
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irreducible and 3-dimensional since Zy, and Lj are irreducible, and {X,, x5, =} is a linearly
independent set. Since K.f; has dimension 21, the dimension of CY, is the same as the

dimension of 1/15; (fs3). O

Next, we need to understand the component groups in order to complete the picture
of the fibers. As mentioned above, working with K is more challenging with the jump in
dimension. Most of the component groups are non-trivial, but it turns out that many of them
act trivially on the irreducible components C,. Rather than compute all of the component
groups directly, we will switch our attention to the semisimple element h; of a normal sl,
triple containing f;, and argue using different techniques that the component group is either

trivial or essentially irrelevant. To accomplish this, we will use the following proposition.

Proposition 7.4. Let {e;, f;,h;} denote a normal sly triple containing f;. Then the stabi-

lizer subgroup K" of h; in K is a connected group containing Kihel},

Proof. By Theorem 2.3.3 in [CM93], the stabilizer subgroup K" of the simply connected
group K is connected because € is reductive and h; is semisimple. By the theory of covering
groups, there is a surjective map p : K — K that commutes with the adjoint action of G
on g. Since p is continuous, K" is the continuous image of a connected set, so K™ is also

connected. n

The data from Table lists a normal sly triple containing each generic element f;.
Part of the challenge is to find normal sly triples containing the generic elements so that
the semisimple element of the triple lies in . Searching for such triples is worth the effort
because €" becomes easier to describe, which expedites the process of finding the component
groups in K. As we proceed, we will learn that Ag(fy) is isomorphic to Zy and yields two
components for the corresponding fiber. However, the other component groups will either
be trivial or stabilize the irreducible components CY; introduced above. To complete the

discussion of the fibers, we finish this section with our desired theorem.
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J Nilpositive Element e; Semisimple Element h;
1 T(1,000) T T(1,2,2,1) + Z(1,2,4,2) 4hq + 6hg + 4hy + 2hs
2 621 1.00) + 62(1.1.21) + 102(_1.000) 8hy + 18hg + 12h,, + 6hs
3 62(1.11.1) + 62(12.2.0) + 1021, _10.0) 8he + 1dhg + 12h., + 6hg
4,6 102,111y + 14201 2.2.0) + 1020.1.2.1) + 10211 0.0)+ 8he + 22hs + 16k, + 10hs
8r(_1,-1,-1,0) — 8T(~1,-1,-2,0)
5 10z (12,2,0) + 42 (1,1,21) + 42 (1,2,2,1) + 102 (1 1 22)+ 4he + 14hg + 12h, + 6hs
dry 1,10 t4rC1,-1,-1,-1)
7 3x111) + 3%(1.22.1) + T(1.242) — T(-1,000)+ 2he + 6hg + 4hy + 4hy
T(1,-1,-1,0) T 3T(~1,-2,-2,0)
8 | 2204900) +302(1101) + 42811 _20)+ 16211 11) | Sha +30hs + 24h, + 14hs
9 | 143990 + 18201129 + 821, 1, 20)+ 1081 1, 1._1) | 4ha +18hg + 14h, + 8hs
10 | 4z 220) + 421,222 +22(1,232) T 221,24,2) — 20(—1,-1,00)F 6hp + 4dhy + 2hs
201, 1,10t 2%(_1,-1,-2,0) T 20(~1,-1,-2,-2)
11 8x(1,1,2,1) + T(1,34,2) T 9T(—1,-1,-2,0) + DT (—1,-1,—1,-1) —2ho +4hy + 4hs
12 2hy + 12h5 + 10, + 6hs

57 (1,2,2,1) T 97(1,1,2,2) + T(—1,-1,-2,0) T 8T(—1,-1,-1,-1)

Table 7.2: sly triples {e;, fj, h;}

Theorem 7.5. Let b; denote the Borel subalgebra constructed from the positive system @j,

let O; = K.b; denote the associated closed K-orbit in the flag variety of Fy, and let Cf,

denote the irreducible components listed in Proposition . For each f; with j # 4, the fiber

Q/J(Bj(fj) is isomorphic to Cy,, while Vg, (f1) is isomorphic to Zy.Cy,. Moreover, g, (f3) is

isomorphic to the fiber bundle

Zf3 X(Zf3me3) Qfs/KBs

over Zf3/<Zf3 N Qfs)'

Proof. We begin by considering the fiber associated to the element fg. There is only one
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nilpotent K-orbit of dimension 24 (see [Dok88]), so we know immediately from [Kin92] that
the component group is trivial. For fs, the subset g(3,2) has dimension 7 (see Appendix [B)),
so we know that the component group is again trivial (see [Kin92]). For fy, the orbit K.f4
has dimension 23, so the component group A (f4) must be isomorphic to Z,. Moreover, we
know from [Kin92] that K {haeasfat g 7, so by Lemma , it suffices to find the generator
for K{heafil in order to obtain Ak (fs). By working carefully to choose generic elements
and normal triples, we have the luxury of finding a generator which acts by e*™ = —1 on
certain root vectors. Focusing our attention on €™, the only root vectors in £ commuting

with hy are ., and z_,. As for the generator, consider the element of K given by
ky := Exp(mi(hy + hs))Exp(2z,).

It is clear that k4 is not the identity element, since 2., is nilpotent. However, it is not
obvious that k4 has order two. In Appendix B} we determine the matrix representing k,

within the Adjoint representation and show that it has order two. Now, observe that

Exp(2,).f4 = 2(1,1,00) — T(1,1,1,0) + T(=1,-1,—1,-1) + T(—1,—2,-2,0)

since

Exp(2z.).fa = fa + 22, fa] + 1/2[22,, 22, fs]] + 1/6[22,, 22, 22, f4a]]] + . ..

= fa+ [2xy, fu] +1/2[22,, 22, f4]].
By the equations

[7i(hy + hs), xa] = 0, [1i(hy + hs), 2] = —2mixg,

[mi(hy + hs), x| = mizy, and [7i(h, + hs), x,] = Tizs,

52



Exp(mi(hy+hs)) .z jre = (—1)F(=1) 2 jx.0), s0 it follows that ky stabilizes f1. We already
know by construction that ks, € K™ so we just need to verify that it stabilizes e4 as well.

Similar to the case of fj,

E.Tp(2$,y).€4 = 101’(1’17171) + 141’(1’272’0) — 101}(1’1,271)4-

1055(71,71,0,0) - 8175(71,71,71,0) - 81’(71,71,72,0)
since

Exp(2z.,).e4 = eq + 224, e4] + 1/2[22,, 22, e4]] + 1/6[22, [224, [224, e4]]] + . ..

= ey + 22, eq) + 1/222, 224, e4]].

Again, we have

E$p(7‘(i(h,y + h&))w(i,j,k,é) = (—1)k(—1)€:ﬂ(i,j,k75),

so it follows that k; stabilizes e4. Since k; stabilizes the whole triple, we know that it
represents the generator for the component group Zs. As k4 is not in Kpg, U Ly, it acts

non-trivially on CY,, so

You(f1) =~ Cp, Uky.Cy,.

For the fibers associated to f; with j # 3,4,8, we see that " is contained in the levi
factor [; (see Appendix, so K" is contained in L;. By Proposition , it follows that the
group K17} is contained in L;. Using Lemma , Ak (f;) is contained in K et ) gihett
so Ak(f;) stabilizes Cy,. For the components Cy, built using only L;, the fiber w(;;( f;) is
precisely Cy,. For Cjy,, we must prove that the generator of Ag(f11) normalizes Zy,, in
Zp,,L11.b11 in order to know that ¢5}1(f11) is C'p,,. Since the orbit K. fi; has dimension 22,

the component group Ag(f11) must be isomorphic to Zs. Moreover, we know from [Kin92]
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that K{muenful g also Z,, so it suffices to find the generator for Kol Ag for the

generator, consider the element of K given by

]{ZH = El‘p(ﬂ'l(ha + hg + h(;))

Observe that

wi(he + hg + hs), x| = iz, | Ti(he + hg + hs), xg] = wixgs,
B B B B

wi(he + hg + hs), x| = —2mixz., and |wi(h, + hg + hs), x| = 2mixs,
B v v B v

SO k11.%(ijke) = (—1)i(—1)jx(i,j,k74). Therefore, kq; stabilizes both fi; and eq;. Since ki €
H = Exzp(h) € K™, we see that k;; stabilizes the whole triple, so it represents the generator
for the component group Z,. Now, to show that k;; normalizes Z¢,,, we begin by observing
that ki1.X;, = —Xy,. By the formula, Ezp(k.X) = k(Exp(X))k™" in [Kna02, Section

1.10], it follows that ki1 Zys,, = Zp,, k11. As a result,

kanH = /ﬁlquLll-bn - /ﬁlquLll-bn = anknLn-bn = quLll-bll = Cfu

since k11 € Lj, so we know that Cy,, represents the entire fiber walll( fi1)-
Finally, we need to prove that C/, is isomorphic to Zp, x%s7s) Q. /Kp,. Tt suffices to

prove that the map
Zy, x (28510 Q3) CQf:%/I(B?, - ZfsQf3'b3 = Zf3Qf3‘b3

given by [z,qKp,] — zq.bs is bijective ([GZI11, Theorem 2.10]) since ¢! (f3) is a smooth
variety (|[GZ11, Lemma 2.9]). The map is clearly surjective, so we just need to check injec-

tivity. Suppose we have elements [z1, ¢1 Kp,] and [z9, 2K ;| of Z, x (Z130Qr3) Qy,/Kg, such
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that 21q;.b3 = 25¢2.b3. Then (o) ' (22) '21q1 € Kp,, so there exists some b € Kp, such that
(22) 721 = gab(q1) ™" As aresult, (22) '2; = gob(qy) ™" is an element of Z;, N Qy,. Thus, the
equality

(20, 2 K gy ) = [22(20) "' 21, 107 ' (q2) ' 2K y] = [21, 91 K,

gives the desired isomorphism. O

7.2 Springer Fiber Components: Real Form F! 4_20

To build the component wai (f1) for the Springer fibers of this real form, we need to
rely heavily on the stabilizer subgroup K/ in order to supplement L;. It turns out that L;
contributes very little to the full dimension of the fiber in two of the three closed K-orbits,
so we have to hope that €/ is relatively large. We need to find out the dimension of L; in
order to know how much we may be missing in building 1%;( fi). We can follow the same
procedure that we implemented for the fibers associated to the generic elements f3 and fi;

in the previous real form. Table lists the roots in (ID}; along with the cardinality.

Positive System Roots ‘@}t‘
of (1,0,0,0),(0,1,0,0),(0,0,1,0),(1,1,0,0),(0,1,1,0), | 9
(1,1,1,0),(0,1,2,0),(1,1,2,0),(1,2,2,0)
oF (1,0,0,0),(0,1,0,0), (1,1,0,0) 3
oy (1,0,0,0),(0,0,1,0),(0,1,2,2),(1,1,2,2) 4

Table 7.3: Positive Systems (ID}LJ_

Let us now introduce some components that will represent ¢5;( fj). For the generic
element f1, define the component C'y, = L;.b;. For the generic elements f, and f3, define the

components Cy, = K/2Ly.by and Cf, = K J3 L5.bs. Showing that these represent irreducible
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components utilizes the same arguments as in the split real form cases. Observe the lack on
closure on the third component similar to the case wa;( f3) in the split real form F}. The

following theorem completes our goal of describing Springer fiber components for G5 and F}.

Theorem 7.6. Let b; denote the Borel subalgebra constructed from the positive system @j,
and let O; = K.b; denote the associated closed K-orbit in the flag variety of Fy. Then the
fiber w(;;(fj) is isomorphic to the irreducible component Cy,. Moreover, w(;; (f3) is isomor-
phic to the fiber bundle

K3 5 (K930Qy,) Qr./Ks,

over K% /(K3 N Qy,).

Proof. The component groups Ak (f;) relative to this real form are all trivial (see [Kin92|),
so each of the fibers is automatically irreducible. Moreover, every w(;;( f;) has dimension
nine since dim K.f; = 15 and dim B = 24. As a result, the same proofs used in Lemma
prove that the theorem is true for j = 1. The only modification involves determining
the dimension of L;.b;. As the nine root vectors associated to the positive roots for [; map
via T" into a nine dimensional subspace of ¢5;( f;), it follows that Cy, must have dimension
nine. The proofs that Cy; is an irreducible component of the corresponding Springer fiber of
the correct dimension for cases f, and f3 are identical to those in Proposition [7.3] Indeed,
focusing our attention on the basis elements built from root vectors associated to positive
roots, we see that Cy, is irreducible of dimension nine. Three dimensions coming from the
connected subgroup Lo, while the remaining dimensions come from the part of K2 associated

to the linearly independent set of elements

T(0,1,1,0) — £(0,1,2,2)s T(1,1,1,0) — T(1,1,2,2), T(1,2,2,0) — L(1,2,3,2): £(1,2,2,2), £(1,34,2), and T(2,342)

in €2 disjoint from lo. The same holds true for C}, as L3 contributes four dimensions, while
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the remaining dimensions come from the part of K7/* associated to the linearly independent

set of elements

T(0,1,0,0)5 T(1,1,0,0) — £(0,1,1,0)> L(1,1,1,0) — £(0,1,2,0)> £(1,1,2,0), and Z(122)

in £/ disjoint from [5. We close this chapter by discussing the closure of the last fiber C,.

The stabilizer subgroup K/* has Lie algebra given by

tfs = Spanc({UU(LO,O,O) — 2(0,0,1,0)» £(0,1,0,0)5 L(1,1,0,0) — £(0,1,1,0), L(1,1,1,0) — L(0,1,2,0)5
L(1,1,2,0)5 L(1,2,2,0)5 L(—1,0,0,0) — Z(0,0,—1,0)» L(0,—1,0,0)5 L(—1,—1,0,0) — L(0,—1,—1,0);
T(-1,-1,-1,0) — L(0,-1,-2,0)s L(-1,-1,—2,0)5 L(-1,—-2,—2,0)» L(0,—1,—2,—2)
T(-1,-1,-2,-2)s T(—1,-2,-2,-2)5 L(-1,-2,—3,—2), T (—-1,—2,—4,—2), T(—1,-3,—4,—-2),

T(—2,-3,-4,-2), 11,00,0) T 10,0,1,0), h(o,l,o,O)})-

To apply Proposition we need to find an appropriate Borel subgroup of K7 that stabilizes

L3.b3. Consider the subalgebra

by, = Span@({fﬂ(fl,o,o,o) — 2(0,0,—1,0)s £(0,—1,0,0)» L(-1,-1,0,0) — L(0,—1,—1,0)>
T(-1,-1,-1,0) — L(0,-1,-2,0)s L(-1,-1,—2,0)5 L(—1,—-2,—2,0)» L(0,—1,—2,—2)
T(-1,-1,-2,-2)5 L(—1,-2,-2,-2)5 L(—1,-2,—3,—2)» L(—-1,—2,—4,—2) s L(—1,-3,—4,—2),

T(—2,-3,-4,-2), N1,0,00) + N0,0,1,0); h(0,1,0,0)})

of /3. Because bs is solvable in g, it follows that b f, 1s solvable in £/3. The maximality
follows from the fact that a larger such subalgebra blfg would necessarily contain elements
from which an sl, triple of b/f3 can be constructed. The Jacobson-Morosov theorem tells us

how to find such triples, but we have to verify that it can be used here. First, note that a
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larger subalgebra would contain elements of the subspace

Spanc({ﬂﬁ(l,o,o,o) — %(0,0,1,0)» £(0,1,0,0)5 *(1,1,0,0) — 2(0,1,1,0)» (7.2)

x(1717170) - x(0717270)’ x(1717270)’ x(1727270)}'

By [Dok8§]|, the Levi factor [ of £/3 is isomorphic to go. In this case, the Levi factor is

[ = Spanc({2(1,0,0,0) — £(0,0,1,0)> £(0,1,0,0)5 T(1,1,0,0) — T(0,1,1,0)> T(1,1,1,0) — L(0,1,2,0)
2(1,1,2,0)5 £(1,2,2,0) £(-1,0,0,0) — £(0,0,—1,0)> £(0,-1,0,0)> L(~1,-1,0,0) — L(0,—1,—1,0)>

T(~1,-1,-1,0) = T(0,1,-2,0)s T(~1,-1,-2,0)s T(~1,-2,-2,0)> 1(1,0,0,0) + 1(0,0,1,0)> 1(0,1,0,0) }+

and the elements z(1,0) := #(1,0,0,0) = £(0,0,1,0)5 £(=1,0) *= £(=1,0,0,0) ~ £(0,0,-1,0)> £(0,1) ‘= Z(0,1,0,0)
and (1) := T(,—1,0,0) represent a generating set. Since [ is semisimple, we can apply the
Jacobson-Morosov theorem to obtain an sl triple containing any nilpotent element in .
As a result, the maximality claim is proved. Let By, denote the connected subgroup of K f3

with Lie algebra bg,. Since By, C ()3 and
By, L3.by = By (3.b3 = Q3.b3 = L3.bs,

Proposition tells use that Cy, = K 53 L4.b3 is closed because the Borel subgroup B 2
stabilizes the closed subset Ls3.bs of B. The additional structure as a fiber bundle follows the

exact same proof as in Theorem [7.5] O
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Multiplicity Polynomials

To motivate the final chapter, let us recall an example from elementary group theory.
Consider the group of symmetries of a cube arising from rotations of R®. Looking at vertices,
edges, and faces of the cube one can learn something about the group by considering the
geometry of the vertices, edges, and faces. The point of view is that we can better understand
the group under consideration by looking at the way it acts on various sets. For example,
we discover by looking at the faces of a cube that the group has 24 elements. Indeed, there
are six faces and the stabilizer subgroup has order four, so the group has order 24. Also, by
looking at the diagonals of the cube, we learn that the group is isomorphic to the permutation

group Sy.

4 3

The Springer fiber components considered in the paper give an example of this general
philosophy. From the real form Gg, we understand the portions of the Springer fiber via an
action of a subgroup of GG on the flag variety B. In return, the structure of the fiber is going

to indicate additional information about Gg. To understand this behavior, we need a few
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definitions and theorems whose details are contained in [BZ0S].
Let O denote a closed K-orbit in B associated to some positive system ®* where

o (h, &) C T C ®T(h,g), and let p and p, denote the weights given by

2p:Z£ and 2p. = Z €.
)

£edt £eDH (bt

Then there exists a family of discrete series representations X, for A € h* where A is a

regular, dominant weight such that
T=A+p—2p

is analytically integral, i.e., the derivative of a character on H. Our descriptions for certain
Springer fiber components given in the previous chapters will allow us to give the multiplicity
of K.f in the associated cycles of Xy for certain generic elements f. To understand this
multiplicity, note that the weight 7 yields a line bundle £, — O where £, = K x%& C..

Then the multiplicity is a polynomial in A\ that is given by

Vo) = dim (03" (). F (6ol

where F (ﬁ,\|%1(f)) denotes the structure sheaf on E,\]%1(f) (see [BZ08]). The following

theorem will allow us to better understand these polynomials.

Theorem 8.1. Let W_, denote the irreducible representation of K having lowest weight —T.

If w_, denotes a lowest weight vector of W_,, then
Mo(X) = dim(Spane ({k~'w_, : k € N(f,n~ Np})

for X sufficiently dominant.
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Proof. See [BZ0§| for a discussion and complete list of references. Note that for A sufficiently
dominant, 7 is ®* (b, £)-dominant, hence Spanc ({k~'w_, : k € N(f,n~ Np}) is necessarily

finite dimensional. ]

Using the results of the previous chapters, we can now determine some of these mul-
tiplicity polynomials. Consider the homogeneous fibers associated to a generic element f;
for the real forms G3, F, and F; *” introduced in the previous chapters. For each generic f;

with 1/)5;( fj) = L;.b;, Theorem tells us that if A is sufficiently dominant, then
dim(Spang ({k~'w_, : k € N(f,n~ Np}) = dim(Spanc ({k~'w_, : k € L;})

is the dimension of the irreducible representation of L; of lowest weight —7. To simplify the
computation, we can restrict to the semisimple part of L;, denoted (L;)ss, when computing
the dimension because the difference between L; and (L;)ss lies within the center of G.
Using the Weyl dimension formula and the results above, we have the final theorem of this
dissertation. Following the theorem, we will discuss the specific polynomials for which the

theorem applies.

Theorem 8.2. Let Mo, ()\) denote the multiplicity polynomial associated to a closed K-
orbit O; where \ is a sufficiently dominant weight such that the analytical integral weight
T =X+ p—2p. is ®T(h,€)-dominant. Then the fibers w(;;(fj) isomorphic to the variety

L;.b; have multiplicity polynomials given by

Mo, (\) = H <T(—/i)_[f[g>£>

+
25

where py; denotes the half sum of the roots in @fj. Moreover, the multiplicity polynomial

associated to fibers @Z)(T)]l(f]) composed of n disjoint connected components k.L;.b; with k €
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Ak (f;) is given by

Mo,(3) =n ] %

£€<I>}‘;_
Proof. The first part is immediate from the discussion above because if 7 is (b, £)-dominant,
then 7 is I; dominant, so the Weyl dimension formula readily applies to the irreducible
representation of (L;),. We need to prove the last claim about Mp,(A) when there are
n irreducible components. By Theorem [7.5] the fiber is composed of n irreducible disjoint
components since it is known that the fiber is smooth. As a result, H° (Vo' (f), .F(E,\]%1(f)))

decomposes as a direct sum

B H(KL;.bj, F(Lalkr,s,))-
keAr (f;)
Since HO(Lj.bj,}"(EA]Lj_bj)) is isomorphic to HO(ij.bj,F(EA]ij,bj)) for any k € Ak (f;),
it follows that the multiplicity polynomial is n times the dimension of the irreducible L

representation with lowest weight —7. O]

Armed with the previous theorem, we can finish our goal of computing the multiplicity
polynomials for most of the closed K-orbits. The multiplicity polynomials associated to non-
homogeneous fibers are still unknown to the author, but represent a future research goal. In
fact, the Springer fiber components above which are described in terms of a fiber bundle are
very likely to yield the multiplicity polynomials. Table (resp., Table , Table lists
the known multiplicity polynomials for the real forms G5 (resp., Fy, F; *°) along with the

non-negative integer values z; for which 7 = Z ;N + p — 2p. is & (h, €)-dominant.
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@/ | Multiplicity Polynomial | Coefficients {1, 22}
‘1)?1 1 12> 1,920
(I)}; 1 T Z O, i) 2 0
(I)E 1+ 2&32 T+ 2%2 > 1

Table 8.1: Multiplicity Polynomials for G3

(ID}; Multiplicity Polynomial Coefficients {1, x9, 3,14}
(I)Z 1/7201‘21’3.1'4(1’2 + .1'3)(552 + T3+ l’4)($3 + 1’4)' T > 0,33'2 > 1,1‘3 > 1, Ty > 1
(229 4+ 3 + 24) (222 + 3) (222 + 223 + 14)
R 1/2x324(x3 + 24) 21> 0,09 > 0,23 > 1,24 >1
(I)E 219 120,29 > 1,23 20,24 >0
(b;; TaTy r1 20,22 > 1,23 20,24 > 1
(I);FG x3 120,22 20,23 > 1,24 20
<I>}r7 1/6zox3(xe + x3) (229 + x3) 21> 0,09 >1,23>1,24 >0
(I)}; 1 .1'120,.1'2207.’17320,1}420
(I);; x3 120,22 20,23 > 1,24 20
QJZO 1/2x3x4(x3 4+ 24) (221 + 322 + 223 + 24) 21> 0,29 > 0,23 > 1,24 >1
R x3(211 + 329 + 223 + 14) 21> 0,29 >0,23> 1,24 >0
Table 8.2: Multiplicity Polynomials for F
<I>I+j Multiplicity Polynomial Coefficients {1, z2, 13,74}
(I):;_l 1/720$1[L’2£IZ’3($1+ZU2)($2+I’3)(331+[E2+333)' X1 Z 1,!13’2 Z 1,[133 Z 1,334 Z 0

(21 4 229 + 23) (222 + 23) (221 + 229 + x3)

Table 8.3: Multiplicity Polynomials for £ >
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Computations for G,

A.1 The Set A; Forms a Simple System for ¢

For the given positive system, the tables indicate how each root & € q);r can be written
as a nonnegative linear combination £ = i§; + j& of the listed simple roots A; = {1, &}

Naturally, the case &7 = ®*(h, g) will be omitted.

Root | ¢ | j| Root | i | 7| Root ||
(L) |1 {1 (0,—=1) | 1|0 |(L,1)|0]1
2,1) |12 (3,1) |2]3](3,2|1]3

Table A.1: Positive System ®3 : Ay = {3, a + 8}

Root | ¢ | j | Root |4 | Root 1
(Lo |21|(,-1) |3 |1](-1,-1)|1]0
(2,1) |11 (3,1) |3]2 (3,2) 01

Table A.2: Positive System ®3 : Az = {—a — 3,3a + 23}
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A.2 Computing the Dimensions of g(j,2)

We need to show that dim g(1,2) = 4, dim g(2,2) = 2, and dim ¢(3,2) = 2. First,
dim g(2,2) = 2 is clear from the tables in [Dok88| because there is only one nilpotent K-
orbit of dimension 6. For the other two cases, let p = c(,1)7(0,1) + ¢(0,-1)T(0,~1) + c(1,1)T(1,1) +
C(—1,-1)T(—1,-1) T C@1T(2,1) + C(—2,-1)T(=2,—1) T C(31)T(3,1) T C(=3,—~1)T(—3,—1) be an arbitrary
element of p. Since [hy,p] = 2p if and only if 2co1)20,1) — 2¢0,-1)T(0,-1) + 2¢11)T@1,1) —
2c(_1,-1)T(—1,-1) + 2c01)T(2,1) — 2C(—2,—1)T(—2,—1) + 2€(3,1)T(3,1) — 2€(=3,~1)T(-3,—1) = 2p if and
only if ¢ -1) = ¢1,-1) = ¢2,-1) = ¢(-3-1) = 0, we have dim g(1,2) = 4. Finally,
[h3,p] = 2p if and only if —2c1)70,1) + 2¢(0,—1)%0,-1) + Oc1)®@,1) + 0c-1,-1)@(—1,-1) +
2c0,1)T(2,1) — 2€(—2,—1)T(—2,—1) + 4c@E1)T3,1) — 4c—3_1)T(—3,—1) = 2p if and only if ¢ =

C(l,l) = C(—l,—l) = C(_27_1) = C(371) = C(_3,_1) = 0, so dim 9(3, 2) = 2.

A.3 Generators for the Component Groups

The elements 7 and s generate K "0/} and the element z generates K{##¢/3}  Using
the matrix representations, we will omit the maps ¢ and w. The fact that these elements

stabilize their respective triples can easily be checked using conjugation.

[0 00 0 0 0 0 0 0 =2 —4 4 0 0]
0 00 0 00 0 00 —4 4 2 0 0
100 0 0 0 0 00 0 0 0 2 —4
i=]-1 1.0 0 0 0 O 3e1=10 0 0 0 0 —2 —2
0 1 0 0 00 0 00 0 0 0 —4 2
0 01 -2 00 0 00 0 0 0 0 0
0 00 -2 1 0 0] 00 0 0 0 0 0]
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B

Computations for the Split Real Form Ff

B.1 The Set A; Forms a Simple System for ¢

The following tables indicate how each root & € CID;r can be written as a nonnegative

linear combination § = i&; + j& + k&3 + €€, of the listed simple roots A; = {&1, &2, &3, &4}

Again, the case ® = ®*(h, g) will be omitted.

Root i | j | k| £ Root i | j | k| £ Root i | j| k| £
(0,1,0,0) | 1|0 |0 |1 (0,0,1,0) 0(1|0|0](,001)|0|0]1]0
0,1,1,0) | 1 |10 |1] (00,1,1) |0o|1|1]0] 01,20 [1]2]0]1
0,1,1,1) | 1 |11 |1] (0,1,2,1) | 1|2 |1]1] 0122 |1|2]|2]1
(2,3,4,2) |1 |4]|2|3] (-1000) |1]0]0|O0](,1,0,00|00]O0]|1
(1,00 f[o|l1|o|1| (1,1,200 |o|2|o|1| @) |o|1|1]1
(1,2,200 | 12|02 (1,1,2,1) o |2 |1 |1| @221 |[1|2]|1]2
22 o221 1,231 |13 |1|2]|@®m222 |[1]2]2]:2
(1,2,3,2) | 1|32 |2 (1,242 |14 |2]|2] @342 |2|4]2]3

Table B.1: Ay = {—a,7,d,a+ 5}
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Root 2 I B 2 Root i | j | k| £ Root i | j | k| £
(0,1,0,0) | 1 {0 | O (0,0,1,0) 0(o0|1/|1 (0,0,0,1) 0|1]0}O0
0,1,1,0) | 1|0 | 1] 1] (001,1) [0 |1|1]1 (0,1,2,0) 11022
(0,1,1,1) | 1 |1 |1 |1 (0,1,2,1) 1{11]2]2 (0,1,2,2) 1121212
2,342 | 1]2]|2]4]| (1000 |1]0]|1]0]| (-1,-1,000|0]0]1]0
(1,1,1,00 [o o] o] 1] (1,1,20 | 0|0 | 1]2 (1,1,1,1) ol1]o0]1
(1,2,200 [ 10| 1]2] (,i,2,1) |0 | 1| 1]2 (1,2,2,1) 11]1]2
(1,1,2,2) o2 12| 1231 [1|1|2]3] (1,222 1]2]1]2
(1,2,3,2) | 1 | 2] 2|3 (1,2,4,2) 112]3]4 (1,3,4,2) 21234

Table B.2: Ay ={3,0,—a— fB,a+ [+ v}

Root i | j | k| £ Root i | j | k| £ Root i | j | k|2
(0,1,0,0) 1{0]0]O0 (0,0,1,0) o(1(1})0 (0,0,0,1) 0|1]0]1
(0,1,1,0) 1l1]1]o0o] 0o01,1) |o|2]1]1 (0,1,2,0) 112]21o0
(0,1,1,1) 1l2]1]1] (121 [1]3]2]1 (0,1,2,2) 1]4]2]2
(2,3,4,2) 1222|5000 |1]|2]1]|0] (-1,-1,0,00|0|2]|1]o0

(-1,-1,-1,0) |o|1|o|o]| (1,20 [o|lo|1]0o| @1,1,1) |[o|o|o0]1

(1,2,2,0) 1{0|1]0 (1,1,2,1) o111 (1,2,2,1) 1111

(1,1,2,2) ol2|1]2| 231 |1]|2|2]|1 (1,2,2,2) 10212

(1,2,3,2) 10322 (1,242 | 1]4]3]2 (1,3,4,2) 20432

Table B.3: Ay ={8,—a—fF—vy,a+B+2y,a+B+v+}

Root i J | k|2 Root i J | k|2 Root il g k| £
(0,1,0,0) 110100 (0,0,1,0) 0j1]1]1 (0,0,0,1) o(1j01}o0
(0,1,1,0) 1l1]1]1] (0o11) [o0]2]1]1 (0,1,2,0) 11222
(0,1,1,1) 1l2l1]1] (01,21 [1|3]|2]2 (0,1,2,2) 10422
(2,3,4,2) 1202 (1000 |1|2|2]1 (-1,-1,0,0) |0 |2|2]1

(-1,-1,-1,00 |o|1]1|o0o| (11,200 |o|o|oO|1] (~1,-1,-1,-1) 0] 0| 1]0
(1,2,2,0) tlofol1| (121 [o]1]o0]1 (1,2,2,1) 1101
(1,1,2,2) ol2lo|1| (231 |1|2|1]2 (1,2,2,2) 1201
(1,2,3,2) 1031 ]2] (1L,2,42) |1]4]2]3 (1,3,4,2) 204213

Table B.4: A5 ={3,0,—a——~v—0,a+ [+ 27}
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Root P2 I 2 4 Root i | j | k|2 Root i | j | k| £
(0,1,0,0) 0|1]0]1 (0,0,1,0) 110100 (0,0,0,1) 1{1]1]0
(0,1,1,0) 1]1]0]1 (0,0,1,1) 20 1(1]0]| (1,20 |2]1]0]1
(0,1,1,1) 212111 (0,1,2,1) 312|111 (0,1,2,2) 413211
(2,3,4,2) 21112 |1 (-1,0,0,0) 212101} (1,-1,000|2|1|0]|0

(-1,-1,-1,0) |1 |1]0|0]| (-1,-1,-20 [0 |1|0o]0| (@1,1,1) [o|o|1]oO

(1,2,2,0) olofol1 (1,1,2,1) 1{ofl1]o0 (1,2,2,1) 11111

(1,1,2,2) 21210 (1,2,3,1) 211 ]|1] 1222 |2]2[2]1

(1,2,3,2) 312211 (1,2,4,2) 4 12|21 (1,3,4,2) 413212

Table B.5: Ag = {v,—a——2v,a+ [ +v+§,a+ 20+ 2y}

Root i | j | k|2 Root i | j | k|2 Root i | j | k| £
(0,1,0,0) 110100 (0,0,1,0) 0[1]0]O0 (0,0,0,1) 11111
(0,1,1,0) 111]0lo0 (0,0,1,1) 1211 (0,1,2,0) 1200
(0,1,1,1) 2|2]1]1 (0,1,2,1) 2311 (0,1,2,2) 31422
(2,3,4,2) 1l2]2]0| (=1,000 |2]2]0]1](-1,-1,000]1]|2|0]1

(-1,-1,-1,0) |1 | 1]0|1] (-1,-1,-20 [1|o|o|1]| (@1,1,1) [oflo|1]oO

(-1,-2,-2,0) |0 | 0| O |1 (1,1,2,1) 0|1]1]o0 (1,2,2,1) 1{1]1]0

(1,1,2,2) 1221 (1,2,3,1) 112110 (1,2,2,2) 2121211

(1,2,3,2) 2321 (1,2,4,2) 2421 (1,3,4,2) 31421
Table B.6: A, ={B,v,a+ B+ +0,—a—28—2v}

Root il g k| YL Root il g k| £ Root i | J | k| £
(0,1,0,0) 1{0|1]0 (0,0,1,0) 0O(1]0/|1 (0,0,0,1) 110101
(0,1,1,0) 11111 (0,0,1,1) 11102 (0,1,2,0) 1]2]1]2
(0,1,1,1) 211112 (0,1,2,1) 20210113 (0,1,2,2) 312114
(2,3,4,2) 1lo|1|2| (-1,00000 |2]2]1]2]| (~1,-1,0,0) 1]2]0]2

(-1,-1,-1,0) | 1| 1|o| 1| (-1,-1,-20|1|0o|o|o0| (-1,-1,-1,-1) |[0o|1]|0]oO
(1,2,2,0) olol1]o (1,1,2,1) o|lofol1 (1,2,2,1) 1{of1]1
(1,1,2,2) 10|02 (1,2,3,1) 11112 (1,2,2,2) 210112
(1,2,3,2) 2| 1]1]3 (1,2,4,2) 2210114 (1,3,4,2) 31224

Table B.7: Ag={—-a—-08—-2v,—a——v—=68§a+20+2v,a+ 5+ 2y+}
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Root i | j | k| £ Root i | j | k| £ Root i | j | k| £
(0,1,0,0) 0l2]1]1 (0,0,1,0) 1lololo (0,0,0,1) ol1]o0]1
(0,1,1,0) 1]2]1]1 (0,0,1,1) 1l1]0]|1 (0,1,2,0) 22|11
(0,1,1,1) 11312 (0,1,2,1) 203|112 (0,1,2,2) 24|13
(2,3,4,2) olo|1]1 (~1,0,0,0) 204 |1]2| (-1,-1,0,0) |2|2]o0]1

(-1,-1,-1,0) |1 |2|o| 1| (-1,-1,-2,00 |o| 2|0 |1 (-1,-1,-1,—-1) |1]|1|0]o0
(1,2,2,0) olo|l1]o0|(-1,-1,-2,-1)|o|1]0]o0 (1,2,2,1) o|l1]1]1
(1,1,2,2) ololol1 (1,2,3,1) 1l1]1]1 (1,2,2,2) 0f2|1]2
(1,2,3,2) 11212 (1,2,4,2) 202112 (1,3,4,2) 24|23

Table B.8: Ag = {y,—a— 05 —2y—§,a+ 26+ 2v,a+ 5+ 2y + 26}

Root i | j | k| £ Root i | j | k|2 Root A
(0,1,0,0) ol2]2]1 (0,0,1,0) 1lololo (0,0,0,1) ol1|0]o
(0,1,1,0) 1221 (0,0,1,1) 1/1]0lo0 (0,1,2,0) 2121211
(0,1,1,1) 11321 (0,1,2,1) 2321 (0,1,2,2) 2421
(2,3,4,2) olo]o]1 (~1,0,0,0) 204 |3|1| (-1,-1,0,00 | 22|10

(-1,-1,-1,0) | 1|2]1|0]| (=1,-1,-2,0) |0 | 2|10 (-1,-1,-1,=1) | 1|1 ]1]0

(1,2,2,0) olo|1|1](-1,-1,-2-1)|o|1|1]o0 (1,2,2,1) o111

(-1,-1,-2,-2) |olo| 1|0 (1,2,3,1) 1111 (1,2,2,2) ol211]1

(1,2,3,2) 12|11 (1,2,4,2) 2211 (1,3,4,2) 20432
Table B.9: Ajg = {7,0, —a — 3 — 2y — 26,2cc + 30 + 4y + 26}

Root il g k| YL Root il g k| £ Root i | J | k| £
(0,1,0,0) 1lolofo (0,0,1,0) ol1]0]1 (0,0,0,1) 1lof1]1
(0,1,1,0) 11101 (0,0,1,1) 11112 (0,1,2,0) 1202
(0,1,1,1) 211112 (0,1,2,1) 20210113 (0,1,2,2) 31224
(2,3,4,2) 1lolol2| (-1,00000 |2]2]1]2]| (-1,-1,0,0) 1]2]1]2
(-1,-1,-1,0) | 1| 1|1 |1 | (-1,-1,-20 |1|0o|1|0]|(-1,-1,-1,-1) |0o|1]|0]0O
(-1,-2,-2,0) |0 | 0| 1]0 (1,1,2,1) o|lofol1 (1,2,2,1) 1{oflol1
(1,1,2,2) 1]o|1]2 (1,2,3,1) 11102 (1,2,2,2) 210112
(1,2,3,2) 2| 1]1]3 (1,2,4,2) 2210114 (1,3,4,2) 312]1]4

Table B.10: Ay ={f,—a—p—v—0,—a—20 —2y,a+ B+ 2y+ 0}
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Root i j | k| £ Root i J | k| £ Root il g | k| £
(0,1,0,0) 0j0|2]|1 (0,0,1,0) 1{0|10}0 (0,0,0,1) 0| 1]1]|1
(0,1,1,0) 11021 (0,0,1,1) 1111 (0,1,2,0) 210121
(0,1,1,1) 1|1]3]2 (0,1,2,1) 211132 (0,1,2,2) 212143
(2,3,4,2) 00|01 (-1,0,0,0) 211142 (-1,-1,0,0) 211121

(-1,-1,-1,0) | 1 | 1] 2|1 (-1,-1,-2,0) o(1|2/|1](-1,-1,-1,-1) |1 ]0]|1]0
(-1,-2,-2,00 0| 1]|0]O0] (-1,-1,-2,—-1) | 0O | O] 1]O (1,2,2,1) 0011
(1,1,2,2) o101 (1,2,3,1) 10|11 (1,2,2,2) 0|1 11]2]|2
(1,2,3,2) 1|1]2]2 (1,2,4,2) 211122 (1,3,4,2) 211143

Table B.11: Ay = {y,—a —28 —2v,—a— [ — 2y —§,2a+ 35 + 47 + 25}

B.2 Understanding ¢"

For each of the semisimple elements h; with j # 3,4, or 8, we determine which basis
vectors commute with /; in order to show that e [;. Beside each h; below, the roots
associated to root vectors commuting with h; are listed. Since h; € b, it follows that b is
contained in €. The span of the root vectors associated to the roots listed below are a

subset of the roots in Table , hence the span of those root vectors is also contained in €.

Semisimple Element Roots
hy +(0,1,0,0), +(0,0,1,0), +(0,0,0,1), £(0,1,1,0), +(0,0,1,1),
+(0,1,1,1), +(0,1,2,0), =(0,1,2,1), +(0,1,2,2)
ho +(0,0,1,0), £(0,0,0,1), +(0,0,1,1)
hs +(0,1,0,0), +(0,0,0,1)
he +(0,0,1,0)
h7 +(0,1,1,0)
hg None
hio +(0,0,1,0), +(0,0,0,1), +(0,0,1,1), £(2, 3,4, 2)
h11 None
hi2 None
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B.3 Supplement to Theorem (7.5

We need to prove that k] = 1 for ky := Exp(mi(h., + hs))Exp(2z,). We will do this by using
working within the Adjoint representation. If the matrix representing k4 has order two, then

it follows that ks generates the desired Z,.

k4-$(1,0,0,0) = %(1,0,0,0)» k4-$(0,1,0,0) = X(0,1,0,0) T 295(0,1,1,0) + 41’(0,1,2,0), k4-$(0,0,1,0) = —%(0,0,1,0)
ky.20,0,0,1) = —70,0,0,1) T 27(0,0,1,1), k4-T(1,1,0,0) = £(1,1,0,0) + 22(1,1,1,0) + 4T(1,1,2,0)
k4-13(0,1,1,0) = —X(0,1,1,0) — 437(0 1,2,0)5 ky.w (0,0,1,1) = 2(0,0,1,1) , Ky T(1,1,1,00 = —%(1,1,1,0) — 4$(1,1,2,0)7

k’4-93(0,1,2,0) = X(0,1,2,0)» k4-$(0,1,1,1) = T,1,1,1) T 293(0,1,2,1)7 k4-$(1,1,2,0) = %(1,1,2,0)

ky. T,1,1,1) = 2T(1,1,1,1) + 223(1 1,2,1) k?4 Z(0,1,2,1) = —X(0,1,2,1) k?4 2(1,2,2,0) = %(1,2,2,0)
k4-$(1,1,2,1) = —T@1,1,2,1) y by (0,1,2,2) = 2(0,1,2,2)5 k4-1‘(1,2,2,1) = —T@1,2,2,1) — 295'(1,2,3,1)

Ky T(1,1,2,2) = 2(1,1,2,2)5 ky.x (1,2,3,1) = 2(1,2,3,1)5 k?4-$(1,2,2,2) =T1.2.22) T 2$(1,2,3,2) + 4$(1,2,4,2)
k4-$(1,2,3,2) = —2(1,2,32) — 41‘(1,2,4,2), /f4-$(1,2,4,2) = T(1,2,4,2)> /f4-iU(1,3,4,2) = 2(1,3,4,2)
k‘4--75(2,3,4,2) = X(2,3,4,2)> k4-$(71,0,0,0) = (-1,0,0,0), /f4-95(0,71,0,0) = Z(0,-1,0,0)

k?4-1‘(0,0,—1,0) L(0,0,—1,0)5 ky. Z(0,0,0,—1) = —(0,0,0,—1)> ky. Z(-1,-1,0,00 = T(-~1,-1,0,0)
ka-20,-1,-1,0) = 4%(0,-1,0,0) — T(0,-1,-1,0)5 K4-T(0,0,-1,—1) = 2%(0,0,0,-1) T (0,0,1,~1)
k‘4-$(71,71,71,0) = 4$(71,71,0,0) — T(-1,-1,-1,0)

k4-l‘(0,—1,—2,0) = 495(0,—1,0,0) - 21‘(0-1,-1,0) + Z(0,-1,-2,0); k4.96(o,—1,—1,—1) = —%0,-1,-1,-1)
kyw 11,20y = 42(—1,21,0,0) — 2T(<1,—1,-1,0) T T(=1,-1,-2,0)> Ka-T(—1,—1,—1,—1) = T(=1,~1,—1,—1)

ka-(0,-1,-2,-1) = 28(0,-1,-1,-1) — L(0,-1,-2,-1), F1-T(1,-2,-2,0) = T(=1,-2,-2,0)

/f4-13(—1,—1 -2,-1) = 2313( 1,-1,-1,-1) — T(-1,-1,-2,—1) , Ky T0,-1,-2,—-2) = L(0,-1,—-2,—2)
k4‘x(71772772771) = _x(71772»72’71)’ k4'x(71771772772) = x(71771»72a72)
k4-x(—1,—2,—3,—1) = —2$( 1,-2,-2,—1) T T(~1,-2,-3,—1) , Ky T(-1,-2,-2,-2) = T(-1,-2,—2,-2)

k4.x(_1’_27_37_2) = 4%(_1’_27_27_2) o x(_17_27_37_2)

k?4-$(71,72,74,72) = 4$(71,72,72,72) - 2$(71,72,73,72) + T(—1,-2,-4,-2)
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k?4-$ —1,-3,—4,-2) — L(-1,-3,-4,-2), k?4$ —2,-3,—4,-2) — L(-2,-3,—4,-2)

ka.h,0,0,0) = 0,00

Since the matrix is so large, we will give it in terms of our matrices Ef2

B35+ Eg + 2B 6+ 4E73 o — B25 — By + 2E77 s + Egg +2B75 9 + 4By g — Eig 1 — 4B 1o+
EYY = B0 —4E7S 15+ EVS 13+ BNy 1y +2B07 14+ EVS 5+ BN 16+ 2E05 16 — Ev7 17+ Es 15—
ER3 19+ E300 = Eat o1 = 235 51 + B35 90+ Eag o5+ Egi g4+ 255 54 +4E3¢ 54 — E55 55— 4F3 o5+
B3t o6 + Bt 07 + B3 05 + Eog 09 + By 50 — Bzt a1 — Egy go + B33 53 +4E35 34 — Bt 30 + 2E35 55 +
E32 55 +4ESS 36— E3g 56+ 4E30 37— 2E3 57+ 37 57+ Egg 35 + 4533 59 — 2E3 30+ E35 59+ B2 40+
2E§§ a—Fon a1t Eg i Eﬁ 43T Eﬁ u—FEg a5 T Eig 16— 2E37 a7t E a7t E282,48 + 4Ei§,49 -

Ejs 10T4E5s 50— 2E35 5o+ Esg 5o+ Ears1 T Evyso+ Era+ Esy— 2B+ B33 —AE A+ By —2E7,

Embedding the data into a matrix algebra system, one sees by direct computation that

the matrix has order two, so k4 is indeed our desired component group generator.

B.4 Computing the Dimension of g(3,2)

We need to compute g(3,2) in order to determine the component group Ag(f3). Given an

arbitrary element

p= ) mere

gely

of p, we see that

[hs, p] = 2p

if and only if m10,0) = 0, m(1,120) = 0, m(1,1,2,1) = 0, M(1,1,2.2) = 0, M(1,231) = 0, M(1,23.9) = 0,

ma,24,2) = 0, m1342) =0, m_1000 =0, m1,-1,-10 =0, m1,-1,-20) =0, m1,-1-1,-1) =0,

m1,-2,20 =0, m_1,-1,2-1)=0,mq1 92 2 1)=0 m112 2=0 m_y o 3 1)=0,
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m(_1,-2,-2,-2) = 0, m1, 2392y =0, m_y 2 492y =0, m_y_3 4 92 =0, s0 9(372) has

dimension 7.

B.5 Supplement to Proposition 6.1

For the remainder of this appendix, let

k= C1ha + Cgh,ﬁ + Cghfy + C4h5 + Z Celg
£ed(h,t)

be an arbitrary element of €. Since [¢, p] C p, there exists coefficients m, such that

&, f] = Z mexe for any f € p.

€ery

Proof of Proposition (Cont.) We now prove that the K-orbit dimensions are correct for

cach element f; listed in Proposition [6.1}

Positive System @ (dim K.f; = 15) For this first case, ®] is equal to ®* (b, g),

so the nonzero coefficients m¢ with fi = x(_1,0,0,0) + T(=1,—2,—2,—1) + T(—1,—2,—4,—2) are given by

mM(1,1,0,0) = —€(2,3,4,2), M(1,1,2,1) = €(2,3,4,2)> T(1,3,4,2) = —C€(2,3,4,2), 7(-1,0,0,0) = —2¢1 + ¢2, m(-1,-1,0,0) =
—C€(0,-1,0,0) T 20(0,1,2,1)7 m(—1,-1,-1,0) = —€(0,—1,-1,0) — €(0,1,1,1), M(=1,-1,-2,0) = —C€(0,—1,-2,0) + €(0,1,2,2)>
m-1,-1,-1,-1) = —¢0,-1,-1,-1) — €(0,1,1,0)> M(-1,-2,-2,0) = 2C(o,o,o,l), m(-1,-1,-2,-1) = —€0,-1,-2,-1) +
€(0,1,0,0) — €(0,1,2,1), M(-1,—2,—2,—1) = —C2 + €3, M(—1,-1,-2,—2) = —C(0,-1,—2,-2) + €(0,1,2,0), M(-1,—-2,-3,—1) =
€(0,0,—1,0) —€(0,0,1,1)s M(—-1,-2,—2,—-2) = 2C(o,o,o,—1)7 mM(—1,-2,-3,-2) = —C€(0,0,—1,—1) 7€(0,0,1,0)> M(—1,—-2,—4,—2) =
ca — 2c3, and m(_1,_3_4_2) = 2¢@0_1,-2,-1) — C0,—1,00)- Lhen the equations me = 0 yield

the relations on the coefficients c¢ given by ¢ = 0, co = 0, ¢35 = 0, c0,00,1) = 0, c0,1,21) =
1/2¢(0,1,0,0)> €(2,3,4,2) = 05 €(0,-1,0,0) = €(0,1,0,0)5 €(0,0,~1,0) = €(0,0,1,1)> €(0,0,0,-1) = 05 €(0,-1,-1,0) = —€(0,1,1,1)>

€(0,0,-1,-1) = €(0,0,1,0)s €(0,-1,-2,0) = €(0,1,2,2)s €(0,~1,-1,-1) = —€(0,1,1,0)s €(0,~1,~2,-1) = 1/2¢(0,1,0,0), and
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Cl0-1.—2,-2) = C(0.1.2.0)- Therefore, €1 has dimension 9, hence K.f; has dimension 15.

Positive System @ (dim K.f; = 21) For this case, the nonzero coefficients mg
with fo = Z(1000) + T(<1,-1,00) T T(=1,-1,—2,—1) AT M1 00,0 = 2¢1 — C2, M(11,00) = €(0,1,0,0)>
m(1,1,1,0) = €¢(0,1,1,0)s ™(1,1,2,0) = €(0,1,2,0)> M(1,1,1,1) = €(0,1,1,1)s M(1,1,2,1) = €(0,1,2,1)5 T(1,2,2,1) = —€(2,3,4,2)5
ma,1,2,2) = €(0,1,2,2)s M (1,2,4,2) = €(2,3,4,2)5 " (-1,0,0,00 = —¢(0,1,0,0) — 20(0,1,2,1), m(-1,-1,0,0) = —C1 — C2 + 2¢3,

mM(—1,-1,-1,0) = €(0,0,—1,0) T €(0,0,1,1)s M(=1,-1,-2,0) = 26(0,0,0,1)7 m(—1,-1,-1,-1) = €(0,0,—1,—1) + €(0,0,1,0)s
m(—1,-2,-2,0) = €0,—-1,-2,0), M(-1,-1,-2,—1) = —C1 + €2 — €3, M(-1,-2,-2,-1) = €0,—1,-2,—1) T €(0,—1,0,0)s
m-1,-1,-2,-2) = 2(3(0,0,0,—1), m(-1,—-2,-3,-1) = €¢(0,-1,—1,0)s M(-1,—-2,-2,-2) = €(0,—1,-2,-2), M(-1,-2,-3,-2) =
—C(0,-1,~1,-1)> M(—1,-2,—4,-2) = —2€(0,~1,—2,-1)s and M(—1,-3,-4,—2) = C(—2,—-3,—4,—2) Then the equa-
tions mg = 0 yield the relations on the coefficients ¢ given by ¢, = 0, co = 0, ¢35 = 0,
€0,1,0,00 = 0, ¢0,0,0,1) = 0, ¢(0,1,1,0) = 0, ¢(0,1,2,00 = 0, ¢(0,1,1,1) = 0, ¢(0,1,2,1) = 0, ¢(0,1,2,2) = 0, ¢(2,34,2) =0,
€0,-1,0,0) = 05 €(0,0,-1,0) = —€(0,0,1,1)s €(0,0,0,-1) = 0, ¢(0,—1,-1,00 = 0, €(0,0,—1,-1) = —€(0,0,1,0)s €(0,~1,—2,0) =
0, ¢(o,—1,-1,-1) = 0, co,—1,—2,-1) = 0, ¢(0,—1,—2,—2) = 0, and ¢(_2 _3 4,2y = 0. Therefore, £2 has

dimension 3, hence K.f; has dimension 21.

Positive System ®; (dim K.f; = 21) For this case, the nonzero coefficients mg
with f3 = xq,100) + T(—1,-1,-1,-1) + T(=1,—2,-2,0) AT€ M(1,000) = C0,-1,00): M(1,1,00) = €1 +
c2 — 2c3, m(,1,1,00 = —¢0,0,1,0)> M(1,1,1,1) = —€(0,0,1,1)s M(1,2,2,00 = —¢0,1,2,0)> " (1,2,2,1) = —¢0,1,2,1)»
M(1,1,2,2) = —€(2,3,4,2)y M(1,2,3,1) = €(2,3,4,2)5 ™(1,2,2,2) = —¢€(0,1,2,2)s 7(-1,0,0,0) = —20(0,1,1,1), m(—1,-1,0,0) =
20(0,0,1,1) + €(0,1,2,0) M(~1,—-1,-1,0) = €¢(0,0,0,1) — €(0,1,1,0)> M(~1,—-1,-2,0) = €(0,1,0,0)> M(-1,—1,—-1,-1) = —C1 +
€3 — C4, M(—1,-2,-2,0) = —C2 + 2¢y, m(—1,-1,-2,—1) = €(0,0,—1,0)s M(—1,-2,—2,—1) = —C€(0,—1,—1,0) T €(0,0,0,—1)>
m-1,-1,-2,-2) = 26((),0,71,71)7 m(-1,-2,-3,-1) = —€(0,-1,-2,0) —€(0,0,-1,—1)> "M(-1,-2,-2,—2) = —20(0,71,71,71)7
m(-1,-2,-3,—2) = —C(0,-1,-2,—1), M(—1,-2,—-4,—-2) = —C(—2,-3,—4,-2), and m(—1,-3,-4,—2) = —C(0,-1,-2,—2)-
Then the equations mg = 0 yield the relations on the coefficients ¢ given by ¢; = 0,
3 = c2/2, c4 = c2/2, 01,00 = 0, c0,01,00 = 0, ¢0,1,1,00 = €0,0,0,1)s €0,01,1) = 0, co,1,20) = 0,
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co11n = 0, cor21 = 0, cor22) = 0, 2342 = 0, ¢0,-1,00 = 05 ¢00,-1,00 = 0, ¢0,-1,-1,00 =
€(0,0,0-1)> €(0,0-1,—1) = 0, ¢(0,—1,-2,0) = 0, ¢(0,—1,-1,-1) = 0, ¢0,—1,—2,—1) = 0, ¢(0,—1,-2,—2) = 0, and

C¢(—2,-3,—4,—2) = 0. Therefore, £/* has dimension 3, hence K.f3; has dimension 21.

Positive System ¢} (dim K.f; = 23) For this case, the nonzero coefficients mg¢ with

fi = 21100 + 21110 + T(-1,-1,-1,-1) + T(-1,-2,-2,0) ar€ M(1000) = 2¢0,-1,-1,0) + €(0,-1,0,0):

m(1,1,0,0) = €1 + €2 — 2¢3 — 2¢(0,0,—1,0)5 M(1,1,1,0) = €1 — C4 — €(0,0,1,0)s M(1,1,2,0) = —2€(0,0,1,0), M(1,1,1,1) =
—€(0,0,0,1) — €(0,0,1,1)> M(1,2,2,0) = 2C(o,1,1,0) — €(0,1,2,0)> M(1,1,2,1) = —€(0,0,1,1)> ™(1,2,2,1) = €(0,1,1,1) — €(0,1,2,1)»
m(1,1,2,2) = —C€(2,3,4,2)s M(1,2,3,1) = —C€0,1,2,1) T €(2,3,4,2)s M(1,2,2,2) = —C€(0,1,2,2)s M(1,2,3,2) = —€(0,1,2,2)>
m(-1,0,0,00 = —20(0,1,14), m(-1,-1,0,00 = 20(0,0,1,1) + €o0,1,2,00, M(-1,-1,-1,00 = €(0,0,0,1) — €(0,1,1,0)
m(-1,-1,-2,0) = €0,1,0,0)> M(-1,-1,—-1,—1) = —C1 + €3 — €4y, M1 2 -20) = —C2 + 2¢4, mi-1,-1,-2,-1) =
€(0,0,-1,0), M(-1,-2,—2,-1) = —C€(0,—1,—1,0) T €(0,0,0,—1); M(=1,—-1,-2,—2) = 2C(0,0,—1,—1)7 m(-1,-2,-3,-1) =
—C(0,-1,-2,0) — €(0,0,—1,—1)» "M(=1,-2,-2,-2) = —20(0,71,71,71), m(-1,-2,-3,-2) = €(-2,-3,-4,-2) — €¢(0,—-1,-2,—1)>»
M(_1,—2,—4,—2) = —C(—2,—3,—4,—2), and m(_1,_3 4 2y = —c(0,—1,-2,—2)- Lhen the equations m; = 0

yield the relations on the coefficients c¢ given by ¢; =0, co =0, ¢3 = 0, ¢4 = 0, ¢(0,1,0,0) = 0,
€0,0,1,0) = 0, ¢(0,0,0,1) = 0, ¢(0,1,1,00 = 0, ¢0,0,1,1) = 0, ¢0,1,2,0) = 0, ¢(0,1,1,1) = 0, ¢(0,1,2,1) = 0, ¢0,1,2,2) = 0,
c2342 = 0, co0,-1,0 = 0, ¢o0,0-1) = —1/2¢0,-1,0,0)s ¢0,-1,-1,00 = —1/2¢(0,-1,0,0)> ¢0,0,-1,-1) = 0,
¢0,-1,-2,00 = 0, ¢0,-1,-1,-1) = 0, ¢(0,-1,—2,-1) = 0, ¢(0,-1,-2,-2) = 0, and C(—2,-3,-4,—2) = 0. Therefore,

£+ has dimension 1, hence K. f, has dimension 23.

Positive System @7 (dim K.f; = 22) For this case, the nonzero coefficients mg with

s =2a110 F 2110 + T(-1,-2,-2,0) + T(=1,-1,-2,-2) ar€ Mm(,0,0,0) = 2(c(0,~1,-1,-1) + €(0,-1,-1,0));

m(1,1,0,0) = —2(0(0,0,71,71) + c((),(),fl,(]))a m(1,1,1,0) = €1 — €4 — €(0,0,0,—1)> T(1,1,2,0) = —20(0,0,1,0)7 ma,1,1,1) =
€1 — €3+ €4 — €(0,0,0,1)s M(1,2,2,0) = 20(0,1,1,0) + C2,3,4,2), M(1,1,2,1) = —C€0,0,1,0) — €(0,0,1,1)5 M(1,2,2,1) =
€(0,1,1,0) T €(0,1,1,1) M(1,1,2,2) = —20(0,0,1,1) — €(2,3,4,2), T(1,2,3,1) = €(0,1,2,0) — €(0,1,2,1)» T(1,2,2,2) = 20(0,1,1,1)7
ma,2,3,2) = €0,1,2,1) — €0,1,2,2)> M(-1,0,0,0) = —¢€(0,1,2,2), 7"(-1,-1,0,0) = €(0,1,2,0)> "(-1,—1,-1,0) = —€(0,1,1,0)»
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mM(—1,-1,-2,0) = €(0,1,0,0)s M(—1,-1,—-1,—1) = €(0,0,1,1)s M(—1,-2,-2,0) = —C2 + 204,m(—1,—1,—2,—1) = €(0,0,0,1)>
M(—1,-2,-2,-1) = €(0,0,0,—1)> M(—1,—1,-2,—2) = —C1+C2 —2¢y, m(-1,-2,-3,—-1) = —€¢(-2,-3,-4,-2) — €(0,0,—1,—1)>»
M(—1,-2,-2,-2) = €(0,—1,0,0), M(—1,-2,—3,—2) = C(—2,—-3,-4,-2) T C(0,—1,—1,0), M(=1,-2,-4,—2) = €(0,—1,-2,0)>
and m_y _3_4_2) = —c@,—1,-2,-2)- Then the equations mg = 0 yield the relations on the
coefficients c¢ given by ¢; =0, c; =0, 5 =0, cs = 0, 01,00 = 0, ¢0,0,1,00 = 0, €0,0,0,1) = O,
€(0,1,1,0) = 0, €(0,0,1,1) = 0, €(0,1,2,0) = 0, €(0,1,1,1) = 0, €(0,1,2,1) = 0, €(0,1,2,2) = 0, C(2,3,4,2) = 0, €(0,-1,0,0) = 0,
€(0,0,0-1) = 0, €(0,-1,-1,0) = —€(0,0,—1,0)> €(0,0,—1,—-1) = —€(0,0,—1,0)5 €(0,—1,—2,0) = 0, €(0,—1,—-1,—-1) = €(0,0,—1,0)>
C(0,—1,—2,—2) = 0, and ¢(_2 _3_4,_2) = ¢(0,0,-1,0). 1Lherefore, 5 has dimension 2, hence K.f5 has

dimension 22.

Positive System & (dim K.f; = 23) We have already determined the dimension
because f; = fs. Since ®f and @ intersect in such a way that fg lives in n; Nng N p,
it follows that €/¢ has dimension 1, hence K.fs has dimension 23. It is interesting to note
that although the generic elements are the same, the corresponding Springer fibers are quite

different.

Positive System &1 (dim K.f; = 20) For this case, the nonzero coefficients mg¢ with
Jr = ra110 + Ta220) + T(—1,-2-2,-1) T T(—1,—2,—4,—2) AT€ M(1,00,0) = 2€(0,~1,-1,0)» M(1,1,0,0) =
—C(0,-1,-2,0) — 2€(0,0,—1,0) — €(2,3,4,2), MY(1,1,1,0) = C1 — €4 + C(0,—1,-1,0)5 TM(1,1,2,0) = —C(0,-1,0,0) — 2€(0,0,1,0)>
m,1,1,1) = —C€(0,0,0,1)s M(1,2,2,0) = €2 — 2¢q4 + 2C(0,1,1,0)7 mM(1,1,2,1) = —€(0,0,1,1) T €(2,3,4,2), M(1,2,2,1) =
—€(0,0,0,1)7C(0,1,1,1), M(1,2,3,1) = €(0,0,1,1) ~C€(0,1,2,1)> (1,2,3,2) = —€(0,1,2,2)s 7(1,3,4,2) = €(0,1,2,2)> M(—1,-1,0,0) =
20(0,1,2,1)7 m(—1,-1,-1,0) = —¢0,1,1,1)» M(-1,-1,-2,0) = €(0,1,2,2)> M(-1,-1,-1,-1) = —€(0,1,1,0)» M(-1,-2,-2,0) =
20(0,0,0,1)7 m-1,-1,-2,-1) = ¢0,1,0,0) — €(0,1,2,1), M(-1,-2,-2,—1) = —C2 +cs, mi—1,-1,-2,-2) = €¢(-2,-3,—4,-2) +
€(0,1,2,0)> M(-1,-2,-3,—-1) = €¢(0,0,—1,0) —¢(0,0,1,1)5 M(~1,-2,-2,—2) = 2C(o,o,o,—l), m(-1,-2,-3,-2) = €(-2,-3,—4,—2)
C(0,0,—1,—1) +C(0,0,1,0)> TU(—1,—2,—4,—2) = C2—2cg, and m(_1,_3 _4 2y = 2¢(0,—1,—2,—1) —C(0,—1,0,0)- Lhen the

equations mg = 0 yield the relations on the coefficients ¢¢ given by ¢; =0, ¢, =0, ¢35 =0, ¢4 = 0,
q 3 Yy 3
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€(0,1,0,0) = 0, €0,0,0,1) = 0, ¢0,1,1,0) = 0, ¢(0,0,1,1) = 0, €0,1,1,1) = 0, c0,1,2,1) = 0, €0,1,2,2) = 0, ¢2,3,42) = 0,

€(0,~1,0,0) = —2€(0,0,1,0), €0,0,—1,00 = 0, €0,0,0,-1) = 0, ¢0,-1,-1,0) = 05 ¢(0,0,-1,-1) = €(0,0,1,0) = €(0,1,2,0);
. .

C(0,-1,—2,0) = 0, €(0,-1,-2,—1) = —€(0,0,1,0)> and C(-2,—-3,—4,—2) = —€(0,1,2,0)- Therefore, Ef has dimen-

sion 4, hence K. f; has dimension 20.

Positive System & (dim K.fg = 24) For this case, the nonzero coefficients mg¢ with

fs = 2120 + Ta1,1,1) T T—1,-2,-2,0) T T(=1,-1,-2,~1) AT€ M(10,0,0) = €(0,~1,~2,0) T 2€(0,—1,~1,~1)>

Pt Rt

m(1,1,0,0) = —20(0,0,71,71)7 m(1,1,1,0) = —¢(0,0,—1,0) — €(0,0,0,—1)> M(1,1,2,0) = €1 — €2 + 2c3 — 2¢4, ma,1,1,1) =
€1 — €3+ C4y, M(1.220) = —C0,1,0,0)s M(1,1,2,1) = —C€0,0,0,1) — €(0,0,1,0)> M(1,2,2,1) = €(0,1,1,0) — €(2,3,4,2)>
ma,,2,2) = —20(0,0,1,1) —C€(2,3,4,2), M(1,2,3,1) = €(0,1,1,1) +C(0,1,2¢0), ma,2,2,2) = 20(0,1,1,1), ma,2,3,2) = €0,1,2,1)»
ma,2,4,2) = —¢0,1,2,2), ™M(-1,0,0,0) = *20(0,1,2,1)7 m(-1,-1,0,0) = ¢(0,1,2,0)s M(-1,—1,-1,0) = €(0,0,1,1) — ¢(0,1,1,0)»
M(—1,-1,-2,0) = 2€(0,0,0,1) T €(0,1,0,0)s M(—1,—1,~1,—1) = €(0,0,1,0)» M(~1,—2,-2,0) = —C2+2¢C4, M(_1,-1,-2,-1) =
—c1 + ¢ — cs, m(-1,-2,-2,-1) = ¢€(0,-1,0,0) + €(0,0,0,—1)s M(-1,-1,-2,-2) = 20(0,0,0,71), mi-1,-2,-3,-1) =
—C(—2,-3,-4,—2)1C(0,-1,—1,0) —C(0,0,—1,—1)> M(=1,-2,-2,—2) = —C(=2,—3,—4,—2)> M(=1,—-2,-3,—2) = —C(0,—1,—1,—1)>
M(_1,—2,—4,—9) = —2¢(0,—1,-2,1), and m_1 _3 _4_2) = —C(0,—1,—2,—2). LThen the equations m¢ = 0

yield the relations on the coefficients c¢ given by ¢; =0, ¢c2 =0, ¢3 = 0, ca = 0, ¢(0,1,0,0) = 0,
€0,0,1,0) = 0, ¢0,0,0,1) = 0, ¢(0,1,1,0) = 0, ¢(0,0,1,1) = 0, ¢(0,1,2,00 = 0, ¢(0,1,1,1) = 0, ¢(0,1,2,1) = 0, ¢(0,1,2,2) =0,
€2,3,4,2) = 0, ¢0,-1,0,00 = 0, ¢0,0,-1,00 = 0, ¢(0,0,0,—1) = 0, ¢0,-1,-1,00 = 0, ¢(0,0,-1,-1) = 0, ¢(0,—~1,-2,0) = 0,
¢0,-1,-1,-1) = 0, ¢(0,1,—2,-1) = 0, ¢(0,—1,—2,—2) = 0, and ¢(_o _3 _4_2) = 0. Therefore, £/ has dimen-

sion 0, hence K.fg has dimension 24.

Positive System ®J (dim K.fy = 23) For this case, the nonzero coefficients mg¢ with

fo = 2120 +Ta,1,10) F T—1,-2,-2,0) + T(=1,—1,—2,—2) AT€ M(1,0,0,0) = C(0,—1,-2,0) + 2C(0,~1,—1,-1)

m(1,1,0,0) = *20(0,0,—1,—1)7 m(1,1,1,0) = —¢(0,0,—1,0) — €(0,0,0,—1)s M(1,1,2,0) = €1 — €2 + 2c3 — 2¢4, ma,1,1,1) =
€1 — €3 + €4y M(1220) = —C0,1,0,0) T €2,3,4,2); M(1,1,2,1) = —C€(0,0,0,1) — €(0,0,1,0)s M(1,2,2,1) = €(0,1,1,0)>
Mma122) = —2C00,1,1) ~ €(2,34.2), M1231) = C0,1,1,1) T €0,1,20) M™(1,222) = 2¢0,1,1,1), M(1,232) =
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€(0,1,2,1)» M(1,2,4,2) = —€(0,1,2,2)> "(-1,0,0,0) = —¢(0,1,2,2), "(-1,-1,0,0) = €(0,1,2,0)> "¥(-1,-1,—1,0) = —¢(0,1,1,0)

M(~1,-1,-2,0) = €(0,1,0,0)s M(=1,—1,-1,-1) = €(0,0,1,1) M(—=1,—2,-2,0) = —C2 + 2C4, M(_1,-1,-2, 1) = €(0,0,0,1);
m-1,-2,-2,-1) = €0,0,0,—1)s M(-1,-1,-2,—2) = —C1 +c2 — 2¢y, m(-1,-2,-3,-1) = —€(-2,-3,-4,—2) — €(0,0,—1,-1)>
M(—1,-2,-2,-2) = —C(=2,-3,—4,-2) T €(0,-1,0,0), M(~1,-2,-3,—2) = €(0,-1,-1,0)» M(~1,-2,—4,—2) = €(0,—1,-2,0);

and m(_y 5 _4_2) = —c(,—1,-2,—2). Lhen the equations m¢ = 0 yield the relations on the coef-
ficients c¢ given by ¢1 =0, c2 =0, c3 =0, c4 = 0, ¢(0,1,0,0) = 0, ¢(0,0,1,0) = 0, €(0,0,0,1) = 0, ¢(0,1,1,0) = 0,
c0,01,1) =0, ¢0,1,20 =0, c0,1,1,1) =0, €0,1,21) =0, c0,122) =0, 2342 =0, ¢0,-1,00) =0, ¢0,0,-1,00 =
0, ¢(0,0,0-1) = 0, ¢0,—1,-1,0) = 0, €(0,0,—1,-1) = 0, €(0,—1,-2,0) = 0, ¢(0,—1,—1,—1) = 0, ¢(0,—1,—2,—2) = 0, and

C¢(—2,—3,—4,—2) = 0. Therefore, £/° has dimension 1, hence K. fy has dimension 23.

Positive System @7, (dim K.f;o = 20) For this case, the nonzero coefficients m¢ with

J10 = T,1,10) T T(1,1,20) T T(—1,-2,-2,0) T T(—1,-2,—4,-2) AT M(1,0,0,0) = C(0,—1,-2,0) + 2€(0,~1,—1,0)»

m1,1,0,0) = —20(0,0,71,0) —€(2,3,4,2), M(1,1,1,0) = €1 —C4 —C(0,0,—1,0)» ™(1,1,2,0) = C1 —Ca+2c3—2¢4 —20(0,0,1,0)7
m,1,1,1) = —C€(0,0,0,1)s 7(1,2,2,00 = —€(0,1,0,0) T 20(0,1,1,0), m(,1,2,1) = —¢€(0,0,0,1) — €0,0,1,1)s ™M(1,2,2,1) =
€(0,1,1,1), M(1,1,2,2) = —€(2,3,4,2)> 7(1,2,3,1) = €(0,1,1,1) —€(0,1,2,1)» (1,2,3,2) = —C€(0,1,2,2)> 7(1,2,4,2) = —C(0,1,2,2)>
M(-1,-1,0,0) = €(0,1,2,0)» M(~1,-1,-1,0) = ~€(0,1,1,0)s M(~1,-1,-2,0) = €(0,1,0,0) €(0,1,2,2)> M(~1,-2,-2,0) = —C2+
2¢y, m-1,-1,-2,—1) = —¢0,1,2,1)y M(-1,-2,-2,—-1) = €(0,0,0,—-1)s M(-1,-1,-2,-2) = €(0,1,2,0)s ™M(-1,-2,-3,—1) =
—C(0,0,—1,-1) — €(0,0,1,1)s MM(-1,-2,—2,-2) = —C(-2,-3,—-4,-2); "M(-1,-2,—3,-2) = C(—2,-3,—4,-2) + €(0,0,1,0)s
M(_1,—2,—4,—2) = €2 — 23, and m(_1_3_4_2) = —C0,—1,-2,-2) — C0,-1,0,0)- Lhen the equations

me = 0 yield the relations on the coefficients c¢ given by ¢; = 0, coc = 0, c3 = 0, cs = 0,
€(0,1,0,0) = 0, ¢(0,0,1,00 = 0, ¢(0,0,0,1) = 0, ¢0,1,1,00 = 0, ¢0,0,1,1) = 0, ¢(0,1,2,0) = 0, ¢(0,1,1,1) = 0, ¢0,1,2,1) = 0,
co0.1.22 =0, c2342 =0, co0,-1,0 =0, ¢000-1) =0, ¢o00,-1,-1) = 0, ¢0,-1,-2,0) = —2¢0,-1,-1,0);
C(0,—1,—2,-2) = —C(0,—1,0,0), ad ¢ _3 4 2 = 0. Therefore, £/10 has dimension 4, hence K. fiq

has dimension 20.

Positive System @, (dim K.f;; = 22) For this case, the nonzero coefficients mg with
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Ji1 = 2120 21,10 T T(—1,-1,-2,—1) T T(=1,-3,—4,—2) AT€ M(1,0,0,0) = C(0,~1,-2,0) +2€(0,—1,~1,~1) +

€(2,3,4,2), M(1,1,0,0) = —2€(0,0,—1,—1)> M(1,1,1,0) = —C€(0,0,—1,0) — €(0,0,0,—1)s M(1,1,2,0) = €1 — C2 + 2¢3 — 2¢4,
m,1,1,1) = €1 — €3 + C4, M(1,2.20) = —C€(0,1,0,0), 7M(1,1,2,1) = —C€(0,0,0,1) — €(0,0,1,0)> M(1,2,2,1) = €(0,1,1,0) —
€(2,3,4,2), ™TM(1,1,2,2) = —20(0,0,1,1)7 mM(1,2,3,1) = €(0,1,1,1) T €(0,1,2,0) M(1,2,2,2) = 2C(0,1,1,1), ma,2,3,2) = €0,1,2,1)»
Mm(1,2,42) = —C0,1,2,2)s M(-1,0,0,0) = —2€(0,1,2,1); ™M(-1,-1,-1,0) = €(0,0,1,1)> M(—1,-1,-2,0) = 2€(0,0,0,1)>
m-1,-1,-1,-1) = €0,0,1,0)> ™M(-1,-2,—2,00 = —¢0,1,2,2)s "M(-1,-1,-2,—-1) = —C1 + c2 — c3, m-1,-2,-2,-1) =
€(0,—1,0,0) T €(0,1,2,1)> M(=1,—1,-2,—-2) = 2C(o,o,o,—1)7 m(—1,-2,-3,-1) = —C(-2,-3,-4,—2) + C(0,—1,-1,0) — €(0,1,1,1)>
M(—1,-2,-2,—-2) = —C(-2,-3,—-4,—2) — €(0,1,2,0)s M(~1,-2,-3,—2) = —C(0,—1,-1,—1) T €(0,1,1,0)> M(-1,-2,—4,-2) =

—2¢(0,-1,-2,-1) — €(0,1,0,00, and m_1,_3 4 9 = ¢1 — co. Then the equations mg = 0 yield the
relations on the coefficients c¢ given by ¢; =0, ¢z =0, c3 =0, ¢4 = 0, ¢(0,1,0,0) = 0, ¢(0,0,1,0) = 0,
0,001 = 0, c0,01,1) = 0, c01,20 =0, co0,1,1,1) = 0, ¢o,1,21) = 0, c0,1,22) = 0, ¢2342 = ¢0,1,1,0),
¢0,-1,00) = 0, ¢0,0-1,00 = 0, ¢0,00-1) = 0, ¢0,-1,-1,00 = 0, ¢0,0-1,-1) = 0, ¢0,-1,—2,0) = —3¢(0,1,1,0)>
C(0,—1,—1,-1) = €(0,1,1,0)s €(0,—1,—2,—1) = 0, and ¢(_a _3 4,2y = 0. Therefore, /11 has dimension 2,

hence K.f;; has dimension 22.

Positive System &/, (dim K.fj; = 22) For this last case, the nonzero coefficients

me with fio = 21200 + T(1,1,1,1) + T(—1,-2,-2,-1) + T(=1,—1,—2,—2) A€ M(10,00) = C(0,~1,—2,0) +

2¢(0,-1,—1,-1)» M(1,1,0,0) = —2€(0,0,—1,—1)5 M(1,1,1,0) = —C€(0,0,—1,0) — €(0,0,0,—1)5 M(1,1,2,0) = €1 — C2 + 2¢3 — 2y,
me,1,1,1) = €1 — €3+ €4, M(1,22,0) = —C(0,1,0,0) T €(2,3,4,2), M(1,1,2,1) = —€(0,0,0,1) — €(0,0,1,0) T €(2,3,4,2)5
m,2,2,1) = €(0,1,1,0)> M(1,1,2,2) = —20(0,0,1,1)7 mM(1,2,3,1) = €(0,1,1,1)1C€(0,1,2,0)> M(1,2,2,2) = 20(0,1,1,1)7 mam,2,3,2) =
€(0,1,2,1), M(1,2,4,2) = —€(0,1,2,2)» "(-1,0,0,0) = —¢(0,1,2,2)s "(—1,-1,0,0) = 2C(0,1,2,1)7 m-1,-1,-1,0) = —¢0,1,1,1)»
me-1,-1,-1,-1) = ¢€(0,0,1,1) — €¢(0,1,1,0)» ™M(-1,-2,—-2,0) = 2(3(0,0,071)7 m(-1,-1,-2,-1) = €(0,0,0,1) T €(0,1,0,0)s
M(_1,-2,-2,-1) = —C2 + C3, M(_1,_1,-2,—2) = —C1 +C2 — 2¢4, M(_1,_2 3 _1) = —C(_2,-3,-4,-2) T €(0,0,-1,0)s
m(—1,-2,-2,-2) = —C(-2,-3,-4,—2) T €0,-1,0,0) T 20(0,0,0,—1)a m-1,-2,-3,—-2) = €¢0,-1,-1,0) — €(0,0,—1,-1)>
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M(_1,—2,—4,—2) = C(0,~1,—2,0), aNd m(_1,_3 _4 2y = 2¢(0,—1,—2,—1)- Lhen the equations m¢ = 0 yield
the relations on the coefficients c¢ given by ¢; = 0,c2 = 0,¢3 =0,¢4 =0, ¢(0,1,0,0) = 0, ¢(0,0,1,0) = 0,
€0,0,0,1) = 0, ¢0,1,1,00 = 0, ¢(0,0,1,1) = 0, ¢(0,1,2,00 = 0, ¢(0,1,1,1) = 0, ¢(0,1,2,1) = 0, ¢(0,1,2,2) = 0, ¢2,3,4,2) =0,
€(0,0,-1,00 = 1/3¢(0,-1,0,0» €(0,0,0,—1) = —1/3¢(0,-1,0,0)> ¢(0,-1,-1,0) = 0, ¢(0,0,—~1,-1) = 0, ¢0,—1,—2,0) = 0,
Co,-1,-1,-1) = 0, c(o,—1,—2,-1) = 0, and ¢(_o 3 4 2y = 1/3c(0,—1,0,0)- Therefore, £/12 has dimension

2, hence K. f1o has dimension 22.

To finish Proposition , we will now prove that the dimension of K.(n; Np) is at most

21, and the dimension of K.(nj; Np) is at most 22. Let & denote ith root of

& NT, ={(1,0,0,0), (1,1,0,0), (=1, —1,—1,0), (=1, -1,-2,0), (=1, =1, =1, —1), (—1, =2, =2, 0),
(=1,-1,-2,—1),(=1,-2,-2,—1), (=1, —1,-2,-2), (=1,-2, -3, —1), (=1, -2, -2, —2),

(_1a _27 _3a _2)7 (_15 _27 _45 _2)? (_17 _3a _47 _2)}a

and let

14

= E a; g,

i=1
be an arbitrary element of ny Np. The 14 coefficients m(11,10) = —a2c0,0,1,0) + a1¢0,1,1,0) +
a12€(2,3,4,2),M(1,1,2,0) = @1€(0,1,2,0) —A11€(2,3,4,2), "M (1,1,1,1) = *a20(0,0,1,1)+010(0,1,1,1)*a100(2,3,4,2)’m(1,2,2,0) =
—a2€(0,1,2,0) T @9C(2,3,4,2); M(1,1,2,1) = G1€(0,1,2,1) TA8C(2,3,4,2), M (1,2,2,1) = —@2C(0,1,2,1) —A7C(2,3,4,2), M(1,1,2,2) =
a1€(0,1,2,2) —a6€(2,3,4,2),1(1,2,3,1) = A5C(2,3,4,2),1(1,2,2,2) = —azc(o,l,z,z)+G4C(2,3,4,2)7 m(1,2,3,2) = —A3C(2,3,4,2),
ma,2,4,2) = 0, m(1,3,4,2) = 0, m(-1,0,0,0) = *2@30(0,1,1,0) - 2CL5C(0,1,1,1) —a4€(0,1,2,0) — 2070(0,1,2,1) —a9¢(0,1,2,2)»

m(—1,-1,0,0) = 203¢(0,0,1,0) T 2a5¢(0,0,1,1) + @6¢(0,1,2,0) T 2a8¢(0,1,2,1) + @11¢(0,1,2,2) determine a 14 x 24
matrix (Figure [B.1) whose rank is at most 7. This matrix illustrates 14 rows of the full

relations matrix R associated to the equation [k, f] = 0. Since the rank of R is at most
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7+ 14 = 21, it follows that dim K.(ny Np) < 21.

For the other case, let & denote the root in the ith position of

—®H NI, = {(1,0,0,0),(1,1,0,0), (1,1,1,0), (1,1,2,0), (1,1,1,1),(1,2,2,0), (-1, -1, -2, —1),
11 p
(=1,-2,-2,—1),(=1,—1,-2,-2), (=1, -2, -3, 1), (1, -2, -2, —2),

(_1a _27 _3a _2)7 <_1a _27 _45 _2)a (_17 _3a _47 _2)}a

and let

14

f= E :a'ixfi

i=1
be an arbitrary element of nj;; Np. The 14 coefficients m 121y = —asc0,0,0,1) — @5¢(0,0,1,0) —
a3€(0,0,1,1) TA1€(0,1,2,1) T38C(2,3,4,2), M (1,2,2,1) = —46€(0,0,0,1) TA5C(0,1,1,0) TA3C(0,1,1,1) —@2€(0,1,2,1) —A7€(2,3,4,2))
M(1,1,2,2) = ~2a56(0,0,1,1) T A1€(0,1,2,2), MU(1,2,3,1) = 46€(0,0,1,1) TA4C(0,1,1,1) FA5€(0,1,2,0) ~36(0,1,2,1), M(1,2,2,2) =
2(150(0,1,1,1) —a2€(0,1,2,2)5 1M(1,2,3,2) = a5€(0,1,2,1) — A3€(0,1,2,2)s 1M(1,2,4,2) = —Q4€(0,1,2,2)5 7(1,3,4,2) = A6€(0,1,2,2)>
m(-1,0,0,0) = *2070(0,1,2,1)*090(0,1,2,2)7m(—1,—1,0,0) = 2@80(0,1,2,1)+CL110(0,1,2,2)’m(—1,—1,—1,0) = a7¢0,0,1,1) —
asCo,1,1,1) + @10C@0,1,2,1) T G12€(0,1,2,2), M(-1,-1,-2,0) = 207€(0,0,0,1) — 2010¢(0,1,1,1) + @13C(0,1,2,2)s

m(—1,-1,-1,—1) = @7€(0,0,1,0) T@9C(0,0,1,1) —@8C(0,1,1,0) —@11€(0,1,1,1) —410¢(0,1,2,0) —A12€(0,1,2,1)s M(~1,-2,—2,0) =
2a3¢(0,0,0,1) — 2010¢(0,0,1,1) — 414€(0,1,2,2) determine a 14 x 24 matrix (Figure [B.2) whose rank is
at most 8. This matrix illustrates 14 rows of the full relations matrix R associated to the

equation [k, f] = 0. Since the rank of R is at most 8 + 14 = 22, dim K.(nj; Np) < 22.
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Computations for the Real Form F, %

C.1 The Set A; Forms a Simple System for ¢

The tables indicate how each root £ € q);r can be written as a nonnegative linear com-
bination = i&; + j& + k& + €&, of the listed simple roots A; = {1, &, &3,&4}. The case
o = &7 (h, g) will be omitted.

Root i | j| k| £ Root i | j | k|2 Root i | j| k| £
(1,0,0,0) | 1 | O | 0] O (0,1,0,0) 0(1|0|0](,010 |0]0]|1]1
(1,1,0,0) | 1 |10 |0]| (0,1,1,0) |0 |1 |1 |1] @110 |1 |1]|1]1
(0,1,2,0) | 0 | 1| 2| 2 (1,1,2,0) 111 12]2)|(1,2,20 [1]2]2]2
01,22 |o|1|o|2| (1,,2,2) |1 |1|0|2]| @222 |[1]|2]|0]2
(1,2,3,2) | 1|21 3| (1,242 |1 |2|2|4]@®,342 |1[3]|2]4
(2,3,4,2) | 2| 3|2]| 4] (,00-1)}0|0|1|0]|(,01,1)|0]|0]O0]1
onLn lofl1|ofl1| 1,1,1) |[1|1|lo|l1]@121)|0|1]|1]2
M2, |11 12| @1,2,21) | 1|21 |2]@®m23,1)[1|2]|2]3

Table C.1: Ay ={«,3,—0,7+ 0}
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Root i J | k| Y Root il g k| £ Root i j | k| £
(1,0,0,0) |1 | 0] 0| O (0,1,0,0) 060|021 (0,0,1,0) 01010
(1,1,0,0) | 1 |0 | 2|1 (0,1,1,0) 01121 (1,1,1,0) 1121
(0,1,2,0) |0 | 2] 2|1 (1,1,2,0) 11221 (1,2,2,0) 112412
(0,1,2,2) O[O0 ] O |1 (1,1,2,2) 11001 (1,2,2,2) 11022
(1,2,3,2) | 1 | 1] 2|2 (1,2,4,2) 11222 (1,3,4,2) 1 (2|43
(2,3,4,2) | 2|21|4]|3](,00-1}0|1|1|0]| (0,0,-1,-1) |0O|O0|1]0O
(o,1,1,1) o0 |1 |1 (1,1,1,1) 10|11 (0,1,2,1) o111
1,1,2,1) | 1 |1 ] 1|1 (1,2,2,1) 1(11]3]2 (1,2,3,1) 112]3]2

Table C.2: Az = {a,vy,—y — 9,5+ 27+ 25}

C.2 Supplement to Proposition [6.2

Proof of Proposition : (Cont.) We now prove that the K-orbit dimensions are correct for
each element f; listed in Proposition . As mentioned above, these calculations will auto-

matically imply that these elements are generic.

Positive System @ (dim K.f; = 15) Using the multiplication tables, the nonzero
coefficients me with fi = xy_1-1-1) + T,—1,—2,—1) are given by mo01) = —C0,1,22),
m,0,1,1) = —¢€(1,1,2,2)s ™(0,1,1,1) = €(1,2,2,2)> M(1,1,1,1) = —€(1,2,3,2)> M(0,1,2,1) = €(1,2,3,2)> M(1,1,2,1) =
—C(1,2,4,2)s ™M(1,2,2,1) = €(1,3,4,2), M(1,2,3,1) = €(2,3,4,2)> 7(0,0,0,—1) = —¢(0,1,2,0) — €(1,1,1,0)s 7(0,0,-1,—-1) =
—€(0,1,1,0) — €(1,1,0,0)> M(0,—1,—1,—1) = €(0,0,1,0) +€(1,0,0,0)> M(=1,—1,—1,—1) = —C1+C3—Ca, M(,—1,-2,—1) = C1 —
€3, M(—1,-1,-2,—1) = €(—1,0,0,0) TC(0,0,-1,0)> M(—1,-2,—2,—1) = —C€(—1,—-1,0,0) —C(0,—1,—1,0)s and m(—1,-2,-3,—-1) =

—C(~1,-1,-1,0) — ¢(0,—1,—2,0)- Then the equations m¢ = 0 yield the relations on the coefficients

Ce glven by ¢3 = ¢1, ca =0, €(0,0,1,0) = —€(1,0,0,0)> €(0,1,1,0) = —€(1,1,0,0)> €(0,1,2,0) = —€(1,1,1,0)> €(0,1,2,2) = 0,
c1,1,2,2) = 0, ¢1,2,22) = 0, c(1,232) = 0, ¢1,2,42) = 0, ¢1342) =0, ¢2,34,2) = 0, ¢0,0,-1,00 = —¢(=1,0,0,0)>
C(0,-1,-1,0) = —C(~1,-1,0,0)> a0d ¢(0,—1,_2,0) = —¢(—1,-1,-1,0)- Lherefore, £/t has dimension 21, hence

K. f; has dimension 15.
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Positive System ®] (dim K.f, = 15) For this case, the nonzero coefficients mg¢ with
fa = 2(0,0,0,1) T Z(0,0,—1,—1) are m0,0,1) = —C¢3 + 2¢4, M(0,0,1,1) = €(0,0,1,0)> M(0,1,1,1) = €(0,1,1,0) T
€(0,1,2,2)» M(1,1,1,1) = €(1,1,1,0) T €(1,1,2,2)» 7(0,1,2,1) = €(0,1,2,0)> M(1,1,2,1) = €(1,1,2,0)> T(1,2,2,1) = €(1,2,2,0) —
€(1,2,3,2), M(1,2,3,1) = —C€(1,2,4,2), 1(0,0,0,—1) — —¢€(0,0,1,0)>» "0,0,—1,—1) = C2 — €3 — C4, MyQ,—1,—-1,—-1) —
—€(0,-1,0,0)s M(-1,-1,—-1,—-1) = —€(-1,-1,0,0)> "M (0,-1,-2,—1) = —¢0,-1,-2,—-2) — €0,-1,-1,0)> M(-1,-1,-2,—-1) =
—C(=1,-1,-2,-2) — €(—1,-1,-1,0)» M(=1,-2,-2,—1) = —C(-1,-2,-2,-2)» and m(—1,-2,-3,-1) = —C(-1,-2,-3,—2) +
¢(—1,-2,-2,0)- Then the equations m¢ = 0 yield the relations on the coefficients c¢ given
by ¢3 = 2¢2/3, ¢4 = ¢2/3, c0,0,1,0) = 0, 0,120 = 0, c1,1,20 = 0, C0,1,22) = —C(0,1,1,0)> C(1,1,2,2) =
—C(1,1,1,0)) €(1,2,3,2) = €(1,2,2,0)> ¢(1,2,4.2) = 0, ¢0,—1,00) = 0, ¢(—1,-100) = 0, ¢(0,-1,-2,—2) = —€(0,-1,-1,0)>
C(c1,-1,-2,-2) = —C(—1,-1,-1,0)» C(—1,—2,—2,—2) = 0, and ¢(_1,_5 3 _2) = ¢(_1,_2,_2,0). Therefore, £/ has
dimension 21, hence K.f5 has dimension 15.

Positive System ®; (dim K.f; = 15) For this last case, we have already shown that
this case is true in light of the fact that f3 is the same as f;. We could have chosen all

three of the generic elements to be the same for this real form, but the choices given make

N(fj,n; Np) easier to describe. O
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Elements of g

D.1 Multiplication Tables for g,

These multiplication tables are constructed using GAP and were verified using Mathematica®

software. For simplicity, we will replace the Lie bracket with juxtaposition of elements. Nat-

urally, the antisymmetry allows us to present half of the multiplication.

(1,020 =0
T(1L0)T(1,1) = —2T(2,1)
(1,031 =0
T(1,0)2(-10) = h10)
T(1,0)T(~1,-1) = 3T(0,-1)
T(10)T(~3,-1) = T(~-2,-1)
0l = =220,
(0,1 (,1) = 0
0,21 = 0
T2 =0
T1)T0,-1) = P,
T(0,)Z(~2,-1) =0
T(0,1)T(-3,-2) = T(=3,-1)
zonho1 = =2z,
Ta,1T2,1) = 31’(3,2)

T1n%E2) =0

T(10)T(01) = ~T)
T(1,0)Z(2,1) = —3T(3,1)
(1,02 (3.2 = 0

(1,02 (0,-1) = 0
T(1,0)T(~2,-1) = 2T(-1,-1)
T(1,0)%(~3,-2) =0
2001 = 20,0
T(0,1)Z(1,1) = 0
To,H)T(3,1) = —T(3,2)
Z0,1)Z(-1,0 =0
TO.)T(~1,-1) = ~L(-10)
T(0,1)%(-3,-1) = 0
.0l = 3T,
Tz, =0

T(1,1)Z 3,1 = 0

T1,1)T(=1,0) = 3T(0,1)
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T1,1)T0,-1) = —Z(1,0) Ta1T(-1,-1) = h(l,O) + 3h(0,1)

Ta1)T(-2,-1) = —2$(—1,0) T1,1)T(-3,-1) = 0
T1)T(-3,-2) = ~T(-2,-1) ranho = T
$(1,1)h(0,1) = —Ta,1) TenT2,1) = 0
T2, = 0 T(2,1)Z(32) = 0
T(2,1)T(~1,0) = 22(1,1) T(2,1)Z(0,-1) = 0
T@1)T(-1,-1) = —2T(10) TP (~2,-1) = 2h(0) + 3R,
T(@21)T(-3,-1) = ~L(-10) T(@21)2(-3,-2) = T(~1,-1)
217(2,1)}1(1,0) = —T(2,1) x(z,l)h(o,l) =0
T30 =0 T(3,1)Z(32) = 0
T(3,1)T(-1,0) = T(2,1) T(3,1)Z(0,-1) = 0

T3, (-1,-1) =0 T(3,1)T(~2,-1) = —T(1,0)
TE)T(-3-1) = hao +hoy  TEHT(3-2) = —T0.-1)
renhae = =313 ranhon = rE
L3232 = 0 T(3.2)2(-1,0 = 0
T(32)(0,-1) = T(3,1) T(32)T(-1,-1) = ~T(2,1)
T(32)T(~2,-1) = T(1) T(3.2)T(~3,-1) = —L(0,1)

T(3,2)T(-3,-2) = hao) +2ho1)  ZE2hae =0

r32)h01) = —T32) T(-1,0)%(-1,0) =0
T(-1,0%(0,-1) = T(~1,-1) T(-1,0F(~1,-1) = 2T(-2,-1)
T(-1,0)T(~2,-1) = 3T(=3,-1) T(-1,0)%(-3,-1) = 0
T(-1,0)%(-3,-2) = 0 T(-10)1,0) = 22(-1,0)
T(-10)0,1) = ~T(-1,0) 2(0,-1)%(0,-1) = 0
T(0,~1)Z(-1,-1) = 0 T(0,~1)%(-2,-1) = 0
T(0,-1)T(~3,-1) = T(-3,—2) T(,-1)T(-3,—2) = 0
zo,-nha0) = —3T0,-1) zo,-1)h0,1) = 27(0,-1)
T(-1,-1)T(-1,-1) = 0 T(-1,-1)T(-2,—-1) = —355(73,72)
T(-1,-1)T(-3,—-1) = 0 T(-1,-1)T(-3,—2) = 0
x(—1,—1)h(1,o) = —T(-1,-1) 13(—1,—1)]1(0,1) = T(-1,-1)
(9, _1)T(—2,-1) =0 T2, _1)T(—3-1) =0
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T(—2,-1)%(-3,-2) =0 T(—2,-1)(1,0) = T(=2,-1)

T(—2,-1)h01) =0 T(—3,-1)T(-3,-1) =0
T(—3,-1)T(=3,—2) = 0 T(—3,-1)ha,0) = 3T(—31)
T(-3-1M01) = —T(-3,-1) T(-3,-2)T(-3,-2) =0
T(-3,-2h@o =0 T(-3-2M01) = T(-3,-2)
haohao =0 haohoy =0

hoyho) =0

D.2 Basis for g, C gl(7,C)

Root Vector z m(z)
L(1,0) E17,2 + 2E;4 + EZ,5 + Eg,?
L(-1,0) E27,1 + EZ,3 + 2Eg,4 + E;,6
(o) Ejs+ Ejg
T(0,-1) B, + Egs
T(1,1) —Ej3+2E;, — Ejs+ E5;
T(-1,-1) —Ej, + Ej, —2Bg, + E7;
Z(2,1) _2E17,4 + E;s + Eg,@ - EZ,?
L(-2,-1) _EZ,I + Ega + Eg,s - QE;A
(s —E] 5+ B
T(-3,-1) —EBj, + B
(3,2) —Es— B4
T(-3-2) —E¢,— E7,
ha.0) E17,1 - E27,2 + 2E§,3 - QEg,s + Eg,ﬁ - E;J
o) E27,2 - Eg,:a + E57,5 - E67,6

Table D.2: Basis for go C gl(7,C)
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Elements of §,

E.1 Multiplication Tables for f,

These multiplication tables are constructed using GAP, and were verified using Mathematica®

software. Recall that if £, e and {+4¢€ are roots such that [z¢, x| = c¢eTete, then cee = —c_¢ .
These relations together with the antisymmetry allows us to omit some of the bracket rela-
tions. Since the multiplication tables are significantly large, we also omit most zero products.

Products contained in g\ b

(1,0,0,0)2(0,1,0,0) = —%(1,1,0,0) Z(1,0,0,0)2(0,1,1,0) = —¥(1,1,1,0)
2(1,0,0,0)%(0,1,2,0) = —%(1,1,2,0) (1,0,0,0)L(0,1,1,1) = —%(1,1,1,1)
L(1,0,0,0)7(0,1,2,1) — —L(1,1,2,1) L(1,0,0,0)L(0,1,2,2) — —L(1,1,2,2)
L(1,0,0,0)(1,3,4,2) = £(2,3,4,2) £(1,0,0,0)L(-1,-1,0,0) = %(0,—1,0,0)
2(1,0,0,0)%(-1,-1,—1,0) = £(0,—-1,—1,0) (1,0,0,0)L(-1,—1,-2,0) = £(0,—1,—2,0)
2(1,0,0,00L(-1,-1,-1,—1) = L(0,—-1,—1,—1) L(1,0,0,0)L(-1,-1,-2,—1) = L(0,—-1,—2,—1)
L(1,0,0,0)0L(-1,-1,-2,-2) = L(0,—1,-2,—2) L(1,0,0,0)0L(-2,-3,-4,-2) = —L(=1,-3,—4,—-2)
Z(0,1,0,0)%(0,0,1,0) = 2(0,1,1,0) Z(0,1,0,0)%(0,0,1,1) = 2(0,1,1,1)
L(0,1,0,0)7(1,1,2,0) — —<L(1,2,2,0) L(0,1,0,00L(1,1,2,1) — —L(1,2,2,1)
L(0,1,0,00L(1,1,2,2) = —%(1,2,2,2) £(0,1,0,0)(1,2,4,2) = L(1,3,4,2)
£(0,1,0,0)L(-1,-1,0,0) = —Z(-1,0,0,0) (0,1,0,0)L(0,—1,—1,0) = —Z(0,0,—1,0)
£(0,1,0,00L(0,—1,-1,-1) — —L(0,0,—1,-1) £(0,1,0,0)L(-1,-2,-2,0) — T(-1,—1,-2,0)

x(0,170,0)x(—1,—27—27—1) = x(_17_17_27_1) x(0717070)x(_17_27_27_2) = x(_17_17_27_2)
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L(0,1,0,0)F(—1,-3,—4,-2) = —L(-1,-2,-4,-2)

£(0,0,1,0)(1,1,0,0) = —%(1,1,1,0)
%(0,0,1,002(1,1,1,0) = —2%(1,1,2,0)
L(0,0,1,0)L(1,1,1,1) = —L(1,1,2,1)
£(0,0,1,007(1,2,2,2) = —%(1,2,3,2)

Z(0,0,1,0)L(0,~1,~1,0) = 22(0,—1,0,0)
Z(0,0,1,00C(~1,-1,-1,0) = 2%(—1,-1,0,0)
£(0,0,1,0)L(-1,-1,-2,0) = L(-1,—1,—1,0)
L(0,0,1,0)0T(-1,-1,-2,—1) = L(=1,-1,—1,—1)

T(0,0,1,00T(~1,~2,-3,-2) = 2%(~1,-2,-2,-2)

Z(0,0,0,1)%(0,1,1,0) = —%(0,1,1,1)
£(0,0,0,1)2(0,1,2,0) = —%(0,1,2,1)
Z(0,0,0,1)%(0,1,2,1) = —2%(0,1,2,2)
£(0,0,0,1)L(1,1,2,1) = —237(1,1,2,2)
L(0,0,0,1)%(1,2,3,1) — —<L(1,2,3,2)

Z(0,0,0,1)L(0,—1,—-1,-1) = £(0,—1,—1,0)
%(0,0,0,1)L(0,~1,—2,—1) = 2%(0,—1,—2,0)
£(0,0,0,1)(0,-1,—2,—-2) = L(0,—1,-2,—1)
£(0,0,0,1)L(-1,-1,-2,-2) = L(=1,-1,-2,—1)
£(0,0,0,1)L(-1,-2,-3,-2) = L(-1,-2,-3,—1)
L(1,1,0,0)(0,1,2,0) = *(1,2,2,0)
L(1,1,0,0)2(0,1,2,2) = £(1,2,2,2)

x(1717070)x(71707070) = x(0717030)

(1,1,0,00T(-1,-1,—1,0) = —T(0,0,—1,0)
2(1,1,0,0)F(~1,-2,—2,0) = ~L(0,—1,-2,0)
x(17170»0)$(71?72’72’72) = _:1:(0’71772772)

Z(0,1,1,0)%(0,0,1,1) = £(0,1,2,1)

2(0,1,1,00%(1,1,1,1) = T(1,2,2,1)

2(0,0,1,0)%(0,0,0,1) = T(0,0,1,1)

%(0,0,1,0)£(0,1,1,0) = —2%(0,1,2,0)
(0,0,1,002(0,1,1,1) = —%(0,1,2,1)
£(0,0,1,00L(1,2,2,1) = —%(1,2,3,1)
Z(0,0,1,00%(1,2,3,2) = —2%(1,2,4,2)
Z(0,0,1,0)2(0,0,—-1,—-1) = —Z(0,0,0,—1)

7(0,0,1,0)7(0,-1,-2,0) = ¥(0,-1,-1,0)
x(0707170)x(0771772771) = $(0771771771)
‘/L‘(O,O,I,O)‘/L‘(—l,—27—3,—1) = $(_17_27_27_1)

$(0707170)$(_17_21_47_2) - x(_1=_27_37_2)

Z(0,0,0,1)%(1,1,1,0) = —%(1,1,1,1)
L(0,0,0,1)%(1,1,2,0) = —L(1,1,2,1)
£(0,0,0,1)%(1,2,2,0) = —%(1,2,2,1)
£(0,0,0,1)%(1,2,2,1) = —233(1,2,2,2)

Z£(0,0,0,1)%(0,0,—1,—-1) = £(0,0,—1,0)
£(0,0,0,1)L(-1,-1,-1,-1) = L(-1,—1,-1,0)
£(0,0,0,1)L(-1,-1,-2,-1) = 233(71,71,72,0)
2(0,0,0,1)T(~1,—2,—2,—1) = 2T(_1,-2,-2,0)
£(0,0,0,1)L(-1,-2,-2,-2) = L(-1,-2,-2,—1)
(1,1,0,0)%(0,0,1,1) = L(1,1,1,1)
L(1,1,0,0)L(0,1,2,1) = £(1,2,2,1)
L(1,1,0,0)(1,2,4,2) = —%(2,3,4,2)
L(1,1,0,0)L(0,—1,0,0) = —%(1,0,0,0)
L(1,1,0,00L(-1,-1,-1,—1) — —L(0,0,—1,—1)
L(1,1,0,0)L(-1,-2,-2,—1) = —ZL(0,—-1,—-2,—1)
L(1,1,0,0)0(-2,-3,—-4,—2) = ¥(=1,-2,—4,-2)
T(0,1,1,0)T(1,1,1,0) = 22(1,2,2,0)

2(0,1,1,00%(1,1,2,1) = —%(1,2,3,1)



L(0,1,1,0)7(1,1,2,2) — —<L(1,2,3,2)
£(0,1,1,0)L(0,—1,0,0) = —%(0,0,1,0)
Z(0,1,1,00L(~1,-1,-1,0) = —2(~1,0,0,0)
£(0,1,1,0)L(0,—1,—-1,—1) = —<L(0,0,0,—1)
£(0,1,1,0)L(-1,-2,-2,0) = —L(-1,-1,-1,0)

L0,1,1,00L(~1,-2,-3,—1) = L(=1,-1,—2,—1)
L(0,1,1,00L(-1,-3,—4,-2) — L(-1,-2,-3,-2)
£(0,0,1,1)2(0,1,1,1) = —233(0,1,2,2)
L(0,0,1,1)%(1,2,2,0) — %(1,2,3,1)
Z(0,0,1,1)%(1,2,3,1) = 22(

1,2,4,2

1<y Ey

)
Z(0,0,1,1)%(0,0,0,—1) = %(0,0,1,0)
L0,0,1,1)T(-1,-1,—-1,—1) = 295(—1,—1,0,0)
£(0,0,1,1)L(-1,-1,-2,-1) = L(-1,—1,-1,0)
£(0,0,1,1)L(-1,-1,-2,-2) = L(-1,-1,-1,—1)
L0,0,1,1)T(-1,-2,-3,—2) — —L(-1,-2,—-2,—1)
L(1,1,1,00L(0,1,1,1) = —ZL(1

2,2,1

1454

)
T(1,1,1,002(0,1,2,2) = ¥(1,2,3,2)
L(1,1,1,0)L(-1,0,0,0) = £(0,1,1,0)
L(1,1,1,0)L(-1,-1,0,0) = —<L(0,0,1,0)
T(1,1,1,0)L(-1,—1,-2,0) = —L(0,0,—1,0)
T(1,1,1,00L(-1,-2,-2,0) = *(0,—1,—1,0)
L(1,1,1,00L(-1,-2,—-2,-1) = L(0,—1,—1,—1)
L(1,1,1,0)0L(~1,-2,-3,—2) = —2$(0,71,72,72)
L(0,1,2,00L(1,1,1,1) = %(1,2,3,1)
£(0,1,2,0)(1,2,2,2) = ¥(1,3,4,2)
£(0,1,2,0)L(0,—1,—1,0) = —¥L(0,0,1,0)
£(0,1,2,0)L(0,—1,-2,—1) — —<L(0,0,0,—1)

x(0717270)x(71772773771) = _m(ilvilvilvil)
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T(0,1,1,002(1,2,3,2) = —2%(1,3,4,2)

(0,1,1,0)Z(0,0,-1,0) = 2%(0,1,0,0)

Z(0,1,1,007(0,—1,-2,0) = ~7(0,0,—1,0)
£(0,1,1,00L(0,—1,-2,—1) — —L(0,0,—1,—1)
L(0,1,1,00L(-1,-2,-2,-1) = —L(-1,-1,—-1,—1)

L0,1,1,00L(~1,-2,-3,-2) = 233(71,71,72,72)
£(0,0,1,1)%(1,1,1,0) = —¥L(1,1,2,1)
£(0,0,1,1)%(1,1,1,1) = —290(1,1,2,2)
L(0,0,1,1)%(1,2,2,1) = £(1,2,3,2)
Z(0,0,1,1)2(0,0,-1,0) = —%(0,0,0,1)
£(0,0,1,1)L(0,—1,—-1,-1) = 290(0,71,0,0)
L(0,0,1,1)L(0,-1,—2,—1) = £(0,—1,—1,0)
£(0,0,1,1)%(0,—1,-2,—2) = L(0,—1,—1,—1)
£(0,0,1,1)L(-1,-2,-3,-1) = —2513(71,72,72,0)
L0,0,1,1)T(-1,-2,—-4,—2) = —L(-1,-2,-3,—1)
L(1,1,1,0)2(0,1,2,1) = £(1,2,3,1)
T(1,1,1,004(1,2,3,2) = 250(2,3,4,2)

T(1,1,1,0)%(0,0,-1,0) = 2%(1,1,0,0)

Z(1,1,1,002(0,-1,-1,0) = —2(1,0,0,0)
T(1,1,1,00L(-1,-1,-1,—1) = —Z(0,0,0,—1)
T(1,1,1,00L(-1,-1,—-2,—1) = —L(0,0,—1,—1)
L(1,1,1,00L(-1,-2,-3,—1) — —ZL(0,—-1,—-2,—1)
T(1,1,1,004(-2,-3,-4,—2) = —L(-1,-2,-3,-2)
L(0,1,2,00L(1,1,2,2) — —¥(1,2,4,2)

2(0,1,2,0)%(0,0,—1,0) = %(0,1,1,0)
:1:(0’172’0):1:(71’7177270) = _x(7170»070)
2(0,1,2,0)%(~1,-2,-2,0) = ¥(~1,-1,0,0)

x(0717270)x(71772774772) = x(71771772772)



L0,1,2,000(-1,-3,—-4,—2) — —L(-1,-2,—-2,-2)
Z(0,1,1,1)%(1,1,1,1) = 22(1,2,2,2)
Z(0,1,1,1)(1,2,3,1) = 2m(1,3,4,2)
£(0,1,1,1)2(0,0,0,—1) = ¥(0,1,1,0)

x(ovlvlvl)m(ovov_lv_l) = 2%(0,17070)

£(0,1,1,1)L(0,—1,-2,—1) = —L(0,0,—1,0)
L0,1,1,1)L(-1,-2,-2,—1) — —L(=1,-1,-1,0)
£0,1,1,1)T(-1,-2,-2,-2) = —&(-1,-1,—1,-1)
Z0,1,1,1)¥(-1,-3,-4,—2) — —L(-1,-2,-3,—1)
T(1,1,2,007(1,2,2,2) = —T(2,3,4,2)

2(1,1,2,0)%(0,0,—1,0) = %(1,1,1,0)

L(1,1,2,0)L(0,—1,—2,0) = —¥L(1,0,0,0)
L(1,1,2,00L(-1,-1,-2,—1) = —Z(0,0,0,—1)
T(1,1,2,0)L(-1,-2,—4,—2) — —Z(0,—-1,—-2,—-2)
T(1,1,1,1)%(0,1,2,1) — —<L(1,2,3,2)
L(1,1,1,1)L(-1,0,0,0) = £(0,1,1,1)
T(1,1,1,1)L(-1,-1,0,0) = —<L(0,0,1,1)
T(1,1,1,1)L(-1,-1,-1,0) = —<(0,0,0,1)
L(1,1,1,1)L(-1,-1,-2,—1) = —Z(0,0,—1,0)
T(1,1,1,1)L(-1,-1,-2,—2) = —Z(0,0,—1,—1)

L(1,1,1,1)(—1,-2,-2,-2) = L(0,—1,—1,-1)

x(1717171)$(_27_37_47_2) = x(_17_27_37_1)
T(01,2,1)T1,22,1) = ~27(1,3,4,2)

T(0,1,2,1)%(0,0,0,—1) = 2%(0,1,2,0)

x(0717271)x(0707_17_1) = x(0717170)
x(07172»1)x(0771771771) = _1‘(0,0,1,0)
T(0,1,2,1

)Ly

YL(0,-1,-2,—2) — —%(0,0,0,—1)

2(0,1,2,1)%(~1,-2,-3,—1) = T(-1,-1,-1,0)
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T(0,1,1,1)(1,1,2,0) = (1,2,3,1)

2(0,1,1,1)%(1,1,2,1) = ¥(1,2,3,2)

£(0,1,1,1)£(0,-1,0,0) = —Z(0,0,1,1)
£(0,1,1,1)%(0,—1,—1,0) = —%(0,0,0,1)
Z(0,1,1,1)%(~1,-1,~1,—1) = —22(-1,0,0,0)
L0,1,1,1)L(0,-1,—2,—-2) — —<L(0,0,—1,—1)
Z(0,1,1,1)T(~1,-2,-3,~1) = —2T(~1,-1,-2,0)
L0,1,1,1)L(-1,-2,-3,-2) = —L(-1,-1,-2,—1)

L(1,1,2,002(0,1,2,2) — ¥(1,2,4,2)
L(1,1,2,0)L(-1,0,0,0) = ¥£(0,1,2,0)
L(1,1,2,0)0L(-1,-1,-1,0) = —(0,0,1,0)
L(1,1,2,0)0L(-1,-2,-2,0) = —L(0,—1,0,0)
L(1,1,2,0)0L(-1,-2,-3,-1) — L(0,—1,—1,—1)
T(1,1,2,0)0L(-2,-3,-4,—-2) = L(-1,-2,-2,-2)
T(1,1,1,1)%(1,2,3,1) = —2T(2,3,4,2)

$(1

1,1,1

1oty

)2(0,0,0,—1) = ¥(1,1,1,0)
T(1,1,1,1)(0,0,-1,—1) = 2%(1,1,0,0)
T(1,1,1,1)%(0,-1,-1,-1) = —22(1,0,0,0)
L(1,1,1,1)L(-1,-2,-2,—1) = £(0,—1,—1,0)
T(1,1,1,1)L(-1,-2,-3,-1) = 233(0,71,—2,0)
T1,1,1,1)T(-1,-2,-3,—2) = L(0,—-1,—2,—1)

T(0,1,2,1)%(1,1,21) = 2%(1,2,4,2)

2(0,1,2,1)(0,0,—1,0) = *(0,1,1,1)

£(0,1,2,1)7(0,-1,-1,0) = ~%(0,0,1,1)
m(071a271)x(0v_17_270) = _m(ovovozl)
:1:(0’1’271)1‘(71’71772771) = _2$(71707070)

T(0,1,2,1)L(~1,-2,-2,~1) = 2%(~1,-1,0,0)

x(0717271)x(71772773772) = _x(ilvi]w*]w*l)



(0,1,2,1)T(—1,-2,—4,-2) = ~T(-1,-1,-2,-1)  %(0,1,2,1)T(-1,-3,-4,-2) = L(-1,—-2,—2,-1)

L(1,2,2,0)2(0,1,2,2) = —%(1,3,4,2) L(1,2,2,0)L(1,1,2,2) = £(2,3,4,2)
(1,2,2,0)2(0,—1,0,0) = T(1,1,2,0) €(1,2,2,0)L(-1,-1,0,0) = —%(0,1,2,0)
T(1,2,2,002(0,-1,—1,0) — —%(1,1,1,0) L(1,2,2,00L(-1,-1,-1,0) = £(0,1,1,0)
L(1,2,2,0)L(0,—1,-2,0) = %(1,1,0,0) L(1,2,2,00L(-1,-1,-2,0) — —L(0,1,0,0)
2(1,2,2,00L(-1,-2,-2,—1) — —Z(0,0,0,—1) T(1,2,2,00L(-1,-2,-3,—1) = ¥(0,0,—-1,—1)
L(1,2,2,00L(-1,-3,—4,-2) — L(0,—1,-2,—2) L(1,2,2,00L(-2,-3,—4,-2) — —L(=1,-1,-2,—-2)
L(1,1,2,1)2(1,2,2,1) = 290(2,3,4,2) L(1,1,2,1)L(-1,0,0,0) = £(0,1,2,1)
L(1,1,2,1)2(0,0,—1,0) = L(1,1,1,1) L(1,1,2,1)%(0,0,0,—1) — 295(1,1,2,0)
L(1,1,2,1)2(0,0,—-1,—-1) = ¥(1,1,1,0) L(1,1,2,1)L(-1,-1,-1,0) — —L(0,0,1,1)
L(1,1,2,1)L(~1,-1,-2,0) = —Z(0,0,0,1) T(1,1,2,1)L(-1,-1,-1,—1) = —L(0,0,1,0)
T(1,1,2,1)L(0,-1,—2,—1) = —255(1,0,0,0) T(1,1,2,1)L(-1,-2,—-2,—1) = —293(0,—1,0,0)
L(1,1,2,1)L(-1,-1,-2,—2) = —%(0,0,0,—1) L(1,1,2,1)L(-1,-2,-3,—1) = —L(0,-1,-1,0)
L(1,1,2,1)L(-1,-2,-3,-2) = L(0,—1,—1,—1) T(1,1,2,1)L(-1,-2,—-4,—-2) = £(0,—1,—2,—1)
T(1,1,21)0(-2,-3,-4,—2) — —L(-1,-2,-2,—-1)  L(0,1,2,2)%(0,0,0,—1) = X(0,1,2,1)
£(0,1,2,2)£(0,0,—-1,—1) = £(0,1,1,1) £(0,1,2,2)L(0,—1,-1,—1) = —L(0,0,1,1)
£(0,1,2,2)L(0,—1,-2,—1) = —Z(0,0,0,1) £(0,1,2,2)L(-1,-1,-2,—2) = —Z(-1,0,0,0)
L0,1,2,2)T(-1,-2,-2,—2) = L(-1,-1,0,0) L0,1,2,2)T(-1,-2,-3,—2) — L(-1,-1,—1,0)
L(0,1,2,2)L(—-1,-2,—-4,-2) = L(-1,-1,-2,0) L(0,1,2,2)L(-1,-3,-4,-2) — —L(=1,-2,-2,0)
(1,2,2,1)2(0,—1,0,0) = T(1,1,2,1) (1,2,2,1)%(0,0,0,—1) = 21’(1,2,2,0)
T(1,2,2,1)T(-1,-1,0,0) = —Z(0,1,2,1) T(1,2,2,1)(0,-1,—1,0) = —L(1,1,1,1)
L(1,2,2,1)L(-1,-1,-1,0) = £(0,1,1,1) L(1,2,2,1)L(0,—1,-1,—1) = —L(1,1,1,0)
L(1,2,2,1)L(~1,-1,-1,—1) = £(0,1,1,0) T(1,2,2,1)L(0,-1,—2,—1) = 233(1,1,0,0)
L(1,2,2,1)L(-1,-2,—-2,0) — —L(0,0,0,1) L(1,2,2,1)L(-1,-1,-2,—-1) — —21‘(0,1,0,0)
L(1,2,2,1)T(-1,-2,-3,—1) = —Z(0,0,—1,0) L(1,2,2,1)T(-1,-2,-2,—2) = —Z(0,0,0,—1)
L(1,2,2,1)L(-1,-2,-3,—2) = £(0,0,—1,—1) T(1,2,2,1)L(-1,-3,—4,—2) — —L(0,-1,-2,—1)

x(1727271)x(_27_37_47_2) = x(_17_17_21_1) $(1717272)x(_1707010) = $(0717272)

2(1,1,2,2)%(0,0,0,—1) = %(1,1,2,1) 2(1,1,2,2)%(0,0,—1,—1) = ¥(1,1,1,1)
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(1,1,2,2)%(~1,-1,-1,-1) = —%(0,0,1,1)

x(1717272)$(07_17_27_2) = _x(1707070)
x(17172»2)x(71772’73’72) = _«’L‘(O’,L,LO)
T(1,1,22)7(-2,-3,-4,-2) = ¥(-1,-2,-2,0)

x(1727371)$(07_17_170) = x(1717271)

2(1,2,3,1)L(~1,-1,-1,0) = —L(0,1,2,1)

Z(1,2,3,1)%(0,-1,-1,~1) = —2(1,1,2,0)
L(1,2,3,1)L(-1,-1,-1,-1) = 290(0,1,2,0)
L(1,2,3,1)T(-1,-2,-2,0) = %(0,0,1,1)

JJ(1727371)1‘(_17_27_27_1) - _w(ovovlvo)

x(1727371)x(71772774772) = x(070’71771)

58(17273)1)‘7;(_2)_3’_4’_2) = _‘/I"(—l,—l,—l’—l)
L(1,2,2,2)2(0,0,0,—1) = L(1,2,2,1)
x(1727272)x(0771771771) = _x(1717171)

$(17272)2)x(07_17_27_2) = x(l)lvo’o)

L(1,2,2,2

1Ly Ly

Y (-1,-1,-2,—2) = —%(0,1,0,0)
T(1,2,2,2)L(-1,-3,—-4,—-2) = L(0,—1,—2,0)
%(1,2,3,2)%(0,0,-1,0) = 2%(1,2,2,2)
%(1,2,3,2)L(0,~1,-1,0) = 2%(1,1,2,2)
T(1,2,3,2)L(-1,-1,-1,0) = —233(0,1,2,2)

L(1,2,3,2)L(—1,-1,-1,-1) = L(0,1,2,1)

L(1,2,3,2)L(-1,-1,-2,—1) = L(0,1,1,1)
L(1,2,32)L(-1,-2,-2,—1) = £(0,0,1,1)
T(1,2,32)0(-1,-2,-3,—1) = —2(0,0,0,1)
L(1,2,3,2)L(~1,-2,—4,—2) — —Z(0,0,—1,0)

1(1,2,3,2)T(-2,-3,—4,—2) = L(-1,—1,-1,0)

L(1,2,4,2

Ik it]

)x(ov()?_l?_l) = _$(1727371)

2(1,2,4,2)%(~1,-1,-2,0) = —%(0,1,2,2)
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T(1,1,2,2)T(-1,-1,-2,—1) = —2(0,0,0,1)
L(1,1,2,2)L(-1,-2,-2,—2) = —Z(0,—1,0,0)
T(1,1,2,2)L(-1,-2,—-4,—2) = —Z(0,—1,—2,0)
L(1,2,3,1)2(0,0,—1,0) = ¥(1,2,2,1)
%(1,2,3,1)%(0,0,-1,—1) = —2T(1,2,2,0)
T(1,2,3,1)L(0,-1,—2,0) — —ZL(1,1,1,1)

T(1,2:31)%(-1,-1,-2,0) = £(0,1,1,1)
x(1727371)x(0771772771) = $(1717170)
x(1a273a1)m(_1’_17_27_1) = _x(0717170)
T(1,231)%(-1,-2,-3,-2) = ~%(0,0,0,-1)
x(1727371)x(71773774772) = x(()?ilv*l’il)

x(1’272’2)x(07_17070) = x(1’172’2)

L(1,222)%(-1,-1,0,0) = ~T(0,1,2.2)
w(1a27272)x(71771771771) = x((]?lvlvl)
m(1a272a2)$(_1’_27_27_1) = 7x(070)071)
x(1727272)x(_17_27_37_2) = _:U(O=O7_170)

L(1,2,2,2)%(-2,-3,-4,—2) = ~L(-1,-1,-2,0)

l‘(1127332)x(070107_1) = :L‘(1127331)

L(1,2,3,2)%(0,0,-1,-1) = —7L(1,2,2,1)
x(1’29372)x(0771771771) = _x(17172»1)
(1,2,3,2)7(0,-1,-2,—-1) = —T(1,1,1,1)

$(1727372)x(07_17_27_2) = $(1717170)

x(1a27372)$(71’71772772) = _x(071»170)
L(1,2,3,2)%(~1,-2,-2,-2) = ~%(0,0,1,0)
m(172a372)x(_17_37_47_2) = _x(D,—l,—l,O)

T(1,2,4,2)7(0,0,—1,0) = *(1,2,3,2)

L(1,2,4,2)L(0,—1,-2,0) = ¥(1,1,2,2

sy sy

)

m(1727472)x(0771772771) = _x(lv]-:Qvl)



L(1,2,4,2)T(~1,~1,-2,—1) = £(0,1,2,1) T(1,2,4,2)7(0,-1,-2,—2) = T(1,1,2,0)

L(1,2,4,2)L(-1,-1,-2,—2) = —L(0,1,2,0) L(1,2,4,2)L(-1,-2,-3,—1) = £(0,0,1,1)
T(1,2,4,2)L(-1,-2,-3,—2) = —2(0,0,1,0) T(1,2,4,2)L(-1,-3,—-4,—2) = £(0,—1,0,0)
L(1,2,4,2)0(-2,-3,-4,—2) — —L(-1,—1,0,0) L(1,3,4,2)L(0,—1,0,0) = —L(1,2,4,2)
L(1,3,4,2)L(0,—1,-1,0) = £(1,2,3,2) L(1,3,4,2)L(0,—1,-2,0) = —¥L(1,2,2,2)
L(1,3,4,2)L(0,-1,—1,—1) = —L(1,2,3,1) T(1,3,4,2)L(0,-1,—2,—1) — £(1,2,2,1)
L(1,3,4,2)L(-1,-2,-2,0) = £(0,1,2,2) L(1,3,4,2)L(0,—1,-2,—-2) — —L(1,2,2,0)
L(1,3,4,2)L(-1,-2,—-2,—1) = —L(0,1,2,1) L(1,3,4,2)L(-1,-2,-3,—1) = £(0,1,1,1)
L(1,3,4,2)L(-1,-2,-2,—2) = £(0,1,2,0) L(1,3,4,2)L(-1,-2,-3,—2) = —2(0,1,1,0)
L(1,3,4,2)L(—-1,-2,—4,—2) = £(0,1,0,0) L(1,3,4,2)L(-2,-3,—4,—-2) — L(-1,0,0,0)
L(2,3,4,2)L(-1,0,0,0) = —%(1,3,4,2) L(2,3,4,2)L(-1,—1,0,0) = %(1,2,4,2)
L(2,3,4,2)T(-1,-1,-1,0) = —L(1,2,3,2) T(2,3,4,2)T(—1,-1,-2,0) — £(1,2,2,2)
L(2,3,4,2)L(-1,-1,-1,-1) = £(1,2,3,1) L(2,3,4,2)L(-1,-2,-2,0) — —L(1,1,2,2)
T(2,3,4,2)T(-1,-1,-2,—1) = —L(1,2,2,1) T(2,3,4,2)L(-1,-2,-2,—1) = L(1,1,2,1)
L(2,3,4,2)T(-1,-1,-2,—2) = £(1,2,2,0) L(2,3,4,2)L(-1,-2,-3,—1) = —L(1,1,1,1)
L(2,3,4,2)L(—-1,-2,-2,—2) — —L(1,1,2,0) L(2,3,4,2)T(-1,-2,-3,-2) = L(1,1,1,0)
T(2,3,4,2)L(—-1,-2,—-4,—2) = —L(1,1,0,0) T(2,3,4,2)L(-1,-3,—4,—2) = £(1,0,0,0)

Products contained in §

(1,0,0,00%(~1,0,0,0) = 1(1,0,0,0)

T(0,1,0,0)L(0,~1,0,0) = 1(0,1,0,0)

£(0,0,1,0)%(0,0,~1,0) = (0,0,1,0)

(0,0,0,1)%(0,0,0,—1) = 1(0,0,0,1)

T(1,1,0,0)L(-1,-1,0,0) = 7(1,0,0,0) T 7(0,1,0,0)
T(0,1,1,0)Z(0,1,—1,0) = 21(0,1,0,0) + 7(0,0,1,0)
L(0,0,1,1)(0,0,—1,—-1) = h(0,0,1,0) + P(0,0,0,1)
T(1,1,1,008(~1,-1,-1,0) = 2P(1,0,0,0) T 210,1,0,0) + 1(0,0,1,0)

x(07172)0)x(077177270) = h(oalzovo) + h’(0,0,l,O)
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Z(0,1,1,)Z(0,~1,~1,-1) = 2(0,1,0,0) + 7(0,0,1,0) + (0,0,0,1)
T(1,1,2,0)T(~1,-1,-2,0) = 1(1,00,0) T 10,1,0,0) + 1(0,0,1,0)
T(1,11,1)T(~1,-1,-1,-1) = 2R(1,0,0,0) T 21(0,1,0,0) + 1(0,0,1,0) + 1(0,0,0,1)
T(0,1,2,1)T(0,~1,—2,—1) = 2h(0,1,0,0) + 2h(0,0,1,0) + 1(0,0,0,1)
T(1,22,0)T(-1,-2,-2,0) = 1(1,00,0) + 2P(0,1,0,0) + 7(0,0,1,0)
T(1,1,2,1)T(~1,-1,-2,-1) = 2h(1,0,0,0) T 21(0,1,0,0) + 2P(0,0,1,0) T P(0,0,0,1)
T(0,1,2,2)L(0,~1,-2,-2) = 10,1,0,0) T 1(0,0,1,0) + 1(0,0,0,1)
T(1,2,2,1)%(~1,-2,-2,-1) = 2R(1,0,0,0) T 4h(0,1,0,0) + 21(0,0,1,0) T P(0,0,0,1)
T(1,1,2,2)T(~1,-1,-2,-2) = 1(1,0,0,0) + 7(0,1,0,0) + 7(0,0,1,0) + P(0,0,0,1)
T(1,23,1)T(~1,-2,-3,~1) = 2h(1,0,0,0) T 41(0,1,0,0) + 3P(0,0,1,0) T P(0,0,0,1)
T(1,2,2,2)%(~1,-2,-2,-2) = N(1,0,0,0) + 2R(0,1,0,0) + 1(0,0,1,0) + 1(0,0,0,1)
T(1,232)T(~1,-2,-3,-2) = 2P(1,0,00) T 41(0,1,0,0) + 3h(0,0,1,0) T 21(0,0,0,1)
T(1242)T(~1,-2,-4,-2) = 1(1,0,0,0) T 2h(0,1,0,0) T 21(0,0,1,0) + 1(0,0,0,1)
T(1,3,4,2)T(~1,-3,-4,~2) = N(1,0,0,0) + 3R(0,1,0,0) + 2h(0,0,1,0) + (0,0,0,1)

$(27374)2)x(_2)_3?_4’_2) = 2h(170’070) + 3h(071’070) + 2h(070’170) + h(070)071)

Action of hon g

h(1,0,0,0)%(1,0,0,0) = 2%(1,0,0,0)
h(1,0,0,0)%(0,0,1,00 = 0
h(1,0,0,0)%(1,1,0,0) = %(1,1,0,0)
h(1,0,00%(0,0,1,1) =0
h(1,0,0,0%(0,1,2,0) = —Z(0,1,2,0)
h(1,0,0,0)$(1,1,2,0) = 2(1,1,2,0)
h(1,0,00%0,1,21) = —Z(0,1,2,1)
h(1,0,0,0)95(1,1,2,1) = T(1,1,2,1)
h(1,0,00%1,2,21) =0
h(l,0,0,0)x(l,Z,B,l) =0

h(1,0,0,0%(1,2,3,2) =0

h(1,0,0,0)2(0,1,0,0) = —Z(0,1,0,0)
h(1,0,0,0%(0,0,0,1) = 0
h(1,0,0,0)$(0,1,1,0) = —2(0,1,1,0)
h(1,0,00)(1,1,1,0) = %(1,1,1,0)
h(1,0,0,0)$(0,1,1,1) = —2(0,1,1,1)
h(1,0,0,0)$(1,1,1,1) = T(1,1,1,1)
h(1,0,00%(1,2,2,0) = 0
h(1,0,0,0)55(0,1,2,2) = —2(0,1,2,2)
h(1,070,0)9€(171,2,2) = T(1,1,2,2)
h(l,0,0,0)x(1,2,2,2) =0

h(1,0,0,0Z(1,2,4,2) =0
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h1,0,00T(1,3,4,2) = —%(1,3,4,2) h(1,0,00)%2,34,2) = T(2,34,2)

h(1,0,0,0)Z(~1,0,0,0) = —2%(~1,0,0,0) h(1,0,0,0)Z(0,-1,0,0) = Z(0,~1,0,0)
h(1,0,0,0%(0,0,-1,00 = 0 h(1,0,0,0%(0,0,0,—1) = 0
h(1,0,0,0)$(—1,—1,0,0) = —%(-1,-1,0,0) h(1,0,0,0)$(0,—1,—1,0) = Z(0,-1,—1,0)
h(1,0,00)%(0,0,-1,-1) = 0 h(1,0,00)T(~1,-1,-1,0) = —T(~1,-1,-1,0)
h(1,0,0,00%(0,-1,~2,0) = T(0,-1,~2,0) h(1,0,0,0)Z(0,~1,1,-1) = T(0,—1,~1,—1)
h(1,070,0)x(—1,—1,—2,0) = —%(-1,-1,-2,0) h(l,0,0,0)x(—l,—l,—l,—l) = =2(-1,-1,-1,-1)
h(l,0,0,0)x(O,fl,fZ,fl) = Z(0,-1,—2,—1) h(l,O,O,O)x(fl,72,72,0) =0
h(l,o,o,o)ﬂﬁ(—l,—l,—z,—l) = = 2(-1,-1,-2,—1) h(l,o,o,o)fU(o,—l,—z,—2) = 2(0,-1,—2,-2)
h(1,070,0)$(—1,—2,—2,—1) =0 h(l,0,0,0)x(—l,—l,—Z,—Z) = —2(-1,-1,-2,-2)
h(l,0,0,0)x(fl,fsz,fl) =0 h(1,0,0,0)$(71,72,72,72) =0
h(1,0,00)Z(~1,—2,~3,—2) = 0 h(1,0,00)Z(~1,—2,~4,—2) = 0
h(1,07070)95(—17—3,—4,—2) = T(-1,-3,—4,-2) h(l,o,o,o)x(—Q,—s,—4,—2) = —%(-2,-3,—4,-2)
h(O,l,0,0)x(l,0,0,0) = —%(1,0,0,0) h(o,l,o,o)x(o,l,o,o) = 233(0,1,0,0)
h(o,l,o,o)ﬂﬁ(o,o,l,o) = —%(0,0,1,0) h(O,l,O,O)bT(O,O,O,l) =0

h(0,1,0,0)Z(1,1,0,0) = %(1,1,0,0) h(0,1,0,0)(0,1,1,0) = %(0,1,1,0)
h(o,l,o,o)x(o,o,l,l) = —Z(0,0,1,1) h(0,1,o,0)$(1,1,1,0) =0

h(0,1,0,00%(0,1,2,0) = 0 h(0,1,0,0)T(0,1,1,1) = T(0,1,1,1)
h(0,1,0,0)Z(1,1,2,0) = —Z(1,1,2,0) h(0,1,000(1,1,1,1) = 0

h(0,1,0,00Z(0,1,2,1) =0 h(0,1,0,0)(1,2,2,0) = %(1,2,2,0)
h(0,1,0,0)$(1,1,2,1) = —2(1,1,2,1) h(0,1,o,0)l‘(0,1,2,2) =0

h(0,1,00)Z(1,2,2,1) = %(1,2,2,1) h(0,1,00)Z(1,1,2,2) = —Z(1,1,2,2)
h(0,1,00%(1,2,3,1) =0 h(0,1,00)T(1,2,2,2) = %(1,2,2,2)
h(0,1,0,00%(1,2,3,2) =0 h(0,1,00)T(1,2,4,2) = —T(1,2,4,2)
h(0,1,0,0)T(1,3,4,2) = T(1,3,4,2) h(0,1,000%(2,34,2) =0

h(0,1,0,0)95(71,0,0,0) = %(-1,0,0,0) h(0,1,0,0)55(0,71,0,0) = —233(0,71,0,0)
h(0,1,0,0)$(0,0,—1,0) = 2(0,0,—1,0) h(0,1,0,0)90(0,0,0,—1) =0
h(O,l,0,0)x(fl,fl,0,0) = —%(-1,-1,0,0) h(O,l,0,0)x(O,fl,fl,O) = —Z(0,-1,—1,0)
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h(0,1,00)%(0,0,-1,-1) = Z(0,0,-1,~1)
h(0,1,00)%(0,~1,~2,0) = 0
h(0,1,00)%(~1,-1,-2,0) = T(~1,-1,-2,0)
h(0,1,00)%(0,~1,~2,-1) = 0
h(0,1,00)%(~1,-1,-2,-1) = T(~1,-1,~2,~1)
h(0,1,0,0)95(71,72,72,71) = 7%(-1,-2,-2,-1)
h(0,1,00%(~1,-2,-3,-1) =0
h(0,1,0,0)90(71,72,73,72) =0
h(0,1,00)%(~1,-3,-4,~2) = —(-1,-3,-4,-2)
h(0,0,1,0%(1,0,0,0) = 0

h(0,0,l,O)x(0,0,l,O) = 22(0,0,1,0)
h(0,0,1,0)%(1,1,0,0) = —2%(1,1,0,0)
h(0,0,1,0%(0,0,1,1) = Z(0,0,1,1)
h(0,0,l,O)x(O,l,Z,O) = 22(0,1,2,0)
h(0,0,1,00%(1,1,2,0) = 2%(1,1,2,0)
h(0,0,1,00%(0,1,2,1) = (0,1,2,1)
h(0,0,1,002(1,1,21) = T(1,1,2,1)
h(0,0,1,0)$(1,2,2,1) = —2(1,2,2,1)
h(0,0,1,0021,2,31) = £(1,2,3,1)
h(0,0,1,0021,2,32) =0

h(0,0,1,00%(1,3,4,2) = 0

h(0,0,1,0)%(~1,0,0,0) = 0

h(0,0,1,0)%(0,0,-1,0) = —2%(0,0,-1,0)

h(0,0,1,00T(~1,-1,0,0) = 2(~1,-1,0,0)

h(0,0,1,002(0,0,-1,-1) = —T(0,0,-1,~1)
h(0,0,1,00Z(0,-1,-2,0) = —2(0,~1,—2,0)
h(0,0,1,00T(~1,-1,-2,0) = —2T(~1,-1,-2,0)
h(0,0,l,O)x(O,fl,fZ,fl) = —%(0,-1,-2,-1)

h(0,1,00)%(~1,-1,-1,00 = 0
h(0,1,00)Z0,~1,-1,-1) = —%(0,-1,~1,~1)
h(0,1,00%(~1,-1,-1,-1) =0
h(0,1,00)T(~1,-2,-2,0) = —%(~1,-2,-2,0)
h(0,1,00)%(0,~1,~2,~2) =0
h(0,1,0,0)$(71,71,72,72) = 2(-1,-1,—-2,~2)
h(o,1,0,0ﬂ(-1,-2,-2,-2) = —2(-1,-2,-2,-2)
h(o,l,o,o)x(71,72,74,72) = L(-1,-2,~4,~2)
h(0,1,00)%(~2,-3,-4,—2) =0
h(0,0,1,00%(0,1,0,0) = —22(0,1,0,0)
h(o,o,l,o)ﬂf(o,o,o,l) = —(0,0,0,1)
h(0,0,1,00%(0,1,1,0) = 0

h(0,0,1,00Z(1,1,1,0) = 0

h(0,0,1,0)$(0,1,1,1) = —Z(0,1,1,1)
h(0,0,1,0)$(1,1,1,1) = —2(1,1,1,1)
h(0,0,1,00Z(1,2,2,0) = 0

h(0,0,1,00%(0,1,2,2) = 0

h(0,0,1,00%(1,1,2,2) = 0

h(0,0,1,00Z(1,2,22) = —2%(1,2,22)
h(0,0,1,002(1,2,4,2) = 2%(1,2,4,2)
h(0,0,1,00%(2,3,4,2) = 0
h(0,0,1,0)%(0,-1,0,0) = 22(0,~1,0,0)
h(0,0,1,0%(0,0,0,-1) = Z(0,0,0,-1)
h(0,0,1,00%(0,~1,~1,0) = 0
h(0,0,1,00%(~1,-1,-1,0) = 0
h(0,0,1,00%(0,~1,~1,-1) = Z(0,-1,-1,-1)
h(0,0,1,00%(~1,-1,-1,-1) = T(~1,-1,~1,~1)

h0,0,1,0)%(~1,-2,-2,0) = 0
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h(0,0,1,0)$(—1,—1,—2,—1) = —2(-1,-1,-2,—1) h(0,0,1,0)$(0,—1,—2,—2) =0

h(0707170)w(_17_27_27_1) = x(_17_27_27_1) h(0707170)x(_17_17_27_2) = 0

h(o,o,l,o)x(—l,—z—s,fl) = —%(-1,-2,-3,-1) h(0,0,1,0)$(71,72,72,72) =2%(_1,-2,2-2)
h(0,0,1,0%(~1,-2,-3,-2) = 0 h(0,0,1,0)%(~1,-2,~4,~2) = —2%T(_1,_2 4,-92)
h(0,0,1,00%(~1,-3,-4,—2) =0 h(0,0,1,0)%(~2,-3,-4,~2) =0
h(0,0,0,1)%(1,0,0,0) =0 h(0,0,0,1)%(0,1,0,0) = 0

h(070,0,1)$(0,0,1,0) = —7(0,0,1,0) h(0,0,0,1)$(0,0,0,1) = 2%(0,0,0,1)
h(0,0,0,1)90(1,1,0,0) =0 h(o,o,o,l)x(o,l,l,o) = —%(0,1,1,0)
h(0,0,0,1)%(0,0,1,1) = %(0,0,1,1) h(0,0,0,1)%(1,1,1,0) = —Z(1,1,1,0)
h(0,0,0,1)l‘(0,1,2,0) = —22(0,1,2,0) h(o,o,o,1)x(o,1,1,1) = 2(0,1,1,1)
h(o,o,o,l)x(l,lz,o) = —22(112,0) h(0,0,0,1)$(1,1,1,1) = T(1,1,1,1)
h(0,0,0,1)%(0,1,21) =0 h(0,0,0,1)%(1,2,2,0) = —2%(1,2,2,0)
h(0,00,1)%(1,1,2,1) =0 h(0,0,0,1)%(0,1,2,2) = 2%(0,1,2,2)
h(0,0,0,1)$(1,2,2,1) =0 h(0,0,0,1)$(1,1,2,2) =2%(1,1,2,2)
h(0,0,0,1)$(1,2,3,1) = —2(1,2,3,1) h(o,0,0,1)95(1,2,2,2) = 221222
h(0,001)Z1,232) = (1,232 h(0,0,01)Z1,242) =0

h(0,0,01)%(1,3,4,2) =0 h(0,0,01)%(2,3,4,2) =0

h(0,0,0,1)%(~1,000) =0 h(0,0,0,1)%(0,~1,00) =0

h(0,0,0,1)%(0,0,-1,0) = £(0,0,~1,0) h(0,0,0,1)%(0,0,0,—1) = —2%(0,0,0,-1)
h(0,0,0,1)%(~1,-1,00) = 0 h(0,0,0,1)%(0,~1,~1,0) = %(0,~1,~1,0)
h(0,0,0,1)%(0,0,-1,-1) = —%(0,0,-1,-1) h(0,0,0,1)%(~1,-1,-1,0) = T(~1,~1,-1,0)
h(0,0,0,1)%(0,~1,~2,0) = 2%(0,-1,-2,0) h(0,0,01)0,~1,-1,-1) = —%(0,-1,~1,-1)
h(o,o,o,l)x(—l,—l,—z,o) = 2$(71,71,72,0) h(0,0,0,1)55(71,71,71,71) = —2(-1,-1,—-1,-1)
h(0,0,01)%(0,~1,~2,-1) =0 h(0,0,0,1)%(~1,-2,-2,0) = 2T(—1,-2,-2,0)
h(0,0,01)%(~1,-1,-2,-1) =0 h(0,0,0,1)%(0,~1,~2,-2) = —2&(0,—1,-2,-2)
h(0,0,0,1)95(71,72,72,71) =0 h(0,0,0,1)55(71,71,72,72) = —255(71,71,72,72)
h(0,070,1)x(—1,—2,—3,—1) = L(-1,-2,—3,~1) h(0,0,0,1)90(—1,—2,—2,—2) = —2$(—1,—2,—2,—2)
h(O,O,O,l)x(fl,72,73,f2) = —%(-1,-2,-3,-2) h(o,o,o,l)x(71,72,74,72) =0
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h(0,0,0,)T(~1,—3,~4,—2) = 0 h(0,0,0,1)T(~2,—3,—4,—2) = 0

E.2 Generators for f; C gl(26,C)

Root Vector x m(x)
Za E{% + E§% + EGo + Eig o0 + Efgo1 + 3503
T_q m(za)T
] E 4t E 9T E1o 12+ E%g,18 + E%?,m + E22g,24
T_g W(x,B)T
Ly E3% + EFG + B85 + B3y + EiS 15+ 2B75 14 + Eif 16+

E15 17t E19 22 T E%? o3 + E3% 25
Ty E 2t E 4t E 5+ E7Y 9T E14 121 E16 131 2E%§,14+
E17 15T E22 19T E23 21+ E25 24
x5 ES + E§% + B30 + EdSs + 2B 15+ B 14 + EiS 15+
Ef¢ 17 + Eig1g + B30 01 + E35 o6
T_s EY% + B34 + Ef 7 + EiS g + Efy 11 + 2B 15 + Ei5 14+
ERS 16+ Efg1s + E37 50 + Eg o5

Table E.4: Generators for §, C gl(26,C)
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