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Abstract

Let G be the complex connected simply connected simple Lie group of type G2 or F4. Let

K denote the fixed point subgroup relative to an involution of G that is lifted from a Cartan

involution. We give a description of certain components of Springer fibers associated to

closed K-orbits contained in the flag variety of G. Then we will describe certain multiplicity

polynomials associated to discrete series representations of the real form G2
2 of G2 and the

two real forms F 4
4 and F−20

4 of F4. The goals for this paper are motivated by the descriptions

of Springer fiber components for type SU(p, q) described in a paper of Barchini and Zierau.
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1

Introduction

Our goal is to give a description of certain components for Springer fibers in the excep-

tional types G2 and F4, so we need to introduce Springer fibers. Before describing the fibers,

we begin with a discussion of important terminology. Let G denote a connected complex

simple Lie group, and let g denote the Lie algebra of G. Then let B denote the collection

of all Borel subalgebras of g, and let N denote the cone of nilpotent elements of g. Recall

that an element x ∈ g is nilpotent if for any finite dimensional representation π : g→ gl(V ),

π(x) is a nilpotent operator on V . For a given Borel subalgebra b ⊂ g and chosen Cartan

subalgebra h ⊂ g contained in b, we can write b = h + n− for some maximal nilpotent ideal

n−. Let Ad : G → GL(g) denote the adjoint representation of G, and let g.x represent

Ad(g).x for any g ∈ G and x ∈ g. If we define B = StabG(b) to be the stabilizer of b in G,

then we have an isomorphism of G/B with the flag variety B given by gB → g.b.

With these objects in place, we can introduce a variety from which Springer fibers are

built. Since the subspace n− of g is B-stable, we can define the algebraic variety G ×B n−

to be the quotient of G × n− by the equivalence relation defined in the following way. For

any pair of elements (g1, n1) and (g2, n2) in G × n−, (g1, n1) ∼ (g2, n2) if there exists some

element b in B such that (g1, n1).b = (g1b, b
−1.n1) = (g2, n2). To define Springer fibers, we

introduce the Springer resolution

µ : G×B n− → N ,
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which is a proper morphism given by µ
(
(g, n)

)
= g.x for any g ∈ G and x ∈ n−. Details about

the variety structure of G×B n− including various isomorphic descriptions of the variety can

be found in [Spr81] and [Jan04]. One such interpretation is that G×B n− can be identified

with the cotangent bundle T ∗B of B, so µ gives a map from the cotangent bundle onto the

set of nilpotent elements of g.

Definition 1.1. Given an arbitrary nilpotent element f ∈ N , the preimage of f with respect

to µ is called a Springer fiber.

To outline the specific components of µ−1(f) that we wish to describe, we need to in-

troduce Cartan decompositions and real forms. These Cartan decompositions will play an

important role because they help us describe certain components of Springer fibers, and then

these components will tell us information about certain real forms of G. Let G0 denote a

noncompact real form of G with associated Lie algebra g0 obtained from an involution θ

of g. Since θ is an involution, i.e., a Lie algebra automorphism such that θ2 = 1, we have

a decomposition of g = k + p where k is the +1 eigenspace and p is the −1 eigenspace

with respect to θ. Define Θ to be the involution of G that is the lift of θ to G, and let

K = {g ∈ G : Θ(g) = g} denote the fixed point subgroup of G. In general, the connected

subgroup of G with Lie algebra k and the fixed point subgroup K may differ by a non-trivial

discrete group, although [KR71, Proposition 1] tells us that they have the same Lie algebra

k. There are many complex simple Lie groups including those considered in this paper for

which K is necessarily connected.

Since we will be focusing on nilpotent elements in p, let Nθ = N ∩ p denote the set of

those elements. Refer to [KR71], [Dok88], and [Kin92] for more information on nilpotent

G-orbits and nilpotent K-orbits for elements f ∈ Nθ. Our goal is to describe certain ir-

reducible components of µ−1(f) associated to closed K-orbits in B when f is a specialized

element called a “generic” element. The remainder of this chapter will involve an outline

of the ingredients necessary to understand these components, which can be found in [BZ08,
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Section 2].

The fixed point subgroup K acts on B with finitely many orbits, so let O = K · b denote

one of these orbits. If we let KB denote the intersection of K with B, then the conormal

bundle to O in the cotangent bundle of B is identified with

T ∗OB = K ×KB (n− ∩ p).

Define a map ψO : T ∗OB → N to be the restriction of µ to the closure of the conormal bundle

T ∗OB contained in T ∗B. Understanding the image is important and leads us to one of two

lemmas, which will be used throughout this paper. Lemmas 1.2 and 1.6 are clearly known

and used frequently in [BZ08], but we include original proofs here for completeness.

Lemma 1.2. The image of ψO is the subset of Nθ given by the closure of K.(n− ∩ p), and

is the closure of a single K-orbit having the greatest possible dimension.

Proof. Since µ restricted to T ∗OB has image K.(n− ∩ p) and µ is a closed map, we know that

K.(n− ∩ p) = µ(T ∗OB) ⊂ µ(T ∗OB) = µ(T ∗OB) = ψO(T ∗OB).

On the other hand, µ is a continuous map, so

ψO(T ∗OB) = µ(T ∗OB) ⊂ µ(T ∗OB) = K.(n− ∩ p),

hence the image of ψO is the closure of K.(n− ∩ p). To prove the second part of the lemma,

define the map

λ : K◦ × (n− ∩ p)→ K◦.(n
− ∩ p)

by (k, v) → k.v where K◦ represents the identity component of K. Since K◦ × (n− ∩ p) is

an irreducible variety, the image of λ is as well, i.e., K◦.(n
− ∩ p) is an irreducible variety.
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Now, Kostant and Rallis show in [KR71] that there are finitely many K-orbits in N ∩ p,

and also finitely many K◦-orbits in N ∩ p, hence K◦.(n
− ∩ p) is a finite union of nilpotent

K◦-orbits. As a result, write K◦.(n
− ∩ p) = O1 ∪ O2 · · · ∪ On, and note that the closure

is K◦.(n− ∩ p) = O1 ∪ O2 · · · ∪ On. Since K◦.(n− ∩ p) is irreducible there must be some Oj

that is equal to K◦.(n− ∩ p). In particular, Oj is dense in K◦.(n− ∩ p), and the dimension

of Oj is the same as the dimension of K◦.(n− ∩ p). Let {k1, . . . , km} denote a set of coset

representatives for K/K◦. Since Oj = K◦.f is dense in K◦.(n− ∩ p) and kiK◦.f is dense in

kiK◦.(n− ∩ p), it follows that
m⋃
i=1

kiK◦.f = K.f

is dense in
m⋃
i=1

kiK◦.(n− ∩ p) =
m⋃
i=1

kiK◦.(n− ∩ p) = K.(n− ∩ p).

Finally, any two distinct K-orbits in K.(n− ∩ p) must have empty intersection, so any other

K-orbit lives in the boundary K.f −K.f . By Proposition 8.3 in [Hum75], the orbits in the

boundary have strictly smaller dimension, so the maximal dimensional dense K-orbit K.f is

unique.

The above lemma actually proves more than we need since K happens to be connected as

a subgroup of G2 and F4, but it is nevertheless true in a more general setting. Understanding

the components of the Springer fibers this dissertation will describe hinges on exploring this

particular orbit, so it is appropriate to name the elements of this K-orbit as they are defined

in [BZ08].

Definition 1.3. The elements f ∈ n− ∩ p such that the image of ψO is K · f are referred to

as generic elements.

We are going to be looking at closed K-orbits, so we need to consider how this affects

the map ψO. If O is a closed K-orbit of B, then T ∗OB is closed in T ∗B and the image of
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ψO is K.(n− ∩ p). Moreover, the closed K-orbit O is necessarily a flag variety for the fixed

point subgroup K. To prove this fact, observe that the stabilizer subgroup of b in K is

the subgroup KB. Then consider the isomorphism of varieties from K/KB to K.b given by

kKB → k.b. Since O is closed in B, it follows that K/KB is closed in B and projective, so

KB is a parabolic subgroup of K. Then KB = K ∩ B is solvable, so it follows that KB is a

Borel subgroup. For a generic element f ∈ n− ∩ p, we have the following description of the

preimage ψ−1
O (f):

ψ−1
O (f) = {(k, n) ∈ T ∗OB | k.n = f}

= {(k, k−1.f) ∈ T ∗OB | k−1.f ∈ n− ∩ p}.

Now, the natural projection from T ∗B → B takes ψ−1
O (f) isomorphically onto its image, so

we have

ψ−1
O (f) ' {(k.b | k−1.f ∈ n− ∩ p} [BZ08, Section 2].

If we let N(f, n− ∩ p) be the subset of K defined by

N(f, n− ∩ p) =
{
k ∈ K : k.f ∈ n− ∩ p

}
,

then

ψ−1
O (f) ' N(f, n− ∩ p)−1.b ⊂ O. (1.1)

Therefore, ψ−1
O (f) for any f ∈ n− ∩ p is identified with a subvariety of the flag variety O for

the fixed point subgroup K.

At this point, we should discuss the relationship between µ−1(f) and ψ−1
O (f). By [BZ,

Section 1], it turns out that each irreducible component of µ−1(f) for f ∈ Nθ is contained

in the closure of a single conormal bundle T ∗OB associated to a K-orbit O in the flag variety

of G. Moreover, if the K-orbit O is closed, then all of the components of µ−1(f) contained
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in the closed conormal bundle T ∗OB are permuted by the elements of a component group

associated to f . Therefore, we will use the above isomorphism (1.1) frequently when we

describe the irreducible components of µ−1(f) contained in the closed conormal bundle T ∗OB.

The following proposition illustrates the transitivity of the irreducible components under the

action of the component group, which will help us describe µ−1(f) ∩ T ∗OB, but first we need

to define these component groups.

Definition 1.4. Given an element f ∈ Nθ, let Kf denote the stabilizer subgroup of f in K.

Then the component group of f in K, denoted AK(f), is defined to be the quotient group

Kf/Kf
◦ where Kf

◦ denotes the identity component.

Proposition 1.5. If O = K.b is a closed K-orbit in B and Cf is an irreducible component

of µ−1(f) contained in T ∗OB for f ∈ Nθ, then the component group AK(f) acts transitively

on the irreducible components of µ−1(f) contained in T ∗OB. In other words,

ψ−1
O (f) =

⋃
z∈AK(f)

z · Cf .

Moreover, the irreducible components all have the same dimension: dim B − 1

2
dim G.f .

Proof. See [BZ] for proofs and a complete list of references.

The fibers ψ−1
O (f) for a generic element f ∈ n− ∩ p associated to closed K-orbits for the

noncompact real forms of G2 and F4 have a nice description. Most of the components are

homogeneous, but there are few closed K-orbits for which the associated Springer fiber com-

ponents are non-homogeneous. We will spend several chapters building all of the necessary

tools to prove that ψ−1
O (f) takes the form of exactly one of

L.b,Z2L.b, ZL.b ' Z ×Z∩Q Q/KB, or ZL.b (1.2)
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where L is a reductive subgroup of K, Z is a centralizer subgroup of Kf , and Q is a parabolic

subgroup of K containing L. It is important to note that the specific groups above depend

on the closed K-orbit and will be described in the subsequent chapters. Moreover, we will

know for each closed K-orbit, the specific isomorphism type of ψ−1
O (f) among the possibilities

given in (1.2). This structure will be important for the applications to real forms discussed

in Chapter 8.

The last preliminary piece of information that we need involves describing the closed

K-orbits. From now on, we will be considering Lie algebras g such that the rank of K is

the same as the rank of G. As a result, we will choose our Cartan subalgebra such that

h ⊂ k. Let Φ(h, g) (resp., Φ(h, k)) represent a system of roots (resp., compact roots) for h

in g (resp., h in k), let ∆(h, g) represent a system of simple roots, and fix a positive system

Φ+(h, g) (resp., Φ+(h, k)) for h in g (resp., h in k). The following lemma will tell us how to

find and count the possible K-orbits.

Lemma 1.6. Suppose that the rank of K equals the rank of G. There is a one to one cor-

respondence between positive systems Φ+ for Φ(h, g) such that Φ+(h, k) ⊂ Φ+ ⊂ Φ(h, g)

and closed K-orbits in B. Moreover, the number of such positive systems is given by

|W/WK | = |WK\W| where W (resp., WK) denotes the Weyl group of G (resp., K).

Proof. We need to define a map from

{Closed K-orbits O} to {Φ+ | Φ+(h, k) ⊂ Φ+ ⊂ Φ(h, g)}

where Φ+ is a positive system for Φ(h, g). Given a closed K-orbit O, choose b in O such

that h is contained in b, and write b = h + n− for some maximal nilpotent ideal n−. This is

possible because h ⊂ k, so we can conjugate the Cartan subalgebra for a Borel in O to our

fixed Cartan h by an element of K. Then let Φ+(b) be the set consisting of those roots α such

that g−α is a root space contained in n−. Choose the unique element [w] ∈ WK(w ∈ K) such
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that [w].(Φ+(b) ∩ Φ(h, k)) = Φ+(h, k). Then the Borel subalgebra w.b is the unique element

of O = K.b for which w.b ⊃ h and Φ+(w.b) contains Φ+(h, k). To see the uniqueness, note

that the only elements of K that fix h are elements w of the normalizer of H = Exp(h)

in K. Then acting by any nontrivial element [w] ∈ WK will permute the roots so that

Φ+(b) no longer contains Φ+(h, k). Now, we need to define the inverse mapping. Observe

that from such a positive system Φ+, we obtain a Borel subalgebra b = h + n− by letting

n− consists of the root spaces gξ for all roots ξ in −Φ+. Since the positive system used to

construct b contains the positive system for h in k, k∩b is a Borel subalgebra in k. Therefore,

K ∩B is a Borel subgroup of K, so K/(K ∩B) is isomorphic to the flag variety for K. Since

K.b ' K/(K∩B), we see that the K-orbit K.b is closed. The cardinality follows immediately

because all positive systems for g are obtained by applying Weyl group elements [w] ∈ W to

a fixed positive system Φ+. As in the proof above, there is a unique [w′] ∈ WK such that the

positive system [w′]([w]Φ+) contains Φ+(h, k). A simple computation shows that the map

WK\W → {Φ+ | Φ+(h, k) ⊂ Φ+ ⊂ Φ(h, g)}

given by sending the right coset WK [w] to the positive system [w′]([w]Φ+) gives a bijection.

The Borel subalgebras that appear in this work will always be put together in this manner.

In the future, we may refer to the corresponding nilradical n defined by the positive roots

instead of the negative roots.

8



2

The Exceptional Lie Algebra g2

In order to start computing some irreducible components of the Springer fibers for G =

G2, we begin by constructing the Lie algebra g of G. Let h denote a fixed Cartan subalgebra

of g, and let Φ(h, g) denote a root system relative to h. Recall that relative to a choice of

Cartan subalgebra h, we can write

g = h⊕
⊕

ξ∈Φ(h,g)

gξ

for the root space decomposition of g into its root spaces gξ and two dimensional Cartan

subalgebra h.

Figure 2.1: Dynkin Diagram for g2

Let ∆(h, g) = {α, β} denote a base for Φ(h, g) where α is the short simple root and β is

the long simple root. Then the positive roots relative to ∆(h, g) for type g2 are

Φ+(h, g) = {α, β, α + β, 2α + β, 3α + β, 3α + 2β}.

Note that Figure 2.1 gives the Dynkin diagram for g2. For our efforts, we will choose to

9



work with a Chevalley basis, which is defined by the content of the following proposition in

[Hum72, Prop. 25.2].

Proposition 2.1 (Existence of a Chevalley Basis). It is possible to choose root vectors

xξ ∈ gα(α ∈ Φ(h, g) satisfying:

(a) [xξ, x−ξ] = hξ

(b) If ξ, ε and ξ + ε are roots such that [xξ, xε] = cξ,εxξ+ε, then cξ,ε = −c−ξ,−ε.

We will give details about this basis for g, but let us first introduce a notation for such

a basis. Let ⋃
ξ∈Φ(h,g)

{
xξ
}
∪

⋃
ξ∈∆(h,g)

{
hξ = [xξ, x−ξ]

}
represent a Chevalley basis for g where xξ denotes a basis vector in gξ for each

ξ = iα + jβ ∈ Φ(h, g).

If ξ = iα+jβ, we will write x(i,j) = xξ, and the notations will be freely interchanged whenever

it is clear which root is being referenced. Lastly, we may refer to the elements of h generated

by the nonsimple root vectors, so let hξ denote those elements [xξ, x−ξ] for all ξ ∈ Φ+(h, g).

Now, it will be useful at this point to construct generators for a Chevalley basis for g.

First, we choose the simple root vectors as prescribed by the Cartan matrix, and then use

the Lie bracket to generate all of g. In other words, let

 2 −1

−3 2


represent the Cartan matrix associated to g. Choose simple root vectors satisfying the

relations in Table 2.1 below, and then use the Lie bracket to extend to the basis for g given

10



[h(1,0), x(1,0)] = 2x(1,0) [h(1,0), x(0,1)] = −3x(0,1)

[h(0,1), x(1,0)] = −x(1,0) [h(0,1), x(0,1)] = 2x(0,1)

[h(1,0), x(−1,0)] = −2x(−1,0) [h(1,0), x(0,−1)] = 3x(0,−1)

[h(0,1), x(−1,0)] = x(−1,0) [h(0,1), x(0,−1)] = −2x(0,−1)

Table 2.1: Lie Brackets I

x(1,1) = −[x(1,0), x(0,1)] x(−1,−1) = [x(−1,0), x(0,−1)]

x(2,1) = −1/2[x(1,0), x(1,1)] x(−2,−1) = 1/2[x(−1,0), x(−1,−1)]

x(3,1) = −1/3[x(1,0), x(2,1)] x(−3,−1) = 1/3[x(−1,0), x(−2,−1)]

x(3,2) = −[x(0,1), x(3,1)] x(−3,−2) = [x(0,−1), x(−3,−1)]

Table 2.2: Lie Brackets II

in Table 2.2. Note that the basis given in Tables 2.1 and 2.2 is a Chevalley type basis that

agrees with the mathematical software package GAP. The complete multiplication tables

have been worked out, and the results are given in Appendix D for reference.

As we build some Springer fiber components, we will place an assortment of calculations

that are necessary into the appendices as opposed to the main sections. From now on, if

a calculation is included in Appendix X, then it will be followed by a “(see Appendix X)”

marker. Most of the calculations can be done using the multiplication tables and linear

algebra. Alternatively, some calculations involving the fixed point subgroup K can be made

more explicit if we appeal to a representation of g and G by matrices. By the Weyl dimension

formula, we know that there exists a faithful, irreducible representation of g2 of dimension

7. Before giving such a representation, we consider the following lemma.

Lemma 2.2. There exists an embedding of G = G2 as a closed subgroup of GL(7,C).

Proof. Let π : g → gl(7,C) be a faithful representation of g = g2. Then viewing g as a

subalgebra of gl(7,C), we know from [Kna02, Chapter 1, Section 10] that there is a complex

11



analytic subgroup G′ of GL(7,C) with Lie algebra isomorphic to g. Since g is simple, we know

from [Hel78, Chapter 2, D.4.IV] that G′ is necessarily a closed Lie subgroup of GL(7,C).

As there is only one connected complex simple Lie group of type G2, G′ is simply connected

of type G2 (see [Ale05, Proposition 4.1]). Therefore, G′ is isomorphic to G, hence G can be

viewed as a closed subgroup of GL(7,C).

To describe such a representation of g, we will use the notation En
i,j to denote the n× n

matrix with a 1 in the {i, j} entry and 0’s elsewhere. Following Howlett et al., we’ll choose

the representation π : g → gl(7,C) found in [HRT01, Section 3.6] with generators for a

Chevalley basis given in Table 2.3. As one might hope, these generators completely agree

with our first description of g given abstractly in terms of the bracket relations on the

generators. Moreover, the representation is faithful, so one can drop the π from the notation

without encountering any problems. Since G is simply connected, π determines a unique

map from G→ GL(7,C) that commutes with the exponential mappings. Therefore, we will

sometimes view the exponential mapping Exp : g → G as the matrix exponential, and the

adjoint action in terms of matrix conjugation. The complete list of matrices is provided in

Appendix D.

Root Vector x π(x)

xα E7
1,2 + 2E7

3,4 + E7
4,5 + E7

6,7

x−α E7
2,1 + E7

4,3 + 2E7
5,4 + E7

7,6

xβ E7
2,3 + E7

5,6

x−β E7
3,2 + E7

6,5

Table 2.3: Generators for g2 ⊂ gl(7,C)
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3

Generic Elements: Split Real Form G2
2

A real simple Lie algebra g0 is called a real form of a complex simple Lie algebra g if the

complexification g0⊗RC is isomorphic to g. In the theory of real Lie algebras, a real form g0

can be constructed from an enhanced Dynkin diagram called a Vogan diagram. These Vogan

diagrams are formed by taking the usual Dynkin diagram of a complex simple Lie algebra

and attaching extra data to the simple roots, which is then used to construct an involution

θ of g. From the associated complex Cartan decomposition of g, the real Lie algebra g0 can

be extracted.

Example 3.1. The Dynkin diagram for A1 = sl(2,C) consists of a single simple root. There

are two non-isomorphic Vogan diagrams to consider for A1. For the first Vogan diagram,

the only simple root α is left unpainted, which means that the involution θ takes the corre-

sponding simple root vector xα to itself. As a result, θ is the trivial isomorphism and g0 is

the compact real form su2. For the second, the only simple root α is painted, which means

that the involution θ takes the corresponding simple root vector xα to −xα. The resulting

real Lie algebra g0 is the split real form sl(2,R). In general, a complex Lie algebra always

admits at least two real forms: a compact real form and a split real form, although these are

the only real forms for sl(2,C) up to isomorphism.

Vogan diagrams are important because they are essential in the development of the clas-

sification theory of all real simple Lie algebras. Every real simple Lie algebra arises uniquely

from a fixed Vogan diagram, although different Vogan diagrams can lead to the same real Lie
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algebra. To address this issue, a theorem of Borel and de Siebanthal can be used to eliminate

redundant Vogan diagrams, so that no two Vogan diagrams give the same g0 ([Kna02, cf.

Chapter VI]). Cartan involutions will play an important role in this paper not only because

of their relationship with real forms, but also with how they are essential in understanding

Springer fibers and discrete series representations.

Figure 3.1: Vogan diagram for the split real form of g2

According to Figure 6.2 in [Kna02, Chapter VI, Section 10], the split real form is the only

noncompact real form for the exceptional simple Lie algebra of type g2 up to isomorphism.

This split real form, denoted G2
2, will be the only real form of type G2 for which we will

describe Springer fiber components. To build the Cartan decomposition discussed in Chapter

1, define an involution θ : g→ g by first defining θ(xα) = xα and θ(xβ) = −xβ on the simple

root vectors, and then extend to all of g using θ([xξ, xε]) = [θ(xξ), θ(xε)]. This is illustrated

by a Vogan diagram (Figure 3.1) where a simple root vector is in k whenever the associated

simple root is not painted, and a simple root vector is in p whenever the simple root is

painted. Since g is generated by the simple root vectors, it follows that θ(xξ) = xξ or

θ(xξ) = −xξ for every root ξ in Φ(h, g), so every root vector is in exactly one of k or p. See

[Kna02, Chapter VI] for more details.

Let Φ(h, k) denote the set of roots for which the associated root vector is in k, and let

Γp denote the set of roots for which the associated root vector is in p. The roots in Φ(h, k)

are called compact roots, while the roots in Γp are called noncompact roots. Since [k, k] ⊂ k,

[k, p] ⊂ p, and [p, p] ⊂ k, we see that the positive roots in Φ(h, k) are Φ+(h, k) =
{
α, 3α+ 2β

}
and the positive roots in Γp are Γ+

p =
{
β, α+β, 2α+β, 3α+β

}
. Note that the roots associated
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to p do not define a root system. For reference, the associated k0 and p0 are given by

k0 = SpanR

( ⋃
γ∈∆(h,g)

{
ihγ
}
∪

⋃
γ∈Φ+(h,k)

{
xγ − x−γ

}
∪

⋃
γ∈Φ+(h,k)

{
i
(
xγ + x−γ

)})
and

p0 = SpanR

( ⋃
γ∈Γ+

p

{
i
(
xγ − x−γ

)}
∪
⋃
γ∈Γ+

p

{
xγ + x−γ

})

although we will not need these subspaces in our description of the fibers.

With the partition of the positive roots, we have the decomposition of g into a six

dimensional subalgebra

k = h⊕
⊕

ξ∈Φ(h,k)

gξ

that is isomorphic to

sl(2,C)⊕ sl(2,C) = h⊕ g±α ⊕ g±(3α+2β),

plus an eight dimensional subspace

p =
∑
ξ∈Γp

gξ.

The Weyl group, WK , relative to Φ(h, k) is a dihedral group of order 4. Also, the Weyl

group, W , relative to Φ(h, g) is a dihedral group of order 12. Therefore, W/WK has order

3, so there are 3 positive systems Φ+
j such that Φ+(h, k) ⊂ Φ+

j ⊂ Φ(h, g). The three positive

system along with their associated simple systems ∆j are given in Table 3.1. It is clear that

the sets Φ+
j in Table 3.1 contain Φ+(h, k), but that they are actually positive systems with the

corresponding simple system ∆j requires a calculation (see Appendix A). When searching

for the generic elements, one finds that there are an abundance of generic elements from

which to choose. However, we will have many reasons for working with certain choices over

others because some make determining the structure of the fibers more difficult. Although
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Positive System Roots Simple Roots

Φ+
1

{
α, β, α + β, 2α + β, 3α + β, 3α + 2β

} {
α, β

}
Φ+

2

{
α,−β, α + β, 2α + β, 3α + β, 3α + 2β

} {
− β, α + β

}
Φ+

3

{
α,−β,−α− β, 2α + β, 3α + β, 3α + 2β

} {
− α− β, 3α + 2β

}
Table 3.1: Positive and Simple Systems Containing Φ+(h, k)

Generic Element dim K.fj

f1 = x(−1,−1) + x(−2,−1) 5

f2 = x(0,1) + x(−1,−1) 6

f3 = x(−2,−1) + x(0,1) 5

Table 3.2: Generic Elements fj ∈ n−j ∩ p

the basic root vectors given above are not generic elements, we can find generic elements that

are linear combinations of basic root vectors with nice coefficients. Now, let us introduce

some generic elements.

Proposition 3.2. Let n−j represent the sum of the root spaces for all roots in −Φ+
j . Table

3.2 lists a generic element fj in n−j ∩ p along with the dimension of K.fj.

Naturally, with three possible positive systems, we will separate the discussion and proofs

about these generic elements into three cases. As a remark, we will keep a consistent no-

tation using subscripts to relate the closed K-orbits, the generic elements chosen, the sl2

triple containing fj, the Springer fiber components relative to these generic elements, and

any other objects that relate to a particular choice of positive system.

Positive System Φ+
1 : As described above, define n−1 to be the sum of the root spaces

for roots in −Φ+
1 . Therefore, n−1 ∩ p = SpanC

(
{x(0,−1), x(−1,−1), x(−2,−1), x(−3,−1)}

)
. We will
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show that f1 is a generic element by giving an upper bound for the dimension of any orbit

in K.(n−1 ∩ p), and then show that f1 necessarily attains this upper bound.

Proof of Proposition 3.2 (f1 is generic). The dimension of an orbit K.f is equal to dim K−

dim Kf where Kf is the stabilizer subgroup of f in K. Moreover, the dimension of Kf is

equal to the dimension of kf where kf = {v ∈ k|[v, f ] = 0} is the centralizer of f in k. For

the remainder of this chapter, let

k = c1hα + c2hβ +
∑

ξ∈Φ(h,k)

cξxξ

denote an arbitrary element of k. Let us compute the dimension of kf1 with f1 as above.

Using the Lie brackets above, [k, f1] = 3c(−1,0)x(−3,−1) + (2c(−1,0)− c1)x(−2,−1) + (c1 + 2c(1,0)−

c2)x(−1,−1) +3c(1,0)x(0,−1) +c(3,2)x(1,1)−c(3,2)x(2,1), so [k, f1] = 0 if and only if c1 = c2 = c(1,0) =

c(−1,0) = c(3,2) = 0. As the dimension of kf1 = 1, it follows that K.f1 is a 5-dimensional K-

orbit. On the other hand, kf is at least one dimensional for all elements f ∈ n−1 ∩p since any

element of the root space g−3α−2β is in kf . Specifically, any negative root added to −3α− 2β

is not a root and f ∈ n−1 ∩ p is a sum of root vectors associated to negative roots only. The

dimension of K.f1 is maximal, so by Lemma 1.2, K.f1 is dense in K.(n−1 ∩ p).

Positive System Φ+
2 : For Φ+

2 , we have n−2 ∩ p = SpanC
(
{x(0,1), x(−1,−1), x(−2,−1), x(−3,−1)}

)
.

Since f1 lives in n−2 ∩ p, one might hope that it defines a generic element in this case as

well. However, the dimension of K.(n−2 ∩ p) increases, which forces us to consider a different

generic element. In this case, K.(n−2 ∩p) meets the principal nilpotent orbit in g, so we chose

a principal nilpotent element.

Proof of Proposition 3.2 (f2 is generic). First, we begin with a general observation about

orbits K.f with f ∈ n− ∩ p whose dimension happens to be equal to the dimension of K.

Since K.(n− ∩ p) has a dense K-orbit, it is always bounded above by the dimension of K.
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Hence, it follows that if K.f has the same dimension as K, then it must be the unique

orbit in K.(n− ∩ p) of maximal dimension. Therefore, f is necessarily a generic element. In

any such case, our discussion in the previous proposition implies that it suffices to show kf

has dimension zero. Since [k, f2] = −c(−3,−2)x(−3,−1) + 2c(−1,0)x(−2,−1) + (c1 − c2)x(−1,−1) +

3c(1,0)x(0,−1) + (2c2 − 3c1)x(0,1) − c(1,0)x(1,1) − c(3,2)x(2,1) = 0 if and only if c1 = c2 = c(1,0) =

c(−1,0) = c(3,2) = c(−3,−2) = 0, it follows that kf2 has dimension zero.

Positive System Φ+
3 : For Φ+

3 , we have n−3 ∩ p = SpanC
(
{x(0,1), x(1,1), x(−2,−1), x(−3,−1)}

)
. It

turns out that K.(n−3 ∩ p) has dimension 5, but proving this will require a bit more work

than the previous cases. Showing that f3 is generic will serve as a good illustration for some

of the methods that will be used when we pass to F4.

Proof of Proposition 3.2 (f3 is generic). Given an arbitrary element

f =
∑

ξ∈−Φ+
3 ∩Γp

aξxξ

of n−3 ∩p, we have [k, f ] = (−3c1a(−3,−1) +c2a(−3,−1) +3c(−1,0)a(−2,−1)−c(−3,−2)a(0,1))x(−3,−1) +

(−c1a(−2,−1) + c(1,0)a(−3,−1) + c(−3,−2)a(1,1))x(−2,−1) + (2c(1,0)a(−2,−1))x(−1,−1) + (−3c1a(0,1) +

2c2a(0,1)−c(3,2)a(−3,−1)−3c(−1,0)a(1,1))x(0,1)+(−c1a(1,1)+c2a(1,1)−c(1,0)a(0,1)+c(3,2)a(−2,−1))x(1,1)+

(−2c(1,0)a(1,1))x(2,1). Now, the equation [k, f ] = 0 translates into the matrix equation



−3a(−3,−1) a(−3,−1) 0 0 3a(−2,−1) −a(0,1)

−a(−2,−1) 0 a(−3,−1) 0 0 a(1,1)

0 0 2a(−2,−1) 0 0 0

−3a(0,1) 2a(0,1) 0 −a(−3,−1) −3a(1,1) 0

−a(1,1) a(1,1) −a(0,1) a(−2,−1) 0 0

0 0 −2a(1,1) 0 0 0





c1

c2

cα

c3α+2β

c−α

c−3α−2β


= 0.

Since being an element of kf is equivalent to being an element of the nullspace of the relations
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matrix, the dimension of K.f is completely determined by the rank of the matrix. Observe

that rows 3 and 6 are linearly dependent, so the rank is bounded above by 5. Therefore,

K.(n−3 ∩ p) is at most 5 dimensional. For our choice of f3, the matrix becomes



0 0 0 0 3 −1

−1 0 0 0 0 0

0 0 2 0 0 0

−3 2 0 0 0 0

0 0 −1 1 0 0

0 0 0 0 0 0


,

and it is clear that the matrix has rank exactly five. Therefore, we have found an element

whose K-orbit dimension is maximal, so f3 is generic.
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4

Springer Fiber Components: Split Real Form G2
2

In order to describe certain components of the Springer fibers for each generic element

defined above, we need to introduce some parabolic subgroups associated to the three positive

systems given in the previous chapter. Recall our discussion from Chapter 1 which illustrates

that understandingN(fj, n
−
j ∩p) is key to describing the Springer fiber components. It follows

that we want to explore which elements of K live in the subset N(fj, n
−
j ∩ p). The defining

property for N(fj, n
−
j ∩ p) does not imply that it is necessarily a subgroup of K, but we

can hope to find certain groups contained in N(fj, n
−
j ∩ p) from which we can construct the

fibers.

In many classical cases, there are instances where N(f, n−∩p)−1.b is built up from several

groups, and the fibers take the form

ψ−1
O (f) = LnLn−1 · · ·L1.b

for particular choices of reductive subgroups Li of K. Such descriptions can be found in

[BZ08] for the groups SU(p, q). However, the structure of the fibers can be quite complicated

for other types. For type G2, the fibers are necessarily homogeneous and built from a

well-chosen parabolic subgroup of K. Let us now introduce the procedure for constructing

parabolic subgroups contained in N(fj, n
−
j ∩ p).

To build these parabolic subgroups, let Ij = Φ(h, k) ∩ ∆j denote the simple compact
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roots in Φ+
j , and let ΦIj ⊂ Φ(h, k) denote the root system associated to Ij with positive roots

Φ+
Ij

= ΦIj ∩ Φ+(h, k). Then define a parabolic subalgebra

qj =

(
h +

∑
γ∈ΦIj

gγ

)
+

∑
γ∈Φ+(h,k)\Φ+

Ij

g−γ = lj + u−j

of k, and let Qj (resp., Lj) denote the connected subgroups of K with Lie algebras qj (resp.,

lj). The Springer fiber components for each closed K-orbit O in the flag variety of G2 have

a nice description, and the remainder of Section 4 will be devoted to proving the following

theorem.

Theorem 4.1. Let bj denote the Borel subalgebra constructed from the positive system Φ+
j ,

and let Oj = K.bj denote the associated closed K-orbit in the flag variety of G2. For each

generic element fj, ψ
−1
Oj (fj) is isomorphic to Lj.bj.

It was noted above that ψ−1
Oj (fj) ' N(fj, n

−
j ∩ p)−1.bj, so it suffices to show that

Lj.bj = N(fj, n
−
j ∩ p).bj.

Recall that our strategy consists of locating an irreducible component Cf , and then deter-

mining how the component group acts on Cf . Using the group Lj defined above, we want

to show that Cfj = Lj.bj constitutes an irreducible component in ψ−1
Oj (fj) for each generic

element fj. The necessary steps to prove this fact represent the content of the following

lemma.

Lemma 4.2. The following properties hold.

(a) Lj stabilizes n−j ∩ p, so Lj ⊂ N(fj, n
−
j ∩ p)

(b) Lj.bj is a closed, irreducible subset of ψ−1
Oj (fj)
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(c) The dimension of Lj.bj is equal to the dimension of ψ−1
Oj (fj).

Proof. To begin, consider the parabolic subgroup of g given by

q̃j =

(
h +

∑
γ∈ΦIj

gγ

)
+

∑
γ∈Φ+

j \Φ
+
Ij

g−γ = l̃j + ũ−j .

The corresponding parabolic subgroup Q̃j of G stabilizes ũ−j and K stabilizes p, so the

group Q̃j ∩ K stabilizes ũ−j ∩ p. Since the nilradical n−j consists of the root spaces for all

roots in −Φ+
j and ũ−j consists of the root spaces for all roots in −(Φ+

j \ Φ+
Ij

), it follows that

intersecting with p corresponds to removing all compact roots from both sets. As a result,

n−j ∩p = ũ−j ∩p ([BZ08, cf. Remark 3.5]), so the group Q̃j∩K stabilizes n−j ∩p. Finally, l̃j = lj

and Lj ⊂ Q̃j ∩K, so Lj stabilizes n−j ∩p. To prove part (b), note that Lj is connected, hence

irreducible, so part (a) implies that Lj.bj is an irreducible subvariety of ψ−1
Oj (fj). Since lj∩bj

is a Borel subalgebra of lj relative to the reductive subgroup Lj, it follows that Lj.bj is a flag

variety for Lj, hence Lj.bj is closed in B. For part (c), we begin with the observation that

1/2 dim G.f = dim K.f ([CM93, cf. Remark 9.5.2]), so the dimension formula of Proposition

1.5 only requires us to know the dimension of kf . Specifically, dim K = dim B = 6, so dim

ψ−1
Oj (fj) = 6 − dim kf . From Proposition 3.2, ψ−1

O2
(f2) has dimension zero, so part (c) is

trivial for that case. As for the cases where j = 1 or 3, we need to show that Lj.bj is one

dimensional. Let γj denote the only positive root in ΦIj , and let Aj = Exp(C · xγj) denote

the subgroup of Lj having dimension one. Since Aj completely misses Bj = StabG(bj), the

dimension of Aj.bj is at least one, hence the dimension of Lj.bj is at least one as well. By

Propositions 3.2 and 1.5, Lj.bj has the same dimension as ψ−1
Oj (fj).

Now that we have found these irreducible pieces, we know from Proposition 1.5 that

ψ−1
Oj (fj) consists of the orbit under the component group of fj. Fortunately, the components

groups are classified and will be extensively referenced in what follows. However, even
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though the component groups are known finite groups, finding coset representatives is quite

challenging. Specifically, the component groups are known abstractly, but we do not know

the elements explicitly for a given generic element. Without knowing more about them,

we will not know how many irreducible components occur in a given fiber. One idea is

to hope that finding elements of the stabilizer subgroup amounts to finding solutions to or

making deductions from some algebraic equations. Indeed, we do have embeddings in terms

of matrices, but the large dimensions can complicate things.

Alternatively, one may hope to find at least where the coset representatives are located

inside of K in order to understand the fibers. Unfortunately, the exceptional groups carry an

added level of difficulty given that they lack some of the algebraic clarity that the classical

types possess. In many cases, we will need to utilize as much of the Lie algebra structure

as possible. For G2, the fixed point subgroup K is very nice because we will be able to use

some SL2 theory, whereas for F4, we will need to dig a bit deeper. Before embarking on a

journey to understand K, we state a useful theorem found in [Loo69, Chapter IV].

Theorem 4.3. Let G be a connected Lie group and let θ be an involutive automorphism of

G. Then the fixed point set K of θ has finitely many connected components, and the quotient

of K by its identity component K◦ is isomorphic to the direct product of cyclic groups of

order two. If G is simply connected, then K is connected.

To compute the component groups, we will utilize our matrix representation π. Since

G = G2 is necessarily simply connected, we know from the above theorem that K is con-

nected as a subgroup of G. Therefore, K must be isomorphic to the connected subgroup

K ′ of GL(7,C) generated by the exponential map whose Lie algebra π(k) is isomorphic to

sl2 ⊕ sl2. From our knowledge of covering groups, this implies that K is isomorphic to the

quotient of SL2 × SL2 by some discrete subgroup C of the center of SL2 × SL2. The cen-

ter of SL2 is ±I2 where I2 ∈ SL2 denotes the 2 × 2 identity matrix, so C must be one of

{I2, I2}, {(±I2,±I2)}, {(±I2, I2)}, {(I2,±I2)}, or {±(I2, I2)}.
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Since we will utilize an assortment of sl2 triples throughout this paper, we need to intro-

duce a consistent notation for such triples. From now on, such triples will be written as a

set {h, e, f} or {hj, ej, fj} with an sl2 correspondence given by:

h↔ hj ↔

1 0

0 −1

 , e↔ ej ↔

0 1

0 0

 , and f ↔ fj ↔

0 0

1 0

 .
Let kα (resp., k3α+2β) denote the copy of sl2 in k associated to the root α (resp., 3α + 2β).

Using some SL2 theory, let us define maps from SL2 into GL(7,C) whose image lies in K ′.

For kα, let e = x(1,0), f = x(−1,0), and h = h(1,0) denote such a triple, and recall the following

identifications under π:

π(e) = π(x(1,0)) = E7
1,2 + 2E7

3,4 + E7
4,5 + E7

6,7 and

π(f) = π(x(−1,0)) = E7
2,1 + E7

4,3 + 2E7
5,4 + E7

7,6.

By using linearity of the bracket and the equation [En
i,j, E

n
k,l] = δj,kE

n
i,l − δl,iEn

k,j ([Hum72,

Section 1]), an easy calculation gives

π(h) = π(h(1,0)) = E7
1,1 − E7

2,2 + 2E7
3,3 − 2E7

5,5 + E7
6,6 − E7

7,7.

Now, C7 decomposes into 2 irreducible sl2 representations each of dimension two and 1

irreducible sl2 representation of dimension three. If {b1, b2, . . . , bn} represents a standard

basis for Cn, then this decomposition is given by

SpanC
(
{b1, b2}

)
⊕ SpanC

(
{b3, b4, b5}

)
⊕ SpanC

(
{b6, b7}

)
.

Since SL2 is simply connected, we know that there is a corresponding SL2 representation

Π1 : SL2 → GL(7,C) with image in K ′ defined by Π1(Exp(X)) = Exp(π(X)) for X ∈ kα.
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By [FH96, Section 23], this map is uniquely determined by its derivative map π|kα because

SL2 is simply connected. Motivated by the sl2 representations above, define a map φ1 :

SL2 → GL(7,C) where

φ1

(a b

c d

) =



a b 0 0 0 0 0

c d 0 0 0 0 0

0 0 a2 2ab b2 0 0

0 0 ac ad+ bc bd 0 0

0 0 c2 2cd d2 0 0

0 0 0 0 0 a b

0 0 0 0 0 c d


.

Thinking of SL2 representations in terms of SL2 acting on homogenous two variable poly-

nomials of dimension n motivates defining φ1 in this manner. To show that we have found

the correct part of K ′ lying above kα, we will need to show that φ1 = Π1. It suffices to

show that dφ1 is equal to dΠ1 = π|kα since a homomorphism between closed linear groups is

determined by its derivative. Since dφ1 and π are both linear, it is only necessary to show

this property on a basis. As a result, let

ce(t) = Exp

(
t

0 1

0 0

) =

1 t

0 1

 ,

cf (t) = Exp

(
t

0 0

1 0

) =

1 0

t 1

 , and

ch(t) = Exp

(
t

1 0

0 −1

) =

et 0

0 e−t

 .
Applying φ1 gives us the following matrices in GL(7,C):
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φ1(ce(t)) =



1 t 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 2t t2 0 0

0 0 0 1 t 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 t

0 0 0 0 0 0 1


, φ1(cf (t)) =



1 0 0 0 0 0 0

t 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 t 1 0 0 0

0 0 t2 2t 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 t 1


, and

φ1(ch(t)) =



et 0 0 0 0 0 0

0 e−t 0 0 0 0 0

0 0 e2t 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 e−2t 0 0

0 0 0 0 0 et 0

0 0 0 0 0 0 e−t


.

Differentiating with respect to t and evaluating at t = 0, we see that dφ1(e) = π(e), dφ1(f) =

π(f), and dφ1(h) = π(h), hence dφ1 = π|kα . Since φ1 = Π1, the image of φ1 lies inside of K ′

and is isomorphic to SL2.

Now, consider the subalgebra k3α+2β. The sl2 correspondence here is e = x(3,2), f =

x(−3,−2), and h = h(3,2), so we have

π(e) = π(x(3,2)) = −E7
1,6 − E7

2,7,

π(f) = π(x(−3,−2)) = −E7
6,1 − E7

7,2, and

π(h) = π(h(3,2)) = E7
1,1 + E7

2,2 − E7
6,6 − E7

7,7.

We have C7 expressed as two copies of the natural representation and three copies of the
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trivial representation:

SpanC
(
{b1, b6}

)
⊕ SpanC

(
{b3}

)
⊕ SpanC

(
{b4}

)
⊕ SpanC

(
{b5}

)
⊕ SpanC

(
{b2, b7}

)
.

Again, there is a corresponding SL2 representation Π2 : SL2 → GL(7,C) defined by

Π2(Exp(X)) = Exp(π(X)) for X ∈ k3α+2β. Define φ2 : SL2 → GL(7,C) where

φ2

(a b

c d

) =



a 0 0 0 0 −b 0

0 a 0 0 0 0 −b
0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

−c 0 0 0 0 d 0

0 −c 0 0 0 0 d


.

A similar argument shows that the image of φ2, which is also isomorphic to SL2, lies inside

of K ′ since φ2 = Π2.

To determine C and therefore K ' (SL2×SL2)/C, we need to understand the solutions

to the equation Exp(π|k(X)) = I for X ∈ h ⊂ k. Exploring these solutions is sufficient since

the discrete subgroup must lie inside of the Cartan subgroup H = Exp(π(h)) ([FH96, cf.

Section 23]). An arbitrary element of this Cartan subgroup takes the form



ab 0 0 0 0 0 0

0 a−1b 0 0 0 0 0

0 0 a2 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 a−2 0 0

0 0 0 0 0 ab−1 0

0 0 0 0 0 0 a−1b−1


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for a and b in C∗. Then the equation Exp(π|k(X)) = I gives us equations ab = 1, a−1b =

1, a2 = 1, a−2 = 1, ab−1 = 1, and a−1b−1 = 1 whose only solutions are a = b = 1 or

a = b = −1. It follows that C = ±(I2, I2) ⊂ SL2 × SL2. The following proposition

summarizes this discussion.

Proposition 4.4. The fixed point subgroup K is isomorphic to (SL2 × SL2)/± (I2, I2) and

the map φ : SL2 × SL2 → GL(7,C) given by φ(x, y) = φ1(x)φ2(y) induces an isomorphism

of K with the connected subgroup K ′ of GL(7,C) with Lie algebra π(k) ' sl2 ⊕ sl2.

Proof. The first statement about K has already been proved in the discussion above. For

the second statement, note that representations of K are completely determined by repre-

sentations of SL2×SL2, which are trivial on C. It is clear that φ is trivial on C, so it induces

a representation φK : K → GL(7,C). The injectivity of φK follows from the computation

for C given above, and the surjectivity of φK onto K ′ comes from the fact that the images

of φ1 and φ2 are the two copies of SL2 that cover K ′. Therefore, φK yields the desired

isomorphism, and provides the embedding of K into GL(7,C).

For each generic element fj, let us identify the nilpotent orbit associated to it. This will

allow us to look up which type of component group is associated to fj. By the Jacobson-

Morosov theorem described in [KR71], fj may be embedded in an sl2 triple {hj, ej, fj} with

ej, fj ∈ p and hj = [ej, fj] ∈ k. Note that such triples with the nilpotent elements in p

and semisimple element in k are refered to as normal triples. Dokovic gives a complete

classification of all possible nilpotent K-orbits in p in a series of tables found in [Dok88].

Since there are instances of multiple K-orbits in Nθ with the same dimensions, we will need

to introduce another piece of data from these tables that distinguishes the orbits. Altering

the notation from Dokovic’s slightly to keep track of our generic elements, define the subset

g(j, 2) = {X ∈ p : [hj, X] = 2X}.
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Then the dimension of the orbit together with the dimension of g(j, 2) will tell us precisely

which orbit contains fj. When one references the tables, observe that Dokovic denotes the

subset g(j, 2) simply by g(1, 2) since there is no need to give a notation to any specific

nilpotent in that case. Once we identify the orbit for fj, we can cross-reference with [Kin92]

to determine the related component group.

From the multiplication tables, we see that Table 4.1 contains choices for the nilpositive

and semisimple elements of sl2 triples containing fj. For each generic element fj, we have

dim g(1, 2) = 4, dim g(2, 2) = 2, and dim g(3, 2) = 2 (see Appendix A), so it follows from

[Kin92] that the component groups AK(fj) are as listed in Table 4.2. In general, there are

several nilpotent K-orbits of a particular dimension, so such data is usually required in order

to identity the component group. Since there is only one maximal 6-dimensional nilpotent

K-orbit according to [Dok88], AK(f2) is trivial (see [Kin92]). Consequently, we could have

omitted the computation of the corresponding sl2 triple and the dimension of g(2, 2). Now, let

us begin the search for representatives of the component groups. To describe the component

group for f1, define generators r and s for S3 ⊂ (SL2 × SL2)/± (I2, I2) where

r =

0 −1

1 −1

×
1 0

0 1

 , and s =

0 i

i 0

×
−i 0

0 i

 ,
and note that the relations r3 = s2 = 1 and srs = r−1 for S3 are satisfied. There is no need

j Nilpositive Element ej Semisimple Element hj

1 −4/3x(0,1) + 2/3x(1,1) + 2/3x(2,1) − 4/3x(3,1) 2hα + 4hβ

2 10x(0,−1) + 6x(1,1) 6hα + 8hβ

3 x(0,−1) + x(2,1) 2hα + 2hβ

Table 4.1: sl2 triples {ej, fj, hj}
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Component Group Isomorphism Type

AK(f1) S3 (Symmetric Group)

AK(f2) 1

AK(f3) Z2

Table 4.2: Component Groups AK(fj)

to work hard for f2 since the component group is trivial. As for f3, choose the generator

z =

i 0

0 −i

×
−i 0

0 i


for a subgroup

Z2 ⊂ (SL2 × SL2)/± (I2, I2).

To motivate these elements, recall that our effort to describeK and fj in terms of matrices has

its benefits because we are able to use linear algebra to unearth these generators. Different

choices of generic elements yield isomorphic components groups, but the generic elements

provided above simplify the algebra and produce nice representatives. There are actually

other methods to discover coset representatives and work with the component groups that

will be used for type F4, but the fixed point subgroup K for G2 allows us to exploit SL2

representations.

Now, it is easy to show that embedding these generators according to Proposition 4.4 give

elements which stabilize fj (see Appendix A). However, we must ask ourselves whether these

elements actually give a complete set of coset representatives for the component group.

We must be careful that we have not found elements that belong to the same connected

component. Fortunately, the following lemma will allow us to navigate this issue, but first

we need a definition. Note that the definition and lemma are true for any fixed point
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subgroup K of an involution of G.

Definition 4.5. For any sl2 triple {h, e, f}, the subgroup K{h,e,f} will denote the stabilizer

subgroup in K of the triple {h, e, f}.

Lemma 4.6. The component group AK(f) ' K{h,e,f}/K{h,e,f}◦ where K{h,e,f}◦ denotes the

identity component of K{h,e,f}.

Proof. See Lemma 1.5 in [Kin92] for the details. Note that in his paper the fixed point

subgroup is denoted Gθ. The idea is that the stabilizer subgroup can be separated into

a semidirect product of K{h,e,f} with a connected unipotent part, which disappears in the

quotient group.

The lemma illustrates that finding elements stabilizing fj amounts to finding elements

that stabilize a normal triple containing fj. One advantage to this approach is that finding

K{hj ,ej ,fj} is generally easier than finding Kfj . Our motivation involves the fact that the

tables in [Kin92] actually give us the isomorphism type of K{h,e,f} for most nilpotent K-

orbits when K is connected. In our case, K{hj ,ej ,fj} is the same as the component group S3

(resp., 1, Z2) for the generic element f1 (resp., f2, f3). The elements r, s, and z stabilize their

respective triples (see Appendix A), so these elements are precisely coset representatives for

AK(fj). Now, we have all of the tools necessary to finish our main theorem in this section.

Proof of Theorem 4.1 . The only part we have left to prove according to Proposition 1.5 and

Lemma 4.2 is that ⋃
k∈AK(fj)

k.Lj.bj = Lj.bj.

First, notice that Qj.bj = Lj.bj since the part of Qj that is disjoint from Lj is contained in

the stabilizer of bj in K. Therefore, it suffices to show that the component group is contained

in Qj. For j = 2, there is nothing to prove since AK(f2) is trivial. For j = 1, the direct

factors of r and s coming from the portion of K lying above kα live in L1 ⊂ Q1 since α is
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in I1. On the other hand, the direct factors of r and s coming from the portion of K lying

above k3α+2β live in the Cartan subgroup H ⊂ Q1 corresponding to h. Since both factors in

the direct products for r and s are contained in Q1, it follows that r, s, and any powers are

as well. For j = 3, observe that z is actually an element of H, hence an element of Q3.
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5

The Exceptional Lie Algebra f4

To begin work on the Springer fiber components for the two noncompact real forms for

type F4, we need to build the Lie algebra. Let h denote a fixed Cartan subalgebra of g = f4,

and let Φ(h, g) denote a root system relative to h. Then write

g = h⊕
⊕

ξ∈Φ(h,g)

gξ

for the root space decomposition of g into its root spaces gξ and four dimensional Cartan

subalgebra h. Let ∆(h, g) = {α, β, γ, δ} denote a base for Φ(h, g) where α and β constitute

the long roots, while γ and δ constitute the short roots. Figure 5.1 gives the corresponding

Dynkin diagram for f4.

Figure 5.1: Dynkin Diagram for f4

Using the algorithm for determining root strings found in [Hum72, Section 10.1], we see

that the positive roots relative to ∆(h, g) for type f4 are precisely those roots in Table 5.1.

Let ⋃
ξ∈Φ(h,g)

{
xξ
}
∪

⋃
ξ∈∆(h,g)

{
hξ = [xξ, x−ξ]

}
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α β γ

δ α + β β + γ

γ + δ α + β + γ β + 2γ

β + γ + δ α + β + 2γ α + β + γ + δ

β + 2γ + δ α + 2β + 2γ α + β + 2γ + δ

β + 2γ + 2δ α + 2β + 2γ + δ α + β + 2γ + 2δ

α + 2β + 3γ + δ α + 2β + 2γ + 2δ α + 2β + 3γ + 2δ

α + 2β + 4γ + 2δ α + 3β + 4γ + 2δ 2α + 3β + 4γ + 2δ

Table 5.1: Roots Φ(h, g) for f4

represent a Chevalley basis for g where xξ denotes a basis vector in gξ for each

ξ = iα + jβ + kγ + `δ ∈ Φ(h, g).

Since we may find it useful to write x(i,j,k,`) instead of xξ, the two notations should be freely

interchanged. Lastly, we may refer to the elements of h generated by the nonsimple root

vectors, so let hξ denote those elements [xξ, x−ξ] for all ξ ∈ Φ+(h, g).

First, we choose the simple root vectors as prescribed by the Cartan matrix, and then

use the Lie bracket to generate all of g. Let


2 −1 0 0

−1 2 −2 0

0 −1 2 −1

0 0 −1 2


be the Cartan matrix for f4. Then choose simple root vectors satisfying the relations in

Table 5.2, and then use the Lie bracket to extend to a basis for g (see Table 5.3). Note

that this basis is a Chevalley type basis that agrees with the mathematical software package
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[h(1,0,0,0), x(1,0,0,0)] = 2x(1,0,0,0) [h(1,0,0,0), x(0,1,0,0)] = −x(0,1,0,0)

[h(1,0,0,0), x(0,0,1,0)] = 0 [h(1,0,0,0), x(0,0,0,1)] = 0

[h(0,1,0,0), x(1,0,0,0)] = −x(1,0,0,0) [h(0,1,0,0), x(0,1,0,0)] = 2x(0,1,0,0)

[h(0,1,0,0), x(0,0,1,0)] = −x(0,0,1,0) [h(0,1,0,0), x(0,0,0,1)] = 0

[h(0,0,1,0), x(1,0,0,0)] = 0 [h(0,0,1,0), x(0,1,0,0)] = −2x(0,1,0,0)

[h(0,0,1,0), x(0,0,1,0)] = 2x(0,0,1,0) [h(0,0,1,0), x(0,0,0,1)] = −x(0,0,1,0)

[h(0,0,0,1), x(1,0,0,0)] = 0 [h(0,0,0,1), x(0,1,0,0)] = 0

[h(0,0,0,1), x(0,0,1,0)] = −x(0,0,1,0) [h(0,0,0,1), x(0,0,0,1)] = 2x(0,0,1,0)

Table 5.2: Relations for f4

GAP. Recall that if ξ, ε and ξ + ε are roots such that [xξ, xε] = cξ,εxξ+ε, then cξ,ε = −c−ξ,−ε.

Therefore, we will omit half of the bracket relations. The complete multiplication tables are

given in Appendix E for reference.

Recall that in Chapter 2, we introduced a faithful representation of g2 ⊂ gl(7,C) as a

means to better understand the fixed point subgroup K. This representation proved useful

because we were able to classify K as well as find the nontrivial component groups in a con-

crete manner. Naturally, we would like to implement that strategy for F4 as well. However,

the jump in dimension makes viewing K ⊂ F4 in terms of matrices more complicated as the

smallest faithful irreducible representation of f4 is 26-dimensional. Of course, we know the

isomorphism type of the Lie algebra of K, but finding an actual embedding of K in GL(26,C)

becomes an enormous task. Fortunately, the fibers can be described without relying heavily

on a representation of F4 provided we make good choices for the generic elements.

The methods that will be used for f4 could have been implemented in g2 as well, but we

would have lost the information gained about K ⊂ G2. As for G2, many of the fibers ψ−1
O (f)

for F4 have one component, but we will prove this with other strategies. If we can show that

nontrivial component groups are necessarily contained in the groups used to build the fibers
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x(1,1,0,0) = −[x(1,0,0,0), x(0,1,0,0)] x(0,1,1,0) = [x(0,1,0,0), x(0,0,1,0)]

x(0,0,1,1) = [x(0,0,1,0), x(0,0,0,1)] x(1,1,1,0) = [x(1,1,0,0), x(0,0,1,0)]

x(0,1,2,0) = 1/2[x(0,1,1,0), x(0,0,1,0)] x(0,1,1,1) = [x(0,1,1,0), x(0,0,0,1)]

x(1,1,2,0) = 1/2[x(1,1,1,0), x(0,0,1,0)] x(1,1,1,1) = [x(1,1,1,0), x(0,0,0,1)]

x(0,1,2,1) = [x(0,1,2,0), x(0,0,0,1)] x(1,2,2,0) = [x(1,1,2,0), x(0,1,0,0)]

x(1,1,2,1) = [x(1,1,2,0), x(0,0,0,1)] x(0,1,2,2) = 1/2[x(0,1,2,1), x(0,0,0,1)]

x(1,2,2,1) = [x(1,1,2,1), x(0,1,0,0)] x(1,1,2,2) = 1/2[x(1,1,2,1), x(0,0,0,1)]

x(1,2,3,1) = [x(1,2,2,1), x(0,0,1,0)] x(1,2,2,2) = 1/2[x(1,2,2,1), x(0,0,0,1)]

x(1,2,3,2) = [x(1,2,3,1), x(0,0,0,1)] x(1,2,4,2) = 1/2[x(1,2,3,2), x(0,0,1,0)]

x(1,3,4,2) = −[x(1,2,4,2), x(0,1,0,0)] x(2,3,4,2) = −[x(1,3,4,2), x(1,0,0,0)]

Table 5.3: Lie Brackets for f4

ψ−1
O (f), then we will eliminate the need to actually find the elements representing the com-

ponent group. However, one of the fibers ψ−1
O (f) for the split real form of F4 consists of two

irreducible components, so we will be looking for generators of the component group. The

generator will be defined independent of any representation, but building a representation

of f4 does offer some insight into finding the elements of k defining the generator.

There is only one complex connected simple Lie group of type F4 ([Ale05, cf. Proposition

4.1]). It follows that this group is necessarily simply connected. Therefore, we can build a

representation of G = F4 in GL(26,C) from a faithful representation of g = f4 in gl(26,C).

Let MT represent the matrix transpose for any matrix M . Following [HRT01], we’ll choose

the representation π : g → gl(26,C) with generators for a Chevalley basis given in Table

E.4. Just like the g2 case, these generators agree completely with the generators given above

purely in terms of bracket relations.
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6

Generic Elements for F4

6.1 Generic Elements: Split Real Form F 4
4

In Chapter 5, we discussed that there are two different noncompact real forms of the

complex Lie algebra of type f4. Our next goal for this paper will be to give results similar

to the results given in type G2 for both of these forms. Let us begin by building the Cartan

decomposition for the split real form F 4
4 . To build the split real form, define an involution

θ : g → g by first defining θ(xα) = −xα, θ(xβ) = xβ, θ(xγ) = xγ, and θ(xδ) = xδ on the

simple root vectors, and then extend to all of g so that θ commutes with the Lie bracket.

Again, this is illustrated by a Vogan diagram (see Figure 6.2) where a root vector is in k

whenever a simple root is not painted, and a root vector is in p whenever a simple root is

painted.

Figure 6.1: Vogan diagram for the split real form of f4

As in the g2 case, we have a partition of the roots into the set of compact roots Φ(h, k)

and the set of noncompact roots Γp. A simple calculation shows that the positive roots in

Φ(h, k) are given in Table 6.1 and the positive roots in Γp are given in Table 6.2. Finally,
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β γ δ β + γ γ + δ

β + 2γ β + γ + δ β + 2γ + δ β + 2γ + 2δ 2α + 3β + 4γ + 2δ

Table 6.1: Compact Roots Φ+(h, k)

α α + β α + β + γ α + β + 2γ

α + β + γ + δ α + 2β + 2γ α + β + 2γ + δ α + 2β + 2γ + δ

α + β + 2γ + 2δ α + 2β + 3γ + δ α + 2β + 2γ + 2δ α + 2β + 3γ + 2δ

α + 2β + 4γ + 2δ α + 3β + 4γ + 2δ

Table 6.2: Noncompact Roots Γ+
p

note that we have a decomposition of g into a 24-dimensional subalgebra

k = h⊕
⊕

ξ∈Φ(h,k)

gξ ' sl(2,C)⊕ sp(6,C),

plus a 28-dimensional subspace

p =
∑
ξ∈Γp

gξ.

See [Kna02] for the complete details about this real form. In particular, the subspaces k0

and p0 will be omited as they are defined the same way as for type G2
2.

The Weyl group for f4 relative to Φ(h, g), denoted W , is a group of order 1152. Also,

the roots corresponding to the copy of sl(2,C) in k are the two roots 2α+ 3β + 4γ + 2δ and

−2α − 3β − 4γ − 2δ whose root spaces g2α+3β+4γ+2δ and g−2α−3β−4γ−2δ commute with the

other root spaces gξ for roots ξ ∈ Φ(h, k) \ ±{2α + 3β + 4γ + 2δ}. As a result, the Weyl

group relative to Φ(h, k), denoted WK , is built from the Weyl group of A1 together with the

Weyl group of C3. Since Wk is a group of order 2!× (23× 3!) = 96, W/WK has order 12, so

there are twelve positive systems Φ+
j such that Φ+(h, k) ⊂ Φ+

j ⊂ Φ(h, g). Since the positive
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Root System (nξ1 , nξ2 , . . . , nξ14)

Φ+
2 (−1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

Φ+
3 (−1,−1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

Φ+
4 (−1,−1,−1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

Φ+
5 (−1,−1,−1, 1,−1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

Φ+
6 (−1,−1,−1,−1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

Φ+
7 (−1,−1,−1,−1, 1,−1, 1, 1, 1, 1, 1, 1, 1, 1)

Φ+
8 (−1,−1,−1,−1,−1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

Φ+
9 (−1,−1,−1,−1,−1, 1,−1, 1, 1, 1, 1, 1, 1, 1)

Φ+
10 (−1,−1,−1,−1,−1, 1,−1, 1,−1, 1, 1, 1, 1, 1)

Φ+
11 (−1,−1,−1,−1,−1,−1, 1, 1, 1, 1, 1, 1, 1, 1)

Φ+
12 (−1,−1,−1,−1,−1,−1,−1, 1, 1, 1, 1, 1, 1, 1)

Table 6.3: Scalars nξj for Φ+
j

systems must contain Φ+(h, k), we know that such a positive system has the form

Φ+(h, k) ∪
⋃
ξ∈Γ+

p

{
nξξ
}

for particular scalars nξ ∈ {1,−1}. Use the ordering for Γ+
p introduced across the rows of Ta-

ble 6.2 to enumerate the roots {ξ1, ξ2, . . . , ξ14}. Omitting the positive system Φ+
1 = Φ+(h, g)

with simple system ∆1, the possible scalars (nξ1 , nξ2 , . . . , nξ14) that define the remaining

eleven positive systems are given in Table 6.3. The fact that these are actually positive sys-

tems with the corresponding simple system in Table 6.4 requires some work (see Appendix

B). With so many choices of coefficients, these positive systems are computed by running a

simple loop in Mathematicar based on the definition of a positive system.

Now, let us introduce a set of generic elements. Root vectors associated to simple roots

will not usually serve as generic elements, but we have worked hard to give relatively simple
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Simple System Simple Roots

∆2 {−α, γ, δ, α + β}
∆3 {β, δ,−α− β, α + β + γ}
∆4 {β,−α− β − γ, α + β + 2γ, α + β + γ + δ}
∆5 {β, δ,−α− β − γ − δ, α + β + 2γ}
∆6 {γ,−α− β − 2γ, α + β + γ + δ, α + 2β + 2γ}
∆7 {β, γ, α + β + γ + δ,−α− 2β − 2γ}
∆8 {−α− β − 2γ,−α− β − γ − δ, α + 2β + 2γ, α + β + 2γ + δ}
∆9 {γ,−α− β − 2γ − δ, α + 2β + 2γ, α + β + 2γ + 2δ}
∆10 {γ, δ,−α− β − 2γ − 2δ, 2α + 3β + 4γ + 2δ}
∆11 {β,−α− β − γ − δ,−α− 2β − 2γ, α + β + 2γ + δ}
∆12 {γ,−α− 2β − 2γ,−α− β − 2γ − δ, 2α + 3β + 4γ + 2δ}

Table 6.4: Simple Systems for Φ+
j

linear combinations of basis elements. We will discuss why certain choices for generic ele-

ments are preferred later when we begin building the Springer fiber components. The proofs

that these elements have the corresponding K-orbit dimension can be found in Appendix B.

However, the proofs that these elements are actually generic will appear in the next chapter

once we introduce the subgroups of F4 used to build the fibers. Naturally, we would like to

carry out the method used for the positive system Φ+
3 in type g2 where we compute an upper

bound for the rank of the relations matrix resulting from the equation [k, f ] = 0. However,

these matrices are significantly larger for f4, so finding these ranks can be a challenge. For-

tunately, the dimension of K.(n−j ∩ p) can be computed for most of the fibers independent of

finding these relations matrices, so we will only need to utilize this method for a few cases.

Proposition 6.1. Let n−j represent the sum of the root spaces for all roots in −Φ+
j . Table

6.5 lists a generic element fj in n−j ∩ p along with the dimension of the orbit O = K.fj.
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Generic Element dim K.fj

f1 = x(−1,0,0,0) + x(−1,−2,−2,−1) + x(−1,−2,−4,−2) 15

f2 = x(1,0,0,0) + x(−1,−1,0,0) + x(−1,−1,−2,−1) 21

f3 = x(1,1,0,0) + x(−1,−1,−1,−1) + x(−1,−2,−2,0) 21

f4 = f6 = x(1,1,0,0) + x(1,1,1,0) + x(−1,−1,−1,−1) + x(−1,−2,−2,0) 23

f5 = x(1,1,1,0) + x(1,1,1,1) + x(−1,−2,−2,0) + x(−1,−1,−2,−2) 22

f7 = x(1,1,1,0) + x(1,2,2,0) + x(−1,−2,−2,−1) + x(−1,−2,−4,−2) 20

f8 = x(1,1,2,0) + x(1,1,1,1) + x(−1,−2,−2,0) + x(−1,−1,−2,−1) 24

f9 = x(1,1,2,0) + x(1,1,1,1) + x(−1,−2,−2,0) + x(−1,−1,−2,−2) 23

f10 = x(1,1,1,0) + x(1,1,2,0) + x(−1,−2,−2,0) + x(−1,−2,−4,−2) 20

f11 = x(1,1,2,0) + x(1,1,1,1) + x(−1,−1,−2,−1) + x(−1,−3,−4,−2) 22

f12 = x(1,1,2,0) + x(1,1,1,1) + x(−1,−2,−2,−1) + x(−1,−1,−2,−2) 22

Table 6.5: Generic Elements fj ∈ n−j ∩ p

6.2 Generic Elements: Real Form F−20
4

Every complex simple Lie algebra has both a compact and split real form. In the case

of g2, these are the only two real forms of g2 up to isomorphism. For f4, there is precisely

one additional real form that is noncompact and nonsplit, which we will now describe.

Consider the involution θ : g→ g by first defining θ(xα) = xα, θ(xβ) = xβ, θ(xγ) = xγ, and

θ(xδ) = −xδ on the simple root vectors, and then extend to all of g so that θ commutes with

the Lie bracket. For this real form, the Vogan diagram is similar to the split case except

that the paintings are reversed on the α and δ roots (see Figure 6.2).

Figure 6.2: Vogan diagram for the noncompact and nonsplit real form of f4
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α β γ α + β

β + γ α + β + γ β + 2γ α + β + 2γ

α + 2β + 2γ β + 2γ + 2δ α + β + 2γ + 2δ α + 2β + 2γ + 2δ

α + 2β + 3γ + 2δ α + 2β + 4γ + 2δ α + 3β + 4γ + 2δ 2α + 3β + 4γ + 2δ

Table 6.6: Compact Roots Φ+(h, k)

δ γ + δ β + γ + δ α + β + γ + δ

β + 2γ + δ α + β + 2γ + δ α + 2β + 2γ + δ α + 2β + 3γ + δ

Table 6.7: Noncompact Roots Γ+
p

We have a partition of the roots into the set of compact roots Φ(h, k) given in Table

6.6 and the set of noncompact roots Γp given in Table 6.7. For this real form, we have a

decomposition of g into a 36-dimensional subalgebra k isomorphic to so(9,C) obtained from

the 16 positive compact roots plus a 16-dimensional subspace p associated to the 8 positive

noncompact roots. The Weyl group for type f4 relative to Φ(h, g), denoted W , is a group of

order 1152, and the Weyl group relative to Φ(h, k), denotedWK , is the Weyl group associated

to B4 = so(9,C). Therefore, Wk is a group of order 24 × 4! = 384, hence W/WK has order

3. Consequently, there are three positive systems Φ+
j such that Φ+(h, k) ⊂ Φ+

j ⊂ Φ(h, g).

Since the positive systems must contain Φ+(h, k), we know that such a positive system has

the form

Φ+(h, k) ∪
⋃
ξ∈Γ+

p

{
nξξ
}

for particular scalars nξ ∈ {1,−1}. Use the ordering for Γ+
p introduced across the rows

in Table 6.7 to enumerate the roots {ξ1, ξ2, . . . , ξ8}. Omitting the positive system Φ+
1 with

simple system ∆1 such that Φ+
1 = Φ+(h, g), the possible scalars (nξ1 , nξ2 , . . . , nξ8) that define
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Root System (nξ1 , nξ2 , . . . , nξ8)

Φ+
2 (−1, 1, 1, 1, 1, 1, 1, 1)

Φ+
3 (−1,−1, 1, 1, 1, 1, 1, 1)

Table 6.8: Scalars nξj for Φ+(h, k)

Simple System Simple Roots

∆2 {α, β,−δ, γ + δ}
∆3 {α, γ,−γ − δ, β + 2γ + 2δ}

Table 6.9: Simple Systems for Φ+
j

the other two positive systems are given in Table 6.8. Refer to Appendix C to see that ∆j

given in Table 6.9 constitutes a simple system.

We conclude this chapter with a list of generic elements for the noncompact and nonsplit

real form. What is interesting to note for this real form is that the number of nilpotent K-

orbits in Nθ has considerably dropped in comparison to the split case. In particular, the K-

orbits inNθ miss the principal nilpotent orbit, so we will always have nontrivial Springer fiber

components. As the dimension of k has increased, while the dimension of p has decreased,

we would expect a change in the number of nilpotent K-orbits. However, there are actually

only two such orbits besides the zero orbit, which is perhaps a little surprising. This real

form presents some different challenges than the split case. The component groups for this

nonsplit case are trivial, but N(fj, n
−
j ∩ p) becomes more complicated to understand.

Proposition 6.2. Let n−j represent the sum of the root spaces for all roots in −Φ+
j . Table

6.10 lists a generic element fj in n−j ∩ p along with the dimension of the orbit O = K.fj.

Proof of Proposition 6.2. The nilpotent K-orbit in Nθ with largest possible dimension is

15 according to the tables in [Dok88]. As a result, verifying these orbit dimensions of the
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elements listed in Table 6.10 will automatically imply that these elements are generic (see

Appendix C).

Generic Element dim K.fj

f1 = x(−1,−1,−1,−1) + x(0,−1,−2,−1) 15

f2 = x(0,0,0,1) + x(0,0,−1,−1) 15

f3 = x(−1,−1,−1,−1) + x(0,−1,−2,−1) 15

Table 6.10: Generic Elements fj ∈ n−j ∩ p
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7

Springer Fiber Components for F4

To build the Springer fiber components for the real forms F 4
4 and F−20

4 , we need to

introduce several parabolic subgroups of K contained in N(fj, n
−
j ∩ p). In the G2 case, one

parabolic subgroup constituted a subset of N(fj, n
−
j ∩ p) whose dimension was large enough

to describe the whole fiber. For the most part, this same behavior holds true in F 4
4 and

F−20
4 , but there are a few fibers where additional groups in N(fj, n

−
j ∩ p) must be included.

Before describing the fibers specific to each real form, we begin this chapter with a review

of the useful constructs in both cases.

As before, let Ij = Φ(h, k) ∩ ∆j denote the simple compact roots in Φ+
j , and let ΦIj ⊂

Φ(h, k) denote the root system associated to Ij with positive roots Φ+
Ij

= ΦIj∩Φ+(h, k). Then

define a parabolic subalgebra

qj =

(
h +

∑
γ∈ΦIj

gγ

)
+

∑
γ∈Φ+(h,k)\Φ+

Ij

g−γ = lj + u−j

of k, and let Qj (resp., Lj) denote the connected subgroups of K with Lie algebras qj (resp.,

lj). Regardless of the structure of the fibers for each of the closed K-orbits, these groups

will always be used in constructing a substantial part of the fiber or the whole fiber. As we

proceed, we will need to verify that we have found a subset of N(fj, n
−
j ∩ p) of large enough

dimension. The following well-known lemma adapted from [BZ, Lemma 4.12] will be used

to count dimensions.
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Lemma 7.1. Let nj denote the sum of the root spaces gξ for all ξ ∈ Φ+
j , and let Nj denote

the connected subgroup of G with Lie algebra nj. There exists a map

T : nj → Nj.bj

yielding an isomorphism of varieties.

Proof. First, the map T1 : Nj/StabNj(bj)→ Nj.bj in [Jan04, Section 2.1] given by n→ n.bj

yields an isomorphism of varieties. Since our Borel subalgebras are built from −Φ+
j rather

than Φ+
j , it follows that StabNj(bj) is trivial. By [Spr81, Section 8.2], there exists a Bj-

equivariant isomorphism T2 : nj → Nj given by

x =
∑
ξ∈Φ+

j

cξxξ →
∏
ξ∈Φ+

j

Exp(cξxξ) ∈ Nj.

Therefore, the composition T = T1 ◦ T2 gives our desired isomorphism.

Finally, when we introduce candidates for the components of the Springer fibers, we will

want to know that they are closed subvarieties. In some cases, we will have to take closures

in B to get the components. However, there are a few cases where we can utilize the next

proposition.

Proposition 7.2. Let G be an algebraic group acting rationally on a variety V . Suppose

that a parabolic subgroup P of G stabilizes a closed subset A of the variety V . Then the

union

G.A =
⋃
g∈G

g.A

is closed in V .

Proof. See §0.15 in [Hum95] for the details.
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7.1 Springer Fiber Components: Split Real Form F 4
4

Our first order of business is to argue that the elements listed in Proposition 6.1 are

generic. To accomplish this, we take advantage of part (a) from Lemma 4.2. The idea is

that because Lj stabilizes n−j ∩ p regardless of a choice of generic element f ∈ n−j ∩ p, we will

automatically obtain an upper bound on the dimension of K.(n−j ∩ p). Observe that Lemma

4.2 was cast in terms of g2, but the result holds for f4 as well with the same proofs.

Proof of Proposition 6.1. Begin by using Lemma 7.1 to see that

∣∣Φ+
Ij

∣∣ ≤ dim ψ−1
O (f) = dim B − dim K.f (7.1)

for any generic element f in n−j ∩ p. Indeed, the span of the root vectors for roots in Φ+
Ij

is

contained in lj, so the span has dimension
∣∣Φ+

Ij

∣∣ and maps via T into ψ−1
O (f). Hence for any

generic element f , dim K.f ≤ dim B −
∣∣Φ+

Ij

∣∣. This implies that for any f ′ ∈ n−j ∩ p, if dim

K.f ′ = dim B− dim
∣∣Φ+

Ij

∣∣, then K.f ′ is a K-orbit of maximal dimension in n−j ∩ p, so f ′ is

generic. Since the cardinalities of Φ+
I3

and Φ+
I11

are not large enough to make (7.1) above an

equality, we prove that f3 and f11 are generic in Appendix B. For the positive system Φ+
I8

,

K.f8 has the maximum possible dimension (dim K.f8 = 24 = dim K), so f8 is automatically

generic. For all of the remaining cases, dim B−
∣∣Φ+

Ij

∣∣ listed in Table 7.1 equals the dimension

of K.fj listed in Table 6.5, so fj is necessarily generic.

Most of the fibers can be described right away based on what has already been proved

in Chapter 4. For the generic elements fj with j 6= 3, 11, the subset Cfj = Ljbj of ψ−1
Oj (fj)

will again represent closed irreducible components of the Springer fibers. For the remaining

fibers though, we need to introduce a few more subgroups because Lj is not large enough

by itself to build irreducible components of the fibers. The most natural place to look is

the stabilizer subgroup Kf since Kf is contained in N(f, n− ∩ p). For Φ+
I3

, consider the sl2
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Positive System Roots dim B −
∣∣Φ+

Ij

∣∣
Φ+
I1

(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (0, 1, 1, 0), (0, 0, 1, 1), 15

(0, 1, 1, 1), (0, 1, 2, 0), (0, 1, 2, 1), (0, 1, 2, 2)

Φ+
I2

(0, 0, 1, 0), (0, 0, 0, 1), (0, 0, 1, 1) 21

Φ+
I3

= Φ+
I5

(0, 1, 0, 0), (0, 0, 0, 1) 22

Φ+
I4

= Φ+
I11

(0, 1, 0, 0) 23

Φ+
I6

= Φ+
I9

(0, 0, 1, 0) 23

Φ+
I7

(0, 1, 0, 0), (0, 0, 1, 0), (0, 1, 1, 0), (0, 1, 2, 0) 20

Φ+
I8

None 24

Φ+
I10

(0, 0, 1, 0), (0, 0, 0, 1), (0, 0, 1, 1), (2, 3, 4, 2) 20

Φ+
I12

(0, 0, 1, 0), (2, 3, 4, 2) 22

Table 7.1: Positive Systems Φ+
Ij

subalgebra

z3 = SpanC({Xf3 = 2x(0,1,1,0) + 2x(0,0,0,1), Yf3 = x(0,−1,−1,0) + x(0,0,0,−1),

Hf3 = [Xf3 , Yf3 ] = 4h(0,1,0,0) + 2h(0,0,1,0) + 2h(0,0,0,1)})

contained in kf3 . Then use the connected SL2 subgroup Zf3 ⊂ Kf3 whose Lie algebra is zf3

to define Cf3 = Zf3L3.b3 ⊆ ψ−1
Oj (f3). It turns out that Cf3 is precisely the fiber, but this will

require some work. For Φ+
I11

, consider the one-parameter subgroup Zf11 = {Exp(tXf11) : t ∈

C} contained in Kf11 where

Xf11 = x(0,1,1,0) + x(2,3,4,2) − 3x(0,−1,−2,0) + x(0,−1,−1,−1).

Let Cf11 = Zf11L11.b11 denote the subset of ψ−1
O11

(f11) where U denotes the closure of U in

B. In contrast to the previous case, we include the closure here because kf11 is too small to
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afford a subgroup from which Cf11 will necessarily be closed. We omit closures in defining

Cf3 since we will prove momentarily that it is closed. Our first step toward describing the

fibers is the content of the following proposition.

Proposition 7.3. For each generic element fj, Cfj ⊂ B constitutes a closed, irreducible

subvariety of ψ−1
Oj (fj) whose dimension is the same as that of the corresponding ψ−1

Oj (fj).

Proof. For j 6= 3, 11, the same proofs used for Lemma 4.2 prove that Cfj = Ljbj is a closed,

irreducible subvariety of ψ−1
Oj (fj). The dimension follows from Lemma 7.1 because Φ+

Ij
defines

a subspace of nj of the same dimension as ψ−1
Oj (fj) that maps via T into Cfj . To finish the

proof, we need to work on Φ+
I3

and Φ+
I11

.

It is clear that Zf11L11 ⊂ N(f11, n
−
11 ∩ p)−1 since Zf11 fixes f11 and L11 stabilizes n−11 ∩ p.

As a result, Cf11 is a closed subvariety of ψ−1
O11

(f11). The vectors Xf11 and xβ are linearly

independent, so SpanC({Xf11 , xβ}) represents a 2-dimensional subspace that maps via T to

a 2-dimensional subvariety of Cf11 . Since K.f11 has dimension 22, it follows that ψ−1
O11

(f11)

is 2-dimensional, hence Cf11 has the same dimension as ψ−1
O11

(f11). To show that Cf11 is

irreducible, consider the morphism Zf11 ×L11 → B given by (z, `)→ z`.b11. Then the image

is an irreducible topological space since Zf11 × L11 is irreducible, although the image need

not be a variety itself. Taking closures, we see that Cf11 is irreducible, hence represents an

irreducible component of ψ−1
O11

(f11).

For Cf3 , Zf3L3 ⊂ N(f3, n
−
3 ∩ p)−1 since Zf3 fixes f3 and L3 stabilizes n−3 ∩ p. To show

that Cf3 is closed, define the two one-parameter subgroups Tf3 = {Exp(tHf3) : t ∈ C} and

U−f3 = {Exp(tYf3) : t ∈ C} that together yield a Borel subgroup B−f3 = Tf3U
−
f3

of Zf3 . Since

B−f3 ⊂ Q3 and

B−f3L3.b3 = B−f3Q3.b3 = Q3.b3 = L3.b3,

Proposition 7.2 tells use that Cf3 = Zf3L3.b3 is closed because the Borel subgroup B−f3

stabilizes the closed subset L3.b3 of B. The same argument as above shows that Cf3 is
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irreducible and 3-dimensional since Zf3 and L3 are irreducible, and {Xf3 , xβ, xγ} is a linearly

independent set. Since K.f3 has dimension 21, the dimension of Cf3 is the same as the

dimension of ψ−1
O3

(f3).

Next, we need to understand the component groups in order to complete the picture

of the fibers. As mentioned above, working with K is more challenging with the jump in

dimension. Most of the component groups are non-trivial, but it turns out that many of them

act trivially on the irreducible components Cfj . Rather than compute all of the component

groups directly, we will switch our attention to the semisimple element hj of a normal sl2

triple containing fj, and argue using different techniques that the component group is either

trivial or essentially irrelevant. To accomplish this, we will use the following proposition.

Proposition 7.4. Let {ej, fj, hj} denote a normal sl2 triple containing fj. Then the stabi-

lizer subgroup Khj of hj in K is a connected group containing K{h,e,f}.

Proof. By Theorem 2.3.3 in [CM93], the stabilizer subgroup K̃hj of the simply connected

group K̃ is connected because k is reductive and hj is semisimple. By the theory of covering

groups, there is a surjective map p : K̃ → K that commutes with the adjoint action of G

on g. Since p is continuous, Khj is the continuous image of a connected set, so Khj is also

connected.

The data from Table 7.2 lists a normal sl2 triple containing each generic element fj.

Part of the challenge is to find normal sl2 triples containing the generic elements so that

the semisimple element of the triple lies in h. Searching for such triples is worth the effort

because kh becomes easier to describe, which expedites the process of finding the component

groups in K. As we proceed, we will learn that AK(f4) is isomorphic to Z2 and yields two

components for the corresponding fiber. However, the other component groups will either

be trivial or stabilize the irreducible components Cfj introduced above. To complete the

discussion of the fibers, we finish this section with our desired theorem.
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j Nilpositive Element ej Semisimple Element hj

1 x(1,0,0,0) + x(1,2,2,1) + x(1,2,4,2) 4hα + 6hβ + 4hγ + 2hδ

2 6x(1,1,0,0) + 6x(1,1,2,1) + 10x(−1,0,0,0) 8hα + 18hβ + 12hγ + 6hδ

3 6x(1,1,1,1) + 6x(1,2,2,0) + 10x(−1,−1,0,0) 8hα + 14hβ + 12hγ + 6hδ

4, 6 10x(1,1,1,1) + 14x(1,2,2,0) + 10x(1,1,2,1) + 10x(−1,−1,0,0)+ 8hα + 22hβ + 16hγ + 10hδ

8x(−1,−1,−1,0) − 8x(−1,−1,−2,0)

5 10x(1,2,2,0) + 4x(1,1,2,1) + 4x(1,2,2,1) + 10x(1,1,2,2)+ 4hα + 14hβ + 12hγ + 6hδ

4x(−1,−1,−1,0) + 4x(−1,−1,−1,−1)

7 3x(1,1,1,1) + 3x(1,2,2,1) + x(1,2,4,2) − x(−1,0,0,0)+ 2hα + 6hβ + 4hγ + 4hδ

x(−1,−1,−1,0) + 3x(−1,−2,−2,0)

8 22x(1,2,2,0) + 30x(1,1,2,1) + 42x(−1,−1,−2,0) + 16x(−1,−1,−1,−1) 8hα + 30hβ + 24hγ + 14hδ

9 14x(1,2,2,0) + 18x(1,1,2,2) + 8x(−1,−1,−2,0) + 10x(−1,−1,−1,−1) 4hα + 18hβ + 14hγ + 8hδ

10 4x(1,2,2,0) + 4x(1,2,2,2) + 2x(1,2,3,2) + 2x(1,2,4,2) − 2x(−1,−1,0,0)+ 6hβ + 4hγ + 2hδ

2x(−1,−1,−1,0) + 2x(−1,−1,−2,0) + 2x(−1,−1,−2,−2)

11 8x(1,1,2,1) + x(1,3,4,2) + 9x(−1,−1,−2,0) + 5x(−1,−1,−1,−1) −2hα + 4hγ + 4hδ

12 5x(1,2,2,1) + 9x(1,1,2,2) + x(−1,−1,−2,0) + 8x(−1,−1,−1,−1) 2hα + 12hβ + 10hγ + 6hδ

Table 7.2: sl2 triples {ej, fj, hj}

Theorem 7.5. Let bj denote the Borel subalgebra constructed from the positive system Φ+
j ,

let Oj = K.bj denote the associated closed K-orbit in the flag variety of F4, and let Cfj

denote the irreducible components listed in Proposition 7.3. For each fj with j 6= 4, the fiber

ψ−1
Oj (fj) is isomorphic to Cfj , while ψ−1

O4
(f4) is isomorphic to Z2.Cf4. Moreover, ψ−1

O3
(f3) is

isomorphic to the fiber bundle

Zf3 ×(Zf3∩Qf3 ) Qf3/KB3

over Zf3/(Zf3 ∩Qf3).

Proof. We begin by considering the fiber associated to the element f8. There is only one
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nilpotent K-orbit of dimension 24 (see [Dok88]), so we know immediately from [Kin92] that

the component group is trivial. For f3, the subset g(3, 2) has dimension 7 (see Appendix B),

so we know that the component group is again trivial (see [Kin92]). For f4, the orbit K.f4

has dimension 23, so the component group AK(f4) must be isomorphic to Z2. Moreover, we

know from [Kin92] that K{h4,e4,f4} is Z2, so by Lemma 4.6, it suffices to find the generator

for K{h4,e4,f4} in order to obtain AK(f4). By working carefully to choose generic elements

and normal triples, we have the luxury of finding a generator which acts by e±πi = −1 on

certain root vectors. Focusing our attention on kh4 , the only root vectors in k commuting

with h4 are xγ and x−γ. As for the generator, consider the element of K given by

k4 := Exp(πi(hγ + hδ))Exp(2xγ).

It is clear that k4 is not the identity element, since 2xγ is nilpotent. However, it is not

obvious that k4 has order two. In Appendix B, we determine the matrix representing k4

within the Adjoint representation and show that it has order two. Now, observe that

Exp(2xγ).f4 = x(1,1,0,0) − x(1,1,1,0) + x(−1,−1,−1,−1) + x(−1,−2,−2,0)

since

Exp(2xγ).f4 = f4 + [2xγ, f4] + 1/2[2xγ, [2xγ, f4]] + 1/6[2xγ, [2xγ, [2xγ, f4]]] + . . .

= f4 + [2xγ, f4] + 1/2[2xγ, [2xγ, f4]].

By the equations

[πi(hγ + hδ), xα] = 0, [πi(hγ + hδ), xβ] = −2πixβ,

[πi(hγ + hδ), xγ] = πixγ, and [πi(hγ + hδ), xγ] = πixδ,
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Exp(πi(hγ +hδ)).x(i,j,k,`) = (−1)k(−1)`x(i,j,k,`), so it follows that k4 stabilizes f4. We already

know by construction that k4 ∈ Kh4 , so we just need to verify that it stabilizes e4 as well.

Similar to the case of f4,

Exp(2xγ).e4 = 10x(1,1,1,1) + 14x(1,2,2,0) − 10x(1,1,2,1)+

10x(−1,−1,0,0) − 8x(−1,−1,−1,0) − 8x(−1,−1,−2,0)

since

Exp(2xγ).e4 = e4 + [2xγ, e4] + 1/2[2xγ, [2xγ, e4]] + 1/6[2xγ, [2xγ, [2xγ, e4]]] + . . .

= e4 + [2xγ, e4] + 1/2[2xγ, [2xγ, e4]].

Again, we have

Exp(πi(hγ + hδ)).x(i,j,k,`) = (−1)k(−1)`x(i,j,k,`),

so it follows that k4 stabilizes e4. Since k4 stabilizes the whole triple, we know that it

represents the generator for the component group Z2. As k4 is not in KB4 ∪ L4, it acts

non-trivially on Cf4 , so

ψ−1
O4

(f4) ' Cf4 t k4.Cf4 .

For the fibers associated to fj with j 6= 3, 4, 8, we see that khj is contained in the levi

factor lj (see Appendix B), so Khj is contained in Lj. By Proposition 7.4, it follows that the

group K{h,e,f} is contained in Lj. Using Lemma 4.6, AK(fj) is contained in K{h,e,f}/K{h,e,f}◦ ,

so AK(fj) stabilizes Cfj . For the components Cfj built using only Lj, the fiber ψ−1
Oj (fj) is

precisely Cfj . For Cf11 , we must prove that the generator of AK(f11) normalizes Zf11 in

Zf11L11.b11 in order to know that ψ−1
O11

(f11) is Cf11 . Since the orbit K.f11 has dimension 22,

the component group AK(f11) must be isomorphic to Z2. Moreover, we know from [Kin92]
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that K{h11,e11,f11} is also Z2, so it suffices to find the generator for K{h11,e11,f11}. As for the

generator, consider the element of K given by

k11 := Exp(πi(hα + hβ + hδ)).

Observe that

[πi(hα + hβ + hδ), xα] = πixα, [πi(hα + hβ + hδ), xβ] = πixβ,

[πi(hα + hβ + hδ), xγ] = −2πixγ, and [πi(hα + hβ + hδ), xγ] = 2πixδ,

so k11.x(i,j,k,`) = (−1)i(−1)jx(i,j,k,`). Therefore, k11 stabilizes both f11 and e11. Since k11 ∈

H = Exp(h) ⊂ Kh11 , we see that k11 stabilizes the whole triple, so it represents the generator

for the component group Z2. Now, to show that k11 normalizes Zf11 , we begin by observing

that k11.Xf11 = −Xf11 . By the formula, Exp(k.X) = k(Exp(X))k−1 in [Kna02, Section

1.10], it follows that k11Zf11 = Zf11k11. As a result,

k11Cf11 = k11Zf11L11.b11 ⊆ k11Zf11L11.b11 = Zf11k11L11.b11 = Zf11L11.b11 = Cf11

since k11 ∈ Lj, so we know that Cf11 represents the entire fiber ψ−1
O11

(f11).

Finally, we need to prove that Cf3 is isomorphic to Zf3 ×(Zf3∩Qf3 ) Qf3/KB3 . It suffices to

prove that the map

Zf3 ×(Zf3∩Qf3 ) Qf3/KB3 → Zf3Qf3 .b3 ' Zf3Qf3 .b3

given by [z, qKB3 ] → zq.b3 is bijective ([GZ11, Theorem 2.10]) since ψ−1
O3

(f3) is a smooth

variety ([GZ11, Lemma 2.9]). The map is clearly surjective, so we just need to check injec-

tivity. Suppose we have elements [z1, q1KB3 ] and [z2, q2KB3 ] of Zf3 ×(Zf3∩Qf3 ) Qf3/KB3 such
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that z1q1.b3 = z2q2.b3. Then (q2)−1(z2)−1z1q1 ∈ KB3 , so there exists some b ∈ KB3 such that

(z2)−1z1 = g2b(q1)−1. As a result, (z2)−1z1 = g2b(q1)−1 is an element of Zf3 ∩Qf3 . Thus, the

equality

[z2, q2KB3 ] = [z2(z2)−1z1, g1b
−1(q2)−1q2KB3 ] = [z1, g1KB3 ]

gives the desired isomorphism.

7.2 Springer Fiber Components: Real Form F−20
4

To build the component ψ−1
O4

(f4) for the Springer fibers of this real form, we need to

rely heavily on the stabilizer subgroup Kfj in order to supplement Lj. It turns out that Lj

contributes very little to the full dimension of the fiber in two of the three closed K-orbits,

so we have to hope that kfj is relatively large. We need to find out the dimension of Lj in

order to know how much we may be missing in building ψ−1
Oj (fj). We can follow the same

procedure that we implemented for the fibers associated to the generic elements f3 and f11

in the previous real form. Table 7.3 lists the roots in Φ+
Ij

along with the cardinality.

Positive System Roots
∣∣Φ+

Ij

∣∣
Φ+
I1

(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (1, 1, 0, 0), (0, 1, 1, 0), 9

(1, 1, 1, 0), (0, 1, 2, 0), (1, 1, 2, 0), (1, 2, 2, 0)

Φ+
I2

(1, 0, 0, 0), (0, 1, 0, 0), (1, 1, 0, 0) 3

Φ+
I3

(1, 0, 0, 0), (0, 0, 1, 0), (0, 1, 2, 2), (1, 1, 2, 2) 4

Table 7.3: Positive Systems Φ+
Ij

Let us now introduce some components that will represent ψ−1
Oj (fj). For the generic

element f1, define the component Cf1 = L1.b1. For the generic elements f2 and f3, define the

components Cf2 = Kf2L2.b2 and Cf3 = Kf3L3.b3. Showing that these represent irreducible
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components utilizes the same arguments as in the split real form cases. Observe the lack on

closure on the third component similar to the case ψ−1
O3

(f3) in the split real form F 4
4 . The

following theorem completes our goal of describing Springer fiber components for G2 and F4.

Theorem 7.6. Let bj denote the Borel subalgebra constructed from the positive system Φ+
j ,

and let Oj = K.bj denote the associated closed K-orbit in the flag variety of F4. Then the

fiber ψ−1
Oj (fj) is isomorphic to the irreducible component Cfj . Moreover, ψ−1

O3
(f3) is isomor-

phic to the fiber bundle

Kf3 ×(Kf3∩Qf3 ) Qf3/KB3

over Kf3/(Kf3 ∩Qf3).

Proof. The component groups AK(fj) relative to this real form are all trivial (see [Kin92]),

so each of the fibers is automatically irreducible. Moreover, every ψ−1
Oj (fj) has dimension

nine since dim K.fj = 15 and dim B = 24. As a result, the same proofs used in Lemma

4.2 prove that the theorem is true for j = 1. The only modification involves determining

the dimension of L1.b1. As the nine root vectors associated to the positive roots for l1 map

via T into a nine dimensional subspace of ψ−1
Oj (fj), it follows that Cf1 must have dimension

nine. The proofs that Cfj is an irreducible component of the corresponding Springer fiber of

the correct dimension for cases f2 and f3 are identical to those in Proposition 7.3. Indeed,

focusing our attention on the basis elements built from root vectors associated to positive

roots, we see that Cf2 is irreducible of dimension nine. Three dimensions coming from the

connected subgroup L2, while the remaining dimensions come from the part of Kf2 associated

to the linearly independent set of elements

x(0,1,1,0) − x(0,1,2,2), x(1,1,1,0) − x(1,1,2,2), x(1,2,2,0) − x(1,2,3,2), x(1,2,2,2), x(1,3,4,2), and x(2,3,4,2)

in kf2 disjoint from l2. The same holds true for Cf3 as L3 contributes four dimensions, while
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the remaining dimensions come from the part of Kf3 associated to the linearly independent

set of elements

x(0,1,0,0), x(1,1,0,0) − x(0,1,1,0), x(1,1,1,0) − x(0,1,2,0), x(1,1,2,0), and x(1,2,2,0)

in kf3 disjoint from l3. We close this chapter by discussing the closure of the last fiber Cf3 .

The stabilizer subgroup Kf3 has Lie algebra given by

kf3 = SpanC({x(1,0,0,0) − x(0,0,1,0), x(0,1,0,0), x(1,1,0,0) − x(0,1,1,0), x(1,1,1,0) − x(0,1,2,0),

x(1,1,2,0), x(1,2,2,0), x(−1,0,0,0) − x(0,0,−1,0), x(0,−1,0,0), x(−1,−1,0,0) − x(0,−1,−1,0),

x(−1,−1,−1,0) − x(0,−1,−2,0), x(−1,−1,−2,0), x(−1,−2,−2,0), x(0,−1,−2,−2),

x(−1,−1,−2,−2), x(−1,−2,−2,−2), x(−1,−2,−3,−2), x(−1,−2,−4,−2), x(−1,−3,−4,−2),

x(−2,−3,−4,−2), h(1,0,0,0) + h(0,0,1,0), h(0,1,0,0)}).

To apply Proposition 7.2, we need to find an appropriate Borel subgroup ofKf3 that stabilizes

L3.b3. Consider the subalgebra

bf3 = SpanC({x(−1,0,0,0) − x(0,0,−1,0), x(0,−1,0,0), x(−1,−1,0,0) − x(0,−1,−1,0),

x(−1,−1,−1,0) − x(0,−1,−2,0), x(−1,−1,−2,0), x(−1,−2,−2,0), x(0,−1,−2,−2),

x(−1,−1,−2,−2), x(−1,−2,−2,−2), x(−1,−2,−3,−2), x(−1,−2,−4,−2), x(−1,−3,−4,−2),

x(−2,−3,−4,−2), h(1,0,0,0) + h(0,0,1,0), h(0,1,0,0)})

of kf3 . Because b3 is solvable in g, it follows that bf3 is solvable in kf3 . The maximality

follows from the fact that a larger such subalgebra b
′

f3
would necessarily contain elements

from which an sl2 triple of b
′

f3
can be constructed. The Jacobson-Morosov theorem tells us

how to find such triples, but we have to verify that it can be used here. First, note that a
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larger subalgebra would contain elements of the subspace

SpanC({x(1,0,0,0) − x(0,0,1,0), x(0,1,0,0), x(1,1,0,0) − x(0,1,1,0), (7.2)

x(1,1,1,0) − x(0,1,2,0), x(1,1,2,0), x(1,2,2,0)}.

By [Dok88], the Levi factor l of kf3 is isomorphic to g2. In this case, the Levi factor is

l = SpanC({x(1,0,0,0) − x(0,0,1,0), x(0,1,0,0), x(1,1,0,0) − x(0,1,1,0), x(1,1,1,0) − x(0,1,2,0),

x(1,1,2,0), x(1,2,2,0), x(−1,0,0,0) − x(0,0,−1,0), x(0,−1,0,0), x(−1,−1,0,0) − x(0,−1,−1,0),

x(−1,−1,−1,0) − x(0,−1,−2,0), x(−1,−1,−2,0), x(−1,−2,−2,0), h(1,0,0,0) + h(0,0,1,0), h(0,1,0,0)},

and the elements x(1,0) := x(1,0,0,0)−x(0,0,1,0), x(−1,0) := x(−1,0,0,0)−x(0,0,−1,0), x(0,1) := x(0,1,0,0),

and x(0,−1) := x(0,−1,0,0) represent a generating set. Since l is semisimple, we can apply the

Jacobson-Morosov theorem to obtain an sl2 triple containing any nilpotent element in (7.2).

As a result, the maximality claim is proved. Let Bf3 denote the connected subgroup of Kf3

with Lie algebra bf3 . Since Bf3 ⊂ Q3 and

Bf3L3.b3 = B−f3Q3.b3 = Q3.b3 = L3.b3,

Proposition 7.2 tells use that Cf3 = Kf3L3.b3 is closed because the Borel subgroup Bf3

stabilizes the closed subset L3.b3 of B. The additional structure as a fiber bundle follows the

exact same proof as in Theorem 7.5.
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8

Multiplicity Polynomials

To motivate the final chapter, let us recall an example from elementary group theory.

Consider the group of symmetries of a cube arising from rotations of R3. Looking at vertices,

edges, and faces of the cube one can learn something about the group by considering the

geometry of the vertices, edges, and faces. The point of view is that we can better understand

the group under consideration by looking at the way it acts on various sets. For example,

we discover by looking at the faces of a cube that the group has 24 elements. Indeed, there

are six faces and the stabilizer subgroup has order four, so the group has order 24. Also, by

looking at the diagonals of the cube, we learn that the group is isomorphic to the permutation

group S4.

The Springer fiber components considered in the paper give an example of this general

philosophy. From the real form GR, we understand the portions of the Springer fiber via an

action of a subgroup of G on the flag variety B. In return, the structure of the fiber is going

to indicate additional information about GR. To understand this behavior, we need a few
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definitions and theorems whose details are contained in [BZ08].

Let O denote a closed K-orbit in B associated to some positive system Φ+ where

Φ+(h, k) ⊂ Φ+ ⊂ Φ+(h, g), and let ρ and ρc denote the weights given by

2ρ =
∑
ξ∈Φ+

ξ and 2ρc =
∑

ξ∈Φ+(h,k)

ξ.

Then there exists a family of discrete series representations Xλ for λ ∈ h∗ where λ is a

regular, dominant weight such that

τ = λ+ ρ− 2ρc

is analytically integral, i.e., the derivative of a character on H. Our descriptions for certain

Springer fiber components given in the previous chapters will allow us to give the multiplicity

of K.f in the associated cycles of Xλ for certain generic elements f . To understand this

multiplicity, note that the weight τ yields a line bundle Lλ → O where Lλ = K ×KB Cτ .

Then the multiplicity is a polynomial in λ that is given by

MO(λ) = dim

(
H0
(
ψ−1
O (f),F

(
Lλ|ψ−1

O (f)

)))

where F
(
Lλ|ψ−1

O (f)

)
denotes the structure sheaf on Lλ|ψ−1

O (f) (see [BZ08]). The following

theorem will allow us to better understand these polynomials.

Theorem 8.1. Let W−τ denote the irreducible representation of K having lowest weight −τ .

If w−τ denotes a lowest weight vector of W−τ , then

MO(λ) = dim(SpanC
(
{k−1w−τ : k ∈ N(f, n− ∩ p}

)
for λ sufficiently dominant.
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Proof. See [BZ08] for a discussion and complete list of references. Note that for λ sufficiently

dominant, τ is Φ+(h, k)-dominant, hence SpanC
(
{k−1w−τ : k ∈ N(f, n− ∩ p}

)
is necessarily

finite dimensional.

Using the results of the previous chapters, we can now determine some of these mul-

tiplicity polynomials. Consider the homogeneous fibers associated to a generic element fj

for the real forms G2
2, F

4
4 , and F−20

4 introduced in the previous chapters. For each generic fj

with ψ−1
Oj (fj) = Lj.bj, Theorem 8.1 tells us that if λ is sufficiently dominant, then

dim(SpanC
(
{k−1w−τ : k ∈ N(f, n− ∩ p}

)
= dim(SpanC

(
{k−1w−τ : k ∈ Lj}

)
is the dimension of the irreducible representation of Lj of lowest weight −τ . To simplify the

computation, we can restrict to the semisimple part of Lj, denoted (Lj)ss, when computing

the dimension because the difference between Lj and (Lj)ss lies within the center of G.

Using the Weyl dimension formula and the results above, we have the final theorem of this

dissertation. Following the theorem, we will discuss the specific polynomials for which the

theorem applies.

Theorem 8.2. Let MOj(λ) denote the multiplicity polynomial associated to a closed K-

orbit Oj where λ is a sufficiently dominant weight such that the analytical integral weight

τ = λ + ρ − 2ρc is Φ+(h, k)-dominant. Then the fibers ψ−1
Oj (fj) isomorphic to the variety

Lj.bj have multiplicity polynomials given by

MOj(λ) =
∏
ξ∈Φ+

Ij

〈τ + ρlj , ξ〉
〈ρlj , ξ〉

where ρlj denotes the half sum of the roots in Φ+
Ij

. Moreover, the multiplicity polynomial

associated to fibers ψ−1
Oj (fj) composed of n disjoint connected components k.Lj.bj with k ∈
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AK(fj) is given by

MOj(λ) = n
∏
ξ∈Φ+

Ij

〈τ + ρlj , ξ〉
〈ρlj , ξ〉

.

Proof. The first part is immediate from the discussion above because if τ is Φ+(h, k)-dominant,

then τ is Ij dominant, so the Weyl dimension formula readily applies to the irreducible

representation of (Lj)ss. We need to prove the last claim about MOj(λ) when there are

n irreducible components. By Theorem 7.5, the fiber is composed of n irreducible disjoint

components since it is known that the fiber is smooth. As a result, H0
(
ψ−1
O (f),F

(
Lλ|ψ−1

O (f)

))
decomposes as a direct sum

⊕
k∈AK(fj)

H0
(
kLj.bj,F

(
Lλ|kLj .bj

))
.

Since H0
(
Lj.bj,F

(
Lλ|Lj .bj

))
is isomorphic to H0

(
kLj.bj,F

(
Lλ|kLj .bj

))
for any k ∈ AK(fj),

it follows that the multiplicity polynomial is n times the dimension of the irreducible Lj

representation with lowest weight −τ .

Armed with the previous theorem, we can finish our goal of computing the multiplicity

polynomials for most of the closed K-orbits. The multiplicity polynomials associated to non-

homogeneous fibers are still unknown to the author, but represent a future research goal. In

fact, the Springer fiber components above which are described in terms of a fiber bundle are

very likely to yield the multiplicity polynomials. Table 8.1 (resp., Table 8.2, Table 8.3) lists

the known multiplicity polynomials for the real forms G2
2 (resp., F 4

4 , F−20
4 ) along with the

non-negative integer values xj for which τ =
∑

xjλj + ρ− 2ρc is Φ+(h, k)-dominant.
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Φ+
Ij

Multiplicity Polynomial Coefficients {x1, x2}

Φ+
I1

x1 x1 ≥ 1, x2 ≥ 0

Φ+
I2

1 x1 ≥ 0, x2 ≥ 0

Φ+
I3

x1 + 2x2 x1 + 2x2 ≥ 1

Table 8.1: Multiplicity Polynomials for G2
2

Φ+
Ij

Multiplicity Polynomial Coefficients {x1, x2, x3, x4}

Φ+
I1

1/720x2x3x4(x2 + x3)(x2 + x3 + x4)(x3 + x4)· x1 ≥ 0, x2 ≥ 1, x3 ≥ 1, x4 ≥ 1

(2x2 + x3 + x4)(2x2 + x3)(2x2 + 2x3 + x4)

Φ+
I2

1/2x3x4(x3 + x4) x1 ≥ 0, x2 ≥ 0, x3 ≥ 1, x4 ≥ 1

Φ+
I4

2x2 x1 ≥ 0, x2 ≥ 1, x3 ≥ 0, x4 ≥ 0

Φ+
I5

x2x4 x1 ≥ 0, x2 ≥ 1, x3 ≥ 0, x4 ≥ 1

Φ+
I6

x3 x1 ≥ 0, x2 ≥ 0, x3 ≥ 1, x4 ≥ 0

Φ+
I7

1/6x2x3(x2 + x3)(2x2 + x3) x1 ≥ 0, x2 ≥ 1, x3 ≥ 1, x4 ≥ 0

Φ+
I8

1 x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0

Φ+
I9

x3 x1 ≥ 0, x2 ≥ 0, x3 ≥ 1, x4 ≥ 0

Φ+
I10

1/2x3x4(x3 + x4)(2x1 + 3x2 + 2x3 + x4) x1 ≥ 0, x2 ≥ 0, x3 ≥ 1, x4 ≥ 1

Φ+
I12

x3(2x1 + 3x2 + 2x3 + x4) x1 ≥ 0, x2 ≥ 0, x3 ≥ 1, x4 ≥ 0

Table 8.2: Multiplicity Polynomials for F 4
4

Φ+
Ij

Multiplicity Polynomial Coefficients {x1, x2, x3, x4}

Φ+
I1

1/720x1x2x3(x1 + x2)(x2 + x3)(x1 + x2 + x3)· x1 ≥ 1, x2 ≥ 1, x3 ≥ 1, x4 ≥ 0

(x1 + 2x2 + x3)(2x2 + x3)(2x1 + 2x2 + x3)

Table 8.3: Multiplicity Polynomials for F−20
4
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A

Computations for G2

A.1 The Set ∆j Forms a Simple System for Φ+
j

For the given positive system, the tables indicate how each root ξ ∈ Φ+
j can be written

as a nonnegative linear combination ξ = iξ1 + jξ2 of the listed simple roots ∆j = {ξ1, ξ2}.

Naturally, the case Φ+
1 = Φ+(h, g) will be omitted.

Root i j Root i j Root i j

(1, 0) 1 1 (0,−1) 1 0 (1, 1) 0 1

(2, 1) 1 2 (3, 1) 2 3 (3, 2) 1 3

Table A.1: Positive System Φ+
2 : ∆2 = {−β, α + β}

Root i j Root i j Root i j

(1, 0) 2 1 (0,−1) 3 1 (−1,−1) 1 0

(2, 1) 1 1 (3, 1) 3 2 (3, 2) 0 1

Table A.2: Positive System Φ+
3 : ∆3 = {−α− β, 3α + 2β}
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A.2 Computing the Dimensions of g(j, 2)

We need to show that dim g(1, 2) = 4, dim g(2, 2) = 2, and dim g(3, 2) = 2. First,

dim g(2, 2) = 2 is clear from the tables in [Dok88] because there is only one nilpotent K-

orbit of dimension 6. For the other two cases, let p = c(0,1)x(0,1) + c(0,−1)x(0,−1) + c(1,1)x(1,1) +

c(−1,−1)x(−1,−1) + c(2,1)x(2,1) + c(−2,−1)x(−2,−1) + c(3,1)x(3,1) + c(−3,−1)x(−3,−1) be an arbitrary

element of p. Since [h1, p] = 2p if and only if 2c(0,1)x(0,1) − 2c(0,−1)x(0,−1) + 2c(1,1)x(1,1) −

2c(−1,−1)x(−1,−1) + 2c(2,1)x(2,1) − 2c(−2,−1)x(−2,−1) + 2c(3,1)x(3,1) − 2c(−3,−1)x(−3,−1) = 2p if and

only if c(0,−1) = c(−1,−1) = c(−2,−1) = c(−3,−1) = 0, we have dim g(1, 2) = 4. Finally,

[h3, p] = 2p if and only if −2c(0,1)x(0,1) + 2c(0,−1)x(0,−1) + 0c(1,1)x(1,1) + 0c(−1,−1)x(−1,−1) +

2c(2,1)x(2,1) − 2c(−2,−1)x(−2,−1) + 4c(3,1)x(3,1) − 4c(−3,−1)x(−3,−1) = 2p if and only if c(0,1) =

c(1,1) = c(−1,−1) = c(−2,−1) = c(3,1) = c(−3,−1) = 0, so dim g(3, 2) = 2.

A.3 Generators for the Component Groups

The elements r and s generate K{h1,e1,f1}, and the element z generates K{h3,e3,f3}. Using

the matrix representations, we will omit the maps φ and π. The fact that these elements

stabilize their respective triples can easily be checked using conjugation.

f1 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

−1 0 0 0 0 0 0

−1 1 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 −2 0 0 0

0 0 0 −2 1 0 0


3e1 =



0 0 −2 −4 4 0 0

0 0 −4 4 2 0 0

0 0 0 0 0 2 −4

0 0 0 0 0 −2 −2

0 0 0 0 0 −4 2

0 0 0 0 0 0 0

0 0 0 0 0 0 0


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h1 =



2 0 0 0 0 0 0

0 2 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 −2 0

0 0 0 0 0 0 −2


r =



0 −1 0 0 0 0 0

1 −1 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 −1 1 0 0

0 0 1 −2 1 0 0

0 0 0 0 0 0 −1

0 0 0 0 0 1 −1



r−1 =



−1 1 0 0 0 0 0

−1 0 0 0 0 0 0

0 0 1 −2 1 0 0

0 0 1 −1 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 −1 1

0 0 0 0 0 −1 0


s =



0 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 −1 0 0

0 0 0 −1 0 0 0

0 0 −1 0 0 0 0

0 0 0 0 0 0 −1

0 0 0 0 0 −1 0



f3 =



0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

−1 0 0 0 0 0 0

0 1 0 0 0 1 0

0 0 1 0 0 0 0

0 0 0 −2 0 0 0


e3 =



0 0 0 −2 0 0 0

0 0 0 0 1 0 0

0 1 0 0 0 1 0

0 0 0 0 0 0 −1

0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0



h3 =



2 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 2 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 −2 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 −2


z =



1 0 0 0 0 0 0

0 −1 0 0 0 0 0

0 0 −1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 −1 0 0

0 0 0 0 0 −1 0

0 0 0 0 0 0 1


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B

Computations for the Split Real Form F 4
4

B.1 The Set ∆j Forms a Simple System for Φ+
j

The following tables indicate how each root ξ ∈ Φ+
j can be written as a nonnegative

linear combination ξ = iξ1 + jξ2 + kξ3 + `ξ4 of the listed simple roots ∆j = {ξ1, ξ2, ξ3, ξ4}.

Again, the case Φ+
1 = Φ+(h, g) will be omitted.

Root i j k ` Root i j k ` Root i j k `

(0, 1, 0, 0) 1 0 0 1 (0, 0, 1, 0) 0 1 0 0 (0, 0, 0, 1) 0 0 1 0

(0, 1, 1, 0) 1 1 0 1 (0, 0, 1, 1) 0 1 1 0 (0, 1, 2, 0) 1 2 0 1

(0, 1, 1, 1) 1 1 1 1 (0, 1, 2, 1) 1 2 1 1 (0, 1, 2, 2) 1 2 2 1

(2, 3, 4, 2) 1 4 2 3 (−1, 0, 0, 0) 1 0 0 0 (1, 1, 0, 0) 0 0 0 1

(1, 1, 1, 0) 0 1 0 1 (1, 1, 2, 0) 0 2 0 1 (1, 1, 1, 1) 0 1 1 1

(1, 2, 2, 0) 1 2 0 2 (1, 1, 2, 1) 0 2 1 1 (1, 2, 2, 1) 1 2 1 2

(1, 1, 2, 2) 0 2 2 1 (1, 2, 3, 1) 1 3 1 2 (1, 2, 2, 2) 1 2 2 2

(1, 2, 3, 2) 1 3 2 2 (1, 2, 4, 2) 1 4 2 2 (1, 3, 4, 2) 2 4 2 3

Table B.1: ∆2 = {−α, γ, δ, α + β}
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Root i j k ` Root i j k ` Root i j k `

(0, 1, 0, 0) 1 0 0 0 (0, 0, 1, 0) 0 0 1 1 (0, 0, 0, 1) 0 1 0 0

(0, 1, 1, 0) 1 0 1 1 (0, 0, 1, 1) 0 1 1 1 (0, 1, 2, 0) 1 0 2 2

(0, 1, 1, 1) 1 1 1 1 (0, 1, 2, 1) 1 1 2 2 (0, 1, 2, 2) 1 2 2 2

(2, 3, 4, 2) 1 2 2 4 (−1, 0, 0, 0) 1 0 1 0 (−1,−1, 0, 0) 0 0 1 0

(1, 1, 1, 0) 0 0 0 1 (1, 1, 2, 0) 0 0 1 2 (1, 1, 1, 1) 0 1 0 1

(1, 2, 2, 0) 1 0 1 2 (1, 1, 2, 1) 0 1 1 2 (1, 2, 2, 1) 1 1 1 2

(1, 1, 2, 2) 0 2 1 2 (1, 2, 3, 1) 1 1 2 3 (1, 2, 2, 2) 1 2 1 2

(1, 2, 3, 2) 1 2 2 3 (1, 2, 4, 2) 1 2 3 4 (1, 3, 4, 2) 2 2 3 4

Table B.2: ∆3 = {β, δ,−α− β, α + β + γ}

Root i j k ` Root i j k ` Root i j k `

(0, 1, 0, 0) 1 0 0 0 (0, 0, 1, 0) 0 1 1 0 (0, 0, 0, 1) 0 1 0 1

(0, 1, 1, 0) 1 1 1 0 (0, 0, 1, 1) 0 2 1 1 (0, 1, 2, 0) 1 2 2 0

(0, 1, 1, 1) 1 2 1 1 (0, 1, 2, 1) 1 3 2 1 (0, 1, 2, 2) 1 4 2 2

(2, 3, 4, 2) 1 2 2 2 (−1, 0, 0, 0) 1 2 1 0 (−1,−1, 0, 0) 0 2 1 0

(−1,−1,−1, 0) 0 1 0 0 (1, 1, 2, 0) 0 0 1 0 (1, 1, 1, 1) 0 0 0 1

(1, 2, 2, 0) 1 0 1 0 (1, 1, 2, 1) 0 1 1 1 (1, 2, 2, 1) 1 1 1 1

(1, 1, 2, 2) 0 2 1 2 (1, 2, 3, 1) 1 2 2 1 (1, 2, 2, 2) 1 2 1 2

(1, 2, 3, 2) 1 3 2 2 (1, 2, 4, 2) 1 4 3 2 (1, 3, 4, 2) 2 4 3 2

Table B.3: ∆4 = {β,−α− β − γ, α + β + 2γ, α + β + γ + δ}

Root i j k ` Root i j k ` Root i j k `

(0, 1, 0, 0) 1 0 0 0 (0, 0, 1, 0) 0 1 1 1 (0, 0, 0, 1) 0 1 0 0

(0, 1, 1, 0) 1 1 1 1 (0, 0, 1, 1) 0 2 1 1 (0, 1, 2, 0) 1 2 2 2

(0, 1, 1, 1) 1 2 1 1 (0, 1, 2, 1) 1 3 2 2 (0, 1, 2, 2) 1 4 2 2

(2, 3, 4, 2) 1 2 0 2 (−1, 0, 0, 0) 1 2 2 1 (−1,−1, 0, 0) 0 2 2 1

(−1,−1,−1, 0) 0 1 1 0 (1, 1, 2, 0) 0 0 0 1 (−1,−1,−1,−1) 0 0 1 0

(1, 2, 2, 0) 1 0 0 1 (1, 1, 2, 1) 0 1 0 1 (1, 2, 2, 1) 1 1 0 1

(1, 1, 2, 2) 0 2 0 1 (1, 2, 3, 1) 1 2 1 2 (1, 2, 2, 2) 1 2 0 1

(1, 2, 3, 2) 1 3 1 2 (1, 2, 4, 2) 1 4 2 3 (1, 3, 4, 2) 2 4 2 3

Table B.4: ∆5 = {β, δ,−α− β − γ − δ, α + β + 2γ}
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Root i j k ` Root i j k ` Root i j k `

(0, 1, 0, 0) 0 1 0 1 (0, 0, 1, 0) 1 0 0 0 (0, 0, 0, 1) 1 1 1 0

(0, 1, 1, 0) 1 1 0 1 (0, 0, 1, 1) 2 1 1 0 (0, 1, 2, 0) 2 1 0 1

(0, 1, 1, 1) 2 2 1 1 (0, 1, 2, 1) 3 2 1 1 (0, 1, 2, 2) 4 3 2 1

(2, 3, 4, 2) 2 1 2 1 (−1, 0, 0, 0) 2 2 0 1 (−1,−1, 0, 0) 2 1 0 0

(−1,−1,−1, 0) 1 1 0 0 (−1,−1,−2, 0) 0 1 0 0 (1, 1, 1, 1) 0 0 1 0

(1, 2, 2, 0) 0 0 0 1 (1, 1, 2, 1) 1 0 1 0 (1, 2, 2, 1) 1 1 1 1

(1, 1, 2, 2) 2 1 2 0 (1, 2, 3, 1) 2 1 1 1 (1, 2, 2, 2) 2 2 2 1

(1, 2, 3, 2) 3 2 2 1 (1, 2, 4, 2) 4 2 2 1 (1, 3, 4, 2) 4 3 2 2

Table B.5: ∆6 = {γ,−α− β − 2γ, α + β + γ + δ, α + 2β + 2γ}

Root i j k ` Root i j k ` Root i j k `

(0, 1, 0, 0) 1 0 0 0 (0, 0, 1, 0) 0 1 0 0 (0, 0, 0, 1) 1 1 1 1

(0, 1, 1, 0) 1 1 0 0 (0, 0, 1, 1) 1 2 1 1 (0, 1, 2, 0) 1 2 0 0

(0, 1, 1, 1) 2 2 1 1 (0, 1, 2, 1) 2 3 1 1 (0, 1, 2, 2) 3 4 2 2

(2, 3, 4, 2) 1 2 2 0 (−1, 0, 0, 0) 2 2 0 1 (−1,−1, 0, 0) 1 2 0 1

(−1,−1,−1, 0) 1 1 0 1 (−1,−1,−2, 0) 1 0 0 1 (1, 1, 1, 1) 0 0 1 0

(−1,−2,−2, 0) 0 0 0 1 (1, 1, 2, 1) 0 1 1 0 (1, 2, 2, 1) 1 1 1 0

(1, 1, 2, 2) 1 2 2 1 (1, 2, 3, 1) 1 2 1 0 (1, 2, 2, 2) 2 2 2 1

(1, 2, 3, 2) 2 3 2 1 (1, 2, 4, 2) 2 4 2 1 (1, 3, 4, 2) 3 4 2 1

Table B.6: ∆7 = {β, γ, α + β + γ + δ,−α− 2β − 2γ}

Root i j k ` Root i j k ` Root i j k `

(0, 1, 0, 0) 1 0 1 0 (0, 0, 1, 0) 0 1 0 1 (0, 0, 0, 1) 1 0 0 1

(0, 1, 1, 0) 1 1 1 1 (0, 0, 1, 1) 1 1 0 2 (0, 1, 2, 0) 1 2 1 2

(0, 1, 1, 1) 2 1 1 2 (0, 1, 2, 1) 2 2 1 3 (0, 1, 2, 2) 3 2 1 4

(2, 3, 4, 2) 1 0 1 2 (−1, 0, 0, 0) 2 2 1 2 (−1,−1, 0, 0) 1 2 0 2

(−1,−1,−1, 0) 1 1 0 1 (−1,−1,−2, 0) 1 0 0 0 (−1,−1,−1,−1) 0 1 0 0

(1, 2, 2, 0) 0 0 1 0 (1, 1, 2, 1) 0 0 0 1 (1, 2, 2, 1) 1 0 1 1

(1, 1, 2, 2) 1 0 0 2 (1, 2, 3, 1) 1 1 1 2 (1, 2, 2, 2) 2 0 1 2

(1, 2, 3, 2) 2 1 1 3 (1, 2, 4, 2) 2 2 1 4 (1, 3, 4, 2) 3 2 2 4

Table B.7: ∆8 = {−α− β − 2γ,−α− β − γ − δ, α + 2β + 2γ, α + β + 2γ + δ}
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Root i j k ` Root i j k ` Root i j k `

(0, 1, 0, 0) 0 2 1 1 (0, 0, 1, 0) 1 0 0 0 (0, 0, 0, 1) 0 1 0 1

(0, 1, 1, 0) 1 2 1 1 (0, 0, 1, 1) 1 1 0 1 (0, 1, 2, 0) 2 2 1 1

(0, 1, 1, 1) 1 3 1 2 (0, 1, 2, 1) 2 3 1 2 (0, 1, 2, 2) 2 4 1 3

(2, 3, 4, 2) 0 0 1 1 (−1, 0, 0, 0) 2 4 1 2 (−1,−1, 0, 0) 2 2 0 1

(−1,−1,−1, 0) 1 2 0 1 (−1,−1,−2, 0) 0 2 0 1 (−1,−1,−1,−1) 1 1 0 0

(1, 2, 2, 0) 0 0 1 0 (−1,−1,−2,−1) 0 1 0 0 (1, 2, 2, 1) 0 1 1 1

(1, 1, 2, 2) 0 0 0 1 (1, 2, 3, 1) 1 1 1 1 (1, 2, 2, 2) 0 2 1 2

(1, 2, 3, 2) 1 2 1 2 (1, 2, 4, 2) 2 2 1 2 (1, 3, 4, 2) 2 4 2 3

Table B.8: ∆9 = {γ,−α− β − 2γ − δ, α + 2β + 2γ, α + β + 2γ + 2δ}

Root i j k ` Root i j k ` Root i j k `

(0, 1, 0, 0) 0 2 2 1 (0, 0, 1, 0) 1 0 0 0 (0, 0, 0, 1) 0 1 0 0

(0, 1, 1, 0) 1 2 2 1 (0, 0, 1, 1) 1 1 0 0 (0, 1, 2, 0) 2 2 2 1

(0, 1, 1, 1) 1 3 2 1 (0, 1, 2, 1) 2 3 2 1 (0, 1, 2, 2) 2 4 2 1

(2, 3, 4, 2) 0 0 0 1 (−1, 0, 0, 0) 2 4 3 1 (−1,−1, 0, 0) 2 2 1 0

(−1,−1,−1, 0) 1 2 1 0 (−1,−1,−2, 0) 0 2 1 0 (−1,−1,−1,−1) 1 1 1 0

(1, 2, 2, 0) 0 0 1 1 (−1,−1,−2,−1) 0 1 1 0 (1, 2, 2, 1) 0 1 1 1

(−1,−1,−2,−2) 0 0 1 0 (1, 2, 3, 1) 1 1 1 1 (1, 2, 2, 2) 0 2 1 1

(1, 2, 3, 2) 1 2 1 1 (1, 2, 4, 2) 2 2 1 1 (1, 3, 4, 2) 2 4 3 2

Table B.9: ∆10 = {γ, δ,−α− β − 2γ − 2δ, 2α + 3β + 4γ + 2δ}

Root i j k ` Root i j k ` Root i j k `

(0, 1, 0, 0) 1 0 0 0 (0, 0, 1, 0) 0 1 0 1 (0, 0, 0, 1) 1 0 1 1

(0, 1, 1, 0) 1 1 0 1 (0, 0, 1, 1) 1 1 1 2 (0, 1, 2, 0) 1 2 0 2

(0, 1, 1, 1) 2 1 1 2 (0, 1, 2, 1) 2 2 1 3 (0, 1, 2, 2) 3 2 2 4

(2, 3, 4, 2) 1 0 0 2 (−1, 0, 0, 0) 2 2 1 2 (−1,−1, 0, 0) 1 2 1 2

(−1,−1,−1, 0) 1 1 1 1 (−1,−1,−2, 0) 1 0 1 0 (−1,−1,−1,−1) 0 1 0 0

(−1,−2,−2, 0) 0 0 1 0 (1, 1, 2, 1) 0 0 0 1 (1, 2, 2, 1) 1 0 0 1

(1, 1, 2, 2) 1 0 1 2 (1, 2, 3, 1) 1 1 0 2 (1, 2, 2, 2) 2 0 1 2

(1, 2, 3, 2) 2 1 1 3 (1, 2, 4, 2) 2 2 1 4 (1, 3, 4, 2) 3 2 1 4

Table B.10: ∆11 = {β,−α− β − γ − δ,−α− 2β − 2γ, α + β + 2γ + δ}
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Root i j k ` Root i j k ` Root i j k `

(0, 1, 0, 0) 0 0 2 1 (0, 0, 1, 0) 1 0 0 0 (0, 0, 0, 1) 0 1 1 1

(0, 1, 1, 0) 1 0 2 1 (0, 0, 1, 1) 1 1 1 1 (0, 1, 2, 0) 2 0 2 1

(0, 1, 1, 1) 1 1 3 2 (0, 1, 2, 1) 2 1 3 2 (0, 1, 2, 2) 2 2 4 3

(2, 3, 4, 2) 0 0 0 1 (−1, 0, 0, 0) 2 1 4 2 (−1,−1, 0, 0) 2 1 2 1

(−1,−1,−1, 0) 1 1 2 1 (−1,−1,−2, 0) 0 1 2 1 (−1,−1,−1,−1) 1 0 1 0

(−1,−2,−2, 0) 0 1 0 0 (−1,−1,−2,−1) 0 0 1 0 (1, 2, 2, 1) 0 0 1 1

(1, 1, 2, 2) 0 1 0 1 (1, 2, 3, 1) 1 0 1 1 (1, 2, 2, 2) 0 1 2 2

(1, 2, 3, 2) 1 1 2 2 (1, 2, 4, 2) 2 1 2 2 (1, 3, 4, 2) 2 1 4 3

Table B.11: ∆12 = {γ,−α− 2β − 2γ,−α− β − 2γ − δ, 2α + 3β + 4γ + 2δ}

B.2 Understanding khj

For each of the semisimple elements hj with j 6= 3, 4, or 8, we determine which basis

vectors commute with hj in order to show that khj ⊂ lj. Beside each hj below, the roots

associated to root vectors commuting with hj are listed. Since hj ∈ h, it follows that h is

contained in khj . The span of the root vectors associated to the roots listed below are a

subset of the roots in Table 7.1, hence the span of those root vectors is also contained in khj .

Semisimple Element Roots

h1 ±(0, 1, 0, 0), ±(0, 0, 1, 0), ±(0, 0, 0, 1), ±(0, 1, 1, 0), ±(0, 0, 1, 1),

±(0, 1, 1, 1), ±(0, 1, 2, 0), ±(0, 1, 2, 1), ±(0, 1, 2, 2)

h2 ±(0, 0, 1, 0), ±(0, 0, 0, 1), ±(0, 0, 1, 1)

h5 ±(0, 1, 0, 0), ±(0, 0, 0, 1)

h6 ±(0, 0, 1, 0)

h7 ±(0, 1, 1, 0)

h9 None

h10 ±(0, 0, 1, 0), ±(0, 0, 0, 1), ±(0, 0, 1, 1), ±(2, 3, 4, 2)

h11 None

h12 None
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B.3 Supplement to Theorem 7.5

We need to prove that k2
4 = 1 for k4 := Exp(πi(hγ +hδ))Exp(2xγ). We will do this by using

working within the Adjoint representation. If the matrix representing k4 has order two, then

it follows that k4 generates the desired Z2.

k4.x(1,0,0,0) = x(1,0,0,0), k4.x(0,1,0,0) = x(0,1,0,0) + 2x(0,1,1,0) + 4x(0,1,2,0), k4.x(0,0,1,0) = −x(0,0,1,0)

k4.x(0,0,0,1) = −x(0,0,0,1) + 2x(0,0,1,1), k4.x(1,1,0,0) = x(1,1,0,0) + 2x(1,1,1,0) + 4x(1,1,2,0)

k4.x(0,1,1,0) = −x(0,1,1,0) − 4x(0,1,2,0), k4.x(0,0,1,1) = x(0,0,1,1), k4.x(1,1,1,0) = −x(1,1,1,0) − 4x(1,1,2,0),

k4.x(0,1,2,0) = x(0,1,2,0), k4.x(0,1,1,1) = x(0,1,1,1) + 2x(0,1,2,1), k4.x(1,1,2,0) = x(1,1,2,0)

k4.x(1,1,1,1) = x(1,1,1,1) + 2x(1,1,2,1), k4.x(0,1,2,1) = −x(0,1,2,1), k4.x(1,2,2,0) = x(1,2,2,0)

k4.x(1,1,2,1) = −x(1,1,2,1), k4.x(0,1,2,2) = x(0,1,2,2), k4.x(1,2,2,1) = −x(1,2,2,1) − 2x(1,2,3,1)

k4.x(1,1,2,2) = x(1,1,2,2), k4.x(1,2,3,1) = x(1,2,3,1), k4.x(1,2,2,2) = x(1,2,2,2) + 2x(1,2,3,2) + 4x(1,2,4,2)

k4.x(1,2,3,2) = −x(1,2,3,2) − 4x(1,2,4,2), k4.x(1,2,4,2) = x(1,2,4,2), k4.x(1,3,4,2) = x(1,3,4,2)

k4.x(2,3,4,2) = x(2,3,4,2), k4.x(−1,0,0,0) = x(−1,0,0,0), k4.x(0,−1,0,0) = x(0,−1,0,0)

k4.x(0,0,−1,0) = −x(0,0,−1,0), k4.x(0,0,0,−1) = −x(0,0,0,−1), k4.x(−1,−1,0,0) = x(−1,−1,0,0)

k4.x(0,−1,−1,0) = 4x(0,−1,0,0) − x(0,−1,−1,0), k4.x(0,0,−1,−1) = 2x(0,0,0,−1) + x(0,0,−1,−1)

k4.x(−1,−1,−1,0) = 4x(−1,−1,0,0) − x(−1,−1,−1,0)

k4.x(0,−1,−2,0) = 4x(0,−1,0,0) − 2x(0−1,−1,0) + x(0,−1,−2,0), k4.x(0,−1,−1,−1) = −x(0,−1,−1,−1)

k4.x(−1,−1,−2,0) = 4x(−1,−1,0,0) − 2x(−1,−1,−1,0) + x(−1,−1,−2,0), k4.x(−1,−1,−1,−1) = x(−1,−1,−1,−1)

k4.x(0,−1,−2,−1) = 2x(0,−1,−1,−1) − x(0,−1,−2,−1), k4.x(−1,−2,−2,0) = x(−1,−2,−2,0)

k4.x(−1,−1,−2,−1) = 2x(−1,−1,−1,−1) − x(−1,−1,−2,−1), k4.x(0,−1,−2,−2) = x(0,−1,−2,−2)

k4.x(−1,−2,−2,−1) = −x(−1,−2,−2,−1), k4.x(−1,−1,−2,−2) = x(−1,−1,−2,−2)

k4.x(−1,−2,−3,−1) = −2x(−1,−2,−2,−1) + x(−1,−2,−3,−1), k4.x(−1,−2,−2,−2) = x(−1,−2,−2,−2)

k4.x(−1,−2,−3,−2) = 4x(−1,−2,−2,−2) − x(−1,−2,−3,−2)

k4.x(−1,−2,−4,−2) = 4x(−1,−2,−2,−2) − 2x(−1,−2,−3,−2) + x(−1,−2,−4,−2)
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k4.x(−1,−3,−4,−2) = x(−1,−3,−4,−2), k4.x(−2,−3,−4,−2) = x(−2,−3,−4,−2)

k4.h(1,0,0,0) = h(1,0,0,0)

Since the matrix is so large, we will give it in terms of our matrices E52
i,j .

E52
5,5 +E52

6,6 + 2E52
10,6 + 4E52

13,6−E52
7,7−E52

8,8 + 2E52
11,8 +E52

9,9 + 2E52
12,9 + 4E52

15,9−E52
10,10− 4E52

13,10 +

E52
11,11−E52

12,12−4E52
15,12 +E52

13,13 +E52
14,14 + 2E52

17,14 +E52
15,15 +E52

16,16 + 2E52
19,16−E52

17,17 +E52
18,18−

E52
19,19 +E52

20,20−E52
21,21−2E52

23,21 +E52
22,22 +E52

23,23 +E52
24,24 +2E52

25,24 +4E52
26,24−E52

25,25−4E52
26,25 +

E52
26,26 +E52

27,27 +E52
28,28 +E52

29,29 +E52
30,30−E52

31,31−E52
32,32 +E52

33,33 + 4E52
30,34−E52

34,34 + 2E52
32,35 +

E52
35,35 +4E52

33,36−E52
36,36 +4E52

30,37−2E52
34,37 +E52

37,37 +E52
38,38 +4E52

33,39−2E52
36,39 +E52

39,39 +E52
40,40 +

2E52
38,41−E52

41,41 +E52
42,42−E52

43,43 +E52
44,44−E52

45,45 +E52
46,46−2E52

45,47 +E52
47,47 +E52

48,48 + 4E52
48,49−

E52
49,49+4E52

48,50−2E52
49,50+E52

50,50+E52
51,51+E52

52,52+E52
1,1+E52

2,2−2E52
7,2+E52

3,3−4E52
7,3+E52

4,4−2E52
7,4

Embedding the data into a matrix algebra system, one sees by direct computation that

the matrix has order two, so k4 is indeed our desired component group generator.

B.4 Computing the Dimension of g(3, 2)

We need to compute g(3, 2) in order to determine the component group AK(f3). Given an

arbitrary element

p =
∑
ξ∈Γp

mξxξ

of p, we see that

[h3, p] = 2p

if and only if m(1,1,0,0) = 0, m(1,1,2,0) = 0, m(1,1,2,1) = 0, m(1,1,2,2) = 0, m(1,2,3,1) = 0, m(1,2,3,2) = 0,

m(1,2,4,2) = 0, m(1,3,4,2) = 0, m(−1,0,0,0) = 0, m(−1,−1,−1,0) = 0, m(−1,−1,−2,0) = 0, m(−1,−1,−1,−1) = 0,

m(−1,−2,−2,0) = 0, m(−1,−1,−2,−1) = 0, m(−1,−2,−2,−1) = 0, m(−1,−1,−2,−2) = 0, m(−1,−2,−3,−1) = 0,
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m(−1,−2,−2,−2) = 0, m(−1,−2,−3,−2) = 0, m(−1,−2,−4,−2) = 0, m(−1,−3,−4,−2) = 0, so g(3, 2) has

dimension 7.

B.5 Supplement to Proposition 6.1

For the remainder of this appendix, let

k = c1hα + c2hβ + c3hγ + c4hδ +
∑

ξ∈Φ(h,k)

cξxξ

be an arbitrary element of k. Since [k, p] ⊂ p, there exists coefficients mξ such that

[k, f ] =
∑
ξ∈Γp

mξxξ for any f ∈ p.

Proof of Proposition 6.1 (Cont.) We now prove that the K-orbit dimensions are correct for

each element fj listed in Proposition 6.1.

Positive System Φ+
1 (dim K.f1 = 15) For this first case, Φ+

1 is equal to Φ+(h, g),

so the nonzero coefficients mξ with f1 = x(−1,0,0,0) +x(−1,−2,−2,−1) +x(−1,−2,−4,−2) are given by

m(1,1,0,0) = −c(2,3,4,2), m(1,1,2,1) = c(2,3,4,2), m(1,3,4,2) = −c(2,3,4,2), m(−1,0,0,0) = −2c1 + c2, m(−1,−1,0,0) =

−c(0,−1,0,0) + 2c(0,1,2,1), m(−1,−1,−1,0) = −c(0,−1,−1,0) − c(0,1,1,1), m(−1,−1,−2,0) = −c(0,−1,−2,0) + c(0,1,2,2),

m(−1,−1,−1,−1) = −c(0,−1,−1,−1) − c(0,1,1,0), m(−1,−2,−2,0) = 2c(0,0,0,1), m(−1,−1,−2,−1) = −c(0,−1,−2,−1) +

c(0,1,0,0) − c(0,1,2,1), m(−1,−2,−2,−1) = −c2 + c3, m(−1,−1,−2,−2) = −c(0,−1,−2,−2) + c(0,1,2,0), m(−1,−2,−3,−1) =

c(0,0,−1,0)−c(0,0,1,1), m(−1,−2,−2,−2) = 2c(0,0,0,−1), m(−1,−2,−3,−2) = −c(0,0,−1,−1)+c(0,0,1,0), m(−1,−2,−4,−2) =

c2 − 2c3, and m(−1,−3,−4,−2) = 2c(0,−1,−2,−1) − c(0,−1,0,0). Then the equations mξ = 0 yield

the relations on the coefficients cξ given by c1 = 0, c2 = 0, c3 = 0, c(0,0,0,1) = 0, c(0,1,2,1) =

1/2c(0,1,0,0), c(2,3,4,2) = 0, c(0,−1,0,0) = c(0,1,0,0), c(0,0,−1,0) = c(0,0,1,1), c(0,0,0,−1) = 0, c(0,−1,−1,0) = −c(0,1,1,1),

c(0,0,−1,−1) = c(0,0,1,0), c(0,−1,−2,0) = c(0,1,2,2), c(0,−1,−1,−1) = −c(0,1,1,0), c(0,−1,−2,−1) = 1/2c(0,1,0,0), and
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c(0,−1,−2,−2) = c(0,1,2,0). Therefore, kf1 has dimension 9, hence K.f1 has dimension 15.

Positive System Φ+
2 (dim K.f2 = 21) For this case, the nonzero coefficients mξ

with f2 = x(1,0,0,0) + x(−1,−1,0,0) + x(−1,−1,−2,−1) are m(1,0,0,0) = 2c1 − c2, m(1,1,0,0) = c(0,1,0,0),

m(1,1,1,0) = c(0,1,1,0), m(1,1,2,0) = c(0,1,2,0), m(1,1,1,1) = c(0,1,1,1), m(1,1,2,1) = c(0,1,2,1), m(1,2,2,1) = −c(2,3,4,2),

m(1,1,2,2) = c(0,1,2,2), m(1,2,4,2) = c(2,3,4,2), m(−1,0,0,0) = −c(0,1,0,0)− 2c(0,1,2,1), m(−1,−1,0,0) = −c1− c2 + 2c3,

m(−1,−1,−1,0) = c(0,0,−1,0) + c(0,0,1,1), m(−1,−1,−2,0) = 2c(0,0,0,1), m(−1,−1,−1,−1) = c(0,0,−1,−1) + c(0,0,1,0),

m(−1,−2,−2,0) = c(0,−1,−2,0), m(−1,−1,−2,−1) = −c1 + c2 − c3, m(−1,−2,−2,−1) = c(0,−1,−2,−1) + c(0,−1,0,0),

m(−1,−1,−2,−2) = 2c(0,0,0,−1), m(−1,−2,−3,−1) = c(0,−1,−1,0), m(−1,−2,−2,−2) = c(0,−1,−2,−2), m(−1,−2,−3,−2) =

−c(0,−1,−1,−1), m(−1,−2,−4,−2) = −2c(0,−1,−2,−1), and m(−1,−3,−4,−2) = c(−2,−3,−4,−2). Then the equa-

tions mξ = 0 yield the relations on the coefficients cξ given by c1 = 0, c2 = 0, c3 = 0,

c(0,1,0,0) = 0, c(0,0,0,1) = 0, c(0,1,1,0) = 0, c(0,1,2,0) = 0, c(0,1,1,1) = 0, c(0,1,2,1) = 0, c(0,1,2,2) = 0, c(2,3,4,2) = 0,

c(0,−1,0,0) = 0, c(0,0,−1,0) = −c(0,0,1,1), c(0,0,0,−1) = 0, c(0,−1,−1,0) = 0, c(0,0,−1,−1) = −c(0,0,1,0), c(0,−1,−2,0) =

0, c(0,−1,−1,−1) = 0, c(0,−1,−2,−1) = 0, c(0,−1,−2,−2) = 0, and c(−2,−3,−4,−2) = 0. Therefore, kf2 has

dimension 3, hence K.f2 has dimension 21.

Positive System Φ+
3 (dim K.f3 = 21) For this case, the nonzero coefficients mξ

with f3 = x(1,1,0,0) + x(−1,−1,−1,−1) + x(−1,−2,−2,0) are m(1,0,0,0) = c(0,−1,0,0), m(1,1,0,0) = c1 +

c2 − 2c3, m(1,1,1,0) = −c(0,0,1,0), m(1,1,1,1) = −c(0,0,1,1), m(1,2,2,0) = −c(0,1,2,0), m(1,2,2,1) = −c(0,1,2,1),

m(1,1,2,2) = −c(2,3,4,2), m(1,2,3,1) = c(2,3,4,2), m(1,2,2,2) = −c(0,1,2,2), m(−1,0,0,0) = −2c(0,1,1,1), m(−1,−1,0,0) =

2c(0,0,1,1) + c(0,1,2,0), m(−1,−1,−1,0) = c(0,0,0,1) − c(0,1,1,0), m(−1,−1,−2,0) = c(0,1,0,0), m(−1,−1,−1,−1) = −c1 +

c3 − c4, m(−1,−2,−2,0) = −c2 + 2c4, m(−1,−1,−2,−1) = c(0,0,−1,0), m(−1,−2,−2,−1) = −c(0,−1,−1,0) + c(0,0,0,−1),

m(−1,−1,−2,−2) = 2c(0,0,−1,−1), m(−1,−2,−3,−1) = −c(0,−1,−2,0)−c(0,0,−1,−1), m(−1,−2,−2,−2) = −2c(0,−1,−1,−1),

m(−1,−2,−3,−2) = −c(0,−1,−2,−1), m(−1,−2,−4,−2) = −c(−2,−3,−4,−2), and m(−1,−3,−4,−2) = −c(0,−1,−2,−2).

Then the equations mξ = 0 yield the relations on the coefficients cξ given by c1 = 0,

c3 = c2/2, c4 = c2/2, c(0,1,0,0) = 0, c(0,0,1,0) = 0, c(0,1,1,0) = c(0,0,0,1), c(0,0,1,1) = 0, c(0,1,2,0) = 0,
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c(0,1,1,1) = 0, c(0,1,2,1) = 0, c(0,1,2,2) = 0, c(2,3,4,2) = 0, c(0,−1,0,0) = 0, c(0,0,−1,0) = 0, c(0,−1,−1,0) =

c(0,0,0,−1), c(0,0,−1,−1) = 0, c(0,−1,−2,0) = 0, c(0,−1,−1,−1) = 0, c(0,−1,−2,−1) = 0, c(0,−1,−2,−2) = 0, and

c(−2,−3,−4,−2) = 0. Therefore, kf3 has dimension 3, hence K.f3 has dimension 21.

Positive System Φ+
4 (dim K.f4 = 23) For this case, the nonzero coefficients mξ with

f4 = x(1,1,0,0) + x(1,1,1,0) + x(−1,−1,−1,−1) + x(−1,−2,−2,0) are m(1,0,0,0) = 2c(0,−1,−1,0) + c(0,−1,0,0),

m(1,1,0,0) = c1 + c2 − 2c3 − 2c(0,0,−1,0), m(1,1,1,0) = c1 − c4 − c(0,0,1,0), m(1,1,2,0) = −2c(0,0,1,0), m(1,1,1,1) =

−c(0,0,0,1)− c(0,0,1,1), m(1,2,2,0) = 2c(0,1,1,0)− c(0,1,2,0), m(1,1,2,1) = −c(0,0,1,1), m(1,2,2,1) = c(0,1,1,1)− c(0,1,2,1),

m(1,1,2,2) = −c(2,3,4,2), m(1,2,3,1) = −c(0,1,2,1) + c(2,3,4,2), m(1,2,2,2) = −c(0,1,2,2), m(1,2,3,2) = −c(0,1,2,2),

m(−1,0,0,0) = −2c(0,1,1,1), m(−1,−1,0,0) = 2c(0,0,1,1) + c(0,1,2,0), m(−1,−1,−1,0) = c(0,0,0,1) − c(0,1,1,0),

m(−1,−1,−2,0) = c(0,1,0,0), m(−1,−1,−1,−1) = −c1 + c3 − c4, m(−1,−2,−2,0) = −c2 + 2c4, m(−1,−1,−2,−1) =

c(0,0,−1,0), m(−1,−2,−2,−1) = −c(0,−1,−1,0) + c(0,0,0,−1), m(−1,−1,−2,−2) = 2c(0,0,−1,−1), m(−1,−2,−3,−1) =

−c(0,−1,−2,0)− c(0,0,−1,−1), m(−1,−2,−2,−2) = −2c(0,−1,−1,−1), m(−1,−2,−3,−2) = c(−2,−3,−4,−2)− c(0,−1,−2,−1),

m(−1,−2,−4,−2) = −c(−2,−3,−4,−2), and m(−1,−3,−4,−2) = −c(0,−1,−2,−2). Then the equations mξ = 0

yield the relations on the coefficients cξ given by c1 = 0, c2 = 0, c3 = 0, c4 = 0, c(0,1,0,0) = 0,

c(0,0,1,0) = 0, c(0,0,0,1) = 0, c(0,1,1,0) = 0, c(0,0,1,1) = 0, c(0,1,2,0) = 0, c(0,1,1,1) = 0, c(0,1,2,1) = 0, c(0,1,2,2) = 0,

c(2,3,4,2) = 0, c(0,0,−1,0) = 0, c(0,0,0,−1) = −1/2c(0,−1,0,0), c(0,−1,−1,0) = −1/2c(0,−1,0,0), c(0,0,−1,−1) = 0,

c(0,−1,−2,0) = 0, c(0,−1,−1,−1) = 0, c(0,−1,−2,−1) = 0, c(0,−1,−2,−2) = 0, and c(−2,−3,−4,−2) = 0. Therefore,

kf4 has dimension 1, hence K.f4 has dimension 23.

Positive System Φ+
5 (dim K.f5 = 22) For this case, the nonzero coefficients mξ with

f5 = x(1,1,1,0) + x(1,1,1,1) + x(−1,−2,−2,0) + x(−1,−1,−2,−2) are m(1,0,0,0) = 2(c(0,−1,−1,−1) + c(0,−1,−1,0)),

m(1,1,0,0) = −2(c(0,0,−1,−1) + c(0,0,−1,0)), m(1,1,1,0) = c1 − c4 − c(0,0,0,−1), m(1,1,2,0) = −2c(0,0,1,0), m(1,1,1,1) =

c1 − c3 + c4 − c(0,0,0,1), m(1,2,2,0) = 2c(0,1,1,0) + c(2,3,4,2), m(1,1,2,1) = −c(0,0,1,0) − c(0,0,1,1), m(1,2,2,1) =

c(0,1,1,0) + c(0,1,1,1), m(1,1,2,2) = −2c(0,0,1,1) − c(2,3,4,2), m(1,2,3,1) = c(0,1,2,0) − c(0,1,2,1), m(1,2,2,2) = 2c(0,1,1,1),

m(1,2,3,2) = c(0,1,2,1) − c(0,1,2,2), m(−1,0,0,0) = −c(0,1,2,2), m(−1,−1,0,0) = c(0,1,2,0),m(−1,−1,−1,0) = −c(0,1,1,0),
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m(−1,−1,−2,0) = c(0,1,0,0), m(−1,−1,−1,−1) = c(0,0,1,1), m(−1,−2,−2,0) = −c2 + 2c4,m(−1,−1,−2,−1) = c(0,0,0,1),

m(−1,−2,−2,−1) = c(0,0,0,−1), m(−1,−1,−2,−2) = −c1 + c2−2c4, m(−1,−2,−3,−1) = −c(−2,−3,−4,−2)− c(0,0,−1,−1),

m(−1,−2,−2,−2) = c(0,−1,0,0), m(−1,−2,−3,−2) = c(−2,−3,−4,−2) + c(0,−1,−1,0), m(−1,−2,−4,−2) = c(0,−1,−2,0),

and m(−1,−3,−4,−2) = −c(0,−1,−2,−2). Then the equations mξ = 0 yield the relations on the

coefficients cξ given by c1 = 0, c2 = 0, c3 = 0, c4 = 0, c(0,1,0,0) = 0, c(0,0,1,0) = 0, c(0,0,0,1) = 0,

c(0,1,1,0) = 0, c(0,0,1,1) = 0, c(0,1,2,0) = 0, c(0,1,1,1) = 0, c(0,1,2,1) = 0, c(0,1,2,2) = 0, c(2,3,4,2) = 0, c(0,−1,0,0) = 0,

c(0,0,0,−1) = 0, c(0,−1,−1,0) = −c(0,0,−1,0), c(0,0,−1,−1) = −c(0,0,−1,0), c(0,−1,−2,0) = 0, c(0,−1,−1,−1) = c(0,0,−1,0),

c(0,−1,−2,−2) = 0, and c(−2,−3,−4,−2) = c(0,0,−1,0). Therefore, kf5 has dimension 2, hence K.f5 has

dimension 22.

Positive System Φ+
6 (dim K.f6 = 23) We have already determined the dimension

because f4 = f6. Since Φ+
4 and Φ+

6 intersect in such a way that f6 lives in n−4 ∩ n−6 ∩ p,

it follows that kf6 has dimension 1, hence K.f6 has dimension 23. It is interesting to note

that although the generic elements are the same, the corresponding Springer fibers are quite

different.

Positive System Φ+
7 (dim K.f7 = 20) For this case, the nonzero coefficients mξ with

f7 = x(1,1,1,0) + x(1,2,2,0) + x(−1,−2,−2,−1) + x(−1,−2,−4,−2) are m(1,0,0,0) = 2c(0,−1,−1,0), m(1,1,0,0) =

−c(0,−1,−2,0) − 2c(0,0,−1,0) − c(2,3,4,2), m(1,1,1,0) = c1 − c4 + c(0,−1,−1,0), m(1,1,2,0) = −c(0,−1,0,0) − 2c(0,0,1,0),

m(1,1,1,1) = −c(0,0,0,1), m(1,2,2,0) = c2 − 2c4 + 2c(0,1,1,0), m(1,1,2,1) = −c(0,0,1,1) + c(2,3,4,2), m(1,2,2,1) =

−c(0,0,0,1)+c(0,1,1,1), m(1,2,3,1) = c(0,0,1,1)−c(0,1,2,1), m(1,2,3,2) = −c(0,1,2,2), m(1,3,4,2) = c(0,1,2,2), m(−1,−1,0,0) =

2c(0,1,2,1), m(−1,−1,−1,0) = −c(0,1,1,1), m(−1,−1,−2,0) = c(0,1,2,2), m(−1,−1,−1,−1) = −c(0,1,1,0), m(−1,−2,−2,0) =

2c(0,0,0,1), m(−1,−1,−2,−1) = c(0,1,0,0)− c(0,1,2,1), m(−1,−2,−2,−1) = −c2 + c3, m(−1,−1,−2,−2) = c(−2,−3,−4,−2) +

c(0,1,2,0), m(−1,−2,−3,−1) = c(0,0,−1,0)−c(0,0,1,1), m(−1,−2,−2,−2) = 2c(0,0,0,−1), m(−1,−2,−3,−2) = c(−2,−3,−4,−2)−

c(0,0,−1,−1)+c(0,0,1,0), m(−1,−2,−4,−2) = c2−2c3, and m(−1,−3,−4,−2) = 2c(0,−1,−2,−1)−c(0,−1,0,0). Then the

equations mξ = 0 yield the relations on the coefficients cξ given by c1 = 0, c2 = 0, c3 = 0, c4 = 0,
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c(0,1,0,0) = 0, c(0,0,0,1) = 0, c(0,1,1,0) = 0, c(0,0,1,1) = 0, c(0,1,1,1) = 0, c(0,1,2,1) = 0, c(0,1,2,2) = 0, c(2,3,4,2) = 0,

c(0,−1,0,0) = −2c(0,0,1,0), c(0,0,−1,0) = 0, c(0,0,0,−1) = 0, c(0,−1,−1,0) = 0, c(0,0,−1,−1) = c(0,0,1,0) − c(0,1,2,0),

c(0,−1,−2,0) = 0, c(0,−1,−2,−1) = −c(0,0,1,0), and c(−2,−3,−4,−2) = −c(0,1,2,0). Therefore, kf7 has dimen-

sion 4, hence K.f7 has dimension 20.

Positive System Φ+
8 (dim K.f8 = 24) For this case, the nonzero coefficients mξ with

f8 = x(1,1,2,0) + x(1,1,1,1) + x(−1,−2,−2,0) + x(−1,−1,−2,−1) are m(1,0,0,0) = c(0,−1,−2,0) + 2c(0,−1,−1,−1),

m(1,1,0,0) = −2c(0,0,−1,−1), m(1,1,1,0) = −c(0,0,−1,0) − c(0,0,0,−1), m(1,1,2,0) = c1 − c2 + 2c3 − 2c4, m(1,1,1,1) =

c1 − c3 + c4, m(1,2,2,0) = −c(0,1,0,0), m(1,1,2,1) = −c(0,0,0,1) − c(0,0,1,0), m(1,2,2,1) = c(0,1,1,0) − c(2,3,4,2),

m(1,1,2,2) = −2c(0,0,1,1)−c(2,3,4,2), m(1,2,3,1) = c(0,1,1,1) +c(0,1,2,0), m(1,2,2,2) = 2c(0,1,1,1), m(1,2,3,2) = c(0,1,2,1),

m(1,2,4,2) = −c(0,1,2,2), m(−1,0,0,0) = −2c(0,1,2,1), m(−1,−1,0,0) = c(0,1,2,0), m(−1,−1,−1,0) = c(0,0,1,1) − c(0,1,1,0),

m(−1,−1,−2,0) = 2c(0,0,0,1) + c(0,1,0,0), m(−1,−1,−1,−1) = c(0,0,1,0), m(−1,−2,−2,0) = −c2 + 2c4, m(−1,−1,−2,−1) =

−c1 + c2 − c3, m(−1,−2,−2,−1) = c(0,−1,0,0) + c(0,0,0,−1), m(−1,−1,−2,−2) = 2c(0,0,0,−1), m(−1,−2,−3,−1) =

−c(−2,−3,−4,−2)+c(0,−1,−1,0)−c(0,0,−1,−1), m(−1,−2,−2,−2) = −c(−2,−3,−4,−2), m(−1,−2,−3,−2) = −c(0,−1,−1,−1),

m(−1,−2,−4,−2) = −2c(0,−1,−2,−1), and m(−1,−3,−4,−2) = −c(0,−1,−2,−2). Then the equations mξ = 0

yield the relations on the coefficients cξ given by c1 = 0, c2 = 0, c3 = 0, c4 = 0, c(0,1,0,0) = 0,

c(0,0,1,0) = 0, c(0,0,0,1) = 0, c(0,1,1,0) = 0, c(0,0,1,1) = 0, c(0,1,2,0) = 0, c(0,1,1,1) = 0, c(0,1,2,1) = 0, c(0,1,2,2) = 0,

c(2,3,4,2) = 0, c(0,−1,0,0) = 0, c(0,0,−1,0) = 0, c(0,0,0,−1) = 0, c(0,−1,−1,0) = 0, c(0,0,−1,−1) = 0, c(0,−1,−2,0) = 0,

c(0,−1,−1,−1) = 0, c(0,−1,−2,−1) = 0, c(0,−1,−2,−2) = 0, and c(−2,−3,−4,−2) = 0. Therefore, kf8 has dimen-

sion 0, hence K.f8 has dimension 24.

Positive System Φ+
9 (dim K.f9 = 23) For this case, the nonzero coefficients mξ with

f9 = x(1,1,2,0) + x(1,1,1,1) + x(−1,−2,−2,0) + x(−1,−1,−2,−2) are m(1,0,0,0) = c(0,−1,−2,0) + 2c(0,−1,−1,−1),

m(1,1,0,0) = −2c(0,0,−1,−1), m(1,1,1,0) = −c(0,0,−1,0) − c(0,0,0,−1), m(1,1,2,0) = c1 − c2 + 2c3 − 2c4, m(1,1,1,1) =

c1 − c3 + c4, m(1,2,2,0) = −c(0,1,0,0) + c(2,3,4,2), m(1,1,2,1) = −c(0,0,0,1) − c(0,0,1,0), m(1,2,2,1) = c(0,1,1,0),

m(1,1,2,2) = −2c(0,0,1,1) − c(2,3,4,2), m(1,2,3,1) = c(0,1,1,1) + c(0,1,2,0), m(1,2,2,2) = 2c(0,1,1,1), m(1,2,3,2) =
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c(0,1,2,1), m(1,2,4,2) = −c(0,1,2,2), m(−1,0,0,0) = −c(0,1,2,2), m(−1,−1,0,0) = c(0,1,2,0), m(−1,−1,−1,0) = −c(0,1,1,0),

m(−1,−1,−2,0) = c(0,1,0,0), m(−1,−1,−1,−1) = c(0,0,1,1), m(−1,−2,−2,0) = −c2 + 2c4, m(−1,−1,−2,−1) = c(0,0,0,1),

m(−1,−2,−2,−1) = c(0,0,0,−1), m(−1,−1,−2,−2) = −c1 + c2−2c4, m(−1,−2,−3,−1) = −c(−2,−3,−4,−2)− c(0,0,−1,−1),

m(−1,−2,−2,−2) = −c(−2,−3,−4,−2) + c(0,−1,0,0), m(−1,−2,−3,−2) = c(0,−1,−1,0), m(−1,−2,−4,−2) = c(0,−1,−2,0),

and m(−1,−3,−4,−2) = −c(0,−1,−2,−2). Then the equations mξ = 0 yield the relations on the coef-

ficients cξ given by c1 = 0, c2 = 0, c3 = 0, c4 = 0, c(0,1,0,0) = 0, c(0,0,1,0) = 0, c(0,0,0,1) = 0, c(0,1,1,0) = 0,

c(0,0,1,1) = 0, c(0,1,2,0) = 0, c(0,1,1,1) = 0, c(0,1,2,1) = 0, c(0,1,2,2) = 0, c(2,3,4,2) = 0, c(0,−1,0,0) = 0, c(0,0,−1,0) =

0, c(0,0,0,−1) = 0, c(0,−1,−1,0) = 0, c(0,0,−1,−1) = 0, c(0,−1,−2,0) = 0, c(0,−1,−1,−1) = 0, c(0,−1,−2,−2) = 0, and

c(−2,−3,−4,−2) = 0. Therefore, kf9 has dimension 1, hence K.f9 has dimension 23.

Positive System Φ+
10 (dim K.f10 = 20) For this case, the nonzero coefficients mξ with

f10 = x(1,1,1,0) + x(1,1,2,0) + x(−1,−2,−2,0) + x(−1,−2,−4,−2) are m(1,0,0,0) = c(0,−1,−2,0) + 2c(0,−1,−1,0),

m(1,1,0,0) = −2c(0,0,−1,0)−c(2,3,4,2), m(1,1,1,0) = c1−c4−c(0,0,−1,0), m(1,1,2,0) = c1−c2 +2c3−2c4−2c(0,0,1,0),

m(1,1,1,1) = −c(0,0,0,1), m(1,2,2,0) = −c(0,1,0,0) + 2c(0,1,1,0), m(1,1,2,1) = −c(0,0,0,1) − c(0,0,1,1), m(1,2,2,1) =

c(0,1,1,1), m(1,1,2,2) = −c(2,3,4,2), m(1,2,3,1) = c(0,1,1,1)−c(0,1,2,1), m(1,2,3,2) = −c(0,1,2,2), m(1,2,4,2) = −c(0,1,2,2),

m(−1,−1,0,0) = c(0,1,2,0), m(−1,−1,−1,0) = −c(0,1,1,0), m(−1,−1,−2,0) = c(0,1,0,0)+c(0,1,2,2), m(−1,−2,−2,0) = −c2+

2c4, m(−1,−1,−2,−1) = −c(0,1,2,1), m(−1,−2,−2,−1) = c(0,0,0,−1), m(−1,−1,−2,−2) = c(0,1,2,0), m(−1,−2,−3,−1) =

−c(0,0,−1,−1) − c(0,0,1,1), m(−1,−2,−2,−2) = −c(−2,−3,−4,−2), m(−1,−2,−3,−2) = c(−2,−3,−4,−2) + c(0,0,1,0),

m(−1,−2,−4,−2) = c2 − 2c3, and m(−1,−3,−4,−2) = −c(0,−1,−2,−2) − c(0,−1,0,0). Then the equations

mξ = 0 yield the relations on the coefficients cξ given by c1 = 0, c2 = 0, c3 = 0, c4 = 0,

c(0,1,0,0) = 0, c(0,0,1,0) = 0, c(0,0,0,1) = 0, c(0,1,1,0) = 0, c(0,0,1,1) = 0, c(0,1,2,0) = 0, c(0,1,1,1) = 0, c(0,1,2,1) = 0,

c(0,1,2,2) = 0, c(2,3,4,2) = 0, c(0,0,−1,0) = 0, c(0,0,0,−1) = 0, c(0,0,−1,−1) = 0, c(0,−1,−2,0) = −2c(0,−1,−1,0),

c(0,−1,−2,−2) = −c(0,−1,0,0), and c(−2,−3,−4,−2) = 0. Therefore, kf10 has dimension 4, hence K.f10

has dimension 20.

Positive System Φ+
11 (dim K.f11 = 22) For this case, the nonzero coefficients mξ with
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f11 = x(1,1,2,0) +x(1,1,1,1) +x(−1,−1,−2,−1) +x(−1,−3,−4,−2) are m(1,0,0,0) = c(0,−1,−2,0) +2c(0,−1,−1,−1) +

c(2,3,4,2), m(1,1,0,0) = −2c(0,0,−1,−1), m(1,1,1,0) = −c(0,0,−1,0) − c(0,0,0,−1), m(1,1,2,0) = c1 − c2 + 2c3 − 2c4,

m(1,1,1,1) = c1 − c3 + c4, m(1,2,2,0) = −c(0,1,0,0), m(1,1,2,1) = −c(0,0,0,1) − c(0,0,1,0), m(1,2,2,1) = c(0,1,1,0) −

c(2,3,4,2), m(1,1,2,2) = −2c(0,0,1,1), m(1,2,3,1) = c(0,1,1,1) + c(0,1,2,0), m(1,2,2,2) = 2c(0,1,1,1), m(1,2,3,2) = c(0,1,2,1),

m(1,2,4,2) = −c(0,1,2,2), m(−1,0,0,0) = −2c(0,1,2,1), m(−1,−1,−1,0) = c(0,0,1,1), m(−1,−1,−2,0) = 2c(0,0,0,1),

m(−1,−1,−1,−1) = c(0,0,1,0), m(−1,−2,−2,0) = −c(0,1,2,2), m(−1,−1,−2,−1) = −c1 + c2 − c3, m(−1,−2,−2,−1) =

c(0,−1,0,0) + c(0,1,2,1), m(−1,−1,−2,−2) = 2c(0,0,0,−1), m(−1,−2,−3,−1) = −c(−2,−3,−4,−2) + c(0,−1,−1,0)− c(0,1,1,1),

m(−1,−2,−2,−2) = −c(−2,−3,−4,−2) − c(0,1,2,0), m(−1,−2,−3,−2) = −c(0,−1,−1,−1) + c(0,1,1,0), m(−1,−2,−4,−2) =

−2c(0,−1,−2,−1) − c(0,1,0,0), and m(−1,−3,−4,−2) = c1 − c2. Then the equations mξ = 0 yield the

relations on the coefficients cξ given by c1 = 0, c2 = 0, c3 = 0, c4 = 0, c(0,1,0,0) = 0, c(0,0,1,0) = 0,

c(0,0,0,1) = 0, c(0,0,1,1) = 0, c(0,1,2,0) = 0, c(0,1,1,1) = 0, c(0,1,2,1) = 0, c(0,1,2,2) = 0, c(2,3,4,2) = c(0,1,1,0),

c(0,−1,0,0) = 0, c(0,0,−1,0) = 0, c(0,0,0,−1) = 0, c(0,−1,−1,0) = 0, c(0,0,−1,−1) = 0, c(0,−1,−2,0) = −3c(0,1,1,0),

c(0,−1,−1,−1) = c(0,1,1,0), c(0,−1,−2,−1) = 0, and c(−2,−3,−4,−2) = 0. Therefore, kf11 has dimension 2,

hence K.f11 has dimension 22.

Positive System Φ+
12 (dim K.f12 = 22) For this last case, the nonzero coefficients

mξ with f12 = x(1,1,2,0) + x(1,1,1,1) + x(−1,−2,−2,−1) + x(−1,−1,−2,−2) are m(1,0,0,0) = c(0,−1,−2,0) +

2c(0,−1,−1,−1), m(1,1,0,0) = −2c(0,0,−1,−1), m(1,1,1,0) = −c(0,0,−1,0)− c(0,0,0,−1), m(1,1,2,0) = c1− c2 + 2c3−2c4,

m(1,1,1,1) = c1 − c3 + c4, m(1,2,2,0) = −c(0,1,0,0) + c(2,3,4,2), m(1,1,2,1) = −c(0,0,0,1) − c(0,0,1,0) + c(2,3,4,2),

m(1,2,2,1) = c(0,1,1,0), m(1,1,2,2) = −2c(0,0,1,1), m(1,2,3,1) = c(0,1,1,1)+c(0,1,2,0), m(1,2,2,2) = 2c(0,1,1,1), m(1,2,3,2) =

c(0,1,2,1), m(1,2,4,2) = −c(0,1,2,2), m(−1,0,0,0) = −c(0,1,2,2), m(−1,−1,0,0) = 2c(0,1,2,1), m(−1,−1,−1,0) = −c(0,1,1,1),

m(−1,−1,−1,−1) = c(0,0,1,1) − c(0,1,1,0), m(−1,−2,−2,0) = 2c(0,0,0,1), m(−1,−1,−2,−1) = c(0,0,0,1) + c(0,1,0,0),

m(−1,−2,−2,−1) = −c2 + c3, m(−1,−1,−2,−2) = −c1 + c2 − 2c4, m(−1,−2,−3,−1) = −c(−2,−3,−4,−2) + c(0,0,−1,0),

m(−1,−2,−2,−2) = −c(−2,−3,−4,−2) + c(0,−1,0,0) + 2c(0,0,0,−1), m(−1,−2,−3,−2) = c(0,−1,−1,0) − c(0,0,−1,−1),
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m(−1,−2,−4,−2) = c(0,−1,−2,0), and m(−1,−3,−4,−2) = 2c(0,−1,−2,−1). Then the equations mξ = 0 yield

the relations on the coefficients cξ given by c1 = 0, c2 = 0, c3 = 0, c4 = 0, c(0,1,0,0) = 0, c(0,0,1,0) = 0,

c(0,0,0,1) = 0, c(0,1,1,0) = 0, c(0,0,1,1) = 0, c(0,1,2,0) = 0, c(0,1,1,1) = 0, c(0,1,2,1) = 0, c(0,1,2,2) = 0, c(2,3,4,2) = 0,

c(0,0,−1,0) = 1/3c(0,−1,0,0), c(0,0,0,−1) = −1/3c(0,−1,0,0), c(0,−1,−1,0) = 0, c(0,0,−1,−1) = 0, c(0,−1,−2,0) = 0,

c(0,−1,−1,−1) = 0, c(0,−1,−2,−1) = 0, and c(−2,−3,−4,−2) = 1/3c(0,−1,0,0). Therefore, kf12 has dimension

2, hence K.f12 has dimension 22.

To finish Proposition 6.1, we will now prove that the dimension of K.(n−3 ∩ p) is at most

21, and the dimension of K.(n−11 ∩ p) is at most 22. Let ξi denote ith root of

−Φ+
3 ∩ Γp = {(1, 0, 0, 0), (1, 1, 0, 0), (−1,−1,−1, 0), (−1,−1,−2, 0), (−1,−1,−1,−1), (−1,−2,−2, 0),

(−1,−1,−2,−1), (−1,−2,−2,−1), (−1,−1,−2,−2), (−1,−2,−3,−1), (−1,−2,−2,−2),

(−1,−2,−3,−2), (−1,−2,−4,−2), (−1,−3,−4,−2)},

and let

f =
14∑
i=1

aixξi

be an arbitrary element of n−3 ∩ p. The 14 coefficients m(1,1,1,0) = −a2c(0,0,1,0) + a1c(0,1,1,0) +

a12c(2,3,4,2),m(1,1,2,0) = a1c(0,1,2,0)−a11c(2,3,4,2),m(1,1,1,1) = −a2c(0,0,1,1)+a1c(0,1,1,1)−a10c(2,3,4,2),m(1,2,2,0) =

−a2c(0,1,2,0)+a9c(2,3,4,2),m(1,1,2,1) = a1c(0,1,2,1)+a8c(2,3,4,2),m(1,2,2,1) = −a2c(0,1,2,1)−a7c(2,3,4,2),m(1,1,2,2) =

a1c(0,1,2,2)−a6c(2,3,4,2),m(1,2,3,1) = a5c(2,3,4,2),m(1,2,2,2) = −a2c(0,1,2,2)+a4c(2,3,4,2),m(1,2,3,2) = −a3c(2,3,4,2),

m(1,2,4,2) = 0,m(1,3,4,2) = 0,m(−1,0,0,0) = −2a3c(0,1,1,0)−2a5c(0,1,1,1)−a4c(0,1,2,0)−2a7c(0,1,2,1)−a9c(0,1,2,2),

m(−1,−1,0,0) = 2a3c(0,0,1,0) + 2a5c(0,0,1,1) + a6c(0,1,2,0) + 2a8c(0,1,2,1) + a11c(0,1,2,2) determine a 14 × 24

matrix (Figure B.1) whose rank is at most 7. This matrix illustrates 14 rows of the full

relations matrix R associated to the equation [k, f ] = 0. Since the rank of R is at most
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7 + 14 = 21, it follows that dim K.(n−3 ∩ p) ≤ 21.

For the other case, let ξi denote the root in the ith position of

−Φ+
11 ∩ Γp = {(1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0), (1, 1, 2, 0), (1, 1, 1, 1), (1, 2, 2, 0), (−1,−1,−2,−1),

(−1,−2,−2,−1), (−1,−1,−2,−2), (−1,−2,−3,−1), (−1,−2,−2,−2),

(−1,−2,−3,−2), (−1,−2,−4,−2), (−1,−3,−4,−2)},

and let

f =
14∑
i=1

aixξi

be an arbitrary element of n−11 ∩ p. The 14 coefficients m(1,1,2,1) = −a4c(0,0,0,1) − a5c(0,0,1,0) −

a3c(0,0,1,1)+a1c(0,1,2,1)+a8c(2,3,4,2),m(1,2,2,1) = −a6c(0,0,0,1)+a5c(0,1,1,0)+a3c(0,1,1,1)−a2c(0,1,2,1)−a7c(2,3,4,2),

m(1,1,2,2) = −2a5c(0,0,1,1)+a1c(0,1,2,2),m(1,2,3,1) = a6c(0,0,1,1)+a4c(0,1,1,1)+a5c(0,1,2,0)−a3c(0,1,2,1),m(1,2,2,2) =

2a5c(0,1,1,1)−a2c(0,1,2,2),m(1,2,3,2) = a5c(0,1,2,1)−a3c(0,1,2,2),m(1,2,4,2) = −a4c(0,1,2,2),m(1,3,4,2) = a6c(0,1,2,2),

m(−1,0,0,0) = −2a7c(0,1,2,1)−a9c(0,1,2,2),m(−1,−1,0,0) = 2a8c(0,1,2,1)+a11c(0,1,2,2),m(−1,−1,−1,0) = a7c(0,0,1,1) −

a8c(0,1,1,1) + a10c(0,1,2,1) + a12c(0,1,2,2), m(−1,−1,−2,0) = 2a7c(0,0,0,1) − 2a10c(0,1,1,1) + a13c(0,1,2,2),

m(−1,−1,−1,−1) = a7c(0,0,1,0)+a9c(0,0,1,1)−a8c(0,1,1,0)−a11c(0,1,1,1)−a10c(0,1,2,0)−a12c(0,1,2,1),m(−1,−2,−2,0) =

2a8c(0,0,0,1) − 2a10c(0,0,1,1) − a14c(0,1,2,2) determine a 14 × 24 matrix (Figure B.2) whose rank is

at most 8. This matrix illustrates 14 rows of the full relations matrix R associated to the

equation [k, f ] = 0. Since the rank of R is at most 8 + 14 = 22, dim K.(n−11 ∩ p) ≤ 22.
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Figure B.1: Submatrix of Relations Matrix Associated to Φ+
3

Figure B.2: Submatrix of Relations Matrix Associated to Φ+
11
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C

Computations for the Real Form F−20
4

C.1 The Set ∆j Forms a Simple System for Φ+
j

The tables indicate how each root ξ ∈ Φ+
j can be written as a nonnegative linear com-

bination ξ = iξ1 + jξ2 + kξ3 + `ξ4 of the listed simple roots ∆j = {ξ1, ξ2, ξ3, ξ4}. The case

Φ+
1 = Φ+(h, g) will be omitted.

Root i j k ` Root i j k ` Root i j k `

(1, 0, 0, 0) 1 0 0 0 (0, 1, 0, 0) 0 1 0 0 (0, 0, 1, 0) 0 0 1 1

(1, 1, 0, 0) 1 1 0 0 (0, 1, 1, 0) 0 1 1 1 (1, 1, 1, 0) 1 1 1 1

(0, 1, 2, 0) 0 1 2 2 (1, 1, 2, 0) 1 1 2 2 (1, 2, 2, 0) 1 2 2 2

(0, 1, 2, 2) 0 1 0 2 (1, 1, 2, 2) 1 1 0 2 (1, 2, 2, 2) 1 2 0 2

(1, 2, 3, 2) 1 2 1 3 (1, 2, 4, 2) 1 2 2 4 (1, 3, 4, 2) 1 3 2 4

(2, 3, 4, 2) 2 3 2 4 (0, 0, 0,−1) 0 0 1 0 (0, 0, 1, 1) 0 0 0 1

(0, 1, 1, 1) 0 1 0 1 (1, 1, 1, 1) 1 1 0 1 (0, 1, 2, 1) 0 1 1 2

(1, 1, 2, 1) 1 1 1 2 (1, 2, 2, 1) 1 2 1 2 (1, 2, 3, 1) 1 2 2 3

Table C.1: ∆2 = {α, β,−δ, γ + δ}
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Root i j k ` Root i j k ` Root i j k `

(1, 0, 0, 0) 1 0 0 0 (0, 1, 0, 0) 0 0 2 1 (0, 0, 1, 0) 0 1 0 0

(1, 1, 0, 0) 1 0 2 1 (0, 1, 1, 0) 0 1 2 1 (1, 1, 1, 0) 1 1 2 1

(0, 1, 2, 0) 0 2 2 1 (1, 1, 2, 0) 1 2 2 1 (1, 2, 2, 0) 1 2 4 2

(0, 1, 2, 2) 0 0 0 1 (1, 1, 2, 2) 1 0 0 1 (1, 2, 2, 2) 1 0 2 2

(1, 2, 3, 2) 1 1 2 2 (1, 2, 4, 2) 1 2 2 2 (1, 3, 4, 2) 1 2 4 3

(2, 3, 4, 2) 2 2 4 3 (0, 0, 0,−1) 0 1 1 0 (0, 0,−1,−1) 0 0 1 0

(0, 1, 1, 1) 0 0 1 1 (1, 1, 1, 1) 1 0 1 1 (0, 1, 2, 1) 0 1 1 1

(1, 1, 2, 1) 1 1 1 1 (1, 2, 2, 1) 1 1 3 2 (1, 2, 3, 1) 1 2 3 2

Table C.2: ∆3 = {α, γ,−γ − δ, β + 2γ + 2δ}

C.2 Supplement to Proposition 6.2

Proof of Proposition 6.2: (Cont.) We now prove that the K-orbit dimensions are correct for

each element fj listed in Proposition 6.2. As mentioned above, these calculations will auto-

matically imply that these elements are generic.

Positive System Φ+
1 (dim K.f1 = 15) Using the multiplication tables, the nonzero

coefficients mξ with f1 = x(−1,−1,−1,−1) + x(0,−1,−2,−1) are given by m(0,0,0,1) = −c(0,1,2,2),

m(0,0,1,1) = −c(1,1,2,2), m(0,1,1,1) = c(1,2,2,2), m(1,1,1,1) = −c(1,2,3,2), m(0,1,2,1) = c(1,2,3,2), m(1,1,2,1) =

−c(1,2,4,2), m(1,2,2,1) = c(1,3,4,2), m(1,2,3,1) = c(2,3,4,2), m(0,0,0,−1) = −c(0,1,2,0) − c(1,1,1,0), m(0,0,−1,−1) =

−c(0,1,1,0)−c(1,1,0,0), m(0,−1,−1,−1) = c(0,0,1,0)+c(1,0,0,0), m(−1,−1,−1,−1) = −c1+c3−c4, m(0,−1,−2,−1) = c1−

c3, m(−1,−1,−2,−1) = c(−1,0,0,0)+c(0,0,−1,0), m(−1,−2,−2,−1) = −c(−1,−1,0,0)−c(0,−1,−1,0), and m(−1,−2,−3,−1) =

−c(−1,−1,−1,0) − c(0,−1,−2,0). Then the equations mξ = 0 yield the relations on the coefficients

cξ given by c3 = c1, c4 = 0, c(0,0,1,0) = −c(1,0,0,0), c(0,1,1,0) = −c(1,1,0,0), c(0,1,2,0) = −c(1,1,1,0), c(0,1,2,2) = 0,

c(1,1,2,2) = 0, c(1,2,2,2) = 0, c(1,2,3,2) = 0, c(1,2,4,2) = 0, c(1,3,4,2) = 0, c(2,3,4,2) = 0, c(0,0,−1,0) = −c(−1,0,0,0),

c(0,−1,−1,0) = −c(−1,−1,0,0), and c(0,−1,−2,0) = −c(−1,−1,−1,0). Therefore, kf1 has dimension 21, hence

K.f1 has dimension 15.
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Positive System Φ+
2 (dim K.f2 = 15) For this case, the nonzero coefficients mξ with

f2 = x(0,0,0,1) + x(0,0,−1,−1) are m(0,0,0,1) = −c3 + 2c4, m(0,0,1,1) = c(0,0,1,0), m(0,1,1,1) = c(0,1,1,0) +

c(0,1,2,2), m(1,1,1,1) = c(1,1,1,0) + c(1,1,2,2), m(0,1,2,1) = c(0,1,2,0), m(1,1,2,1) = c(1,1,2,0), m(1,2,2,1) = c(1,2,2,0) −

c(1,2,3,2), m(1,2,3,1) = −c(1,2,4,2), m(0,0,0,−1) = −c(0,0,1,0), m(0,0,−1,−1) = c2 − c3 − c4, m(0,−1,−1,−1) =

−c(0,−1,0,0), m(−1,−1,−1,−1) = −c(−1,−1,0,0), m(0,−1,−2,−1) = −c(0,−1,−2,−2) − c(0,−1,−1,0), m(−1,−1,−2,−1) =

−c(−1,−1,−2,−2) − c(−1,−1,−1,0), m(−1,−2,−2,−1) = −c(−1,−2,−2,−2), and m(−1,−2,−3,−1) = −c(−1,−2,−3,−2) +

c(−1,−2,−2,0). Then the equations mξ = 0 yield the relations on the coefficients cξ given

by c3 = 2c2/3, c4 = c2/3, c(0,0,1,0) = 0, c(0,1,2,0) = 0, c(1,1,2,0) = 0, c(0,1,2,2) = −c(0,1,1,0), c(1,1,2,2) =

−c(1,1,1,0), c(1,2,3,2) = c(1,2,2,0), c(1,2,4,2) = 0, c(0,−1,0,0) = 0, c(−1,−1,0,0) = 0, c(0,−1,−2,−2) = −c(0,−1,−1,0),

c(−1,−1,−2,−2) = −c(−1,−1,−1,0), c(−1,−2,−2,−2) = 0, and c(−1,−2,−3,−2) = c(−1,−2,−2,0). Therefore, kf2 has

dimension 21, hence K.f2 has dimension 15.

Positive System Φ+
3 (dim K.f3 = 15) For this last case, we have already shown that

this case is true in light of the fact that f3 is the same as f1. We could have chosen all

three of the generic elements to be the same for this real form, but the choices given make

N(fj, n
−
j ∩ p) easier to describe.
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D

Elements of g2

D.1 Multiplication Tables for g2

These multiplication tables are constructed using GAP and were verified using Mathematicar

software. For simplicity, we will replace the Lie bracket with juxtaposition of elements. Nat-

urally, the antisymmetry allows us to present half of the multiplication.

x(1,0)x(1,0) = 0 x(1,0)x(0,1) = −x(1,1)

x(1,0)x(1,1) = −2x(2,1) x(1,0)x(2,1) = −3x(3,1)

x(1,0)x(3,1) = 0 x(1,0)x(3,2) = 0

x(1,0)x(−1,0) = h(1,0) x(1,0)x(0,−1) = 0

x(1,0)x(−1,−1) = 3x(0,−1) x(1,0)x(−2,−1) = 2x(−1,−1)

x(1,0)x(−3,−1) = x(−2,−1) x(1,0)x(−3,−2) = 0

x(1,0)h(1,0) = −2x(1,0) x(1,0)h(0,1) = x(1,0)

x(0,1)x(0,1) = 0 x(0,1)x(1,1) = 0

x(0,1)x(2,1) = 0 x(0,1)x(3,1) = −x(3,2)

x(0,1)x(3,2) = 0 x(0,1)x(−1,0) = 0

x(0,1)x(0,−1) = h(0,1) x(0,1)x(−1,−1) = −x(−1,0)

x(0,1)x(−2,−1) = 0 x(0,1)x(−3,−1) = 0

x(0,1)x(−3,−2) = x(−3,−1) x(0,1)h(1,0) = 3x(0,1)

x(0,1)h(0,1) = −2x(0,1) x(1,1)x(1,1) = 0

x(1,1)x(2,1) = 3x(3,2) x(1,1)x(3,1) = 0

x(1,1)x(3,2) = 0 x(1,1)x(−1,0) = 3x(0,1)
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x(1,1)x(0,−1) = −x(1,0) x(1,1)x(−1,−1) = h(1,0) + 3h(0,1)

x(1,1)x(−2,−1) = −2x(−1,0) x(1,1)x(−3,−1) = 0

x(1,1)x(−3,−2) = −x(−2,−1) x(1,1)h(1,0) = x(1,1)

x(1,1)h(0,1) = −x(1,1) x(2,1)x(2,1) = 0

x(2,1)x(3,1) = 0 x(2,1)x(3,2) = 0

x(2,1)x(−1,0) = 2x(1,1) x(2,1)x(0,−1) = 0

x(2,1)x(−1,−1) = −2x(1,0) x(2,1)x(−2,−1) = 2h(1,0) + 3h(0,1)

x(2,1)x(−3,−1) = −x(−1,0) x(2,1)x(−3,−2) = x(−1,−1)

x(2,1)h(1,0) = −x(2,1) x(2,1)h(0,1) = 0

x(3,1)x(3,1) = 0 x(3,1)x(3,2) = 0

x(3,1)x(−1,0) = x(2,1) x(3,1)x(0,−1) = 0

x(3,1)x(−1,−1) = 0 x(3,1)x(−2,−1) = −x(1,0)

x(3,1)x(−3,−1) = h(1,0) + h(0,1) x(3,1)x(−3,−2) = −x(0,−1)

x(3,1)h(1,0) = −3x(3,1) x(3,1)h(0,1) = x(3,1)

x(3,2)x(3,2) = 0 x(3,2)x(−1,0) = 0

x(3,2)x(0,−1) = x(3,1) x(3,2)x(−1,−1) = −x(2,1)

x(3,2)x(−2,−1) = x(1,1) x(3,2)x(−3,−1) = −x(0,1)

x(3,2)x(−3,−2) = h(1,0) + 2h(0,1) x(3,2)h(1,0) = 0

x(3,2)h(0,1) = −x(3,2) x(−1,0)x(−1,0) = 0

x(−1,0)x(0,−1) = x(−1,−1) x(−1,0)x(−1,−1) = 2x(−2,−1)

x(−1,0)x(−2,−1) = 3x(−3,−1) x(−1,0)x(−3,−1) = 0

x(−1,0)x(−3,−2) = 0 x(−1,0)h(1,0) = 2x(−1,0)

x(−1,0)h(0,1) = −x(−1,0) x(0,−1)x(0,−1) = 0

x(0,−1)x(−1,−1) = 0 x(0,−1)x(−2,−1) = 0

x(0,−1)x(−3,−1) = x(−3,−2) x(0,−1)x(−3,−2) = 0

x(0,−1)h(1,0) = −3x(0,−1) x(0,−1)h(0,1) = 2x(0,−1)

x(−1,−1)x(−1,−1) = 0 x(−1,−1)x(−2,−1) = −3x(−3,−2)

x(−1,−1)x(−3,−1) = 0 x(−1,−1)x(−3,−2) = 0

x(−1,−1)h(1,0) = −x(−1,−1) x(−1,−1)h(0,1) = x(−1,−1)

x(−2,−1)x(−2,−1) = 0 x(−2,−1)x(−3,−1) = 0

88



x(−2,−1)x(−3,−2) = 0 x(−2,−1)h(1,0) = x(−2,−1)

x(−2,−1)h(0,1) = 0 x(−3,−1)x(−3,−1) = 0

x(−3,−1)x(−3,−2) = 0 x(−3,−1)h(1,0) = 3x(−3,−1)

x(−3,−1)h(0,1) = −x(−3,−1) x(−3,−2)x(−3,−2) = 0

x(−3,−2)h(1,0) = 0 x(−3,−2)h(0,1) = x(−3,−2)

h(1,0)h(1,0) = 0 h(1,0)h(0,1) = 0

h(0,1)h(0,1) = 0

D.2 Basis for g2 ⊂ gl(7,C)

Root Vector x π(x)

x(1,0) E7
1,2 + 2E7

3,4 + E7
4,5 + E7

6,7

x(−1,0) E7
2,1 + E7

4,3 + 2E7
5,4 + E7

7,6

x(0,1) E7
2,3 + E7

5,6

x(0,−1) E7
3,2 + E7

6,5

x(1,1) −E7
1,3 + 2E7

2,4 − E7
4,6 + E7

5,7

x(−1,−1) −E7
3,1 + E7

4,2 − 2E7
6,4 + E7

7,5

x(2,1) −2E7
1,4 + E7

2,5 + E7
3,6 − E7

4,7

x(−2,−1) −E7
4,1 + E7

5,2 + E7
6,3 − 2E7

7,4

x(3,1) −E7
1,5 + E7

3,7

x(−3,−1) −E7
5,1 + E7

7,3

x(3,2) −E7
1,6 − E7

2,7

x(−3,−2) −E7
6,1 − E7

7,2

h(1,0) E7
1,1 − E7

2,2 + 2E7
3,3 − 2E7

5,5 + E7
6,6 − E7

7,7

h(0,1) E7
2,2 − E7

3,3 + E7
5,5 − E7

6,6

Table D.2: Basis for g2 ⊂ gl(7,C)
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E

Elements of f4

E.1 Multiplication Tables for f4

These multiplication tables are constructed using GAP, and were verified using Mathematicar

software. Recall that if ξ, ε and ξ+ε are roots such that [xξ, xε] = cξ,εxξ+ε, then cξ,ε = −c−ξ,−ε.

These relations together with the antisymmetry allows us to omit some of the bracket rela-

tions. Since the multiplication tables are significantly large, we also omit most zero products.

Products contained in g \ h

x(1,0,0,0)x(0,1,0,0) = −x(1,1,0,0) x(1,0,0,0)x(0,1,1,0) = −x(1,1,1,0)

x(1,0,0,0)x(0,1,2,0) = −x(1,1,2,0) x(1,0,0,0)x(0,1,1,1) = −x(1,1,1,1)

x(1,0,0,0)x(0,1,2,1) = −x(1,1,2,1) x(1,0,0,0)x(0,1,2,2) = −x(1,1,2,2)

x(1,0,0,0)x(1,3,4,2) = x(2,3,4,2) x(1,0,0,0)x(−1,−1,0,0) = x(0,−1,0,0)

x(1,0,0,0)x(−1,−1,−1,0) = x(0,−1,−1,0) x(1,0,0,0)x(−1,−1,−2,0) = x(0,−1,−2,0)

x(1,0,0,0)x(−1,−1,−1,−1) = x(0,−1,−1,−1) x(1,0,0,0)x(−1,−1,−2,−1) = x(0,−1,−2,−1)

x(1,0,0,0)x(−1,−1,−2,−2) = x(0,−1,−2,−2) x(1,0,0,0)x(−2,−3,−4,−2) = −x(−1,−3,−4,−2)

x(0,1,0,0)x(0,0,1,0) = x(0,1,1,0) x(0,1,0,0)x(0,0,1,1) = x(0,1,1,1)

x(0,1,0,0)x(1,1,2,0) = −x(1,2,2,0) x(0,1,0,0)x(1,1,2,1) = −x(1,2,2,1)

x(0,1,0,0)x(1,1,2,2) = −x(1,2,2,2) x(0,1,0,0)x(1,2,4,2) = x(1,3,4,2)

x(0,1,0,0)x(−1,−1,0,0) = −x(−1,0,0,0) x(0,1,0,0)x(0,−1,−1,0) = −x(0,0,−1,0)

x(0,1,0,0)x(0,−1,−1,−1) = −x(0,0,−1,−1) x(0,1,0,0)x(−1,−2,−2,0) = x(−1,−1,−2,0)

x(0,1,0,0)x(−1,−2,−2,−1) = x(−1,−1,−2,−1) x(0,1,0,0)x(−1,−2,−2,−2) = x(−1,−1,−2,−2)
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x(0,1,0,0)x(−1,−3,−4,−2) = −x(−1,−2,−4,−2) x(0,0,1,0)x(0,0,0,1) = x(0,0,1,1)

x(0,0,1,0)x(1,1,0,0) = −x(1,1,1,0) x(0,0,1,0)x(0,1,1,0) = −2x(0,1,2,0)

x(0,0,1,0)x(1,1,1,0) = −2x(1,1,2,0) x(0,0,1,0)x(0,1,1,1) = −x(0,1,2,1)

x(0,0,1,0)x(1,1,1,1) = −x(1,1,2,1) x(0,0,1,0)x(1,2,2,1) = −x(1,2,3,1)

x(0,0,1,0)x(1,2,2,2) = −x(1,2,3,2) x(0,0,1,0)x(1,2,3,2) = −2x(1,2,4,2)

x(0,0,1,0)x(0,−1,−1,0) = 2x(0,−1,0,0) x(0,0,1,0)x(0,0,−1,−1) = −x(0,0,0,−1)

x(0,0,1,0)x(−1,−1,−1,0) = 2x(−1,−1,0,0) x(0,0,1,0)x(0,−1,−2,0) = x(0,−1,−1,0)

x(0,0,1,0)x(−1,−1,−2,0) = x(−1,−1,−1,0) x(0,0,1,0)x(0,−1,−2,−1) = x(0,−1,−1,−1)

x(0,0,1,0)x(−1,−1,−2,−1) = x(−1,−1,−1,−1) x(0,0,1,0)x(−1,−2,−3,−1) = x(−1,−2,−2,−1)

x(0,0,1,0)x(−1,−2,−3,−2) = 2x(−1,−2,−2,−2) x(0,0,1,0)x(−1,−2,−4,−2) = x(−1,−2,−3,−2)

x(0,0,0,1)x(0,1,1,0) = −x(0,1,1,1) x(0,0,0,1)x(1,1,1,0) = −x(1,1,1,1)

x(0,0,0,1)x(0,1,2,0) = −x(0,1,2,1) x(0,0,0,1)x(1,1,2,0) = −x(1,1,2,1)

x(0,0,0,1)x(0,1,2,1) = −2x(0,1,2,2) x(0,0,0,1)x(1,2,2,0) = −x(1,2,2,1)

x(0,0,0,1)x(1,1,2,1) = −2x(1,1,2,2) x(0,0,0,1)x(1,2,2,1) = −2x(1,2,2,2)

x(0,0,0,1)x(1,2,3,1) = −x(1,2,3,2) x(0,0,0,1)x(0,0,−1,−1) = x(0,0,−1,0)

x(0,0,0,1)x(0,−1,−1,−1) = x(0,−1,−1,0) x(0,0,0,1)x(−1,−1,−1,−1) = x(−1,−1,−1,0)

x(0,0,0,1)x(0,−1,−2,−1) = 2x(0,−1,−2,0) x(0,0,0,1)x(−1,−1,−2,−1) = 2x(−1,−1,−2,0)

x(0,0,0,1)x(0,−1,−2,−2) = x(0,−1,−2,−1) x(0,0,0,1)x(−1,−2,−2,−1) = 2x(−1,−2,−2,0)

x(0,0,0,1)x(−1,−1,−2,−2) = x(−1,−1,−2,−1) x(0,0,0,1)x(−1,−2,−2,−2) = x(−1,−2,−2,−1)

x(0,0,0,1)x(−1,−2,−3,−2) = x(−1,−2,−3,−1) x(1,1,0,0)x(0,0,1,1) = x(1,1,1,1)

x(1,1,0,0)x(0,1,2,0) = x(1,2,2,0) x(1,1,0,0)x(0,1,2,1) = x(1,2,2,1)

x(1,1,0,0)x(0,1,2,2) = x(1,2,2,2) x(1,1,0,0)x(1,2,4,2) = −x(2,3,4,2)

x(1,1,0,0)x(−1,0,0,0) = x(0,1,0,0) x(1,1,0,0)x(0,−1,0,0) = −x(1,0,0,0)

x(1,1,0,0)x(−1,−1,−1,0) = −x(0,0,−1,0) x(1,1,0,0)x(−1,−1,−1,−1) = −x(0,0,−1,−1)

x(1,1,0,0)x(−1,−2,−2,0) = −x(0,−1,−2,0) x(1,1,0,0)x(−1,−2,−2,−1) = −x(0,−1,−2,−1)

x(1,1,0,0)x(−1,−2,−2,−2) = −x(0,−1,−2,−2) x(1,1,0,0)x(−2,−3,−4,−2) = x(−1,−2,−4,−2)

x(0,1,1,0)x(0,0,1,1) = x(0,1,2,1) x(0,1,1,0)x(1,1,1,0) = 2x(1,2,2,0)

x(0,1,1,0)x(1,1,1,1) = x(1,2,2,1) x(0,1,1,0)x(1,1,2,1) = −x(1,2,3,1)
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x(0,1,1,0)x(1,1,2,2) = −x(1,2,3,2) x(0,1,1,0)x(1,2,3,2) = −2x(1,3,4,2)

x(0,1,1,0)x(0,−1,0,0) = −x(0,0,1,0) x(0,1,1,0)x(0,0,−1,0) = 2x(0,1,0,0)

x(0,1,1,0)x(−1,−1,−1,0) = −2x(−1,0,0,0) x(0,1,1,0)x(0,−1,−2,0) = −x(0,0,−1,0)

x(0,1,1,0)x(0,−1,−1,−1) = −x(0,0,0,−1) x(0,1,1,0)x(0,−1,−2,−1) = −x(0,0,−1,−1)

x(0,1,1,0)x(−1,−2,−2,0) = −x(−1,−1,−1,0) x(0,1,1,0)x(−1,−2,−2,−1) = −x(−1,−1,−1,−1)

x(0,1,1,0)x(−1,−2,−3,−1) = x(−1,−1,−2,−1) x(0,1,1,0)x(−1,−2,−3,−2) = 2x(−1,−1,−2,−2)

x(0,1,1,0)x(−1,−3,−4,−2) = x(−1,−2,−3,−2) x(0,0,1,1)x(1,1,1,0) = −x(1,1,2,1)

x(0,0,1,1)x(0,1,1,1) = −2x(0,1,2,2) x(0,0,1,1)x(1,1,1,1) = −2x(1,1,2,2)

x(0,0,1,1)x(1,2,2,0) = x(1,2,3,1) x(0,0,1,1)x(1,2,2,1) = x(1,2,3,2)

x(0,0,1,1)x(1,2,3,1) = 2x(1,2,4,2) x(0,0,1,1)x(0,0,−1,0) = −x(0,0,0,1)

x(0,0,1,1)x(0,0,0,−1) = x(0,0,1,0) x(0,0,1,1)x(0,−1,−1,−1) = 2x(0,−1,0,0)

x(0,0,1,1)x(−1,−1,−1,−1) = 2x(−1,−1,0,0) x(0,0,1,1)x(0,−1,−2,−1) = x(0,−1,−1,0)

x(0,0,1,1)x(−1,−1,−2,−1) = x(−1,−1,−1,0) x(0,0,1,1)x(0,−1,−2,−2) = x(0,−1,−1,−1)

x(0,0,1,1)x(−1,−1,−2,−2) = x(−1,−1,−1,−1) x(0,0,1,1)x(−1,−2,−3,−1) = −2x(−1,−2,−2,0)

x(0,0,1,1)x(−1,−2,−3,−2) = −x(−1,−2,−2,−1) x(0,0,1,1)x(−1,−2,−4,−2) = −x(−1,−2,−3,−1)

x(1,1,1,0)x(0,1,1,1) = −x(1,2,2,1) x(1,1,1,0)x(0,1,2,1) = x(1,2,3,1)

x(1,1,1,0)x(0,1,2,2) = x(1,2,3,2) x(1,1,1,0)x(1,2,3,2) = 2x(2,3,4,2)

x(1,1,1,0)x(−1,0,0,0) = x(0,1,1,0) x(1,1,1,0)x(0,0,−1,0) = 2x(1,1,0,0)

x(1,1,1,0)x(−1,−1,0,0) = −x(0,0,1,0) x(1,1,1,0)x(0,−1,−1,0) = −2x(1,0,0,0)

x(1,1,1,0)x(−1,−1,−2,0) = −x(0,0,−1,0) x(1,1,1,0)x(−1,−1,−1,−1) = −x(0,0,0,−1)

x(1,1,1,0)x(−1,−2,−2,0) = x(0,−1,−1,0) x(1,1,1,0)x(−1,−1,−2,−1) = −x(0,0,−1,−1)

x(1,1,1,0)x(−1,−2,−2,−1) = x(0,−1,−1,−1) x(1,1,1,0)x(−1,−2,−3,−1) = −x(0,−1,−2,−1)

x(1,1,1,0)x(−1,−2,−3,−2) = −2x(0,−1,−2,−2) x(1,1,1,0)x(−2,−3,−4,−2) = −x(−1,−2,−3,−2)

x(0,1,2,0)x(1,1,1,1) = x(1,2,3,1) x(0,1,2,0)x(1,1,2,2) = −x(1,2,4,2)

x(0,1,2,0)x(1,2,2,2) = x(1,3,4,2) x(0,1,2,0)x(0,0,−1,0) = x(0,1,1,0)

x(0,1,2,0)x(0,−1,−1,0) = −x(0,0,1,0) x(0,1,2,0)x(−1,−1,−2,0) = −x(−1,0,0,0)

x(0,1,2,0)x(0,−1,−2,−1) = −x(0,0,0,−1) x(0,1,2,0)x(−1,−2,−2,0) = x(−1,−1,0,0)

x(0,1,2,0)x(−1,−2,−3,−1) = −x(−1,−1,−1,−1) x(0,1,2,0)x(−1,−2,−4,−2) = x(−1,−1,−2,−2)
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x(0,1,2,0)x(−1,−3,−4,−2) = −x(−1,−2,−2,−2) x(0,1,1,1)x(1,1,2,0) = x(1,2,3,1)

x(0,1,1,1)x(1,1,1,1) = 2x(1,2,2,2) x(0,1,1,1)x(1,1,2,1) = x(1,2,3,2)

x(0,1,1,1)x(1,2,3,1) = 2x(1,3,4,2) x(0,1,1,1)x(0,−1,0,0) = −x(0,0,1,1)

x(0,1,1,1)x(0,0,0,−1) = x(0,1,1,0) x(0,1,1,1)x(0,−1,−1,0) = −x(0,0,0,1)

x(0,1,1,1)x(0,0,−1,−1) = 2x(0,1,0,0) x(0,1,1,1)x(−1,−1,−1,−1) = −2x(−1,0,0,0)

x(0,1,1,1)x(0,−1,−2,−1) = −x(0,0,−1,0) x(0,1,1,1)x(0,−1,−2,−2) = −x(0,0,−1,−1)

x(0,1,1,1)x(−1,−2,−2,−1) = −x(−1,−1,−1,0) x(0,1,1,1)x(−1,−2,−3,−1) = −2x(−1,−1,−2,0)

x(0,1,1,1)x(−1,−2,−2,−2) = −x(−1,−1,−1,−1) x(0,1,1,1)x(−1,−2,−3,−2) = −x(−1,−1,−2,−1)

x(0,1,1,1)x(−1,−3,−4,−2) = −x(−1,−2,−3,−1) x(1,1,2,0)x(0,1,2,2) = x(1,2,4,2)

x(1,1,2,0)x(1,2,2,2) = −x(2,3,4,2) x(1,1,2,0)x(−1,0,0,0) = x(0,1,2,0)

x(1,1,2,0)x(0,0,−1,0) = x(1,1,1,0) x(1,1,2,0)x(−1,−1,−1,0) = −x(0,0,1,0)

x(1,1,2,0)x(0,−1,−2,0) = −x(1,0,0,0) x(1,1,2,0)x(−1,−2,−2,0) = −x(0,−1,0,0)

x(1,1,2,0)x(−1,−1,−2,−1) = −x(0,0,0,−1) x(1,1,2,0)x(−1,−2,−3,−1) = x(0,−1,−1,−1)

x(1,1,2,0)x(−1,−2,−4,−2) = −x(0,−1,−2,−2) x(1,1,2,0)x(−2,−3,−4,−2) = x(−1,−2,−2,−2)

x(1,1,1,1)x(0,1,2,1) = −x(1,2,3,2) x(1,1,1,1)x(1,2,3,1) = −2x(2,3,4,2)

x(1,1,1,1)x(−1,0,0,0) = x(0,1,1,1) x(1,1,1,1)x(0,0,0,−1) = x(1,1,1,0)

x(1,1,1,1)x(−1,−1,0,0) = −x(0,0,1,1) x(1,1,1,1)x(0,0,−1,−1) = 2x(1,1,0,0)

x(1,1,1,1)x(−1,−1,−1,0) = −x(0,0,0,1) x(1,1,1,1)x(0,−1,−1,−1) = −2x(1,0,0,0)

x(1,1,1,1)x(−1,−1,−2,−1) = −x(0,0,−1,0) x(1,1,1,1)x(−1,−2,−2,−1) = x(0,−1,−1,0)

x(1,1,1,1)x(−1,−1,−2,−2) = −x(0,0,−1,−1) x(1,1,1,1)x(−1,−2,−3,−1) = 2x(0,−1,−2,0)

x(1,1,1,1)x(−1,−2,−2,−2) = x(0,−1,−1,−1) x(1,1,1,1)x(−1,−2,−3,−2) = x(0,−1,−2,−1)

x(1,1,1,1)x(−2,−3,−4,−2) = x(−1,−2,−3,−1) x(0,1,2,1)x(1,1,2,1) = 2x(1,2,4,2)

x(0,1,2,1)x(1,2,2,1) = −2x(1,3,4,2) x(0,1,2,1)x(0,0,−1,0) = x(0,1,1,1)

x(0,1,2,1)x(0,0,0,−1) = 2x(0,1,2,0) x(0,1,2,1)x(0,−1,−1,0) = −x(0,0,1,1)

x(0,1,2,1)x(0,0,−1,−1) = x(0,1,1,0) x(0,1,2,1)x(0,−1,−2,0) = −x(0,0,0,1)

x(0,1,2,1)x(0,−1,−1,−1) = −x(0,0,1,0) x(0,1,2,1)x(−1,−1,−2,−1) = −2x(−1,0,0,0)

x(0,1,2,1)x(0,−1,−2,−2) = −x(0,0,0,−1) x(0,1,2,1)x(−1,−2,−2,−1) = 2x(−1,−1,0,0)

x(0,1,2,1)x(−1,−2,−3,−1) = x(−1,−1,−1,0) x(0,1,2,1)x(−1,−2,−3,−2) = −x(−1,−1,−1,−1)
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x(0,1,2,1)x(−1,−2,−4,−2) = −x(−1,−1,−2,−1) x(0,1,2,1)x(−1,−3,−4,−2) = x(−1,−2,−2,−1)

x(1,2,2,0)x(0,1,2,2) = −x(1,3,4,2) x(1,2,2,0)x(1,1,2,2) = x(2,3,4,2)

x(1,2,2,0)x(0,−1,0,0) = x(1,1,2,0) x(1,2,2,0)x(−1,−1,0,0) = −x(0,1,2,0)

x(1,2,2,0)x(0,−1,−1,0) = −x(1,1,1,0) x(1,2,2,0)x(−1,−1,−1,0) = x(0,1,1,0)

x(1,2,2,0)x(0,−1,−2,0) = x(1,1,0,0) x(1,2,2,0)x(−1,−1,−2,0) = −x(0,1,0,0)

x(1,2,2,0)x(−1,−2,−2,−1) = −x(0,0,0,−1) x(1,2,2,0)x(−1,−2,−3,−1) = x(0,0,−1,−1)

x(1,2,2,0)x(−1,−3,−4,−2) = x(0,−1,−2,−2) x(1,2,2,0)x(−2,−3,−4,−2) = −x(−1,−1,−2,−2)

x(1,1,2,1)x(1,2,2,1) = 2x(2,3,4,2) x(1,1,2,1)x(−1,0,0,0) = x(0,1,2,1)

x(1,1,2,1)x(0,0,−1,0) = x(1,1,1,1) x(1,1,2,1)x(0,0,0,−1) = 2x(1,1,2,0)

x(1,1,2,1)x(0,0,−1,−1) = x(1,1,1,0) x(1,1,2,1)x(−1,−1,−1,0) = −x(0,0,1,1)

x(1,1,2,1)x(−1,−1,−2,0) = −x(0,0,0,1) x(1,1,2,1)x(−1,−1,−1,−1) = −x(0,0,1,0)

x(1,1,2,1)x(0,−1,−2,−1) = −2x(1,0,0,0) x(1,1,2,1)x(−1,−2,−2,−1) = −2x(0,−1,0,0)

x(1,1,2,1)x(−1,−1,−2,−2) = −x(0,0,0,−1) x(1,1,2,1)x(−1,−2,−3,−1) = −x(0,−1,−1,0)

x(1,1,2,1)x(−1,−2,−3,−2) = x(0,−1,−1,−1) x(1,1,2,1)x(−1,−2,−4,−2) = x(0,−1,−2,−1)

x(1,1,2,1)x(−2,−3,−4,−2) = −x(−1,−2,−2,−1) x(0,1,2,2)x(0,0,0,−1) = x(0,1,2,1)

x(0,1,2,2)x(0,0,−1,−1) = x(0,1,1,1) x(0,1,2,2)x(0,−1,−1,−1) = −x(0,0,1,1)

x(0,1,2,2)x(0,−1,−2,−1) = −x(0,0,0,1) x(0,1,2,2)x(−1,−1,−2,−2) = −x(−1,0,0,0)

x(0,1,2,2)x(−1,−2,−2,−2) = x(−1,−1,0,0) x(0,1,2,2)x(−1,−2,−3,−2) = x(−1,−1,−1,0)

x(0,1,2,2)x(−1,−2,−4,−2) = x(−1,−1,−2,0) x(0,1,2,2)x(−1,−3,−4,−2) = −x(−1,−2,−2,0)

x(1,2,2,1)x(0,−1,0,0) = x(1,1,2,1) x(1,2,2,1)x(0,0,0,−1) = 2x(1,2,2,0)

x(1,2,2,1)x(−1,−1,0,0) = −x(0,1,2,1) x(1,2,2,1)x(0,−1,−1,0) = −x(1,1,1,1)

x(1,2,2,1)x(−1,−1,−1,0) = x(0,1,1,1) x(1,2,2,1)x(0,−1,−1,−1) = −x(1,1,1,0)

x(1,2,2,1)x(−1,−1,−1,−1) = x(0,1,1,0) x(1,2,2,1)x(0,−1,−2,−1) = 2x(1,1,0,0)

x(1,2,2,1)x(−1,−2,−2,0) = −x(0,0,0,1) x(1,2,2,1)x(−1,−1,−2,−1) = −2x(0,1,0,0)

x(1,2,2,1)x(−1,−2,−3,−1) = −x(0,0,−1,0) x(1,2,2,1)x(−1,−2,−2,−2) = −x(0,0,0,−1)

x(1,2,2,1)x(−1,−2,−3,−2) = x(0,0,−1,−1) x(1,2,2,1)x(−1,−3,−4,−2) = −x(0,−1,−2,−1)

x(1,2,2,1)x(−2,−3,−4,−2) = x(−1,−1,−2,−1) x(1,1,2,2)x(−1,0,0,0) = x(0,1,2,2)

x(1,1,2,2)x(0,0,0,−1) = x(1,1,2,1) x(1,1,2,2)x(0,0,−1,−1) = x(1,1,1,1)
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x(1,1,2,2)x(−1,−1,−1,−1) = −x(0,0,1,1) x(1,1,2,2)x(−1,−1,−2,−1) = −x(0,0,0,1)

x(1,1,2,2)x(0,−1,−2,−2) = −x(1,0,0,0) x(1,1,2,2)x(−1,−2,−2,−2) = −x(0,−1,0,0)

x(1,1,2,2)x(−1,−2,−3,−2) = −x(0,−1,−1,0) x(1,1,2,2)x(−1,−2,−4,−2) = −x(0,−1,−2,0)

x(1,1,2,2)x(−2,−3,−4,−2) = x(−1,−2,−2,0) x(1,2,3,1)x(0,0,−1,0) = x(1,2,2,1)

x(1,2,3,1)x(0,−1,−1,0) = x(1,1,2,1) x(1,2,3,1)x(0,0,−1,−1) = −2x(1,2,2,0)

x(1,2,3,1)x(−1,−1,−1,0) = −x(0,1,2,1) x(1,2,3,1)x(0,−1,−2,0) = −x(1,1,1,1)

x(1,2,3,1)x(0,−1,−1,−1) = −2x(1,1,2,0) x(1,2,3,1)x(−1,−1,−2,0) = x(0,1,1,1)

x(1,2,3,1)x(−1,−1,−1,−1) = 2x(0,1,2,0) x(1,2,3,1)x(0,−1,−2,−1) = x(1,1,1,0)

x(1,2,3,1)x(−1,−2,−2,0) = x(0,0,1,1) x(1,2,3,1)x(−1,−1,−2,−1) = −x(0,1,1,0)

x(1,2,3,1)x(−1,−2,−2,−1) = −x(0,0,1,0) x(1,2,3,1)x(−1,−2,−3,−2) = −x(0,0,0,−1)

x(1,2,3,1)x(−1,−2,−4,−2) = x(0,0,−1,−1) x(1,2,3,1)x(−1,−3,−4,−2) = x(0,−1,−1,−1)

x(1,2,3,1)x(−2,−3,−4,−2) = −x(−1,−1,−1,−1) x(1,2,2,2)x(0,−1,0,0) = x(1,1,2,2)

x(1,2,2,2)x(0,0,0,−1) = x(1,2,2,1) x(1,2,2,2)x(−1,−1,0,0) = −x(0,1,2,2)

x(1,2,2,2)x(0,−1,−1,−1) = −x(1,1,1,1) x(1,2,2,2)x(−1,−1,−1,−1) = x(0,1,1,1)

x(1,2,2,2)x(0,−1,−2,−2) = x(1,1,0,0) x(1,2,2,2)x(−1,−2,−2,−1) = −x(0,0,0,1)

x(1,2,2,2)x(−1,−1,−2,−2) = −x(0,1,0,0) x(1,2,2,2)x(−1,−2,−3,−2) = −x(0,0,−1,0)

x(1,2,2,2)x(−1,−3,−4,−2) = x(0,−1,−2,0) x(1,2,2,2)x(−2,−3,−4,−2) = −x(−1,−1,−2,0)

x(1,2,3,2)x(0,0,−1,0) = 2x(1,2,2,2) x(1,2,3,2)x(0,0,0,−1) = x(1,2,3,1)

x(1,2,3,2)x(0,−1,−1,0) = 2x(1,1,2,2) x(1,2,3,2)x(0,0,−1,−1) = −x(1,2,2,1)

x(1,2,3,2)x(−1,−1,−1,0) = −2x(0,1,2,2) x(1,2,3,2)x(0,−1,−1,−1) = −x(1,1,2,1)

x(1,2,3,2)x(−1,−1,−1,−1) = x(0,1,2,1) x(1,2,3,2)x(0,−1,−2,−1) = −x(1,1,1,1)

x(1,2,3,2)x(−1,−1,−2,−1) = x(0,1,1,1) x(1,2,3,2)x(0,−1,−2,−2) = x(1,1,1,0)

x(1,2,3,2)x(−1,−2,−2,−1) = x(0,0,1,1) x(1,2,3,2)x(−1,−1,−2,−2) = −x(0,1,1,0)

x(1,2,3,2)x(−1,−2,−3,−1) = −x(0,0,0,1) x(1,2,3,2)x(−1,−2,−2,−2) = −x(0,0,1,0)

x(1,2,3,2)x(−1,−2,−4,−2) = −x(0,0,−1,0) x(1,2,3,2)x(−1,−3,−4,−2) = −x(0,−1,−1,0)

x(1,2,3,2)x(−2,−3,−4,−2) = x(−1,−1,−1,0) x(1,2,4,2)x(0,0,−1,0) = x(1,2,3,2)

x(1,2,4,2)x(0,0,−1,−1) = −x(1,2,3,1) x(1,2,4,2)x(0,−1,−2,0) = x(1,1,2,2)

x(1,2,4,2)x(−1,−1,−2,0) = −x(0,1,2,2) x(1,2,4,2)x(0,−1,−2,−1) = −x(1,1,2,1)
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x(1,2,4,2)x(−1,−1,−2,−1) = x(0,1,2,1) x(1,2,4,2)x(0,−1,−2,−2) = x(1,1,2,0)

x(1,2,4,2)x(−1,−1,−2,−2) = −x(0,1,2,0) x(1,2,4,2)x(−1,−2,−3,−1) = x(0,0,1,1)

x(1,2,4,2)x(−1,−2,−3,−2) = −x(0,0,1,0) x(1,2,4,2)x(−1,−3,−4,−2) = x(0,−1,0,0)

x(1,2,4,2)x(−2,−3,−4,−2) = −x(−1,−1,0,0) x(1,3,4,2)x(0,−1,0,0) = −x(1,2,4,2)

x(1,3,4,2)x(0,−1,−1,0) = x(1,2,3,2) x(1,3,4,2)x(0,−1,−2,0) = −x(1,2,2,2)

x(1,3,4,2)x(0,−1,−1,−1) = −x(1,2,3,1) x(1,3,4,2)x(0,−1,−2,−1) = x(1,2,2,1)

x(1,3,4,2)x(−1,−2,−2,0) = x(0,1,2,2) x(1,3,4,2)x(0,−1,−2,−2) = −x(1,2,2,0)

x(1,3,4,2)x(−1,−2,−2,−1) = −x(0,1,2,1) x(1,3,4,2)x(−1,−2,−3,−1) = x(0,1,1,1)

x(1,3,4,2)x(−1,−2,−2,−2) = x(0,1,2,0) x(1,3,4,2)x(−1,−2,−3,−2) = −x(0,1,1,0)

x(1,3,4,2)x(−1,−2,−4,−2) = x(0,1,0,0) x(1,3,4,2)x(−2,−3,−4,−2) = x(−1,0,0,0)

x(2,3,4,2)x(−1,0,0,0) = −x(1,3,4,2) x(2,3,4,2)x(−1,−1,0,0) = x(1,2,4,2)

x(2,3,4,2)x(−1,−1,−1,0) = −x(1,2,3,2) x(2,3,4,2)x(−1,−1,−2,0) = x(1,2,2,2)

x(2,3,4,2)x(−1,−1,−1,−1) = x(1,2,3,1) x(2,3,4,2)x(−1,−2,−2,0) = −x(1,1,2,2)

x(2,3,4,2)x(−1,−1,−2,−1) = −x(1,2,2,1) x(2,3,4,2)x(−1,−2,−2,−1) = x(1,1,2,1)

x(2,3,4,2)x(−1,−1,−2,−2) = x(1,2,2,0) x(2,3,4,2)x(−1,−2,−3,−1) = −x(1,1,1,1)

x(2,3,4,2)x(−1,−2,−2,−2) = −x(1,1,2,0) x(2,3,4,2)x(−1,−2,−3,−2) = x(1,1,1,0)

x(2,3,4,2)x(−1,−2,−4,−2) = −x(1,1,0,0) x(2,3,4,2)x(−1,−3,−4,−2) = x(1,0,0,0)

Products contained in h

x(1,0,0,0)x(−1,0,0,0) = h(1,0,0,0)

x(0,1,0,0)x(0,−1,0,0) = h(0,1,0,0)

x(0,0,1,0)x(0,0,−1,0) = h(0,0,1,0)

x(0,0,0,1)x(0,0,0,−1) = h(0,0,0,1)

x(1,1,0,0)x(−1,−1,0,0) = h(1,0,0,0) + h(0,1,0,0)

x(0,1,1,0)x(0,−1,−1,0) = 2h(0,1,0,0) + h(0,0,1,0)

x(0,0,1,1)x(0,0,−1,−1) = h(0,0,1,0) + h(0,0,0,1)

x(1,1,1,0)x(−1,−1,−1,0) = 2h(1,0,0,0) + 2h(0,1,0,0) + h(0,0,1,0)

x(0,1,2,0)x(0,−1,−2,0) = h(0,1,0,0) + h(0,0,1,0)
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x(0,1,1,1)x(0,−1,−1,−1) = 2h(0,1,0,0) + h(0,0,1,0) + h(0,0,0,1)

x(1,1,2,0)x(−1,−1,−2,0) = h(1,0,0,0) + h(0,1,0,0) + h(0,0,1,0)

x(1,1,1,1)x(−1,−1,−1,−1) = 2h(1,0,0,0) + 2h(0,1,0,0) + h(0,0,1,0) + h(0,0,0,1)

x(0,1,2,1)x(0,−1,−2,−1) = 2h(0,1,0,0) + 2h(0,0,1,0) + h(0,0,0,1)

x(1,2,2,0)x(−1,−2,−2,0) = h(1,0,0,0) + 2h(0,1,0,0) + h(0,0,1,0)

x(1,1,2,1)x(−1,−1,−2,−1) = 2h(1,0,0,0) + 2h(0,1,0,0) + 2h(0,0,1,0) + h(0,0,0,1)

x(0,1,2,2)x(0,−1,−2,−2) = h(0,1,0,0) + h(0,0,1,0) + h(0,0,0,1)

x(1,2,2,1)x(−1,−2,−2,−1) = 2h(1,0,0,0) + 4h(0,1,0,0) + 2h(0,0,1,0) + h(0,0,0,1)

x(1,1,2,2)x(−1,−1,−2,−2) = h(1,0,0,0) + h(0,1,0,0) + h(0,0,1,0) + h(0,0,0,1)

x(1,2,3,1)x(−1,−2,−3,−1) = 2h(1,0,0,0) + 4h(0,1,0,0) + 3h(0,0,1,0) + h(0,0,0,1)

x(1,2,2,2)x(−1,−2,−2,−2) = h(1,0,0,0) + 2h(0,1,0,0) + h(0,0,1,0) + h(0,0,0,1)

x(1,2,3,2)x(−1,−2,−3,−2) = 2h(1,0,0,0) + 4h(0,1,0,0) + 3h(0,0,1,0) + 2h(0,0,0,1)

x(1,2,4,2)x(−1,−2,−4,−2) = h(1,0,0,0) + 2h(0,1,0,0) + 2h(0,0,1,0) + h(0,0,0,1)

x(1,3,4,2)x(−1,−3,−4,−2) = h(1,0,0,0) + 3h(0,1,0,0) + 2h(0,0,1,0) + h(0,0,0,1)

x(2,3,4,2)x(−2,−3,−4,−2) = 2h(1,0,0,0) + 3h(0,1,0,0) + 2h(0,0,1,0) + h(0,0,0,1)

Action of h on g

h(1,0,0,0)x(1,0,0,0) = 2x(1,0,0,0) h(1,0,0,0)x(0,1,0,0) = −x(0,1,0,0)

h(1,0,0,0)x(0,0,1,0) = 0 h(1,0,0,0)x(0,0,0,1) = 0

h(1,0,0,0)x(1,1,0,0) = x(1,1,0,0) h(1,0,0,0)x(0,1,1,0) = −x(0,1,1,0)

h(1,0,0,0)x(0,0,1,1) = 0 h(1,0,0,0)x(1,1,1,0) = x(1,1,1,0)

h(1,0,0,0)x(0,1,2,0) = −x(0,1,2,0) h(1,0,0,0)x(0,1,1,1) = −x(0,1,1,1)

h(1,0,0,0)x(1,1,2,0) = x(1,1,2,0) h(1,0,0,0)x(1,1,1,1) = x(1,1,1,1)

h(1,0,0,0)x(0,1,2,1) = −x(0,1,2,1) h(1,0,0,0)x(1,2,2,0) = 0

h(1,0,0,0)x(1,1,2,1) = x(1,1,2,1) h(1,0,0,0)x(0,1,2,2) = −x(0,1,2,2)

h(1,0,0,0)x(1,2,2,1) = 0 h(1,0,0,0)x(1,1,2,2) = x(1,1,2,2)

h(1,0,0,0)x(1,2,3,1) = 0 h(1,0,0,0)x(1,2,2,2) = 0

h(1,0,0,0)x(1,2,3,2) = 0 h(1,0,0,0)x(1,2,4,2) = 0
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h(1,0,0,0)x(1,3,4,2) = −x(1,3,4,2) h(1,0,0,0)x(2,3,4,2) = x(2,3,4,2)

h(1,0,0,0)x(−1,0,0,0) = −2x(−1,0,0,0) h(1,0,0,0)x(0,−1,0,0) = x(0,−1,0,0)

h(1,0,0,0)x(0,0,−1,0) = 0 h(1,0,0,0)x(0,0,0,−1) = 0

h(1,0,0,0)x(−1,−1,0,0) = −x(−1,−1,0,0) h(1,0,0,0)x(0,−1,−1,0) = x(0,−1,−1,0)

h(1,0,0,0)x(0,0,−1,−1) = 0 h(1,0,0,0)x(−1,−1,−1,0) = −x(−1,−1,−1,0)

h(1,0,0,0)x(0,−1,−2,0) = x(0,−1,−2,0) h(1,0,0,0)x(0,−1,−1,−1) = x(0,−1,−1,−1)

h(1,0,0,0)x(−1,−1,−2,0) = −x(−1,−1,−2,0) h(1,0,0,0)x(−1,−1,−1,−1) = −x(−1,−1,−1,−1)

h(1,0,0,0)x(0,−1,−2,−1) = x(0,−1,−2,−1) h(1,0,0,0)x(−1,−2,−2,0) = 0

h(1,0,0,0)x(−1,−1,−2,−1) = −x(−1,−1,−2,−1) h(1,0,0,0)x(0,−1,−2,−2) = x(0,−1,−2,−2)

h(1,0,0,0)x(−1,−2,−2,−1) = 0 h(1,0,0,0)x(−1,−1,−2,−2) = −x(−1,−1,−2,−2)

h(1,0,0,0)x(−1,−2,−3,−1) = 0 h(1,0,0,0)x(−1,−2,−2,−2) = 0

h(1,0,0,0)x(−1,−2,−3,−2) = 0 h(1,0,0,0)x(−1,−2,−4,−2) = 0

h(1,0,0,0)x(−1,−3,−4,−2) = x(−1,−3,−4,−2) h(1,0,0,0)x(−2,−3,−4,−2) = −x(−2,−3,−4,−2)

h(0,1,0,0)x(1,0,0,0) = −x(1,0,0,0) h(0,1,0,0)x(0,1,0,0) = 2x(0,1,0,0)

h(0,1,0,0)x(0,0,1,0) = −x(0,0,1,0) h(0,1,0,0)x(0,0,0,1) = 0

h(0,1,0,0)x(1,1,0,0) = x(1,1,0,0) h(0,1,0,0)x(0,1,1,0) = x(0,1,1,0)

h(0,1,0,0)x(0,0,1,1) = −x(0,0,1,1) h(0,1,0,0)x(1,1,1,0) = 0

h(0,1,0,0)x(0,1,2,0) = 0 h(0,1,0,0)x(0,1,1,1) = x(0,1,1,1)

h(0,1,0,0)x(1,1,2,0) = −x(1,1,2,0) h(0,1,0,0)x(1,1,1,1) = 0

h(0,1,0,0)x(0,1,2,1) = 0 h(0,1,0,0)x(1,2,2,0) = x(1,2,2,0)

h(0,1,0,0)x(1,1,2,1) = −x(1,1,2,1) h(0,1,0,0)x(0,1,2,2) = 0

h(0,1,0,0)x(1,2,2,1) = x(1,2,2,1) h(0,1,0,0)x(1,1,2,2) = −x(1,1,2,2)

h(0,1,0,0)x(1,2,3,1) = 0 h(0,1,0,0)x(1,2,2,2) = x(1,2,2,2)

h(0,1,0,0)x(1,2,3,2) = 0 h(0,1,0,0)x(1,2,4,2) = −x(1,2,4,2)

h(0,1,0,0)x(1,3,4,2) = x(1,3,4,2) h(0,1,0,0)x(2,3,4,2) = 0

h(0,1,0,0)x(−1,0,0,0) = x(−1,0,0,0) h(0,1,0,0)x(0,−1,0,0) = −2x(0,−1,0,0)

h(0,1,0,0)x(0,0,−1,0) = x(0,0,−1,0) h(0,1,0,0)x(0,0,0,−1) = 0

h(0,1,0,0)x(−1,−1,0,0) = −x(−1,−1,0,0) h(0,1,0,0)x(0,−1,−1,0) = −x(0,−1,−1,0)
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h(0,1,0,0)x(0,0,−1,−1) = x(0,0,−1,−1) h(0,1,0,0)x(−1,−1,−1,0) = 0

h(0,1,0,0)x(0,−1,−2,0) = 0 h(0,1,0,0)x(0,−1,−1,−1) = −x(0,−1,−1,−1)

h(0,1,0,0)x(−1,−1,−2,0) = x(−1,−1,−2,0) h(0,1,0,0)x(−1,−1,−1,−1) = 0

h(0,1,0,0)x(0,−1,−2,−1) = 0 h(0,1,0,0)x(−1,−2,−2,0) = −x(−1,−2,−2,0)

h(0,1,0,0)x(−1,−1,−2,−1) = x(−1,−1,−2,−1) h(0,1,0,0)x(0,−1,−2,−2) = 0

h(0,1,0,0)x(−1,−2,−2,−1) = −x(−1,−2,−2,−1) h(0,1,0,0)x(−1,−1,−2,−2) = x(−1,−1,−2,−2)

h(0,1,0,0)x(−1,−2,−3,−1) = 0 h(0,1,0,0)x(−1,−2,−2,−2) = −x(−1,−2,−2,−2)

h(0,1,0,0)x(−1,−2,−3,−2) = 0 h(0,1,0,0)x(−1,−2,−4,−2) = x(−1,−2,−4,−2)

h(0,1,0,0)x(−1,−3,−4,−2) = −x(−1,−3,−4,−2) h(0,1,0,0)x(−2,−3,−4,−2) = 0

h(0,0,1,0)x(1,0,0,0) = 0 h(0,0,1,0)x(0,1,0,0) = −2x(0,1,0,0)

h(0,0,1,0)x(0,0,1,0) = 2x(0,0,1,0) h(0,0,1,0)x(0,0,0,1) = −x(0,0,0,1)

h(0,0,1,0)x(1,1,0,0) = −2x(1,1,0,0) h(0,0,1,0)x(0,1,1,0) = 0

h(0,0,1,0)x(0,0,1,1) = x(0,0,1,1) h(0,0,1,0)x(1,1,1,0) = 0

h(0,0,1,0)x(0,1,2,0) = 2x(0,1,2,0) h(0,0,1,0)x(0,1,1,1) = −x(0,1,1,1)

h(0,0,1,0)x(1,1,2,0) = 2x(1,1,2,0) h(0,0,1,0)x(1,1,1,1) = −x(1,1,1,1)

h(0,0,1,0)x(0,1,2,1) = x(0,1,2,1) h(0,0,1,0)x(1,2,2,0) = 0

h(0,0,1,0)x(1,1,2,1) = x(1,1,2,1) h(0,0,1,0)x(0,1,2,2) = 0

h(0,0,1,0)x(1,2,2,1) = −x(1,2,2,1) h(0,0,1,0)x(1,1,2,2) = 0

h(0,0,1,0)x(1,2,3,1) = x(1,2,3,1) h(0,0,1,0)x(1,2,2,2) = −2x(1,2,2,2)

h(0,0,1,0)x(1,2,3,2) = 0 h(0,0,1,0)x(1,2,4,2) = 2x(1,2,4,2)

h(0,0,1,0)x(1,3,4,2) = 0 h(0,0,1,0)x(2,3,4,2) = 0

h(0,0,1,0)x(−1,0,0,0) = 0 h(0,0,1,0)x(0,−1,0,0) = 2x(0,−1,0,0)

h(0,0,1,0)x(0,0,−1,0) = −2x(0,0,−1,0) h(0,0,1,0)x(0,0,0,−1) = x(0,0,0,−1)

h(0,0,1,0)x(−1,−1,0,0) = 2x(−1,−1,0,0) h(0,0,1,0)x(0,−1,−1,0) = 0

h(0,0,1,0)x(0,0,−1,−1) = −x(0,0,−1,−1) h(0,0,1,0)x(−1,−1,−1,0) = 0

h(0,0,1,0)x(0,−1,−2,0) = −2x(0,−1,−2,0) h(0,0,1,0)x(0,−1,−1,−1) = x(0,−1,−1,−1)

h(0,0,1,0)x(−1,−1,−2,0) = −2x(−1,−1,−2,0) h(0,0,1,0)x(−1,−1,−1,−1) = x(−1,−1,−1,−1)

h(0,0,1,0)x(0,−1,−2,−1) = −x(0,−1,−2,−1) h(0,0,1,0)x(−1,−2,−2,0) = 0
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h(0,0,1,0)x(−1,−1,−2,−1) = −x(−1,−1,−2,−1) h(0,0,1,0)x(0,−1,−2,−2) = 0

h(0,0,1,0)x(−1,−2,−2,−1) = x(−1,−2,−2,−1) h(0,0,1,0)x(−1,−1,−2,−2) = 0

h(0,0,1,0)x(−1,−2,−3,−1) = −x(−1,−2,−3,−1) h(0,0,1,0)x(−1,−2,−2,−2) = 2x(−1,−2,−2,−2)

h(0,0,1,0)x(−1,−2,−3,−2) = 0 h(0,0,1,0)x(−1,−2,−4,−2) = −2x(−1,−2,−4,−2)

h(0,0,1,0)x(−1,−3,−4,−2) = 0 h(0,0,1,0)x(−2,−3,−4,−2) = 0

h(0,0,0,1)x(1,0,0,0) = 0 h(0,0,0,1)x(0,1,0,0) = 0

h(0,0,0,1)x(0,0,1,0) = −x(0,0,1,0) h(0,0,0,1)x(0,0,0,1) = 2x(0,0,0,1)

h(0,0,0,1)x(1,1,0,0) = 0 h(0,0,0,1)x(0,1,1,0) = −x(0,1,1,0)

h(0,0,0,1)x(0,0,1,1) = x(0,0,1,1) h(0,0,0,1)x(1,1,1,0) = −x(1,1,1,0)

h(0,0,0,1)x(0,1,2,0) = −2x(0,1,2,0) h(0,0,0,1)x(0,1,1,1) = x(0,1,1,1)

h(0,0,0,1)x(1,1,2,0) = −2x(1,1,2,0) h(0,0,0,1)x(1,1,1,1) = x(1,1,1,1)

h(0,0,0,1)x(0,1,2,1) = 0 h(0,0,0,1)x(1,2,2,0) = −2x(1,2,2,0)

h(0,0,0,1)x(1,1,2,1) = 0 h(0,0,0,1)x(0,1,2,2) = 2x(0,1,2,2)

h(0,0,0,1)x(1,2,2,1) = 0 h(0,0,0,1)x(1,1,2,2) = 2x(1,1,2,2)

h(0,0,0,1)x(1,2,3,1) = −x(1,2,3,1) h(0,0,0,1)x(1,2,2,2) = 2x(1,2,2,2)

h(0,0,0,1)x(1,2,3,2) = x(1,2,3,2) h(0,0,0,1)x(1,2,4,2) = 0

h(0,0,0,1)x(1,3,4,2) = 0 h(0,0,0,1)x(2,3,4,2) = 0

h(0,0,0,1)x(−1,0,0,0) = 0 h(0,0,0,1)x(0,−1,0,0) = 0

h(0,0,0,1)x(0,0,−1,0) = x(0,0,−1,0) h(0,0,0,1)x(0,0,0,−1) = −2x(0,0,0,−1)

h(0,0,0,1)x(−1,−1,0,0) = 0 h(0,0,0,1)x(0,−1,−1,0) = x(0,−1,−1,0)

h(0,0,0,1)x(0,0,−1,−1) = −x(0,0,−1,−1) h(0,0,0,1)x(−1,−1,−1,0) = x(−1,−1,−1,0)

h(0,0,0,1)x(0,−1,−2,0) = 2x(0,−1,−2,0) h(0,0,0,1)x(0,−1,−1,−1) = −x(0,−1,−1,−1)

h(0,0,0,1)x(−1,−1,−2,0) = 2x(−1,−1,−2,0) h(0,0,0,1)x(−1,−1,−1,−1) = −x(−1,−1,−1,−1)

h(0,0,0,1)x(0,−1,−2,−1) = 0 h(0,0,0,1)x(−1,−2,−2,0) = 2x(−1,−2,−2,0)

h(0,0,0,1)x(−1,−1,−2,−1) = 0 h(0,0,0,1)x(0,−1,−2,−2) = −2x(0,−1,−2,−2)

h(0,0,0,1)x(−1,−2,−2,−1) = 0 h(0,0,0,1)x(−1,−1,−2,−2) = −2x(−1,−1,−2,−2)

h(0,0,0,1)x(−1,−2,−3,−1) = x(−1,−2,−3,−1) h(0,0,0,1)x(−1,−2,−2,−2) = −2x(−1,−2,−2,−2)

h(0,0,0,1)x(−1,−2,−3,−2) = −x(−1,−2,−3,−2) h(0,0,0,1)x(−1,−2,−4,−2) = 0
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h(0,0,0,1)x(−1,−3,−4,−2) = 0 h(0,0,0,1)x(−2,−3,−4,−2) = 0

E.2 Generators for f4 ⊂ gl(26,C)

Root Vector x π(x)

xα E26
4,5 + E26

6,7 + E26
8,10 + E26

18,20 + E26
19,21 + E26

22,23

x−α π(xα)T

xβ E26
3,4 + E26

7,9 + E26
10,12 + E26

16,18 + E26
17,19 + E26

23,24

x−β π(xβ)T

xγ E26
2,3 + E26

4,6 + E26
5,7 + E26

9,11 + E26
12,13 + 2E26

12,14 + E26
14,16+

E26
15,17 + E26

19,22 + E26
21,23 + E26

24,25

x−γ E26
3,2 + E26

6,4 + E26
7,5 + E26

11,9 + E26
14,12 + E26

16,13 + 2E26
16,14+

E26
17,15 + E26

22,19 + E26
23,21 + E26

25,24

xδ E26
1,2 + E26

6,8 + E26
7,10 + E26

9,12 + 2E26
11,13 + E26

11,14 + E26
13,15+

E26
16,17 + E26

18,19 + E26
20,21 + E26

25,26

x−δ E26
2,1 + E26

8,6 + E26
10,7 + E26

12,9 + E26
13,11 + 2E26

15,13 + E26
15,14+

E26
17,16 + E26

19,18 + E26
21,20 + E26

26,25

Table E.4: Generators for f4 ⊂ gl(26,C)
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