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Abstract

Many data sets in the sciences (broadly defined) deal with multiple sets of multivariate time

series. The case of a single univariate time series is very well developed in the literature;

and single multivariate series though less well studied have also been developed (under

the rubric of vector time series). A class of matrix time series models is introduced for

dealing with the situation where there are multiple sets of multivariate time series data.

Explicit expressions for a matrix autoregressive model of order one and of order p along

with its cross-autocorrelation functions are derived. This includes obtaining the infinite

order moving average analogues of these matrix time series. Stationarity conditions are also

provided. Parameters of the proposed matrix time series model are estimated by ordinary

and generalized least squares method, and maximum likelihood estimation method.
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Chapter 1

Introduction

Time series processes are ubiquitous, arising in a variety of fields, across all scientific disci-

plines including econometrics, finance, business, psychology, biometrics, ecology, meteorol-

ogy, astronomy, engineering, genetics, physics, medicine, biology, social science, and the like.

In this work, the focus is on data sets which consist of multiple sets of multivariate time

series, where the number of sets is S > 1, the number of variables is K > 1, and the number

of time points is N .

Like many other statistical procedures, time series analysis has been classified into uni-

variate, multiple and multivariate time series analysis. Models started with univariate au-

toregressive moving average (ARMA) processes and thereafter extended to multiple and

multivariate time series. However, in the time series literature, multivariate time series

analysis come under the heading of vector-variate time series and is called vector autore-

gressive moving average (VARMA) processes. In this work, we will extend the theory and

methodology of VARMA time series models to matrix-variate time series. That is, matrix

autoregressive time series models (MAR) are proposed for the first time in this study.

Matrix variate time series can be found in a variety of fields such as economics, business,

ecology, psychology, meteorology, biology, fMRI, etc. For example, in a macroeconomics

setting, we may be interested in a study of simultaneous behavior over time of employment
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statistics for different US states across different industrial sectors (Wang and West, 2009).

Therefore, consider the data of Employment Statistics for eight US states, which is explored

across nine industrial sectors at time t as follows

construction manufacturing . . . business services



New Jersey y11t y12t . . . y19t

New York y21t y22t y29t

Massachusetts y31t y32t . . . y39t

Georgia y41t y42t y49t

North Carolina y51t y52t . . . y59t

Virginia y61t y62t . . . y69t

Illinois y71t y72t . . . y79t

Ohio y81t y82t . . . y89t

where yijt is the Employment Statistics at time t from industrial sector j in state i.

As an another example, in an fMRI study, the blood oxygenation level is measured at

different brain locations (voxels) associated with different types of stimuli (Antognini et al.,

1997). Therefore, consider an fMRI data set of the blood oxygenation level at seven brain

locations for three types of stimuli (shock, heat, brush) at time t, viz.,

Location1 Location2 . . . Location7


Shock y11t y12t . . . y17t

Heat y21t y22t y27t

Brush y31t y32t . . . y37t

where yijt is the blood oxygenation level at time t from stimuli i at location j of the brain.

In both of the two examples given above, at each time t, the data set has two components.

In the first example, for each given industrial sector (say, “construction”), we have a vector
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time series, where the variables of the vector time series are US states. On the other hand,

we have nine (number of industrial sectors) vector time series with dimension eight (number

of states). Obviously, there are some kinds of dependencies between these vector time series

(industrial sectors). Also, in the second example, for each brain location (voxel), we have

a vector time series of dimension three (types of stimuli). Clearly, there are dependencies

between the voxels (vector time series). Therefore, it turns out to be a matrix time series

data by considering all dependent vector time series simultaneously over time.

Wang and West (2009) considered a matrix normal distribution for both observational

and evolution errors of a dynamic linear model of a matrix-variate time series data to fit

and explore dynamic graphical models. We will extend fundamental concepts and results

for vector time series analysis to matrix time series. New problems and challenges arise in

the theory and application due to the greater difficulty and complexity of model dimensions,

and due to the parametrization in the matrix situation.

A comprehensive literature review of time series analysis is provided in chapter 2. This

review introduces time series data and the class of autoregressive moving average (ARMA)

models for analyzing time series data. This literature review follows a chronological order

of the development of ARMA models for univariate and then for vector time series data.

Furthermore, after introducing matrix-variate processes, the existing tools and works to

analyze matrix time series data are given. Chapter 2 will finish by introducing and defining

the matrix variate normal distribution.

One of the advantages of the matrix variate normal distribution, besides the most de-

sirable aspect of being able to estimate within and between time series variations, is that

it gives parameters-wise parsimonious models. Because of the Kronecker product structure,

the number of parameters to be estimated decreases quickly by increasing the dimension

of the matrix. This is so because when Yt is a matrix time series of dimension K × S,

the number of variance-covariance parameters that is needed to be estimated while using

the multivariate (vector) normal distribution, is KS(KS + 1)/2. However, this number of
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parameters decreases to K(K +1)/2+S(S +1)/2 by applying matrix normal distributions.

In chapter 3, we introduce a model for matrix time series and develop some theory for

this class of models. In particular, we model the matrix time series to obtain expectations

for the variance-covariances; see section 3.2. Then, after introducing matrix autoregressive

series of order one in section 3.3, we consider and describe stationary matrix processes in

general in section 3.4. In section 3.5, we propose and derive the corresponding matrix mov-

ing average representation process of order infinity for the matrix autoregressive series of

order one defined in section 3.3. Then, in section 3.6, we derive the autocovariance and

autocorrelation functions of the matrix autoregressive models of order one and its marginal

vectors. In section 3.7, we introduce the matrix autoregressive time series of order p, and

find its corresponding matrix moving average representation, and hence we derive the auto-

covariance and autocorrelation functions of the matrix autoregressive model of order p. In

section 3.8, we study the matrix autoregressive processes with nonzero mean, and we find

the intercept of such series by deriving its moving average representation. Finally, in section

3.9, we derive the Yule-Walker Equations for MAR processes.

In chapter 4, we estimate the parameters of the matrix autoregressive processes of order

p (MAR(p)), proposed in chapter 3, based on a sample of matrix observations. This chapter

will start with some preliminary material and basic results in section 4.2 that will be used

in the rest of the chapter. We estimate the parameters of the matrix time series based on

two main estimation methods, namely, least squares estimation, and maximum likelihood

estimation in sections 4.3 and 4.4, respectively. In the least squares estimation method, we

consider both ordinary least squares (OLS) estimation, and generalized least squares (GLS)

estimation in sections 4.3.2 and 4.3.3, respectively, for the MAR(1) process. In section 4.3.4,

the least squares estimators of parameters of the mean adjusted MAR(1) model will be de-

rived. Finally, in section 4.4, we will use the maximum likelihood method to estimate the

parameters of the MAR(p) model.
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Eventually, in chapter 5, numerical and simulation studies are conducted to compare

different matrix autoregressive of order one (MAR(1)) models when they have different

coefficient matrices. In fact, like univariate and vector time series, the structure of the

autocorrelation functions of MAR models is dependent on the configuration of the coefficient

matrices.

The final chapter outlines some proposals for future work.

5



Chapter 2

Literature Review

2.1 Introduction

A time series is a sequence of observations measured at successive times or over consecutive

periods of times. Unlike observations of a random sample, observations of a time series

are statistically dependent. That is, an inherent feature of a time series is that, usually,

the adjacent observations are not independent. There is a considerable practical interest in

analyzing and determining the pattern of dependencies among observations of a time series.

Time series analysis is concerned with probabilistic and statistical methods for analyzing the

dependence among observations and making inferences based on sequential data. There are

three main goals of time series analysis: identifying patterns for characterization, modeling

the pattern of the process, and forecasting future values. This leads to development of an-

alytical methods of stochastic processes for analyzing and predicting dependent data. Time

series processes are ubiquitous in stochastic phenomenon, arising in a variety of fields, in-

cluding econometrics, finance, business, biometrics, biology, ecology, meteorology, medicine,

astronomy, engineering, genetics, physics, fMRI, social science, etc.

Let yt be a stochastic process, where the index t takes integer values. In this case, yt

is a random variable at time t, and a time series, in fact, is a random sample from such a

6



process. In general, for a given time series yt the object of interest is given by

yt = f(yt−1, yt−2, . . .) + εt, t = 1, 2, . . . , N, (2.1)

where f(.) is a suitable function of past observations, and εt are independent, identically

distributed (i.i.d.) errors with mean zero and finite variance σ2, which is called white noise.

Determination of the function f(.) is a major task in time series analysis. In most appli-

cations, f(.) has been considered as a linear function of past observations. The autoregressive

integrated moving average (ARIMA) models are the best examples and the most commonly

used of these kind of linear functions.

Because of convenient mathematical properties of linear functions and because they are

relatively easy to use in applications, the classic ARIMA models are the most popular

models for analyzing time series data. These models have used the information criteria

for lag selection since 1990s. Autoregressive (AR) models were introduced by Yule (1927),

moving average (MA) models proposed by Walker (1931) and Slutsky (1937), then AR and

MA type models were combined into the mixed autoregressive moving average (ARMA)

models. Later on, Box and Jenkins (1970) extended the ARMA models so as to be suitable

for particular types of nonstationary time series, so-called ARIMA process.

Like many other statistical procedures, time series analysis has been classified into uni-

variate, multiple and multivariate time series analysis. Models started with univariate

ARMA processes and thereafter extended to multiple and multivariate time series. However,

in the time series literature, multivariate time series analysis use vector-variate time series

and is frequently called vector autoregressive moving average (V ARMA) processes. In this

work, we deal with multiple sets of dependent single multivariate (vector) time series. This

constitutes matrix time series, and we will extend the theory and methodology of V ARMA

time series models to matrix-variate time series. That is, matrix autoregressive time series

models (MAR) are proposed for the first time in this study.
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2.2 Literature review

Time series analysis started in the early twentieth century with three influential papers by

Yule (1921, 1926, 1927). Yule (1921) considered the time-correlation problem for correlations

between unrelated quantities observed over time. Yule (1926) formulated the correlations

between the time-variables, what he called nonsense-correlations, and he found the rela-

tionship between the serial correlations for the series, ri, and the serial correlations for the

difference series, ρi. Yule pioneered the idea of autoregressive series and applied a second

order autoregressive process, AR(2), for modeling Wolfer’s sunspot data (successive annual

sun-spot numbers). That is, he showed that past observations of a variable can explain and

determine its motion in the present (Yule, 1927). Yule’s second order autoregressive process

AR(2) is given by

yt = a1yt−1 + a2yt−2 + εt (2.2)

where yt is the observation at time t, a1 and a2 are the regression coefficients (autocorre-

lations), and εt are assumed to be independent random error terms with mean zero and

variance one. Yule’s work was extended to a general pth-order autoregressive, AR(p), by

Walker (1931). In that paper, it was shown that the relation between successive uninter-

rupted terms of the series yt plus a error term εt is

yt = a1yt−1 + a2yt−2 + . . .+ apyt−p + εt. (2.3)

Walker (1931) showed that, for a large enough number of observations, n, there is a similar

equation, but without the random shock εt, between the successive correlation coefficient

(autocorrelations) values of the series terms, ri, i.e.,

rk = a1rk−1 + a2rk−2 + . . .+ aprk−p. (2.4)
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This equation for k = 1, 2, . . . , p, gives a set of linear equations that are usually called the

Yule-Walker equations. Slutsky (1937) proposed the moving average (MA) models, and

studied how these models could lead to cyclical processes. That is, a coherent series yt can

be decomposed into a weighted moving summation of incoherent (random) series εt as follows

yt = εt +m1εt−1 + . . .+mqεt−q (2.5)

where m1,m2, . . . ,mq are weights of the random series εt at different lags.

Wold (1938) was the first to apply moving average processes to data and proved that

any stationary time series can be decomposed into a moving average of independent random

variables. Moving average models were not usually used because of the difficulty of finding

an appropriate model and a lack of suitable methods for determining, fitting, and assessing

these models. Therefore, to achieve better flexibility in fitting real time series data, moving

average (MA) and autoregressive (AR) processes were merged into autoregressive moving

average (ARMA) processes.

Since then, progress was made in the area of inference for time series models, dealing

with estimating the parameters, properties of the estimators, identification, and assessing

models. Mann and Wald (1943) studied the autoregressive model of Eq (2.3) and derived the

asymptotic theory for ordinary least squares parameter estimation. Champernowne (1948)

proposed a successive approximation of least squares estimates and maximum likelihood esti-

mates for autoregressive models and autoregressive models with regression terms. However,

he did not develop properties of the estimators. Cochrane and Orcutt (1949) introduced

a new method to estimate the regression parameters when the error terms are autocorre-

lated. In fact, this procedure is dealing with the problem of correlated errors in the time

series context. Bartlett (1946) and Moran (1947) developed some asymptotic properties of

estimators.

The foundation of the mathematical and probabilistic formulation and properties of AR,

MA, and ARMA processes can be found in Box and Jenkins (1970, 1976), and Box et

9



al. (1994, 2008). The ARMA models can be applied just for stationary time series. Box

and Jenkins (1970) used mathematical statistics and probability theory for extending the

ARMA models to include certain types of nonstationary time series, and they proposed

a class of models called autoregressive integrated moving average (ARIMA) models. The

ARMA and ARIMA models are very useful and can be applied to a wide range of time

series data in many fields. They proposed an intelligible readily accomplished three-stage

iterative modeling approach for time series, viz., model identification, parameter estimation,

and model checking. These procedures are now known as the Box-Jenkins approach, and

lead to estimating the parameters p, d, q, and other parameters in a suitable ARIMA(p, d, q)

model for a set of data, where p, d, and q are non-negative integer values that refer to the

order of the autoregressive, integrated, and moving average parts of the model, respectively.

Box and Jenkins (1970) also investigated other models such as transfer function noise (TF )

models, and seasonal autoregressive integrated moving average (SARIMA) models. A good

review of time series analysis is provided by De Gooijer and Hyndman (2006).

More details on the analysis, modeling, and forecasting of time series data can be found

in several well-known books and references including: Box and Jenkins (1970, 1976), Box et

al. (1994, 2008), Brillinger (1975), Priestley (1981), Shumway (1988), Brockwell and Davis

(1991, 2002), Pourahmadi (2001), and Wei (2006).

Multivariate (vector) time series analysis was pioneered during the 1980s. However,

Whittle (1953) had earlier stressed the need to develop methods for multivariate time series

analysis also called multiple series, because the majority of practical problems required an

analysis of a multiple series. He derived least squares estimators for a stationary multivariate

time series, and showed that they are equivalent to those obtained through the maximum

likelihood principle if the variates are assumed to the normally distributed. He also inves-

tigated the asymptotic properties of the parameter estimates. The multivariate (vector)

generalization of the univariate ARIMA model is called a vector ARIMA (V ARIMA)

model. Quenouille (1957) was the first to determine the characteristics of vector autore-
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gressive integrated moving average (V ARIMA) processes. Parzen (1969) represented the

probability structure of covariance-stationary multiple time series by considering multiple

time series as a series of random vectors. Tunnicliffe Wilson (1973) presented a practical

method for estimating parameters in multivariate stationary ARMA time series models.

His estimator was an asymptotic approximation of the exact maximum likelihood estimator

which was proposed by Osborn (1977). Wallis (1977) proposed the joint estimation and

model selection procedure with a likelihood ratio test for multiple time series models.

During the 1980s and 1990s, multivariate (vector) or multiple time series analysis came

to be pioneered due to the progress and availability of suitable softwares to implement

V ARMA models. Tiao and Box (1981) proposed an approach to analyze and model multi-

ple time series, and explained the properties of a class of V ARMA models. They extended

the univariate three-stage iterative modeling procedure of the Box and Jenkins’s procedure

to analyze multivariate (vector) time series, i.e., model identification, parameter estimation

and diagnostic checking. Much work has been done on the problems of identifying, esti-

mating, formulating, and explaining different kinds of relationships among several series of

a multivariate time series; e.g., Quenouille (1957), Hannan (1970), Box and Jenkins (1970,

1976), Brillinger (1975), Brockwell and Davis (1991, 2002), Wei (2006), Lütkepohl (1991,

2006), and Box et al. (2008).

In this work, we will study the relationship between a matrix of time series variables

{Yijt : i = 1, 2, . . . , K; j = 1, 2, . . . , S}. We can find such matrix-variate processes when we

observe several related vector time series simultaneously over time, rather than observing

just a single time series or several related single time series as is the case in univariate time

series or vector-variate time series, respectively. Therefore, let Y.jt be a jth (j = 1, 2, . . . , S)

vector variate time series and let Yt denote the matrix variate time series at time t given by

11



Yt = (Y.1t, Y.2t, . . . Y.St) =



y11t y12t . . . y1St

y21t y22t . . . y2St
...

...

yK1t yK2t . . . yKSt


, t = 1, 2, . . . . (2.6)

Matrix variate time series can be found in a variety of fields such as economics, business,

ecology, psychology, meteorology, biology, fMRI, etc. For example, in a macroeconomics

setting, we may be interested in a study of simultaneous behavior over time of employment

statistics for different US states across different industrial sectors (Wang and West, 2009).

As another example, for linguists it is important to know the lexical structure of a language

rather than isolated words. Specifically, in the Australian Sign Language (Auslan) the num-

ber of variables on a fitted glove, as different “spoken” words, are measured over time; where

variables are Y1., Y2., Y3. signed in sign language in three dimensional space (X,Y, Z) respec-

tively, Y4. = roll (of palm as it moved), Y5. = thumb bend, Y6. = forefinger bend, Y7. = index

finger bend, Y8. = ring finger bend (with the bends in Y5., . . . , Y8. going from straight to fully

bent) across four words 1 ≡ know, 2 ≡ maybe, 3 ≡ shop, 4 ≡ yes, each word is spoken three

times. Therefore in our model framework, we have K = 8, S = 12, Yt = (Y1.t, Y2.t, . . . Y8.t)
T ,

where Y T
i.t = (yi1t, yi2t, . . . , yi12t), i = 1, 2, . . . , 8 (8 × 12 matrix variate time series). See

Kadous (1995, 1999).

We will extend most of the fundamental concepts and results for vector time series anal-

ysis to matrix time series. New problems and challenges arise in the theory and application

due to the greater difficulty and complexity of model dimensions, and parametrization in

the matrix situation.

In recent years, a few papers have dealt with matrix-variate time series. Quintana and

West (1987) for the first time used multivariate (vector) time series models based on a

general class of a dynamic matrix variate normal extensions of a dynamic linear model.

They considered a q-vector time series Yt with the following model

12



Observational equation: Y T
t = F T

t Θt + eTt , et ∼ N(0, vtΣ)

Evolution equation: Θt = GtΘt−1 + Ωt, Ωt ∼ N(0,Wt,Σ)

Prior distributions: Θt−1 ∼ N(Mt−1, Ct−1,Σ), Σ ∼ W−1(St−1, dt−1)

where et is a q−vector of observational error, Ωt is a p × q evolution error matrix, and

follows a matrix-variate normal distribution with mean 0, left covariance matrixWt and right

covariance matrix Σ. The left covariance matrix Wt contains the variance and covariance

of the p variables, and the right covariance matrix Σ contains the variance and covariance

between the q variables. Matrix normal notations and properties will be defined later. This

method was further developed and applied in West and Harrison (1999), Carvalho and West

(2007 a, b).

Note, however, that in their proposed models the evolution error term Ωt corresponding to

the matrix of states Θt is a matrix, the response variable Yt is a vector. Wang andWest (2009)

developed these proposed models when the response variable Yt is a matrix. They introduced

and analyzed matrix normal graphical models, in which conditional independencies induced

in the graphical model structure were characterized by the covariance matrix parameters.

They considered a fully Bayesian analysis of the matrix normal model as a special case of the

full graphs, and extended computational methods to evaluate marginal likelihood functions

under an indicated graphical model. Then, they developed this graphical modeling to a

matrix time series analysis and their associated graphical models. They assumed that a

q× p matrix variate time series Yt follows a dynamic linear model where both observational

and evolution error terms change over time, and for given t they have a given matrix normal

distribution with
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Observational equation: Yt = (Iq ⊗ F T
t )Θt + vt, vt ∼ N(0, U,Σ)

Evolution equation: Θt = (Iq ⊗Gt)Θt−1 + Ωt, Ωt ∼ N(0, U ⊗Wt,Σ).

Wang and West (2009) applied this model and procedure to a macroeconomic time series

data set. The data were monthly 8 × 9 matrix variates over several years for Employment

Statistics for eight US states across nine industrial sectors, viz., construction, manufacturing,

trade, transportation and utilities, information, financial activities, professional and business

services, education and health services, leisure and hospitality, and government.

Hoff (2011) considered a class of multi-indexed data arrays Y =
{
yi1 , yi2 . . . , yik : ik ∈

{1, 2, . . .mk}, k = 1, 2, . . . , K
}
, and introduced estimation methods and accommodated a

construction for an array normal class of distributions. However in that paper, Hoff derived

some properties of covariance structures of multidimensional data arrays and focused on an

extension of the matrix normal model for a multidimensional array, but had nothing about

time series data. However, if we consider the third dimension in a three-dimensional data

array as an index of time, then the data array would be a matrix time series data. Wang

(2011) proposed matrix variate Gaussian graphical models for correlated samples to analyze

the effect of correlations based on matrix-variate normal distribution.

Triantafyllopoulos (2008) proposed and explored missing observations of any sub-vector

or sub-matrix of observation time series matrix by developing Bayesian inference for matrix

variate dynamic linear models.

Fox and West (2011) introduced and analyzed a class of stationary time series models,

first order autoregressive process, for variance matrices by using the structure of conditional

and marginal distributions in the inverse Wishart family.
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2.3 Matrix Variate

Random matrix theory has found many of its applications in physics, mathematics, engi-

neering, and statistics. It was first introduced in mathematical statistics by Wishart (1928).

Wigner (1955, 1957, 1965, 1967) developed and applied the matrix theory in physics.

Sample observation matrices are very common to use in statistical methodologies and

applications. These matrices basically are composed from independent multivariate ob-

servations, and first introduced by Roy (1957). When sampling from multivariate normal

distributions, the columns (or rows) of such matrices are independently distributed as mul-

tivariate normal distributions with common mean vector and covariance matrix. In many

data sets, the independence assumption of multivariate observations is not valid, i.e., time

series, stochastic processes and repeated measurements on multivariate variables (Gupta and

Nagar, 2000). Therefore, the study of matrix variate distributions and their properties began

for analyzing such matrices of observations when all entries are dependent.

We usually make some assumptions on the model to make it simple and to enable the

use of existing methodologies or computation methods. Especially, for analyzing matrix

data, we often assume that columns (or rows) are independent (Allen and Tibshirani, 2012).

With the assumption of independence between the columns of a matrix, the variables of one

dimension, rows, can be considered as points of interest. Then, we just would be able to study

the relationship among the rows, but not among the columns. However, these assumptions

are not always met and sometimes we would like to find the structure between the variables

of both rows and columns. Allen (2010) gave two real examples that this assumption is not

met, i.e., gene-expression microarrays and the Netflix movie-rating data.

There is a different terminology for matrix data that both columns and rows are depen-

dent, i.e., two-way data, and transposable data. Transposable data are a type of two-way

data (matrix data) where both the rows and columns are correlated, and the data can be

viewed as a row-model, meaning the rows are the features of interest, or as a column-model

(Allen, 2010). Allen (2010) proposed a model for studying transposable data, by modifica-
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tion of the matrix variate normal distribution that has a covariance matrix for both columns

and rows.

Viroli (2012) introduced and proposed matrix-variate regression models for analyzing

three-way data where for each statistical unit, response observations are matrices composed

of multivariate observations in different occasions. In fact, Viroli extended and represented

multivariate regression analysis to matrix observations for dealing with a set of variables that

are simultaneously observed on different occasions. The matrix-variate regression model is

given by

Yi = ΘXi + ei, i = 1, 2, . . . , n, (2.7)

where Yi is a p × s observed matrix, Xi is a predictor matrix of dimension m × s, Θ is a

matrix of unknown parameters matrix of dimension p × m, and ei is the model errors of

dimension p× s with matrix normal distribution. By these assumptions, the parameters of

the model are estimated and the properties of the model are studied.

2.3.1 Matrix Variate Normal Distribution

Matrix variate normal distributions, like univariate and multivariate normal distributions,

have a most important and effective role in applications with nice mathematical properties

among the matrix variate distributions. A matrix variate normal distribution was first

studied in the 1980s by Dawid (1981), Wall (1988), among others. Recently, this family of

distributions is growing tremendously in many applications due to computational progress

and advances.

The K×S random matrix Y has a matrix variate normal distribution with K×S mean

matrix M and covariance matrix Σ ⊗Ω, if V ec(Y) has a multivariate normal distribution

with mean V ec(M) and covariance matrix Σ⊗Ω. That is, V ec(Y) ∼ NKS(V ec(M),Σ⊗Ω),

where V ec(Y) is the vector of all columns Y from left to right, and Σ and Ω are positive

definite matrices of dimension K ×K and S ×S, respectively; see Gupta and Nagar (2000).
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Let Y be a random matrix of dimension K×S with a matrix variate normal distribution.

Then, the probability density of Y is given by

p(Y|M,Ω,Σ) = (2π)−
KS
2 |Ω|−

K
2 |Σ|−

S
2 exp

{
− 1

2
tr
(
Σ−1(Y −M)Ω−1(Y −M)T

)}
(2.8)

where MK×S ∈ RK×S is the expected matrix value of Y ∈ RK×S, Σ is the left (row, or

between) covariance matrix of dimension K × K, and Ω is the right (column, or within)

covariance matrix of dimension S×S. The matrix variate normal distribution is denoted by

Y ∼ NK×S(M,Σ⊗Ω).

One of the advantages of the matrix variate normal distribution, besides the most de-

sirable aspect of being able to estimate within and between variations, is that it gives

parameters-wise parsimonious models. Because of the Kronecker product structure, the

number of parameters to be estimated decreases quickly by increasing the dimension of the

matrix. This is so because when Y is a matrix of dimension K × S, the number of param-

eters that is needed to be estimated, while using the multivariate normal distribution, is

KS(KS+1)/2. However, this number of parameters decreases to K(K +1)/2+S(S+1)/2

by applying matrix normal distributions.
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Chapter 3

Matrix Time Series - Models

3.1 Introduction

Let Yt be a stochastic process, where the index t takes integer values. In our case, Yt is a

random variable at time t and a time series is a random sample from such processes. In

general, for a given Yt, a time series model can be considered as

Yt = f(Yt−1, Yt−2, . . .) + εt, t = 1, 2, . . . , N, (3.1)

where f(.) is a function of past observations, and εt, t = 1, 2, . . . , N , are independent and

identically distributed (i.i.d.) random errors with mean zero and finite variance σ2, called

white noise. For standard univariate time series, this f(.) function is a real scalar function,

and for vector time series, f(.) is a real vector function.

Determination of the function f(.) is a major task in time series analysis. In most

applications, f(.) is considered to be a linear function of past observations, of which the

autoregressive integrated moving average (ARIMA) models are the most commonly used

examples.

The time series variable Yt can be univariate or multivariate. In the time series literature,

a multivariate time series is often a vector of series; however, Yt can be a matrix of time series.
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There is a vast literature for univariate and for vector time series which study properties and

features of univariate and vector time series as reviewed in chapter 2. With the one exception

of Wang and West (2009), there seems to be no literature for the representation of matrix

time series. Wang and West considered a matrix normal distribution for both observational

and evolution errors of a dynamic linear model of a matrix-variate time series Yt to fit and

explore dynamic graphical models.

In this work, we introduce a model for matrix time series and develop some theory for

this class of models. In particular, we model the matrix time series to obtain expectations

for the variance-covariances; see section 3.2. Then, after introducing matrix autoregressive

series of order one in section 3.3, we consider and describe stationary matrix processes in

general in section 3.4. In section 3.5, we propose and derive the corresponding matrix mov-

ing average representation process of order infinity for the matrix autoregressive series of

order one defined in section 3.3. Then, in section 3.6, we derive the autocovariance and

autocorrelation functions of the matrix autoregressive models of order one and its marginal

vectors. In section 3.7, we introduce the matrix autoregressive time series of order p, and

find its corresponding matrix moving average representation, and hence we derive the au-

tocovariance and autocorrelation functions of the matrix autoregressive model of order p.

Finally, in section 3.8, we study the matrix autoregressive processes with nonzero mean, and

we find the intercept of such series by deriving its moving average representation.

We note that vector time series are sometimes referred to as multiple time series, where

“multiple” refers to multiple variables (i.e., number of variables K > 1). As for univariate

series, the vector series is a single (but multivariate) series. Our work deals with multiple

series of multivariate time series, i.e., number of series S > 1. To avoid confusion, we restrict

the use of “multiple” to our matrix time series, i.e., multiple multivariate (or multiple vectors)

time series.
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3.2 Matrix Time Series

3.2.1 The Model

Consider S time series Y.1t, Y.2t, . . . , Y.St, such that each series Y.jt, j = 1, 2, . . . , S, itself is a

K−dimensional vector time series. That is, we have

Y.jt = (y1jt, y2jt, . . . , yKjt)
T , j = 1, 2, . . . , S.

Also, suppose that these S vector time series are not independent; i.e., Cov(Y.jt, Y.j′t) =

Σjj′(t) ̸= 0, j ̸= j′ = 1, 2, . . . , S. Due to these dependencies and considering the contribu-

tions and effects of these underlying cross-correlations to the results of any analysis, it is

necessary to put all S vector series into one model, so as to be able to analyze them simul-

taneously. To this end, we put all S vector series, Y.jt, j = 1, 2, . . . , S, beside each other in

a matrix and then we will have a matrix time series Yt. Therefore, suppose that the matrix

time series variate Yt is given as

Yt = (Y.1t, Y.2t, . . . Y.St) =



y11t y12t . . . y1St

y21t y22t . . . y2St
...

...

yK1t yK2t . . . yKSt


. (3.2)

For the sake of convenience and simplicity in notation, the bold capital letter Yt will be used

for representing the matrix time series, the vector time series will be shown by capital letter,

but not bold Yt, and the uncapitalized letter yt will be used for a univariate time series.

Now, as for univariate and vector time series, the same model of Eq (3.1) can be considered

for the matrix time series variate Yt. In section 3.4, we will introduce and extend features of

a function f(.) for matrix time series corresponding to the function f(.) for univariate and

vector time series. We can rewrite the model in Eq (3.1) for the matrix time series Yt as
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Yt = f(Yt−1,Yt−2, . . .) + εt, t = 1, 2, . . . , N, (3.3)

where f(Yt−1,Yt−2, . . .) and εt (as are Yt−i, i = 0, 1, . . .) are matrices of dimension K × S.

Note that in contrast to the function f(.) in Eq (3.1), where it is a real scalar function of

a univariate time series yijt, or a real vector function of vector time series Y.jt, here in Eq

(3.3), f(.) is a real matrix function of a matrix time series.

3.2.2 Variance-Covariance of Matrix Time Series

Knowing the structure of the variance-covariance matrix (across the random variables them-

selves, as distinct from the autocovariance function considered in section 3.6) of a matrix

time series is necessary for building a statistical model. In this section, we will define the

structure of the variance-covariance of a matrix time series. To this end, first we assume

that the matrix time series Yt, like univariate and vector time series, has zero mean and

finite variance. We use the Kronecker product of matrix white noise εt and its expectation

in order to define the variance-covariance of white noise εt. That is, first assume that Ψ(t)

is defined as

Ψε(t) = E(εt ⊗ εTt ). (3.4)

Note that εt is a K × S matrix; therefore, by definition of a Kronecker product, Ψ(t) is a

KS × KS matrix. One of the purposes of introducing the matrix time series model is to

find a way to be able to analyze each vector of the matrix time series such that the effect of

all series of the matrix can be considered simultaneously. Therefore, the variance-covariance

matrix of a time series matrix needs to be well defined such that the variance and covariance

matrices of vectors can be part of the variance-covariance matrix of a time series matrix.

That is, if we partition the variance-covariance matrix of the matrix time series, then each

partition can be the variance of a vector or the covariance of two vectors. However, it easily

can be seen that the matrix Ψ(t) defined in Eq (3.4) cannot be readily partitioned in a way
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that partitions represent the variance-covariance of the corresponding vectors. To overcome

this obstacle, we define a transformation matrix T. Then, the mean and variance-covariance

of εt is defined as

E(εt) = 0(K×S), V ar(εt) = E(Tεt ⊗ εTt ) = TΨε(t) = Σ(KS×KS)(t) (3.5)

where the transformation matrix T is defined as

T(KS×KS) = (tij) =



1, if


i = lK + 1, lK + 2, . . . , (l + 1)K,

j = (l + 1) + (i− lK − 1)S,

l = 0, 1, 2, . . . , (S − 1);

0, otherwise.

(3.6)

This is equivalent to the following equation defined by Brewer (1978)

T(KS×KS) =
K∑
i=1

S∑
j=1

ES×K
ji ⊗ EK×S

ij (3.7)

where EK×S
ij is a K × S matrix of one’s and zero’s, in particular its lf th element, (elf )ij, is

given by

(elf )ij =

 1, if l = i and f = j,

0, otherwise,
, l = 1, 2, . . . , K, f = 1, 2, . . . , S. (3.8)

Now we can partition the matrix Σ(t) defined in Eq (3.5) into S2 sub-matrices each of

dimension K ×K. Then, the diagonal sub-matrices of the S × S dimensional block matrix

Σ(t) are the variances of the vectors Y.jt and the off-diagonal sub-matrices of Σ(t) are the
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covariance of the vectors Y.jt and Y.j′t, j ̸= j′. That is,

Σ(t) = (Σjj′(t)) =



Σ11(t) Σ12(t) . . . Σ1S(t)

Σ21(t) Σ22(t) . . . Σ2S(t)

...
. . .

...

ΣS1(t) ΣS2(t) . . . ΣSS(t)


(3.9)

where

Σjj(t) = V ar(ε.jt) = E[ε.jtε
T
.jt], j = 1, 2, . . . , S,

ΣT
jj′(t) = Cov(ε.jt, ε.j′t) = E[ε.jtµ

T
.j′t], j ̸= j′, j, j′ = 1, 2, . . . , S.

The following example shows how to find the transformation matrix T and how it looks

when K = 4 and S = 3.

Example 3.2.1 We wish to find the elements tij, i = 1, 2, 3, 4, j = 1, 2, 3, of matrix T when

K = 4 and S = 3. First note that because S = 3, the l in Eq (3.6) can take values, 0, 1 and

2 only. Also, for each value of l, index i and index j are different. That is, we can write

l = 0 ⇒

 i = 1, 2, 3, 4

j = 1 + (i− 1)3
, ⇒ t1,1 = t2,4 = t3,7 = t4,10 = 1;

l = 1 ⇒

 i = 5, 6, 7, 8

j = 2 + (i− 5)3
, ⇒ t5,2 = t6,5 = t7,8 = t8,11 = 1;

l = 2 ⇒

 i = 9, 10, 11, 12

j = 3 + (i− 9)3
, ⇒ t9,3 = t10,6 = t11,9 = t12,12 = 1.
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Therefore, the matrix T, for the given K and S of dimension 12× 12, is given by

T12×12 = (tij) =



1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1



. (3.10)

This matrix, also can be found by using the quantity in Eq (3.7). That is,

T(12×12) =
4∑

i=1

3∑
j=1

E3×4
ji ⊗ E4×3

ij .

Theorem 3.2.1 The square matrix T defined in Eq (3.6) is nonsingular and invertible, and

TT = T−1.

Proof: Write T = (t1, t2, . . . , tKS) where tm,m = 1, 2, . . . , KS, is the mth column of T.

Then, we can reorder the columns of the matrix T to give the identity matrix IKS.

Example 3.2.2 (Continuation of Example 3.2.1) In the previous Example 3.2.1, write

T12×12 = (t1, t2, . . . , t12). Then, rewriting the columns of T as (t1, t4, t7, t10, t2, t5, t8, t11, t3,

t6, t9, t12) yields the identity matrix I12.

It is helpful to look at the variance-covariance matrix of the white noise matrix εt in a

different way and to compare it with Σ(t) defined in Eq (3.9). Consider the operator V ec of

matrix εt. Then, by the definition of V ec, we have
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V ec(εt) = V ec(ε.1t, ε.2t, . . . , ε.St) = (εT.1t, ε
T
.2t, . . . , ε

T
.St)

T . (3.11)

Now, V ec(εt) is a vector with dimension KS, and its variance, Σ∗(t), is defined by

V ar(V ec(εt)) = E[V ec(εt)V ec(εt)
T ] = Σ∗

KS×KS(t). (3.12)

If we partition the covariance matrix Σ∗(t) into S2 sub-matrices each with dimension

K ×K, so as to have the same pattern as Σ(t) defined in Eq (3.9), then the diagonal terms

of Σ(t) and Σ∗(t) will be the same; however, the off-diagonal terms of Σ(t) will be the

transpose of the off-diagonal terms of Σ∗(t). That is:

Σjj(t) = Σ∗
jj(t), j = 1, 2, . . . , S, (3.13)

ΣT
jj′(t) = Σ∗

jj′(t), j, j′ = 1, 2, . . . , S. (3.14)

Since for a given j, Σjj(t) is the covariance matrix of the jth vector time series Y.jt in the

time series matrix Yt, and since Σjj(t) is symmetric, therefore, in general, we have

ΣT
jj′(t) = Σ∗

jj′(t), j, j′ = 1, 2, . . . , S. (3.15)

Example 3.2.3 Let K = 4 and S = 3, then the expectation of the Kronecker product εt⊗εTt ,

Ψ, is given by
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E[εt ⊗ εTt ] = E
(


ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

ε41 ε42 ε43


⊗


ε11 ε21 ε31 ε41

ε12 ε22 ε32 ε42

ε13 ε23 ε33 ε43

)

=



σ11,11 σ11,21 σ11,31 σ11,41 σ12,11 σ12,21 σ12,31 σ12,41 σ13,11 σ13,21 σ13,31 σ13,41

σ11,12 σ11,22 σ11,32 σ11,42 σ12,12 σ12,22 σ12,32 σ12,42 σ13,12 σ13,22 σ13,32 σ13,42

σ11,13 σ11,23 σ11,33 σ11,43 σ12,13 σ12,23 σ12,33 σ12,43 σ13,13 σ13,23 σ13,33 σ13,43

σ21,11 σ21,21 σ21,31 σ21,41 σ22,11 σ22,21 σ22,31 σ22,41 σ23,11 σ23,21 σ23,31 σ23,41

σ21,12 σ21,22 σ21,32 σ21,42 σ22,12 σ22,22 σ22,32 σ22,42 σ23,12 σ23,22 σ23,32 σ23,42

σ21,13 σ21,23 σ21,33 σ21,43 σ22,13 σ22,23 σ22,33 σ22,43 σ23,13 σ23,23 σ23,33 σ23,43

σ31,11 σ31,21 σ31,31 σ31,41 σ32,11 σ32,21 σ32,31 σ32,41 σ33,11 σ33,21 σ33,31 σ33,41

σ31,12 σ31,22 σ31,32 σ31,42 σ32,12 σ32,22 σ32,32 σ32,42 σ33,12 σ33,22 σ33,32 σ33,42

σ31,13 σ31,23 σ31,33 σ31,43 σ32,13 σ32,23 σ32,33 σ32,43 σ33,13 σ33,23 σ33,33 σ33,43

σ41,11 σ41,21 σ41,31 σ41,41 σ42,11 σ42,21 σ42,31 σ42,41 σ43,11 σ43,21 σ43,31 σ43,41

σ41,12 σ41,22 σ41,32 σ41,42 σ42,12 σ42,22 σ42,32 σ42,42 σ43,12 σ43,22 σ43,32 σ43,42

σ41,13 σ41,23 σ41,33 σ41,43 σ42,13 σ42,23 σ42,33 σ42,43 σ43,13 σ43,23 σ43,33 σ43,43



where σij,i′j′ = E[εijεi′j′ ]. Then, the variance-covariance matrix of the 4 × 3 white noise

matrix εt, Σ12×12, can be obtained by premultiplying Ψ by the transformation matrix T

given in Eq (3.10) as

Σ = TΨ =



σ11,11 σ11,21 σ11,31 σ11,41 σ12,11 σ12,21 σ12,31 σ12,41 σ13,11 σ13,21 σ13,31 σ13,41

σ21,11 σ21,21 σ21,31 σ21,41 σ22,11 σ22,21 σ22,31 σ22,41 σ23,11 σ23,21 σ23,31 σ23,41

σ31,11 σ31,21 σ31,31 σ31,41 σ32,11 σ32,21 σ32,31 σ32,41 σ33,11 σ33,21 σ33,31 σ33,41

σ41,11 σ41,21 σ41,31 σ41,41 σ42,11 σ42,21 σ42,31 σ42,41 σ43,11 σ43,21 σ43,31 σ43,41

σ11,12 σ11,22 σ11,32 σ11,42 σ12,12 σ12,22 σ12,32 σ12,42 σ13,12 σ13,22 σ13,32 σ13,42

σ21,12 σ21,22 σ21,32 σ21,42 σ22,12 σ22,22 σ22,32 σ22,42 σ23,12 σ23,22 σ23,32 σ23,42

σ31,12 σ31,22 σ31,32 σ31,42 σ32,12 σ32,22 σ32,32 σ32,42 σ33,12 σ33,22 σ33,32 σ33,42

σ41,12 σ41,22 σ41,32 σ41,42 σ42,12 σ42,22 σ42,32 σ42,42 σ43,12 σ43,22 σ43,32 σ43,42

σ11,13 σ11,23 σ11,33 σ11,43 σ12,13 σ12,23 σ12,33 σ12,43 σ13,13 σ13,23 σ13,33 σ13,43

σ21,13 σ21,23 σ21,33 σ21,43 σ22,13 σ22,23 σ22,33 σ22,43 σ23,13 σ23,23 σ23,33 σ23,43

σ31,13 σ31,23 σ31,33 σ31,43 σ32,13 σ32,23 σ32,33 σ32,43 σ33,13 σ33,23 σ33,33 σ33,43

σ41,13 σ41,23 σ41,33 σ41,43 σ42,13 σ42,23 σ42,33 σ42,43 σ43,13 σ43,23 σ43,33 σ43,43



.
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Therefore, the variance-covariance matrix Σ in this example can be partitioned as

Σ =


Σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 Σ33


where

ΣT
jj′ = E[ε.jε

T
.j′ ] = E

(
[



ε1j

ε2j

ε3j

ε4j


[
ε1j′ ε2j′ ε3j′ ε4j′

])
.

3.3 Matrix Autoregressive Process of order one

Linear models are easy to understand and interpret, are sufficiently accurate for most prob-

lems, and are also mathematically simple. Therefore, linear functions of past observations

(lags) of Yt can be good candidates for the function f(.) in Eq (3.3). In time series ter-

minology, these kinds of functions are called autoregressive functions. In particular, for

autoregressive models, the current value of the process is a linear function of past values

(lags) plus an observational error.

In this section, we expand the concepts behind univariate autoregressive models (AR)

and vector autoregressive models (V AR) to define matrix autoregressive time series models

(MAR). To this end, we start with the definition of a univariate autoregressive model (AR)

and the definition of a vector autoregressive model (V AR). After that, we extend these two

definitions to matrix autoregressive models. Let us look at these autoregressive models of

order one, in turn. Let Γ be the covariance matrix of Yt.

• AR(1): If the covariance matrix of Yt, Γ, is an identity matrix (Γ = IKS), then all

entries of the time series matrix Yt are independent, and each yijt can be considered as
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a univariate autoregressive time series. There are many well known books for univariate

time series analysis, e.g., Box et al. (1994, 2008), Brockwell and Davis (1991), William

(2006). By definition of an AR(1) model, for a given time series yijt, we have

yijt = µij + aijyij(t−1) + εijt, i = 1, 2, . . . , K, j = 1, 2, . . . , S, (3.16)

where µij is the intercept, aij is a coefficient parameter, and εijt is white noise such

that E(εijt) = 0, V ar(εijt) = E(ε2ijt) = σij, and E(εijtεijt′) = 0, t ̸= t′.

• VAR(1): Assume that the covariance matrix Γ is a block diagonal matrix. That is,

for every j ̸= j′, Γjj′ = 0 and for every j, Γjj ̸= 0. Then, all vectors Y.1t, Y.2t, . . .,

Y.St will be independent of each other and each of these vectors can be considered as a

vector autoregressive time series (VAR). Lütkepohl (1991, 2006), Hannan (1970), and

William (2006) are very good references for VAR models. From the definition of a

VAR model of order one (VAR(1)), we have

Y.jt = µ.j +AjY.j(t−1) + ε.jt, j = 1, 2, . . . , S, (3.17)

where Y.jt = (y1jt, y2jt, . . . , yKjt)
T is the jth K−dimensional vector time series, Aj is a

K×K matrix of coefficient parameters (ail, i, l = 1, 2, . . . , K), and ε.jt = (ε1jt, ε2jt, . . . ,

εKjt)
T is a K−dimensional white noise vector such that E(ε.jt) = 0, E(ε.jtε

T
.jt) = Σjj,

and E(ε.jtε
T
.jt′) = 0, t ̸= t′.

• MAR(1): Now, assume that none of the previous assumptions are satisfied for the

covariance matrix Γ. Then, we will have a matrix of time series which, like those for

the AR and V AR models, is needed to define a new and appropriate model for matrix

time series.
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We use the idea of the definition of VAR models in Eq (3.17) to define a new model

for an MAR process and extend the properties of the VAR model to the MAR model.

Note that in a vector autoregressive time series, each variable of the vector time series

is a linear combination of its past observations and past observations of other variables.

For instance, each univariate time series yijt, i = 1, 2, . . . , K, at time t, in the vector

time series Y.jt has the feature

yijt = ai1y1j(t−1) + ai2y2j(t−1) + . . .+ aiKyKj(t−1) + εijt, j = 1, 2 . . . , S. (3.18)

Therefore, each yijt, i = 1, 2, . . . , K, in Y.jt of Eq (3.17) is a linear combination of its

past values and past values of other variables. Now, we extend the idea of vector time

series to a matrix time series Yt. First, like the AR(1) and VAR(1) models, the model

of a matrix autoregressive time series of order one (MAR(1)) is considered as

Yt = µ+ F (Yt−1) + εt (3.19)

where F (Yt−1) needs to be defined such that, as for VAR processes, each yijt is a linear

combination of its past values of its other variables, and of the past values of all other

series in the matrix Yt. To this end, the linear matrix function F (Yt−1) is defined by

F (Yt−1) =
S∑

j=1

S∑
r=1

Aj
rYt−1Erj (3.20)

where Aj
r, r, j = 1, 2, . . . , S, are matrices of parameters with dimension K ×K, with

elements arjlf , defined by
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Aj
r = (arjlf ) =



arj11 arj12 . . . arj1K

arj21 arj22 . . . arj2K
...

. . .
...

arjK1 arjK2 . . . arjKK


, r, j = 1, 2, . . . , S, (3.21)

and Erj, r, j = 1, 2, . . . , S, are the S × S matrices whose elements (elf )rj are zero or

one given by

(elf )rj =

 1, if l = r and f = j

0, otherwise.
, l, f = 1, 2, . . . , S. (3.22)

Therefore, the matrix autoregressive model of order one defined in Eq (3.19) can be

rewritten as

Yt = µ+ F (Yt−1) + εt

= µ+
S∑

j=1

S∑
r=1

Aj
rYt−1Erj + εt, t = 0,±1,±2, . . . , (3.23)

where εt is a matrix white noise such that E(εt) = 0, E(εt⊗εTt ) = Ψ, and E(εt⊗εTt′) =

0, t ̸= t′.

To illustrate the model MAR(1) defined in Eq (3.23) more fully, consider Example 3.3.1.

Example 3.3.1 Let Yt be a matrix time series with dimension K = 4 and S = 3. Then,

Eq (3.23) can be expanded as, for t = 1, 2, . . .,

Yt = µ+
3∑

j=1

3∑
r=1

Aj
rYt−1Erj + εt (3.24)

= µ+A1
1Yt−1E11 +A1

2Yt−1E21 +A1
3Yt−1E31 +A2

1Yt−1E12 +A2
2Yt−1E22

+A2
3Yt−1E32 +A3

1Yt−1E13 +A3
2Yt−1E23 +A3

3Yt−1E33 + εt.
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For instance, all the details of one of these terms, say A2
3Yt−1E32, are given by

A2
3Yt−1E32 =



a3211 a3212 a3213 a3214

a3221 a3222 a3223 a3224

a3231 a3232 a3233 a3234

a3241 a3242 a3243 a3244





y11(t−1) y12(t−1) y13(t−1)

y21(t−1) y22(t−1) y23(t−1)

y31(t−1) y32(t−1) y33(t−1)

y41(t−1) y42(t−1) y43(t−1)




0 0 0

0 0 0

0 1 0



=



4∑
i=1

a321i yi1
4∑

i=1

a321i yi2(t−1)

4∑
i=1

a321i yi3(t−1)

4∑
i=1

a322i yi1(t−1)

4∑
i=1

a322i yi2(t−1)

4∑
i=1

a322i yi3(t−1)

4∑
i=1

a323i yi1(t−1)

4∑
i=1

a323i yi2(t−1)

4∑
i=1

a323i yi3(t−1)

4∑
i=1

a324i yi1(t−1)

4∑
i=1

a324i yi2(t−1)

4∑
i=1

a324i yi3(t−1)




0 0 0

0 0 0

0 1 0



=



0
4∑

i=1

a321i yi3(t−1) 0

0
4∑

i=1

a322i yi3(t−1) 0

0
4∑

i=1

a323i yi3(t−1) 0

0
4∑

i=1

a324i yi3(t−1) 0


.

Now, for given j = 2, the sum over all r of the second term of the model given in Eq

(3.24),
∑3

r=1A
2
rYt−1Er2, is equal to

3∑
r=1

A2
rYt−1Er2 =



0
3∑

r=1

4∑
i=1

ar21iyir(t−1) 0

0
3∑

r=1

4∑
i=1

ar22iyir(t−1) 0

0
3∑

r=1

4∑
i=1

ar23iyir(t−1) 0

0
3∑

r=1

4∑
i=1

ar24iyir(t−1) 0


.

Eventually, summing over all j = 1, 2, 3, the matrix autoregressive process in Eq (3.24) can

be written as
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Yt = µ+



3∑
r=1

4∑
i=1

ar11iyir(t−1)

3∑
r=1

4∑
i=1

ar21iyir(t−1)

3∑
r=1

4∑
i=1

ar31iyir(t−1)

3∑
r=1

4∑
i=1

ar12iyir(t−1)

3∑
r=1

4∑
i=1

ar22iyir(t−1)

3∑
r=1

4∑
i=1

ar32iyir(t−1)

3∑
r=1

4∑
i=1

ar13iyir(t−1)

3∑
r=1

4∑
i=1

ar23iyir(t−1)

3∑
r=1

4∑
i=1

ar33iyir(t−1)

3∑
r=1

4∑
i=1

ar14iyir(t−1)

3∑
r=1

4∑
i=1

ar24iyir(t−1)

3∑
r=1

4∑
i=1

ar34iyir(t−1)


+ εt. (3.25)

Therefore, similar to Eq (3.18) for the vector time series, each univariate time series of

matrix time series Yt is a linear combination of past values of its own and other series and

all variables. For instance, for y23t in Eq (3.25), we have

y23t = µ23 +
3∑

r=1

4∑
i=1

ar32iyir(t−1) + ε23t.

3.3.1 A more suitable and appropriate definition for F (Yt−1)

For the sake of brevity and convenience in notation, and also in order to find an appropriate

linear model for a matrix time series of order one (MAR(1)) which is compatible with the

standard linear model notation and also to be compatible with AR(1) and VAR(1) models,

F (Yt−1) can be written as

F (Yt−1) = Af(Yt−1). (3.26)

Therefore, we can rewrite the matrix time series Yt defined in Eq (3.23) as

Yt = µ+ F (Yt−1) + εt

= µ+
S∑

j=1

S∑
r=1

Aj
rYt−1Erj + εt

= µ+Af(Yt−1) + εt, t = 0,±1,±2, . . . , (3.27)
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where A is a 1× S2−dimensional block matrix of coefficient parameters. Each block, Aj
r, is

a K ×K dimensional matrix. Thus, A is a matrix with dimension K ×KS2 given by

A =

[
A1

1 A1
2 ... A1

S A2
1 A2

2 ... A2
S ... Aj

1 Aj
2 ... Aj

S ... AS
1 AS

2 ... AS
S

]
(3.28)

and f(Yt−1) is a S2×1−dimensional block matrix where the lth block, l = 1, 2, . . . , S2, is the

K × S−dimensional matrix Yt−1Erj, where Erj is given in Eq (3.22). Therefore, f(Yt−1) is

a matrix with dimension KS2 × S and defined by

f(Yt−1) =



f1(Yt−1)

f2(Yt−1)

...

fj(Yt−1)

...

fS(Yt−1)


(3.29)

where fj(Yt−1) is defined as

fj(Yt−1) =



Yt−1E1j

Yt−1E2j

...

Yt−1Erj

...

Yt−1ESj


=

 j−1︷ ︸︸ ︷
0, . . . ,0, V ec(Yt−1),

S−j︷ ︸︸ ︷
0, . . . ,0


KS×S

= eTj ⊗ V ec(Yt−1) (3.30)

where ej = (

j−1︷ ︸︸ ︷
0, 0, . . . , 0, 1,

S−j︷ ︸︸ ︷
0, . . . , 0)T . Therefore, by substituting the right-hand side of Eq

(3.30) for each j = 1, 2, . . . , S, into Eq (3.29), it can be shown that f(Yt−1) is a S ×S block

matrix function with block size KS× 1. Moreover, the diagonal block entries of f(Yt−1) are

V ec(Yt−1), and its off-diagonal elements are KS × 1 zero vectors. That is,
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f(Yt−1) =



V ec(Yt−1) 0 0 . . . 0

0 V ec(Yt−1) 0 . . . 0

...
. . .

...

0 0 . . . 0 V ec(Yt−1)


KS2×S

= IS ⊗ V ec(Yt−1).

(3.31)

Let us define A†
j to be a block matrix with dimension 1× S, and each block is a K ×K

coefficient matrix Aj
r which are the elements of matrix A in Eq (3.28). In fact, A†

j has

dimension K ×KS and is defined as

A†
j =

[
Aj

1 Aj
2 . . . ,Aj

S

]
, j = 1, 2, . . . , S. (3.32)

Therefore, from the definition of A†
j in Eq (3.32), we see that the matrix A defined in

Eq (3.28) can be rewritten as

A =

[
A†

1 A†
2 · · · A†

j · · · A†
S

]
. (3.33)

In a manner similar to that used in section 3.2 where we compared the variance-covariance

matrix of the white noise matrix εt with the variance-covariance matrix of V ec of εt (see

Eqs (3.12)-(3.15)), it is worth while to compare the MAR(1) model with the corresponding

vector autoregressive process of order one. Toward this end, let us take V ec on both sides

of Eq (3.23), i.e.,

V ec(Yt) = V ec(µ) +
S∑

j=1

S∑
r=1

V ec(Aj
rYt−1Erj) + V ec(εt). (3.34)

Applying the V ec operator rule V ec(ABC) = (CT ⊗ A)V ec(B) for the middle term on the

right-hand side of Eq (3.34), and using the fact that ET
rj = Ejr, we have
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V ec(Yt) = V ec(µ) +
S∑

j=1

S∑
r=1

(Ejr ⊗Aj
r)V ec(Yt−1) + V ec(εt). (3.35)

Therefore, the corresponding vector autoregressive model of a MAR(1) process is given

by

V ec(Yt) = V ec(µ) +BV ec(Yt−1) + V ec(εt) (3.36)

where B =
S∑

j=1

S∑
r=1

(Ejr ⊗ Aj
r) is the S × S−dimensional block matrix of K × K coefficient

matrices Aj
r given in Eq (3.21), and given by

B =
S∑

j=1

S∑
r=1

(Ejr ⊗Aj
r) =



A1
1 A1

2 . . . A1
S

A2
1 A2

2 . . . A2
S

...
...

AS
1 AS

2 . . . AS
S


=



A†
1

A†
2

...

A†
S


. (3.37)

Also, from the dimension of A†
j, we see that the matrix B is the coefficient matrix of

parameters with dimension KS ×KS. Note that, the components of the matrix B, A†
j, are

the same as the components of the coefficient matrix A in Eq (3.33), except the dimension

of B is KS × KS whereas the dimension of A is K × KS2. Indeed, this follows from the

fact that B is the V ecbKS(.) of A, or B = V ec(A) by assuming the A†
j, j = 1, 2, . . . , S, to

be scalar.

Notice, the operator V ecbKS(.) is a block V ec operation which executes in the same way

as does the operation V ec, except that it takes each block entry with K columns as a scalar

entry. For instance, let W be a block matrix with block entries Wij such that each entry

has dimension ri × c given by
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W =

 W11 W12

W21 W22


(r1+r2)×2c

.

Then, the operation V ecbc(W) is defined as

V ecbc(W) =



W11

W21

W12

W22


2(r1+r2)×c

. (3.38)

Example 3.3.2 (Continuation of Example 3.3.1 ) The MAR(1) model when K = 4, S = 3,

given in Eq (3.24), can be rewritten as

Yt = µ+A(I3 ⊗ V ec(Yt−1)) + εt

where

V ec(Yt−1) =

[
y11 y21 y31 y41 y12 y22 y32 y42 y13 y23 y33 y43

]T
,

A =

[
A1

1 A1
2 A1

3 A2
1 A2

2 A2
3 A3

1 A3
2 A3

3

]
, Aj

r =



arj11 arj12 arj13 arj14

arj21 arj22 arj23 arj24

arj31 arj32 arj33 arj34

arj41 arj42 arj43 arj44


.

3.4 Stationary Processes

In this section, the stationarity (weak stationarity) and strict stationarity of a matrix time

series process will be discussed. Studying stationary processes is fundamental and is an

important concept for analyzing a time series.
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Definition 3.4.1 (Weak Stationarity) A stochastic matrix process {Yt} is (weakly) station-

ary if it possesses finite first and second moments that are time invariant. In particular, a

K × S matrix time series Yt is stationary if, for all t and all h ∈ N (the natural numbers),

it satisfies

E[Yt] = υ < ∞, (3.39)

E[Yt+h ⊗YT
t ] = Ψ(h) < ∞; (3.40)

Ψ(h) will be called the lag function.

The condition given in Eq (3.39) means that, for all t, the mean matrix υ of the matrix

time series Yt is the same and finite, and the condition based on Eq (3.40) says that the

autocovariances of the matrix process are finite and only depend on the lag h but do not

depend on t. In the time series literature, the weakly stationary process is also referred to

as a covariance or second-order stationary process.

Note that, in contrast to an univariate stationary time series yt where we have γ(h) =

E[y(t+h)yt] = E[y(t−h)yt] = γ(−h), the same is not true for a matrix time series Yt where

now Ψ(h) ̸= Ψ(−h). Instead, the precise correspondence between Ψ(h) and Ψ(−h) can be

derived by replacing t in Eq (3.40) with t− h, i.e.,

Ψ(h) = E[Y(t−h)+h ⊗YT
t−h] = E[Yt ⊗YT

t−h]. (3.41)

Taking the transpose of both sides of (3.41) leads to

ΨT (h) = E[YT
t ⊗Yt−h]. (3.42)

Furthermore, it can be shown that (see Brewer, 1978)

(YT
t ⊗Yt−h) = T(Yt−h ⊗YT

t )T (3.43)
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where T is the transformation matrix defined in Eqs (3.6) and (3.7). Then, by taking the

expectation on both sides of (3.43), and using Eqs (3.40)-(3.42), we have

ΨT (h) = E[YT
t ⊗Yt−h] = TE[Yt−h ⊗YT

t ]T = TΨ(−h)T. (3.44)

Therefore, the precise relationship between the lag functions Ψ(h) and Ψ(−h) is given by

ΨT (h) = TΨ(−h)T. (3.45)

Definition 3.4.2 (Strict Stationarity) A stochastic matrix process {Yt} is strictly station-

ary if for given t1, t2, . . . , tn, the probability distributions of the random matrices Yt1, Yt2,

. . ., Ytn and Yt1+h, Yt2+h, . . ., Ytn+h are time invariant for all n and h. That is,

(Yt1 ,Yt2 , . . . ,Ytn)
D≡ (Yt1+h,Yt2+h, . . . ,Ytn+h) (3.46)

where
D≡ means “equal in distribution”.

The definition of strict stationarity means that all moments of a matrix time series are the

same along the process. Note that strict stationarity implies weak stationarity as long as the

first and second moments of the process exist. In contrast, in general weak stationarity does

not imply strict stationarity. However, if the matrix time series Yt is a Gaussian process,

with the consequence that the probability distributions of Yt for all t, follow the matrix

normal distribution, then weak stationarity implies strict stationarity.

If a matrix process is (weak) stationary, then one consequence is that the matrix white

noise εt elements eventually have to die out. The following proposition gives a condition for

stationarity of the MAR(1) model.

Proposition 3.4.1 (Stationarity Condition) A MAR(1) process is stationary if all eigen-

values of the coefficient matrix B have modulus less than one.
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In the time series literature, the stationary condition refers to the stability condition. The

condition in Proposition 3.4.1 is equivalent to the condition that: if all roots of the polynomial

Π(x) = |IKS −Bx| lie outside of the unit circle, these conditions holds (see Lütkepohl, 2006,

or Hamilton, 1994). That is, for |x| ≤ 1,

|IKS −Bx| ̸= 0. (3.47)

3.4.1 Simulation Study

In this section, we will compare stationary and nonstationary MAR(1) models by simulating

a MAR(1) process. To simulate a MAR(1) process, first we assume that the matrix white

noise εt follows a matrix normal distribution.

The K × S random matrix ε is said to have a matrix normal distribution with mean

matrix M, row (within) covariance matrix Σ with dimension K ×K, and column (between)

covariance matrix Ω with dimension S × S, if V ec(ε) has a multivariate (vector) normal

distribution with mean V ec(M) and covariance matrix Ω⊗Σ (Gupta and Nagar, 2000).

Note that, according to the definition of the matrix white noise in section 3.3, the matrix

white noise εt of Eq (3.23) has to have mean zero. To simulate a matrix normal distribution

ε with mean zero (M = 0), and row and column covariance matrices Σ and Ω, respectively,

let

ε = Σ
1
2ZΩ

1
2 (3.48)

where Z is a K × S matrix of independent standard normal distributions. Then, it is easy

to see that the expectation of ε in Eq (3.48) is zero. Moreover, by taking V ec on both sides

of Eq (3.48), and applying the V ec operator’s rule V ec(ABC) = (CT ⊗ A)V ec(B), we have

V ec(ε) = (Ω
1
2 ⊗Σ

1
2 )V ec(Z). (3.49)
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We know that any linear combination of independent normal random variables is normal.

Since Z is a matrix of independent standard normals, V ec(ε) in Eq (3.49) is normal. Hence,

we just need to find the mean and variance of V ec(ε). Obviously, the mean is zero, i.e.,

E[V ec(ε)] = 0. To obtain the variance, taking the variance on both sides of Eq (3.49) leads

to

V ar(V ec(ε)) = (Ω
1
2 ⊗Σ

1
2 )V ar(V ec(Z))(Ω

1
2 ⊗Σ

1
2 )T

= (Ω
1
2 ⊗Σ

1
2 )I(Ω

1
2 ⊗Σ

1
2 )T . (3.50)

Now, by using the Kronecker product rule (A⊗B)(C ⊗D) = (AC ⊗BD) in Eq (3.50), the

variance of the V ec of the random matrix ε is given by

V ar(V ec(ε)) = (Ω⊗Σ). (3.51)

Therefore, by the definition of a matrix normal distribution, ε in Eq (3.48) has a matrix

normal distribution with mean zero and variance-covariance Ω⊗Σ.

Hence, to generate a matrix normal distribution, first, we can generate a K × S matrix

of independent standard normal distribution Z; then, the simulated matrix normal ε will be

obtained by using Eq (3.48).

Eventually, a MAR(1) process can be simulated by using the MAR(1) in Eqs (3.23) or

(3.27).

Example 3.4.1 Figure 3.1 shows a stationary 3× 2 matrix time series. It can be seen that

the mean and variance of the series are constant over the time, and the series fluctuate

around the mean with a constant variation.

Example 3.4.2 Figure 3.2 shows a nonstationary 3 × 2 matrix time series. Note that, all

four graphs in Figure 3.2 are for the same MAR(1) model but they are plotted for different
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Figure 3.1: A Stationary MAR(1) model

lengths of time to see how they are exploding when increasing their length (time). The left-

upper graph has length ten, the right-upper graph has length twenty, the left-lower plot has

length eighty, and the right-lower plot has length two hundred. Therefore, in contrast to

the stationary matrix series in Figure 3.1, Figure 3.2 shows that the series of nonstationary

matrix time series are exploding over time.

In the sequel, we assume that the matrix time series Yt is a stationary process. The

computer codes are in Appendix A.
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Figure 3.2: A Nonstationary MAR(1) model with different length (Time)

3.5 The Moving Average Representation of MAR(1)

The model defined in Eq (3.27) is a recursive representation of a MAR(1) model. There

is an alternative representation based upon Wold’s decomposition theorem (Wold, 1938),

which states that every weakly stationary stochastic process with no deterministic component

can be written as a linear combination of uncorrelated random variables. Therefore, any

stationary autoregressive process can be represented as an infinite order moving average

process (MA(∞)). In particular, the MAR(1) model can be written as the (infinite) sum

of independent random matrices εt, t = 1, 2, . . . ,∞. The moving average representation is

useful for many purposes, such as finding the autocovariance functions in section 6 below.

In this section, we use the recursive property of an autoregressive model of Yt in Eq
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(3.27) to find its moving average representation. To this end, we will find the moving average

representation of Yt in three steps. First of all, without loss of generality, we assume that

the mean of the matrix time series Yt is zero (µ = 0).

• First Step: By using the recursive property of a matrix time series Yt as in Eq (3.27),

the first step can be started with f(Yt−1). Since we are assuming the matrix time series

Yt has mean zero, Yt in Eq (3.27) can be written as

Yt = Af(Yt−1) + εt. (3.52)

With this definition of Yt, the function f(Yt−1) can be extended as

f(Yt−1) = f(Af(Yt−2) + εt−1)

= f(Af [Af(Yt−3) + εt−2] + εt−1)

= . . .

Now, we can simplify this recursive equation according to the definition of f(Yt−1) in

Eq (3.29). In other words, f(Yt−1) can be broken down as

f(Yt−1) =



Yt−1E11

Yt−1E21

.

.

.

Yt−1ES1

Yt−1E12

Yt−1E22

.

.

.

Yt−1ES2

.

.

.

Yt−1Erj

.

.

.

Yt−1E1S

Yt−1E2S

. . .

Yt−1ESS



=



(Af(Yt−2) + εt−1)E11

(Af(Yt−2) + εt−1)E21

.

.

.

(Af(Yt−2) + εt−1)ES1

(Af(Yt−2) + εt−1)E12

(Af(Yt−2) + εt−1)E22

.

.

.

(Af(Yt−2) + εt−1)ES2

.

.

.

(Af(Yt−2) + εt−1)Erj

.

.

.

(Af(Yt−2) + εt−1)E1S

(Af(Yt−2) + εt−1)E2S

.

.

.

(Af(Yt−2) + εt−1)ESS



. (3.53)
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Also, note that from Eq (3.27), we have

Af(Yt−2) =
S∑

j=1

S∑
r=1

Aj
rYt−2Erj. (3.54)

Hence, we can simplify f(Yt−1) by substituting this Eq (3.54) into each entry of the

first term of the right hand side of Eq (3.53). Before that, we need to use two subscripts

that are different from r and j to be able to distinguish between f(Yt−1) andAf(Yt−2).

To this end, we consider l and m to be the same as r and j, respectively, in Eq (3.53)

for f(Yt−1). I.e., in Eq (3.53) the (r, j) subscripts became (l,m), (r, j) ≡ (l,m) =

1, 2, . . . , S. With respect to this convention, and by substituting Eq (3.54) into Eq

(3.53), we have

f(Yt−1) =



(
S∑

j=1

S∑
r=1

Aj
rYt−2Erj)E11

(
S∑

j=1

S∑
r=1

Aj
rYt−2Erj)E21

...

(
S∑

j=1

S∑
r=1

Aj
rYt−2Erj)ES1

(
S∑

j=1

S∑
r=1

Aj
rYt−2Erj)E12

(
S∑

j=1

S∑
r=1

Aj
rYt−2Erj)E22

...

(
S∑

j=1

S∑
r=1

Aj
rYt−2Erj)ES2

...

(
S∑

j=1

S∑
r=1

Aj
rYt−2Erj)Elm

...

(
S∑

j=1

S∑
r=1

Aj
rYt−2Erj)E1S

(
S∑

j=1

S∑
r=1

Aj
rYt−2Erj)E2S

...

(
S∑

j=1

S∑
r=1

Aj
rYt−2Erj)ESS



+



εt−1E11

εt−1E21

...

εt−1ES1

εt−1E12

εt−1E22

...

εt−1ES2

...

εt−1Elm

...

εt−1E1S

εt−1E2S

...

εt−1ESS



. (3.55)
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We can simplify f(Yt−1) further since we can show from the definition of Erj (see Eq

(3.22)) that

ErjElm =

 Erm, if j = l,

0, otherwise.
(3.56)

Therefore, for any m over all l = 1, 2, . . . , S, we have

(
S∑

j=1

S∑
r=1

Aj
rYt−2Erj)Elm =

S∑
r=1

Aj
rYt−2Erm, if j = l. (3.57)

Without loss of generality, we can assume that l and m are r and j, respectively, the

same as they were before in Eq (3.53). Hence, Eq (3.57) can be rewritten as

(
S∑

j=1

S∑
r=1

Aj
rYt−2Erj)Elm =

S∑
r=1

Aj
rYt−2Erj, if j = l. (3.58)

Now, let us consider fj(Yt−1), the j
th entry of the matrix function f(Yt−1), defined in

Eq (3.30). By applying Eq (3.53) and Eq (3.55), and substituting Eq (3.57) into all

entries of fj(Yt−1), we have

fj(Yt−1) =



(Af(Yt−2) + εt−1)E1j

(Af(Yt−2) + εt−1)E2j

...

(Af(Yt−2) + εt−1)ESj


+



εt−1E1j

εt−1E2j

...

εt−1ESj



=



S∑
r=1

A1
rYt−2Erj

S∑
r=1

A2
rYt−2Erj

...
S∑

r=1
AS

rYt−2Erj


+



εt−1E1j

εt−1E2j

...

εt−1ESj


. (3.59)
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Furthermore, note that, for simplicity and also in order to be able to find a model that

is compatible with the classical linear model, the right side of Eq (3.58) can be written

as
S∑

r=1

Aj
rYt−2Erj = A†

jfm(Yt−2), j = 1, 2, . . . , S, (3.60)

where A†
j is defined in Eq (3.32). Now, we can substitute Eq (3.60) into the entities

of the fj(Yt−1) in Eq (3.59). This leads to

fj(Yt−1) =



A†
1fj(Yt−2)

A†
2fj(Yt−2)

...

A†
Sfj(Yt−2)


+



εt−1E1j

εt−1E2j

...

εt−1ESj



=



A†
1

A†
2

...

A†
S


fj(Yt−2) + fj(εt−1). (3.61)

Therefore, fj(Yt−1) can be written as

fj(Yt−1) = Bfj(Yt−2) + fj(εt−1) (3.62)

where B is given in Eq (3.37).

Eventually, by applying Eq (3.61) to the entities of the function f(Yt−1) defined in Eq

(3.29), we have
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f(Yt−1) =



f1(Yt−1)

f2(Yt−1)

...

fj(Yt−1)

...

fS(Yt−1)


=



Bf1(Yt−2) + f1(εt−1)

Bf2(Yt−2) + f2(εt−1)

...

Bfj(Yt−2) + fj(εt−1)

...

BfS(Yt−2) + fS(εt−1)



=



B 0 0 · · · 0

0 B 0 · · · 0

...
. . .

0 0 0 · · · B





f1(Yt−2)

f2(Yt−2)

...

fj(Yt−2)

...

fS(Yt−2)


+



f1(εt−1)

f2(εt−1)

...

fj(εt−1)

...

fS(εt−1)


= (IS ⊗B) f(Yt−2) + f(εt−1).

Therefore, f(Yt−1) can be written as the summation of a recursive function f(Yt−2)

and the error function f(εt−1) as follows

f(Yt−1) = (IS ⊗B) f(Yt−2) + f(εt−1). (3.63)

• Second Step: Now, we can substitute f(Yt−1) of Eq (3.63) into Eq (3.52). This leads

to

Yt = Af(Yt−1) + εt

= A(IS ⊗B)f(Yt−2) +Af(εt−1) + εt, t = 0,±1,±2, . . . (3.64)

47



• Third Step: Finally, with this new Eq (3.64) for Yt and utilizing the recursive prop-

erty of f(Yt−1) in Eq (3.63), we can find the moving average representation of MAR(1)

as

Yt = Af(Yt−1) + εt

= A(IS ⊗B)f(Yt−2) +Af(εt−1) + εt

= A(IS ⊗B)[IS ⊗ (B)f(Yt−3) + f(εt−2)] +Af(εt−1) + εt

= A(IS ⊗B)2f(Yt−3) +A(IS ⊗B)f(εt−2) +Af(εt−1) + εt

= A(IS ⊗B)3f(Yt−4) +A(IS ⊗B)2f(εt−3) +A(IS ⊗B)f(εt−2) +Af(εt−1) + εt

...

=
∞∑
n=0

A(IS ⊗B)nf(εt−n−1) + εt.

For the sake of brevity and convenience in notation, hereinafter the identity matrix I

without any index will be referred to as the identity matrix IS, while the dimension of other

identity matrices will be specified with an index. Also note that, according to properties of

the Kronecker product for given matrices A and B with appropriate dimension, we have

(A⊗B)n = An ⊗Bn. (3.65)

Therefore, we can represent the moving average form of the model MAR(1) with mean zero

defined in Eq (3.52) by

Yt =
∞∑
n=0

A(I⊗Bn)f(εt−n−1) + εt (3.66)

where for n = 0, A(I⊗Bn) = A.
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3.6 The Autocovariance and Autocorrelation Functions

of the MAR(1)

The concepts of autocovariance and autocorrelation functions are fundamental for analyzing

stationary time series models. These functions provide a measure of the degree of depen-

dencies between the values of a time series at different time steps. They are useful for

determining an appropriate ARMA model.

In this section, we introduce autocovariance and autocorrelation functions for the matrix

time series Yt. First, like the process of defining the variance-covariance of matrix white

noise εt in section 3.2.2, we will find the expectation of Yt⊗YT
t where the series Yt follows a

matrix autoregressive model of order one. This expectation will be the main term of the au-

tocovariance function of the MAR(1) model. Then, the definition of the variance-covariance

of white noise matrix εt in Eq (3.5) will be used to calculate the variance-covariance of Yt,

i.e., the transformation matrix T defined in Eq (3.6) will be premultiplied to E[Yt ⊗YT
t ] to

obtain the autocovariance function of the MAR(1) process. The symbol Ψ(h) will be used

for the expectation of the Kronecker product Yt+h to YT
t , i.e., Ψ(h) = E[Yt+h ⊗YT

t ], and

it will be called the lag function at lag h. We will use the symbol Γ(h) for representing the

autocovariance function of the MAR models at lag h. Eventually, similarly to Eq (3.5), the

relationship between the lag function Ψ(h) and the autocovariance function of MAR models

at lag h, Γ(h), is given by

Γ(h) = TΨ(h). (3.67)

In section 3.6.1 the autocovariance function of the MAR(1) model at lag zero (variance-

covariance of MAR(1)) will be derived. Later, in section 3.6.2, we will define an appropriate

vector ej, such that Ytej = Y.jt, in order to obtain autocovariance and autocorrelation

functions for the vector time series Y.jt and cross-autocovariance and cross-autocorrelation

functions of vectors Y.jt, Y.j′t, j ̸= j′ where for given (j, j′), the elements of the cross-

autocorrelation matrix function are
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ρii′(h) =
γii′(h)√

γii(0)γi′i′(0)
(3.68)

where γii′(h), i, i
′ = 1, 2, . . . , K, are the elements of the block matrix elements of ΓT

jj(h)

of Γ(h) in Eq (3.67). The column vector Y.jt of the matrix time series Yt is called the

marginal vector of matrix time series models. Finally, in section 3.6.3, we will calculate the

autocovariance and autocorrelation functions at lag h > 0 of a matrix time series MAR(1).

Moreover, in section 3.6.3, the autocovariance function at lag h > 0 for the marginal vectors

of a MAR(1) will be derived.

To obtain the autocovariance functions for any time series model, it is much easier to use

the moving average representation of an autoregressive process rather than use the autore-

gressive process directly. Recall from section 3.5 that the moving average representation of

a MAR(1) model is given by

Yt =
∞∑
n=0

ADnf(εt−n−1) + εt (3.69)

where D = (I ⊗ B). Also, recall from Eqs (3.28), (3.37), and (3.29) that A, D, and f(εt)

are matrices with dimension K ×KS2, KS2 ×KS2, and KS2 ×S, respectively. We will use

the same idea and definition that we used for defining the variance-covaraince εt in Eq (3.5)

for finding (defining) the variance-covariance of a MAR(1) model and later for obtaining the

autocovariance functions of a matrix time series Yt. To this end, first we need to determine

the expectation of the Kronecker product Yt ⊗ YT
t . This will introduce the Kronecker

product of the term ADnf(εt) of Eq (3.69), i.e.,

(
ADnf(εt)

)
⊗
(
ADnf(εt)

)T
. (3.70)
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The expectation of this quantity needs to be determined. The following proposition is

useful for simplifying and calculating these expectation values.

Proposition 3.6.1 Let A, B and X be matrices of size p×q, q×n, and n×m, respectively.

Then, we have

(ABX)⊗ (ABX)T = (ABX)⊗ (XTBTAT ) = (AB⊗ Im)(X⊗XT )(Im ⊗BTAT ). (3.71)

Proof: By twice applying the Kronecker product rule (A⊗B)(C⊗D) = AC⊗BD in the

right-hand side of Eq (3.71), we obtain the left-hand side term of Eq (3.71).

3.6.1 Variance-covariance of matrix time series Yt

We first obtain the expectation of the Kronecker product Yt ⊗YT
t . Then, this expectation

will be used to find the variance-covariance matrix (autocovariance function at lag zero) of

the matrix time series Yt. To this end, first consider the matrices A, Dn, and the matrix

function f(εt) in Eq (3.70); these correspond to the matrices A, B, and X, respectively, of

Proposition (3.6.1), with dimensions p = K, q = n = KS2, and m = S. Then, by applying

Proposition (3.6.1), the Kronecker product (ADnf(εt))⊗ (ADnf(εt))
T can be written as

(
ADnf(εt)

)
⊗
(
ADnf(εt)

)T
= [ADn ⊗ IS][f(εt)⊗ fT (εt)][IS ⊗DnTAT ]. (3.72)

Let us take the autocovariance function at lag zero, i.e., Ψ(0). Recall from Eq (3.4), that

we used the symbol Ψε for the variance-covariance of the stationary matrix process εt of

MAR models. Note that according to the white noise definition, the error matrices εt’s are

uncorrelated. Therefore, the expectation of the Kronecker product Yt ⊗YT
t , Ψ(0), given in

Eq (3.69), can be written as follows
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Ψ(0) = E(Yt ⊗YT
t )

= E

([ ∞∑
n=0

A(I⊗Bn)f(εt−n−1)
]
⊗
[ ∞∑
m=0

fT (εt−m−1)(I⊗Bn)TAT
])

+ E(εt ⊗ εTt )

=
∞∑
n=0

E

([
A(I⊗Bn)f(εt−n−1)

]
⊗
[
fT (εt−n−1)(I⊗BnT )AT

])
+ E(εt ⊗ εTt ). (3.73)

Now, by using Eq (3.72) and Eq (3.4), and using the fact that of all the matrices in Eq

(3.73), only the matrix function f(εt) is random, Ψ(0) in Eq (3.73) can be rewritten as

Ψ(0) =
∞∑
n=0

E

([
A(I⊗Bn)⊗ I

] [
f(εt−n−1)⊗ fT (εt−n−1)

] [
I⊗ (I⊗BnT )AT

])
+Ψε

=
∞∑
n=0

[
A(I⊗Bn)⊗ I

]
E
[
f(εt−n−1)⊗ fT (εt−n−1)

] [
I⊗ (I⊗BnT )AT

]
+Ψε. (3.74)

Therefore, we need to determine the expectation of the Kronecker product of the matrix

function f(εt) of its transpose, E
[
f(εt−n−1) ⊗ fT (εt−n−1)

]
. To this end, first note that

according to Eq (3.29), we have

f(εt)⊗ fT (εt) =



f1(εt)

f2(εt)

...

fj(εt)

...

fS(εt)


⊗
[
fT
1 (εt) fT

2 (εt) · · · fT
j (εt) · · · fT

S (εt)

]
. (3.75)
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With respect to the definition of the Kronecker product, this can be written as

f(εt)⊗ fT (εt) =



f1(εt)

f2(εt)

...

fj(εt)

...

fS(εt)


⊗ fT (εt) =



f1(εt)⊗ fT (εt)

f2(εt)⊗ fT (εt)

...

fj(εt)⊗ fT (εt)

...

fS(εt)⊗ fT (εt)


KS3×KS3

. (3.76)

By substituting Eq (3.30) into each jth term fj(εt) of the right hand side of Eq (3.75),

j = 1, 2, . . . , S, and then taking the Kronecker product, we have

f(εt)⊗ fT (εt) =



[V ec(εt),0,0, . . . ,0]⊗ fT (εt)

[0, V ec(εt),0, . . . ,0]⊗ fT (εt)

...

[0,0, . . . ,0, V ec(εt)]⊗ fT (εt)


=



V ec(εt)⊗ fT (εt),0,0, . . . ,0

0, V ec(εt)⊗ fT (εt),0, . . . ,0

...

0,0, . . . ,0, V ec(εt)⊗ fT (εt)


.

(3.77)

Then, by using Eq (3.31) for f(εt), the expectation value of the jth term of the matrix

f(εt)⊗ fT (εt) given in Eq (3.77) can be obtained as follows, for j = 1, 2, . . . , S,

E[fj(εt)⊗ fT (εt)] = E
[
0, . . . ,0, V ec(εt)⊗ fT (εt),0, . . . ,0

]

= E


j−1︷ ︸︸ ︷

0, . . . ,0, V ec(εt)⊗



V ecT (εt),0,0, . . . ,0

0, V ecT (εt),0, . . . ,0

...

0,0, . . . ,0, V ecT (εt)


,

S−j︷ ︸︸ ︷
0, . . . ,0


;

(3.78)
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from Eq (3.12), we have E[V ec(εt)V ec(εt)
T ] = Σ∗, so

E[fj(εt)⊗ fT (εt)] =


0, . . . ,0,T∗−1



Σ∗ 0 0 · · · 0

0 Σ∗ 0 · · · 0

...
. . .

0 0 0 · · · Σ∗


,0, . . . ,0


=

 j−1︷ ︸︸ ︷
0, . . . ,0,T∗−1(I⊗Σ∗),

S−j︷ ︸︸ ︷
0, . . . ,0

 = eTj ⊗T∗−1(I⊗Σ∗) (3.79)

where Σ∗ is the covariance matrix, and the transformation matrix T∗ is defined as was the

transformation matrix T in Eq (3.6), except that now instead of index K the index is KS.

That is,

T∗
(KS2×KS2) = T(KS)S×(KS)S = (tij) =



1, if


i = l(KS) + 1, l(KS) + 2, . . . , (l + 1)(KS),

j = (l + 1) + (i− l(KS)− 1)S,

l = 0, 1, 2, . . . , (S − 1);

0, otherwise.

(3.80)

Analogously to the equivalent formula for the transformation matrix T defined in Eq (3.7),

the transformation matrix T∗ given in Eq (3.80) can be written as the following equivalent

form

T∗
(KS2×KS2) =

KS∑
i=1

S∑
j=1

ES×KS
ji ⊗ EKS×S

ij . (3.81)

Therefore, taking expectations on both sides of Eq (3.77), and using the results of Eq (3.78)

for all j = 1, 2, . . . , S, we obtain
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E[f(εt)⊗ fT (εt)] =



E[V ec(εt)⊗ fT (εt)],0,0, . . . ,0

0, E[V ec(εt)⊗ fT (εt)],0, . . . ,0

...
. . .

...

0,0, . . . ,0, E[V ec(εt)⊗ fT (εt)]



=



T∗−1(I⊗Σ∗),0,0, . . . ,0

0,T∗−1(I⊗Σ∗),0, . . . ,0

...
. . .

...

0,0, . . . ,0,T∗−1(I⊗Σ∗)


. (3.82)

Hence, the expectation value of the Kronecker product f(εt)⊗ fT (εt) is given by

E[f(εt)⊗ fT (εt)] = I⊗T∗−1(I⊗Σ∗). (3.83)

Finally, by substituting Eq (3.83) into Eq (3.74), Ψ(0) can be obtained as

Ψ(0) =
∞∑
n=0

[
A(I⊗Bn)⊗ I

]
E
[
f(εt−n−1)⊗ fT (εt−n−1)

] [
I⊗ (I⊗BnT )AT

]
+Ψε

=
∞∑
n=0

[
A(I⊗Bn)⊗ I

] [
I⊗T∗−1(I⊗Σ∗)

] [
I⊗ (I⊗BnT )AT

]
+Ψε

=
∞∑
n=0

[
A(I⊗Bn)⊗ I

] [
I⊗T∗−1(I⊗Σ∗)(I⊗BnT )AT

]
+Ψε

=
∞∑
n=0

[
A(I⊗Bn)⊗ I

] [
I⊗T∗−1(I⊗Σ∗BnT )AT

]
+Ψ

=
∞∑
n=0

[
ADn ⊗ I

] [
I⊗T∗−1(I⊗Σ∗BnT )AT

]
+Ψε.

Note that the two last equalities are obtained by using the Kronecker product rule (A⊗

B)(C ⊗D) = AC ⊗BD. Therefore, the lag function at lag zero for the MAR(1) model is
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Ψ(0) = E(Yt ⊗YT
t ) =

∞∑
n=0

[
ADn ⊗ I

] [
I⊗T∗−1(I⊗Σ∗BnT )AT

]
+Ψε. (3.84)

Let Γ(0) be the variance-covariance of the matrix time series Yt (or equivalently based on

Eq (3.67), Γ(0) is the autocovariance function at lag zero). Then, according to the definition

of the variance-covariance of a matrix variable given in Eq (3.5) (similarly to Eq (3.67) for

autocovariance function at lag zero), we have

Γ(0) = V ar(Yt) = TE(Yt ⊗YT
t ) = TΨ(0) (3.85)

where T and Ψ(0) are given in Eq (3.6) and Eq (3.84), respectively.

3.6.2 Marginal Vector Y.jt of Yt

Now, we can study the properties of each vector time series Y.jt, j = 1, 2, . . . , S, of the

matrix time series Yt separately. Furthermore, this study will help us to find the block

entries, Γjj′(0), j, j
′ = 1, 2, . . . , S, of the variance-covariance matrix Γ(0). First, note that

the time series vector Y.jt can be obtained from the matrix time series Yt by multiplying Yt

by an appropriate vector ej. That is,

Y.jt = Ytej, j = 1, 2, . . . , S, (3.86)

where ej = (

j−1︷ ︸︸ ︷
0, 0, . . . , 0, 1,

S−j︷ ︸︸ ︷
0, . . . , 0)T . Similarly to Eq (3.86), we can define other terms of

MAR(1) model of Eq (3.69) as

ε.jt = εtej, Vj(εt) = f(εt)ej, j = 1, 2, . . . , S, (3.87)
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where Vj is an S × 1 block matrix function, such that the jth block is the vector V ec(εt)

with dimension KS × 1 and the other blocks are zero. That is,

Vj(εt) =

[
j−1︷ ︸︸ ︷

0, . . . ,0, V ecT (εt),

S−j︷ ︸︸ ︷
0, . . . ,0

]T
. (3.88)

Note, Vj(εt) is the j
th column of the matrix function f(εt) defined in Eq (3.31), and therefore

has dimension KS2 × 1.

Therefore, according to the moving average representation of Yt in Eq (3.69), the moving

average representation of the vector time series Y.jt is given by

Y.jt =
∞∑
n=0

A(I⊗Bn)f(εt−n−1)ej + εtej

=
∞∑
n=0

A(I⊗Bn)Vj(εt−n−1) + ε.jt. (3.89)

Now, the moving average representation of the vector time series Y.jt in Eq (3.89) can

be used to determine the block entries, Γjj′(0), j, j
′ = 1, 2, . . . , S, of the variance-covariance

matrix Γ(0). The elements Γjj′(0), j, j
′ = 1, 2, . . . , S, are the variance-covariance matrices of

Yjj′(0), j, j
′ = 1, 2, . . . , S; that is,

ΓT
jj′(0) = Cov(Y.jt, Y.j′t), j, j′ = 1, 2, . . . , S. (3.90)

Note that there is the same analogous pattern between Γ∗(0) and Γ(0) as exists between Σ∗

and Σ in Eqs (3.13)-(3.15). That is, we have

Γ∗(0) = V ar(V ec(Yt)) = E[V ec(Yt)V ec(Yt)
T ] (3.91)

ΓT
jj′(0) = Γ∗

jj′(0), j, j′ = 1, 2, . . . , S. (3.92)
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From Eq (3.89) for Y.jt, and using the fact that the matrix white noise εt’s and therefore

the vector function Vj(εt)’s are uncorrelated random variables (white noise), the variance-

covariance matrix Γjj′(0) can be derived as follows. First, we write

ΓT
jj′(0) = Cov(Y.jt, Y.j′t) = E(Y.jtY

T
.j′t)

= E

(
[
∞∑
n=0

A(I⊗Bn)Vj(εt−n−1)][
∞∑

m=0

A(I⊗BmT )Vj′(εt−m−1)]
T

)
+ E[ε.jtε

T
.j′t]

=
∞∑
n=0

A(I⊗Bn) E[Vj(εt−n−1)Vj′
T (εt−n−1)](I⊗BnT )AT + E[ε.jtε

T
.j′t]. (3.93)

To derive the expectation E[Vj(εt)Vj′
T (εt)], first note that based on the definition of the

vector function Vj(.) in Eq (3.88), we have

Vj(εt)Vj′
T (εt) =



0 0 . . . 0

0 V ec(εt)V ecT (εt)
. . . 0

...
. . . 0

0 0 . . . 0


= Ejj′ ⊗ V ec(εt)V ecT (εt). (3.94)

Now, by taking the expectation on both sides of Eq (3.94) and using the result of Eq (3.12),

we have

E[Vj(εt)Vj′
T (εt)] = Ejj′ ⊗Σ∗. (3.95)

Moreover, from Eqs (3.12)-(3.15), we know that E[ε.jtε
T
.j′t] = Σ∗

jj′ . Therefore, by substituting

this and Eq (3.95) into Eq (3.93), ΓT
jj′(0) becomes

ΓT
jj′(0) =

∞∑
n=0

A(I⊗Bn) (Ejj′ ⊗Σ∗)(I⊗BnT )AT +Σ∗
jj′ ;

using the Kronecker product rule (A⊗B)(C ⊗D) = AC ⊗BD gives us
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ΓT
jj′(0) =

∞∑
n=0

A(Ejj′ ⊗BnΣ∗BnT )AT +Σ∗
jj′

=
∞∑
n=0

A†
j(B

nΣ∗BnT )A†
j′
T
+Σ∗

jj′ , j, j′ = 1, 2, · · · , S,

where A†
j and its relation with the coefficient matrix A are as given in Eq (3.32) and Eq

(3.33), and B is defined as in Eq (3.37). Therefore, the variance-covariance matrix of the jth

marginal vector Y.jt of the matrix time series Yt defined in Eq (3.88) is equal to

ΓT
jj′(0) =

∞∑
n=0

A†
j(B

nΣ∗BnT )A†
j′
T
+Σ∗

jj′ , j, j′ = 1, 2, · · · , S. (3.96)

Now, let us use the variance-covariance matrix of the vector time series Y.jt obtained in

Eq (3.96), Γjj′(0), to simplify and rewrite the variance-covariance matrix of the matrix time

series Yt, MAR(1), Γ(0), defined in Eq (3.85), with block entries. That is,

Γ(0) = (Γjj′(0)) = V ar(Yt) = TE(Yt ⊗Y′
t) =



Γ11(0) Γ12(0) . . . Γ1S(0)

Γ21(0) Γ22(0) . . . Γ2S(0)

...
. . .

...

ΓS1(0) ΓS2(0) . . . ΓSS(0)


. (3.97)

3.6.3 Autocovariance function at lag h > 0

In section 3.6.1, we found the variance-covariance matrix of the matrix time series Yt, Γ(0),

which is equivalent to the autocovariance matrix function at lag zero. In this section, the

autocovariance function of the matrix time series Yt at lag h > 0, Γ(h), will be derived.
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Like the derivation of the autocovariance function at lag zero, first the lag function Ψ(h)

will be obtained, and then the autocovariance function Γ(h) can be found according to the

Eq (3.67), Γ(h) = TΨ(h), similar to the derivation of the variance-covariance matrix Γ(0)

given in Eq (3.85).

First, note that the moving average representation of Yt in Eq (3.66) for Yt+h can be

broken down and rewritten as

Yt+h =
∞∑
n=0

A(I⊗Bn)f(εt+h−n−1) + εt+h

=
h−1∑
n=0

A(I⊗Bn)f(εt+h−n−1) +
∞∑
n=0

A(I⊗Bn+h)f(εt−n−1) + εt+h. (3.98)

Then, to derive the lag function Ψ(h) of Yt in Eq (3.98), we take

Ψ(h) = E(Yt+h ⊗YT
t )

= E

([ h−1∑
n=0

A(I⊗Bn)f(εt+h−n−1) +
∞∑
n=0

A(I⊗Bn+h)f(εt−n−1) + εt+h

]
⊗
[ ∞∑
m=0

A(I⊗Bm)f(εt−m−1) + εt
]T)

. (3.99)

Since the matrix white noise elements εt are uncorrelated (i.e., E[εt+h ⊗ εTt ] = 0, for h ̸= 0,

hence E[f(εt+h)⊗ fT (εt)] = 0; likewise, E[f(εt+h)⊗εTt ] = 0), Eq (3.99) can be simplified as

Ψ(h) =
∞∑
n=0

E([A(I⊗Bn+h)f(εt−n−1)]⊗ [fT (εt−n−1)(I⊗BnT )AT ]) (3.100)

+ E([A(I⊗Bh−1)f(εt)]⊗ [εTt ]).

Now, by applying Proposition (3.6.1) to both terms (ADn+hf(εt−n−1))⊗(fT (εt−n−1)D
nTAT )

and (ADh−1f(εt))⊗ εTt ( where Dn+h = I⊗Bn+h) in Eq (3.100), and by using the fact that

except for εt and f(εt), all matrices in Eq (3.100) are not random, Ψ(h) can be rewritten as
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Ψ(h) =
∞∑
n=0

E([A(I⊗Bn+h)⊗ I] [f(εt−n−1)⊗ fT (εt−n−1)] [I⊗ (I⊗BnT )AT ])

+ E([A(I⊗Bh−1)⊗ I][f(εt)⊗ εTt ])

=
∞∑
n=0

[A(I⊗Bn+h)⊗ I] E[f(εt−n−1)⊗ fT (εt−n−1)] [I⊗ (I⊗BnT )AT ]

+ [A(I⊗Bh−1)⊗ I] E[f(εt)⊗ εTt ]. (3.101)

We already know E[f(εt)⊗ fT (εt)] from Eq (3.83); and we need to derive the E[f(εt)⊗εTt ].

Toward this end, first note that according to Eq (3.29), we have

f(εt)⊗ εTt =



f1(εt)

f2(εt)

...

fj(εt)

...

fS(εt)


⊗ εTt =



f1(εt)⊗ εTt

f2(εt)⊗ εTt
...

fj(εt)⊗ εTt
...

fS(εt)⊗ εTt


. (3.102)

Now, substituting Eq (3.30) (for εt instead of Yt−1) into the jth element, j = 1, 2, . . . , S, of

Eq (3.102), we have

f(εt)⊗ εTt =



[V ec(εt), 0, 0, . . . , 0]⊗ εTt

[0, V ec(εt), 0, . . . , 0]⊗ εTt
...

[0, 0, . . . , 0, V ec(εt)]⊗ εTt


=



V ec(εt)⊗ εTt , 0, 0, . . . , 0

0, V ec(εt)⊗ εTt , 0, . . . , 0

...

0, 0, . . . , 0, V ec(εt)⊗ εTt


. (3.103)

Recall from Eq (3.4) that Ψε = E[εt ⊗ εTt ]; hence, it is easy to show that

E[V ec(εt)⊗ εTt ] = V ecbK(Ψε) (3.104)
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where Ψε is defined in Eq (3.4), and V ecbK(.) is defined in Eq (3.38) (for K instead of c).

That is,

V ecbK(Ψε) =



Ψε1

Ψε2
...

ΨεS


KS2×K

. (3.105)

We prove Eq (3.104) as follows. First, partition Ψε,KS×KS as (Ψε1,Ψε2, . . . ,ΨεS) such

that each Ψεj, j = 1, 2, . . . , S, is a matrix with dimension KS × K; likewise, partition εt

as (ε.1t, ε.2t, . . . , ε.St) such that each ε.jt, j = 1, 2, . . . , S, is a K-dimensional vector. Then,

from Eq (3.4), it is easy to show that E[ε.jt⊗εTt ] = Ψεj. Finally, the proof follows from the

definitions of V ec(.) and V ecbK(.) operators.

Eventually, by taking the expectation on both sides of Eq (3.103), and substituting from

Eq (3.104), we have

E[f(εt)⊗ εTt ] = I⊗ V ecbK(Ψε). (3.106)

Therefore, by substituting Eq (3.106) and Eq (3.83) into Eq (3.101), the lag function

Ψ(h) becomes

Ψ(h) =
∞∑
n=0

[A(I⊗Bn+h)⊗ I]
[
I⊗T∗−1(I⊗Σ∗)

]
[I⊗ (I⊗BnT )AT ]

+ [A(I⊗Bh−1)⊗ I][I⊗ V ecbK(Ψε)]

=
∞∑
n=0

[
ADn+h ⊗ I)

] [
I⊗T∗−1(I⊗Σ∗BnT )AT

]
+ [ADh−1 ⊗ I][I⊗ V ecbK(Ψε)].

(3.107)

Finally, the autocovariance function at lag h > 0 for the matrix time series Yt as defined

in Eq (3.67) is obtained by multiplying the transformation matrix T into the lag function

Ψ(h) as follows
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Γ(h) = (Γjj′(h)) = Cov(Yt+h,Y
T
t ) = TΨ(h). (3.108)

Similarly to the derivation of the autocovariance function, Γ(0), at lag h = 0 for the

MAR(1) model in section 3.6.2, finding the block entries Γjj′(h) of the autocovariance func-

tion at lag h > 0 will be helpful in simplifying the autocovariance function Γ(h) of the

MAR(1) model. In particular, it will be necessary to study the features of a specific marginal

vector time series Y.jt of the matrix time series Yt. To this end, first note that according to

the moving average representation of Y.jt in Eq (3.89), and with a similar process to derive

Ψ(h) in Eq (3.99) and in Eq (3.100), ΓT
jj′(h) can be written as

ΓT
jj′(h) = Cov(Y.jt+h, Y.j′t) = E(Y.jt+hY

T
.j′t)

= E

([ h−1∑
n=0

A(I⊗Bn)Vj(εt+h−n−1) +
∞∑
n=0

A(I⊗Bn+h)Vj′(εt−n−1) + ε.jt+h

]
[ ∞∑
m=0

A(I⊗Bm)Vj′(εt−m−1) + ε.j′t
]T)

=
∞∑
n=0

A(I⊗Bn+h) E[Vj(εt−n−1)Vj′
T (εt−n−1)](I⊗BnT )AT (3.109)

+A(I⊗Bh−1)E[Vj(εt)ε
T
.j′t].

We know E[Vj(εt)Vj′
T (εt)] from Eq (3.95). Furthermore, we need to determine E[Vj(εt)ε

T
.j′t].

Toward this end, first use the definition of the vector function Vj(εt) in Eq (3.88), and with

respect to the fact that Σ∗ = E[V ec(εt)V ec(εt)
T ] given in Eq (3.12), it is easy to show that

E
[
V ec(εt)ε

T
.jt

]
= Σ∗

j , j = 1, 2, . . . , S, (3.110)

where Σ∗
j , with dimension KS ×K, is the jth block column of the block covariance matrix

Σ∗. Then, from the definition of Vj(εt) in Eq (3.88), we have Vj(εt) = ej ⊗ V ec(εt); hence,

we have

63



E[Vj(εt)ε
T
.j′t] = ej ⊗Σ∗

j′ , j, j′ = 1, 2, . . . , S. (3.111)

Therefore, by substituting Eqs (3.95) and (3.111) into Eq (3.109), and using the Kronecker

product rule, we have

ΓT
jj′(h) =

∞∑
n=0

A(I⊗Bn+h) (Ejj′ ⊗Σ∗)(I⊗BnT )AT +A(I⊗Bh−1)(ej ⊗Σ∗
j′)

=
∞∑
n=0

A(Ejj′ ⊗Bn+hΣ∗BnT )AT +A(ej ⊗Bh−1Σ∗
j′)

=
∞∑
n=0

A†
j(B

n+hΣ∗BnT )A†
j′
T
+A†

jB
h−1Σ∗

j′ , j, j′ = 1, 2, · · · , S.

Therefore, for h > 0, we have

ΓT
jj′(h) =

∞∑
n=0

A†
j(B

n+hΣ∗BnT )A†
j′
T
+A†

jB
h−1Σ∗

j′ , j, j′ = 1, 2, · · · , S, (3.112)

where A†
j, B, and Σ∗

j are as given in Eqs (3.32), (3.12), and (3.110), respectively.

3.7 Matrix Autoregressive Process of order p (MAR(p))

3.7.1 The model

So far, a matrix autoregressive process of order one (MAR(1)) has been introduced, and

its autocovariance and autocorrelation functions have been found by applying the moving

average representation of the MAR(1). As we have seen, the moving average representation

has some advantages that help us to find the autocovariance and autocorrelation functions

of an autoregressive process easily. In this section, the matrix autoregressive process of order

p > 1 (MAR(p)) will be introduced. After introducing the MAR(p) model, a reparametriza-
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tion technique will be used to rewrite the MAR(p) as a MAR(1) model. Then, all results of

the MAR(1) model derived in the previous sections can be generalized to properties of the

MAR(p) model.

Let Yt be a matrix time series given in Eq (3.2). Then, the matrix autoregressive time

series Yt of order p is given by

Yt = A1f(Yt−1) +A2f(Yt−2) + . . .+Apf(Yt−p) + εt (3.113)

where Aν , ν = 1, 2, . . . , p, are the coefficient matrices with dimension K ×KS2 of different

lags (ν) that correspond to the coefficient matrix A given in Eq (3.28) for the MAR(1)

process of Eq (3.27) but now with p lags, and εt is the K × S matrix error term process.

Furthermore, the matrix functions f(Yt−ν), ν = 1, 2, . . . , p, are the same as for the matrix

function f(Yt) in the first order matrix autoregressive process of Eq (3.29) according to

f(Yt−ν) =



f1(Yt−ν)

f2(Yt−ν)

...

fj(Yt−ν)

...

fS(Yt−ν)


, fj(Yt−ν) =



Yt−νE1j

Yt−νE2j

...

Yt−νESj


,

r, j = 1, 2, . . . , S,

ν = 1, 2, . . . , p;

likewise, Aν with elements (Aj
r)ν , r, j = 1, 2, . . . , S, ν = 1, 2, . . . , p, is defined analogously to

Aj
r of Eq (3.21). In order to be able to represent and to rewrite the matrix autoregressive

model of order p > 1 into a matrix autoregressive model of order one, we need to reparame-

terize the terms of the model given in Eq (3.113). To do this reparametrization, let us define

new variables and parameters as follows
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Xt =



Yt

Yt−1

...

Yt−p+1


, C(Yt−1) =



f(Yt−1)

f(Yt−2)

...

f(Yt−p)


, ut =



εt

0

...

0


, (3.114)

Ap×p =



A1 A2 . . . Ap−1 Ap

J 0 . . . 0 0

0 J . . . 0 0

...
...

. . .
...

...

0 0 . . . J 0


. (3.115)

Remember that both Yt’s and εt’s are matrices with dimension K × S. Therefore,

the dimension of both Xt and ut is Kp × S. Also, f(Yt) is a matrix with dimension

KS2 × S. Hence, C(Yt−1) is a matrix with dimension KS2p × S. Furthermore, Ap×p is

a block matrix that consists of p2 matrices each of dimension K × KS2. The coefficient

matrices Aν , ν = 1, 2, . . . , p, in the first row of the block matrix Ap×p are the same as the

coefficient matrices of the MAR(p) model given in Eq (3.113). We define a matrix J, like

Aν ’s, as a K×KS2 matrix that has S identity matrices IK and S(S− 1) matrices zero with

dimension K ×K in the following order

JK×KS2 = [IK ,

S︷ ︸︸ ︷
0, . . . ,0, IK ,

S︷ ︸︸ ︷
0, . . . ,0, IK ,0, . . . , IK ]. (3.116)
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This J matrix has matrix elements J1j, j = 1, 2, . . . , S2, which can be written as

J1j =



J1j = IK , if

 j = rS + r + 1,

r = 0, 1, . . . , (S − 1);

0, otherwise.

(3.117)

Note, by defining the block matrix J in this way, we have Jf(Yt−ν) = Yt−ν . Now, with

respect to the new variables and parameters in Eq (3.114) and Eq (3.115), the matrix au-

toregressive model of order p in Eq (3.113) can be rewritten as a matrix autoregressive model

of order one that is given by

Xt = AC(Yt−1) + ut. (3.118)

Thus, all results of the MAR(1) model can be generalized to the MAR(p) model by using

the reparameterized model given in Eq (3.118). Therefore, to do this, we first obtain the

moving average representation in section 3.7.2, and the autocovariance and autocorrelation

functions of the MAR(p) are derived in section 3.7.3.

3.7.2 Moving average representation of MAR(p)

In this section, a moving average representation of the matrix autoregressive process of order

p defined in Eq (3.113) will be derived. First, because any MAR(p) process can be rewritten

in the MAR(1) form of Eq (3.118), and secondly, by using the K ×Kp matrix J∗

J∗ = [IK ,

p−1︷ ︸︸ ︷
0, . . . ,0], (3.119)

the MAR(p) process Yt defined in Eq (3.113) can be found by Yt = J∗Xt, where Xt is the

new response variable defined in Eq (3.114).
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However, first we need to obtain the moving average representation of the stochastic

process Xt. Then, in the next section 3.7.3, we will use the moving average representation of

Xt to obtain its lag functions and corresponding covariance and correlation matrices. Toward

this end, first, by following the same process as was used in section 3.5 to obtain Eq (3.62),

it can be shown that for each fj(Yt−1), j = 1, 2, . . . , S, when Yt follows the MAR(p) model

given in Eq (3.113), we have

fj(Yt−1) = B1 fj(Yt−2) +B2 fj(Yt−3) + . . .+Bp fj(Yt−p−1) + fj(εt−1) (3.120)

where the KS ×KS matrices Bν , ν = 1, 2, . . . , p, have the same structure as has the matrix

B in Eq (3.37). That is,

Bν =



A†
ν1

A†
ν2

...

A†
νS


=



A1
ν1 A1

ν2 . . . A1
νS

A2
ν1 A2

ν2 . . . A2
νS

...
...

AS
ν1 AS

ν2 . . . AS
νS


, ν = 1, 2, . . . , p. (3.121)

Then, with respect to the relationship between the fj(Yt−1) and Yt in Eqs (3.29)-(3.31), it

is easy to show that

f(Yt−1) = (I⊗B1) f(Yt−2)+(I⊗B2) f(Yt−3)+ . . .+(I⊗Bp) f(Yt−p−1)+f(εt−1). (3.122)

Therefore, following the same idea for defining the autoregressive processXt in Eq (3.118)

which is a congruence equation of the matrix autoregressive process of order p, Yt, in Eq

(3.113), we can define the congruence equation of f(Yt−1) defined in Eq (3.122). To this

end, the matrix function C(Yt−1) given in Eq (3.114) can be written as follows
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C(Yt−1) =



f(Yt−1)

f(Yt−2)

...

f(Yt−p)


=



D1 D2 . . . Dp−1 Dp

IKS2 0 . . . 0 0

0 IKS2 . . . 0 0

...
...

. . .
...

...

0 0 . . . IKS2 0





f(Yt−2)

f(Yt−3)

...

f(Yt−p−1)


+



f(εt−1)

0

...

0


= Gp×pC(Yt−2) + f(ut−1) (3.123)

where Dν = I ⊗ Bν , ν = 1, 2, . . . , p. Hence, the matrix function C(Yt−1) has a recursive

property and its given by

C(Yt−1) = Gp×pC(Yt−2) + f(ut−1) (3.124)

where Gp×p is a p×p block matrix such that each block is a KS2×KS2 matrix, and f(ut−1)

is a p× 1 matrix function such that the first block is the KS2 × S matrix function f(εt−1)

and the other blocks are zero. That is,

Gp×p =



I⊗B1 I⊗B2 . . . I⊗Bp−1 I⊗Bp

IKS2 0 . . . 0 0

0 IKS2 . . . 0 0

...
...

. . .
...

...

0 0 . . . IKS2 0


, f(ut−1) =



f(εt−1)

0

...

0


. (3.125)

Now, by applying the recursive property of the matrix function C(Yt−1) of Eq (3.124)

to Eq (3.118), it can be shown that the moving average representation of Xt is given by the

following geometric sum of the past matrix error terms
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Xt =
∞∑
n=0

AGnf(ut−n−1) + ut (3.126)

where A and G are defined in Eq (3.115) and Eq (3.125), respectively. To verify Eq (3.126),

note that we can start with the MAR(1) model in Eq (3.118), and substitute the recursive

formula of C(Yt−1) in Eq (3.124) into Eq (3.118) as follows

Xt = AC(Yt−1) + ut

= A[GC(Yt−2) + f(ut−1)] + ut

= AGC(Yt−2) +Af(ut−1) + ut

= AG2C(Yt−3) +AGf(ut−2) +Af(ut−1) + ut

...

=
∞∑
n=0

AGnf(ut−n−1) + ut.

With this moving average representation of the MAR(p) model, we can now find the

autocovariance and autocorrelation functions of the MAR(p) model.

3.7.3 Autocovariance and autocorrelation functions of MAR(p)

In this section, the autocovariance and autocorrelation functions of a matrix autoregressive

process of order p will be derived. Since we have the moving average form of the matrix

autoregressive process of order p in Eq (3.126), it is easy to find the autocovariance functions

of a MAR(p) model following analogous arguments used in section 3.6 for the MAR(1)

process.

LetΨY(h) be the lag function of the MAR(p) model of Eq (3.113) at lag h, and letΨX(h)

represent the lag function of the MAR(1) process defined in Eq (3.118) at lag h. Therefore,

the stochastic process Xt can be used to obtain properties of the MAR(p) process Yt. That

is, the mean of the the MAR(p) model is
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E[Yt] = J∗E[Xt] (3.127)

and we can apply Proposition (3.6.1) to obtain the lag function at lag h of the MAR(p)

model from quantity Yt = J∗Xt. That is,

ΨY(h) = E[(J∗Xt)⊗ (J∗Xt)
T ] = (J∗ ⊗ I)E[Xt ⊗XT

t ](I⊗ J∗T )

= (J∗ ⊗ I)ΨX(h)(I⊗ J∗T ). (3.128)

After finding the lag function ΨY(h), the autocovariance function at lag h, ΓY(h), can be

found similarly to the derivation of Eq (3.67) by premultiplying the transformation matrix

T given in Eq (3.6) by the lag function. That is,

ΓY(h) = TΨY(h). (3.129)

3.7.3.1 Autocovariance function at lag zero

Similarly to the derivation of the autocovariance and autocorrelation functions for the matrix

autoregressive model of order one in section 3.6, we start with the variance-covariance of the

random process Xt which is also the autocovariance function at lag zero. To this end, first

let ΨX(0) be the expectation of the Kronecker product matrix autoregressive process Xt

into its transpose. That is,

ΨX(0) = E[Xt ⊗XT
t ]. (3.130)

Then, since Xt involves f(ut) (from Eq (3.126)) we need to find the expectation of

the Kronecker product f(ut) ⊗ fT (ut). First, note that in section 3.6, it was shown that

E[f(εt)⊗ fT (εt)] = I⊗T∗−1(I⊗Σ∗) ( see Eq (3.83)). From Eq (3.125), we have
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f(ut)⊗ fT (ut) =



f(εt)⊗ fT (εt) 0 . . . 0

0 0 . . . 0

...
. . . 0

0 0 . . . 0


= Ep

11 ⊗ f(εt)⊗ fT (εt) (3.131)

where Ep
11 is a p × p matrix where all of its entries are zero except the first entry. Indeed,

the matrix Ep
11 is defined analogously as the Eij’s in Eq (3.22), except that the Eij matrices

had dimension S × S whereas now Ep
11 has dimension p × p. Then, taking expectations on

both sides of Eq (3.131), we have

E[f(ut)⊗ fT (ut)] = Ep
11 ⊗ I⊗T∗−1(I⊗Σ∗). (3.132)

Furthermore, similarly to this process, and with respect to the definition of ut in Eq (3.114),

and noting that E[εt ⊗ εTt ] = Ψε (see Eq (3.4)), it can be shown that

Ψu = E(ut ⊗ uT
t ) =



Ψ 0 . . . 0

0 0 . . . 0

...
. . . 0

0 0 . . . 0


= Ep

11 ⊗Ψε. (3.133)

Now, substituting the moving average representation of the autoregressive process Xt

given in Eq (3.126), and using the fact that the random matrix error εt’s and therefore the

linear matrix function f(ut)’s are uncorrelated, we can show that the expectation of the

Kronecker product of the Xt, ΨX(0), of Eq (3.130) becomes
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ΨX(0) = E(Xt ⊗XT
t )

= E([
∞∑
n=0

AGnf(ut−n−1)]⊗ [
∞∑

m=0

AGmf(ut−m−1)]
T ) + E(ut ⊗ uT

t )

=
∞∑
n=0

E([AGnf(ut−n−1)]⊗ [fT (ut−n−1)G
nTAT ]) + E(ut ⊗ uT

t ). (3.134)

Then, by applying Proposition 3.6.1 and using the results of Eq (3.132) and Eq (3.133),

Eq (3.134) can be simplified as

ΨX(0) =
∞∑
n=0

[AGn ⊗ I] E[f(ut)⊗ fT (ut)][I⊗GnTAT ] + E(ut ⊗ uT
t )

=
∞∑
n=0

[AGn ⊗ I][Ep
11 ⊗ I⊗T∗−1(I⊗Σ∗)][I⊗GnTAT ] +Ψu. (3.135)

Then, by using Eq (3.128), we can find the lag function of the MAR(p) model defined in

Eq (3.113), ΨY(0). That is, we obtain

ΨY(0) = (J∗ ⊗ I)ΨX(0)(I⊗ J∗T ). (3.136)

Eventually, from Eq (3.129), we can find the autocovariance function of the MAR(p)

model at lag zero, ΓY(0), by premultiplying the ΨY(0) in Eq (3.136) by the transformation

matrix T as follows

ΓY(0) = TΨY(0). (3.137)

3.7.3.2 Marginal vector X.jt of Xt

In this section, we will study features of the jth marginal vector of a matrix time series Yt

of order p for j = 1, 2, . . . , S. This study is important both for finding the block entries of

the autocovariance matrix ΓX(0), and also for perusing and analyzing a single vector of the

MAR(p) model itself. First, note that similarly to the marginal vector Y.jt in Eq (3.86) for
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the MAR(1) process, the marginal vector X.jt of the MAR(p) process can be obtained from

the matrix process Xt by multiplying Xt and the vector ej, that is,

X.jt = Xtej, j = 1, 2, . . . , S. (3.138)

Let Γjj′,X(0) be the jj′th block entry of the autocovariance matrix ΓX(0). Based upon the

definition of the random process Xt in Eq (3.114), X.jt is a vector with dimension Kp given

by XT
.jt = (Y T

.jt, Y
T
.j(t−1), . . . , Y

T
.j(t−p+1)). Hence, the variance-covariance matrix Γjj′,X(0) has

dimension Kp×Kp. To calculate the variance-covariance matrix Γjj′,X(0), first we need to

find the moving average representation of the random vector X.jt. To this end, from the

moving average representation of the matrix process Xt in Eq (3.126) and its connection to

the vector X.jt in Eq (3.138), we have

X.jt = Xtej =
∞∑
n=0

AGnf(ut−n−1)ej + utej =
∞∑
n=0

AGnWj(ut−n−1) + u.jt (3.139)

where Wj(ut−n−1) is a vector function and u.jt is a vector of white noise, with dimension

KS2p and Kp, respectively; Wj(ut−n−1) contains elements Vj(εt−n−1) which are as defined

in Eq (3.88), that is,

Wj(ut−n−1) =



Vj(εt−n−1)

0

...

0


, u.jt =



ε.jt

0

...

0


. (3.140)

Therefore, by using the moving average representation of X.jt in Eq (3.139), and with respect

to the fact that the εt’s and hence the Wj(ut)’s are white noise, the autocovariance matrix

(at lag zero) Γjj′,X(0) can be written as
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ΓT
jj′,X(0) = Cov(X.jt, X.j′t) = E[X.jtX

T
.j′t]

= E
[( ∞∑

n=0

AGnWj(ut−n−1)
)( ∞∑

m=0

AGmWj′(ut−m−1)
)T]

+ E[u.jtu
T
.j′t]

=
∞∑
n=0

AGnE
[
Wj(ut−n−1)W

T
j′ (ut−n−1)

]
GnTAT + E[u.jtu

T
.j′t]. (3.141)

Recall from Eq (3.95) that we found E(Vj(εt)Vj′
T (εt)) = Ejj′ ⊗Σ∗; therefore, according to

the definition of the Wj(ut−n−1) in Eq (3.140), it is easy to show that

E
[
Wj(ut−n−1)W

T
j′ (ut−n−1)

]
= Ep

11 ⊗ Ejj′ ⊗Σ∗, (3.142)

and E[u.jtu
T
.j′t] = Ep

11 ⊗Σ∗
jj′ , where Ep

11 is similar to that used in Eq (3.133). Therefore, by

substituting E[u.jtu
T
.j′t] = Ep

11 ⊗Σ∗
jj′ and Eq (3.142) into Eq (3.141), and then by applying

the Kronecker product rule (A ⊗B)(C ⊗D) = AC ⊗BD, the variance-covariance matrix

Γjj′,X(0) can be simplified to, for j, j′ = 1, 2, . . . , S,

ΓT
jj′,X(0) =

∞∑
n=0

AGn(Ep
11 ⊗ Ejj′ ⊗Σ∗)GnTAT + Ep

11 ⊗Σ∗
jj′ . (3.143)

To obtain the block entries of the autocovariance function at lag zero of the matrix

autoregressive precess of order p, Γjj′,Y(0), defined in Eq (3.137), first note that Y.jt can be

found by premultiplying X.jt by the K ×Kp matrix J∗ defined in Eq (3.119), that is,

Y.jt = J∗X.jt. (3.144)

Therefore, based on Eq (3.144) and using the result in Eq (3.143) for Γjj′,X(0), we can derive

the autocovariance function Γjj′Y(0) as follows, for j, j
′ = 1, 2, . . . , S,
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ΓT
jj′,Y(0) = E[Y.jtY

T
.j′t] = J∗E[X.jtX

T
.j′t]J

∗T = J∗Γjj′,X(0)J
∗T

=
∞∑
n=0

J∗AGn(Ep
11 ⊗ Ejj′ ⊗Σ∗)GnTATJ∗T + J∗(Ep

11 ⊗Σ∗
jj′)J

∗T

=
∞∑
n=0

J∗AGn(Ep
11 ⊗ Ejj′ ⊗Σ∗)GnTATJ∗T +Σ∗

jj′ . (3.145)

3.7.3.3 Autocovariance function at lag h > 0

Let ΨX(h) be the lag function defined to be the expectation of the Kronecker product

Xt+h ⊗ XT
t . Similar to Eq (3.98) for the matrix time series Yt+h, the moving average

representation of the random process Xt+h defined in Eq (3.126) can be rewritten as

Xt+h =
∞∑
n=0

AGnf(ut+h−n−1) + ut+h

=
h−1∑
n=0

AGnf(ut+h−n−1) +
∞∑
n=0

AGn+hf(ut−n−1) + ut+h. (3.146)

From Eq (3.146), and using the fact that the matrix function f(ut)’s are a function of

matrix white noise εt and hence are uncorrelated, the lag function ΨX(h) can be written as

follows

ΨX(h) = E[Xt+h ⊗XT
t ]

= E
( h−1∑

n=0

AGnf(ut+h−n−1) +
∞∑
n=0

AGn+hf(ut−n−1) + ut+h

)
⊗
( ∞∑

m=0

AGmf(ut−m−1) + ut

)T
=

∞∑
n=0

E
(
[AGn+hf(ut−n−1)]⊗ [fT (ut−n−1)G

nTAT ]
)
+ E

(
[AGh−1f(ut)]⊗ [uT

t ]
)
.

(3.147)
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Now by applying Proposition 3.6.1, the lag function ΨX(h) in Eq (3.147) becomes

ΨX(h) =
∞∑
n=0

(AGn+h ⊗ I)E
(
f(ut−n−1)⊗ fT (ut−n−1)

)
(I⊗GnTAT )

+ (AGh−1 ⊗ I)E
(
f(ut)⊗ uT

t

)
. (3.148)

The expectation of the Kronecker product f(ut−n−1)⊗ fT (ut−n−1) was given in Eq (3.132).

According to the definition of f(ut) and ut in Eq (3.125) and Eq (3.114), respectively, and

with respect to Eq (3.106), it can be shown that

E
(
f(ut)⊗ ut

)
= ep1 ⊗ I⊗ V ecb(Ψε) (3.149)

where ep1 is a p-dimensional vector given by ep1 = (1, 0, . . . , 0)T , and V ecb(Ψε) is as defined in

Eq (3.105). Therefore, by substituting these results into Eq (3.148), ΨX(h) can be obtained

as

ΨX(h) =
∞∑
n=0

(AGn+h ⊗ I)
(
Ep

11 ⊗ I⊗T∗−1(I⊗Σ∗)
)
(I⊗GnTAT )

+ (AGh−1 ⊗ I)
(
ep1 ⊗ I⊗ V ecb(Ψε)

)
. (3.150)

Analogous to the derivation of the autocovariance function at lag zero in Eqs (3.136) and

(3.137), the autocovariance function of the MAR(p) model Yt at lag h > 0, ΓY(h), can be

obtained by finding the corresponding lag function ΨY(h), and then by premultiplying it by

the transformation matrix T. That is,

ΨY(h) = (J∗ ⊗ I)ΨX(h)(I⊗ J∗T ), ΓY(h) = TΨY(h). (3.151)

Block entries of this new autocovariance matrix ΓY(h) can be obtained in the same way as

for the autocovariance matrices Γ(0) and Γ(h) in sections 3.6.2 and 3.6.3.
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Similarly to the case of h = 0 in Section 3.7.3.2, we can derive the variance-covariance

matrix Γjj′,Y(h) for h > 0. Toward this end, first note that, from Eqs (3.138) and (3.146),

X.jt+h can be written as, for j, j′ = 1, 2, . . . , S,

X.jt+h = Xt+hej =
h−1∑
n=0

AGnf(ut+h−n−1)ej +
∞∑
n=0

AGn+hf(ut−n−1)ej + ut+hej

=
h−1∑
n=0

AGnWj(ut+h−n−1) +
∞∑
n=0

AGn+hWj(ut−n−1) + u.jt+h.(3.152)

By definition, the variance-autocovariance matrix (at lag h > 0), Γjj′,X(h), can be ob-

tained as

ΓT
jj′,X(h) = Cov(X.jt+h, X.j′t) = E[X.jt+hX

T
.j′t]

= E
[( h−1∑

n=0

AGnWj(ut+h−n−1) +
∞∑
n=0

AGn+hWj(ut−n−1)

+ u.jt+h)
)( ∞∑

m=0

AGmWj′(ut−m−1) + u.j′t

)T]
=

∞∑
n=0

AGn+hE
[
Wj(ut−n−1)W

T
j′ (ut−n−1)

]
GnTAT +AGh−1E[Wj(ut)u

T
.j′t].

(3.153)

From Eq (3.142), we know E
[
Wj(ut−n−1)W

T
j′ (ut−n−1)

]
, but we need to determine the

E[Wj(ut)u
T
.j′t]. To this end, first note that from Eq (3.140) Wj(ut) and u.j′t can be written

as

Wj(ut) = ep1 ⊗ Vj(εt), u.j′t = ep1 ⊗ ε.j′t. (3.154)

Hence, we have

Wj(ut)u
T
.j′t =

(
ep1 ⊗ Vj(εt)

)(
ep1 ⊗ ε.j′t

)T
= (ep1e

p
1
T ⊗ Vj(εt)ε

T
.j′t) = Ep

11 ⊗ Vj(εt)ε
T
.j′t (3.155)
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where Ep
11 is the same as in Eqs (3.131), (3.132), and (3.133). Now, by taking expectations

on both sides of Eq (3.155), and using the result of Eq (3.111), we obtain

E[Wj(ut)u
T
.j′t] = Ep

11 ⊗ ej ⊗Σ∗
j′ , j, j′ = 1, 2, . . . , S. (3.156)

By substituting Eqs (3.142) and (3.156) into Eq (3.153), the variance-covariance matrix

Γjj′,X(h) is obtained as

ΓT
jj′,X(h) =

∞∑
n=0

AGn+h
(
Ep

11 ⊗ Ejj′ ⊗Σ∗)GnTAT +AGh−1
(
Ep

11 ⊗ ej ⊗Σ∗
j′

)
. (3.157)

Eventually, by using the relationship between the vectors X.jt and Y.jt in Eq (3.144), the

variance-covariance function ΓT
jj′,Y(h) is derived as follows, for j, j′ = 1, 2, . . . , S,

ΓT
jj′,Y(h) = E[Y.jt+hY

T
.j′t] = J∗E[X.jt+hX

T
.j′t]J

∗T = J∗Γjj′,X(h)J
∗T

=
∞∑
n=0

J∗AGn+h(Ep
11 ⊗ Ejj′ ⊗Σ∗)GnTATJ∗T + J∗AGh−1

(
Ep

11 ⊗ ej ⊗Σ∗
j′

)
J∗T .

(3.158)

3.8 Matrix Autoregressive Process with Nonzero Mean

So far, we assumed that the matrix time series Yt, given in Eq (3.2), has mean zero; based on

this assumption, we introduced and explored the autoregressive process of the matrix time

series Yt. In practice, this assumption may not be satisfied and it is worth investigating

and analyzing models with nonzero mean. To this end, let µ be the intercept matrix of the

matrix time series Yt each with dimension K × S. Then, the matrix autoregressive process

of order one (MAR(1)) of the matrix time series Yt as first introduced in Eq (3.27) is
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Yt = µ+Af(Yt−1) + εt, µ =



µ11 µ12 . . . µ1S

µ21 µ22 . . . µ2S

...
. . .

...

µK1 µK2 . . . µKS


. (3.159)

Now we can find the moving average representation of the matrix time series with nonzero

mean in Eq (3.159). First, note that it is easy to show that the matrix function f(Yt−1) in

Eq (3.159) has the following recursive property

f(Yt−1) = f(µ) + (I⊗B) f(Yt−2) + f(εt−1). (3.160)

Based on the recursive model given in Eq (3.160), the autoregressive process Yt in Eq (3.159)

can be simplified as

Yt = µ+Af(Yt−1) + εt

= µ+A[f(µ) + (I⊗B) f(Yt−2) + f(εt−1)] + εt

= µ+Af(µ) +A(I⊗B) f(Yt−2) +Af(εt−1) + εt

= µ+Af(µ) +A(I⊗B) [f(µ) + (I⊗B) f(Yt−3) + f(εt−2)] +Af(εt−1) + εt

= µ+Af(µ) +A(I⊗B) f(µ) +A(I⊗B)2 f(Yt−3) +A(I⊗B)f(εt−2)

+Af(εt−1) + εt

...

= µ+
(
A+A(I⊗B) +A(I⊗B)2 + . . .+A(I⊗B)r

)
f(µ)

+A(I⊗B)r+1 f(Yt−r−2) +
r∑

i=0

A(I⊗B)i f(εt−i−1) + εt. (3.161)

If all eigenvalues of the coefficient matrix B (hence all eigenvalues of I⊗B ) have modulus

less than one, then it can be shown that the sequence A(I⊗B)i, i = 0, 1, 2, . . ., is absolutely
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summable (see Lütkepohl, 2006). Therefore, the infinite sum
∞∑
i=0

A(I ⊗ B)if(εt−i−1) exists

in mean square. Furthermore, it can be shown that

(
A+A(I⊗B) +A(I⊗B)2 + . . .+A(I⊗B)r

)
f(µ) −→r↑∞ A

IKS2 − (I⊗B)
f(µ). (3.162)

Also, because it is assumed that all eigenvalues of B, and therefore also of I ⊗ B, have

modulus less than one, then (I⊗B)r+1 converges to zero rapidly as r → ∞; hence, the term

A(I ⊗ B)r+1 f(Yt−r−2) can be ignored in the limit. Therefore, if all eigenvalues of B have

modulus less than one, then the moving average representation of the matrix autoregressive

process of Yt in Eq (3.159) is

Yt = υ +
∞∑
n=0

A(I⊗B)n f(εt−n−1) + εt, υ = µ+
A

IKS2 − (I⊗B)
f(µ). (3.163)

Then, according to the properties of the moving average representation, it is easy to show

that the expectation of the matrix time series Yt in Eq (3.163) is equal to υ. That is,

E[Yt] = υ. (3.164)

The matrix autoregressive process of order p (MAR(p)) defined in Eq (3.118), also can

be found when the matrix time series Yt has intercept matrix µ ̸= 0. In order to convert a

MAR(p) model, with nonzero intercept µ, to a MAR(1) model, we can use exactly the same

model as we used in Eq (3.118) except that we add one extra term µX . That is,

Xt = µX +AC(Yt−1) + ut (3.165)

where the reparameterized variables and parameters Xt, C(Yt−1), ut, A are defined as in

Eq (3.114) and Eq (3.115). Also, µX like Xt and ut, is a p × 1 block matrix where each

block matrix is a K × S matrix. The first block entry of the block matrix µX is the K × S

81



intercept matrix µ, the intercept of the matrix time series Yt, and other block entries are

zero. That is,

µX =



µ

0

...

0


(p×1)

. (3.166)

With some algebra similar to that for the nonzero mean MAR(1) model through Eqs (3.161)-

(3.163), it can be shown that the moving average representation of autoregressive process

given in Eq (3.165) is equal to

Xt = υX +
∞∑
n=0

AGnf(ut−n−1) + ut (3.167)

where A and G is defined in Eqs (3.115) and (3.125), respectively, and υX is equal to

υX = µX +
A

(IKS2p −G)
C(µ). (3.168)

Moreover, from the moving average representation of Xt in Eq (3.167), we have

E(Xt) = υX . (3.169)

3.9 Yule-Walker Equations for MAR Processes

Let Yt be a stationary MAR(1) process, with matrix white noise variance-covariance Γ(0) =

TΨ(0) = TE[(Yt − υ)⊗ (Yt − υ)T ], given by

Yt = µ+Af(Yt−1) + εt

= µ+
S∑

j=1

S∑
r=1

Aj
rYt−1Erj + εt. (3.170)

82



The mean-adjusted form of Eq (3.170) can be written as

Yt − υ =
S∑

j=1

S∑
r=1

Aj
r(Yt−1 − υ)Erj + εt. (3.171)

where υ = E(Y) is defined in Eqs (3.163) and (3.164). Kronecker multiplication of Eq

(3.171) by (Yt−h − υ)T gives us

(Yt − υ)⊗ (Yt−h − υ)T =
S∑

j=1

S∑
r=1

Aj
r(Yt−1 − υ)Erj ⊗ (Yt−h − υ)T + εt ⊗ (Yt−h − υ)T .

(3.172)

Alternatively, this quantity, by using the Kronecker product rule (AC ⊗ BD) = (A ⊗

B)(C ⊗D), can be written as

(Yt − υ)⊗ (Yt−h − υ)T =
S∑

j=1

S∑
r=1

(Aj
r ⊗ I)

(
(Yt−1 − υ)⊗ (Yt−h − υ)T

)
(Erj ⊗ IK)

+ εt ⊗ (Yt−h − υ)T . (3.173)

Now, by taking expectations on both sides of Eq (3.173), for h > 0, and recalling that

Ψ(h) = E[(Yt − υ)⊗ (Yt+h − υ)T ] (see section 3.6, Eq (3.99) and section 3.8, Eq (3.164)),

we have

Ψ(h) =
S∑

j=1

S∑
r=1

(Aj
r ⊗ I)Ψ(h− 1)(Erj ⊗ IK). (3.174)

For h = 0, let us use Eq (3.171) for (Yt − υ)T and substitute it in the first term on the

right side of Eq (3.172). Then, Eq (3.172) can be rewritten as
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(Yt − υ)⊗ (Yt − υ)T =
S∑

j=1

S∑
r=1

Aj
r(Yt−1 − υ)Erj ⊗

S∑
j′=1

S∑
r′=1

Ej′r′(Yt−1 − υ)TAj′

r′
T

+
S∑

j=1

S∑
r=1

Aj
r(Yt−1 − υ)Erj ⊗ εTt−1 + εt ⊗ (Yt − υ)T . (3.175)

Here, by using the same Kronecker product rule as was used to obtain Eq (3.173), Eq (3.175)

can be written as

(Yt − υ)⊗ (Yt − υ)T =

S∑
j=1

S∑
r=1

S∑
j′=1

S∑
r′=1

(Aj
r ⊗Ej′r′)

(
(Yt−1 − υ)⊗ (Yt−1 − υ)T

)
(Erj ⊗Aj′

r′
T
)

+

S∑
j=1

S∑
r=1

(Aj
r ⊗ I)

(
(Yt−1 − υ)⊗ εTt−1

)
(I⊗Erj) + εt ⊗ (Yt − υ)T .

(3.176)

Taking expectations on both sides of Eq (3.176) leads to

Ψ(0) =
S∑

j=1

S∑
r=1

S∑
j′=1

S∑
r′=1

(Aj
r ⊗ Ej′r′)Ψ(0)(Erj ⊗Aj′

r′
T
) +Ψε (3.177)

where Ψε is given in Eq (3.4). To solve this equation for Ψ(0), V ec can be taken on both

sides of Eq (3.177). Then, by applying the V ec operator rule V ec(ABC) = (CT⊗A)V ec(B),

we have

V ec(Ψ(0)) =
S∑

j=1

S∑
r=1

S∑
j′=1

S∑
r′=1

(Ejr ⊗Aj′

r′)⊗ (Aj
r ⊗ Ej′r′)V ec(Ψ(0)) + V ec(Ψε) (3.178)

or

V ec(Ψ(0)) =
(
IK2S2 −

S∑
j=1

S∑
r=1

S∑
j′=1

S∑
r′=1

(Ejr ⊗Aj′

r′)⊗ (Aj
r ⊗ Ej′r′)

)−1

V ec(Ψε). (3.179)
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The invertibility of
(
IK2S2 −

S∑
j=1

S∑
r=1

S∑
j′=1

S∑
r′=1

(Ejr ⊗Aj′

r′)⊗ (Aj
r ⊗Ej′r′)

)
follows from the sta-

tionarity of Yt. Therefore, the Yule-Walker equations for the MAR(1) stationary processes

are given in Eqs (3.179) and (3.174).

To obtain the Yule-Walker equations for a matrix autoregressive model of order p > 1

(MAR(p)), first note that from Eq (3.113), we have

(Yt − υ) =

p∑
ν=1

Aνf(Yt−ν − υ) + εt, (3.180)

and by using Eqs (3.26) and (3.27), for each ν, Aνf(Yt−ν − υ) can be written as

Aνf(Yt−ν − υ) =
S∑

j=1

S∑
r=1

Aj
νr(Yt−ν − υ)Erj. (3.181)

Hence, by applying Eq (3.181) in Eq (3.180) we have

(Yt − υ) =

p∑
ν=1

S∑
j=1

S∑
r=1

Aj
νr(Yt−ν − υ)Erj + εt. (3.182)

Note that Aj
νr ∈ Aν , ν = 1, 2, . . . , p. Then, by Kronecker multiplying this quantity on the

right side with (Yt−h−υ)T , and then by using the same Kronecker product rule as was used

to obtain Eq (3.173), we have

(Yt − υ)⊗ (Yt−h − υ)T =

p∑
ν=1

S∑
j=1

S∑
r=1

(
Aj

νr ⊗ I
)(
(Yt−ν − υ)⊗ (Yt−h − υ)T

)(
Erj ⊗ IK

)
+ εt ⊗ (Yt−h − υ)T . (3.183)

Now, taking expectations on both sides of Eq (3.183), for h > 0, and using the independency

of the matrix error terms, leads to

Ψ(h) =

p∑
ν=1

S∑
j=1

S∑
r=1

(Aj
νr ⊗ I)Ψ(h− ν)(Erj ⊗ IK). (3.184)

85



If Aj
νr, r, j = 1, 2, . . . , S, ν = 1, 2, . . . , p, and lag functions Ψ(0),Ψ(1), . . . ,Ψ(p − 1) in Eq

(3.184) are known, then the recursive equation given in Eq (3.184) can be used to obtain

lag functions Ψ(h) for h ≥ p. Therefore, we need to derive the initial lag functions Ψ(h) for

|h| < p. The MAR(1) process Xt given in Eq (3.118) can be applied to determine the initial

lag functions.

First, note that we have Jf(Yt) = Yt where J is defined in Eqs (3.116) and (3.117).

Hence, Xt defined in Eq (3.114) can be rewritten as a function of the C(Yt) defined in Eq

(3.114) as follows

Xt = (Ip ⊗ J)C(Yt). (3.185)

Then, using the Tracy-Singh product for multiplying Eq (3.185) on the right side by XT
t , we

have

Xt ◃▹ XT
t =

(
(Ip ⊗ J)C(Yt)

)
◃▹
(
CT (Yt)(Ip ⊗ J)T

)
=
(
(Ip ⊗ J) ◃▹ I

)(
C(Yt) ◃▹ CT (Yt)

)(
I ◃▹ (Ip ⊗ J)T

)
. (3.186)

The Tracy-Singh product (◃▹) is a block Kronecker product introduced by Tracy and Singh

(1972), and is defined as follows.

Definition 3.9.1 (Tracy-Singh product) Suppose the m × n matrix A is partitioned into

block matrices Aij with dimensions mi × nj, i = 1, 2, . . . , ra, j = 1, 2, . . . , ca, and the p × q

matrix B is partitioned into block matrices Bkl with dimensions pk × ql, k = 1, 2, . . . , rb,

l = 1, 2, . . . , cb, such that
∑

i mi = m,
∑

j nj = n,
∑

k pk = p, and
∑

l ql = q. Then, the

Tracy-Singh product A ◃▹ B is defined as

A ◃▹ B = (Aij ◃▹ B)ij =
(
(Aij ⊗Bkl)kl

)
ij

(3.187)

where Aij ⊗ Bkl is of order mipk × njql, Aij ◃▹ B is of order mip × njq and A ◃▹ B is of

order mp× nq.
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The second equality in Eq (3.186) follows from the same property as we have for the Kro-

necker product, that is (see Liu and Trenkler, 2008)

(A ◃▹ B)(C ◃▹ D) = (AC ◃▹ BD). (3.188)

On the other hand, by using the MAR(1) representation of Xt given in Eq (3.118) and

Tracy-Singh multiplying on the right side of Eq (3.118) by XT
t , we have

Xt ◃▹ XT
t =

(
AC(Yt−1)

)
◃▹
(
CT (Yt−1)A

T + uT
t

)
+ ut ◃▹ XT

t

=
(
A ◃▹ I

)(
C(Yt−1) ◃▹ CT (Yt−1)

)(
I ◃▹ AT

)
+AC(Yt−1) ◃▹ uT

t + ut ◃▹ XT
t .

(3.189)

The second equality in Eq (3.189) follows from the Tracy-Singh product rule of Eq (3.188).

Example 3.9.1 Let A = (Aij) and B = (Bkl) be two partitioned matrices given by

A =

 A11 A12

A21 A22

 , B =

 B11 B12

B21 B22

 .

Then, according to the Tracy-Singh product defined in Eq (3.187) we have

A ◃▹ B =

 A11 ◃▹ B A12 ◃▹ B

A21 ◃▹ B A22 ◃▹ B

 =



A11 ⊗B11 A11 ⊗B12 A12 ⊗B11 A12 ⊗B12

A11 ⊗B21 A11 ⊗B22 A12 ⊗B21 A12 ⊗B22

A21 ⊗B11 A21 ⊗B12 A22 ⊗B11 A22 ⊗B12

A21 ⊗B21 A21 ⊗B22 A22 ⊗B21 A22 ⊗B22


.

Let ΦX(0) = E(Xt ◃▹ XT
t ) and ΦC(Y)(0) = E

(
C(Yt) ◃▹ CT (Yt)

)
. Then, by taking the

expectation on both sides of Eq (3.186), we have

ΦX(0) =
(
(Ip ⊗ J) ◃▹ I

)
ΦC(Y)(0)

(
I ◃▹ (Ip ⊗ J)T

)
, (3.190)
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and, similarly for Eq (3.189), and using the fact that the matrix error terms are independent,

we obtain

ΦX(0) =
(
A ◃▹ I

)
ΦC(Y)(0)

(
I ◃▹ AT

)
+ Ep

11 ⊗Ψε (3.191)

where Ep
11 is similar to that used in Eqs (3.133) and (3.142), and Ψε is defined in Eq (3.4).

The ΦC(Y)(0) can be obtained first by combining Eqs (3.190) and (3.191), which leads to

(
(Ip ⊗ J) ◃▹ I

)
ΦC(Y)(0)

(
I ◃▹ (Ip ⊗ J)T

)
=
(
A ◃▹ I

)
ΦC(Y)(0)

(
I ◃▹ AT

)
+ Ep

11 ⊗Ψε. (3.192)

Then, by taking V ec on both sides of Eq (3.192), we have

ZV ec(ΦC(Y)(0)) = V ec
(
Ep

11 ⊗Ψε
)

(3.193)

where

Z =
((

I ◃▹ (Ip ⊗ J)T
)T ⊗

(
(Ip ⊗ J) ◃▹ I

)
−
(
I ◃▹ AT

)T ⊗
(
A ◃▹ I

))
. (3.194)

Multiplying ZT and then (ZTZ)−1 on both sides of Eq (3.193) leads to

V ec(ΦC(Y)(0)) = (ZTZ)−1ZTV ec
(
Ep

11 ⊗Ψε
)
. (3.195)

The invertibility of the first term on the right side of Eq (3.195) follows from the station-

arity of the matrix time series Xt. Eventually, by obtaining the ΦC(Y)(0) from Eq (3.195),

ΦX(0) can be found by utilizing Eq (3.190).

Note that, by using the definition of the Tracy-Singh product in Eq (3.187) for Xt and

XT
t instead of A and B, respectively, and with respect to the definition of Xt in Eq (3.114),

we have
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Xt ◃▹ XT
t =



Yt

Yt−1

...

Yt−p+1


◃▹

[
YT

t YT
t−1 . . . YT

t−p+1

]

=



Yt ⊗YT
t Yt ⊗YT

t−1 . . . Yt ⊗YT
t−p+1

Yt−1 ⊗YT
t Yt−1 ⊗YT

t−1 Yt−1 ⊗YT
t−p+1

...
...

. . .
...

Yt−p+1 ⊗YT
t Yt−p+1 ⊗YT

t−1 . . . Yt−p+1 ⊗YT
t−p+1


. (3.196)

Therefore, by taking expectations on both sides of Eq (3.196), ΦX(0) can be partitioned by

the lag functions Ψ(0),Ψ(1), . . . ,Ψ(p− 1), as follows

ΦX(0) =



Ψ(0) Ψ(1) . . . Ψ(p− 1)

Ψ(−1) Ψ(0) . . . Ψ(p− 2)

...
...

. . .
...

Ψ(−p+ 1) Ψ(−p+ 2) . . . Ψ(0)


. (3.197)

Hence, the Yule-Walker equations for the stationary MAR(p) processes are given in Eqs

(3.197) and (3.184).
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Chapter 4

Matrix Time Series - Estimation

4.1 Introduction

In this chapter, we will estimate the parameters of the matrix autoregressive processes of

order p (MAR(p)), proposed in chapter 3, based on a sample of matrix observations Y1,

Y2, . . ., YN . There are several different procedures that can be used to estimate time series

parameters. All of these methods may have the same or almost the same answer, but may

be more or less efficient for any model. We estimate the parameters of the matrix time series

based on two main estimation methods, namely, least squares estimation, and maximum

likelihood estimation in sections 4.3 and 4.4, respectively. In the least squares estimation

method, we consider both ordinary least squares (OLS) estimation, and generalized least

squares (GLS) estimation in sections 4.3.2 and 4.3.3, respectively, for the MAR(1) processes.

In section 4.3.4, the least squares estimators of parameters of the mean adjusted MAR(1)

model will be derived; and in section 4.3.5, the least squares estimators are given for MAR(p),

p > 1, processes. Finally, in section 4.4, we will use the maximum likelihood method to

estimate the parameters of the MAR(p) model. We start with some preliminary material

and basic results in section 4.2 that will be used in the rest of this chapter.
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4.2 Basic Results

Before starting any analysis to estimate the parameters, let us introduce some important

properties and rules of matrix operations, matrix multiplication, and matrix derivatives that

will be used through this chapter. For given matrices A, B, C, and D with appropriate

dimensions, we have the following rules and relationships

(A⊗B)(C⊗D) = (AC⊗BD) (4.1)

V ec(AB) = (BT ⊗ I)V ec(A) (4.2)

(V ec(A))T (D⊗B)V ec(C) = tr(ATBCDT ) (4.3)

tr(AB) = tr(BA) (4.4)

∂tr(AB)

∂A
= BT (4.5)

∂tr(ABATC)

∂A
=

∂tr(ATCAB)

∂A
= CTABT +CAB (4.6)

∂tr(BA−1C)

∂A
= −(A−1CBA−1)T (4.7)

∂ ln |A|
∂A

= (AT )−1 (4.8)

∂f(A)

∂AT
= (

∂f(A)

∂A
)T (4.9)

(A⊗B)−1 = (A−1 ⊗B−1) (4.10)

(A⊗B)T = (AT ⊗BT ) (4.11)

tr(A+B) = trA+ trB (4.12)

where T is the transpose operator, ⊗ is the Kronecker product, V ec is a matrix operator

defined in Eq (3.11), and tr is the trace operation which gives the sum of the diagonal

entries of a square matrix. Also, for given matrix A and vectors b and β with appropriate

dimensions, we have
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∂(bTβ)

∂β
=

∂(βTb)

∂β
= b (4.13)

∂(Aβ)

∂βT
= A,

∂(βTAT )

∂β
= AT (4.14)

∂(βTAβ)

∂β
= (A+AT )β (4.15)

These can be found from any of the many basic texts on matrix algebra, e.g., Seber (2008),

Harville (1997).

4.3 Least Squares Estimation

The ordinary least squares (OLS) estimators are derived in section 4.3.2 for the MAR(1)

model. In section 4.3.3, we derive the generalized least squares (GLS) estimators for the

MAR(1) model. The corresponding estimators for the adjusted MAR(1) model are obtained

in section 4.3.4. Finally, in section 4.3.5, we will extend the least squares estimators for the

MAR(1) model to MAR(p) processes. We begin, in section 4.3.1, with some basic results.

4.3.1 The Model

We will start with the matrix autoregressive process of order one (MAR(1)). Let Yt be a

matrix time series of dimension K × S, and assume that it has the same structure as the

matrix autoregressive processes of order one that is given in Eq (3.27). That is,

Yt = µ+Af(Yt−1) + εt (4.16)

where all terms have their typical meaning, that is, µ is the intercept matrix allowing for

the possibility of a nonzero mean E[Yt], εt is the K × S observational error matrix with

properties E[εt] = 0, E[εt ⊗ εTt ] = Ψ, and E[εt ⊗ εTr ] = 0 for t ̸= r, which is the white noise
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or innovation process. The matrix A is the matrix of coefficient parameters with dimension

K × KS2 given in Eq (3.28), and f(Yt−1) is a matrix function of the matrix Yt−1 with

dimension KS2 × S defined in Eqs (3.29)-(3.31).

Assume that Y1, Y2, . . ., YN are matrix observations from a stationary matrix time

series Yt at equal intervals of time. That is, we have a sample of size N for each of the KS

variables of the matrix time series Yt for the same sample period. Moreover, it is assumed

that presample values for the matrix variable f(Y0) are available. In order to simplify the

notation and put all matrix observations in one compact model, we partition a matrix time

series into sample and presample values; that is,

Y = (Y1,Y2, · · · ,YN) with dimenstion (K × SN) (4.17)

θ = (µ,A) ′′ (K × (KS2 + S)) (4.18)

Xt =

 I

f(Yt)

 ′′ ((KS2 + S)× S) (4.19)

X = (X0,X1, · · · ,XN−1)
′′ ((KS2 + S)× SN (4.20)

ε = (ε1, ε2, · · · , εN) ′′ (K × SN) (4.21)

y = V ec(Y) ′′ (KSN × 1) (4.22)

β = V ec(θ) ′′ ((K2S2 +KS)× 1) (4.23)

ω = V ec(ε) ′′ (KSN × 1) (4.24)

By using the notations of Eqs (4.17)-(4.21), the MAR(1) model in Eq (4.16) for t =

1, 2, . . . , N , can be written as the following compact linear model

Y = θX+ ε. (4.25)

By taking V ec(.) on both sides of Eq (4.25), and using the V ec operation rule given in Eq

(4.2), we have
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V ec(Y) = V ec(θX) + V ec(ε)

= (XT ⊗ IK)V ec(θ) + V ec(ε). (4.26)

Therefore, with respect to the notations in Eqs (4.22)-(4.24), Eq (4.26) can be written as

y = (XT ⊗ IK)β + ω. (4.27)

This model will be used to find the least squares estimator of the matrix parameter θ by

obtaining the least squares estimator for the parameter vector β.

4.3.2 Ordinary Least Squares (OLS) Estimation

The ordinary least squares (OLS) method is generally applied when estimating the unknown

parameters of linear models. The OLS estimators are the best linear unbiased estimators

(BLUE) when errors of the linear model are assumed to be uncorrelated. In this section, we

use the OLS estimation method to estimate the coefficient matrix A of the autoregressive

matrix process defined in Eq (4.16) and the intercept matrix µ, based on N matrix sample

observations. In the compact model defined in Eq (4.25), we put all these parameters together

in the matrix θ = (µ,A) (see Eq (4.18)). Our goal is to estimate the coefficient matrix θ in

the general linear matrix model given in Eq (4.25). To this end, first assume that the matrix

error terms εt in Eq (4.16) have an identity covariance matrix, i.e.,

V ar(εt) = σ2IKS, t = 1, 2, . . . , N. (4.28)

The OLS method minimizes the sum of squares of the errors. Therefore, to apply the

OLS method, we use the model defined in Eq (4.27) to find the estimator of the vector

parameter β. Then, based on the relationship between β and θ in Eq (4.18), the estimator
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of θ can be obtained. To this end, we need to minimize the sum of squares of the errors of

the model. Thence, first let S1(β) be the function of the sum of squares of the errors of the

model (4.27) as follows

S1(β) = ωTω

= (y − (XT ⊗ IK)β)
T (y − (XT ⊗ IK)β)

= yTy − yT (XT ⊗ IK)β − βT (X⊗ IK)y + βT (XXT ⊗ IK)β. (4.29)

By taking the derivative on both sides of Eq (4.29) with respect to the vector parameter β

and using the matrix derivative rules in Eqs (4.13) and (4.15), we have

∂S1(β)

∂β
= −2(X⊗ IK)y + 2(XXT ⊗ IK)β. (4.30)

Then, by setting Eq (4.30) equal to zero, the following normal equation can be obtained

(XXT ⊗ IK)β̂ = (X⊗ IK)y, (4.31)

or, equivalently,

β̂ = [(XXT ⊗ IK)]
−1(X⊗ IK)y. (4.32)

Recall from Eq (4.18) that β = V ec(θ). By applying the rules given in Eqs (4.10) and (4.1),

Eq (4.32) can be written as

V ec(θ̂) = β̂ = [(XXT ⊗ IK)]
−1(X⊗ IK)y

= ((XXT )−1 ⊗ IK)(X⊗ IK)y

= ((XXT )−1X⊗ IK)y. (4.33)
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Then, by using the V ec operation rule in Eq (4.2) and with respect to Eq (4.22) that

y = V ec(Y), we have

V ec(θ̂) = V ec(YXT (XXT )−1). (4.34)

Therefore, the OLS estimator of θ is equal to

θ̂
OLS

= YXT (XXT )−1. (4.35)

The Hessian matrix of S1(β) is required to be positive definite to ensure that β̂ in Eq

(4.32) minimizes the function S1(β). The Hessian matrix of S1(β) is the second derivative

of the function S1(β), and is given by (see Eq (4.13))

∂2S1(β)

∂β∂βT
= 2(XXT ⊗ IK). (4.36)

This is obviously a positive definite matrix, and confirms that β̂ is the minimizer of the sum

of squares of the errors function S1(β) defined in Eq (4.29).

There is another way to derive the OLS estimator θ̂
OLS

obtained in Eq (4.35). First,

consider the matrix autoregressive process as

Yt = θXt−1 + εt (4.37)

where θ and Xt are defined in Eq (4.17). Then, by postmultiplying XT
t−1 on both sides of

Eq (4.37), we have

YtX
T
t−1 = θXt−1X

T
t−1 + εtX

T
t−1. (4.38)
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Taking the expectation of both sides of this equation and using the fact that E[εt] = 0 yields

E[YtX
T
t−1] = θE[Xt−1X

T
t−1]. (4.39)

Now, E[YtX
T
t−1] and E[Xt−1X

T
t−1] can be estimated, respectively, by

̂E[YtXT
t−1] =

1

N

N∑
i=1

YtX
T
t−1 =

1

N
YXT , (4.40)

̂E[Xt−1XT
t−1] =

1

N

N∑
i=1

Xt−1X
T
t−1 =

1

N
XXT . (4.41)

By substituting these estimated values from Eqs (4.40) and (4.41) into Eq (4.39), the fol-

lowing normal equation will be obtained

1

N
YXT = θ̂

1

N
XXT . (4.42)

Hence, θ̂
OLS

= YXT (XXT )−1, as before (in Eq (4.35)).

4.3.3 Generalized Least Squares (GLS) Estimation

The generalized least squares (GLS) method is another procedure to estimate unknown

parameters of linear models. The purpose of using the GLS method is to provide an efficient

unbiased estimator for the parameters by taking into account the heterogeneous variance of

the errors. The OLS estimators in such cases are unbiased and consistent, but not efficient.

Therefore, let Σε be the covariance matrix of the white noise matrix εt. Then, the

covariance matrix of the ε defined in Eq (4.17) is equal to

V ar(ε) = (IN ⊗Σε). (4.43)
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Furthermore, we assume that the KS ×KS covariance matrix Σε can be broken down

and written as the Kronecker product of two covariance matrices ΣK×K and ΩS×S with

dimension K ×K and S × S, respectively. That is, we can write

Σε = ΩS×S ⊗ΣK×K . (4.44)

For the sake of brevity and convenience in notation, in the sequel the two covariance matrices

ΩS×S andΣK×K will be shown without the subscripts. Hence, the variance-covariance matrix

of ε given in Eq (4.43) can be rewritten as

V ar(ε) = (IN ⊗Ω⊗Σ). (4.45)

Now, to find the GLS estimator, let S2(β) be the squared Mahalanobis distance of the

residual vector ω defined in Eq (4.27). That is,

S2(β) = ωT (IN ⊗Ω⊗Σ)−1ω

= (y − (XT ⊗ IK)β)
T (IN ⊗Ω−1 ⊗Σ−1)(y − (XT ⊗ IK)β). (4.46)

Then, applying the rule of Eq (4.2) and using the relationship between the defined variables

in Eq (4.17), we have ω = V ec(Y − θX). Hence, S2(β) can be rewritten as

S2(β) = (V ec(Y − θX))T (IN ⊗Ω−1 ⊗Σ−1)(V ec(Y − θX)). (4.47)

Now, applying the equality given in Eq (4.3) to Eq (4.47), we have

S2(θ) = (V ec(Y − θX))T (IN ⊗Ω−1 ⊗Σ−1)(V ec(Y − θX))

= tr[(Y − θX)TΣ−1(Y − θX)(IN ⊗Ω−1)T ]. (4.48)
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By expanding the quadratic term inside the trace in Eq (4.48), and using the fact that

the trace of the sum of matrices is the sum of the trace of each matrix (see Eq (4.12)), S2(θ)

in Eq (4.48) can be simplified as

S2(θ) = tr[YTΣ−1Y(IN ⊗Ω−1)]− tr[YTΣ−1θX(IN ⊗Ω−1)]

− tr[XTθTΣ−1Y(IN ⊗Ω−1)] + tr[XTθTΣ−1θX(IN ⊗Ω−1)]. (4.49)

Note that, in the last term in Eq (4.49) we used (IN ⊗ Ω−1)T = (IN ⊗ Ω−1); this follows

from Eq (4.11) and using the fact that the covariance matrices Ω and Σ are symmetric.

To derive the GLS estimator for the matrix parameter θ, we need to minimize the function

S2(θ) in Eq (4.49). Thus, it is required to take the derivative of the function S2(θ) with

respect to θ, and set it to zero. To this end, first for the sake of compatibility of the notations

of trace terms in Eq (4.49) with the matrix derivative rules of traces (given in Eqs (4.5) -

(4.7)), let us rewrite the function S2(θ).

The first term of S2(θ) in Eq (4.49) is not a function of θ, so we can keep it as it is. In

the second term of Eq (4.49), let A = YTΣ−1, B = θX(IN ⊗Ω−1); then based on the rule

for the trace of the product of matrices given in Eq (4.4), we have

tr(AB) = tr[YTΣ−1θX(IN ⊗Ω−1)] = tr[θX(IN ⊗Ω−1)YTΣ−1] = tr(BA). (4.50)

Likewise, for the third term of S2(θ) in Eq (4.49), let A = XT , B = θTΣ−1θX(IN ⊗Ω−1);

then by using Eq (4.4), we have

tr(AB) = tr[XTθTΣ−1Y(IN ⊗Ω−1)] = tr[θTΣ−1Y(IN ⊗Ω−1)XT ] = tr(BA). (4.51)
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Similarly, by using the same rule for the fourth term of Eq (4.49), and setting A = XTθTΣ−1

and B = θX(IN ⊗Ω−1), we obtain

tr(AB) = tr[XTθTΣ−1θX(IN ⊗Ω−1)] = tr[θX(IN ⊗Ω−1)XTθTΣ−1] = tr(BA). (4.52)

Then, adding Eqs (4.50) - (4.52), the function S2(θ) can be rewritten as

S2(θ) = tr[YTΣ−1Y(IN ⊗Ω−1)]− tr[θX(IN ⊗Ω−1)YTΣ−1]

− tr[θTΣ−1Y(IN ⊗Ω−1)XT ] + tr[θX(IN ⊗Ω−1)XTθTΣ−1]. (4.53)

Now, by using the differentiation rules of traces given in Eqs (4.5)-(4.7), the derivative of

each term in Eq (4.53) with respect to θ is derived. Based on the rule in Eq (4.5), we have,

for the second term,

∂tr[θX(IN ⊗Ω−1)YTΣ−1]

∂θ
= Σ−1Y(IN ⊗Ω−1)XT . (4.54)

Similarly, the derivative of the third term in Eq (4.53) with respect to θT is given by

∂tr[θTΣ−1Y(IN ⊗Ω−1)XT ]

∂θT
= X(IN ⊗Ω−1)YTΣ−1; (4.55)

then, by using of the derivative rule in Eq (4.9), the term becomes

∂tr[θTΣ−1Y(IN ⊗Ω−1)XT ]

∂θ
= Σ−1Y(IN ⊗Ω−1)XT . (4.56)

Finally, taking the derivative of the fourth term, using the rule given in Eq (4.6) by setting

A = θ, B = X(IN ⊗Ω−1)XT , and C = Σ−1 = Σ−1T leads to

∂tr[θX(IN ⊗Ω−1)XTθTΣ−1]

∂θ
= 2Σ−1θX(IN ⊗Ω−1)XT . (4.57)
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Thence, by combining Eqs (4.54)-(4.57), the first derivative of S2(θ) in Eq (4.53) with respect

to θ is obtained as

∂S2(θ)

∂θ
= −2Σ−1Y(IN ⊗Ω−1)XT + 2Σ−1θX(IN ⊗Ω−1)XT . (4.58)

By setting
∂S2(θ)

∂θ

∣∣∣
θ=θ̂

= 0, we have

−2Σ−1
(
Y(IN ⊗Ω−1)XT − θ̂X(IN ⊗Ω−1)XT

)
= 0. (4.59)

Therefore, the GLS estimator θ̂
GLS

of the matrix parameter θ is equal to

θ̂
GLS

= Y(IN ⊗Ω−1)XT (X(IN ⊗Ω−1)XT )−1. (4.60)

Note that if the column (within) covariance Ω = I, then the θ̂
GLS

of Eq (4.60) reduces to

the θ̂
OLS

of Eq (4.35); i.e., the OLS and the GLS estimators are the same, θ̂
GLS

= θ̂
OLS

.

4.3.4 Mean Adjusted Least Squares Estimation

In this section, we derive the OLS and GLS estimators for the matrix autoregressive process

when the mean of the model is adjusted. In section 4.3.4.1, the mean adjusted model will be

introduced. We will obtain the OLS and GLS estimators of the model parameters in section

4.3.4.2 for the known adjusted mean. An estimator for the mean of the adjusted model will

be proposed in section 4.3.4.3 when the mean of the model is unknown.

4.3.4.1 The Model

Assume that the matrix autoregressive process in Eq (4.16) has mean ν. Note that, the

MAR(1) model in Eq (4.16) has intercept µ; however, the mean of the matrix Yt is equal

to ν, E[Y] = ν. Then, the mean-adjusted form of the MAR model is given by
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Yt − ν = A(f(Yt−1)− f(ν)) + εt. (4.61)

In order to consider this modification in the least squares approach, some notations defined

in Eqs (4.17) - (4.24) are redefined as follows

Y0 = (Y1 − ν,Y2 − ν, · · · ,YN − ν) with dimension (K × SN) (4.62)

A = A ′′ (K × (KS2)) (4.63)

X0
t =

[
f(Yt)− f(ν)

]
′′ ((KS2)× S) (4.64)

X0 = (X0
0,X

0
1, · · · ,X0

N−1)
′′ ((KS2)× SN (4.65)

y0 = V ec(Y0) ′′ (KSN × 1) (4.66)

α = V ec(A) ′′ ((K2S2)× 1) (4.67)

Then, the mean-adjusted MAR(1) model defined in Eq (4.61) for t = 1, 2, . . . , N , has the

following compact form

Y0 = AX0 + ε (4.68)

where ε is the same as in Eq (4.21).

4.3.4.2 Least Squares Estimation with Known Mean

Suppose that the mean of the MAR(1) model is as given in Eq (4.61), and suppose ν is

known. Then, by applying the same process used in section 4.3.1 for the unadjusted model,

it can be shown that the OLS estimator of coefficient vector α is analogous to Eq (4.32) and

equals

α̂OLS = ((X0X0T ⊗ IK)
−1X0 ⊗ IK)y

0. (4.69)
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Therefore, analogously with Eq (4.35), we have the OLS estimator of the parameter matrix

A, ÂOLS, as

ÂOLS = Y0X0T (X0X0T )−1. (4.70)

Also, by following the same procedure as in section 4.3.3, it can be shown that the GLS

estimator of the coefficient matrix A, ÂGLS, in this case is equal to

ÂGLS = Y0(IN ⊗Ω−1)X0T (X0(IN ⊗Ω−1)X0T )−1. (4.71)

This is analogous to Eq (4.60).

4.3.4.3 Least Squares Estimation with Unknown Mean

In applications, usually the mean ν of the process is unknown, and it needs to be estimated.

The mean matrix ν of the model in Eq (4.61) can be estimated by the matrix of sample

means. That is,

ν̂ = Y =
1

N

N∑
i=1

Yt. (4.72)

Then, by substituting the ν̂ into the sample matrix Y0 in Eq (4.62), the OLS and the GLS

estimators of coefficients given in Eqs (4.69)-(4.71) will be modified as follows. First, let Ŷ0

and X̂0
t be the estimated mean adjusted matrix observation of Y0 and mean adjusted matrix

of past observations X0
t , given in Eqs 4.62 and 4.64, respectively; i.e.,

Ŷ0 = (Y1 − ν̂,Y2 − ν̂, · · · ,YN − ν̂) with dimension (K × SN) (4.73)

X̂t

0
=

[
f(Yt)− f(ν̂)

]
′′ ((KS2)× S) (4.74)

X̂0 = (X̂0
0, X̂

0
1, · · · , X̂0

N−1)
′′ ((KS2)× SN (4.75)
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Then, the OLS and GLS estimators of the coefficient matrix A, ÂOLS and ÂGLS, are

analogous to Eqs (4.70) and (4.71), respectively, as

ÂOLS = Ŷ0X̂0T (X̂0X̂0T )−1 (4.76)

ÂGLS = Ŷ0(IN ⊗Ω−1)X̂0T (X̂0(IN ⊗Ω−1)X̂0T )−1. (4.77)

4.3.5 The Least Squares Estimation for MAR(p)

The OLS and GLS estimators for the matrix parameters of the θ and A for the MAR(1)

model given in sections 4.3.3 and 4.3.4, respectively, can each be extended to the MAR(p)

model by making the following modifications. In particular, the matrix parameter θ and the

variable Xt given in Eqs (4.18) and (4.19), respectively, are modified to

θ = (µ,A1,A2, · · · ,Ap) with dimension (K × (KS2p+ S)) (4.78)

Xt =



I

f(Yt)

f(Yt−1)

...

f(Yt−p+1)


′′ ((KS2p+ S)× S) (4.79)

X = (X0,X1, · · · ,XN−1)
′′ ((KS2p+ S)× SN (4.80)

β = V ec(θ) ′′ ((K2S2p+KS)× 1) (4.81)

Then, the OLS and GLS estimators of the matrix parameter θ are the same as those

given in Eqs (4.35) and (4.60), respectively, except the variable X will be replaced by the

new X defined in Eq (4.80); i.e.,
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θ̂
OLS

= YXT (XXT )−1 (4.82)

θ̂
GLS

= Y(IN ⊗Ω−1)XT (X(IN ⊗Ω−1)XT )−1. (4.83)

Likewise, for finding the least squares estimators for the mean adjusted MAR(p) model,

the matrix parameter A and the matrix variable X0
t in Eqs (4.62) and (4.63), respectively,

are modified to

A = (A1,A2, · · · ,Ap) with dimension (K × (KS2p)) (4.84)

X0
t =



f(Yt)− f(ν)

f(Yt−1)− f(ν)

...

f(Yt−p+1)− f(ν)


′′ ((KS2p)× S) (4.85)

X0 = (X0
0,X

0
1, · · · ,X0

N−1)
′′ ((KS2p)× SN (4.86)

α = V ec(A) ′′ ((K2S2p)× 1) (4.87)

Then, by considering these modifications, the OLS and GLS estimators of A in Eq (4.84)

are the same as those given in Eqs (4.70) and (4.71), respectively; i.e.,

ÂOLS = Y0X0T (X0X0T )−1 (4.88)

ÂGLS = Y0(IN ⊗Ω−1)X0T (X0(IN ⊗Ω−1)X0T )−1. (4.89)

4.4 Maximum Likelihood Estimation (MLE)

In contrast to least squares estimation where we minimize the sum of squares of the residuals

without any assumptions on the distributions of the error terms, in the maximum likelihood
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estimation (MLE) method, we need to assume a probability distribution for the residuals.

The Gaussian (normal) probability distribution is often considered for the distribution of the

residuals to perform MLE. The univariate and multivariate (vector variate) normal distri-

butions are used for univariate and multivariate models, respectively. However, in our study

we are dealing with a matrix variate model, which is a matrix time series process. Therefore,

we need to consider an appropriate matrix variate probability distribution for the matrix

white noise εt of the matrix time series Yt.

The probability distribution that can be applied to implement the MLE of the matrix

time series is the matrix normal distribution. Then, with regards to this assumption on the

matrix white noise terms of matrix time series, we build a likelihood function for the MAR

models. First, let us define the matrix variate normal distribution briefly. We will write

the matrix normal distribution of Xm×n by X ∼ Nm×n(M,Ω ⊗ Σ), and a vector normal

distribution of Xm by X ∼ Nm(µ,Σ).

Definition 4.4.1 (Gupta and Nagar, 2000) The random matrix Xm×n has a matrix normal

distribution with matrix meanMm×n and covariance matrix Ω⊗Σ if V ec(X) ∼ Nmn

(
V ec(M),

Ω⊗Σ
)
, where Ω = Ωn×n and Σ = Σm×m are positive definite matrices, and Nmn represents

a mn-variate (vector variate) normal distribution.

Theorem 4.4.1 (Gupta and Nagar, 2000) The probability density function (p.d.f.) of the

matrix normal distribution of Xm×n, X ∼ Nm×n(M,Ω ⊗ Σ), where M, Ω, and Σ have

dimension m× n, n× n, and m×m, respectively, is given by

p(X|M,Ω,Σ) = (2π)−nm/2|Ω|−m/2|Σ|−n/2 exp{−1
2
tr[Σ−1(X−M)Ω−1(X−M)T ]},

X ∈ Rm×n,M ∈ Rm×n,Ω > 0,Σ > 0. (4.90)

Now, assume that the first order matrix autoregressive (MAR(1)) time series given in Eq

(4.16) has a matrix normal distribution. In particular, assume that the K × S matrix white

noise process εt of the matrix time series Yt in Eq (4.16) has a matrix normal distribution
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with mean zero and covariance matrix Ω⊗Σ, where Ω and Σ have dimensions S × S and

K ×K, respectively. That is,

εt ∼ NK×S(0,Ω⊗Σ). (4.91)

Then, by using the fact that εt’s are independent, the matrix error ε = (ε1, ε2, . . . , εN)

defined in Eq (4.21) has the matrix normal distribution with mean zero and covariance

matrix IN ⊗Ω⊗Σ. It can be written as

ε ∼ NK×SN(0, (IN ⊗Ω)⊗Σ). (4.92)

Hence, according to Theorem 4.4.1, the p.d.f. of ε is given by

p(ε|Ω,Σ) = (2π)−KSN/2|Ω|−KN/2|Σ|−SN/2 exp{−1
2
tr[Σ−1ε(IN ⊗Ω−1)εT ]}. (4.93)

In order to determine the MLE of the intercept, µ, of the matrix time seriesYt separately,

the MAR(1) model defined in Eq (4.16) is rewritten as

Yt − µ = Af(Yt−1) + εt. (4.94)

Moreover, in contrast to the least squares estimation in section 4.3, in this section we

consider the MAR(p) model rather than MAR(1) model. However, the results of section 4.3

can easily be extended to MAR(p) models as was described in the end of section 4.3.

To this end, consider the MAR(p) model with intercept µ as

Yt − µ = A1f(Yt−1) +A2f(Yt−2) + . . .+Apf(Yt−p) + εt, (4.95)

and assume that N matrix sample observations Y1,Y2, . . . ,YN are available. Then, in a

similar manner used for the least squares method in section 4.3, the notations in Eqs (4.17)-
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(4.21) can be redefined for the MAR(p) model given in Eq (4.95) such that we can write all

N observed matrix series in one compact linear model. That is,

Y = (Y1 − µ,Y2 − µ, · · · ,YN − µ) with dimension (K × SN) (4.96)

θ = (A1,A2, · · · ,Ap)
′′ (K × (KS2p)) (4.97)

Xt =



f(Yt)

f(Yt−1)

...

f(Yt−p+1)


′′ ((KS2p)× S) (4.98)

X = (X0,X1, · · · ,XN−1)
′′ ((KS2p)× SN (4.99)

ε := (ε1, ε2, · · · , εN) ′′ (K × SN) (4.100)

Therefore, the compact form of the MAR(p) model in Eq (4.95) with N matrix observations

can be written as

Y = θX+ ε (4.101)

where it is assumed that ε has the matrix normal distribution given in Eq (4.92). Hence, Y in

Eq (4.101) has matrix normal distribution with mean θX and covariance matrix (IN⊗Ω)⊗Σ.

That is,

Y ∼ NK×SN(θX, (IN ⊗Ω)⊗Σ). (4.102)

Now, by applying the definition of the matrix normal distribution, we can write the

likelihood function of the compact model given in Eq (4.101), or in particular the likelihood

function of the MAR(p) model based on the N sample observations as follows,
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L(µ,θ,Ω,Σ|Y,X) = (2π)−KSN/2|Ω|−KN/2|Σ|−SN/2×

exp{−1
2
tr[Σ−1(Y − θX)(IN ⊗Ω−1)(Y − θX)T ]}

= (2π)−KSN/2|Ω|−KN/2|Σ|−SN/2×

exp{−1
2

N∑
t=1

tr[Σ−1(Yt − µ− (θXt−1))Ω
−1(Yt − µ− (θXt−1))

T ]}.

(4.103)

Then, by taking the log function on both sides of Eq (4.103), the log-likelihood function

of the MAR(p) model is obtained as

lnL(µ,θ,Ω,Σ|Y,X) = −1

2
(KSN) ln(2π)− 1

2
(KN) ln |Ω| − 1

2
SN ln |Σ|

− 1

2

N∑
t=1

tr[Σ−1(Yt − µ− (θXt−1))Ω
−1(Yt − µ− (θXt−1))

T ].

(4.104)

In order to obtain the MLEs of the parameters, the log-likelihood function should be maxi-

mized with respect to the parameters µ, θ, Ω, and Σ. For simplicity and ease of implemen-

tation, the quadratic quantity in the last term of the log-likelihood function in Eq (4.104) is

expanded, and the log function is rewritten as
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lnL(µ,θ,Ω,Σ|Y,X) = −1

2
(KSN) ln(2π)− 1

2
(KN) ln |Ω| − 1

2
SN ln |Σ|

− 1

2

N∑
t=1

tr[Σ−1YtΩ
−1YT

t ] +
1

2

N∑
t=1

tr[Σ−1µΩ−1YT
t ]

+
1

2

N∑
t=1

tr[Σ−1θXt−1Ω
−1YT

t ] +
1

2

N∑
t=1

tr[Σ−1YtΩ
−1µT ]

− 1

2

N∑
t=1

tr[Σ−1µΩ−1µT ]− 1

2

N∑
t=1

tr[Σ−1θXt−1Ω
−1µT ]

+
1

2

N∑
t=1

tr[Σ−1YtΩ
−1XT

t−1θ
T ]− 1

2

N∑
t=1

tr[Σ−1µΩ−1XT
t−1θ

T ]

− 1

2

N∑
t=1

tr[Σ−1θXt−1Ω
−1XT

t−1θ
T ]. (4.105)

To derive the MLE, we need to set the first partial derivatives of the log-likelihood

function to zero and solve them with respect to the parameters. For the sake of compatibility

with our notations, and for ease of use of the trace derivative rules given in Eqs (4.5)-(4.7),

let us reorder the terms after each trace operator in the log-likelihood function of Eq (4.105)

by using the trace operator rule given in Eq (4.4). For instance, to obtain the derivative

with respect to µ, by using the rule in Eq (4.4), we can reorder matrices after the trace

operator in those terms that have µ. Hence, in the term tr[Σ−1µΩ−1YT
t ], let A = Σ−1 and

B = µΩ−1YT
t ; then,

tr[AB] = tr[Σ−1µΩ−1YT
t ] = tr[µΩ−1YT

t Σ
−1] = tr[BA]. (4.106)

Similarly, by using the same rule, in the term tr[Σ−1YtΩ
−1µT ], let A = Σ−1YtΩ

−1 and B =

µT ; in the quantity tr[Σ−1µΩ−1µT ], setA = Σ−1 andB = µΩ−1µT ; in tr[Σ−1θXt−1Ω
−1µT ],

let A = Σ−1θXt−1Ω
−1 and B = µT ; and finally in the term tr[Σ−1µΩ−1XT

t−1θ
T ], let

A = Σ−1 and B = µΩ−1XT
t−1θ

T ]. Thence, the Eq (4.105) can be rewritten as
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lnL(µ,θ,Ω,Σ|Y,X) = −1

2
(KSN) ln(2π)− 1

2
(KN) ln |Ω| − 1

2
SN ln |Σ|

− 1

2

N∑
i=1

tr[Σ−1YtΩ
−1YT

t ] +
1

2

N∑
i=1

tr[µΩ−1YT
t Σ

−1]

+
1

2

N∑
i=1

tr[Σ−1θXt−1Ω
−1YT

t ] +
1

2

N∑
i=1

tr[µTΣ−1YtΩ
−1]

− 1

2

N∑
i=1

tr[µΩ−1µTΣ−1]− 1

2

N∑
i=1

tr[µTΣ−1θXt−1Ω
−1]

+
1

2

N∑
i=1

tr[Σ−1YtΩ
−1XT

t−1θ
T ]− 1

2

N∑
i=1

tr[µΩ−1XT
t−1θ

TΣ−1]

− 1

2

N∑
i=1

tr[Σ−1θXt−1Ω
−1XT

t−1θ
T ]. (4.107)

Now, the first partial derivative of each trace function of the log-likelihood function in

Eq (4.107) with respect to µ is derived as follows. By using the derivatives rule given in Eq

(4.5), we have

∂ tr[µΩ−1YT
t Σ

−1]

∂µ
= Σ−1YtΩ

−1, (4.108)

∂ tr[µTΣ−1YtΩ
−1]

∂µT
= Ω−1YT

t Σ
−1, (4.109)

∂ tr[µTΣ−1θXt−1Ω
−1]

∂µT
= Ω−1XT

t−1θ
TΣ−1, (4.110)

∂ tr[µΩ−1XT
t−1θ

TΣ−1]

∂µ
= Σ−1θXt−1Ω

−1. (4.111)

Moreover, by using the matrix derivative rule in Eq (4.9) and results obtained in Eqs (4.109)

and (4.110), the derivatives of tr[µTΣ−1YtΩ
−1] and tr[µTΣ−1θXt−1Ω

−1] with respect to µ,

respectively, are given by
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∂ tr[µTΣ−1YtΩ
−1]

∂µ
=
(∂ tr[µTΣ−1YtΩ

−1]

∂µT

)T
= Σ−1YtΩ

−1, (4.112)

∂ tr[µTΣ−1θXt−1Ω
−1]

∂µ
=
(∂ tr[µTΣ−1θXt−1Ω

−1]

∂µT

)T
= Σ−1θXt−1.Ω

−1. (4.113)

Finally, the derivative of tr[µΩ−1µTΣ−1] with respect to µ can be obtained by using the

matrix derivative rule in Eq (4.6), as

∂ tr[µΩ−1µTΣ−1]

∂µ
= 2Σ−1µΩ−1. (4.114)

Thence, the derivative of the log-likelihood function given in Eq (4.107) with respect to

µ is obtained as

∂ lnL(µ,θ,Ω,Σ|Y,X)

∂µ
=

N∑
i=1

(Σ−1YtΩ
−1 −Σ−1θXt−1Ω

−1 −Σ−1µΩ−1)

= Σ−1(
N∑
i=1

(Yt − θXt−1)−Nµ)Ω−1. (4.115)

By setting
∂ lnL(µ,θ,Ω,Σ|Y,X)

∂µ

∣∣
µ̂,θ̂,Ω̂,Σ̂

= 0, we have

µ̂ =
1

N

N∑
i=1

(Yt − θ̂Xt−1). (4.116)

Let Ȳ = 1
N

N∑
i=1

Yt and X̄ = 1
N

N∑
i=1

Xt−1, then the estimator of the K × S intercept matrix µ

given in Eq (4.116) is equivalent to

µ̂ = Ȳ − θ̂X̄. (4.117)
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Accordingly, the derivatives of the log-likelihood function given in Eq (4.107) with respect

to θ, Σ, and Ω, respectively, are given by

∂ lnL(µ,θ,Ω,Σ|Y,X)

∂θ
=

N∑
i=1

(Σ−1YtΩ
−1XT

t−1 −Σ−1µΩ−1XT
t−1 −Σ−1θXt−1Ω

−1XT
t−1)

= Σ−1[
N∑
i=1

(Yt − µ)Ω−1XT
t−1 − θ

N∑
i=1

(Xt−1Ω
−1XT

t−1)], (4.118)

∂ lnL(µ,θ,Ω,Σ|Y,X)

∂Σ
= −1

2
SN Σ−1 +Σ−1[

N∑
i=1

(
1

2
YtΩ

−1YT
t − 1

2
YtΩ

−1µT

− 1

2
µΩ−1YT

t − 1

2
YtΩ

−1XT
t−1θ

T − 1

2
θXt−1Ω

−1YT
t

+
1

2
µΩ−1µT +

1

2
µΩ−1XT

t−1θ
T +

1

2
θXt−1Ω

−1µT

+
1

2
θXt−1Ω

−1XT
t−1θ

T )]Σ−1

= −1

2
NS Σ−1

+
1

2
Σ−1[

N∑
i=1

(Yt − µ− θXt−1)Ω
−1(Yt − µ− θXt−1)

T ]Σ−1

= −1

2
[NS Σ−

N∑
i=1

(Yt − µ− θXt−1)Ω
−1(Yt − µ− θXt−1)

T ],

(4.119)

∂ lnL(µ,θ,Ω,Σ|Y,X)

∂Ω
= −1

2
NK Ω−1

+
1

2
Ω−1[

N∑
i=1

(Yt − µ− (θXt−1))
TΣ−1(Yt − µ− (θXt−1))]Ω

−1

= −1

2
[NK Ω−

N∑
i=1

(Yt − µ− (θXt−1))
TΣ−1(Yt − µ− (θXt−1))].

(4.120)
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Therefore, by setting to zero the partial derivatives given in Eqs (4.118)-(4.120), the MLEs

are obtained as

θ̂ =
[ N∑

i=1

(Yt − µ̂)Ω̂
−1
XT

t−1

][ N∑
i=1

(Xt−1Ω̂
−1
XT

t−1)
]−1

, (4.121)

Σ̂ =
1

NS

N∑
i=1

(Yt − µ̂− θ̂Xt−1)Ω̂
−1
(Yt − µ̂− θ̂Xt−1)

T , (4.122)

Ω̂ =
1

NK

N∑
i=1

(Yt − µ̂− θ̂Xt−1)
T Σ̂

−1
(Yt − µ̂− θ̂Xt−1). (4.123)

By substituting µ̂ given in Eq (4.117) into Eq (4.121), the estimated coefficient matrix

parameters θ can be simplified as

θ̂ =
[ N∑

i=1

(YtΩ̂
−1
XT

t−1)− ȲΩ̂
−1
X̄T
][ N∑

i=1

(Xt−1Ω̂
−1
XT

t−1)− X̄Ω̂
−1
X̄T
]−1

. (4.124)

Now, assume that the column or within covariance matrix Ω of the K × S matrix white

noise process εt in Eq (4.91) is an identity matrix. That is,

εt ∼ NK×S(0, IS ⊗Σ). (4.125)

Then, the maximum likelihood estimators of the parameters µ, θ, and Σ, respectively, are

given by

µ̂ = Ȳ − θ̂X̄. (4.126)

θ̂ =
[ N∑

i=1

(YtX
T
t−1)− ȲX̄T

][ N∑
i=1

(Xt−1X
T
t−1)− X̄X̄T

]−1

, (4.127)

Σ̂ =
1

NS

N∑
i=1

(Yt − µ̂− θ̂Xt−1)(Yt − µ̂− θ̂Xt−1)
T . (4.128)
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Remember that µ is the intercept of the matrix time series Yt. Hence, µ̂ is the MLE

estimator of the intercept. For determining the MLE estimator for the mean of the matrix

time series Yt, Eq (3.168) in chapter 3.8 can be used. It is given by

υ̂X = µ̂X +
Â

(IKS2p − B̂)
C(µ̂). (4.129)
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Chapter 5

Numerical Study

In this chapter, numerical and simulation studies are conducted to compare different matrix

autoregressive of order one (MAR(1)) models when they have different coefficient matrices.

In fact, like univariate and vector time series, the structure of the autocorrelation functions

of MAR models is dependent on the configuration of the coefficient matrices.

Recall from chapter 3 (see Eq (3.23)) that a K × S matrix time series Yt is said to have

a matrix autoregressive of order one (MAR(1)) model if it is given by

Yt = µ+
S∑

j=1

S∑
r=1

Aj
rYt−1Erj + εt, t = 0,±1,±2, . . . , (5.1)

where µ is the K × S intercept matrix, Aj
r, r, j = 1, 2, . . . , S, are K × S coefficient matrices

defined in Eq (3.21), Erj, r, j = 1, 2, . . . , S, are the S × S matrices defined in Eq (3.22), and

εt is K×S matrix error terms, where K is the number of variables (rows of the matrix series

Yt), and S is the number of multiple series (columns of the matrix series Yt).

In section 5.1, we will show how to simulate an MAR(1) model with length N by consid-

ering a matrix normal distribution for the matrix error terms εt, t = 1, 2, . . . , N . The process

of calculating the autocorrelation function (ACF) of MAR(1) models is briefly described in

section 5.2. Finally, the chapter will finish by illustrating a numerical study. The computer

codes for this study are in Appendix B.
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5.1 Simulation of Matrix Autoregressive Models

Let Yt be an MAR(1) model with dimension K × S as given in Eq (5.1) by

Yt = µ+
S∑

j=1

S∑
r=1

Aj
rYt−1Erj + εt, t = 0,±1,±2, . . . , (5.2)

where εt is the white noise matrix that has a matrix normal distribution with mean 0, row

(within) covariance matrix Σ, and column (between) covariance matrix Ω with dimension

K ×K and S × S, respectively. That is,

εt ∼ NK×S(0,Ω⊗Σ). (5.3)

Assume that all coefficient matrices Aj
r, the intercept matrix µ, and the covariance

matrices Σ and Ω are known. To simulate MAR models with given parameters, as was

discussed in section 3.4.1, first we can generate a matrix of independent standard normal

random numbers Z1; then, by premultiplying and postmultiplying this matrix of independent

random numbers by the squared roots of the row and column covariance matrices Σ and Ω,

respectively, we obtain the first matrix observation. That is,

ε1 = Σ
1
2Z1Ω

1
2 ; (5.4)

then, by assuming that Y0 ≡ 0, we can obtain the first MAR observation as

Y1 = µ+ ε1. (5.5)

In other words, the first MAR observation is the sum of the matrix of the intercept and

a matrix normal observation. The second MAR observation can be obtained by using the

first MAR observation Y1, and applying Eq (5.2) by adding a new random normal matrix

observation. That is,
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Y2 = µ+
S∑

j=1

S∑
r=1

Aj
rY1Erj + ε2 (5.6)

where, now, ε2 is a new matrix normal observation given by ε2 = Σ
1
2Z2Ω

1
2 . This simulation

process can be continued to obtain an MAR(1) time series with length N .

5.2 Autocorrelation function of MAR(1)

In this section, we briefly explain how to find the autocorrelation functions of a MAR(1)

model by using the Yule-Walker equations. These autocorrelation functions can be used for

further investigations such as in structural diagnostics studies.

Again, assume that all parameters of the MAR(1) model, i.e., the coefficient matrices

Aj
r, and the covariance matrices Σ and Ω are known. First, by using Eq (3.177), we can

obtain Ψ(0) as follows

Ψ(0) =
S∑

j=1

S∑
r=1

S∑
j′=1

S∑
r′=1

(Aj
r ⊗ Ej′r′)Ψ(0)(Erj ⊗Aj′

r′
T
) +Ψε, (5.7)

or equivalently (see Eq (3.179))

V ec(Ψ(0)) =
(
IK2S2 −

S∑
j=1

S∑
r=1

S∑
j′=1

S∑
r′=1

(Ejr ⊗Aj′

r′)⊗ (Aj
r ⊗ Ej′r′)

)−1

V ec(Ψε), (5.8)

where, from Eq (3.5), we have Ψε = T−1Σε. Note that, here, we have Σε = Ω ⊗ Σ;

therefore, Ψε = T−1(Ω⊗Σ). Then, by applying Eq (3.174), the lag function Ψ(h) can be

obtained for all lags h = 1, 2, . . ., as

Ψ(h) =
S∑

j=1

S∑
r=1

(Aj
r ⊗ I)Ψ(h− 1)(Erj ⊗ IK). (5.9)
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Eventually, the autocovariance function of the MAR(1) model at lag h, Γ(h), can be obtained

by premultiplying the transformation matrix T as follows

Γ(h) = TΨ(h). (5.10)

Alternatively, the autocovariance function Γ(h) can be estimated by using the empirical

autocovariance function. Assume that the matrix samples Y1,Y2, . . . ,YN and presample

matrix observations Y−p+1,Y−p+2, . . . ,Y0 are available. First, the mean of the series, υ,

can be estimated by

υ̂ = Ȳ =
1

N + p

N∑
t=−p+1

Yt. (5.11)

Then, we can estimate the lag function Ψ(h) as

Ψ̂(h) =
1

N + p− h

N−h∑
t=−p+1

(Yt+h − Ȳ)⊗ (Yt − Ȳ)T . (5.12)

Eventually, similarly to Eq (5.10), the estimated autocovariance function Γ̂(h) can be ob-

tained by using the transformation matrix T as

Γ̂(h) = TΨ̂(h). (5.13)

5.3 Illustration

In this section, we will consider different combinations of eigenvalues for coefficient matrices

Aj
r, r, j = 1, 2, . . . , S, in Eq (5.1), and review the structure of the autocorrelation function
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(ACF) and partial autocorrelation function (PACF) of matrix autoregressive processes of

order one (MAR(1)) for true models. For convenience, as in section 3.4.1, let us consider

MAR(1) processes with dimension K × S = 3 × 2. Then, all coefficient matrices Aj
r’s are

K ×K = 3× 3 matrices, one for each series j = 1, 2.

We will study the patterns of the ACF and PACF of stationary MAR(1) models. Recall

that an MAR(1) model is stationary if all eigenvalues of the coefficient matrix B defined

in Eq (3.37) have modulus less than one. Also recall from Eq (3.37) that the relationship

between the coefficient matrix B and the coefficient matrices Aj
r, r, j = 1, 2 . . . , S, is given

by

B =
S∑

j=1

S∑
r=1

(Ejr ⊗Aj
r) =



A1
1 A1

2 . . . A1
S

A2
1 A2

2 . . . A2
S

...
...

AS
1 AS

2 . . . AS
S


. (5.14)

Note that, having all eigenvalues of coefficient matrices Aj
r in modulus less than one

does not guarantee that eigenvalues of coefficient matrix B are in modulus less than one.

Therefore, to generate a stationary MAR(1), we choose the eigenvalues of coefficient matrices

Aj
r, r, j = 1, 2 . . . , S, such that the eigenvalues of the coefficient matrix B be less than one

in modulus.

To generate a 3 × 2 stationary MAR(1) model, first assume that all 3 × 3 coefficient

matrices Aj
r’s are known and given. Then, as explained in section 5.1, we can simulate a

stationary MAR(1) by using the given coefficient matrices, and the known intercept matrix

µ, the given 3 × 3 row (within) and the given 2 × 2 column (between) matrices Σ and

Ω, respectively. For the sake of consistency in our comparisons, let us to fix these matrix

parameters as follows
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µ =


12.16 34.24

−42.37 −27.69

4.26 36.12

 , Ω =

 3.57 −0.68

−0.68 1.45

 , Σ =


1.82 −0.42 −0.67

−0.42 1.93 −0.39

−0.67 −0.39 2.57

 .

(5.15)

5.3.1 Negative Eigenvalues

Assume all eigenvalues of all 3× 3 coefficient matrices Aj
r’s are values between negative one

and zero. In other words, let λrj,1, λrj,2, . . . , λrj,K be the eigenvalues of Aj
r, r, j = 1, 2 . . . , S;

then, assume that for all i = 1, 2, . . . , K, −1 < λrj,i < 0. Also assume that the intercept

matrix µ, the row and column covariance matrices Σ and Ω are known and have the same

values as in Eq (5.15). We choose randomly numbers between negative one and zero to set

eigenvalues λrj,i, r, j = 1, 2, and i = 1, 2, 3. These values are set as follows

λ11,1 = −0.29, λ11,2 = −0.17, λ11,3 = −0.01; λ12,1 = −0.57, λ12,2 = −0.56, λ12,3 = −0.001

λ21,1 = −0.18, λ21,2 = −0.80, λ21,3 = −0.42; λ22,1 = −0.54, λ22,2 = −0.08, λ22,3 = −0.55.

(5.16)

Now, we need to generate the coefficient matrices Aj
r with these given sets of eigenvalues.

To this end, for each set of given eigenvalues, we first generate the matrix D with entries

of uniform random values between zero and one, then we put the given eigenvalues on the

diagonal of D, and zero on the lower off diagonal elements. Therefore, D is a upper trian-

gular matrix that has given eigenvalues in its diagonal entries. Furthermore, we generate an

invertible matrix S with the same dimension of a given set of eigenvalues by using the “gen-

PositiveDefMat” function in the software package R. Eventually, we generate the coefficient

matrix Aj
r such that it has eigenvalues λrj,i, i = 1, 2, . . . , K, by Aj

r = SDS−1.
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Figure 5.1: A stationary MAR(1) model with negative eigenvalues of coefficient matrices,
K = 3, S = 2

Their corresponding coefficient matrices Aj
r are given by

A1
1 =


−0.20 0.60 0.70

−0.01 −0.24 0.67

0.00 0.02 −0.02

 , A2
1 =


−0.54 −0.01 0.27

0.02 −0.58 0.20

0.06 −0.05 −0.01



A1
2 =


−0.18 0.05 0.81

0.02 −0.81 0.13

0.00 −0.01 −0.42

 , A2
2 =


−0.64 1.07 0.61

−0.05 0.00 0.43

0.00 0.01 −0.53

 . (5.17)

Figure 5.1 shows a simulated stationary MAR(1) series with those known parameters in Eq

(5.15) and the coefficient matrices Aj
rs given in Eq (5.17). The small box on the right hand

of Figure 5.1 identifies the corresponding series of the K × S = 3× 2 matrix time series Yt.

Then, we calculate the cross-ACF for the stationary MAR(1) series plotted in Figure 5.1

by using the Yule-Walker equations described in section 5.2 of this chapter. First, note that,
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from Eq (5.4), we have Σε = Ω ⊗Σ; then, by using the relationship between Ψε and Σε

in Eq (3.5), we can calculate Ψε as follows

Ψε = T−1Σε = T−1(Ψ⊗Ψ) (5.18)

where T is the transformation matrix defined in Eq (3.6). Therefore, because now all of the

parameters of Yule-Walker equations are known, we can calculate the lag functions Ψ(h),

h = 1, 2, . . .. Once we have these lag functions, the autocovariance lag function Γ(h) can be

found from Eq (5.13).

This cross-ACF is given as a level plot in Figure 5.2. Note, because K = 3 and S = 2 we

have K × S = 6 series. Therefore, 6 × 6 = 36 individual cross-ACFs exist. In other words,

for each lag, we have a 6× 6 cross-autocorrelation matrix (see Figure 5.2). All 36 individual

ACFs are extracted from the level plot in Figure 5.2, and are shown in Figure 5.3 for lags

h = 1, 2, . . . , 40.
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Figure 5.2: The ACF of the MAR(1) series of Figure 5.1 (negative eigenvalues)

Now, for each lag h, if the level plot of the autocorrelation function matrix in Figure 5.2

is split into four equal K ×K = 3× 3 parts (submatrices), then the two diagonal matrices
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will represent the autocorrelations of each vector time series (within the variables of each

vector series, i.e., for j = 1, 2 = S) at lag h, and the offdiagonal matrices will represent the

cross-autocorrelations between the vector series S = 1 and S = 2 at lag h.

Figures 5.3 (a) and (d) show the extracted individual ACFs of the diagonal submatrices

after splitting the level plot in Figure 5.2 into four parts. In fact, Figures 5.3 (a) shows the

individual ACFs between variables of the vector series S = 1, and Figure 5.3 (d) shows the

individual ACFs between variables of the vector series S = 2.

On the top of each plot in Figures 5.3, there is a pair of numbers that specifies the exact

individual ACF of series. These pairs are obtained by
(
i + (j − 1)K, i′ + (j′ − 1)K

)
, where

i, i′ = 1, 2, . . . , K, and j, j′ = 1, 2, . . . , S. In our example, we have K = 3, and S = 2.

Therefore, in Figure 5.3 (a) where S = 1, the pairs on top of each plot are obtained by

(i, i′), i, i′ = 1, 2, 3; and in Figure 5.3 (d), where S = 2, the pairs on top of the plots are

obtained by (i+ 3, i′ + 3), i, i′ = 1, 2, 3.

Similarly, these pairs show the cross-ACFs between series of the vector time series S = 1

and the vector time series S = 2. In particular, in Figure 5.3 (b) we have j = 1, and j′ = 2;

hence these pairs are obtained by (i, i′ + 3), i, i′ = 1, 2, 3; and in Figure 5.3 (c) where j = 2,

and j′ = 1, they are obtained by (i+ 3, i′), i, i′ = 1, 2, 3.

Note that the plots in Figures 5.3 (a) and (d), when i = i′ ( diagonal plots ) are autocorre-

lation functions of the individual variables in each of the vector time series S = 1 and S = 2,

respectively. However, plots when i ̸= i′ (off-diagonal plots) are the cross-autocorrelation

functions within the variables in each vector time series. On the other hand, the plots in

Figures 5.3 (b) and (c), are cross-autocorrelation functions between the series of the two

vector time series S = 1 and S = 2.
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Figure 5.3: (a) Autocorrelations functions for lag h = 1, 2, . . . , 40 for series in Figure 5.1
when S = 1 (negative eigenvalues)

5.3.2 Positive Eigenvalues

Now, assume that all eigenvalues of all 3 × 3 coefficient matrices Aj
r’s have values between

zero and one, i.e., 0 < λrj,i < 1, i = 1, 2, . . . , K. Then, similarly to the case of negative

eigenvalues in section 5.3.1, we used the same known intercept matrix µ, and the same known

row and column covariance matrices Σ and Ω, respectively, as given in Eq (5.15). Then, by
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Figure 5.3: (b) Cross-autocorrelations functions between series of S = 1 and series of S = 2
for lag h = 1, 2, . . . , 40 (negative eigenvalues)

using these parameters, we simulate a stationary MAR(1) series, when the eigenvalues of all

coefficient matrices are positive. Figure 5.4 shows a simulated MAR(1) model with

λ11,1 = 0.22, λ11,2 = 0.26, λ11,3 = 0.31; λ12,1 = 0.69, λ12,2 = 0.30, λ12,3 = 0.005

λ21,1 = 0.41, λ21,2 = 0.23, λ21,3 = 0.46; λ22,1 = 0.09, λ22,2 = 0.53, λ22,3 = 0.02. (5.19)
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Figure 5.3: (c) Cross-autocorrelations functions between series of S = 2 and series of S = 1
for lag h = 1, 2, . . . , 40 (negative eigenvalues)

The coefficient matrices Aj
r with these given eigenvalues are generated similarly as for

those in the negative eigenvalue case by Aj
r = SDS−1, where D is an arbitrary upper

triangular matrix with given eigenvalues set on diagonal entries, and S is an invertible

matrix generated by using the “genPositiveDefMat” function in the software package R. We

choose uniform random values between zero and one for upper off diagonal entries of D.
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Figure 5.3: (d) Autocorrelations functions for lag h = 1, 2, . . . , 40 for series when S = 2
(negative eigenvalues)

The corresponding coefficient matrices Aj
r of the given eigenvalues in Eq 5.19 are obtained

as follows
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Figure 5.4: A stationary MAR(1) model with positive eigenvalues of coefficient matrices,
K = 3, S = 2

A1
1 =


0.09 0.38 0.73

−0.16 0.11 0.37

−0.08 0.12 0.58

 , A2
1 =


0.68 0.61 0.63

0.05 0.21 0.69

−0.02 0.01 0.11



A1
2 =


0.43 0.82 0.38

−0.02 0.17 0.02

0.00 0.09 0.51

 , A2
2 =


0.07 0.15 0.24

0.01 0.51 0.11

0.01 0.07 0.07

 . (5.20)

As in the negative eigenvalues case, we obtain the cross-ACF of the MAR(1) series in

Figure 5.4 by using the Yule-Walker equations, and the cross-ACF is shown as a level plot

in Figure 5.5.

Eventually, we extracted all 36 individual ACFs from the level plot in Figure 5.5, and

they are shown in Figures 5.6. Figures 5.6 (a) and (d) show the individual AFCs for within
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Figure 5.5: The ACF of the MAR(1) series of Figure 5.4 (positive eigenvalues)

variables of the vector series S = 1 and S = 2, respectively. On the other hand, they are

the extracted individual ACFs of the diagonal autocorrelation matrices of the split level

plot in Figure 5.5. Split level plot means, similarly to that the negative eigenvalues case,

the autocorrelation matrix of the level plot at lag h is split into four parts (submatrices).

Figures 5.6 (b) and (c) show the the offdiagonal cross-autocorrelation matrices of the split

level plot in Figure 5.5 between the vector series S = 1 and S = 2.

Similarly to the negative eigenvalues case, the pairs on top of the plots are represent-

ing the individual series. They are obtained by using
(
i + (j − 1)K, i′ + (j′ − 1)K

)
where

i, i′ = 1, 2, . . . , K, and j, j′ = 1, 2, . . . , S. For example, in Figure 5.6 (a),
(
i + (j − 1)K, i′ +

(j′ − 1)K
)

= (1, 1) (top left plot) corresponds to j = j′ = 1 and i = i′ = 1, and(
i + (j − 1)K, i′ + (j′ − 1)K

)
= (1, 3) (top right plot) corresponds to j = j′ = 1 and

i = 1, i′ = 3. Similarly, in Figure 5.6 (b),
(
i+ (j − 1)K, i′ + (j′ − 1)K

)
= (3, 4) (bottom left

plot) corresponds to j = 1, j′ = 2, and i = 3, i′ = 1.
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Note that, analogous to the negative eigenvalues case, the plots in Figures 5.6 (a) and

(d), when i = i′ ( diagonal plots ) are autocorrelation functions of the individual variables

in each of the vector time series S = 1 and S = 2, respectively. However, plots when

i ̸= i′ (off-diagonal plots) are the cross-autocorrelation functions within the variables in each

vector time series. Furthermore, the plots in Figures 5.6 (b) and (c), are cross-autocorrelation

functions between the series of the two vector time series S = 1 and S = 2.
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Figure 5.6: (a) Cross-autocorrelations functions for lag h = 1, 2, . . . , 40 for series in Figure
5.4 when S = 1 (positive eigenvalues)
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Figure 5.6: (b) Cross-autocorrelations functions between series of S = 1 and series of S = 2
for lag h = 1, 2, . . . , 40 (positive eigenvalues)
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Figure 5.6: (c) Cross-autocorrelations functions between series of S = 2 and series of S = 1
for lag h = 1, 2, . . . , 40 (positive eigenvalues)
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Figure 5.6: (d) Autocorrelations functions for lag h = 1, 2, . . . , 40 for series when S = 2
(positive eigenvalues)
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Chapter 6

Summary and Future Works

In this dissertation, we introduced a class of matrix time series models called matrix autore-

gressive (MAR) models for dealing with a new feature of time dependent data (matrix time

series data). These types of data, essentially have two main components which can be consid-

ered as rows and columns of matrix observations (sometimes called two-way or transposable

data). Moreover, they usually are collected over time; hence, they are time dependent, and

therefore they constitute a matrix time series data set. If “time” be considered as a third

component, then in the literature sometimes they are referred to as three-way data sets.

After introducing a matrix autoregressive model of order one and p for dealing with the

situation where there are multiple sets of multivariate time series data, their infinite order

moving average analogues are obtained, and this moving average representation is used to

derive explicit expressions of cross-autocovariance and cross-autocorrelation functions of the

MAR models. Stationarity conditions are also provided. We estimate the parameters of the

proposed matrix time series models by ordinary and generalized least squares methods, and

the maximum likelihood estimation method by considering the matrix normal distribution

for the matrix error terms. By applying matrix time series models, the number of parameters

to be estimated is dramatically decreased by increasing the dimension of the matrix time
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series data relative to thinking about the problem in a traditional way (columns-fold vector

time series).

This is the beginning of the development of modeling and analysis of matrix time series

data, and much exciting and interesting work remains to be done. Some of these important

future work can be listed as follows:

• Test for determining the matrix autoregressive order and checking the model adequacy;

• Testing of normality of a matrix white noise process;

• Studying to find any possible relationship between the stationarity of some individual

vector time series, Y.jt, j = 1, 2, . . . , S, and the stationarity of the matrix time series

Yt;

• Studying to see if there is a connection between the cointegrated vector time series,

Y.jt, j = 1, 2, . . . , S, and the stationary matrix time series Yt = (Y.1t, Y.2t, . . . , Y.St);

• Introducing finite matrix moving average (MMA), and matrix autoregressive moving

average (MARMA) processes (mixed model);

• Estimation of MARMA models;

• Specification and checking the adequacy of MARMA models;

• Introducing matrix state space models;

• etc.
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Appendix A

This appendix provides the R codes for the simulation in the stationarity study of matrix

time series in chapter 3, section 3.4.1. In this program, we can generate a stationary or

nonstationary matrix autoregressive of order one (MAR(1)) by controlling systematically

the stationarity conditions of matrix time series data given in section 3.4.

# Simulating Matrix Time Series

##############################################################################

#Assume that Y is matrix normal with mean matrix mu and row and column

#dispersion matrices Sigma and Gamma, respectively.

#Isn’t Y = AZB + mu, where Z is a matrix of independent N(0, 1)’s, A is

#the square root matrix of Sigma (the dispersion matrix of the rows) and

#B is the square root matrix of Gamma. It should be easy to write this

#function in R.

##############################################################################

K=3

S=2

# generate the two covairance matrix for Omega (Covaraince matrix of columens),

# and Sigma (the covaraince matrix if rows) Sigam.epislon will be the Kronecker

# product of Omega and Sigma (Look at the notations in the estimation part)

install.packages("clusterGeneration")

library(clusterGeneration)

Omega= genPositiveDefMat(dim=S, covMethod=c("eigen"), rangeVar=c(1,4), lambdaLow=1, ratioLambda=4)

Sigma=genPositiveDefMat(dim=K, covMethod=c("eigen"), rangeVar=c(1,5), lambdaLow=1, ratioLambda=6)

Sigma.epsilon=Omega$Sigma %x% Sigma$Sigma # Covaraince matrix of error matrix epsilon (K by S)

#finding the Squre root of Omega:

#Omega.eig <- eigen(Omega$Sigma)

#Omega.sqrt <- Omega.eig$vectors %*% diag(sqrt(Omega.eig$values)) %*% t(Omega.eig$vectors)

#finding the Squre root of Sigma:

#Sigma.eig <- eigen(Sigma$Sigma)

#Sigma.sqrt <- Sigma.eig$vectors %*% diag(sqrt(Sigma.eig$values)) %*% solve(Sigma.eig$vectors)

143



Mnorm=function(K, S){

Z=matrix( rnorm(K*S,mean=0,sd=1), K, S)

# Now we can generate the random normal matrix distribution with mean zero and

# covariance matrix "Sigma.epsilon"

epsilon=Sigma.sqrt%*% Z %*% Omega.sqrt

return(list(epsilon))

}

#A=Mnorm(K,S)

####################################################################################

# this function produce the matrix E^{M\times N}_{ij}

matrix.E=function(M,N,i,j){

E=matrix(nrow=M, ncol=N,0)

E[i,j]=1

return(E)

}

#matrix.E(4,3, 2,1)

######################################################################################

# generate coefficient matrix A_r^j

#Put the eigenvalues on the diagonal, 0 everywhere below the

#diagonal, anything you wish above the diagonal.

#If that’s too simple, multiply on one side by S and on the other

#by S^(-1) where S is any invertible matrix.

#If you want the matrix to be symmetric, use 0 above the diagonal

#as well as below, and make S an orthogonal matrix.

library(MASS)

library(clusterGeneration)

#install.packages(’eigeninv’)

#library(eigeninv)

Arj=function(dim, ev= runif(dim, 0, 10)){

D<- matrix(runif(dim^2), dim,dim)

D[upper.tri(D)]=0

diag(D)=ev

S= genPositiveDefMat(dim=K, covMethod=c("eigen"), rangeVar=c(1,4), lambdaLow=1, ratioLambda=4)$Sigma

A=S %*% D %*% solve(S)

return(A)

}
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#Arj=function(dim, ev= runif(dim, 0, 10)){

# A= eiginv(ev,dim)

# return(A)

# }

##############################################################################

#install.packages("matrixcalc")

#library("matrixcalc")

##############################################################################

K=3

S=2

N=200

#mu=matrix(runif(K*S, -44,54),K,S)

for(m in 1:100){

VectorSimu=matrix(nrow=N+1, ncol=K*S, 0)

Sample=array(dim=c(K,S,N+1),0) # will hold the simulated matrix TS

A=array(dim=c(K,K,S^2)) # will hold coefficient matrix A_r^j

Eigenvalues=vector(length=S^2*K) # will hold eigenvalues of all A_r^j matrices

sumev=0 # will hold the sum of eigenvalues vectors of each A_r^j

for(i in 1:S^2){

# the ranges of random eigenvalues impose for the coeficient matrices

ev=runif(K,0,1)

sumev=sumev+ev

Eigenvalues[((i-1)*K+1):(i*K)]=ev

A[,,i]=Arj(K,ev )

}

Eigenvalues

sumev

# find the sum of all A_r^j to check what is the eigenvalues of the sum-matrix!

Atotal=matrix(nrow=K, ncol=K,0) # will hold sum of all coefficient matrices A_r^j

for(i in 1:S^2){

Atotal=Atotal+A[,,i]

}

EigenTotal=eigen(Atotal)

EigenTotal$values

# find the modulus of eigenvlus of total matrix

ModulusET=vector(length=K)
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for(i in 1:K){

ModulusET[i]=sqrt(Re(EigenTotal$values[i])^2 + Im(EigenTotal$values[i])^2)

}

ModulusET

#

AvectorTS=matrix(nrow=K*S, ncol=K*S)

for(j in 1:S){

for(r in 1:S){

AvectorTS[((j-1)*K+1):(j*K) ,((r-1)*K+1):(r*K)]=A[,,(j*r)+(j-1)*(S-r)]

}}

EivalVectorTS=eigen(AvectorTS)$values

EivalVectorTS

# find the modulus of eigenvlus of coeffeicnt matrix for Vector TS

ModulusEVTS=vector(length=K*S)

for(i in 1:(K*S)){

ModulusEVTS[i]=sqrt(Re(EivalVectorTS[i])^2 + Im(EivalVectorTS[i])^2)

}

ModulusEVTS

########################################################################

# simulate ’N’ Matrix Time Sereis put them in a array

for(i in 2:N+1){

F=0

for(j in 1:S){

for(r in 1:S){

F=F+A[,,(j*r)+(j-1)*(S-r)] %*% Sample[,,i-1] %*% matrix.E(S,S,r,j)

}}

mr=Mnorm(K,S)

Sample[,,i]=F+mr[[1]]+mu

VectorSimu[i,]=AvectorTS %*% as.matrix(VectorSimu[i-1,])+vec(mr[[1]])+ vec(mu)

#print(Sample[,,i])

#print(VectorSimu[i,])

}

########################################################################

# put arry in a matrix

FinalSample=matrix(nrow=N,ncol=K*S)

for(i in 1:K){

for(j in 1:S){
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FinalSample[,(i*j)+(i-1)*(S-j)]=Sample[i,j,2:(N+1)]

}}

# check the stationary condition

if(ModulusEVTS[1]<.95){

print(" ModulusEVTS: ")

print(ModulusEVTS)

print(" Eigenvalues: ")

print(Eigenvalues)

print(" ModulusET: ")

print(ModulusET)

t=2:200

par(mfrow=c(1,2))

matplot(,FinalSample[2:200,], xlab="Time ",type="l")

matplot(,VectorSimu[2:200,], xlab="Time ", type="l")

exit

write.table(VectorSimu, "StationaryMAR1-PositiveEigen.txt")

write.table(FinalSample, "FinalSample1-Statioanry-Pos.txt")

write.table(mu, "mu1-Statioanry.txt")

write.table(AvectorTS, "A1-Statioanry-PositiveEigen.txt")

write.table(Sigma.epsilon, "Sigma.epsilon-Statioanry.txt")

write.table(Omega$Sigma, "Omega-Statioanry.txt")

write.table(Sigma$Sigma, "Sigma-Statioanry.txt")

write.table(Eigenvalues, "Eigenvalues-PositiveEigen.txt")

}#end of if

}# end of for loop with counter "m"

}
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Appendix B

The R codes that we used in chapter 5 to find autocorrelation functions of the matrix

autoregressive model of order one (MAR(1)) are given here. Note that, for simulation we

assumed that all parameters of the model are known. Then, we used Yule-Walker equations

to find autocovariance and autocorrelation functions.

# find correlation matrix for MAR(1)

K=3

S=2

SigmaW=read.table("Sigma.epsilon-Statioanry-v2.txt")

AvectorTSW=read.table("A1-Statioanry-v2.txt")

SigmaW=read.table("Sigma.epsilon-Statioanry-Neg.txt")

AvectorTSW=read.table("A1-Statioanry-Neg.txt")

SigmaW=read.table("Sigma.epsilon-Statioanry-Pos.txt")

AvectorTSW=read.table("A1-Statioanry-NegativeEigen.txt")

SigmaW=Sigma.epsilon

#AvectorTSW=AvectorTS

AW=array(dim=c(K,K,S^2)) # will hold coefficient matrix A_r^j

for(j in 1:S){

for(r in 1:S){

AW[1:K,1:K,((j*r)+((j-1)*(S-r)))]= as.matrix(AvectorTSW[((j-1)*K+1):(j*K) ,((r-1)*K+1):(r*K)])

}

}

#################################################################################################

#generate matrix E_rj

matrix.E=function(M,N,i,j){

E=matrix(nrow=M, ncol=N,0)

E[i,j]=1

return(E)
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}

###############################################################################################

install.packages("matrixcalc")

library(matrixcalc)

# Here we are using Yule-Walker equations

# Finally, my code is giving the correct answer of Yule-Walker equations for MAR(1) #Ok

T<- commutation.matrix( S, K )

#T will give the Transformation matrix T in the Matrix Time Series Models paper!

# Find the \psi(0) given in Eq (9.9) and (9.10)

HH=matrix(nrow=K^2*S^2,ncol=K^2*S^2,0)

for(j in 1:S){

for(r in 1:S){

for(j1 in 1:S){

for(r1 in 1:S){

HH=HH+((matrix.E(S,S,j,r)%x%AW[,,(j1*r1)+(j1-1)*(S-r1)])%x%(AW[,,(j*r)+(j-1)*(S-r)]%x%matrix.E(S,S,j1,r1)))

}

}

}}

ZZ=solve( diag(K^2*S^2)- HH )%*%vec(solve(T)%*% as.matrix(SigmaW))

Psi0=matrix(ZZ, K*S,K*S)

Gamma0=T%*%Psi0

h=40 # number of lags

D= diag(diag(Gamma0))

D=sqrt(D) # will be used to obtaion correlation matrix

R=array(dim=c(K*S,K*S,h)) # will hold Correlation matrix rho

for(i in 1:h){

P=get(paste("Psi",i-1,sep=""))

Sum=matrix(nrow=K*S,ncol=K*S,0)

for(j in 1:S){

for(r in 1:S){

Sum=Sum+ (AW[,,(j*r)+(j-1)*(S-r)]%x% diag(S))%*% P %*% (matrix.E(S,S,r,j)%x%diag(K) )

}}

G1=T%*%Sum

G2=T%*%Sum

# Here we are changing the Gamma to be same as the Gammaprime (Gamma when we consider the
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# vec of K\times S matrix as vector time sereis) becasue the standard formula to obtain rho

# matrix does not properly work with Gamma that obtaiend from MAR (off diagonal blocks of

# Gamma of MAR are transpose of the off diagonal block elements Gammaprime of VAR )

for(l in 1: S){

for(m in 1:S){

if(l!=m){

G2[(((l-1)*K)+1):(l*K),(((m-1)*K)+1):(m*K)]=t(G2[(((l-1)*K)+1):(l*K),(((m-1)*K)+1):(m*K)])

}

}}

Ro=solve(D)%*%(G2)%*%solve(D)

# reorder the Ro matrix (off diagonal part) to get corrleation matrix for MAR models same as it was

# for Gamma in MAR cases

for(l in 1: S){

for(m in 1:S){

if(l!=m){

Ro[(((l-1)*K)+1):(l*K),(((m-1)*K)+1):(m*K)]=t(Ro[(((l-1)*K)+1):(l*K),(((m-1)*K)+1):(m*K)])

}

}}

R[,,i]=Ro

assign(paste(’Psi’, i, sep=’’), Sum)

assign(paste(’Gamma’, i, sep=’’), G1)

assign(paste(’rho’, i, sep=’’), Ro)

}

########################################################################################################

z <- cor(mtcars)

require(lattice)

levelplot(R,panel = panel.levelplot,region = TRUE)

names(R)=C(1:20)

idx=seq(1:6)

R1=setZ(R,idx)

#lag=c(’lag=1’,’lag=2’,’lag=3’,’lag=4’,’lag=5’,’lag=6’,’lag=7’,’lag=8’,’lag=9’,’lag=10’,

#’lag=11’,’lag=12’,’lag=13’,’lag=14’,’lag=15’,’lag=16’,’lag=17’,’lag=18’,’lag=19’,’lag=20’)

lag=paste("lag=", 1:h, sep="")

dimnames(R)=list(1:6,1:6,lag)
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levelplot(R[,,1:9], xlab="Variable1", ylab="Variable2",colorkey = TRUE,region = TRUE)

#plot1=levelplot(R[,,1], xlab="Variable1", ylab="Variable2",colorkey = TRUE,region = TRUE)

#plot2=levelplot(R[,,2], xlab="Variable1", ylab="Variable2",colorkey = TRUE,region = TRUE)

#plot3=levelplot(R[,,3], xlab="Variable1", ylab="Variable2",colorkey = TRUE,region = TRUE)

#plot4=levelplot(R[,,4], xlab="Variable1", ylab="Variable2",colorkey = TRUE,region = TRUE)

#grid.arrange(plot1,plot2,plot3,plot4,ncol=2 ,nrow=2)

# S=1, K=1,2,3

par(mfrow=c(3,3))

for(i in 4:6){

for(j in 1:3){

plot(R[i,j,],type="h",xlab=’h’,ylab=’corr’,mgp=c(2,1,0),main=paste(’(’,i,’,’,j,’)’),cex.main=1)

}

}

plot(R[4,6,],type="h", xlab=’h’,ylab=’corr’)

par(mfrow=c(2,2))

# Here, I plot the ACF of some pairs

#par(mar=c(.1,2.1, .1, 2.1))

#par(oma=c(0,0,.25,.25))

par(mai=c(0.65,0.45,0.3,0.1)) # give enaough margin for plots

#par(mar=c(0.15,0.15, 0.15, 0.15))

#par(oma=c(.5,0.5,0.5,0.5))

#mar=c(5.1,4.1,4.1,2.1)

# oma=c(10,10,10,10)

e1=expression((i~’,’~j)~’=’(1,2)~~~~~~~ (i~plain("’")~’,’~j~plain("’"))~’=’(2,2))

plot(R[2,4,],type="h", xlab=’lag’, mgp=c(2,1,0), ylab="", main=e1 , cex.main=1)

abline(a=0,b=0)

#title(main= labelsX)

e1=expression((i~’,’~j)~’=’(3,1)~~~~~~~ (i~plain("’")~’,’~j~plain("’"))~’=’(3,1))

plot(R[5,5,],type="h", xlab=’lag’, mgp=c(2,1,0), ylab="", main=e1, cex.main=1)

abline(a=0,b=0)
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#title(main="(5, 5)")

e1=expression((i~’,’~j)~’=’(3,1)~~~~~~~ (i~plain("’")~’,’~j~plain("’"))~’=’(3,2))

plot(R[5,6,],type="h", xlab=’lag’, mgp=c(2,1,0), ylab="",main=e1, cex.main=1)

abline(a=0,b=0)

#title(main="(5 , 6)")

e1=expression((i~’,’~j )~’=’(3,2)~~~~~~~ (i~plain("’")~’,’~j~plain("’"))~’=’(2,1))

plot(R[6,3,],type="h", xlab=’lag’, mgp=c(2,1,0), ylab="",main=e1, cex.main=1)

abline(a=0,b=0)

}
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