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Minimizing subtle variations in network environ analysis (NEA), the two mathematical 

building blocks of NEA, the law of conservation and the definition of throughflow, are 

separately developed and then carefully combined to construct a consistent NEA derivation.  The 

conservation equations are derived using the Reynolds transport theorem with an Eulerian 

control volume to differentiate the concepts of flow and storage.  Terms and concepts related to 

NEA, such as self-flow, turnover rate, storage, accumulation, and the necessary inclusion of a 

discrete time step in environ storage analysis, are clarified.  A comparative NEA methodology is 

then derived to holistically explore controlling relationships in ecosystems where the term 

distributed control is adopted to describe a diffuse and decentralized concept of control residing 

in the complexity of network organization.  Starting with “open-loop” control theory, three 

ecological control metrics (control ratio, CR; control difference, CD; and system control, scj) are 

defined in an environ-theoretic framework by considering pair-wise and system-wide distributed 

control relationships.  These control relationships are then explored using a sixteen-season seven 

compartment steady-state model of nitrogen flow in the Neuse River estuary, North Carolina, 

USA (Christian, R.R, Thomas, C.R., 2003. Network analysis of nitrogen inputs and cycling in 



the Neuse River Estuary, N.C., USA. Estuaries 26 (3):815-828).  Model compartments of 

particulate nitrogen in sediment (Sediment) and Nitrates-Nitrites (NOx) are shown to participate 

in opposing roles.  If a greater nitrogen-exchange magnitude denotes proportional dominance 

and therefore control, the control metrics reveal Sediment is overwhelmingly controlled by all 

components, whereas NOx controls all components.  However, if a limiting factor perspective is 

used (e.g., Sediment sequestering N with a controlled release to NOx), the conclusions are 

opposite; Sediment controls all other components and all other components control NOx.  The 

meaning of “control” in connection with resource stocks and flows in ecosystems still needs 

resolution.  Low ratios of component throughflow and their respective boundary flows are shown 

to be possible indicators of a component’s control dominance.  
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INTRODUCTION 



 

 

2

1.1 PREFACE 

In an ecosystem the organisms and the inorganic factors alike are components which are 
in relatively stable dynamic equilibrium.  Succession and development are instances of the 
universal processes tending towards the creation of such equilibrated systems. 

— Arthur G. Tansley, July , 1935 

While species independently interact with their environment in subtle and virtually 

imperceptible ways, the world’s behavior remains reasonably predictable.  As an example, 

consider that an ecologist and an engineer shared their thoughts on ecosystem functionality while 

taking two walks.  Their first stroll was through the maritime forest of Cumberland Island, a 

barrier island off the Coastal Plain region of southern Georgia, USA.  The ecologist identified 

some of the common, possibly salt-spray climax, flora species including cabbage palm (Sabal 

palmetto), saw palmetto (Serenoa repens), salt meadow cord-grass (Spartina patens), juniper 

(Juniperus virginiana), Spanish moss (Tillandsia usneoides), resurrection fern (Polypodium 

polypodioides), and live oak (Quercus virginiana), and summarized from previous studies that 

the plants were uniquely adapted to both the wind and the salt spray.  The engineer observed the 

salt and wind-sculpted system articulated by the ecologist but then considered the physics of the 

cantilevered live oak branch.  Its cantilevering posture was certainly assured and predictable.  A 

quick calculation (reference Appendix G) showed the weight of a commonly found 0.25 meter 

diameter, 12 meters long, branch generated a twisting torque of ~56,000 Joules at its base, an 

enormously large number given the stature and calm stability evident before their eyes.  He 

interrupted the pause and highlighted the magnitude by proceeding to show this was equivalent 

to the torque output of ~150 large 4.6L truck engines.  This magnitude of force can produce a lot 

of damage.  They paused, looked around, and realized yet longer and larger diameter branches 

were everywhere.  The ecologist climbed on the branch and, at equilibrium, despite the internal 

stresses, it supported him nicely.        



 

 

3

On their second hike, the engineer and ecologist stood together on the Porter Creek trail 

in the Smoky Mountains National Park, USA, and considered the downhill flow of the nearby 

river to be a fairly constant and predictable event.  The ecologist described evapotranspiration 

while also considering the watershed catch basin.  The engineer considered the energy of the 

water descending down the mountain.  While they both stood on the bank and watched, the air 

they inhaled contained but a few drops of the water that was simultaneously being transported 

back upstream.  Only together, with their mutual observations, did they both reach the epiphany.  

The imposing majesty of the river flows in two directions!  Downhill we clearly witness as it 

splits its watershed, and the other, uphill, decentralized in its mechanics, such that we are not 

privileged to watch.  Indeed, considering the processes involved, the uphill rise is more awe 

inspiring.  The energy input to push the heavy water back uphill uniquely equals the energy 

output extracted by the system during the water’s descent.  On another scale, consider the energy 

expenditure to push the Amazon river back upstream.  Yet, this is happening in a way that we 

cannot watch.   

Through their collaborative observations, together they concluded that the subtle and 

diffuse events in an ecosystem combine into choreographed and predictable, albeit sometimes 

unseen, behavior.  To the ecologist, the system is comprised of multiple species acting in 

concert.  To the engineer, the system produces raw demonstrations of energy, with water moving 

up and down hills, and wood subjected to, but withstanding, massive internal stresses.  Their 

separate perspectives combined to better articulate basic ecosystem functionality.  Given this 

functionality, what manages, controls, or balances the decentralized fabric of the innumerable 

and almost imperceptibly small relationships that lead to these macroscopic and predictable 
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actions?  Through such personal experiences as just described lies the impetus for this 

dissertation.   

The specific focus of this research is to further develop the foundations of a formal 

mathematical approach to ecosystem control while specifically accounting for both the networks 

under which ecosystems operate and the indirect effects generated within them which dominate 

(Patten, 1983).  Advances in this area will augment our understanding of ecosystem function, 

and then importantly for us, ecosystem sustainability.  The process of achieving this goal 

traverses many developing concepts in systems ecology such as environ analysis, distributed 

control, biogeochemical cycling, indirect effects, and basic first principles equation development.  

This Introduction discusses each of these, and then concludes with a conceptual preface to the 

chapters that follow. 

1.2 CONTROL THEORY 

In our search for the direct road to truth, we should busy ourselves with no object about 
which we cannot attain a certitude equal to that of the demonstration of arithmetic and geometry. 

 — René Descartes, 1644 

The concept of control, by definition, is predicated on a dynamic system where the 

purpose of control is to alter the dynamic behavior.  The word control, noun or verb, has 

hundreds of synonyms or definitions including regulate, restrain, oppress, manage, rule, check, 

monitor, manipulate, influence, or limit, to name only a few.  Unfortunately, the diversity of our 

natural ecosystem functionality affords the possibility of using all these definitions to describe 

the organizational multitudes of biotic and abiotic interactions of materials and energy.  In fact, it 

is the diversity of our ecosystem’s interactions which requires, as of yet, the likewise diversity in 

our vernacular to effectively model or describe the controlling or dynamic system.  However, 

without a commonly accepted framework or model, the various perspectives of ecosystem 

control are lost or diluted in synonymous but slightly nuanced definitions.  We lose our ability to 



 

 

5

understand ecosystem functionality on a greater scale because the piecewise descriptions of our 

model interactions are as wide and varied as the vocabulary we use.   

As such, in the spirit of Descartes’ first-principle pursuits, we are primarily driven to 

begin laying a common mathematical foundation for the distributed constraints under which our 

ecosystems function.  The generally accepted open-loop closed-loop automatic control logic 

derivations and their supporting mathematics for today’s engineered systems do not approach the 

ecosystem as a holistic unit.  Patten (1978b), Patten and Auble (1981), and Dame and Patten 

(1981) introduce a distributed and holistic control measure based on input and output flow 

environs which specifically accounts for the dominance of indirect effects (Patten, 1983).  Fath 

(1998, 2004) extended Patten’s distributed control logic into an alternative and contrasting 

representation of top-down (Hairston et al., 1960; Paine, 1966, 1974) and bottom-up (White, 

1978; Power, 1992) control actions in ecosystems.  Further considering Patten’s original 

distributed control ratio concept, the work herein methodically reviews the original distributed 

control development, redefines its objectives from an automatic control theory perspective, and 

expands its applicability.     

1.2-1 CONTROL THEORY BACKGROUND 

The history of control theory primarily originates from the development of the generally 

recognized lexicon of automatic control theory in engineered systems.  James Watt’s eighteenth 

century centrifugal governor linking output to input (currently known as a servomechanism) for 

the speed control of a steam engine is often listed as the first significant work of systems control.  

In the 1920’s, Minorsky, while working with ship controllers, demonstrated the first aspects of 

stability from the differential equations describing his systems.  In the 1930’s, Nyquist simplified 

the confirmation of closed-loop systems’ stability by considering the open-loop response to 



 

 

6

steady-state sinusoidal inputs.  Around the same time, Hazen worked with the design of relays 

(servomechanisms, a term he derived) to help follow changing input signals.  Frequency 

response, followed by root-locus methods (developed through the 1940’s and early 1950’s) are 

the core of linear time-invariant classical control theory, and their utilization has led to systems 

which both satisfy a wide range of performance indices and are stable.  The term frequency 

response refers to the steady-state response of a system to a sinusoidal input.  Typically the 

frequency of the input signal is varied over a certain range while simultaneously observing the 

resulting system’s response characteristics.  Judicious adjustments are then made to stabilize the 

system.   W. R. Evan’s root-locus method plots the closed-loop poles (roots) of the system’s 

characteristic equation for varying gains of the open-loop transfer functions.  The basic transient 

characteristic of a closed-loop response can be ascertained from the closed-loop poles where the 

open-loop gains are then adjusted, as appropriate, to stabilize the system near a requisite 

performance point.  The frequency response and root-locus methods can lead to stable, albeit 

simple (minimal-input and -output) systems operating at predetermined, but not necessarily 

optimum, performance levels.  As such, since the 1950’s, the emphasis in control design has 

been towards optimization in some meaningful way and towards handling the increased 

complexity of multiple-input and multiple-output systems.  Modern control theory now includes 

the optimal control of deterministic and stochastic systems as well as the adaptive and learning 

control of complex systems where applications of modern control theory exist and continue to 

develop in non-engineering fields including biology, economics, and sociology.            

A fundamental concept within automatic control theory directly applicable to ecological 

network analysis is the concept of stability in the sense of Liapunov.  For a given control system, 

its stability is usually the most important or pursued characteristic.  Stability in the sense of 
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Liapunov provides a uniquely applicable perspective for ecosystems.  Considering a typical 

mechanics problem by comparison, the objective of the designer is to control the motion, flows, 

vibrations, etc. when these are objectionable and to enhance these activities when useful.  The 

Nyquist or Routh’s stability criteria and others are available to illuminate the behavior of linear 

and time-invariant systems.  However, for nonlinear or linear but time-varying systems, the 

second method of Liapunov is the most general method for determining the stability of systems 

of any order.  Classical mechanics theory shows that a vibratory system is stable if its total 

energy (a positive definite function) is continually decreasing (time derivative of the total energy 

function must be negative definite) until an equilibrium state is reached.  Liapunov’s second 

method, otherwise called the direct method for stability assessment, utilizes the physics of this 

observation.  The total energy of an unforced, dissipative mechanical system decreases as the 

state of the system evolves in time.  The correlation of a dissipative mechanical system to the 

solar driven ecosystem is sufficiently obvious.  Absent an energy influx, sunlight for example, an 

ecosystem’s stored energy would dissipate to equilibrium.  Therefore, according to Liapunov’s 

direct method, if the system has an asymptotically stable equilibrium state, then the displaced 

(within the domain of the attractor) but stored energy of the system decays with increasing time 

until it eventually assumes its minimum value at the equilibrium state.  The state vector 

approaches a constant value corresponding to zero energy as time increases.  It is often difficult 

or impossible to define the system’s state vector or, in this case, the energy function for nonlinear 

or time-variant systems.  Liapunov circumvented this difficulty by introducing the scalar 

Liapunov function, a fictitious energy function, as a substitute.  Although derived from and for 

energy considerations, his idea is widely applicable.  Absent the formal definition, if a suitable 

Liapunov function can be found, a system when disturbed can be shown to be, in the sense of 
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Liapunov, either stable (returning to a nearby equilibrium state), asymptotically stable (returning 

to the same equilibrium state from which displaced), or unstable (leaving all nearby equilibrium 

states).  Given the nonlinear or linear time-variant characteristics of ecosystems, stability in the 

sense of Liapunov is a useful characterization for ecosystem behavior.      

Another foundational concept in ecosystem control analysis involves Kalman’s (1963) 

controllability and observability requirements for control design.  An example serves to illustrate 

the concept.  Consider the system S defined by the linear differential equations: 

    (t)(t)(t) uBxAx +=& ,     (1-1)  

    (t)(t) xCy = ;             (1-2) 

A, B, and C are respectively, n × n, n × r, and p × n matrices.  The n × 1 vector x is the state of 

the system, the r × 1 vector u the input, and the p × 1 vector y the output.  The vector u(t) is 

common in control theory representation of inputs whereas the alternative notation z(t) is often 

used to represent inputs in ecological network or environ theory.  The coefficient A matrix in 

equation (1-1), also a common variable choice in control theory, represents the weighted 

mapping of the state vector x(t) into the state transition, )t(x& , and is not related to the adjacency 

matrix, introduced later in Chapter 2 from graph theory and used throughout ecological network 

theory.  Equation (1-1) is the state transition function and Equation (1-2) is the state response 

function.  The matrices, A, B, and C determine the relationships between u(t), x(t), )t(x& , and 

y(t).  Controllability involves the influence of the input signal on the state vector, equation (1-1), 

and therefore does not involve the output equation (1-2).  Formally defined, a system is 

controllable if, over a given time interval [t0, tf], any initial state of x(t0) = x0, can be guided to a 

zero state of x(tf) = 0, by a continuous input signal of u(t).  Algebraically, such control exists if,  

     n][rank 1n =− BAABB K .    (1-3)          



 

 

9

This is because the n independent variables used to relate the input of the system to the state of 

the system require n independent equations for the combined relationship to have one solution.  

Without a single solution, the system in uncontrollable.  Stated in another way, if the column 

vectors B, AB, …, An-1B etc. are linearly independent, then the n × n matrix of equation (1-3) is 

of rank n and the column vectors span the state space of the system.  Observability, on the other 

hand, involves the effect of the state vector on the output of the linear state equation.  Formally 

defined, a system is observable on the time interval [t0, tf] if any initial state, x(t0) = x0, can be 

uniquely determined from the output y(t) for any time in the interval [t0, tf].  Algebraically, a 

system is observable if,  

           n][rank )1n( =′′′′′ − CACAC K .   (1-4) 

Similar to controllability, to assure one solution, n independent equations are needed for the n 

independent variables which are used to relate the state of the system to output from the system.  

Without a single solution to this relationship, the system in not observable.  In large dimensional 

systems, determining the rank conditions of equations (1-3) and (1-4) is difficult at best.  Fixing 

rank deficiencies can be harder.  Controllability and observability are the two basic requirements 

in the control design of simple and complex systems yet their computational requirements 

require excessive efforts for even the simplest models. 

Fortunately, Śiljak (1991) defined the more accessible concepts of input and output 

reachability which explicitly determine controllability and observability, without knowledge of 

the system parameters (e.g., matrices A, B, and C in the example above).  Input and output 

reachability, and therefore controllability and observability, respectively, can be determined from 

the reachability matrix (Harary, 1969).  This is calculated from the interconnection (adjacency) 

matrix, which is simply determined from the digraph structure of the model.  The ease of this 
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method is particularly helpful with large-scale models.  Śiljak’s input and output reachability 

concepts as developed within the framework of Lin’s (1974) graph-theoretic concept of 

structural controllability is an indispensable perspective for ecosystem control analysis.  For 

example, the structural perspective allows a simple discussion of system vulnerability.  A control 

system is vulnerable when removal of a component-to-component interconnection, severing a 

connection in the corresponding digraph, destroys input reachability.  When abiotic or biotic 

changes occur in an ecosystem, such as man-made or natural reductions in biodiversity that 

result in structural changes in corresponding interactions, input reachability of system inputs can 

be affected.  Pichai et al. (1981) have developed a theory to identify the minimal set of 

connections between components essential for preserving system input reachability. 

Stability in the sense of Liapunov provides a means to evaluate the stability of complex 

nonlinear or linear time-variant characteristics of ecosystems without knowing the actual system 

equations.  Input and output reachability provides a perspective to ascertain controllability and 

observability, by inspection of the model’s digraphs, in the control design of large complex 

systems.  Together, these concepts are key fundamentals to the control design of ecosystem 

models. 

1.2-2 ECOSYSTEM CONTROL  

Holistic knowledge of controlling relationships in ecosystems is one of the primary 

reasons for understanding system structure and function through modeling.  Knowledge of 

proximate (direct), or especially distal (indirect), control points affords one the ability to exert 

control, either close-in or at a network distance — in other words, one should have a capability 

to implement the elusive concept of “ecosystem management.” 
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Ecological systems are complex and, more importantly, distributed constructs of growth 

(positive feedback) and subsequent restrictions (negative feedback) maneuvering in concert 

towards various behaviors (Rosenblueth, 1943) or homeostatic equilibria (performance indices).  

When described as such, modern control theory concepts are intrinsically woven into this model 

of biological systems operation at virtually all hierarchical levels of resolution.  Verhulst’s 

(1838) Carrying Capacity, Liebig’s (1840) Law of the Minimum, Blackman’s (1905) Law of the 

Maximum, Shelford’s (1911) Law of Tolerance, Chapman’s (1928) Environmental Resistance, 

and Tilman’s (1982) Resource Competition Theory represent but a few examples of various 

forms of feedback (or possibly feed-forward) restrictions to growth.  Similarly, but with 

considerably less volume of activity, the concept of positive feedback can also be found in the 

historical literature with Malthus’ exponential growth (1798) and Chapman’s Biotic Potential 

(1928), or the modern reviews by DeAngelis and Post (1991) and Ulanowicz (1991).  And 

finally, performance indices (i.e., teleology, goal functions, eco-targets, orientors, etc.) have been 

debated in various forms (Clements, 1936; Gleason, 1926; Whittaker, 1953) and again are 

garnering focus (Müller et al., 1998; Jørgensen, 2000; Fath et al., 2001). 

However, the umbrella of ecology quickly conjures a complexity (e.g., behavioral, 

evolutionary, temporal, spatial) that stretches the basic modern control theory’s ability to 

successfully or usefully map the expected system behavior.  Subsequently, notions of controlling 

relationships in ecology are dispersed from the formal theory to more project-specific terms, e.g., 

dominating/subordinating, augmenting/diminishing, releasing/constraining, liberating/regulating, 

bottom-up/top-down, etc.  Accordingly, herein, ecosystems are considered to have no explicit 

controllers that parallel the thermostats and autopilots of man-made systems.  The concept of 

control somehow resides in the checks-and-balances complexity of organization inherent in the 
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interactive networks that join things together, and in the environs into which these networks can 

be decomposed.  The concept is thus one of diffuse, decentralized, even (at a network distance) 

remote control; for which the term distributed control is used.  Within the framework of network 

environ analysis (NEA) (Patten, 1978b; Patten and Auble, 1981; Fath and Patten, 1999; Fath, 

2004) this kind of control can, with definition of appropriate measures derived from the primary 

environ analyses of pathways and throughflows, be fruitfully investigated. 

1.3 NITROGEN CYCLING 

Taken overall, any reaction in the nitrogen cycle may act as a rate-limiting step and hence 
control the overall process.   

— Janet I. Sprent, 1987 

An ecological neologism for the expression stuff happens could simply be, nitrogen 

cycles.  It is a fact of life, literally.  Patten’s original distributed control methodology was built 

from an energetics perspective where all of the initial presentations (Patten, 1978b; Patten and 

Auble, 1981; Dame and Patten, 1981) involved energy models.  While individual and ecosystem 

energetics have been widely studied (Pandian and Vernberg, 1987; Wiegert, 1988; Wright et al., 

1994; Brown, 1995), alternatives to energy being the primary currency have developed.  Manson 

and McGlade (1993) scrutinized energy-based approaches to ecosystem dynamics and 

evolutionary biology.  Redfield et al. (1963) hypothesized from his ocean studies that deep water 

ratios of C:N:P at 100:16:1 represented the relative requirements of living matter.  Recently, 

others present elementary stoichiometry (typically focused on the varying combinations of the 

C:N:P ratios) as a causal mechanism linking cellular, ecosystemic, and evolutionary processes 

(Reiners, 1986; Sterner et al., 1992; Elser and Dobberfuhl, 1996;  Elser et al., 2000; Sterner and 

Elser, 2002).  Schlesinger (1997) suggests theoretically that since N-fixing organisms have a 

high demand for P (linking the global cycles of N and P) that P could possibly be the ultimate 

limit on nitrogen availability and net primary production.  Levin (1989), however, demonstrates 
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that net primary production in most terrestrial and marine ecosystems usually shows an 

immediate response to additions of N.  Additionally, White (1993) articulates that, due to 

disparate nitrogen compositions between consumers and their foods, energy availability [less 

than 10% of the sun’s energy is captured (Radmer and Kok, 1977) by the ecosystems of the 

world] is less important than nitrogen in the reproductive success of animals and their subsequent 

population dynamics.  White posits that nitrogen plays one of the pivotal roles in ecosystem 

functionality.  Boyer et al. (1994) identify the literature confirming N (and in particular, not P) is 

the critical limiting factor in both coastal marine waters in general and in the Neuse River estuary 

in particular.      

Assuming the environment for all organisms is inadequate at some point, populations 

continue to grow until the limit of a minimum resource is reached.  Survival of the Fittest is a 

contrapositive expression inherently describing those individuals or species that cannot cope 

with the specific limiting resource and subsequently change requirements, move, or die.  

Following an abbreviated form of White’s (1993) argument, assume that the supply of life’s 

basic chemicals is finite.  Although carbon, oxygen, hydrogen, and nitrogen are all in great 

abundance, nitrogen is calculated as the only chemical not readily available.  Ninety nine and 

ninety five hundredths percent (99.95%) of the total nitrogen in the biosphere is in the form of 

the extremely inert gas, N2, comprising over 80% of the earth’s atmosphere.  Only half of a 

percent (0.5%) of the world’s supply of nitrogen is ever fixed, however, and combined with other 

chemicals.  Only half of this small quantity is organic (0.5 × 0.005 = 0.0025 = 0.25% organic), 

and 95% of this is trapped in abiotic litter, soil, or particulate and dissolved matter in the oceans 

(0.95 × 0.0025 = 0.00238 = 0.238% abiotic material).  Hence, of the essential chemicals 

necessary for biotic processes, nitrogen is considered the least available and most limiting 
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(Delwiche, 1970; Rosswall, 1983; Stewart et al., 1983), yet it is second, only to carbon, with 

regard to quantities required to sustain life’s processes.  As such, the Neuse River estuary 

nitrogen model (Christian and Thomas, 2000, 2003) presents an ideal opportunity to not only 

augment further development of a distributed control theory for ecology, but also to provide a 

contrasting view to energy being the primary regulatory currency.   

Nitrogen fixation, assimilation, nitrification, and denitrification are simultaneously 

combined in a choreographed complex sequence of events whose controlling characteristics 

involve a distributed fabric of continuous interactions.  The complexity of every single nitrogen 

compound interaction has yet to be understood.  For example, assume the life cycle begins with 

the availability of N2 in atmospheric air or water.  Considering the endothermic energetics 

associated with the initial reaction to break the N2 bond during nitrogen fixation, nitrogenase 

enzymes, using energy derived from photosynthesis and chemosynthesis, provide the necessary 

boosting catalyst to their host autotrophic organisms.  The amount of energy used varies widely 

with both the organisms involved and the prevailing environmental conditions (Sprent, 1979; 

Harris, 1982).  As such, varying energy sources subsequently drive nitrogenase reaction rates in 

a variable manner which then results in fluctuating reaction efficiencies (energy used per 

nitrogen molecule reduced).  Despite the clarity of this generalized recipe, the endothermic 

reaction of breaking the N2 bond will probably never be completely understood (see Postgate, 

1987 for a reasonable summary).  This single-step complexity is played out over the entire 

nitrogen cycle in an incomprehensibly broad span of abiotic and biotic interactions.  Absent a 

thermostat-like controller regulating these nitrogen related interactions as the multitude of 

independent variables (e.g., temperature, pressure, pH, salinity, humidity, space, time, etc.) 

continue to impact the system’s time-forward progress, a mosaic of seemingly invisible 
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distributed controllers manages the outcome.  This perspective on the nitrogen cycle in the Neuse 

River estuary provides a novel and unique look into the controlling actions of nitrogen in an 

ecosystem.   

1.4 NEUSE RIVER ESTUARY MODEL 

Network environ analysis (NEA) may proceed from stocks or throughflows.  Using NEA 

throughflow analysis, the framework of distributed control will be developed and explored for 

steady-state models of nitrogen cycling in the Neuse River estuary, North Carolina, for 16 

consecutive seasons from spring 1985 through winter 1989.  The nitrogen models (Christian and 

Thomas, 2000, 2003) have seven components or state variables: Phytoplankton Particulate 

Nitrogen (PN-Phyto), Heterotroph Particulate Nitrogen (PN-Hetero), Sediment Nitrogen 

(Sediment), Dissolved Organic Nitrogen (DON), Nitrate and Nitrites (NOx), Ammonium (NH4), 

and Abiotic Particulate Nitrogen (PN-Abiotic).  The Neuse River receives water from a 16,000 

km2 watershed which together with the smaller Trent River (9% of Neuse and Trent combined) 

empties into the 400 km2 Neuse River estuary, thence ultimately into Pamlico Sound.  Many 

studies focusing on nutrient cycling and cyanobacterial blooms in this area have been conducted 

over the last 30 years (Boyer et al., 1988; Christian et al., 1984, 1989, 1991; Hobbie and Smith, 

1975; Paerl, 1987; Stanley, 1983, 1988).  

 
 
 
 
 
 



 

 

16

1.5 EQUATION DEVELOPMENT 

The first step to be taken toward the operational realization….is that of developing an 
appropriately general class of models by which to describe complex systems mathematically and 
an associated mathematical theory to deal with the manipulation of such models.   

— A. Wayne Wymore, 1967 

The premise behind a distributed control logic is that a system is comprised of connected 

components all of which participate simultaneously in a managed time-forward trajectory.  The 

theory owes its general formulation to the concept of state, which, by definition, is primarily tied 

to the mathematical model of the system under study.  Basically, only a set of numbers 

collectively containing sufficient past information relevant to the determination of the system’s 

future behavior is all that is needed to define the state of a specific system.  State-space theory 

(Zadeh and Desoer, 1963; Zadeh, 1964; Kalman et al., 1969; Patten et al., 1976) provides both a 

logical foundation and a mathematical representation for the state of systems.  Defining a 

generalized notion of state applicable to all systems is a formidable task and remains one of the 

primary pursuits of systems analysis (Wymore, 1967; Bertalanffy, 1968; Klir, 1969; Hanson, 

1995).  Skipping the formal definition, the equations of state for a dynamical system encompass 

the current state of the system, the input, the output, and two relationships that map the input to 

both the future state on one hand, and the future output on the other.  It is generally assumed that, 

past states, inputs, and outputs precede or are contemporary with future states, where the 

designation “dynamical” signifies causal, meaning determinate (unique input time sequence → 

unique output sequence) and nonanticipatory (Zadeh and Desoer, 1963; Zadeh, 1964).  Basically, 

the successful mathematical notion of a dynamical system depicts the unidirectional temporal 

flow of causation (Patten et al., 1976).  Equations of state in this formulation are uniquely suited 

for control and stability analyses.  In fact, most mathematical system theories or the more 
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specific linear system theories introduce the state-space concept and corresponding equations, 

then quickly divert to the issues of control and stability. 

Network environ analysis (NEA) (Patten, 1978a) is a state-space-based network analysis 

(e.g., Ponstein, 1966; Patten et al., 1976; Higashi and Burns, 1991; Margalef, 1991; Patten and 

Jørgensen, 1996; Newman, 2003; Borrett, 2005).  It is predicated on a two-environment version 

of state-space theory in which objects taken as open systems simultaneously participate, by 

conservative material and energy exchanges, in outgoing and incoming environments.  The 

duality of environment, later attributed to von Uexküll (1926), was first developed as an 

ecological systems theory by Patten et al. (1976).  Subsequently, Patten (1978a) provided the 

name environs and presented three propositions (Patten, 1978a) which solidified environ analysis 

as an environmental system theory available for further development [e.g., by Barber et al., 

1979; Matis and Patten, 1981; Patten, 1981; Patten and Matis, 1982; Hippe, 1983; Fath, 1998; 

Fath and Patten, 1999; Borrett, 2006; Gattie et al., 2006a, 2006b (submitted); and Schramski et 

al., 2006] as an extension of Leontief’s (1936, 1965, 1966) economic input–output analysis.  

Environ theory unfolds mathematically from the definition of throughflow and the premise that 

transactional elements (mass – energy) are conserved.   

1.6   DISSERTATION PREFACE 

The specific focus of this dissertation is development of a formal mathematical approach 

to ecosystem control within the framework of network environ analysis (NEA).  The core results 

are in Chapters 2-4, each written as an in independent publishable paper.  The present Chapter 1 

articulates automated control theory, ecosystem control theory, nitrogen cycling, and network 

environ analysis as necessary preludes to the core chapters.  Definitions and equation derivations 

in NEA are crucial to the interpretations of distributed control theory.  Chapter 2 addresses this 
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by meticulously deriving, from the Reynolds transport theorem, the fundamental throughflow 

and storage environ equations using a consistent methodology.  Throughflow equations are 

derived identically in parallel with the storage equations leading to a unified foundation for the 

subsequent distributed control mathematics.  This chapter is the result of discussions among the 

coauthors, others, and of many mathematical false starts searching for a novel way to tie 

throughflow and storage environ analysis together in a common methodological framework.  

Chapter 3 develops the mathematics of environ distributed control by formally considering 

individual pair-wise relationships in a network.  Relative and absolute control perspectives are 

identified.  Distributed control within the 16-model average model of nitrogen cycling in the 

Neuse River estuary is evaluated; in this, NOx and Sediment are found to play leading roles.  

Chapter 4 pushes the mathematics and interpretations further in evaluating distributed control 

through the 4-year, 16-season temporal sequence represented by the 16 season Christian and 

Thomas (2000) models.  Low component throughflow-to-boundary flow ratios (Ti/zi or Ti/yi) are 

shown to be possible indicators of components with high levels of control in the network 

suggesting that components dominated by their boundary flows may act as gatekeepers for the 

system’s relationship to its environment across the system boundary, and thus dominate in the 

network.  Chapter 5 provides a summary of the dissertation’s key objectives and a discussion of 

the larger significances  Finally, the appendix provides supporting calculations and the Neuse 

River estuary raw data such that calculations can be independently repeated or expanded.  
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ABSTRACT 

Recognized as the two mathematical building blocks of network environ analysis (Patten, 

1978a), the law of conservation and the definition of throughflow are both separately derived and 

combined into the directional two-environment, efferent and afferent, ecological systems theory.  

The conservation equations are derived using the Reynolds transport theorem and an Eulerian 

control volume model which provide a framework defining and separating the concepts of flow 

and storage.  The definition of throughflow and the component conservation equations are 

systematically combined in a consistent methodology for both throughflow and storage environ 

analysis.  The energy conservation equation, in particular, is expanded for a more thorough 

understanding of its individual terms as derived for an ecological system.  Terms and concepts 

common to environ analysis, such as self-flow, turnover rate, storage, accumulation, and the 

necessary inclusion of a discrete time step in environ storage analysis, are clarified.  An averaged 

model of the Neuse River estuary nitrogen cycle (Christian and Thomas, 2000) is evaluated, 

where connectivity, environ throughflow, and environ storage are collectively utilized to provide 

a picture of each component's individual participation in the Neuse ecosystem without having to 

remove it from the network to which it belongs.  Accounting for all indirect and direct pathways, 

the Sediment compartment is shown to have a relatively weak role in the throughflow cycling 

networks and a contrastingly dominant role in the steady-state exchange of component storage 

contents.  In comparison, PN-Heterotrophs compartment are discovered to dominate the 

throughflow cycling of nitrogen quantities and contrastingly play a minimal role in the steady-

state storage exchange of component storages.  
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2.1 INTRODUCTION 

The development of Patten’s (1978a) NEA over the last 28 years, by a variety of authors 

(e.g., Patten, 1978b; Barber et al., 1979; Matis and Patten, 1979; Dame and Patten, 1981; Patten 

and Auble, 1981; Patten, 1981, 1982, 1985; Fath and Patten, 1999; Gattie et al., 2006a; 

Schramski et al., 2006, etc.) has significantly expanded the original presentation.  As to be 

expected, minor variations have occurred in the derivations and their subsequent interpretations.  

For example, the original derivation (Patten, 1978a) and immediate successor (Barber et al., 

1979) specifically included the prospect of a self-flow, fii, in their flow conservation equations 

without elaborating on their essence.  Flow equations used by Matis and Patten (1979) to 

formulate the concept of environ-storage analysis, by definition, did not include self-flows and 

therefore were not discussed.  Later, the descriptive essence of a self-flow varied including 

references to storage (Patten 1981, 1982), time delay, and node queues (Patten, 1985).  Fath and 

Patten (1999) subtly imply self-flows are related to storage but include them in their flow-

equation derivations and then specifically state that they will not be algebraically considered in 

subsequent development.  Recently, through personal discussions, technical paper preparations, 

and classroom material development in the University of Georgia’s Institute of Ecology and the 

Systems and Engineering Ecology program, environ-throughflow equation development has 

expressed self-flows similar to the Matis and Patten (1979) method where they are not defined in 

the flow equations.  Self-flow inclusion, or not, while using the adjacency matrix in network 

path-length proliferation analysis or the simple decision as to when self-flows should be 

pictorially included on a network digraph can be unclear and then perpetuate further confusion.  

These minor inconsistencies and others are the specific focus of Chapter 2.  The specific intent is 

to organize the work of others while including some novel additions to create an NEA 
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foundation which is concise, consistent, and clear both algebraically and interpretatively for the 

subsequent expansion of NEA into the realm of control theory.  

     Although other methods of coordination may exist, Chapter 2 provides a single 

presentation which organizes the history of NEA development into one ordered stream of 

uninterrupted construction.  Specifically, we start by reaching back to the equation development 

of Barber et al. (1979) which separately formulates the conservation equations and then 

incorporates the definition of throughflow to generate the efferent- and afferent-oriented NEA 

equations.  We augment this approach by borrowing from the mature field of mass transport 

dynamics and use the Reynolds transport theorem to formulate the conservation equations which 

explicitly provide a framework defining and separating the concepts of flow and storage.   

Although a large portion of the chapter is relegated to repeating previously published material, 

the consistent and continuous stream of development is a necessary strategy to both improve 

algebraic clarity to aid unforeseen future NEA development and to generate additional novel 

improvements to the overall NEA theory.  As a direct result of the rigidity afforded this 

meticulous derivation and the consistent methodology used between the throughflow- and 

storage-environ equation development, such concepts including but not limited to self-flow, 

turnover rate, storage, accumulation, and the necessary inclusion of a discrete time step in 

environ storage analysis, are easier to define and articulate. 

An efferent and afferent environ review of an averaged model of nitrogen cycling in the 

Neuse River estuary (Christian and Thomas, 2000) is provided for two specific reasons.  First, 

the results serve to complete the continuous stream of NEA development, a core objective of this 

chapter.  It is hoped that this chapter can be used as a single introductory guide to new users of 

NEA to which very little additional reference to other materials will be required.  An empirical 
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example is appropriate to accompany and augment the theoretical development.  Second, the 

NEA Neuse River estuary results in Chapter 2 form a preliminary basis of empirical 

understanding of the Neuse nitrogen cycle prior to delving into the control theory of Chapters 3 

and 4.  Pathway proliferation analysis, and nitrogen throughflow- and storage-environ analysis 

are coupled into a dynamic introspection of the participation of each of the seven model 

components  (PN-Phytoplankton, PN-Heterotrophs, Sediment Nitrogen, Dissolved Organic 

Nitrogen, Nitrates and Nitrites, Ammonium, and PN-Abiotic) which together comprise the Neuse 

River estuary nitrogen model.     

2.2 EQUATIONS-OF-CONSERVATION DEVELOPMENT 

Network environ analysis (NEA) is predicated on a two-environment view of state-space 

system theory.  The dual environment concept, first developed as an ecological systems theory 

(Patten et al., 1976), was then reorganized into three propositions (Patten, 1978a) that solidified 

the input–output oriented environ theory.  NEA is mathematically developed both from the 

definition of throughflow and the premise that a transactional entity (e.g., mass or energy) is 

conserved.  By definition, the concept of throughflow is bi-directional.  There exists a total 

throughflow in, Tin, and a total throughflow out, Tout, where at steady-state conditions, Tin = Tout.  

Similarly, the conservation equations are also directional wherein each term represents flow 

arriving, leaving, or staying in a particular control volume.  At steady-state, mass or energy do 

not accumulate in the control volume and the flows leaving the control volume equal the flows 

arriving.  

The conservation equations, particularly with conservation of energy, have remained 

largely assumed in previous network analysis or more specifically in NEA (Finn, 1976, 1977; 

Hannon, 1973; Patten, 1978a, 1978b, 1981, 1982, 1985; Patten et al., 1976, 1981, 1982).  Using 
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the Reynolds transport theorem, the conservation of energy and the continuity equations for a 

typical ecological network model are derived below.  The formulation of these equations to a 

rigid control volume with its control surface provides a framework to better separate and 

interpret NEA flows and storages.  The definition of throughflow, one of the two foundations of 

the mathematics of directional environ analysis, is separately developed later.   

The model development, clearly representing both the derivation and final representation 

of the basic conservation of mass and energy equations fundamental to network environ analysis 

(NEA) is borrowed, in concept, from the fields of thermo and fluid dynamics.  Virtually all fluid 

and thermodynamic textbooks carry the control volume (CV) Eulerian derivation of the 

continuity and energy conservation equations.  These equations serve as first-principle 

foundations throughout the study of transport dynamics.  The conservation equation development 

below, using Reynolds transport theorem, is a hybrid of several methods (White, 1994; Wark, 

1983), with most of the presentation emanating from Jenna's (1993) derivation.  The latter is 

particularly easy to understand and well suited for the perspective it presents which is 

subsequently helpful to NEA equation development.  The presentation of equations (2-14) 

through (2-28) or equations that are very similar is common in transport dynamics.  Although 

abbreviated, the time and space allowed herein for Reynolds transport development is intended 

to provide the discerning reader, without additional references, a sense of how the mathematics 

of conserved systems remains formal and therefore helpful to long term model development and 

interpretation in any field.  The understanding and on-going application of these common 

equations represent one of the core pursuits of mass transport dynamics. 
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2.2-1  CONTROL VOLUME PERSPECTIVE 

Lagrangian and Eulerian perspectives on models are applicable to the study of mass or 

energy transfer.  Lagrangian methodology addresses particle motion considered individually by 

position as a function of time.  This is impractical for most reasonable analyses and attainable 

supporting data.  The Eulerian or control volume (CV) method is more applicable to the study of 

entire regions (systems of particles) of mass and energy flow.  A CV analysis of a specific region 

can be established through the Reynolds transport theorem conversion relating the time 

derivative of a system property to the rate of change of that property within a specified region.  A 

fixed CV, uniquely chosen to represent the respective region of study, is usually bounded by an 

artificial control surface (CS) separating the region of study from the surrounding environment.  

Pictorially speaking, the CS is a dashed line surrounding the CV as demonstrated in Figure 2.1.  

[Figure 2.1 here]  The object is to relate the area outside the control surface (environment) to the 

region within the control volume (system) and, accounting for all of the mass or energy both 

within the CV or crossing the CS, generate the conservation equations.  The procedure is to start 

with the system,  

           VsS d∫∫∫ ρ= ,          (2-1) 

where S is an extensive (mass dependent) flow quantity (e.g., mass, momentum, energy, etc.) 

which we desire to monitor, where s is the intensive flow quantity per unit mass (mass 

independent), ρ is the density or mass per unit volume, and V is the system volume of interest.  

In Figure 2.2, let volume 1, 1V , at t1 be represented by AV  plus BV  and volume 2, 2V , at t2 by BV  

plus CV .  The control volume is bounded by the dashed line.  The change in the extensive 

property S of the system V over the time interval t1 to t2 can be written as,  

∆S = (SB2 + SC2) – (SA1 + SB1).        (2-2) 
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[Figure 2.2 here]  Rearranging the terms to organize the extensive property inside and outside the 

prescribed control volume and dividing by the time interval (∆t = t2 – t1), the change in the 

extensive property S on a per unit time basis is, 
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To determine the instantaneous time rate of change of flow quantity S, take the limit as ∆t 

approaches zero: 
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The left-hand-side can be rewritten as the instantaneous time rate of change of the total system S: 
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The first right-hand-side term can be rewritten as the partial time rate of change of the flow 

quantity S within the control volume: 
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The second right-hand-side term in equation (2-4) represents the net rate flow quantity S out of 

the control volume:  
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,    (2-7) 

(where δ signifies the net rate out, a.k.a., out minus in) and requires additional manipulation to 

obtain the specific limiting expression.   

Now consider Figure 2.3 showing a differential area, dA, on the control surface of the 

control volume.  [Figure 2.3 here]  The tangential velocity, Vt, carries no matter out of the CV by 

crossing the CS.  As such, all matter leaving dA can be assumed in the normal direction 
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represented by the normal component of the velocity, Vn.  Over the time interval ∆t, the mass of 

the matter crossing dA can be written as: 

               Vddm ρ= ,       (2-8) 

where the differential volume, Vd , is the three dimensional product of the cross-sectional area 

and height, 

           dA)tV(Vd n ∆×= .     (2-9) 

Assuming that the amount of quantity S moving through the area dA is,  

                 dmsS =δ ,     (2-10) 

substitute equations (2-8) and (2-9) and divide through by ∆t to obtain the equation,   

                      dAVs
t
S

nρ=
∆
δ .     (2-11) 

The limit as ∆t approaches zero allows equation (2-11) to be written as, 

          ∫∫ ρ=
∆
δ

→∆
CS

n0t
dAVs

t
Slim .    (2-12) 

Substituting equations (2-5), (2-6), and (2-12) into equation (2-4) generates the general 

conservation equation as derived from the Reynolds transport theorem: 

     ∫∫ ρ+
∂
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=
CS

n
CVsystem

dAVs
t
S

dt
dS .   (2-13) 

In practical terms, equation (2-13) states, 

instantaneous time rate 
of change in S for a 
system of particles 
(total particles) 

 
= 

instantaneous time rate of 
accumulation of S within 
the control volume 
(amount stored) 

 
+

amount of S leaving the 
control volume minus 
the amount of S entering
(net rate out) 
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2.2-2 CONTINUITY EQUATION  

For conservation of mass, let the system S = m and s = m/m = 1: then, the Reynolds 

transport theorem represented by equation (2-13) becomes, 

             ∫∫ ρ+
∂
∂

=
CS

n
CVsystem

dAV
t
m

dt
dm .   (2-14) 

Considering the term on the left-hand-side of equation (2-14), the total mass in a system must 

remain constant (mass can neither be created nor destroyed in all practical circumstances), as 

such, 

      0
dt
dm

system

= .     (2-15) 

Considering the second term on the right-hand-side of equation (2-14), assuming the inlets and 

outlets through the CS are one dimensional, the integral reduces to, 

    ∑∑∫∫ ρ−ρ=ρ
i CS

outiii
i CS

iniii
CS

n )VA()VA(dAVs .  (2-16) 

The quantity ρAV is the mass flow, m& , passing through the one-dimensional cross section with 

units of mass per time.  Substitute equations (2-15) and (2-16) into equation (2-14) to get the 

useful form, 
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which states that the change of mass (rate of accumulation) in the CV is equal to the net 

difference between the mass flow in and the mass flow out, both across the CS.  At steady state, 

there is no change of mass in the CV, 

             0
t
m

CV

=
∂
∂ ,     (2-18) 
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and as such equation (2-17) is usually simplified to  

            ∑∑ =

CS
in

CS
out

mm && .     (2-19) 

Per derivation of the equation from the Reynolds transport theorem, the in-bound and out-bound 

mass flows are defined as only those that specifically cross the control surface.  This observation 

remains important to flow associated with self-flows of path length one in NEA models, which 

will be discussed later.  

 2.2-3   ENERGY EQUATION 

First consider, for an adiabatic system, the conservation of energy statement for a closed 

system (e.g., control volume enclosed by a control surface) is the definition, 

          dW ≡ (E2 – E1) = dE .     (2-20) 

The work done on the system, dW, is defined as the change in energy (E2 – E1) of the system, 

where E1 and E2 indicate the initial and final states.  The concept of work, W, quantifies the 

interaction of a system with it surroundings (in effect, work crossing the system boundary) and 

includes, for example: shaft, electric and magnetic, viscous shear, or flow work.  Numerous 

energy forms can constitute the total energy, E, of a macroscopic system including, for example: 

internal, kinetic, gravitational potential, electrostatic, chemical, nuclear, magnetic, or strain 

energy.   

For a nonadiabatic system the conservation of energy equation is defined as, 

      Q ≡ (E2 – E1) − W,      (2-21) 

where the difference between the change of energy of the system and the work done on the 

system is the heat interaction that transpired during the process (positive Q for heat added to the 

system).  Rearranging (2-21) and writing in a differential form provides the equation, 

          dE = dQ + dW,      (2-22) 



 

 

37

where dQ can be generally thought of as an energy transfer process driven by the temperature 

difference between two systems.  The mechanisms commonly describing dQ are radiation, 

convection, and conduction.   The energy in a system (control volume) changes by an amount 

equal to that which crosses the system boundary (control surface).  Energy can cross a system 

boundary in the form of heat transfer (Q), work (W), or by mass entering or leaving.  For 

conservation of energy, let the system S = E and s = E/m = e.  Then the Reynolds transport 

theorem represented by equation (2-13) becomes, 

    ∫∫ ρ+
∂
∂

=
CS

n
CVsystem

dAVe
t
E

dt
dE .    (2-23) 

Substituting equation (2-22) into equation (2-23) yields, 
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dt
dW

dt
dQ ,   (2-24) 

where the heat transfer to the system, 
dt
dQ , is through conduction, convection, or radiation.  The 

work done on the system, 
dt

dW , (e.g., shaft, viscous, pressure, electric, etc.) plus the heat transfer 

into the system, 
dt
dQ , equals the accumulation of energy in the control volume, 

CVt
E
∂
∂  (for a non-

steady-state system), plus all the energy associated with mass entering or leaving the system 

across the control surface, ∫∫ ρ
CS

n dAVe  (e.g., internal, kinetic, potential, chemical, nuclear, etc.).  

Equation (2-24) is generally referenced as the mathematical representation of the first law of 

thermodynamics.  Thermodynamic analysis of a given system involves independently evaluating 

the heat transfer, the work quantities, and the changes in specific forms of energy associated with 

the mass flows across the system's boundaries.   
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For example, it is a moderately difficult but a common derivation from equation (2-24), 

when performing an engineering analysis of the thermal and mechanical energies of a system 

(where e includes internal, u; kinetic, KE; and potential energies, PE), to obtain the equation, 

    ⎥
⎦

⎤
⎢
⎣

⎡
++−++=+− ∑∑

in

2

out

2

shaftlosses
)gz

2
V

ρ
p()gz

2
V

ρ
p(m

dt
dW

dt
dQ

& .  (2-25) 

The system is assumed to be at steady state, such that the accumulation of energy
CVt

E
∂
∂ , is 

approximately zero, and mass flows into the system approximately equal mass flows out such 

that mmm outin &&& == .  For convenience, the loss term, 
lossesdt

dQ
− , has combined, by definition, the 

total system heat transfer with the internal energy change, where  ( )outin
losses

uum
dt
dQ

dt
dQ

−+=− & .  

For incompressible flows, a typical situation, changes in internal energy ∆u are usually 

insignificant.  The shaft work, designated 
shaftdt

dW , is a simplification of the total work crossing 

the control surface where all other forms of work (except work due to mass flow) are assumed 

negligible (e.g., electric, magnetic, shear, viscous, etc. are approximately zero).  The work due to 

mass flow, 
flowdt

dW , is the result of mass movement across the system control surface and is 

therefore, through an auxiliary derivation, rewritten in the form ⎥
⎦

⎤
⎢
⎣

⎡
−∑∑

outin ρ
p

ρ
pm& , where p and ρ 

are fluid pressures and densities, respectively.  These new terms are then algebraically 

transferred to the right-hand-side of equation (2-25).  The change in kinetic and potential 

energies of the mass flows are captured by ⎥
⎦

⎤
⎢
⎣

⎡
−∑∑

in

2

out

2

2
V

2
Vm&  and ⎥

⎦

⎤
⎢
⎣

⎡
−∑∑

inout

gzgzm& , 

respectively, where V, g, and z are the fluid velocity, the gravitational constant (9.8 m/s2), and 
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the fluid vertical height.  Equation (2-25), indispensable in modern society, is a practical 

representation of the energies associated with a thermal and mechanical system.   

Representing a living ecosystem with a practical formulation of equation (2-24) is the 

next logical step.  Solar energy is electromagnetic radiation.  When incident on a perfectly 

absorbing black surface, it is completely converted to heat, Q.  Natural abiotic and biotic 

processes are constantly transforming solar energy to work, W, for example:  1) Solar energy is 

converted to gravitational potential energy through the heating of water, subsequently producing 

evaporation, which eventually causes precipitation at higher altitudes.  2) Kinetic energy is 

produced from solar heating of the atmosphere and the earth, ultimately creating atmospheric 

winds.  3) Primary producers use and convert solar energy to move raw materials of lower 

chemical energy (e.g. H2O and CO2) to higher energy materials (e.g., carbohydrates) by 

photosynthesis.  4) Secondary consumers consume these materials, increase their biomass, and 

produce useful work.  Inefficiencies in these processes are lost to the greater environment as heat 

eventually radiated back to space. 

Certainly, ecosystem types vary widely and, correspondingly, are orchestrated tradeoffs 

between heat transfer Q, work W, energy stored 
CVt

E
∂
∂ , and the energy associated with mass 

flow across the control surface system boundaries ∫∫ ρ
CS

n dAVe .  Although in-depth energy 

balances of specific ecosystems or components of ecosystems exist, for example, green leaves 

(Aber and Melillo, 2001) or bodies of water (the psychometric chart in all elementary 

thermodynamics texts), as of yet, the practical technology associated with data acquisition in 

network ecosystem analysis of energy flow has been grossly simplified to food-web style contact 

graphs (Odum H., 1956, 1957; Tilly, 1968; Williams and Crouthamel, 1972; Dame and Patten, 
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1981) somewhat expanded to include abiotic as well as biotic aggregate components.  The vast 

majority of heat transfer, work, changes in internal energy, etc., are loosely combined into 

respiration.  The energy associated with component across-boundary mass flows is primarily the 

chemical energy associated with food.  As such, with the exception of primary producers, all 

input flows to specific model components either from outside the system or from 

intercompartmental flows are assumed to be in the form of chemical energy (e.g., 

carbohydrates).  Primary producers receive their input from outside the system in the form of 

electromagnetic radiation.  Output flows, defined as leaving the system boundary (no consumer 

available within the defined system), include the energies associated with component metabolism 

(basal and non-basal respiration), net component growth (Hannon, 1973), and that which is 

contained in exported biomass (e.g., mortality, ingested but not assimilated, etc.).  Variations 

exist on the groupings of these system-level output energy flows (Hannon, 1985; Odum, 1957; 

Dame and Patten; 1981) but these variations, as of yet, reveal no additional information 

regarding the fundamental differences between the work, the heat transfer, or the energy 

associated with mass transfer.  Intercompartmental output flows are consumer driven and, 

coupled with their corresponding intercompartmental input flows (consumption), simply involve 

the transfer of chemical energy.  Subsequently, for ecological network analysis of energy flow in 

a network, equation (2-24) will be taken in the following form, 

 ∑∑ −+
∂
∂

=

CS
in

inin

CS
out

outout
CVsystem

emem
t
E

dt
dQ

&& ,   (2-26)  

where e is the energy transfer associated with mass flow, in this case usually biomass with stored 

chemical energy.  The net heat transfer, 
dt
dQ , is solar electromagnetic radiation and respiration 
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when applicable.  The work, 
dt

dW , performed by or on a component (e.g., a biotic organism 

physically moving materials or an abiotic material moving vertically lower to earth along with a 

stream dropping downhill) is combined with the heat transfer term, 
dt
dQ , to generally represent 

energy incoming or outgoing to or from the system which is not specifically associated with 

mass flow across the system boundary.  At steady-state, with no accumulation of energy in the 

CV, 0
t
E

CV

=
∂
∂ , then equation (2-26) is often simplified to, 

            ∑∑ −=

CS
in

inin

CS
out

outout
system

emem
dt
dQ

&&    (2-27) 

where the heat flow from and to the system, 
systemdt

dQ
± , could be confused with the absent 

accumulation term,  
CVt

E
∂
∂ .  If the system is assumed adiabatic, 0

dt
dQ

system

= , then equation (2-

26) becomes, 

             ∑∑ −=
∂
∂

CS
out

outout

CS
in

inin
CV

emem
t
E

&&     (2-28) 

which is a subtly but distinctly different equation when compared to equation (2-27).  

Considering equations (2-24), (2-26), (2-27) or (2-28), a conglomeration of energy inputs, 
dt
dQ

+  

(e.g., radiation), outputs, 
dt
dQ

−  (e.g., respiration), and storage accumulations, 
CVt

E
∂
∂

±  (e.g., 

biomass), of the system, are often brazenly written interchangeably with the incoming and 

outgoing mass flow terms on the right-hand-side.  To begin clarifying these issues, for each 
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energy conservation equation in an ecological network model (generally n equations for an n-

component model), equation (2-24) should be the starting point with assumption-labeled steps 

clearly leading to the final equation form.  One area of interest with possible applications in 

ecological network analysis is the study of exergy (Rant, 1956) and its sub-discipline eco-exergy 

(Jørgensen, in press), which continues to help articulate and improve the understanding of the 

various forms of energy in ecosystems (Susani et al., in press; Sciubba, 2004). 

2.3 FOUNDATION OF NETWORK ENVIRON THROUGHFLOW ANALYSIS 

Developed from general systems theory (Zadeh and Desoer, 1963; Zadeh, 1964; Kalman 

et al., 1969), network analysis (Hannon, 1973; Platt et al., 1981; Ulanowicz and Platt, 1985; 

Wulff et al., 1989; Higashi and Burns, 1991; Patten and Jørgensen, 1996) is an environmental 

application of economic input–output analysis (Leontief 1936, 1951, 1966) modeled as 

interconnected compartments with a common currency (usually energy or mass but can also 

include information).  Network environ analysis (NEA) (Patten, 1978a, 1981, 1982; Fath and 

Patten, 1999) represents every object as existing within a system of two environments defined as 

input-oriented and output-oriented environs.  The object is a partition of two mutually exclusive 

halves, one comprising the inflow and the other outflow (von Uexküll, 1926), of which, each 

direction includes an independent intersystem flow network originating or terminating at the 

system boundary.  As a direct result, distinct input and output environments can be defined and 

investigated for every component in a system.  The reader is encouraged to consult Fath and 

Patten (1999) for a concise review of NEA.  Two fundamental precepts of network environ 

analysis are the law of conservation and the definition of throughflow. 

 
2.3-1 NETWORK CONSERVATION EQUATIONS  
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 Figure 2.4 shows a typical model component within a multi-component model where the 

material storage, either mass or energy, is usually denoted x, and inter-component mass or 

energy flow quantities are denoted f.  [Figure 2.4 here]  Given the model convention shown in 

Figure 2.4, equations (2-17) or (2-28) can be written for one component in the model as a 

difference or differential equation; for example, the latter case,               

   ∑∑
==

+−+=
n

CS
out

1h
ihii

n

CS
in

1j
ij

CV

i (t)y(t)f(t)z(t)f
dt

dx ,         t0 ≤ t < ∞,  (2-29)  

where fii represents flow from a component to itself (e.g., cannibalism).  The formalities of the 

Reynolds transport theorem require that the storage accumulation on the left-hand-side of 

equation (2-29) occur in the control volume and the flows on the right-hand-side of the equation 

cross the control surface.  For an n-component system, equation (2-29) is further defined for each 

of the components,      

        ∑∑
==

=+−+=
n

CS
out

1h
ihii

n

CS
in

1j
ij

CV

i n...,2,1,i,yfzf
dt

dx
)t()t()t()t( ,    t0 ≤ t < ∞. (2-30) 

Equation (2-30) written for a steady-state system, 0
dt

dx

CV

i = , where accumulation of mass or 

energy is zero, becomes, 

              ∑ ∑
= =

=+=+
n

CS
out

1h
i

n

CS
in

1j
ijihi n...,2,1,i,zfyf ,      t0 ≤ t < ∞.  (2-31) 

Equation (2-30) or (2-31) is the typical network conservation equation for an n-component 

network, reference Figure 2.4, where the flow f represents a non-negative intercompartmental 

flow, z an input boundary flow, and y an output boundary flow.  Strictly interpreting equation (2-

30), all intercompartmental flows, fij in, or fhi out, including self-flows fii, participate in the 
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component storage xi, rate of change by helping to add 0
dt

dx

CV

i > , subtract 0
dt

dx

CV

i < , or hold 

steady 0
dt

dx

CV

i = , each component's storage.  Combined together in total, the 

intercompartmental flows can be evaluated to elicit this component storage information.  

However, independently removed from the system to which they belong, each f (including fii) 

does not provide sufficient information to determine either the component’s total rate of storage 

accumulation (for a non steady-state system) or its turnover time (for a steady-state system).  

2.3-2 COMPONENT SELF FLOWS, fii 

Considering the fii terms from the perspective of the Reynolds transport theorem [second 

term on the right-hand-side of equation (2-13)], all observed flows f, including fii, shall cross the 

defined control surface.  This is a subtle but important attribute of the control volume model for 

the corresponding empirical data-gathering.  Therefore, by definition from the Reynolds 

transport theorem, self flows out and back into a component, fii, shall be an observed flow 

quantity.  However, in all models to date, the observed field-acquired data corresponding to the 

fii terms have been zero or inconsequential and therefore, assumed zero.  Secondly, if the 

observed flow values, fii, were something other than zero, considering equation (2-29) for 

example, the fii term in the out-flow summation ∑
out

and the fii term in the in-flow summation 

∑
in

would actually cancel.  Despite these two somewhat nullifying issues, the fii term should 

always remain in the standard network equation development as carried forward from equation 

(2-29) for at least three reasons:  (1) Although flow from a component to itself is almost never 

observed over a path length of one (having one time step duration for discrete time analysis), 

subsequent mathematical analysis will show that a cycle from a component back to itself is 
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common over path lengths greater than one (indirect flows routed through other components 

when considering discrete time steps greater than one).  Not acknowledging and including the fii 

term for the first time step (path length equal to one), makes the subsequent longer path length 

calculations mathematically impossible with the corresponding matrix algebra.  (2) The concept 

of throughflow, introduced later, will be substituted into equation (2-29) and will effectively 

enfold one of the fii terms (by incorporating one of the two summations ∑
out

or ∑
in

) into the 

throughflow definition while the other fii term (in the remaining of the two summations ∑
out

or  

∑
in

) remains visible and available to the remaining matrix algebra calculations of indirect flows 

at path lengths greater than one.  Per the rationale listed for (1) above, the fii that is still available 

(not enfolded in the throughflow substitution) for algebraic manipulation is mathematically 

necessary for subsequent calculations used to elicit indirect effects at path lengths greater than 

one.  As such, though the two fii terms could cancel in equation (2-29), they are each 

mathematically necessary and they do not cancel in subsequent algebraic manipulation.  (3) 

Although, to date, no fii flows of consequential magnitude have been found, they certainly will 

be, and will need to be incorporated in future NEA analyses. 

2.3-3  THE CONCEPT OF THROUGHFLOW 

With regard to energy or mass, a component's storage and the various flows to and from 

its neighboring compartments, in a multi-compartment system, represent quantifiable activities 

or performance indices.  One such index, component throughflow, Ti, is a key network property 

and serves as an indicator of a component's activity within a system.  Referring to Figure 2.4, 

throughflow is defined as the sum of all flows in or out of component i in an n-component 

system,  
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            ∑
=

+≡
n

1j
iji

in
i (t)(t)(t) fzT ,     i = 1, 2, …, n,      (2-32)  

            ∑
=

+≡
n

1h
hii

out
i (t)(t)(t) fyT ,   i = 1, 2, …, n.   (2-33) 

The values in
iT or out

iT  are directional and unequal in an unsteady conservative system [reference 

equations (2-17) and (2-28)].  The throughflows are related to the component storage 

accumulation where the unsteady equation balancing throughflows in and out is:  

           CS
out
iCS

in
i

CV

i (t)T(t)T
dt

dx
−= ,   i = 1, 2, …, n,      t0 ≤ t < ∞. (2-34) 

Throughflow is both a property of the individual system components as well as the whole system 

where total system throughflow is the sum of all component throughflows,  

          ∑
=

=
n

1i

in
i

in (t)T(t)TST ,    (2-35) 

    ∑
=

=
n

1i

out
i

out (t)T(t)TST ,    (2-36) 

whose values TSTin and TSTout are also directional and different in a conservative unsteady 

system.  Therefore, following from equation (2-34), total system storage, TSx, and total system 

throughflows are related by the following dynamical equation: 

    CS
out

CS
in

CV

(t)TST(t)TST(t)
dt

dTSx
−= ,      t0 ≤ t < ∞. (2-37) 

For a steady-state system where all component and total system storages remain constant, 

0
dt

dx i =  and 0
dt

dTSx
= , equations (2-34) and (2-37) reduce to 

          in
i

out
ii TTT == ,       i = 1, 2, …, n,   (2-38) 

         inout TSTTSTTST == ,     (2-39) 
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respectively.  Computationally, at steady-state the directionality of throughflows becomes moot 

by the equalities in equations (2-38) and (2-39).  Algebraically however, for steady and unsteady 

systems, a throughflow's directional orientation in equations (2-32) and (2-33) is one of the 

fundamental constructs of input–output analysis (Leontief 1936, 1966; Hannon, 1973; Patten, 

1978a) and is fundamental to NEA's mutually distinct and directional input and output oriented 

environs.  Throughflows are by definition [equations (2-32), (2-33), (2-35), and (2-36)] enfolded 

composite flows with input and output boundary flows and directional intercompartmental flows 

as constituents.  As such, although throughflows can be a key system representation of network 

activity, they can also be further parsed into their respective constituents of directional boundary 

(zi or yi) and intercompartmental partitioned microdynamic flows revealing additional 

component and network characteristics (Gattie et al., 2006a, 2006b).    

2.3-4 EFFERENT FLOW EQUATIONS 

The efferent or time-forward environ flow equations are developed by combining the 

outward oriented throughflow equation (2-33) for out
iT  with the conservation equation (2-30) to 

obtain: 

        (t)T(t)z(t)f
dt

dx out
i

n

in
1j

iij
i −+= ∑

=

,    i = 1, 2, …, n,    t0 ≤ t < ∞, (2-40) 

where the control volume and control surface designations are dropped to minimize repetition. 

At steady-state, 0
dt

dxi = , equation (2-40) becomes, 

            ∑
=

+=
n

in
1j

iij
out
i zfT ,    i = 1, 2, …, n,   (2-41) 
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where the right-hand-side is in
iT , defined in equation (2-32).  Equations (2-40) and (2-41) show 

that the incoming throughflow in
iT , expressed as the sum of incoming intercompartmental flows 

fij, and the incoming boundary flow zi, drive the future (t0 ≤ t < ∞) behavior of the system.  

Further, the input–output dual perspective of environ analysis interprets intercompartmental 

flows fij, simultaneously as an outflow from j or an inflow to i.  Taking fij in its output from j 

orientation, a corresponding flow intensity g can be defined as a function of the output 

throughflow of j: 

            
(t)T

(t)f
(t)g out

j

ij
ij ≡ .      (2-42) 

Here, gij is the fraction (therefore dimensionless) of output throughflow at donor component j 

contributed to the focal component i.  Rearranging (2-42) and substituting into (2-40) yields:  

         (t))t()t( out
i

n

in
1j

i
out
jij

i Tz(t)Tg
dt

dx ∑
=

−+= ,   i = 1, 2, …, n,   t0 ≤ t < ∞, (2-43) 

and at steady-state, 

             ∑
=

=+=
n

in
1j

i
out
jij

out
i n...,2,1,i,zTgT .      (2-44) 

Development of input–output mathematics for the unsteady case depicted in equation (2-43) still 

remains to be done.  Hippe’s (1983) successful time-dependent environ analysis for even a 

simple case illustrates how difficult this will be.  His approach sidestepped equation (2-43) and 

developed a set of state equations from equation (2-44) (therefore, in the neighborhood of 

steady-state) which allowed time-dependent inflows, zi(t), to generate time-dependent environ 

dynamics.   
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For continuity and completeness, I’ll complete this section with a review of NEA theory.  

Considering the steady-state case to aid subsequent algebra, equation (2-44) is written in matrix 

form for an n-component system as, 

              1xn
out

1xnnxn
out

1xn zTGT += .    (2-45) 

Solve for out
1xnT : 

               [ ] 1xn
1

nxnnxn
out

1xn zGIT −−= ,    (2-46) 

where I, the identity matrix, is dimensionless.  For convenience, the term [ ] 1
nxnnxn

−−GI  is 

redefined as, 

    [ ] 1
nxnnxnnxn

−−≡ GIN ,    (2-47) 

such that equation (2-46) is generally written in the form, 

         1xnnxn
out

1xn zNT = .     (2-48) 

Hannon (1973), using existence conditions given by Ortega (1972), described necessary physical 

conditions assuring that N exists.  Each irreducible block diagonal submatrix of G (presence of at 

least one non-zero element in all rows provides the condition of irreducibility) defined as Ĝ  with 

elements ijĝ  must meet the criterion, ∑ ≤
j

ij 1ĝ , for at least one row, i.  Hannon demonstrated, 

using an early ecological energy model for Silver Springs, Florida (Odum, 1957), that inclusion 

of the sun as an energy input guaranteed this criterion in his analysis.  Patten (1978a) later noted 

that at least one component in each submatrix of N generated by the block diagonalization 

procedure must receive input from the system's input environment from across the system 

boundary.  This solidified the significance of the directional mapping in equation (2-48) of the 
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boundary input vector z, from outside the environment, into system throughflows (e.g., Figure 

2.4).   

Hannon referred to the individual nij coefficients as structural elements of the ecosystem 

since z can be varied to produce changes in T without changing N.  In this case N acts as a 

steady-state transfer function, taking boundary inputs to the system into their interior 

throughflows.  However, it should be noted from the definitions of N (2-47), G (2-42), and T (2-

41) that change in z also entails change in N.  The mapping matrix N is known as a transitive 

closure or integral flow matrix because it accounts for all direct and indirect flows between each 

interior component (Patten, 1978a; Fath and Patten, 1999; Gattie et al., 2006a) over all paths of 

all lengths.  N may be decomposed by path length m into an infinite series (Ore, 1962), 

     [ ] ∑
∞

=

− =++++=−=
0m

mm32101 ,, GGGGGGGIN K ,  (2-49) 

which converges if and only if 0 ≤ gij ≤ 1.  This series partitions input-to-throughflow mapping 

coefficients into contributions from paths of each length m carrying substance from the system 

boundary to interior compartments.  The ecological significance of equation (2-49) cannot be 

over stated.  The convergent power series confers and confirms potentially infinite connectivity 

of indirect relationships between all compartments of a system with well-connected graphs of 

transactions.  This is central to the premise that indirect effects dominate the activities of a 

system (Patten, 1983; Higashi and Patten, 1986; 1989).  Moreover, output-oriented environs are 

implicit in the N matrix.  Each component's efferent connectivity, in a multi-component system, 

subsequently maps this boundary flow time-forward through its output environ-oriented flows 

entailing all direct and indirect pathways, m, of all lengths (m → ∞). 
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2.3-5  AFFERENT FLOW EQUATIONS  

The development of environ afferent or time-backward flow equations is similar in scope 

to the efferent flow equations and will be presented, in some cases, in an abbreviated format.  

The afferent flow equations are developed by combining the inbound oriented throughflow 

equation (2-32) for in
iT  with the conservation equation (2-30) to obtain: 

         ∑
=

=+−=
n

out
1h

ihi
in
i

i n...,2,1,iyf)(T
dt

dx
(t)(t)t ,    −∞ < t ≤ t0, (2-50) 

or for the steady-state case, 

               ∑
=

=+=
n

out
1h

ihi
in
i n...,2,1,i,yfT .   (2-51) 

The right hand side of equation (2-51) includes all outgoing flows from component i [definition 

of outgoing throughflow, out
iT , reference equation (2-33)].  This includes outgoing boundary 

flow, yi, and all intercompartmental flows, fhi, to other components h (h = 1, 2,…, n).    

Equations (2-50) and (2-51) show that the outgoing throughflow, out
iT , expressed as the sum of 

outgoing intercompartmental flows, fhi, and boundary flow, yi, are driven by the past (−∞ < t ≤ t0) 

behavior of the system.  Further, each empirical flow, fhi, can be considered an outflow from i 

and inflow to h.  The nondimensional function g' is defined by orienting the perspective of fhi as 

an inflow to h allowing fhi to be expressed as a fraction of the input throughflows, in
hT :  

             
(t)T
(t)f(t)g in

h

hi
hi ≡′  .     (2-52) 

Rearranging equation (2-52) and substituting into equation (2-50) yields:  
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(t)(t) ,      −∞ < t ≤ t0, (2-53) 
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and for the steady-state case, 

       ∑
=

=+′=
n

out
1h

i
in
hhi

in
i n...,2,1,i,yTgT .      (2-54) 

To maintain continuity, I’ll finish this section with a brief review of the remaining NEA 

theory development.  Considering only the steady-state case, to aid subsequent algebra, equation 

(2-54) is written in matrix form as: 

                nx1nxn
in

nx1
in

nx1 yGTT +′= .    (2-55) 

Rearranging to solve for in
nx1T , yields, 

               [ ] 1
nxnnxnnx1

in
nx1

−′−= GIyT ,    (2-56) 

where I is a nondimensional identity matrix.  For convenience, the term [ ] 1
nxnnxn

−′−GI  is 

redefined as 

    [ ] 1
nxnnxnnxn

−′−≡′ GIN ,    (2-57) 

such that equation (2-56) becomes: 

         nxnnx1
in

nx1 NyT ′= .     (2-58) 

Equation (2-56) corresponds to Leontief’s (1936) original Input-Output Analysis relationship 

wherein economic activity upstream necessary to produce an industrial output, y, could be 

determined and evaluated.  Patten’s afferent input-oriented environs are implicit in the N' matrix 

of equation (2-58).  Component outputs, y, can be mapped backwards through these input 

environs containing all the direct and indirect pathways of all lengths [as m → ∞; equation (2-

59)], to incoming component throughflows, Tin.  Similar to equation (2-49), N' can also be 

written: 
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      [ ] ∑
∞

=

− ′=′+′+′+′+′=′−=′
0m

mm32101 ,, GGGGGGGIN K .  (2-59) 

The transitive closure matrix, N', is the summation of the infinite power series of G' which 

represents the partitioning coefficients for mapping boundary output, yi, at any compartment, i, 

into flows to i from the remaining components in the system along all pathways of all lengths, m.  

Each component's afferent connectivity establishes first a reference to the outside system through 

the output boundary flow, y, and then subsequently maps this boundary flow backwards in time 

through its input-oriented environ flows over all direct and indirect pathways, m, of all lengths 

(m → ∞). 

2.3-6 PATHWAY ANALYSIS WITH THE ADJACENCY MATRIX  

A simple binary matrix of ones and zeros is used to facilitate a discussion of a network 

model’s pathways (structure) and the corresponding concept of pathway proliferation.  The 

appropriately titled adjacency matrix from mathematical graph theory, A = (aij), sometimes 

called an interconnection matrix (Śiljak, 1991), represents a system’s direct component 

connectivity.  Values of aij = 1 and aij = 0 signify flow and no flow connections, respectively, 

from component j to i.  The adjacency matrix is therefore isomorphic to the corresponding flow 

matrix, F = (fij).  The adjacency matrix raised to the m'th power, Am = (aij)m (matrix 

multiplication not scalar powers), enumerates quantities of pathways of length m directed from 

each j to each i in the system.  Specifically, the whole number in an i, j interstitial location of the 

matrix (aij)m is the number of indirect pathways between components j and i of path length m 

where the i, j entry of (aij)m is denoted )m(
ija by standard notation.  Values of )m(

ija  increase without 

bound as m → ∞, signifying that the quantity of indirect pathways between j and i increase 

without bound as path length m increases.  Pathway proliferation analysis systematically 
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evaluates increasing powers of the adjacency matrix for trends with indirect connectivity 

between various components in a multi-component system.   

The physical interpretation of the A matrix diagonal terms can be further considered 

given the clarity and rigidity of the conservation equations (2-30) as developed from the control 

volume model.  Self-flows clearly exist as flows among other flows in the right-hand-side 

summation.  However, in all models thus far in the NEA literature, the fii diagonal terms are zero 

or not specifically addressed since there are no observed self-flows in the empirical data.  

Correspondingly there is no self-connectivity (aii = 0).  As such, pathway proliferation analysis 

of this type of system as m → ∞ starts with zeros on the diagonal of the A matrix.  Lacking the 

self-flow inclusion provided by equation (2-30), similar mathematical exercises introduced self-

flow connections (aii = 1) to path length proliferation analysis by calling them node queues, 

storages, or time delays (for example, see Patten 1985).  This methodology showed that 

quantities of paths, at higher path lengths, of these latter hypothetical exercises (aii = 1) 

proliferate faster as m → ∞ than the corresponding path quantities observed in the empirically 

supported models (aii = 0).  As it would be inappropriate to randomly place a one in any off 

diagonal location of the A matrix without a corresponding empirical flow fij, it is now felt that 

placing ones on the diagonal of the A matrix aii, without supporting empirical self-flows fii, 

should be avoided.  For example, the common self-flow arcs (arrows) on the components of a 

multi-component network digraph is not supported by the existence of the respective 

corresponding empirical flows when fii = 0.  If no supporting empirical data exist, from this point 

forward, leaving self-flow arcs off the typical digraph pictorial diagram is an appropriate practice 

to improve clarity and minimize confusion.  However, they can certainly be added for discussion 

purposes.  Additionally, it is now clear that the concept of storage or time delay, from the 
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differential equation (2-30) perspective, has no unique relationship to the diagonal self-flows of 

the F and A matrices.  The connectivity and flow from a component to itself, aii and fii, are only 

one flow relationship, among many, that a component has within the intercompartmental flow 

network.  All of a component’s flows (fij for i and j = 1, 2, …, n) with their isomorphic 

connectivities (aij for i and j = 1, 2, …, n) simply contribute to a component’s accumulation as 

per equation (2-30) or storage turnovers as per the steady-state equations (2-62) and (2-84) 

discussed later. 

2.4 EFFERENT STORAGE EQUATIONS 

Similar to network throughflow analysis, storage analysis maps the boundary flows, z and 

y, forward or backward, respectively, through an environ network of component storages (Matis 

and Patten, 1981).  The efferent or time-forward steady-state storage equations, as generated by 

boundary input z, are developed by first defining two terms.  Each i’th component's steady-state 

donor specific total turnover rate coefficient (with dimensions of reciprocal time, T-1) is defined 

as, 

           n...,2,1,i,
x

Tτ
i

out
i1-

i =≡ ,    (2-60) 

where out
iT  is the total steady-state throughflow out of a donor component i and xi is the total 

steady-state storage (dimensioned ML−2) at donor component i.  The inverse of -1
iτ  is the 

turnover time iτ  (with dimensions T) of the component’s storage. Turnover rates can be 

partitioned by those intercompartmental flows, fij, which contribute to the total component 

turnover rate.  As such, for a component j, the donor specific steady-state partial turnover rate 

is: 
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j

ij1-
ij x

f
≡τ ,     j = 1, 2, …, n,     i = 1, 2, …, n.  (2-61) 

where fij is the intercompartmental flow from the donor component j to the receiver component i 

and xj is the storage at donor component j.  -1
ijτ  represents the partial turnover rate the 

intercompartmental flow from j specifically oriented towards i, fij, contributes to the overall 

storage turnover of component j.  -1
ijτ  is often called the “rate coefficient” of component j 

oriented towards component i whereas -1
iτ  is simply called the turnover rate of component i.  The 

individual partitioned turnover rates combine to equal the total component turnover rate, 

      
j

j
n

1i

1
ij

1
j x

y
+τ=τ ∑

=

−− ,    j = 1, 2, …, n,     i = 1, 2, …, n.  (2-62) 

The total turnover rate of equation (2-60) is expressed in terms of its donor specific partitioned 

turnover rates from both intercompartmental and boundary flows for a specified component j.  

The reciprocal turnover time, τij, represents component j’s storage turnover time attributed 

specifically to the partitioned intercompartmental flow directed towards component i.   

Since flow from a component back to the same component, fii, is usually zero or assumed 

zero, -1
iiτ  is also usually zero.  Recall, this also requires that zeros are placed on the diagonal in 

the adjacency matrix, aii = 0 for i = 1, 2, 3, …, n.  If there is no intercompartmental flow across 

the component control surface and back to itself during one time step, fii = 0, there can be no 

partial contribution towards the component storage turnover rate, -1
iiτ .  Additionally, the partial 

storage turnover time, τii, attributed to a zero flow from a component to itself, justifiably, 

remains undefined (i.e., xj / fii = xj / 0 = undefined).  If no self-flow exists, fii = 0, the partial 

turnover rate specifically attributed to this flow is zero, 0τ-1
ii = , and the time this flow would 

require to turn over the component storage, xi, cannot be calculated and τii is undefined.  
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Substituting the defined total [equation (2-60)] and partial [equation (2-61)] donor-

storage turnover rates into the efferent flow equation (2-41) reformulates the flows of the linear 

throughflow model into fractions of the donor compartments.  First, rearranging equation (2-60) 

to express the throughflow out of component i, out
iT , as a product of the component’s turnover 

rate, 1
iτ
− , and storage, xi,  

      i
1

i
out
i xτT −= ,      i = 1, 2, …, n,   (2-63) 

and similarly rearranging equation (2-61),      

                   j
1

ijij xτf −= ,    j = 1, 2, …, n,   i = 1, 2, …, n, (2-64)  

equations (2-63) and (2-64) are then substituted into equation (2-41) to yield, 

     ∑
=

−− =+=
n

1j
ij

1
iji

1
i n...,2,1,i,zxτxτ .    (2-65) 

This equation in matrix form for an n-component system is, 
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  (2-66) 

Here the partial turnover matrix results and subsequent interpretations follow directly from the 

empirically observed data in the observed flows matrix, F.  The matrices τ−1, F, and A are all 

isomorphic.  Combine similar terms, 
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and then finally define the composite matrix C which is comprised of the donor controlled, 

output-oriented, partial turnover rates (rate coefficients) combined with the total turnover rates 

on the diagonals as, 

     [ ]

( )
( )

( )⎥⎥
⎥
⎥
⎥

⎦
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⎢
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C

LL

MOLM
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L

.  (2-68) 

Recall that the fii terms are usually zero, as such, the corresponding rate coefficients 1−τii  are also 

usually zero.  The diagonals would then solely be defined by the component throughflow as 

shown in equation (2-60).  However, in some future model if fii is not zero, the definition of C in 

equation (2-68) is still adequate to carry this empirical data.  Substitute the definition of the 

donor controlled turnover rate matrix C into equation (2-67) and multiply by a ratio of a delta 

time step equal to one (∆t/∆t) to yield,  

                      
1n1nnn t

t
×××

=⎟
⎠
⎞

⎜
⎝
⎛
∆
∆

− zxC .    (2-69) 

Pursuing a convergent series format similar to equations (2-46) and (2-49), first a non-

dimensional P is defined as, 

     ∆tnnnnnn ××× +≡ CIP ,    (2-70) 

where I is the identity matrix.  By definition, P is constructed of both C and I.  The P matrix is a 

uniquely revealing construct of information regarding the storage turnover relationships between 

components.  The off diagonal elements of the P matrix, pij, represent fractions of storage xj in 

component j that will be transferred to storage at i, xi, during the interval t to t + ∆t.  The 

diagonal terms, pii, are different, due to the algebraic construction that generates the composite P 

matrix.  The diagonal terms identify the fraction of the original quantity of mass or energy 
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remaining in each component after the discrete time step ∆t.  Recall that the system is assumed 

to be at steady-state.  As such, as mass or energy leave a component’s storage, an equal amount 

replaces it.  Total storage content, xi, remains constant.  

The time interval introduced in equations (2-69) and (2-70) has one constraint, 

              n,2,1,i1
x
Tt

i

out
i K=≤

∆ ,    (2-71) 

assuring that the selected discrete time step does not allow more than the total stock stored in 

each component to be moved during one time step.  As such, the necessary constraint for an 

appropriate time step is established as, 

              n,2,1,i
T
x∆t out
i

i K=≤ .    (2-72) 

As a method of consistent practice, the ∆t, for a given multi-component system’s storage environ 

analysis, is sized such that the highest component turnover rate, 1
maxτ− , multiplied by one time 

step, ∆t, equals one: 

     n,2,1,i1
x

T∆tτ∆t
maxi

out
i1

max K==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=− ,   (2-73) 

where the time interval for the entire storage analysis is then,  

                n,2,1,i
T
xt

min
out
i

i K=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∆ .   (2-74) 

Considering the pursuit of a converging series format and with the appropriate constraints 

applied to ∆t, first rearrange and then rewrite equation (2-69) by adding and subtracting the 

identity matrix: 

      [ ]
1n1nnnnnnn ∆t∆t

××××× =−+− zxIIC ,   (2-75) 

and then substitute equation (2-70) for P; 
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             [ ]
1n1nnnnn ∆t

×××× =− zxPI .    (2-76) 

Solve for x,  

             [ ]
1n

1
nnnn1n

∆t
×

−
×××

−= zPIx ;    (2-77) 

and for convenience define Q; 

            Q ≡ [I – P]−1 ,     (2-78) 

allowing equation (2-73) to be written as, 

        
1nnn1n

∆t
×××

= zQx ,    (2-79) 

for all ∆t ≤ Ti/xi per equation (2-72).  Q represents the transitive closure or integral storage 

specific flow matrix [similar to N in equations (2-47) through (2-49)] for discrete time inputs, 

z∆t.  Q accounts for all direct and indirect storages as it can alternately be written as:  

      [ ] ,,,
0m

mm32101 ∑
∞

=

− =++++=−= PPPPPPPIQ K   (2-80) 

where the term [I – P]−1 is expanded to the converging series P0 + P1 + P2 + P3 + ,…, Pm for m 

→ ∞ if the condition 0 ≤ pij ≤ 1 exists (for i, j = 1, 2, …, n), which is assured if the time interval 

criterion of equation (2-72) is maintained.  The storage-specific series (2-80) confers and 

confirms an infinite connectivity (in the limit) of indirect relationships between the storages of 

all system components.  Patten’s output-oriented storage environs are therefore implicit in the Q 

matrix.  Each component’s efferent connectivity first establishes a reference to the outside 

system through the input boundary flow, z, and then maps this boundary flow time-forward 

through the output-oriented environ network of all direct and indirect connections as m → ∞.  

For continuous-time inputs z, the transitive closure matrix Q and the discrete time step ∆t are 

combined to form the S matrix (S = Q∆t ) such that equation (2-79) becomes, 

           
1nnn1n ×××

= zSx .     (2-81) 
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S is the transitive closure matrix, comprised of integral turnover times, τij, that map time-

continuous inputs z into component storages, x.  Comparing equations (2-81) and (2-69) shows 

that S = − C−1.   

2.5 AFFERENT STORAGE EQUATIONS 

Afferent steady-state storage equations tracing flows to storage, x, backward from output, 

y are developed in the same way as the efferent case.  A component’s recipient-specific turnover 

rate at steady-state is defined as,  

        n...,2,1,i,
x
Tτ

i

in
i1-

i =≡′ ,    (2-82) 

where in
iT  is the total steady-state throughflow into a recipient component i and xi is storage 

(units ML−2) at i.  The recipient-specific partial turnover rate is defined as, 

         
h

hi1-
hi x

fτ ≡′ ,     h = 1, 2, …, n,     i = 1, 2, …, n,  (2-83) 

where fhi is the intercompartmental flow to the receiver component h from the donor component i 

and xh is the storage at receiver component h.  The reciprocal partitioned turnover time, τ'hi, 

represents component h’s storage turnover time attributed specifically to the partitioned 

intercompartmental flow oriented from i.  The individual partitioned turnover rates combine to 

equal the total component-specific turnover rate, 

       
h

h
n

1i

1
hi

1
h x

zττ +′=∑
=

−− ,      h = 1, 2, …, n,     i = 1, 2, …, n, (2-84) 

where, for a specified component h, equation (2-81) is expressed in terms of its receiver-specific 

partitioned turnover rates from both intercompartmental and boundary flows. 

Substituting the defined total [equation (2-81)] and partial [equation (2-83)] receiver-

storage turnover rates into the afferent flow equation (2-51) reformulates the flows of the linear 
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throughflow model into fractions of the recipient component’s storage.  First, rearrange equation 

(2-82) to express the throughflow into component i, in
iT , as a product of the component’s 

turnover rate, 1
iτ
− , and storage, xi: 

      i
1

i
in
i xτT −′= ,      i = 1, 2, …, n,   (2-85) 

where ii ττ =′  at steady state conditions.  Similarly rearranging equation (2-83),     

       h
1

hihi xτf −′= ,    h = 1, 2, …, n,     i = 1, 2, …, n,  (2-86)  

equations (2-85) and (2-86) are then substituted into equation (2-51) to yield: 

         ∑
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−− =+′=
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Equation (2-87) can be expanded to the following n-component matrix form: 
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where similar terms can be combined to achieve,  
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Comprised of the recipient controlled, input-oriented, partial turnover rates (rate coefficients) 

combined with total turnover rates on the diagonals, the C' matrix is defined as: 
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Substitute the definition of the receiver controlled turnover rate matrix C' into equation (2-89) 

and multiply by a ratio of a delta time step equal to one (∆t/∆t) to yield,  

                    [ ]
n1nnn1 ∆t

∆t
×××

=⎟
⎠
⎞

⎜
⎝
⎛′− yCx .    (2-91) 

Again, pursuing a converging series format similar to equations (2-57) and (2-59), first a non-

dimensional P' is defined: 

     ∆tnnnnnn ××× ′+≡′ CIP ,    (2-92) 

where I is the identity matrix.  The time interval constraint is 

            n,2,1,i1
x
Tt

i

in
i K=≤

∆ ,    (2-93) 

assuring that the turnover rates, 1
iτ
− , over one time step are not larger than the available stocks xi.    

The necessary constraint becomes: 

              n,2,1,i
T
x∆t in

i

i K=≤ .    (2-94) 

∆t is sized similar to the development of equations (2-73) and (2-74) where:   

     n,2,1,i1
x
T∆tτ∆t

maxi

in
i1

max K==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=− .   (2-95) 

The time interval is then 

               n,2,1,i,
T
xt

min
in
i

i K=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∆ .   (2-96) 

In a steady-state system, out
i

in
i TT = , whereupon equations (2-74) and (2-96) calculate the same 

∆t.  Pursuing a converging series format, rearrange and rewrite equation (2-91) by adding and 

subtracting the identity matrix,  

      [ ]
n1nnnnnnn1

∆t∆t
×××××

=−+′− yIICx ,   (2-97) 
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then substitute P [equation (2-92)], 

             [ ]
n1nnnnn1

∆t
××××

=′− yPIx ,    (2-98) 

and solve for x,  

             [ ] ∆t.1
nnnnn1n1

−
××××
′−= PIyx     (2-99) 

For convenience, Q' is defined as, 

            Q' ≡ [I – P']−1,     (2-100) 

allowing equation (2-73) to now be written as, 

                   ∆t
n1n1
Qyx ′=

××
,     (2-101) 

for all ∆t ≤ Ti/xi per equation (2-94).  Q' represents the transitive closure or integral storage 

specific matrix [similar to N' in equations (2-57) through (2-59)] for discrete time inputs, y∆t, 

accounting for all direct and indirect storages.  Q' can alternatively be written as,  

   [ ] ,,,
0m

mm32101 ∑
∞

=

− ′=′+′+′+′+′=′−=′ PPPPPPPIQ K   (2-102) 

where the term [I – P']−1 is expanded to the convergent series P' 0 + P' 1 + P' 2 + P' 3 + ,…, P' m for 

m → ∞ if the condition 0 ≤ p'ij ≤ 1 exists, which is assured if the time interval criterion per 

equation (2-94) is maintained.  The input-oriented storage environs are implicit in the Q' matrix.  

Each component’s afferent connectivity, in a multi-component system, is first referenced to the 

outside system through the output boundary flow, y, and then subsequently mapped time-

backwards from this boundary flow through its input-environ network of component storages 

through all direct and indirect connections as m → ∞.  For continuous-time outputs, y, the 

transitive closure matrix, Q', and the discrete time step, ∆t, are combined to form the S' matrix, 

where equation (2-101) becomes, 

     
nnn1n1 ×××

′= Syx .     (2-103) 



 

 

65

S' is the transitive closure matrix for mapping time-continuous outputs, y, from component 

storages, x.  Comparing equations (2-103) and (2-91) shows that S' = − C'−1.   

2.6 THE STEADY-STATE RELATIONSHIP BETWEEN STORAGE AND 

THROUGHFLOW 

In a steady-state system, the turnover rates, 1
iτ
− , and their reciprocal times, τi, establish 

the relationship between the integral storage, Q and Q', and throughflow, N and N', matrices.  

Equation (2-79) written in scalar form,  

   jiji zq∆tx = ,     (2-104) 

and then multiplied by the turnover rate ratio 
i

i

x
T , yields: 
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     (2-105) 

Rearranged and substituting 
i

i1
i x

Tτ =− ,    

     jij
-1
ii z∆tqτT = .     (2-106) 

Comparing this to the scalar form of equation (2-48) shows that for the efferent orientation that, 

               ∆tqτn ij
1

iij
−= ,      (2-107) 

or reciprocally,  

     ∆tqτn ijiij = .      (2-108) 

Similarly, for the afferent orientation, 

     ∆tqτn ij
1

jij ′=′ − ,      (2-109) 

and, 

     ∆tqτn ijjij ′=′ .      (2-110) 
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As evident in the original substitutions of equations (2-65) and (2-87), component turnover times 

or rates establish the direct relationship between the throughflow, N and N', and storage, Q and 

Q', integral matrices and their corresponding maps (convergent series) of direct and indirect 

connectivity at all path lengths.   

2.7 EXAMPLE: STEADY-STATE NITROGEN CYCLING IN THE NEUSE RIVER 

ESTUARY 

An average steady-state nitrogen cycle of the Neuse River estuary, North Carolina, 

(Christian and Thomas, 2000) was used for the NEA throughflow and storage analyses.  This 

dynamic steady-state model represents an average of 16 consecutive seasons from spring 1985 

through winter 1989 (Christian and Thomas, 2003) monitored as a part of a Neuse River 

Modeling and Monitoring program (ModMon).  This program (a consortium of academia, 

government, and industry) was developed to improve water quality by reducing nitrogen loading 

to a eutrophic ecosystem.  Christian and Thomas (2000, 2003) employed ecological network 

analysis (ENA) to specifically understand the relationship between varying nitrogen inputs to the 

system and the respective nitrogen recycling patterns and rates.  They concluded:  (1) Recycling 

of nitrogen as measured by the Finn cycling index (Finn, 1976) was high, averaging 89%; (2) 

Freshwater residence time was long, averaging 51 days; (3) The rate of nitrogen loading was a 

small fraction of the total microbial processing of nitrogen; and (4) The controls on primary 

production (an area of focus in their study) tended to be associated with conditions in the estuary 

rather than import.  Processes within the Sediment component, including denitrification, benthic 

filter feeding, and burial, were considered a weakness in model construction. 

The Neuse River receives water from a 16,000 km2 watershed which together with the 

smaller Trent River (9% of Neuse and Trent combined) empties into the 400 km2 Neuse River 
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estuary, ultimately emptying into Pamlico Sound.  Many studies focusing on nutrient cycling and 

cyanobacterial blooms in this area have been conducted over the last 30 years (Boyer et al., 

1988; Christian et al., 1984, 1989, 1991; Hobbie and Smith, 1975; Paerl, 1987; Stanley, 1983, 

1988).  Due to the size of Pamlico Sound which separates river flow from the Atlantic Ocean, 

residence times of freshwater in the sound approach one year and salinities are one-half to two-

thirds that of seawater salinities (Giese et al., 1979).  Also, as such, astronomical tides are 

insignificant and wind tides coupled with river discharge fluctuations dominate water level 

fluctuations.  The model made no distinction between molecular N or gaseous end products of 

denitrification.  All inputs are dominated by fluctuating riverine loading with DON, NOx, and 

NH4 receiving input from precipitation and PN-Heterotrophs, including some immigration.  All 

outputs except from Sediment were discharges to the downstream Pamlico Sound or N2 from 

denitrification, reflecting respiratory loss.  The output from Sediment (top one centimeter) was 

considered burial beyond the modeled sediment thickness.  PN-Heterotrophs experienced some 

emigration. 

The model includes seven components: phytoplankton particulate nitrogen, PN-Phyto-1; 

heterotroph particulate nitrogen, PN-Hetero-2; sediment particulate nitrogen, Sediment-3; 

dissolved organic nitrogen, DON-4; nitrate and nitrites, NOx-5; ammonium, NH4-6; and abiotic 

particulate nitrogen, PN-Abiotic-7.  Table 2.1 lists the boundary flows, standing stocks, and 

inter-component flows for the averaged data set.  [Table 2.1 here]  Some portions of the model 

were directly sampled and measured while others were interpolated both from literature (e.g., 

data from similar estuaries) and subsequent mass balance.  A digraph of model connectivity is 

shown in Figure 2.5.  [Figure 2.5 here] 
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2.7-1 NEUSE RIVER ESTUARY NITROGEN CONSERVATION EQUATIONS 

Establish the control surfaces around the control volumes of each model component as 

illustrated by the PN-Phyto-1 component in Figure 2.5.  The nitrogen mass balance of the steady-

state Neuse River estuary model can be represented by equation (2-19) modified slightly by 

dividing through by A2, to allow for the dimensional units of the Neuse River estuary data: 

                 0
A
m

A
m

CS
out

2

CS
in

2 =−∑∑
&&

.     (2-19a) 

The dimensions of m&  are M·T−1.  As such, equation (2-19a) with units of  M A−2 T−1, represents 

the Neuse River estuary model’s dimensional units of (mmol - N)/season collected on a m2 basis. 

Considering the mass flows which cross the CS, the mass balance for PN-Phyto-1 can be written 

as, 

   (f21 + f31 + f41 + f71 + y1) – (f14 + f15 + f16 + z1) = 0.   (2-19b) 

Assuming similar CV’s and CS’s for the remaining components in the model, the mass balances 

are, 

  (f32 + f42 + f62 + f72 + y2) – (f21 + f23 + f24 + f25 + f26 + f27 + z2) = 0,  (2-19c) 

           (f23 + f53 + f63 + y3) – (f31 + f32 + f35 + f36 + f37 + z3) = 0,  (2-19d) 

                (f14 + f24 + y4) – (f41 + f42 + z4) = 0,    (2-19e) 

            (f15 + f25 + f35 + y5) – (f53 + f56 + z5) = 0,   (2-19f) 

        (f16 + f26 + f36 + f56 + y6) – (f62 + f63 + z6) = 0,   (2-19g) 

           (f27 + f37 + y7) – (f71 + f72 + z7) = 0.   (2-19h) 
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2.7-2 NEUSE RIVER ESTUARY NITROGEN THROUGHFLOW EQUATIONS 

Its fairly straight forward to calculate the throughflows, as shown in Table 2.1, associated 

with the seven components in the Neuse River estuary model.  Using equations (2-32) and (2-33) 

for component (1), PN-Phyto, the calculations are: 

                         

seasonm

Nmmol
2

171615141312111
in

1
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fffffffzT

⋅

−
=+++++++

=+++++++=
 (2-32a) 

   

seasonm

Nmmol
2

716151413121111
out

1

6,92757001,3636114,859037

fffffffyT

⋅

−
=+++++++

=+++++++=
 (2-33a) 

As these equations illustrate, empirical data almost never balance identically; the imbalance in 

this model is, however, within the 5% limitation suggested by Kay et al. (1976).  Although the 

sensitivity of results mass-balance variation remains an area for further study, most tests of 

output sensitivity indicate small output variation associated with throughflow variation (Gattie et 

al., 2006a).  The input and output throughflows [mmol–N/(m2 · season)] at each node are: 
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2.7-3 NEUSE RIVER ESTUARY NITROGEN EFFERENT FLOW EQUATIONS 

Moving towards a matrix algebra expression of equation (2-45), inter-compartmental 

flows are organized in compact form as the F matrix, 
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oriented (as in Table 2.1) from columns to rows.  The corresponding nondimensional G matrix, 

equation (2-42), is calculated by dividing each column by its respective throughflow, 
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G .   (2-112) 

When the input and output throughflows are not equal as shown in equations (2-32a) and (2-

32b), by convention, the output throughflows [equation (2-32b)] are used to formulate the G 

matrix.  The G matrix simply enables the inter-component empirical flows of equation (2-111) to 

be represented as fractions of the donor component throughflows.  For example, considering g21, 

70.2% of the nitrogen throughflow output from PN-Phyto-1, flows to PN-Hetero-2.  Notice the 

diagonals are zero.  Zero percent of the nitrogen throughflow output, over a given time interval, 

flows from a component out across its control surface back into the same component across the 

same control surface.  The G matrix, often referenced as the donor throughflow intensity matrix, 

provides a snapshot, over one time step, of the inter-component throughflow intensities.  For 

example, considering the second row of the G matrix, every component allocates a significant 

portion of output throughflow to PN-Hetero-2 (from 36.9% to 76.4%). 
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The dimensionless integral N matrix is calculated with either equation (2-47) or (2-49): 
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N .  (2-113) 

Barber et al., (1979) provide three separate interpretations of equations (2-48) and (2-113).  

Consider interstitial element n25 = 19.13.  This is the throughflow-out of component 2 generated 

by one unit of boundary input to component 5.  It is also the throughflow from component 5 to 

component 2, over all direct and indirect paths, due to one unit of input into component 5.  

Thirdly, it is also the number of times a unit of throughflow introduced at component 5 will pass 

through component 2 before leaving the system.  The transitive closure matrix N relates the 

system-level boundary input vector, z, over all direct and indirect pathways to the compartmental 

throughflow vector Tout. 

PN-Hetero-2 and NH4-6 are consistently the largest purveyors of nitrogen previously 

input across the system boundary at all components.  For example, a unit of nitrogen input at 

NOx-5, will pass through PN-Hetero-2, 19.13 times before it leaves the system.  In total, 

considering the second row of the N matrix, a unit of nitrogen input at components 1 through 7, 

will pass through PN-Hetero-2, an average of 18.34 times ranging from 18.32 at PN-Abiotic-7 to 

20.15 at PN-Hetero-2.  Similarly, considering the sixth row of the N matrix, a unit of nitrogen 

input at components 1 through 7, will pass through NH4-6 an average of 14.66 times ranging 

from 10.61 at Sediment-3 to 16.48 at NH4-6.  PN-Hetero and NH4 both play large rolls in the 

cycling of nitrogen in the output environs of all seven components. 



 

 

72

Sediment-3 and NOx-5 are consistently the smallest purveyors of nitrogen previously 

input across the system boundary at all components.  Considering the third row of the N matrix, 

a unit of nitrogen input at components 1 through 7, will only pass through Sediment-3 an average 

of 1.64 times ranging from 1.50 at DON-4 to 2.04 at Sediment-3.  Similarly, considering the fifth 

row of the N matrix, a unit of nitrogen input at components 1 through 7 will only pass through 

NOx-5 an average of 1.57 times ranging from 1.12 at Sediment-3 to 2.47 at NOx-5.  Sediment 

and NOx both play small rolls in the cycling of nitrogen within the output environs of all seven 

components.     

2.7-4 NEUSE RIVER ESTUARY NITROGEN AFFERENT FLOW EQUATIONS 

The nondimensional G' matrix, equation (2-52), is calculated by dividing each row by its 

respective throughflow, 
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G .   (2-114) 

This matrix represents the inter-component flows of equation (2-111) expressed as  fractions of 

recipient component throughflows.  For example, considering g'21, 32.4% of the nitrogen 

throughflow input to PN-Hetero-2, comes from PN-Phyto-1.  The zero diagonal elements again 

indicate that none of the recipient nitrogen throughflow of each component, over a given time 

interval, came to the component from across its control surface having emanated originally from 

the same component across the same control surface.  The G' matrix provides a snapshot, over 

one time step, of the inter-component recipient throughflow intensities.  For example, 
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considering the fourth column of the G' matrix, only two components have a portion of their 

input throughflows generated from DON-4, 17.0% of PN-Phyto-1 and 9.2% of PN-Hetero-2.  

The remaining components, 3 through 7, have no portions of their input throughflows (g'34 

through g'74) emanating from DON-4. 

The dimensionless integral N' matrix is calculated by either equation (2-57) or (2-59): 
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Considering element n'25 = 15.59, Barber et. al’s (1979) three interpretations of equations (2-58) 

and (2-115) include:  (1) The throughflow into component 5 required to generate one unit of 

output from 2,  (2) The throughflow from 5 contributing one unit of output from 2 over all direct 

and indirect paths connecting the two compartments, (3) The number of times a unit of output 

from component 2 passed through component 5 since entering the system.  The transitive closure 

matrix N' relates the system level boundary output vector, y, over all direct and indirect 

pathways back to the compartmental throughflow vector Tin. 

Similar to the output environ efferent case, component’s PN-Hetero-2, and NH4-6, 

respectively, are consistently the largest purveyors of nitrogen that ultimately exits the system 

control surface from all components.  Considering the second column of the N' matrix, a unit of 

nitrogen output from components 1 through 7 has passed through PN-Hetero-2 an average of 

18.59 times ranging from 14.58 at NOx-5 to 20.15 at PN-Hetero-2.  Similarly, considering the 

sixth column of N', a unit of nitrogen output from components 1 through 7 has passed through 
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NH4-6 an average of 14.90 times ranging from 11.99 at NOx-5 to 16.48 at NH4-6.  PN-

Heterotrophs and NH4 both play large rolls in the nitrogen cycling within the input environs of 

all seven components. 

Sediment-3 and NOx-5 are consistently the smallest purveyors of nitrogen ultimately 

discharging as boundary output at all components.  Considering the third column of N', a unit of 

nitrogen output from components 1 through 7 has only passed through Sediment-3 an average of 

1.19 times ranging from 1.50 times at DON-4 to 2.04 times at Sediment-3.  Similarly, 

considering column 5 of N', nitrogen output from components 1 through 7 has only passed 

through NOx-5 an average of 2.05 times ranging from 1.12 at Sediment-3 to 2.47 at NOx-5.  

Sediment and NOx both play small rolls in the nitrogen cycling within the output environs of all 

seven components. 

2.7-5 NEUSE RIVER ESTUARY NITROGEN PATHWAY ANALYSIS WITH THE 

ADJACENCY MATRIX 

The adjacency matrix for the Neuse River estuary model (Figure 2.5), isomorphic to the 

F matrix in equation (2-111), is: 
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The seven component model has 22 of 49 possible connections for an overall system 

connectivity of 45%.  The rows and columns represent direct (one path length) incoming and 

outgoing flows, respectively.  The largest single component connectivity is depicted by the 
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second row where all components, except PN-Hetero-2 itself, flow nitrogen to PN-Hetero-2.  

The second largest is shown in the third row, where all components, except Sediment-3 and 

DON-4, flow nitrogen to Sediment-3.  The next highest connectivities are all represented by 

outgoing flows where PN-Phyto-1, PN-Hetero-2, and NH4-6 each have four components to 

which they flow nitrogen over direct links of path length one.  Considering incoming and 

outgoing flows in combined, PN-Hetero-2 followed by Sediment-3, and then PN-Phyto-1, in 

decreasing order, are the most connected components.  PN-Abiotic-7 and DON-4 are the least 

connected.   

The adjacency matrix raised to the second power enumerates paths of length two: 
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Considering both incoming and outgoing flows combined, similar to the single path length 

conclusions, PN-Hetero-2 and Sediment-3 exhibit the greatest, and PN-Abiotic-7 and DON-4 the 

least, levels of connectance.  However, NH4-6 with relatively low direct connectivity (path 

length of one) has significant second-order connectivity (path length of two).  The connectivities 

from DON-4 to NOx-5, 0aa )2(
1717 == , and from PN-Abiotic-7 to PN-Phyto-1, 0aa )2(

5454 == , are 

the only two directional connectances which show no connectivity at path lengths of one and 

two.   

 Equation (2-116), populated by the field-acquired empirical data, shows no self-flows for 

all components as reflected by zeros along the diagonal.  However, equation (2-117) shows there 
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is self-connectivity at the level of two path-lengths.  In particular, both PN-Hetero-2, 4a )2(
22 = , 

and Sediment-3, 3a )2(
33 = , already highly-directly-connected components, equation (2-116), 

experience high second-order self cycling of nitrogen, equation (2-117).  In fact, the highest 

number of connections of path length two, considering the entire A2 matrix, occurs from PN-

Hetero-2 to itself.  The diagonal elements, nonexistent to the empirical data gatherer at the level 

of direct connections, quickly become viable routes of nitrogen flow at path lengths of two.  A 

general review of indirect connectivity at higher path lengths, Am as m increases, shows that PN-

Hetero-2 and Sediment-3 both consistently maintain high numbers of incoming connections.  

The number of connections from NH4-6 to PN-Hetero-2 is usually the highest at all path lengths, 

followed closely by the paths from NH4-6 to Sediment-3 and PN-Hetero-2 back to itself.  These 

three unidirectional flows generate a lot of activity.  Interestingly, one of them, the self-flow of 

PN-Hetero-2 is not evident in the direct connection digraph of Figure 2.5, or its supporting 

empirical data.  

2.7-6 NEUSE RIVER ESTUARY EFFERENT STORAGE 

Using equation (2-60), component steady-state turnover rates for the standing stocks of 

nitrogen are calculated as:  

       [ ]41.3408.33275.2696.924.045.23449.81τ -1
i =  season-1, (2-118) 

where the reciprocal τi is the turnover time: 

      [ ]0291.00030.00374.01004.01667.40043.00123.0τ i =  season. (2-119) 

The turnover rates range from highest at NH4-6 to lowest for Sediment-3, respectively, 332.08 

and 0.24 per season.  Reciprocally, NH4-6 and Sediment-3 require 0.003 and 4.1667 seasons to 

turn over their respective storages.  These donor-specific steady-state partial turnover rates are 

further partitioned per equation (2-61) as follows, 



 

 

77

   

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0000033.3167.0
000003.003.1830
081.280002.000
0000078.1704.16
59.722.212.10011.019.7
31.2664.16688.914.511.0016.57

078.13356.1536.4000

τ 1-
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Each 1
ijτ
−  represents the partial turnover rate the intercompartmental flow from donor component 

j, oriented toward component i, contributes to the total turnover rate of donor component j.  For 

example, consider 03.183τ 1
62 =
− ; 78.1% (183.03/234.45 * 100) of the turnover rate of PN-Hetero-

2 is directed towards NH4-6.  The partitioned turnover matrix (2-120) can be written as 

percentages of the donor components’ total turnover rates: 
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%,  (2-122) 

where equation (2-122) represents the output boundary flows’, yj, percentage contributions from 

the total turnover rates of each j.  The partitioned turnover rates in the columns of matrix (2-121) 

plus the respective boundary flow contributions (2-122) total to 100 percent of each component’s 

turnover rate per equation (2-62).  Most notably, as indicated by row 2 of (2-121), PN-Hetero-2 

is the recipient of a large percentage of the remaining components’ outflow turnover rates, 

varying from 36.9% for NOx-5 to 76.5% for PN-Abiotic-7.  PN-Phyto-1 and PN-Hetero-2 
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combined receive significant portions of the outflow turnover rates directed from components 

DON-4, 43.8 + 51.6 = 95.4%; NOx-5, 58.2 + 36.9 = 95.1%; and NH4-6, 40.3 + 50.2 = 90.5%.  

Matrix (2-122) shows one-third, 33.5%, of the Sediment’s (3) outflow turnover rate to be 

associated with boundary outflow, y3.  These turnover rate results and subsequent interpretations 

are derived directly from the empirical data in the flow matrix, F.  As previously noted, the 

turnover matrix, τ−1, observed flow matrix, F, and adjacency matrix, A, are all isomorphic. 

 The donor-specific turnover rate matrix C, equation (2-67), is: 
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C season−1. (2-123) 

 This is a composite matrix used for equation development concisely showing the partitioned 

donor specific partitioned turnover rates, 1
ijτ
− , on the off-diagonals with the negative of the total 

component turnover rates on the diagonals.  Recall, by definition of the composite C matrix, 

equation (2-68), that the diagonals theoretically contain two entities:  (1) The partitioned donor-

specific turnover rate attributed to a flow from a component back to itself, 1
iiτ
− , (these are 

typically zero because fii are typically zero in the empirical data), and (2) the negative of the total 

turnover rate, 1
iτ
−− .  

 The maximum turnover rate in the Neuse River estuary occurs at the NH4-6 component 

where 11
max season08.332τ −− = .  As such, as previously explained, the time step, ∆t, is selected to 

assure that the stock of this component will not turn over in a period of time less than the derived 



 

 

79

discrete time interval, ∆t.  Therefore, using equation (2-74), ∆t is set identical to the NH4-6 

turnover time, τ6:  
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The dimensionless storage probability matrix, P, calculated with equation (2-70),  
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9.0000009.00
0000055.00
009.092.00000
00097.0005.005.0
02.001.0001002.0
08.05.003.002.0029.017.0
04.005.001.00075.0

P ,   (2-125) 

is relative to the discrete time interval, ∆t = 0.00301 season, which by definition, sets p66 equal to 

zero.  The remaining diagonal terms, by the same definition in equation (2-74), are then between 

or equal to zero and one.  The off-diagonal terms, pij, represent the fraction of nitrogen storage in 

component j, xj, which will be transferred to the storage at i, xi, during the interval from t to t + 

∆t.  Since P is an algebraic construct of both C and the identity matrix I, the diagonal terms, pii, 

represent the fraction of original nitrogen that remains after one ∆t.  For example, since ∆t was 

calculated based on the turnover time, τ6, of NH4-6, there remains exactly a 0.0 fraction of x6 

remaining (p66 = 0.0) of the original nitrogen in NH4 storage after a time passage of ∆t = 0.00301 

seasons.  Of course, under the assumed steady-state conditions, additional nitrogen has moved 

into these components to replace the nitrogen that has left which maintains the storage contents, 

xi, constant.  The diagonal elements of P denote the fractions of nitrogen remaining compared to 

the original amounts at the start of the time step.  Considering additional diagonal terms, 75% of 

the original nitrogen remains in PN-Phyto-1, p11 = 0.75, after the same ∆t.  The turnover time of 

Sediment-3 is so large, τ3 = 4.14 seasons, compared to NH4-6, τ6 = 0.00301 seasons, that 99.93% 
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[rounded to 1.00 in p33 of equation (2-125)] of Sediment-3 remains after ∆t.  NH4-6 followed by 

PN-Hetero-2, τ2 = 0.00427 seasons, and then PN-Phyto-1, τ1 = 0.01227 seasons, have the shortest 

turnover times as further illuminated by considering the fractions of nitrogen remaining after one 

discrete time step (p66 = 0%, p22 = 29%, p11 = 75%).  The remaining four components all 

maintain over 90% of their original nitrogen after each ∆t. 

 The efferent integral discrete- and continuous-time integral storage matrices, Q 

(dimensionless) and S, as calculated from equation (2-78) and S = Q∆t are: 
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Q , (2-126) 
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S  seasons. (2-127) 

Similar to the N matrix, the S matrix (integral turnover times) of equation (2-81) maps all 

boundary inputs, z, through all direct and indirect pathways to the respective component 

storages, x.  Following Barber et al.’s (1979) similar interpretive logic, consider interstitial 

element s35 = 6.635.  This is the amount of storage forced out of Sediment-3 to contribute one 

unit of input to NOx-5.  It is also the amount of storage passing from component 5 to component 

3, over all direct and indirect paths of all lengths, to provide one unit of input into component 5.  
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 Clearly, Sediment-3 dominates the relative magnitudes in the matrix.  Row three’s values 

are over one hundred times greater than the smallest value in the matrix, s63 = 0.032.  A single 

unit of nitrogen input z4, into DON-4, produces 6.283 mmol-N/m2 of storage routed from DON’s 

storage to Sediment’s storage.  The highest integral transfer in the matrix occurs at s33.  For a unit 

of boundary flow, z3, into Sediment-3, 8.523 mmol-N/m2 of storage is transferred from 

Sediment’s storage throughout the system, across all direct and indirect pathways, and finally 

back to Sediment’s storage.  The magnitudes associated with the third row of S identify the 

significant contributions each of the system’s seven components make to the large Sediment 

storage reservoir.  Row four’s values are, on average, approximately ten times the lowest 

magnitude at s63.  Relatively compared, all components, except Sediment at s43 = 0.220, route a 

major amount of their boundary inputs to the storage at DON-4. 

2.7-7  NEUSE RIVER ESTUARY AFFERENT STORAGE 

The steady-state transfer rate coefficients, 1
iτ
− , equation (2-118), and their reciprocal time 

coefficients, τi, equation (2-119), for afferent storage analysis are identical to those calculated for 

the efferent analysis.  The recipient-specific steady-state partial turnover rates are partitioned per 

equation (2-83) as follows: 
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τ 1-
ij   season−1. (2-128) 

Each 1
ijτ
−′  represents the observed partial turnover rate of recipient component i due to the 

intercompartmental flow to recipient component i coming from j.  For example, consider 
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73.93τ 1
26 =′− ; this means that 40.0% (93.73/234.45 * 100) of the turnover rate of PN-Hetero-2 is 

derived from NH4-6.  The partitioned turnover rates can be written as percentages of the recipient 

component’s total turnover rates: 
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j
i

=× %,  (2-130) 

where equation (2-130) represents the input boundary flows, zi, percentage contributions to the 

total turnover rates of each j.  The rows of the partitioned turnover rates in matrix (2-129) and the 

respective boundary flow contribution (2-130) combine to total 100 percent of each component’s 

turnover rate per equation (2-84).  Components NH4-6 and PN-Abiotic-7, receive 98.0% and 

95.5%, respectively, of their inflow-generated turnover rates from PN-Hetero-2.  Considering the 

second row of equation (2-129), PN-Hetero is the only component receiving an inflow turnover 

rate contribution from all other components.  The third column of equation (2-129) shows that a 

very small or zero percentage of any component’s inflow-generated turnover rate is derived from 

Sediment-3, whereas Sediment’s inflow contributions to its turnover rate come primarily from 

PN-Phyto-1 and PN-Abiotic-7, 48.7% and 37.1%, respectively.  Finally, 26.5% of the inflow-

generated turnover rate of NOx-5 is due to input z5, per equation (2-130). 

 The recipient-specific turnover rate matrix C' from equation (2-90) is: 
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09.002.001.0024.0012.0
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C season−1. (2-131) 

This composite matrix used for equation development shows the partial turnover rates, 1
ijτ
−′ , on 

the off-diagonals and the negative total turnover rates entered along the principal diagonal.  At 

steady-state where out
i

in
i TT = , equations (2-74) and (2-96) calculate the same ∆t = τ6 = 0.00301 

seasons, which assures that the stock of the system’s maximum-turnover-rate component, NH4-6 

( 11
max season08.332τ −− =′ ), does not turn over in one time step.  The dimensionless storage 

probability matrix, equation (2-92) expressed for the discrete time interval ∆t = 0.00301 season 

(which sets p66 equal to zero), is: 
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9.0000001.00
000001.098.00
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0000100
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P  .  (2-132) 

The remaining diagonal terms, by the same definition in equation (2-96), lie between or are equal 

to zero and one.  Since P' is an algebraic construct of both C' and I, the diagonal terms, p'ii, 

represent the fraction of original nitrogen that remains after one ∆t time step.  As such, the 

diagonal terms numerical magnitudes are identical and interpreted the same as the diagonal terms 

of pii expressed in equation (2-125).  The off-diagonal terms, p'ij, represent fractions of nitrogen 

storage in component i, xi, transferred from storage at j, xj, during each ∆t.   
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 The afferent discrete- and continuous-time integral storage matrices, Q' (dimensionless) 

and S', as calculated from equation (2-102) and S' = Q'∆t are: 
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Q ,  (2-133) 
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S seasons. (2-134) 

Similar to the N' matrix, the integral S' matrix (comprised of integral turnover times) of equation 

(2-103) maps all outputs back from across the system boundary, y, through all direct and indirect 

pathways to respective component storages, x.  As an example, consider element s'53 = 3.737.  

This represents the amount of storage in Sediment-3 that contributed to one unit of output from 

NOx-5.  Similar to the efferent direction conclusions from equation (2-127), Sediment-3 also 

dominates the relative magnitudes in matrix (2-134).  Column 3’s values are over one-hundred 

times the smallest magnitude in the matrix, s'56 = 0.037 seasons.  As another example, s'43 = 

4.235 indicates that one unit of nitrogen flowing out across the boundary as y4 from DON-4 

requires a production of 4.235 mmol-N/m2 of storage routed from Sediment storage to DON 

storage.  The highest integral transfer in the matrix occurs at s'33.  For a unit of boundary flow out 

of Sediment, y3, 8.523 mmol-N/m2 of storage is transferred from Sediment storage throughout 
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the system, across all direct and indirect pathways, and finally back to Sediment storage.  The 

magnitudes associated with the third column of S' identify the significant contribution Sediment 

storage makes to the system’s seven component storages.  The values in column 4, representing 

DON, are, on average, approximately ten times the lowest magnitude, s'56.  Relatively compared, 

all components (with the minimized exception of NH4-6, s'64 = 0.034) route a large amount of 

their boundary input to the storage of DON-4. 

2.8 DISCUSSION 

The law of conservation and the efferent and afferent definitions of throughflow are the 

analytical foundations of network environ analysis (NEA) (Barber et al., 1979).  Generally 

assuming the past precedes the future, where the term “dynamical” has roughly the same 

meaning as causal or nonanticipatory, state-space theory (Zadeh, 1964; Kalman et al., 1969; 

Rugh, 1996) provides a mathematical representation for the state of systems.  Patten et al. (1976) 

employed this mathematical representation in an ecological rendering of the physical aspects of 

causal chains by conservative energy or matter flows transferred within or between ecological 

components.  Environ theory (Patten 1978a) is designed to reconnect ecology to the object of its 

interest — the external environment that lies outside ecological control surfaces at all levels of 

organization which impinge on these to become drivers of organism-environment coupling and 

dynamics.  The rigidity of form provided by the transport theory’s control volume approach 

helps to establish a rigorous inside/outside distinction in the context of real (CV’s) instead of 

abstract (compartmental) spaces — a connection helpful for NEA because intercompartmental- 

and self-flows and component storages then maintain consistent definitions at model conception 

and subsequent analytical interpretations.  Ecology can be defined as the biological science of 

environment, but in its history it has often lost sight of what is system and what is environment.  
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The classical population equations, devoid as they are of explicit connection to environment, are 

a prime example of this lapse.  The boundary of environ theory, however, is explicit, and its 

rendering as a control surface makes it more concrete and physical than it typically is in zero-

dimensional compartmental modeling. 

2.8-1 CONSERVATION EQUATIONS 

The conservation laws underlying NEA, although accurate, remain largely assumed in 

ecological applications.  That is, ecologists take such laws of physics and chemistry for granted 

in their empirical and theoretical research.  Basically, a successful accounting can be made of all 

conserved quantities where a statement similar to equation (2-17) can be written for mass and 

some primitive energy models by inspection with very little understanding of the derivation or 

limitations of the conservation laws.  However, equation (2-17), having been derived from an 

Eulerian control volume, correctly identifies that the rate of accumulation term on the left is 

within the CV and the mass flows on the right side of the equations must pass through the 

defined CS to satisfy the integral calculus operations evident in equation (2-14).  This rigidity of 

form is helpful to subsequent interpretation wherein its not always appropriate to simplify 

(particularly with energy models) where interpretive subtleties can be lost. 

For instance, several points are easily clarified with the subsequent NEA interpretations 

given the derivations and formalities of the Reynolds transport theorem equations (2-1) through 

(2-13), the continuity equations (2-14) through (2-19), and the energy equations of (2-20) 

through (2-28):   

(1) The rate of accumulation term [left side of equation (2-17)] is otherwise loosely 

referenced as the storage term in conservation-law mathematics.  With present (but not 

permanent) NEA methods, however, the system is usually assumed to be at steady-state, 
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and the accumulation term, as a direct result of this assumption, is zero.  The NEA study 

of storage is largely a study of turnover times, τ , and rates, -1τ , facilitated by dividing 

the flows [right side of equations (2-17), (2-26) and (2-30)] by the donor or recipient 

steady-state storages, x.  NEA storage analysis remains a study of the right-hand-side of 

the conservation equation comprised of terms which, by definition, cross the CS.  

Turnover times and rates illuminate the understanding of component steady-state storage 

relations, however, current NEA acquires this information through the balanced flows 

across the CS, not by a nonzero accumulation term in the CV on the left-hand-side.  

Analysis of nonsteady-state systems, when that becomes available, will advance environ 

storage analysis beyond where steady-state turnover rates and times can take it.     

(2) Augmenting the observation and brief discussion in section 2.32, flow from a component 

to itself over one path length (self-flow) represents only one flow of many [all of which 

exist on the right side of equations (2-17), (2-26) and (2-30)] which contribute to 

component storage turnover rates and their reciprocal turnover times.  A component self-

flow out and back to itself over one path length is sometimes incorrectly called a storage 

or a quasi-storage related term.  Technically derived from the Reynolds transport integral 

calculus operations, however, a flow only exists in the conservation equation if it crosses 

the CS.  If it does cross the CS (and then eventually come back across the CS into the 

component), it is only one flow of many on the right side of the conservation equation 

contributing to the component’s storage turnover rate or turnover time and therefore does 

not inherit, over the other intercompartmental flows, any special recognition regarding 

the storage of a component.  Self-flows are simply one flow of many in a multi-

component system.  If a flow does not cross the defined CS of the component, then by 
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definition, the flow does not exist on the right side of the conservation equation.  The 

flow remains within the CV and the conservation equation has no capacity to include or 

review the flow’s essence or activity.  However, the matrix mathematics associated with 

NEA requires a self-flow for each component, zero or otherwise, because the diagonals 

of  F, G, G', etc. matrices must be implemented to permit subsequent matrix operations.  

If self-flows equal to zero (fjj ≡ fjj
out ≡ fjj

in = 0) are included, as diagonal entries in F to 

meet the requirements of matrix mathematics, then by definition in the Reynolds 

transport theorem, these zero flows must conceptually cross the CS when exiting the 

component (i.e., as fjj
out) and then re-cross this same CS again when returning (as fjj

in).  

Per the Reynolds transport theorem derivation, self-flows are flows, not storages.    

(3) The development of the energy conservation equations (2-20) through (2-28) identifies 

the abundance of assumptions necessary to arrive at a suitable ecological network 

analysis equation.  Energy within ecosystems has a variety of manifestations only 

coarsely represented by the quantity of terms in a comprehensive energy conservation 

equation.  Furthermore, energy continuously transforms itself through a variety of forms 

and thereby cycles (Patten, 1985) through a combinatorially vast array of microscopic 

fluxes as it degrades ultimately to the predictable diurnally cycled heat radiating back to 

space.  These assumptions and the corresponding lumping of terms are rarely discussed in 

depth beyond the pertinent energy-flow description leading directly to the simplified 

equations (2-27) or (2-28).  For example, the output flow respiration term, ri, in Hannon’s 

(1973) model combines the three energy terms:  (1) heat flow out due to respiration, (2) 

net component growth of energy content, and (3) energy content of exported biomass.  

These three terms involve three distinctly different energy manifestations in the 
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conservation equation, respectively:  (1) the heat flow out due to respiration is Q,  (2) the 

net component growth of energy content represents the nonsteady-state accumulation 

term, 
CVt

E
∂
∂ , and (3) the energy content of the exported biomass is an energy flow 

associated with mass flow which is one of the terms in the summation ∑
CS
out

outoutem& .  For 

the most part, the differentiation of the forms of energy adds nothing to the current NEA 

methodology.  However, it is always scientifically appropriate to concisely and clearly 

state all assumptions in any equation development and consolidation.  As of yet, these 

assumptions have not been articulated with regard to ecological network equation 

development.  The Reynolds transport equations (2-13), (2-14), and (2-23) provide a 

framework to adequately describe all assumptions leading to the final NEA conservation 

equation.  These assumptions, like all assumptions should, can now be used and then 

subsequently evaluated for their impact on the final results.  They can also be isolated and 

independently explored in later studies. 

The laws of conservation, written as equations to model a system, are simply reformulations of 

the common system description of equation (2-1).  Their mathematical derivation, however, 

establishes a model whose rigid framework must be respected with subsequent assumptions, 

mathematical manipulations, and interpretations of results.  The same rigidity within the 

framework of derivation also helps to simplify conceptual interpretations.  For example, in 

summary:  (1)  The accumulation term, 
CVdt

dS , which represents nonsteady-state storage, 

increases or decreases within a component and is not the focus of NEA storage analysis.  Rather, 

NEA steady-state storage analysis represents a study of component turnover times and rates as 
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determined from the flows across the control surfaces.  The component steady-state storages, xi, 

are algebraically introduced to the conservation equation to facilitate this analysis.  (2) When the 

control volume and its control surface are established, flows from a component to itself are easy 

to interpret.  (3) The assumptions associated with algebraic representations of complex energy 

flows in an ecosystem are clearly articulated within the rigidity of the Reynolds transport 

theorem development process.  The Reynolds transport theorem conservation equations for both 

continuity and energy are useful and necessary models to frame ecological network analysis.  

2.8-2 NETWORK ENVIRON ANALYSIS 

The network environ analysis derivation reestablished herein, although developed in parts in 

many publications, is subtly different than recent trends as it reaches back to the original 

development scheme shown in Barber et al. (1979).  This derivation independently and 

thoroughly derives the equations of conservation and the definition of throughflow which then 

combine to form the efferent or afferent oriented perspectives.  This subtlety more clearly elicits 

the essence of an oriented network analysis within the two environment perspective.  The law of 

conservation accounts for all flows, coming, going, or staying.  With no accumulation 

(“staying”) for steady-state systems, this coming or going vernacular description begins to 

identify one way of orienting the flows.  Similarly, for steady-state systems, the definition of 

throughflow also has an orienting aspect by considering either the total flows coming into a 

component, Tin, or the total flows leaving a component, Tout.  By substitution, the two concepts 

of conservation and throughflow, each with algebraic terms explicitly oriented across the 

modeled control surface, combine to provide the oriented perspective to ecological network 

analysis inherent to network environ analysis.  As a direct result, the efferent flow equations map 

the inputs, z, through the output environs implicit in N, to the output throughflow, Tout and the 
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afferent flow equations map the outputs, y, back through the input environs implicit in N' to the 

component input throughflow, Tin.   The orientating capability of network environ analysis is a 

fundamental construct of the oriented nature of the conservation and throughflow equation’s 

terms.  An important aspect to NEA, the origination of this equation orientation can be lost in 

the, often too coarse, algebraic substitutions leading to the final environ implicit equations (2-

48), (2-58), (2-81), and (2-103). 

2.8-3 STORAGE EQUATIONS 

Network environ storage analysis, originally conceived by Matis and Patten (1981), 

reparameterized the conservation equations by dividing the component flows with their 

respective donor or recipient steady-state storages, x, (for efferent or afferent analysis, 

respectively) and subsequently created and then defined the new algebraically constructed 

transfer coefficient terms.  Equations (2-61) and (2-83) subtly refine this approach by clarifying 

and redefining the transfer coefficient terms as partial turnover rates, -1
ijτ , which when summed 

together, including the partial turnovers due to boundary flows as in equations (2-62) and (2-84), 

generate the total component turnover rates, 1τ− .  This partial-turnover-of-storage presentation 

illuminates the contribution of inter-component flows to the Matis and Patten methodology.  

Each intercompartmental flow contributes to its donor component’s total turnover rate.  Also, the 

partial turnover matrix, equations (2-61) and (2-83), a construct of the flow matrix, is isomorphic 

to both the flow, F, and adjacency, A, matrices and, as such, is a natural progression in the 

development of an introspective directional environ flow analysis.  The algebraically composite 

C and C' matrices, constructed from the combination of the conservation equations and the 

definition of throughflow (both of which are converted to their partial and total turnover rate 

format by dividing through by their respective component storages), identify the foundation of 
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the storage environ analysis.  The efferent C and afferent C' matrices concisely include and 

present, respectively, the system donor and receiver storage turnover rate dynamics.  Although 

they are algebraic composites, they are reasonably easy to interpret and, as such, aid in the 

interpretation of NEA.  The defined efferent P and afferent P' matrices, through a uniquely 

chosen time step, ∆t, harness the component turnover rate information of the C and C' matrices 

and display their information in a uniquely revealing fraction-of-storage-transferred format.  

When the time step, ∆t, is chosen, by consistent practice, such that the highest component 

turnover rate, 1
maxτ− , empties that component completely, 1τt 1

max =∆ − , then the P and P' turnover 

rates are normalized on a zero to one scale.  Together, the efferent C and P and afferent C' and 

P' matrices transform the observed flows of an ecosystem network into an illuminating exchange 

of component storages through varying rates of transfer.    

 Importance of the turnover rate, τ−1, is further shown by the mathematical relationship 

between environ throughflow and storage analyses where the environ-implicit throughflow 

matrices N and N' and the environ-implicit storage matrices S and S' are simply numerically 

equated through the turnover rate, τ−1, as shown in equations (2-107) and (2-109).  Environ 

throughflow analysis is algebraically augmented early in the equation development by 

converting the flows of the conservation equations to partial and total turnover rates (dividing 

flows by respective component storages).  The composite turnover matrices, C, P, C', and P' are 

determined and the final environ-implicit Q, S, Q', and S' environ storage mapping matrices are 

the direct result of the subsequent algebra.  However, equations (2-107) and (2-109) 

mathematically show that the substitutions made early in the environ storage equation 

development are also evident, as expected, in the final results.  Although environ storage analysis 

(primarily due to the insights offered from the review of storage turnover rates and times) is 
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revealing as a separate environ perspective within NEA, it should always be carefully viewed as 

an extension of environ throughflow analysis since it deals with the flows on the right-hand-side 

of the conservation equation (2-30).  

2.8-4 NEUSE RIVER ESTUARY THROUGHFLOW AND STORAGE NETWORK 
ENVIRON ANALYSIS 

 
NEA affords the network analyst both a practical means to review an ecosystem’s 

activity and the mathematical prowess to uncover the vastly underestimated indirect pathways 

and effects within that activity.  In some cases, the results when indirect effects are considered 

reinforce the practical-direct-relationship values, while in other cases the indirect effects indicate 

completely different or somewhat unexpected results.  PN-Hetero-2 appear to play a strong role 

both from the directly observed model flow activity and also from the mathematically 

determined indirect effects.  Practically stated, the highest throughflow in the model exists in the 

PN-Hetero-2 component at 15,005 mmol-N m−2 season−1 and PN-Hetero-2 is also the most 

directly connected component in the model (10 connections of 22 total, reference Figure (2.5) 

and equation (2-116); there are 49 possible connections).   The adjacency matrices continued to 

show that PN-Heterotrophs were consistently one of the most connected at virtually all path 

lengths.  Furthermore, when considering the efferent and afferent throughflow integral matrices 

N and N', PN-Hetero-2 is the highest purveyor, over all path lengths, of nitrogen either 

originating at the boundary of the system, z, or leaving the boundary, y [in N, equation (2-113) 

the second row average of 18.34 is highest and in N', equation (2-115), the second column 

average of 18.59 is also highest; note, in addition, that the highest matrix value is the PN-Hetero-

2 self-flow, n22 = n'22 = 20.15].  Interestingly, although no PN-Hetero-2 self-flow exists at a path 

length of one [reference equations (2-111) and (2-116) where f22 = 0 and a22 = 0, respectively], 

the connectivity at higher path lengths (as m → ∞) is almost always greatest between PN-
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Hetero-2 and itself [e.g., at path length 2, the highest number of pathways occurs at the PN-

Hetero-2 self-flow location; reference equation (2-117) where 4a )2(
22 = ].  PN-Hetero-2 

demonstrates that self-flows, mistakenly innocuous at path-lengths of one due in large part to 

their consistent zero flows, (a.k.a, fii = 0 or otherwise known as zeros on the diagonals), become 

increasing important in higher path length analysis.  PN-Hetero-2 has the second highest 

turnover rate, 234 seasons-1.  NH4-6 is the highest at 332 season−1.  Looking at the direct storage 

turnover analysis, equation (2-121), all components distribute a significant portion of their 

storage turnover to PN-Hetero-2 ranging from a low of 37% of NOx-5 storage to a high of 76% 

of PN-Abiotic-7 storage being specifically directed to PN-Hetero-2.  PN-Hetero-2 is the only 

component, equation (2-129), which receives some of its storage from all of the other six 

components.  Contrastingly, consider either the efferent Q and S, or the afferent Q' and S' 

integral storage transfer matrices [equations (2-126), (2-127), (2-133), and (2-134)].  Over all 

path lengths, PN-Hetero-2 receives somewhat less storage turnover from other components, 

when relatively compared to other integral storage transfers in the system.  For example, 

consider equation (2-126) where the average of row 2 is 26.31 which is lower than the averages 

from row 1 (34.48), row 3 (2,281.89), and row 4 (107.30).  This observation is markedly 

different than what is suggested by the directly observed turnover matrices of equations (2-121) 

and (2-129) where PN-Hetero-2 appears to dominate.     

 The role of Sediment-3 is more difficult to ascertain.  Its component throughflow and 

storage turnover rate are the system’s lowest at 1,255 mmol-N m−2 season−1 and 0.24 season−1, 

respectively.  For example, 99.9% of the original Sediment remains in storage after one time step 

(∆t established by convention to be the time for NH4-6 storage to completely empty).  

Additionally, considering both the efferent and afferent integral throughflows implicit in N and 
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N', Sediment-3 is the smallest purveyor of nitrogen, over all path lengths, either originating at the 

boundaries of the system, z, or leaving the boundaries of the system, y.  For example, reference 

the matrix N, equation (2-113), where the third row average of 1.64 is the matrix’s second lowest 

row average.  Also consider the matrix N', equation (2-115), where the third column average of 

1.19 is the matrix’s lowest column average.  The lowest matrix value is Sediment’s (3) self-flow 

where n33 = n'33 = 2.04.  Yet, contrastingly Sediment-3 has the highest component steady-state 

storage at 5,200 mmol-N m−2 and is the second most connected component in the system when 

considering a pathway analysis using the third row and column of all powers of the adjacency 

matrix, A(m) as m → ∞.  The turnover rate matrices show very little direct contribution of each 

component’s turnover rate of their storage to Sediment’s (3) storage.  For example, reference the 

third row of equation (2-121) where contributed storage turnover dedicated to Sediment-3 ranges 

from 0% of DON-4 storage up to 22.1% of PN-Abiotic-7 storage.  Also reference the third 

column of equation (2-129) where contributed storage turnover dedicated to Sediment-3 ranges 

from 0% of PN-Phyto (2) and DON-4 storage to 7.8% of NOx-5.  However, the environ storage 

analysis results clearly show that Sediment-3 dominates the storage-component transfers when 

all pathways are considered in the integral matrices of Q, S, Q', and S'.  This is shown by the 

relative magnitudes of the third rows in equations (2-126) and (2-127) and the third columns of 

equations (2-133) and (2-134).  In fact, the highest integral transfer in the matrix occurs at s'33 = 

s33 with a magnitude of 8.523.  A single unit of nitrogen crossing the system boundaries into or 

out of Sediment-3 will require 8.523 mmol-N/m2 of storage routed from Sediment’s storage, 

across all direct and indirect pathways, and ultimately back to Sediment’s storage before the unit 

of nitrogen then leaves the system.  This magnifying effect is true despite the fact Sediment-3 

contributes 33.5% of its storage turnover to boundary output flow [reference equation (2-122)] 
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which leaves the system completely.  Although not readily apparent, Sediment-3 is the grand 

internal augmenter of the circulation of nitrogen storage in the Neuse River estuary nitrogen 

cycle. 

 This work provides a foundation of meticulous environ equation development coupled 

with a comprehensive NEA review of an ecological model which simultaneously includes 

analyses of system connectivity, system throughflows, and system storage turnovers.  The 

conservation of energy equation development, although unused thereafter its presentation, will 

hopefully provide some insight to the future empirical data gathering activities and subsequent 

lumping assumptions necessary to get workable energy equations.  The conservation of mass 

equations provide a consistent methodology to derive both the environ throughflow and environ 

storage bi-directional equations.  The process is consistent within itself and consistent to standard 

practices by presenting first principles (conservation equations) and definitions (definition of 

throughflow) and then algebraically modifying the equations from that point forward.  The 

Neuse River estuary NEA results show that PN-Heterotrophs (2) play a smaller role in the 

storage transfer process over all indirect pathways of all lengths as compared to its dominant role 

in intercompartmental throughflow propagation.  Conversely, Sediment-3 plays a dominant role 

in the storage transfer process over all indirect storage pathways of all lengths as compared to its 

minimized role in intercompartmental throughflow propagation.  The incorporation of a well 

developed environ storage analysis into the commonly used environ throughflow analysis will 

continue to provide yet more insights into the power of indirect effects.  
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2.11 TABLES 
 
 

Table 2.1:  Average data set (as calculated by Christian and Thomas, 2000) representing 16 

consecutive seasons from Spring 1985 through Winter 1989 for the Neuse River estuary 

nitrogen model.  Intercompartmental flows, fij; boundary flows, z and y; and throughflows, 

T, have dimensional units of mmol-N/(m2 × season).  Storage, x, has dimensional units of  

mmol-N/m2.  TST is total system throughflow. 

fij PN-
Phyto 

PN-
Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

PN-
Abiotic 

Input, 
z 

Throughflow, 
T Storage, x 

PN-Phyto 0 0 0 1,176 918 4,816 0 16 6,927 85 

PN-Hetero 4,859 0 555 1,388 583 5,999 1,605 24 15,005 64 

Sediment 611 7 0 0 66 80 463 28 1,255 5,200 

DON 1,363 1,138 0 0 0 0 0 187 2,688 270 

NOx 0 0 123 0 0 1,037 0 419 1,578 59 

NH4 0 11,714 159 0 0 0 0 82 11,955 36 

PN-Abiotic 57 2,005 0 0 0 0 0 39 2,099 61 

Output, y 37 148 418 124 11 23 31  TST = 41,517  
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2.12 FIGURE LEGENDS 
 
Figure 2.1:  Fixed control volume showing its corresponding control surface of a liquid draining 

from a holding tank. 

Figure 2.2:  The volume of an extensive property, S, at two sequential times, t1 and t2.  The 

control volume of interest, BV , is bounded by the control surface represented by a dashed 

line. 

Figure 2.3:  Flow through a differential area, dA, of a control surface surrounding a control 

volume.  V is the velocity of some entity through the differential area, dA, and is together 

comprised of its tangential, Vt, and normal, Vn,  velocity components. 

Figure 2.4:  Typical model component within an n-component system showing its mass or 

energy storage, xi; control surface, CS; control volume, CV; intercompartmental flows 

into i, fij; intercompartmental flows out of i, fhi; input boundary flow, zi; and output 

boundary flow, yi.  j and h represent the rest of the components in the system, where j = h 

= 1, 2, …, n; j ≠ i; h ≠ i.  By convention, flow fij is from j to i and fhi is from i to h. 

Figure 2.5:  Seven component Neuse River estuary nitrogen model (Christian and Thomas 2000, 

2003).  Figure includes the system control volume (CV) and the system control surface 

(CS) and an example (PN-Phyto) of a typical individual component’s CV and CS.  

Defining the appropriate CS’s and CV’s is required per the Reynolds transport theorem.  

Figure shows the intercompartmental flows fij, input boundary flows zi, and output 

boundary flows yj, 
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Figure 2.1   
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Figure 2.2   
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Figure 2.3 
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Figure 2.4   

 

   

ziyi 

System 
CS

System 
CV

Component i 
CV 

Component i 
CS 

fii

xi 

xh 
fhi 

fij xj 



 

 

109

Figure 2.5 
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CHAPTER 3 

DISTRIBUTED CONTROL IN THE ENVIRON NETWORKS 

OF A SEVEN-COMPARTMENT MODEL OF NITROGEN FLOW 

IN THE NEUSE RIVER ESTUARY, USA—STEADY-STATE ANALYSIS1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
1 This chapter advances the concepts and formulations of a previously published paper:  
Schramski, J.R., Gattie, D.K, Patten, B.C., Borrett, S.R., Fath, B.D., Thomas, C.R., and Whipple, 
S.J., 2006. Ecological Modelling, 194:189-201, reprinted here with permission of publisher 
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ABSTRACT 

Comparative network environ analysis (NEA) is used to holistically explore controlling 

relationships in ecosystems.  The term distributed control for the present series of papers is 

adopted to describe a diffuse and decentralized concept of control residing in the complexity of 

organization.  Starting with “open-loop” control theory parlance, three ecological control metrics 

(control ratio, control difference, and system control) are derived in an environ-theoretic 

framework by considering pair-wise and system-wide distributed control relationships.  These 

control relationships are then explored using the seven compartment steady-state model of 

average nitrogen flow in the Neuse River estuary, North Carolina, USA (Christian and Thomas 

2003).  The model compartments of Sediment and Nitrates-Nitrites (NOx) are shown to 

participate in opposing roles.  If nitrogen-exchange magnitude denotes proportional dominance 

and therefore control, the control metrics reveal that Sediment is overwhelmingly controlled by 

all components, whereas NOx exhibits control over all components.  However, if a limiting factor 

perspective is used (e.g., Sediment sequestering N with a controlled release to NOx), the 

conclusions are opposite; Sediment controls all other components and all other components 

control NOx.  As such, the interpretation of the ecological control relationship is still under 

review.  The control metrics developed should aid in this assessment. 
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3.1 INTRODUCTON        

Ecologists often speak loosely about “control” and “regulation.”  Holistic knowledge of 

controlling relationships in ecosystems is one of the primary reasons for understanding system 

structure and function through modeling. Knowledge of proximate (direct), or especially distal 

(indirect), control points affords managers the ability to exert control, either close-in or at a 

network distance — in other words, one should have a capability to implement the elusive 

concept of "ecosystem management."   

Ecological systems are complex constructs of growth (positive feedback) and subsequent 

restrictions (negative feedback) maneuvering in concert towards various behaviors (Rosenblueth 

et al., 1943) or homeostatic equilibria (performance indices).  When described as such, modern 

control theory lexicon is intrinsically woven into this model of biological systems operation at 

virtually all hierarchical resolution levels.  Chapman’s (1928) Environmental Resistance, von 

Liebig’s (1841) Law of the Minimum, Blackman’s (1905) Law of the Maximum, Shelford’s 

(1911) Law of Toleration, Verhulst’s (1838) Carrying Capacity, and Tilman’s (1982) Resource 

Competition theory represent but a few examples of various forms of feedback (or possibly 

feedforward) restrictions to growth.  Similarly, but with considerably less volume of activity, the 

concept of positive feedback can also be found in the historical literature with Malthus’ 

exponential growth (1798) and Chapman’s Biotic Potential (1928) or the modern review by 

DeAngelis and Post (1991).  And finally, performance indices (i.e., teleology, goal functions, 

eco-targets, orientors, etc.) have been debated in various forms (Clements, 1936; Gleason, 1926; 

Whittaker, 1953) and again are garnering attention (Müller et al., 1998; Jørgensen, 2000; Fath et 

al., 2001). 
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However, the umbrella of ecology quickly conjures a complexity (e.g., behavioral, 

evolutionary, temporal, spatial, etc.) which challenges the basic modern control theory’s ability 

to successfully or usefully map the expected system behavior.  Subsequently, notions of 

controlling relationships in ecology are dispersed from the formal theory to more project-specific 

terms, e.g., dominating/subordinating, augmenting/limiting, releasing/constraining, 

liberating/regulating, bottom-up/top-down, etc. 

Accordingly, herein we consider that in ecosystems there are no explicit controllers that 

parallel the thermostats and autopilots and other discrete regulators in man-made systems.  

Instead, the concept of control somehow resides in the complexity of organization — in the 

interactive networks that join things together, and specifically in the environs into which these 

networks can be decomposed.  The concept is thus one of diffuse, decentralized, and even (at a 

network distance) remote control; for present purposes in this set of papers we have adopted the 

term distributed control.  Within the framework of network environ analysis (NEA) (Patten, 

1978a, b; Patten and Auble, 1981; Fath and Patten, 1999; Gattie et al., 2006a) this kind of control 

can, with definition of appropriate measures derived from the primary environ analyses of 

pathways and throughflows, be fruitfully investigated.  

NEA assumes a system is both a component of a greater system and also itself comprised 

of components.  A three-level hierarchy exists to model this interpretation, with Koestler’s 

(1967) term holon H used to denote any of these hierarchical levels (Patten and Auble, 1981).  

As such, a system H, is by definition a connected set of holons Hi, i = 1,2,…, n.  Each component 

Hi has an incoming interactive network that brings in energy and matter, and an outgoing 

network that takes energy and matter away. These are, respectively, input and output 

environments of that holon, and when they are bounded by systems to which the holons belong, 
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they are environs.  These environs are partition elements of the entire interior flow–storage 

network, in two orientations: afferent (input environs) and efferent (output environs).  The 

system of interacting components has an external reference environment with which it, as an 

open system, exchanges energy, matter, and information.  As measurable units, environs stop at 

the system boundary where formal system description ends. 

Equations (3-1) and (3-2) represent the throughflow equations for an n-component 

system model at steady-state, as developed from the component conservation equations 

(Leontief, 1936; Barber et al., 1979): 

[ ] [ ] [ ] 1
out

1 zNT ××× ×= nnnn       (3-1) 

 [ ] [ ] [ ] nnnn ××× ×= 'NyT 1
in
1                  (3-2) 

Where the italic n is the number of system components.  The transitive closure matrices N and N' 

relate the system level boundary input z and output y vectors, respectively, over all direct and 

indirect pathways, to the compartmental throughflow vector T.  By definition (Patten, 1978a), 

the input and output environs are implicit in the transitive closure matrices N' and N (aptly 

named as they account for all causal transmissions of introduced energy or matter while it 

remains in the system).  Component inputs, z, are mapped forward through the output environs 

implicit in N to the respective component output throughflows, Tout.  Similarly, component 

outputs, y, can be mapped backwards through the input environs implicit in N' to the component 

input throughflows, Tin.  Gattie et al. (2006a) review the environ networks of the average steady-

state nitrogen flows of the Neuse River estuary.  Considering the enfolded indirect effects of the 

transitive closure matrices, N and N', Borrett et al. (2006) explore the temporal variation of these 

indirect effects within the nitrogen flows over 16 seasons in the same estuary.  
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3.2 PAIR-WISE ENVIRON RELATIONS IN A NETWORK 
 

A perspective on a decentralized or diffuse relationship begins by considering a pair-wise 

view of two components Hi and Hj in a multi-component (i, j = 1,…., n) system.  Assuming the 

two-environment partitioning property of environ theory (Patten, 1978a, b), and an internally 

connected system, any two components (Hi and Hj) are directly and indirectly related to each 

other to the extent that their respective input and output environs overlap.  Accounting for the 

throughflow at both Hi and Hj, equations (3-1) and (3-2) are rewritten in scalar form as 

summations in Table 3.1.  [Table 3.1 here]  The pair-wise dual environ relationship specifically 

between Hj and Hi is found from the respective terms (partition elements) in the summations of 

the Ti equations (3-3) and (3-4) where k = j.  Then, jij
in
ij znT ×=  and jij

out
ji n'yT ×= , respectively.  

Similarly, the specific reciprocal relationship between Hi and Hj is found from the respective 

partitions of the Tj in equations (3-5) and (3-6) where k = i.  Then, iji
in
ji znT ×=  and 

iji
out
ij n'yT ×= , respectively.  Figure 3.1 displays these pair-wise dual environ relationships, with 

originating and terminal components reversed in Figures 3.1a and 3.1b [Figures 3.1 here].  The 

environs depicted in Figures 3.1a and 3.1b, derived from the respective terms from equations (3-

3) through (3-6), represent a pair-wise controlling relationship differential.  That is, considering 

Figure 3.1a, Hj’s relationship with Hi, extending forward, nij, is different than Hj’s relationship 

with Hi reaching backward via n'ji.  This relationship between two compartments Hi and Hj is 

comprised of at least two qualities:  (1) The existence of a distinct topological connectance 

comprised of both direct and indirect pathways, and (2) A magnitude of throughflow between the 

two components as ultimately generated by flow across the system boundary.  Magnitudes of 

throughflow are almost certainly coupled to the respective pair-wise connectance between two 
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components.  To the contrary, however, connectance can be evaluated independently of the 

associated flows.   

The adjacency matrix, A = (aij), represents a system’s direct component connectance 

where aij = 1 and aij = 0 are interpreted as a direct connection or no connection (no direct flow), 

respectively, from Hj to Hi (note the columns-to-rows orientation established in these 

definitions).  Further, the adjacency matrix raised to the m power (aij)m (matrix multiplication not 

scalar powers) enumerates the indirect pathways of length m between two components wherein 

the numerical whole number in an i, j interstitial location of the matrix (aij)m is the number of 

indirect pathways between components Hj and Hi of length m.  The i, j entry of (aij)m is denoted 

(m)
ija by standard notation.  A comparison of the same interstitial i, j location, in both the efferent 

and afferent adjacency matrices, [(aij)]m and [(aij)T]m (transpose), respectively, shows that 

pathway proliferation between two components is increasingly different depending on direction 

(Hj extending forward to Hi versus Hj reaching back to Hi) as the path length, m, increases 

without bound: 

     (m)T
ij

(m)
ij aa ≠ , as path length, m, increases.   (3-7) 

Therefore, connectance between two components, Hi and Hj, is distinctly directional and 

ultimately different between input and output environs.  

3.3 SYSTEM-LEVEL CONTROL RELATIONSHIPS 

Differences in afferent versus efferent connectance reflect the inherent differences 

between respective input and output environs.  Therefore, considering Figure 3.1a, the 

relationship of Hi in the output environ of Hj will be different from Hi in the input environ of Hj.  

Two observations can be made concerning this type of network model of a system at steady-

state:  (1) The transitive closure matrices can be considered simple open-loop controller models 
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of the components in the network, where input or output across the system boundary is modified 

(augmented or diminished) before being routed to or from another component in the system; and 

(2) Although feedback certainly exists in the system, the boundary-component-boundary 

relationships as represented by each term in the summation equations (3-3) through (3-6) in the 

steady-state model are transactional open-loop controllers with no modeled feedback.  The 

feedback is inherent in the distributed interactions of the open-loop controllers acting in parallel.  

Considered in total, the sum of the pair-wise component relationships throughout a system can 

be considered a distributed control network. 

In an open-loop control system, as shown in Figure 3.2, the output is neither measured 

nor fed back for comparison with the input.  Nor does the output have an effect on the 

controlling action.  [Figure 3.2 here]  Certainly feedback exists in numerous dimensions, at 

multiple resolutions, in any ecosystem.  However, an open-loop control model of a steady-state 

system is an opportunity to inspect the resultant system performance after the feedbacks have 

brought the system to a reasonable homeostatic equilibrium.  That is, in ecosystems after a 

disturbance, a transient positive/negative feedback control scheme runs its course (non steady-

state), and the resultant steady-state construct of components and flows is a balanced cyclic 

mapping of inputs, outputs, and controllers (amplifiers and attenuators).  Such distributed 

networks of open-loop controllers, constructed of the integral matrices, constitutes a system of 

checks and balances within the direct and indirect flow networks.  Considering Figure 3.1a, left 

side, Hj modifies (augments or attenuates) the input from Hi and then returns a different 

magnitude yj out across the boundary of the system.  Similarly, Figure 3.1a, right side, if zj is 

retrieved across the boundary, Hj modifies the input from the boundary and then returns a 

modified value to Hi.  The additional magnitude which has been added or subtracted during its 
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passage through Hj in either direction is captured, or distributed, respectively, elsewhere in the 

system.  This difference between mutual input and output environ networks represents a pair-

wise control or dominance relationship (Patten, 1978b; Patten and Auble, 1981).  For present 

purposes, if a component Hi in a system contributes more energy-matter to Hj than Hj to Hi, then 

Hi dominates Hj and to that extent can be said, in an augmentative sense, to “control” it.  That is, 

assuming magnitude denotes dominance and if one holon is dominant over another in a system, 

the former will be said to control the latter.  The distribution of these pair-wise transfer functions 

provides for a system level distributed control model.   

Two mathematical perspectives of open-loop transfer functions exist:  1) a model 

comprised of partitions of throughflows can be constructed of functional controllers that operate 

in a component-relative distributed control model, and 2) a model comprised of fractions of 

throughflows can be constructed of fractional controllers which operate in a system-absolute 

distributed control model.  Although the next two sections review both to differentiate the two, 

this chapter will focus on system-absolute control measures.  Component-relative control 

measures will follow in a later study. 

3.4 RELATIVE ENVIRON CONTROL 
 

The partitioned component throughflows to which each summation in equations (3-3) 

through (3-6) is comprised represent a set of functional open-loop controllers, nik, coupled with 

their boundary flows, zk or yk, all ultimately contributing to the total throughflow at a 

component. 

Example, Equation (3-3) expanded for a focal component H3 in a multi-component system takes 

the form: 

   [ ] [ ] [ ] componentssystemofnumber,znznznT in
n3n

in
232

in
131

out
3 =×++×+×= nK . (3-3a) 
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From equation (3-3a) and Figure 3.1a right side, a partition of the total input throughflow to 

component H3, in
3T , contributed from component H1 could be written: 

                      131
in
31 znT ×=      (3-3b) 

Considering equation (3-3b), z1 is the input to H1, n31 is the functional controller or functional 

transfer function and in
31T  is the directed input to H3 from H1 generated by z1.  Similarly, equation 

(3-4) expanded for a focal component H3 in a multi-component system takes the form: 

   [ ] [ ] [ ] componentssystemofnumber,n'yn'yn'yT out
n3n

out
232

out
131

in
3 =×++×+×= nK .    (3-4a) 

From equation (3-4a) and Figure 3.1a left side, a partition of the total output throughflow from 

component H3, out
3T , contributed to component H1 could be written: 

                  131
out

13 n'yT ×=      (3-4b) 

Considering equation (3-4b), y1 is the output of H1, n'13 is the functional controller or functional 

transfer function, and out
13T  is the directed output from H3 to H1 required to generate y1.   

Considering the terms of the summation equation (3-3), zk are the inputs and nik are the 

functional controllers where in
ikT  then represents the respective partitioned throughflow inputs to 

Hi from each of the components Hk for each zk.  In NEA methodology, nik implicitly represents 

the output environs that map each input vector zk forward in time from each component Hk to the 

resultant in
ikT  partitioned input throughflow at component Hi.  Likewise, considering the terms of 

the summation equation (3-4), yk are the outputs and n'ki are the functional controllers where out
kiT  

then represents the respective partitioned throughflow outputs from Hi to each of the other 

components Hk for each yk.  In NEA methodology, n'ki implicitly represents the input environ 

flows that map the outputs of yk backward from component Hk to the resultant historical out
kiT  

partitioned output throughflow at component Hi. 
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Numbers of pathways (Hj forward to Hi versus Hi backward to Hj) between any two 

components are equal as shown in powers of the system adjacency matrices, 

           )m(T
ji

)m(
ij aa =        m = pathway length = 1, 2,…, ∞.                     (3-8)  

Yet, the corresponding input and output environ elements (n'ij and nij) as developed in equations 

(3-3) and (3-6) are not equal.  The conservation of mass in these equations (Hannon, 1973; 

Barber et al., 1979) is component specific in that each equation represents a mass balance of 

throughflow at each component.  The partition transfer functions detailed in equations (3-3) and 

(3-6) are a function of their component throughflows.  For example, consider the environ 

perspective depicted in Figure 3.1  Since nij (Figure 3.1a, right side) is derived from the 

perspective of Hi, it is a function referenced to Ti [equation (3-3)].  In comparison, n'ij (Figure 

3.1b, left side) relates to the perspective of Hj and is therefore referenced to Tj, [equation (3-6)].  

As such, since nij and n'ij are calculated with respect to different component throughflows, they 

are directionally specific and therefore nij ≠ n'ij.  Hj controls Hi through the output environ, 

implicit in nij, of Hj (Figure 3.1a, right side).  However, considered from Hi’s perspective, Hi is 

controlled by Hj through Hi’s input environ contained in n'ij (Figure 3.1b, left side).  Therefore, in 

relative environ controlling relationships, since nij ≠ n'ij, the control relationship propagated from 

Hj through its output environ to Hi (Figure 3.1a, right) can be different in magnitude than the 

reciprocal control relationship received at Hi through its input environ from Hj (Figure 3.1b, left).  

The control measure calculations are relative to a specific component’s throughflow, and as 

such, relative environ control measure calculations are component-relative computations.  

Relative environ controlling relationships and their component-relative consequences will be 

considered further in future studies.  
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3.5 ABSOLUTE ENVIRON CONTROL 
 

The transfer weightings are normalized on the basis of their component throughflows, 

where equations (3-3) through (3-6), shown in Table 3.1, are rewritten from a partition 

throughflow derivation to a fraction of throughflow derivation as shown in Table 3.2.  [Table 3.2 

here]  Unlike each of the parenthetical terms in the summations of equations (3-3) through (3-6) 

which were partition elements of throughflow, the parenthetical nondimensional term in each 

new summation represents a directional specific (the interstitial subscripts on the respective 

elements of the transitive closure matrices, N and N', denote donor and recipient components) 

fraction of throughflow.  Considering two components Hi and Hj in an n-component system, the 

pair-wise dual environ relationship between Hj and Hi is found from the respective fractional 

terms of Ti in equations (3-9) and (3-10), where k = j.  Then, out
ijij

out
i

in
ij )/Tz(n/TT ×=  and 

in
ijij

in
i

out
ji )/Tn'(y/TT ×= , respectively.  Similarly, the reciprocal relationship specifically between 

Hi and Hj is found from the respective fractional terms of Tj in equations (3-11) and (3-12), 

where k = i.  Then, out
jiji

out
j

in
ji )/Tz(n/TT ×= and in

jiji
in
j

out
ij )/Tn'(y/TT ×= , respectively.  Figure 3.3 

graphically displays these pair-wise dual relationships.  [Figure 3.3 here]  The environs depicted 

in Figures 3.3a and 3.3b, as derived from the respective fractional controllers from equations (3-

9) through (3-12), are the foundation of a pair-wise controlling relationship differential.  That is, 

considering Figure 3.3a, Hj’s relationship, out
iij/Tn , with Hi as extended forward through Hj’s 

output environ, is different than Hj’s relationship, in
iji /Tn' , with Hi reaching backward through 

Hj’s input environ.  That is, in
iji

out
iij T/nT/n ′≠ .  The difference in magnitude of these weightings 

establishes a pair-wise control measure differential formulated below.   
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The fractional throughflows of which each summation in equations (3-9) through (3-12) 

are comprised can also be interpreted as a set of open-loop controllers, e.g., the product of 

out
iik /Tn and the boundary flow zk contribute a fraction of throughflow, out

i
in
ik T/T , to the total 

normalized throughflow at a component.   

Example:  Equation (3-9) expanded for a focal component H3 in a multi-component system takes 

the form: 

 
[ ] [ ] [ ]

componentssystemofnumber,
T

zn
T

zn
T

zn1 out
3

n3n
out
3

232
out
3

131 =
×

++
×

+
×

= nK .     (3-9a) 

From equation (3-9a) and Figure 3.3a right side, the fraction of the total output throughflow at 

component H3, out
3T , contributed from component H1 could be written:  

            1out
3

31
out
3

in
31 z

T
n

T
T

×=              (3-9b) 

Considering equation (3-9b), z1 is the input of H1, out
331/Tn , expressed in reciprocal throughflow 

units, is the modeled fractional controller or fractional transfer function, and out
3

in
31 /TT  is the 

fraction of throughflow from H1 oriented to H3 generated by z1.  Similarly, equation (3-10) 

expanded for a focal component H3 in a multi-component system takes the form: 

      
[ ] [ ] [ ]

componentssystemofnumber,
T

n'y
T

n'y
T

n'y1 in
3

n3n
in
3

232
in
3

131 =
×

++
×

+
×

= nK .       (3-10a) 

From equation (3-10a) and Figure 3.3a left side, the fraction of the total input throughflow at 

component H3, in
3T , contributed to component H1 could be written: 

                in
3

13
1in

3

out
13

T
n'y

T
T

×= .                                 (3-10b) 
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Here, y1 is the output of H1, in
313 /Tn' , again expressed in reciprocal throughflow units, is the 

modeled fractional controller or fractional transfer function, and in
3

out
13 /TT  is the fraction of 

throughflow from H3 oriented to H1 required to generate y1.  

Considering the fractions in the summation equation (3-9), zk are the inputs and out
iik /Tn  are the 

fractional controllers, where out
i

in
ik T/T can then represent the respective fractions of throughflow 

outputs from each of the other components Hk to the focal component Hi for each input to Hk, zk.  

In NEA methodology, the magnitude of out
iik T/n , in reciprocal throughflow units, implicitly 

represents the output environs which map inputs zk forward in time from each component Hk to 

each corresponding fraction of throughflow at Hi, out
i

in
ik T/T .  Likewise, considering the fractions 

in the summation equation (3-10), yk are the outputs and in
iki T/n' , in reciprocal throughflow 

units, are the fractional controllers where in
i

out
ki T/T can then represent the respective fractions of 

throughflow inputs to each of the other components Hk from Hi for each output at Hk, yk.  In 

NEA methodology, the magnitude of in
iki T/n'  implicitly represents the input environs which 

map the outputs in vector yk back from each component Hk to their corresponding fraction of 

throughflow in
i

out
ki T/T  at Hi.   

The respective fractional transfer coefficients ηij and ηji are by definition:  

       
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
≡ in

j

ij
out
i

ij
ij T

n'
T
n

η         i, j = 1, 2, …, n,             (3-13) 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
≡ out

j

ji
in
i

ji
ji T

n
T
n'

η          i, j = 1, 2, …, n,            (3-14) 

where typical dimensional units are reciprocal mass [M−1L2T] or energy [M−1T3] throughflow 

per area in the MLT system of units.  The lower case italic n is the number of compartments in 
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the system.  Note, on the left-hand sides, the use of the Greek letter eta, η, for the fractional 

transfer coefficients, specifically differentiating from the Arabic n used throughout the text for 

the transitive closure matrix values.  Referring to equations (3-9) with (3-13) and (3-10) with (3-

14), it is evident that the ηij coefficients reference driving inputs, zk, and concluding outputs, yk, 

to unit throughflows, 1TT in
i

out
i ==  at every component, i = 1, 2, …, n.  This partitioning of unit 

throughflows is evident in rewriting (3-9), and (3-10) as: 

              1 = ηi1z1 + ηi2z2 + … + ηinzn,    (3-9b) 

and,              1 = y1ηj1 + y2ηj2 + … + ynηjn.    (3-10b) 

These partition elements (each term) show at a glance the involvement of each boundary input 

and output with the unitized steady-state throughflows (see later, equation (3-21) for the Neuse 

River estuary nitrogen system).  The existence of the two equations (3-13) and (3-14) for ηij 

demonstrates the directional reciprocity of the fractional control measure.  Unlike the relative 

environ control measure, for a given control relationship between two components, the absolute 

environ control measure calculations are not specific to the component under consideration.  For 

example, consider the two components Hi and Hj as represented in equation (3-14).  The focal 

component Hi [Figure 3.3a, left side and equation (3-10)], oriented forward through the input 

environ of Hj, controls Hj as represented in magnitude by in
iji /Tn' .  From a different component 

perspective, the focal component Hj is controlled by Hi , as represented in magnitude by out
jji /Tn , 

oriented backwards through Hi’s output environ [Figure 3.3b, right side and equation (3-11)].  

However, since out
jji

in
iji /Tn/Tn' = , equation (3-14), the transfer function relationship is not 

component specific.  Once the direction of control is established, in this example Hi controlling 

Hj, the same quantitative control relationship exists for Hi over Hj regardless of whether it is 

oriented forward through Hj’s input environ or backward through Hi’s output environ.  Fractional 
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environ control transfer function values are not relative to the focal component under 

consideration and are otherwise stated to be system absolute.  This observation is the core 

premise and foundation behind throughflow-based absolute environ control terminology and 

methodology. 

Mindful of the equivalences expressed in equations (3-13) and (3-14), several absolute 

control metrics can be defined.  Pair-wise component comparisons are enabled by a 

dimensionless control ratio: 

       
),( jiij

jiij
ij ηηmax

ηη
cr

−
≡ ,   i, j = 1, 2, …, n,       0 ≤ |crij| ≤ 1.   (3-15) 

System-based comparisons of the fractional transfer values are can be made by the control 

difference: 

                  cdij ≡ ηij − ηji,     i, j = 1, 2, …, n,       0 ≤ |cdij| < ∞. (3-16) 

Both crij and cdij are interpreted from j to i using “controls” for crij, cdij  > 0 and “is controlled 

by” for crij, cdij  < 0.   For example, cr13 means, H3 controls H1 with a magnitude of |cr13| when 

cr13 > 0 and H1 controls H3 with a magnitude of |cr13| when cr13 < 0.  The magnitudes |crij| and 

|cdij| denote the level of control, and the signs, + or −, denote direction of control.  By definition, 

the control ratio matrix, CR, is a collection of values each calculated with different 

denominators.  As such, adding individual crij values across rows or down columns is not 

mathematically appropriate or ecologically revealing.  The benefit of the crij calculation is that it 

represents the strength of the difference between the two fractional open-loop control magnitudes 

referenced to the maximum open-loop control magnitude of only those two components.  Each 

crij is a unique pair-wise comparison of the input and output fractional transfer weights between 

Hi and Hj.  The cdij values in the control difference matrix CD are differences between the 

fractional transfer values (ηij − ηji) acting from Hj and Hi.  Since these are not scaled to the local 
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pairs involved as lacking the division operation of the largest fractional transfer value [max (ηij − 

ηji)], does for the crij values, the cdij values remain comparable across all (Hi, Hj) pairs and thus 

can be considered system-based metrics whose magnitudes are referenced to the whole system.  

The magnitudes of the cdij values throughout the CD matrix can be freely compared and 

contrasted among each one an other.  Further, absolute environ control methodology is 

independent of component pair orientation.  Opposite elements across the main diagonals of the 

CD and CR asymmetric matrices (e.g., cr13 versus cr31) are the same magnitudes ( |cr13| = |cr31| ) 

with opposite signs (directions of control) and are independent of the opposing component pairs 

(e.g., H3 and H1) differing throughflows.   

Since magnitudes of the control differences, cdij, are all referenced to the same system, 

cdij values are additive.  This additive quality affords the computation of a system versus 

component magnitude of control weighting by summing the rows of the CD matrix to calculate 

the system control vector where by definition:          

         ∑
=

≡
n

1k
kjj cdsc     j = 1, 2, …, n,           0 ≤ |scj| < ∞    (3-17) 

where the italic n is the number of system components, the “∑cdk“ portion of ∑cdkj represents 

the system comprised of all recipient components, and the subscript j represents the specific 

donor component, Hj.  Therefore a positive scj value denotes a specific focal component’s, Hj, 

control of the system (remaining components combined, k = 1, 2, …, n;  k ≠ j).  Likewise a 

negative scj value denotes that a specific focal component Hj is controlled by the system 

(remaining components combined, k = 1, 2, …, n;  k ≠ j).  The system’s components are 

effectively ranked on a continuous scale from the most negative to the most positive scj where a 

level of hierarchy for each ecosystem (model) component can be attributed to the scj magnitude.  

All scj added together will equal zero denoting total system balance. 
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3.6 RESULTS: STEADY-STATE NEUSE RIVER ESTUARY 
 

The afferent and efferent dimensionless transitive closure matrices, N and N', and the 

dimensional throughflow matrix, T, for the 16-sample average of the Neuse River nitrogen 

cycling data (Christian and Thomas, 2000; Gattie et al., 2006a) are as follows: 

           

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

3.512.692.632.581.822.762.64
14.5016.4815.1314.8510.6115.9215.15
1.421.582.471.431.121.531.47
2.963.253.214.122.163.253.30
1.641.571.581.502.041.561.58

18.3219.5819.1418.7913.2720.1619.16
7.968.988.938.625.878.739.40

N              (3-18)      
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⎥
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⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

3.5115.301.983.301.0919.758.69
2.5516.482.003.341.1120.008.78
1.8911.992.472.440.8914.596.44
2.3114.461.884.121.0118.128.51
2.7514.961.993.212.0418.658.73
2.5615.592.013.361.1120.168.84
2.4115.502.043.351.0618.929.40

N'                  (3-19) 

 

         [ ]T2,09911,9551,5782,6881,25515,0056,927T =  
seasonm

Nmmol
2 ×

−           (3-20) 

 
The model has seven components, expressed as nitrogen standing stocks (mmol-N/m2): H1 = 

phytoplankton, H2 = heterotrophs,  H3 = sediments, H4 = dissolved organic nitrogen, H5 = NOx, 

nitrates-nitrites, H6 = NH4, ammonia, and H7 = abiotic matter.  Mnemonic names and numbers 

for these were established in Chapter 2:  PN-Phyto-1, PN-Hetero-2, Sediment-3, DON-4, NOx-5, 

NH4-6, and PN-Abiotic-7. 

3.6-1  RELATIVE ENVIRON CONTROL 

Consider the relationship between PN-Phyto-1 and Sediment-3 as generalized in Figure 3.1a 

and shown in Figure 3.4a.  [Figure 3.4a here]  The input and output environs implicit in n'13 = 
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1.06 and n31 = 1.58 (i.e., transfer functions, controllers, etc.), respectively, are not the same 

which illuminates the differences as to how PN-Phyto-1 receive nitrogen from Sediment-3 and, 

conversely how PN-Phyto-1 route nitrogen to Sediment-3.  This difference is inherent in the 

transactional (both magnitude and connectance) relationship between the compartments.  The 

transitive closure matrix values [equations (3-18) and (3-19)] which serve as the multipliers for 

the open-loop controllers of throughflow in the steady-state system also, through their 

magnitudes, identify the importance of one component in the environ of another.  That is, Phyto 

(1) has a direct and indirect transactional relationship with Sediment-3 expressed through its 

output environ as specified by the value n31 = 1.58.  Conversely, PN-Phyto-1 also has a 

relationship with Sediment-3 looking backward through its input environ expressed in the value 

n'13 = 1.06.  Since this specific transactional pair-wise relationship can be represented by n31 > 

n'13, on a per unit of boundary flow basis, then PN-Phyto-1 contributes more to Sediment-3 than 

Sediment-3 to PN-Phyto-1 and, as such, PN-Phyto-1 controls Sediment-3 by the dominance, not 

limiting-factor, interpretation of “control”.  Similarly, an example depicting Figure 3.1b is shown 

in Figure 3.4b where the same conclusion can be derived; n'31 > n13, therefore PN-Phyto-1 

controls Sediment-3.  [Figure 3.4b here]  However, recall the relative environ control measure is 

specific to each component.  Thus, Figure 3.4a, whose values represent partitions of T3, shows a 

magnitude differential of (n31 − n'13 = 0.52).  Figure 3.4b, which represents partitions of T1, 

shows a differential of (n'31 − n13 = 2.86).  The result is the same, PN-Phyto-1 controls Sediment-

3.  However, the magnitude of the controlling relationship is specific to the component from 

which it is considered.  The relative environ control measure derived with functional transfer 

values is a component-relative computation, i.e., relative environ control magnitude is in the eyes 

of the beholder. 
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3.6-2  ABSOLUTE ENVRION CONTROL 

Given equations (3-18), (3-19), and (3-20) for the Neuse River estuary nitrogen cycling 

model and using equation (3-13) or (3-14) the fractional transfer matrix η is: 
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1.671.281.251.230.871.321.26
1.211.381.271.240.891.331.27
0.901.001.560.910.710.970.93
1.101.211.191.530.801.211.23
1.311.251.261.191.631.241.26
1.221.301.281.250.881.341.28
1.151.301.291.240.851.261.36

10η 3

Nmmol

season2m

−

× . (3-21) 

 
Figures 3.5a and 3.5b demonstrate the premise of equations (3-13) and (3-14).  The output 

environ of component H1, PN-Phyto, oriented towards component H3, Sediment, is identical to 

the input environ of component H3, Sediment, oriented from component H1, PN-Phyto. That is, 

n31 and n'31 map identically to η31 through their relationships to T3 and T1, respectively.  

Although η31 is one number, it possesses information pertaining to both perspectives.  The 

fractional transfer matrix relationship between a pair-wise relationship of two components is 

equal and independent of perspective and, as such, represents system-absolute values.  This 

orientation independence identity is isomorphic to the pathway relationship in equation (3-8).  

Similarly, the output environ relationship of H3 oriented to component H1 as depicted by η13 in 

Figure 3.5b, left side, is identical to the input environ relationship of H1 oriented from 

component H3 in Figure 3.5a, right side.  [Figure 3.5a and 3.5b here]  In Figure 3.5a, the output 

environ relationship of H1 oriented toward H3, is quantified by η31 = 1.26 × 10−3 (m2 × 

season)/mmol-N.  This is greater than the input environ relationship of H1 oriented from H3, 

quantified by η13 = 0.85 × 10−3 (m2 × season)/mmol-N.  As such, H1 is shown again to control H3.  

to i 
from j 
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Equations (3-15) and (3-16) provide two methodologies to quantify or relate the magnitude of 

controls.  The control ratio matrix, computed in accordance with equation (3-15) is as follows: 
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00.050.280.110.340.070.08
0.0500.210.030.290.020.02
0.280.2100.240.440.240.28
.110.030.2400.330.040.01

0.340.290.440.3300.290.33
0.070.020.240.040.2900.01
0.080.020.280.010.330.010

CR .  (3-22) 

 
The presentation of the CR matrix of values is identical in concept to the control matrix (cij) in 

Patten’s (1978b) and Patten and Auble’s (1981) study of the Cone Spring energy model with a 

few minor distinctions.  The crij relationship maintains column to rows progression, i.e., 

component H1 controls component H3 with a weighted value of cr31 = 0.33.  This j to i format is 

consistent with the N and N' matrices that construct the η and crij values.  Also, the reciprocity of 

the fractional controlling relationship, as equated in equations (3-13) and (3-14), i.e., crij = −crji, 

is recognized and all elements including the equal in magnitude but opposite in sign negative 

control ratios, −crij, remain in the matrix.  This is somewhat redundant information but, left in 

place, demonstrates the overall controlling relationship balance necessary for whole system 

balance.  The principal diagonal elements of CR, crii, are 0, which can be interpreted identically 

to Patten’s (1978b) and Patten and Auble’s (1981) diagonal elements of cii = 1, meaning that a 

component Hi is equally important in its own output environ implicit in N per unit input z, as in 

its input environ implicit in N' per unit output y.  Hi is related to itself equally through either its 

output or input environs and, as such, maintains no controlling advantage over itself as the result 

of an afferent or efferent perspective.  

to i 
from j 
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Each element of the CR matrix has a range of  0 ≤ |crij| ≤ 1.  A value (magnitude) of 1 

represents maximum control of a component by another (as explained in Section 3.5, positive or 

negative signs represent direction of control), and is indicative of an observed direct flow of 

substance from the former to the latter, with no direct or indirect return flow.  An example of 

such a pair-wise maximal control can be found in the Cone Spring Energy Model (Patten, 1978b; 

Patten and Auble, 1981).  In their modeled aquatic energy cycle, plants have complete control (cij 

= +1) over every other component.  Reciprocally, the other components (detritus, bacteria, 

detritivores, and carnivores) have no control over plants as there is no appreciable flow of energy 

from the remaining components in the Cone Spring Model back to the plants.  Patten and 

Auble’s control measures, at the maximal control extremes, make intuitive sense in this 

circumstance.   

Considering individual component-to-component comparisons, NOx-5 and Sediment-3 

show enhanced but opposite roles in the seven component model.  Sediment is controlled (cri3 < 

0 for i = 1, 2, …, 7, i ≠ 3) by all other components whereas NOx controls all other components 

(cr5j > 0 for j = 1, 2, …, 7, j ≠ 5).  Further, the magnitudes of the control ratios associated with 

Sediment and NOx are the highest in the CR matrix, the maximum being cr35 = 0.44 representing 

the NOx controlling Sediment.  The remaining five components appear to have no discernible 

pattern of involvement as a group to the remaining components, and all appear diminished 

compared to the controlling relationships of NOx and Sediment to the other components.  

Using equation (3-16), equation (3-23) documents the fractional control difference 

measure between pairs of components.  Similarly, equation (3-24) displays the results of 

equation (3-17), the system control vector, by calculating each component’s aggregate (columns) 

fractional transfer functions: 
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The CD matrix, interpreted as before from columns to rows (j → i), represents scaled control 

measures from 0 to the maximum magnitude in the matrix.  For example, cd31 = 4.1 × 10−4 (m2 × 

season)/mmol-N means that H1, PN-Phyto, controls H3, Sediment, with a magnitude of 75% 

(4.1/5.5 × 100) of the maximum controlling relationship, which is cd35 = 5.5 × 10−4 (m2 × 

season)/mmol-N [NOx-5 controlling Sediment-3].  The cdij control measures are absolute values 

which allow comparison of two cdij magnitudes by either a direct comparison or relative 

percentages.  Recall the crij values are calculated with different denominators where individual 

comparisons need to be qualified appropriately.  Considering the CD matrix, the highest 

magnitude of control exists over Sediment-3.  Not only are there no constituents on which 

Sediment-3 exerts control (the third column of CD has all negative numbers) but the magnitudes 

of control on Sediment-3 (third row) represent the seven highest values in the matrix (cd31 

through cd37 ≥ remaining cdij).  Although by smaller magnitudes, the remaining system 

components except Sediment (H1 through H6, except H3) also control PN-Abiotic, H7, i.e., cd71, 

to i 
from j 
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cd72, cd74, cd75, and cd76 are all positive numbers.  To the contrary, NOx-5 controls each 

component in the system with relatively high magnitudes (fifth column elements of CD all 

positive).  While Sediment-3 is overwhelmingly controlled by the system, NOx-5 

overwhelmingly controls the system.  Although by small magnitudes, PN-Abiotic-7 is also 

controlled by the remaining system components except Sediment-3.  The system control vector, 

scj, concisely shows that the system overwhelmingly controls Sediment-3 [sc3 = −25.2 × 10−4 

(m2 × season)/mmol-N] while, on the other hand, NOx-5 overwhelmingly controls the system [sc5 

= 21.2 × 10−4 (m2 × season)/mmol-N].  

3.7 DISCUSSION 

In steady-state network environ analysis, the transitive closure matrices, N and N', 

represent an augmentation or attenuation of the boundary flows (z and y) of a system through all 

direct and indirect pathways to the respective component throughflows.  The individual 

interstitial transitive closure values, nij and n'ij, or their magnitude of throughflow fractional 

equivalents, ηij, can be treated as distributed open-loop controllers or transfer functions in the 

classical control theory sense.  In this, the closed-loop feedback is inherent in the distributed 

interactions of the open-loop controllers acting in parallel.  The strength or magnitude of  

incoming versus outgoing (environ theory perspective) controllers can then be compared to 

identify augmentative or suppressive relationships.  The controller magnitudes, per se, offer a 

weighted means to facilitate this comparison.  Two physical aspects which contribute to the 

transfer weights between two components in a multi-component system are system connectance 

(structure) and throughflow (function) magnitudes.  Using the adjacency matrix in equation (3-

7), efferent and afferent connectance over increasing path lengths between two components are 

shown to be different.  This identifies, in part, at least one of the reasons for directionally 
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dependent transfer function weightings.  This directional dependency is fundamental to the 

comparative controller differentials which environ distributed control theory captures. 

The control ratio, crij, inspired by Patten’s (1978b) and Patten and Auble’s (1981) 

original environ control measure cij, offers a preliminary pair-wise comparison of input and 

output environ transfer functions, and helps introduce the interpretive characteristics of the 

environ control metrics.  In a broad qualitative sense, environ elements implicit in the transitive 

closure matrices quantify the level of importance of one component in another component’s 

respective environ.  “Importance” in the Neuse River estuary model is defined on a unit 

boundary flow basis as the amount of nitrogen committed as a partition or fraction of a 

component’s throughflow.  Considering that each component has a specific amount of nitrogen 

(total component throughflow) to divide appropriately among six other components, how much 

does it allocate to each specific component?  The varying fractions of nitrogen throughflow 

committed from one component to another, in a qualitative sense, indicate varying hierarchies of 

efficiency or importance.  Basically, environ elements on a partition-of-throughflow, nij and n'ij, 

or fraction-of-throughflow, ηij, basis offer quantitative values to compare a qualitative level of 

importance of one component in a network to another.  If one component is more important or 

efficient than another, for purposes herein, it can be regarded as dominant.  Consider PN-Phyto-1 

and Sediment-3.  PN-Phyto-1 dominates Sediment-3 as indicated by a relative control ratio 

weighting of cr31 = 0.33.  As such, at least the following statements are quantifiably true for a 

unit boundary fractional-environ-control comparison of PN-Phyto-1 and Sediment-3:  (1) 

Sediment, through its output environ, generates a fraction of throughflow [η13 = 0.00085 (m2 × 

season)/mmol-N] that is 33% less than the fraction of throughflow [η31 = 0.00126 (m2 × 

season)/mmol-N] available to Sediment through its input environ from PN-Phyto.  (2) 
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Conversely, PN-Phyto, through its output environ, generates a fraction of throughflow [η31 = 

0.00126 (m2 × season)/mmol-N] to Sediment that exceeds the fraction of throughflow [η13 = 

0.00085 (m2 × season)/mmol-N] available to PN-Phyto through its input environ from Sediment.  

(3) PN-Phyto are more efficient at moving nitrogen to Sediment on a per throughflow basis than 

conversely.  Thus, PN-Phyto dominates Sediment.  Further, on a unit boundary-flow basis, all 

components are more efficient at moving nitrogen to Sediment (cr31 = 0.33, cr32 = 0.29, cr34 = 

0.33, cr35 = 0.44, cr36 = 0.29, cr37 = 0.34) than conversely.  Alternatively, using the Total 

Dependency and Total Contribution matrices of Ecological Network Analysis (ENA), Christian 

and Thomas (2003) showed that phytoplankton depended on sediment for 50% of its combined 

direct and indirect throughflow.  Additional analysis by Christian and Thomas (2003, and 

personal communication), using this technique, revealed that phytoplankton is least dependent on 

sediment nitrogen and, conversely, sediment is most dependent on phytoplankton for its 

respective contributions to throughflows.  Also, Sediment was shown to be least dependent on 

itself (cycling) for throughflow.  Although the correlation of the environ control magnitudes to 

throughflow magnitudes is inconclusive thus far, Christian and Thomas’s throughflow 

magnitude-based conclusions support the present control ration results. 

While Sediment-3 is decisively controlled by the system, NOx-5 dominates all other 

components (cr15 = 0.28, cr25 = 0.24, cr35 = 0.44, cr45 = 0.24, cr65 = 0.21, cr75 = 0.28).  This 

finding has ecological management ramifications as NOx-5 is the greatest source of readily 

available nitrogen [z5 = 417 mmol-N/(m2 × season)] loaded into the Neuse River estuary.  The 

most dominant of the pair-wise comparative environ controls is between NOx and Sediment, 

where cr35 = 0.44.  Input–output analysis by Christian and Thomas (2003) showed the majority 

of imported NOx-N was buried in the Sediment in all summers, falls and half the springs during 
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the four-year study.  Sediment and NOx dominate from opposite perspectives of the absolute 

environ control spectrum in the seven-component model.  All other control ratios are 

significantly less, ranging from a virtually inconsequential cr21 = cr14 = 0.01 to a small cr74 = 

0.11 (DON controlling PN-Abiotic).  The controlling pair-wise relationships among the seven 

components remain distributed, with Sediment and NOx maintaining significant roles. 

Although, these significant roles are interesting and seemingly intuitive, absent future 

review of this methodology and application to additional models, these broad results remain 

hypotheses.  For example, contrary to the present results, the Total Dependency matrix results of 

Christian and Thomas (2003) could be interpreted such that PN-Hetero-2 is the controlling 

element in the system since, on average, the system elements are generally most dependent on 

PN-Hetero for throughflow.  PN-Hetero, a major transformer of nitrogen within the system, is 

also the major participant in the cycle with the largest flow [PN-Hetero-2 to NH4-6 back to PN-

Hetero-2].  Most of the NOx boundary input becomes involved in this cycle while very little goes 

to Sediment.  Yet, burial in Sediment is the dominant export route for boundary input to NOx, 

while export as NOx to Pamlico Sound is the smallest. 

Assessing the variation of the distributed controlling relationships (comparison of the 

different magnitudes) within a CD or CR matrix or between the CD and CR matrices requires 

specific consideration and interpretation of each interstitial value.   In all cases, for the Neuse 

River estuary model, Sediment is controlled by all other components, NOx controls all other 

components, and the largest differential of control magnitude is NOx over Sediment [cd35 = 5.5 × 

10−4 (m2 × season)/mmol-N].  The controlling relationships among the other components are 

significantly less, ranging from cd21 = cd14 = 0.20 × 10−4 to cd74 = 1.3 × 10−4 (m2 × 

season)/mmol-N.  Utilizing the additive quality of the cdij metrics, the scj vector captures the 
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system (remaining six components) to individual component (focal component) controlling 

relationships.  Similar to the interpretive results garnered by a review of the CD matrix, the scj 

vector identifies a significant control of the system on Sediment, sc3 = −25.2 × 10−4 (m2 × 

season)/mmol-N, and of NOx on the system, sc5 = 21.2 × 10−4 (m2 × season)/mmol-N.  Since 

both the system/component and component/system controlling relationships in the scj metric are 

balanced, for interpretive clarification, the vector can be normalized by the total control 

differential magnitude (∑
=

n

1j

j

2
sc

) and rewritten on a percent basis.  For example, 

%4.89100
82.2

2.25100

2
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j

3 −=×
−

=×

∑
=

n
.  Thus, for the Neuse River estuary average data set, the 

scj vector written as percentages are 4.6%, 4.3%, −89.4%, 11.3%, 75.2%, 4.6%, and −10.6%.  Of 

the controlling relationship differential between the system and each of the components, 89.4% 

is dedicated to controlling Sediment alone.  The remaining 10.6% is reserved for system-level 

control of PN-Abiotic.  Considering component control of the system, NOx dominates the 

individual controlling relationships at 75.2 %, with remaining control distributed among the four 

different components: DON-4 11.3%, PN-Phyto-1 4.6%, NH4-6 4.6%, and PN-Hetero-2 4.3%.  

Component throughflows, Tj, are not necessarily correlated with the corresponding level 

of distributed control magnitudes.  Sediment-3 and NOx-5 have the two lowest throughflows [T3 

= 1,255 and T5 = 1,578 mmol-N/(m2 ×  season)] but exert the two highest magnitudes of absolute 

control on the system [sc3 = −25.2 × 10−4 versus sc5 = 21.2 × 10−4 (m2 × season)/mmol-N].  To 

the contrary, PN-Hetero-2 and NH4-6 each have relatively high throughflows [T2 = 15,005 and 

T6 = 11,955 mmol-N/(m2 × season)] but maintain low controlling relationships [sc2 = 1.2 × 10−4 

versus sc6 = 1.3 × 10−4 (m2 × season)/mmol-N].  The remaining three components have no 
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consistent throughflow or system control relational patterns [PN-Phyto-1, DON-4, and PN-

Abiotic-7, T1 = 6,927, T4 = 2,688, and T7 = 2,099 mmol-N/(m2 × season) versus sc1 = 1.3 × 10−4, 

sc4 = 3.2 × 10−4, and sc7 = −3.0 × 10−4 (m2 × season)/mmol-N, respectively]. 

An assumption was made that magnitude denotes dominance and therefore control.  

Considering the example in Figure 3.5a, the output environ of H1 oriented to H3, implicit in η31 = 

1.26 × 10−3 (m2 × season)/mmol-N, is greater than the input environ of H1 as oriented from H3, 

implicit in η13 = 0.85 × 10−3 (m2 × season)/mmol-N.  As such, component H1 controls component 

H3 [cd31 = 4.1 × 10−4 (m2 × season)/mmol-N].  It remains the hypothesis of this research, an 

extension of Patten’s (1978b) and Patten and Auble’s (1981) original idea, that this overall 

weighted environ comparison offers a quantitative methodology to compare pair-wise dominance 

in a network.  The term “control” is not used in the established control-theory perspective of a 

transient feedback closed-loop system.  Rather, given a dynamic steady-state model, control 

resides in the component’s actions in an open-loop control sense, with fixed, augmenting or 

diminishing transfer functions.  The closed-loop feedback is inherent in the distributed 

interactions of the open-loop controllers acting in series and in parallel diffusely distributed in a 

system of checks and balances.   

The orientation of the controlling relationship (greater direct plus indirect flow denotes 

dominance, therefore control) was based on an energy flow derivation in the Cone Spring Energy 

Model (Patten, 1978b; Patten and Auble, 1981).  In the aquatic energy cycle, plants have 

complete control (cij = 1) over every other component.  This established the direction of control 

(greater magnitude dominates) that remained plausible with the that energy model’s remaining 

component’s pair-wise relations.  The direction of control herein, carried forward from the Cone 

Spring control model, although intuitively plausible (e.g., Sediment is controlled by all other 
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components while NOx controls all other components), remains inconclusive absent additional 

research.  For instance, if a limiting factor perspective is used (e.g., Sediment sequesters N with a 

controlled release to NOx), the conclusions could be opposite.  Then Sediment would control all 

other components and all other components would control NOx.  The direction of control 

remains open for further study where storage, turnover rates, and a transient analysis are 

currently being considered.  For example, Christian et al. (1996) discussed the difference 

between food-web energy models and biogeochemical models.  Energy models are not suppose 

to have feedbacks to primary producers whereas biogeochemical models do (but see Patten, 1985 

for a contrary view).  Such system differences will affect the respective system indices.  Baird 

and Ulanowicz (1993) found that food web models with high Finn Cycling Indices are 

experiencing stress, but Christian et al. (1996) found that biogeochemical cycles experiencing 

stress have low Finn cycling indices.   Although direction of control remains open for further 

study, with the Neuse River estuary average nitrogen cycle, comparative environ analysis 

quantitatively shows that NOx and Sediment decisively remain on opposite ends of a dominance 

spectrum.   

Environ control methodology raises interesting questions based on both the results 

themselves and their ramifications.  For instance, within the results themselves, it is not 

immediately clear why NH4-6 when compared to NOx-5, also a dissolved inorganic nitrogen, 

with roughly similar storage (X5 = 59 versus X6 = 36 mmol N/m2), does not have a similar 

controlling environ influence [sc5 = −21.2 × 10−4 versus sc6 = −1.3 × 10−4 (m2 × season)/mmol-

N].  NH4 throughflow is markedly higher than NOx [T5 = 11,955 versus T6 = 1,578 mmol-N/(m2 

× season)].  Likewise, regarding the ramifications of the results, Sediment (dredging activities, 

low turnover rates therefore long repair cycles, etc.) and NOx (industrial agriculture, non-point 
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sources, etc.) are directly involved in ecosystem management.  As such, their decisively 

controlling relationships in a distributed control scheme lend credence to the need for further 

review.   

For these reasons, additional research is planned in at least the following areas:  (1) 

Throughflow, by definition, is a component-specific quantity.  It represents the total in-flow or 

out-flow of focal components.  Since the present environ control methodology is throughflow 

based, the component-relative nature of the relative control metrics remains an important part of 

the distributed control concept in environ theory.  What additional qualitative value is afforded a 

component-specific (relative) versus system-wide (absolute) distributed control metric 

quantification?  (2) Component storage and turnover rates certainly play a role in the inertia of 

material movement through a dynamic system.  The environ control metrics derived are 

throughflow based and do not relate to the component storages in the system.  Storage (e.g., 

Sediment very high at X3 = 5,200, NOx relatively low at X5 = 59 mmol-N/m2), turnover rates, 

and throughflows [e.g., Sediment and NOx low at 1,255 and 1,578 mmol-N/(m2 × season), 

respectively] play interactive roles and are subjects for further review.  Storage-based environ 

networks (Matis and Patten, 1981) and their potential controlling relationships will be further 

investigated.  (3) A component can participate both with internal cycling and with flows across 

the system boundary.  To what extent does the magnitude of this participation determine a 

component’s controlling hierarchy?  For example, NOx and Sediment have high input [z5 = 419 

mmol-N/(m2 × season)] and output [y3 = 418 mmol-N/(m2 × season)] boundary flows, 

respectively.  In highly cyclic systems (Neuse River estuary Finn Cycling Indices are generally 

greater than 89%), are the components with high boundary flows valued for their pipeline to the 

outside?  The correlated relationship of cycling and boundary flows to overall control 
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magnitudes may begin to reveal practical ecosystem management results and applications.  (4)  

Present environ analysis assumes a system is at a dynamic steady-state wherein the internal and 

boundary flows are constant and balanced.  Although steady-state analyses may begin to capture 

the underlying principles in a complex network, the extent these principles adjust under transient 

or discrete-time step conditions needs to be pursued. 
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3.10 TABLES 
 
Table 3.1:  Throughflow summations for two components, Hi and Hj, in an n-component 

system, as the product of the boundary flows, z and y, and their corresponding 

transitive closure matrices, N and N'.  Equations (3-3) through (3-6) are 

conservation equations for a steady-state system where the total throughflow out, 

Tout, of a component equals the total throughflow in, Tin, to the same component.  

in

1k
kik

out
i )z(nT ∑

=

×=
n

 (3-3) 

Each term in the summation represents a 
partition, in

ikT , of the total throughflow, Ti, 
specifically from Hk into Hi as generated by  
input zk into Hk.    

out

1k
kik

in
i )n'(yT ∑

=

×=
n

 (3-4) 

Each term in the summation represents a 
partition, out

kiT , of the total throughflow, Ti, 
specifically from Hi to Hk as generated by an 
output yk from Hk. 

in

1k
kjk

out
j )z(nT ∑

=

×=
n

 (3-5) 

Each term in the summation represents a 
partition, in

jkT , of the total throughflow, Tj, 
specifically from Hk into Hj as generated by 
input zk into Hk. 

out

1k
kjk

in
j )n'(yT ∑

=

×=
n

 (3-6) 

Each term in the summation represents a 
partition, out

kjT , of the total throughflow, Tj, 
specifically from Hj to Hk as generated by an 
output yk from Hk. 
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Table 3.2:  Fractions of throughflow summations for paired components, Hi and Hj, in an n-

component system, as a function of the boundary flows, z and y, and their corresponding 

transitive closure matrices, N and N'. 

∑
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n
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ik z
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Each term in the summation represents the 
fraction out

i
in
ik /TT of throughflow partitioned 

to Hi  specifically from Hk as generated by 
input zk. 
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Each term in the summation represents the 
fraction in

i
out
ki /TT of throughflow partitioned 

from Hi specifically oriented to Hk to 
produce by output yk. 
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Each term in the summation represents the 
fraction out

j
in
jk /TT of throughflow partitioned 

to Hj  specifically from Hk as generated by 
input zk. 
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Each term in the summation represents the 
fraction in

j
out
kj /TT of throughflow partitioned 

from Hj specifically oriented to Hk to 
produce output yk. 
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3.11 FIGURE LEGENDS 
 
Figure 3.1:  Component environ pairs in a multi-component system.    
 
 
Figure 3.2:  Open-loop control system 
 
 
Figure 3.3:  Component environ pairs in a multi-component system.  ηji, as defined by equation 

(3-14), is represented in both Figure 3.3a left and Figure 3.3b right.  Similarly, ηij, as 

defined by equation (3.13), is represented in both Figure 3.3a right and Figure 3.3b left. 

 
Figure 3.4a:  Input and output environ analysis of a pair-wise transactive relationship between 

component’s H1 and H3 using equations (3-4) and (3-3), respectively, where y and z are 

boundary flows, mmol-N/(m2 · season).  The partitioned output throughflow from H3 

oriented towards H1, out
13T , is represented in magnitude by the combination of the output 

boundary flow and the transitive closure term, y1 × n'13.  The partitioned input 

throughflow at H3 from H1, in
31T , is represented in magnitude by the combination of the 

input boundary flow and transitive closure term, n31 × z1. 

  
Figure 3.4b, Input and output environ analysis of a pair-wise transactive relationship 

between component’s H3 and H1 using equations (3-5) and (3-6), respectively, 

where y and z are boundary flows, mmol-N/(m2 · season).  The partitioned output 

throughflow from H1 oriented towards  H3, out
31T , is represented in magnitude by 

the combination of the boundary flow and the transitive closure term, y3 × n'31.  

The partitioned input throughflow at H1 from H3, in
13T , is represented in magnitude 

by the combination of the input boundary flow and the transitive closure term, n13 

× z3.  
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Figure 3.5a, Pair-wise transactive relationship between components H1 and H3 using 

equations (3-9) and (3-10) showing the fractions of throughflow (dimensionless) 

represented in magnitude by the fractional environ transfer coefficients, η13 and 

η31, where y and z boundary flows, mmol-N/(m2 · season). 

Figure 3.5b, Pair-wise transactive relationship between components H3 and H1 using 

equations (3-11) and (3-12) showing the fractions of throughflow (dimensionless) 

represented in magnitude by the fractional environ transfer coefficients, η31 and 

η13, where y and z are boundary flows, mmol-N/(m2 · season). 
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Figure 3.1 
 
 

 
 

Figure 3.1a, Right: throughflow output environ of 
Hj oriented forward towards Hi represented in 
magnitude by nij × zj [equation (3-3) when k = j].  
Left: throughflow input environ of Hj oriented 
backwards toward Hi represented in magnitude by 
yj × n'ji [equation (3-4) when k = j].   

 Figure 3.1b, Right: throughflow output environ of 
Hi oriented forward towards Hj represented in 
magnitude by nji × zi [equation (3-5) when k = i].  
Left: throughflow input environ of Hi as oriented 
backwards toward Hj represented in magnitude by 
yi × n'ij, [equation (3-6) when k = i]. 
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Figure 3.2 
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Figure 3.3 
 
 

 
 

Figure 3.3a, Right: fraction of throughflow 
output environ represented in magnitude by 

j
out
iij zT/n ×  of Hj oriented towards Hi, 

reference equation (3-9) when k = j.  Left: 
fraction of throughflow input environ 
represented in magnitude by in

ijij T/n'y ×  of 
Hj as oriented from Hi, reference equation (3-
10) when k = j.   

 Figure 3.3b, Right: fraction of throughflow 
output environ represented in magnitude by 

i
out
jji zT/n ×  of Hi oriented towards Hj, 

reference equation (3-11) when k = i.  Left: 
fraction of throughflow input environ 
represented in magnitude by in

jiji T/n'y ×  of Hi 
as oriented from Hj, reference equation (3-12) 
when k = i. 
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Figure 3.4a 
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Figure 3.4b 
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Figure 3.5a 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     y1 

H1 H3 H3 H1 
 y1 × 0.85 × 10-3 

z1

   1.26 × 10-3 × z1 



 

 

155

Figure 3.5b 
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CHAPTER 4 

DISTRIBUTED CONTROL IN THE ENVIRON NETWORKS 

OF A SEVEN-COMPARTMENT MODEL OF NITROGEN FLOW 

IN THE NEUSE RIVER ESTUARY, USA: TIME SERIES ANALYSIS1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
1 Schramski, J.R., Gattie, D.K., Patten, B.C., Borrett, S.R., Bata, S.A., Fath, B.D., and Whipple, 
S.J., Submitted to Ecological Modelling.    



 

 

157

ABSTRACT 
 

The methods of network environ analysis (NEA) (e.g., Patten 1978a, b; Barber et al., 

1979; Fath and Patten, 1999) apply to dynamical steady-state models.  Networks of real 

ecosystems are near steady-state in long-term mean characteristics, but are dynamic in short-term 

responses.  A formal mathematical approach to dynamic NEA analysis has never been fully 

developed, though see Hippe (1983) for one approach.  Another potential approach to addressing 

this limitation is to analyze a discrete-time series of steady-state models, each a snapshot for the 

time period it represents.  Using concepts from “open-loop” control theory, four throughflow-

based ecological control terms (control ratio, CR; control difference, CD; system control, scj; 

and total system control, TC), as developed using an environ framework in Schramski et al. 

(2005), are evaluated for 16 consecutive seasons of nitrogen cycling in the Neuse River estuary, 

North Carolina, USA (Christian and Thomas, 2003).  Results of this assessment offer a 

quantitative measure of the quasi-dynamic distributed control in this network.  Nitrate-nitrites 

(NOx) and Sediment assume opposing but dominant roles (high scj magnitudes) in all 16 seasons.  

Low ratios of total component throughflow (Ti) to respective boundary inflow (zi) or outflow (yj) 

are shown to be indicators of component control dominance, suggesting a role for boundary 

flows in determination of a system component’s dominance.  This conclusion may also derive 

from the high cycling in this nitrogen model (average Finn cycling index was 89% for all 16 

seasons).  TC appears to be correlated with total system throughflow (TST), suggesting that this 

property may indicate a system’s distributed control patterns.  This correlation may also be 

fruitful if TST proves to be an indicator of system stability, an important consideration in the 

notion of control.  Future efforts will focus on the effects of throughflow magnitude, component 

storage, and residence times on distributed control.  
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4.1 INTRODUCTION 

One insight attributed to network environ analysis (NEA) is its ability to quantify the 

integral (direct, indirect, and boundary) relationships between compartments.  NEA, although 

offering a holistic perspective, is currently a steady-state analysis methodology.  The 

foundational conservation equations assume that the rate of mass or energy accumulation (dx/dt) 

is zero, significantly simplifying the subsequent equation development (Barber et al., 1979).  

Networks of real ecosystems are not steady-state and change over time.  Although advanced 

dynamic simulation software exists, the mathematics required for true theoretical dynamic NEA 

are daunting, and have yet to be fully developed.  The non-steady-state case is discussed by 

Patten et al., (1976).  Hippe (1983) explored the very specific time-dependent input function 

which does yield time dependent results.  Hannon (1986) and Levine (1988) pursued dynamic-

linear, but nevertheless time invariant, studies of input–output network analysis. 

One approach to overcoming this limitation is to analyze a discrete-time series of steady-

state models, each a fixed snapshot for the period it represents (Leontief, 1970).  The NEA 

control metrics generated for each steady-state network can then be contrasted to determine how 

they change over time to generate a quasi-dynamic perspective.  Some network measures (e.g., 

component throughflow, Tj, and total system throughflow, TST) are sensitive to the number of 

components in the model.  In this work, we circumvent this issue by comparing NEA control 

measures in a time sequence of models with identical structure.  This paper is the last of a series 

exploring indirect effects and distributed control in the nitrogen cycles of the Neuse River 

estuary, North Carolina, USA.  Gattie et al., (2006a) and Borrett et al., (2006) examined indirect 

effects while two other papers, Chapter 3 of this dissertation [Schramski et al., (2006)] and this 
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chapter [Schramski et al., (submitted to Ecological Modelling)], are devoted to distributed 

control.   

     Ecosystems, when studied in total, do not contain obvious singular sources of control.  

This property must somehow reside in the complexity of organization, a complexity captured in 

the interactive networks of ecosystem models.  We speak of such control as diffuse, 

decentralized, or remote, for which we adopt the general term distributed control (Patten, 

1978b).  Considering an “open-loop” control theory foundation (e.g., Ogata, 1970) within the 

NEA framework, distributed control can be investigated by defining appropriate concepts and 

measures from those originated by Patten (1978b), Patten and Auble (1981), and Dame and 

Patten (1981) and further explored by Fath (2004).  In Schramski et al. (2006, Chapter 3 here) we 

distinguish three concepts of what we represent as absolute control: the control ratio, the control 

difference, and the system control metrics, within the environ control methodology.  By absolute 

control we mean magnitudes of control which are independent of component-specific 

throughflows.  This is in contradistinction to relative control which is specifically calculated as a 

function of a specific component’s throughflow embedded in a multi-component system.  The 

first two expressions (control ratio, crij, and control difference, cdij) denote a pair-wise 

dominance relationship between two components [theoretically considered hierarchically 

embedded holons, H (Koestler, 1976; Patten and Auble, 1981; and Schramski et al., 2006)], Hi 

and Hj, proximately (directly) or distally (indirectly) connected in a network.  When one 

component Hi transfers a greater fraction of energy or matter throughflow to another Hj, than Hj 

does to Hi, then Hi will be considered to control Hj in a dominance sense (Patten, 1978b; Patten 

and Auble, 1981; Dame and Patten, 1981; Schramski et al., 2006).  The reverse of this logic is 

the limiting-factor-perspective in which the component withholding a resource is the one 
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controlling the other.  The control ratio, crij, offers a quantitative value representing the level of 

dominance between the (Hi, Hj) component pair on a scale specific to the magnitude of the 

relationship between those two components.  Unlike the control ratio, dimensionless and derived 

with uncommon denominators, control difference magnitudes, dimensioned measures, use a 

system-wide scale and can be compared and contrasted among each other for varying control 

strengths between component pairs (Schramski et al., 2006).  As such, control difference 

magnitudes are system-level measures.  Utilizing this property, the control difference magnitudes 

can also be column-summed to determine a focal component Hj’s relative combined strength as 

compared to the remaining system in total.  The third index, the system control vector, scj, 

captures this additive quality of the control difference metrics such that scj < 0 denotes system 

control of the specific component Hj and scj > 0 denotes a focal component, Hj’s, control of the 

entire system (all remaining components combined).  The fourth control measure, total system 

control (TC), is developed and defined to quantify the system-wide input–output total environ 

differential.  These four throughflow-based ecological control measures (control ratio, CR; 

control difference, CD; system control, scj; and total system control, TC), developed in the 

environ framework both by Schramski et al. (2006) and herein below, are evaluated for 16 

consecutive seasons of measured and modelled nitrogen cycling in the Neuse River estuary, 

North Carolina, USA by Christian and Thomas (2003).  The results augment the steady-state 

methodology of the other papers in this series by producing a quantitative discrete-time series 

measure of the seasonal dynamics of distributed control.  

4.2  ABSOLUTE ENVIRON CONTROL, PAIR-WISE DIFFERENTIAL  

The control ratio and control difference parameters are comprised of oriented fractional 

transfer coefficients (FTC’s), ηij and ηji, where the FTC’s (with dimensional units of reciprocal 
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throughflow) are modified parameters of the transitive closure values, nij and n'ij.  Specifically, 

the fractions of throughflow summations are [see Schramski et al. (2006) for derivation]: 
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These equations (4-1) through (4-4) represent all input and output-environ combinations between 

any two components, Hi and Hj, in an n-component system, as a function of the boundary flows, 

z and y, and their corresponding transitive closure matrices, N and N'.  Expressions (4-1) and (4-

2), or (4-3) and (4-4) are duals.  The bracketed expressions in the summations are the 

nondimensional transitive closure fractions of throughflow comprised of the total combined 

direct and indirect fractions of throughflow between all components in a multi-component 

system.  The ratios out
i

ij

T
n

 and in
i

ji

T
n'

 or out
j
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T
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 and in
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 represent the open-loop control transfer 

functions, or FTC’s, which dualistically transform the boundary flows z and y, respectively, into 

combined direct and indirect fractions of throughflow: 
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where typical dimensional units are reciprocal mass [(L2·T)/M] or energy [M−1T3] throughflow 

per area as denoted in the MLT system of units.  Considering modern control theory, the FTC’s, 

even though they contain network cycles, can be interpreted to represent open-loop gains.  Each 

component in the system acts individually as a transfer function specifying the input–output 

relationship of a linear time-invariant system.  Transfer functions include dimensions necessary 

to relate input and output but do not provide information concerning the physical structure of the 

system, which remains a “black box.”  Assuming a system with cycling, the transfer functions 

together are embedded in a network of transfer functions each acting as an infinite (closed cycles 

are infinitely long) array of simultaneous feedback loops.  While equations (4-5) and (4-6) are 

distinct, either one will successfully populate the entire FTC, ηnxn, matrix for the n-component 

system even though each equation is created from the perspective that different components, 

with their respective throughflows, are oriented in opposing directions (throughflow-in or 

throughflow-out).  This reciprocity represents the directional similarity introduced to the system 

analysis by normalizing the transitive closure values nij and n'ij by their respective throughflows.   

Graphically the FTC’s are shown in Figures 4.1a and 4.1b.  [Figure 4.1 here]  The 

directional difference between Hi oriented to Hj and Hj oriented to Hi quantified in ηij and ηji, 

respectively, can be attributed, in part, to the afferent and efferent connectance differences within 

the respective input and output environs between two components (Schramski et al., 2006).  

With the magnitude of the FTC’s, ηji and ηij, capturing the distinct directional relationship 

between each Hi, Hj pair an n-component system, their relationship quantitatively captures the 

afferent or efferent controlling relationship between these components.  Pair-wise comparisons 

of individual fractional transfer values are accomplished by the dimensionless control ratio: 
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),(ij

jiij

jiij

ηηmax

ηη
cr

−
≡           i, j = 1, 2, …, n       0 ≤ |crij| ≤ 1,   (4-7) 

while a system-based comparison of the pair-wise fractional transfer values is realized by the  

control difference:  

                       cdij ≡ ηij − ηji     i, j = 1, 2, …, n       0 ≤ |cdij| < ∞, (4-8) 

where crij and cdij are interpreted directionally from j to i.  Pair-wise individual comparisons, in 

this case, signify that the control ratios are fractions of the difference between two FTC’s and, as 

such, their magnitudes cannot be compared to each other.  The cdij values of the CD matrix, 

however, are differences in the fractional transfer values (ηij − ηji) acting between two 

components, Hi and Hj.  Lacking the division operation of the largest fractional transfer value 

[max (ηij − ηji)], as used to calculate crij values, the cdij values remain referenced to a system 

wide-scale.  The magnitudes of the cdij values, throughout the CD matrix, can be compared and 

contrasted among each other for their varied strengths.  Matrices of these coefficients, CR and 

CD, quantify the difference in magnitudes of the component’s specific directional open-loop 

controllers.  Combined, the individual open-loop controllers are embedded in a network of open-

loop controllers each acting as an infinite array of simultaneous feedback loops to each other.  

Many closed-loop feedback pathways are implicit in the CR and CD measures.    Figure 4.2 

pictorially demonstrates the pair-wise control difference relationship using the FTC environ 

diagrams.  [Figure 4.2 here]     

4.3  ABSOLUTE ENVIRON CONTROL, AGGREGATE DIFFERENTIAL 

Considering system-level control relations, the system control vector, scj, represents the 

control difference relationship between a single component and the remaining aggregate 

components of the n-component system:          
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         ∑
=

≡
n

1k
kjj cdsc     j = 1, 2, …, n           0 ≤ |scj| < ∞    (4-9) 

 The dual equations (4-1), (4-2) or (4-3), (4-4) can be graphically displayed to demonstrate the 

relationship of a selected component, Hj, to all system components as quantified in equation (4-

9).  [Figure 4.3 here]   Expand equation (4-9) for components k through n to generate equation 

(4-9a):  

     )()()()()(sc jj)3k(jj)3k()2k(jj)2k()1k(jj)1k(jkkjj nn η−η+η−η+η−η+η−η+η−η= ++++++ KK ,   (4-9a) 

and consider Figure 4.3 to illuminate the system control calculation which effectively adds the 

columns of the cdij matrix to quantitatively capture component Hj’s relationship with the 

remaining n-component system.  Further, the combined differentials of FTC’s focused on each 

component, i.e., sc1, sc2, sc3, etc., represent a total-system accounting balance such that: 

     ∑
=

=
n

1j
j 0sc .      (4-10) 

For every throughflow fraction of open-loop augmentation between a component and its system, 

an equal and opposite level of open-loop attenuation must exist between other components and 

their respective remaining components in the system as a whole.  Whole-system balance is 

always maintained.  Also, the total amount of environ differentiation which exists in a given 

system is a measure of the total-control magnitude distributed among the controlling 

relationships between components.  This is total system control (TC) and is calculated as 

    ∑
=

±≡
n

1j

j

2
sc

TC ,      j = 1, 2, …, n ,          0 ≤ | TC | < ∞.    (4-11)  

TC maintains the same units as the fractional transfer coefficients and, as such, represents the 

accumulated fraction of throughflow gain available to be augmented (positive values, +TC, 

called donor TC) or attenuated (negative values, −TC, called receiver TC) as related to the 
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corresponding incoming or outgoing boundary flows.  Donor and receiver TC’s cancel (−TC + 

TC = 0) per equation (4-10) to assure whole-system balance.  

4.4 NEUSE RIVER ESTUARY MODEL DESCRIPTION  

Using NEA throughflow analysis, the framework of distributed control was explored using 

steady-state models of nitrogen cycling in the Neuse River estuary, North Carolina, for 16 

consecutive seasons from Spring 1985 through Winter 1989 (Christian and Thomas, 2003).  The 

nitrogen models include seven components: Phytoplankton Particulate Nitrogen, PN-Phyto-1; 

Heterotroph Particulate Nitrogen, PN-Hetero-2; Sediment Nitrogen, Sediment-3; Dissolved 

Organic Nitrogen, DON-4; Nitrate and Nitrites, NOx-5; Ammonium, NH4-6; and Abiotic 

Particulate Nitrogen, PN-Abiotic-7.  A diagraph of connectivity is shown in Figure 4.4.  [Figure 

4.4 here]    

The Neuse River receives water from a 16,000 km2 watershed which together with the 

smaller Trent River (9% of Neuse and Trent combined) empties into the 400 km2 Neuse River 

estuary, ultimately emptying into Pamlico Sound.  Many studies focusing on nutrient cycling and 

cyanobacterial blooms in this area have been conducted over the last 30 years (Boyer et al., 

1988; Christian et al., 1984, 1989, 1991; Hobbie and Smith, 1975; Paerl, 1987; Stanley, 1983, 

1988).  Due to the size of Pamlico Sound, which separates river flow from the Atlantic Ocean, 

residence times of freshwater in the sound approach one year and salinities are one-half to two-

thirds that of seawater (Giese et al., 1979).  Astronomical tides are insignificant and wind tides 

coupled with river-discharge fluctuations dominate water-level fluctuations.  The model made no 

distinction between molecular N and gaseous end products of denitrification.  All inputs are 

dominated by fluctuating riverine loading with DON-4, NOx-5, and NH4-6 receiving input from 

precipitation and PN-Hetero-2, including some immigration.  All outputs except Sediment-3 
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were discharges downstream to Pamlico Sound or N2 from denitrification, reflecting respiratory 

loss.  The output from Sediment-3 (top one centimeter) was considered burial beyond the 

modeled sediment thickness.  PN-Hetero-2 experienced some emigration. 

Table 4.1 lists the standing stocks, boundary flows, component throughflows, and total 

system throughflows for the 16-season Neuse River estuary nitrogen cycle model as determined 

by Christian and Thomas (2000, 2003) as a part of a Neuse River Modeling and Monitoring 

program (ModMon).  Some portions of the model were directly sampled and measured while 

others were interpolated both from literature (e.g., data from similar estuaries) and subsequent 

mass balance.  [Table 4.1 here] 

The ModMon program (a consortium of academia, government, and industry) was 

developed to improve water quality by reducing nitrogen loading to a eutrophic ecosystem.  

Christian and Thomas (2003) employed ecological network analysis (ENA) to understand the 

relationship between nitrogen inputs to the system and nitrogen cycling within the system.  They 

concluded:  1) Cycling of nitrogen was high [average Finn (1976) cycling index = 0.89]; 2) 

Freshwater residence time averaged a long 51 days; 3) The rate of new nitrogen loading was a 

small fraction of the total microbial processing of nitrogen; and 4) The controls on primary 

production (an area of focus in their study) tended to be associated with conditions in the estuary 

rather than import.  Processes within the sediments, including denitrification, benthic filter 

feeding, and burial, were considered a weakness in model construction. 

4.5 EXAMPLE, STEADY-STATE NEUSE RIVER ESTUARY, SUMMER 1986 
 

Tables 4.2 through 4.7 and equation (4-11a) provide an example of the network environ 

analysis (NEA) distributed control calculations.  Starting with the nitrogen flow characteristics 

captured in the respective summer of 1986 steady-state model, NEA begins by organizing the 
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inter-component flows into the fij matrix where flows are oriented from columns j to rows i.  

Table 4.2 shows the fij matrix, along with the system’s corresponding boundary flows and 

calculated throughflows.  [Table 4.2 here]  Considering the conservation of mass equations for 

each component in the system and the definition of throughflow, the transitive closure (direct 

plus indirect) matrices N and N' are calculated from fij and the throughflow vectors.  Table 4.3 

shows both the output- and input-oriented, N and N' matrices, respectively (Fath and Borrett, 

2005).  [Table 4.3 here]  The fractional transfer coefficients (FTC), ηij, equation (4-5), are shown 

in Table 4.4.  [Table 4.4 here]  The control ratios, crij, equation (4-7), are given in Table 4.5,  

[Table 4.5 here] and control differences, cdij, equation (4-7), in Table 4.6.  [Table 4.6 here]  The 

system control vector, scj, equation (4-9), is shown in Table 4.7.  [Table 4.7 here]  Total system 

control (TC) is the aggregate of the respective directional (positive or negative) system control 

values using equation (4-11): 

            TC = 10.51 × 10−3  (m2 season)/mmol-N    (4-11a) 

4.6 DISCRETE TIME-SERIES ANALYSIS OF 16 SEASONS 
 

A pattern of distributed control among the seven components for the 16 season time 

series is demonstrated by the system control vectors, scj (Table 4.8).  [Table 4.8 here]  Positive 

values indicate the magnitude of control exerted by each row component on the remaining 

aggregate system (six components).  Negative values denote the magnitude of control by the 

latter on the corresponding individual focal (column) component.  The individual system control 

values thus quantify the differential environ relationships between each column component and 

the remaining components comprising the total system.  As an example, in the summer of 1986, 

the PN-Phyto component, PN-Phyto-1 controls the remaining aggregate system with a 

differential magnitude of 0.64 × 10−3 (m2 season)/mmol-N.  In general over a four year period, 
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PN-Phyto-1, PN-Hetero-2, DON-4, and NH4-6 control the system with relatively small 

magnitudes (averages: sc1 = 0.77 × 10−3, sc2 = 1.23 × 10−3, sc4 = 1.75 × 10−3, and sc6 = 1.27 × 

10−3 (m2 season)/mmol-N).  On a few occasions these four components are controlled by the 

system (negative values).  Spring 1985 is one unique period in which all four of these 

components are controlled by the system, contrary to their 16-season averages.  When 

considering boundary flows, component storage levels, nitrogen throughflows, surface water 

salinity, and water flushing times, no apparent correlations can be found to explain the control 

parameters calculated for the spring of 1985.  In fact, the only unusual environmental event was 

a large winter-spring discharge beginning in 1987 (Christian et al., 1991; Boyer et al. 1994).  

Additionally, the four identified components perform very different functions within the 

ecosystem.  Two are highly interconnected biotic components [PN-Phyto-1 and PN-Hetero-2], 

and two are relatively less connected abiotic components [DON-4 and NH4-6].  It appears that an 

exterior event (storm water loading, etc.) was not driving the rare simultaneous switching of 

control in these four components.  Since the nitrogen data for each steady-state model remain 

averaged, both temporally due to sampling frequencies, and spatially given the size of the 

estuary, the reasons for these control point switches are obscure.  The moderately connected PN-

Abiotic-7 was controlled by the system during 14 of the 16 seasons, with an average magnitude 

of sc7 = −1.28 × 103 (m2 season)/mmol-N).  PN-Abiotic-7 and Sediment-3 (average sc3 = −12.68 

× 103) together, on average, comprise the receiver transfer functions of the system.  In fact, 

Sediment-3 remained negative for all 16 seasons.  Recall equation (4-10) wherein the system 

must maintain balance.  The system control trend lines from Table 4.8, shown in Figure 4.5, 

depict the spread between the donor and receiver TC relationships in the decentralized system.  

[Figure 4.5 here]  
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4.6-1 TOTAL SYSTEM CONTROL 

Seasonally, each of the seven components participates in either a controlled (scj < 0) or 

controlling (scj > 0) relationship with the remaining total system.  The aggregate of the 

components which attenuate, otherwise called the receiver (controlled) components, represent 

the negative TC.  The aggregate of the components which augment, donor (controlling) 

components, are represented by the positive TC entries.  These values, from the second to last 

row in Table 4.8, are the uppermost line (diamond data marker) in Figure 4.5.  In comparison, 

Sediment-3 and PN-Abiotic-7 together comprise the vast majority of the receiver TC [negative 

of donor TC per equation (4-11)] across all 16 seasons.  The receiver TC values are lowermost 

(square data marker) in Figure 4.5.  Sediment system control magnitude, sc3, drives the TC 

receiver magnitude.  The donor and receiver TC lines necessarily mirror each other in Figure 4.5, 

reflecting the magnitude of controls one way (system on components) or the other (components 

on system).  That is, the vertical spread between the positive (donor) and negative (receiver) TC 

lines graphically demonstrates the total system control magnitudes the system then individually 

distributes among its components.  The average TCavg magnitude is ±14.30 × 10−3 (m2 

season)/mmol-N.  Fall and winter TC magnitudes exceed the average while spring and summer 

magnitudes fall below the average in all cases except winter of 1987 and spring of 1988.  

Looking for an explanation, winter–spring water discharge flow in the estuary was highest in 

early months of 1987, but a similar high flow did not occur during the spring of 1988.  Further, 

surface water salinities and flushing times show no readily apparent correlation to these 

discrepancies (Christian et al., 1991).  Generally, nitrogen throughflow is highest in the spring 

and summer and lowest in the fall and winter, presumably reflecting trends in biological activity.    
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Figure 4.6 explores the correlation between total system throughflow (TST) and TC.  

There is some logarithmic correlation between the two, particularly at higher throughflows.  

[Figure 4.6 here]  The average nitrogen TST for the complete 16 seasons is 10,373 mmol-N/(m2 

season).  Two of the springs and all of the summers exceeded the average.  As such, recognizing 

some correlation between TST and TC, as TST increases in the springs and summers TC 

magnitude is low.  Where TST decreases in the falls and winters, TC magnitude is usually 

higher.  The dynamic give and take of the control differential is evident in Figure 4.5.  In an 

attempt to explain the TC variation, besides the mild seasonal correlation to TST, no other 

decisive or reasonable correlation to TC variation was found.   

Sediment-3 and NOx-5 remain decisively opposed in their receiver/donor 

controlled/controlling relationship across all 16 seasons.  Three observations are noteworthy 

regarding their apparently unique position in the system:  

(1) Although not a particularly strong correlation, the system controls, sc3 and sc5, 

correlated logarithmically with TST (R2 = 0.41 in both cases).  These values are 

larger than the remaining five components’ (R2 = 0.01 to 0.30) correlations with 

TST; 

(2) The system controls, sc3 and sc5, logarithmically correlated with their own 

throughflows T3 and T5, (R2 = 0.45 and R2 = 0.67, respectively) with larger R2 

correlations than the remaining five component system controls correlated with 

their throughflows (remaining R2s varied from 0.00 to 0.17); and   

(3) With two exceptions, the flows y3 and z5 were the highest boundary flows. 
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4.6-2 BOUNDARY FLOWS 
 

The consistently high magnitudes of sc3 and sc5 values show that Sediment-3 and NOx-5 

play decisive roles in the seven compartment system over the entire 16 seasons.  The first two 

observations above indicate there is a possible relationship between the differential environ 

controls, sc3 and sc5, and both total system throughflow, TST, and also their respective 

component throughflows, T3 and T5.  Also, boundary flows, through a basic inspection of 

magnitudes, appear to play a role.  Table 4.9 combines the last two observations by calculating 

the ratio of component throughflows, Ti, to their respective boundary flows, zi and yi.  [Table 4.9 

here]  In all cases, the input boundary flow z5 to NOx-5 represents the highest percentage of input 

zi to a respective component’s throughflow, Ti.  Similarly, in all cases, the output boundary flow 

y3 from Sediment-3 represents the highest percentage of output boundary flow yi with respect to 

a component’s throughflow, Ti.  In general, in virtually all 16 seasons, the highest boundary 

flows were z5 and y3.  Additionally, Table 4.9 shows that z5 and y3 play dominant roles in their 

respective components’ internal throughflows. 

4.6-3 UNIT ENVIRON ANALYSIS 
  

The NEA methodology of partitioning a system into a set of mutually disjoint and 

exhaustive object/environment elements (environs; Patten, 1978a) is used to consider the NOx-5 

and Sediment-3 participation in each steady-state system.  If Hi represents any component in the 

n-component system, it is simultaneously comprised of a within-system output and input 

environment, represented by Ei and E'i, respectively.  The output-oriented transitive closure 

matrix, nij (e.g., Table 4.3), implicitly defines the output environs Ei of the steady-state condition 

normalized to one unit of input, zi, from each component, Hi.  Similarly, the input-oriented 

transitive closure matrix, n'ij, implicitly defines the input environs E'
i of the steady-state condition 
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normalized to one unit of output, yi, for each component, Hi.  The unit environs map all of the 

subsequent direct throughflows associated with a unit boundary flow.  See Patten (1978a) and 

Dame and Patten (1981) for theory and methods and also reference Fath and Borrett (2005) for 

supporting software to facilitate calculations.  Each environ is considered one partition element 

and each such element is mutually disjoint from the others created by their respective unit 

boundary flows.  As a result, this methodology can be used (Christian and Thomas, 2003) to 

evaluate the magnitude and distribution of impact of a particular boundary flow.   

Figure 4.7 is one conclusion from the output environ analysis of NOx-5  Using the 

transitive closure matrix, nij, and a unit input (z5 = 1) to NOx-5, the fractions of boundary 

outputs, yi, from each component are determined.  [Figure 4.7 here]  Through the 16-season 

distribution of partitioned fractions of output, the highest fractions of output, yj, are consistently 

from Sediment-3; spring 1985 and winter 1987 are the only exceptions.  Spring 1985 was the one 

unique period in which the four components, PN-Phyto-1, PN-Hetero-2, DON-4, and NH4-6, 

were uniquely controlled by the system contrary to their 16-season averages’ generally 

controlling the system.  Winter 1987 was the period of highest water flow, and one of only two 

seasons (the second was spring 1988) which did not follow the seasonal trend of fall and winter 

TC remaining above average and spring and summers falling below average.   

Figure 4.8 shows the Figure 4.7 data averaged across the 16 seasons.  [Figure 4.8 here]  

The average output is highest from Sediment-3, representing and average of 61% of the input to 

NOx-5.  This comprises a greater magnitude of nitrogen flow than the other components 

combined.  Figure 4.9 considers an input-environ analysis of the Sediment-3 component.  Using 

the transitive closure matrix, n'ij, and a unit boundary output (y3 = 1) from Sediments (3), the 

fractions of boundary inputs, zi, to each component embodied in this output are determined.  
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[Figure 4.9 here]  The fraction of input to NOx-5 as generated by a unit output from Sediment-3 

ranged from 0.41 in the summer of 1986 to a high of 0.71 in the winter of 1988.  In all cases, 

through the entire 16-season distribution of partitioned fractions of input, the highest fractions of 

input, zi, are to NOx-5  Figure 4.10 shows the 16-season average fraction of boundary input to 

each component given a unit boundary output from Sediment-3.  [Figure 4.10 here]  Over 16 

seasons, an average of 51% of the output from Sediments (3), y3, entered the system from NOx-5, 

comprising slightly over half the total boundary output from Sediments (3). 

4.7 DISCUSSION 

Nutrient cycles are by definition a biogeochemical circular casual system.  Patten et al. 

(1976) demonstrated that all components in an ecosystem can be affected by and affect every 

other, directly or indirectly, through circular causal networks.  These biogeochemical circular 

networks, or feedback “loops” (“cycles” in graph theory terminology), represent a closed and 

simultaneously self-controlling dynamic.  Each component simultaneously functions as both: 1) 

an open-loop transfer function augmenting or diminishing boundary flows passing across the 

system boundary into the circular casual system, and 2) a potentially infinite quantity (when all 

path lengths of connectance are included) of closed-loop feedback cycles within the multiple 

component system.  Closed-loop control is implicit in the open-loop model and its associated 

indices.   

The notion of control implies the coordination of change which is, by definition, a 

dynamic concept.  Although the comparison of open-loop controller strengths in a steady-state 

network model successfully identifies dominance relationships, a perspective of the same 

controller relationships adjusting over time begins to elicit the dynamic coordination of 

components in an ecosystem.  The present NEA distributed control methodology captures the 



 

 

174

pair-wise controlling relationships in a complex network organization.  The subsequent discrete-

time-series analysis of a sequence of steady-state models captures the interactive and dynamic 

networks of the respective ecosystem.  This study elucidates the dynamic controlling interactions 

of the seven-component Neuse River estuary nitrogen model over 16 seasons.  Novel insight into 

the distributed control of a multi-component system is offered by first quantifying the controlling 

relationships and then reviewing the results for potential pragmatic correlations useful to the 

ecosystem manager or observer.   

Considering the system control vectors, PN-Phyto-1, PN-Hetero-2, DON-4, and NH4-6 

generally control the system with relatively small magnitudes (Table 4.8).  In rare instances, 

these four components are controlled by the system.  Most notably, in the spring of 1985, all four 

are controlled by the system simultaneously.  Additionally, these four components represent very 

different components of the ecosystem where two are highly inter-connected biotic components 

[PN-Phyto-1 and PN-Hetero-2] and two are somewhat less, relatively, connected abiotic 

components [DON-4 and NH4-6].  No obvious influence (e.g., water flow, salinity, nitrogen 

throughflows) could be identified to explain their sporadic and rare behaviour of switching from 

controlling to controlled by the system.  Additionally, the tipping point from controlled to 

controlling is scj = 0.0 (m2 season)/mmol-N.  Considering the average scj values for these four 

components are relatively small, it remains an interesting observation that these components do 

not switch from controlling to controlled more often.  There remains a consistency to PN-Phyto-

1, PN-Hetero-2, DON-4, and NH4’s (6) control of the system with only rare interruptions.  A 

similar observation is evident for the moderately connected PN-Abiotic-7.  Its average system 

control magnitude is relatively small (close to the tipping point) yet the component is remarkably 

consistent (14 of the 16 seasons) in its position of being controlled by the system.  Similar to the 
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averaged single-model steady-state findings of Schramski et al. (2006), both NOx-5 and 

Sediment-3 remain decisively consistent (all 16 seasons) with regard to their controlling 

relationships within the seven component system over the entire 16-season review.  NOx-5 

controls the system while Sediment-3 is controlled.  Although variation in magnitude exists, in 

11 of 16 seasons Sediment-3 and PN-Abiotic-7 are controlled by the system and the remaining 

five components control the system.  While allowing for some variation in overall magnitudes, 

there is arguably some consistency with each component’s controlled/controlling role in the 

decentralized network throughout 16 seasons which represent a wide range of throughflows and 

biological activity. 

Total system control (TC) is the total open-loop magnitude (gain) differential available to 

be partitioned for controlled and controlling magnitudes throughout a multi-component system.  

The positive or donor TC balances the negative or receiver −TC as mirror images (Figure 4.5) of 

each other as compared to the horizontal axis or control tipping point [±TC = 0.0 (m2 

season)/mmol-N].  Their symmetry about the horizontal axis helps to identify the total system 

balance evident between the open-loop magnitude augmentation and its counteracting 

attenuation throughout the decentralized system.  The system remains balanced at all magnitudes 

of TC.  The TC variation over the 16-season analysis is further illuminated in the variation of the 

overall vertical spread between the donor and receiver TC lines shown in Figure 4.5.  The 

average magnitude is TCavg = 14.30 × 10−3 (m2 season)/mmol-N.  Fall and winter TC magnitudes 

exceed the average while spring and summer magnitudes fall below in all cases except winter 

1987 and spring 1988.  As a direct result of biological activity, nitrogen throughflow is generally 

highest in the spring and summer and lowest in the fall and winter, providing some parallel to the 

TC magnitude fluctuation.  The logarithmic correlation between total system throughflow (TST) 
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and TC was significant enough for consideration.  As nitrogen throughflow increases in spring 

and summer, the TC of the system appears to logarithmically decrease.  Control of the system 

over one component or vice-versa, the control of any one component over the total system, is 

reduced at times of high biological and throughflow activity.  

Stability, a term closely coupled to the concept of control, develops as a consideration 

during this balancing throughflow magnitude with any particular component’s level of 

dominance.  If stability is the measure of a system’s ability to return to its nominal state, then it 

could be hypothesized that steady-state systems with high TC values are less stable and more 

sensitive to outside perturbation (i.e., take longer to reach equilibrium, bifurcate to a new 

equilibrium, etc.).  TST appears to play a predictive role for TC and, to a lesser extent, both TST 

and TC could be related to the elusive concept of system stability. 

Boundary flows appear to play a role in determining dominance.  NOx-5 and Sediment-3 

generally had the highest boundary flows (z5 and y3, respectively), but more importantly, these 

boundary flows were always the highest percentage of component throughflow, Ti, for their 

respective component as compared to the other component boundary flow to throughflow 

rations.  Several hypotheses can be considered from these results for subsequent research.  These 

two components appear to be the system’s link to the outside environment beyond the boundaries 

of the model.  NOx-5 could be construed as the predominant or, at least, the controlling source of 

nitrogen for the estuary.  Using the same argument, Sediment-3 is then viewed as the 

predominant or, at least, the controlled sink of nitrogen leaving the estuary.  The internal 

relationship through the direct and indirect pathways between NOx-5 and Sediment-3 is also 

evident.  Environ analysis showed that the 61% majority of nitrogen that entered the NOx-5 

component from across the system boundary, z5, subsequently left across the system boundary 
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from Sediment-3, y3.  Further, similar environ analysis showed that a 51% majority of nitrogen 

leaving Sediment-3 across the system boundary, y3, originated from system boundary input to 

NOx-5, z5.  Not only are the inputs, z5, to NOx-5 and the outputs, y3, from Sediment-3 relatively 

dominant, but the internal relationship between NOx-5 and Sediment-3 appears to be strong as 

well.  NOx-5 and Sediment-3 may be gatekeepers with special roles or significance in the Neuse 

River estuary.  Gatekeepers, in this sense, could determine how much recycling or indirect flow 

is evident in a system.  Recycling and the corresponding indirect flows which result, play a large 

role in whole system emergent properties.     

The remaining five components [PN-Phyto-1, PN-Hetero-2, DON-4, NH4-6, and PN-

Abiotic-7] do not have the same correlation levels with activities across the system boundary.  

Additionally, the overall seven-component system demonstrates extremely high internal cycling 

with a Finn (1976) cycling index averaging 89% for all 16 models.  These final observations 

support a general hypothesis wherein, for high internal cycling systems, those components which 

maintain strong connectivity across the system boundaries tend to be at a strong point in the 

control scheme spectrum.  One inference from Christian and Thomas’s (2003) findings was that 

short-term control of primary production associated with PN-Phyto-1 tends to be associated with 

conditions in the estuary, not external boundary flows.  The authors noted that phytoplankton 

uptake correlated with TST and that, on average, 89% of TST was involved with recycling.  

Also, total nitrogen (TN) loading accounted for only 11%, on average, of phytoplankton uptake.  

It is surmised that the high recycling nature of this low-flushing-rate biogeochemical system 

drives components with interdependence based on biological activity.  The description of control 

relations and their rationale for these components may very well lie within the system 

boundaries.  These general observations and this subsequent hypothesis remain specific to the 
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model until additional models are studied.  In particular, energy models, typically much less 

cyclical than biogeochemical models with little to no feedback to primary producers, could 

produce decidedly different results.  Nevertheless, a means to quantify distributed control affords 

the ability to continue to ask these questions. 
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4.10 TABLES 
 
Table 4.1: Summary of data for 16 steady-state seasonal nitrogen networks of the Neuse River 

estuary, North Carolina (Christian and Thomas, 2003).  The model components are: PN-Phyto-1, 

PN-Hetero-2, Sediment-3, DON-4, NOx-5, NH4-6, and PN-Abiotic-7.  Xi = component storages 

(mmol-N)/m2, zi = boundary inputs (mmol-N)/(m2 × season), yi = boundary outputs (mmol-

N)/(m2 × season), Ti = component throughflows (mmol-N)/(m2 × season), and TST = total 

system throughflow (mmol-N)/(m2 × season).   

 Spr 85 Sum 85 Fall 85 Win 86 Spr 86 Sum 86 Fall 86 Win 87 Spr 87 Sum 87 Fall 87 Win 88 Spr 88 Sum 88 Fall 88 Win 89
X1 18 29 23 14 16 29 17 21 21 33 21 28 11 24 13 20
X2 14 22 18 12 18 18 15 18 16 18 18 8 12 22 12 13
X3 1,300 1,300 1,300 1,300 1,300 1,300 1,300 1,300 1,300 1,300 1,300 1,300 1,300 1,300 1,300 1,300
X4 81 68 35 48 89 99 73 51 40 94 108 15 84 78 71 47
X5 5 6 4 17 5 14 16 84 18 7 4 17 10 7 9 12
X6 15 5 9 17 13 8 17 14 7 11 5 3 3 5 5 6
X7 13 25 17 9 17 20 15 13 15 20 17 7 12 24 12 9
z1 3 4 4 1 3 3 1 12 15 2 1 4 3 1 1 6
z2 5 5 7 7 5 5 4 15 7 4 4 7 5 4 4 8
z3 5 8 9 6 5 8 9 6 5 8 9 6 5 8 9 6
z4 41 26 51 55 36 55 19 146 93 19 16 4 36 27 30 94
z5 59 50 80 92 57 67 49 464 179 38 39 123 96 64 65 152
z6 15 20 23 20 17 21 14 37 28 15 12 21 26 23 15 19
z7 5 6 7 6 5 6 4 11 7 4 4 6 5 5 4 6
y1 11 7 4 2 4 7 4 31 45 5 4 9 2 6 4 2
y2 9 3 8 10 8 3 4 371 0 0 0 0 32 0 0 131
y3 27 83 154 106 74 127 61 156 162 67 56 121 119 90 94 132
y4 61 18 8 61 28 20 18 81 66 12 19 18 15 26 22 21
y5 1 0 0 0 2 2 4 7 16 0.1 1 7 1 1 1 1
y6 15 1 2 4 6 2 5 15 17 2 2 12 3 2 3 2
y7 9 7 5 4 6 4 4 30 28 3 3 4 4 7 4 2
T1 1,111 2,499 1,778 665 1,557 2,177 1,985 1,300 2,736 3,092 942 627 1,511 3,331 1,326 1,065
T2 3,545 7,984 2,946 2,764 5,174 4,064 3,411 2,813 3,681 5,369 2,792 3,683 2,243 5,819 1,783 1,962
T3 283 558 320 143 298 512 252 194 320 548 296 197 224 502 200 170
T4 711 1,747 422 535 972 782 645 670 861 589 202 477 583 844 325 385
T5 333 469 342 318 320 514 355 681 413 512 283 314 312 483 309 354
T6 2,737 5,959 2,498 2,178 4,001 3,318 2,649 1,843 2,786 4,703 2,559 3,130 1,595 4,914 1,456 1,491
T7 400 966 474 277 593 613 566 406 736 808 251 252 430 921 333 312

TST 9,120 20,182 8,780 6,880 12,915 11,980 9,863 7,907 11,533 15,621 7,325 8,680 6,898 16,814 5,732 5,789
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Table 4.2: Summer 1986 data set for the Neuse River estuary nitrogen model.  Inter-component 

flows, fij; boundary flows, z and y; and throughflows, T, have units of mmol-N/(m2 × season).  

Storage, X, has dimensional units of mmol-N/m2.  TST is total system throughflow. 

 
fij PN-

Phyto 
PN-

Hetero 
 

Sediment 
 

DON 
 

NOx 
 

NH4 
PN-

Abiotic 
 Input, 

z 
Throughflow 

T 
Storage, 

X 
PN-

Phyto 0 0 0 379 379 1,416 0  3 2,177 29 
PN-

Hetero 1,453 0 233 383 131 1,432 427  5 4,064 18 

Sediment 264 2 0 0 2 54 182  8 512 1300 

DON 435 292 0 0 0 0 0  55 782 99 

NOx 0 0 33 0 0 414 0  67 514 14 

NH4 0 3,178 119 0 0 0 0  21 3,318 8 
PN-

Abiotic 18 589 0 0 0 0 0  6 613 20 
          TST = 11,980  

Output, y 7 3 127 20 2 2 4     
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Table 4.3: Transitive closure matrices, N = (nij) and N' = (n'ij), and component throughflows, Ti, 

for summer 1986 for the Neuse River estuary nitrogen model.  Throughflow dimensional units 

are mmol-N/(m2-season). 

 
nij PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 13.7826 13.2383 10.0261 13.1635 13.5756 13.4524 12.1982 
PN-Hetero 24.7974 25.9522 19.2800 24.7288 24.9737 25.2130 23.8019 
Sediment 3.1224 3.1204 3.3461 3.0416 3.1106 3.1219 3.1671 

DON 4.5357 4.5099 3.3886 5.4071 4.5070 4.4996 4.1476 
NOx 2.7113 2.8238 2.1939 2.6971 3.7274 2.8766 2.6184 
NH4 20.1170 21.0196 15.8544 20.0445 20.2521 21.4419 19.3489 

PN-Abiotic 3.7079 3.8707 2.8772 3.6928 3.7317 3.7654 4.5505 
n'ij        

PN-Phyto 13.7826 24.7131 2.3580 4.7285 3.2053 20.5030 3.4348 
PN-Hetero 13.2834 25.9522 2.4290 4.7583 3.1586 20.5849 3.5902 
Sediment 13.2763 24.7686 3.3461 4.6456 3.1228 20.2311 3.7918 

DON 12.6269 23.4376 2.2187 5.4071 2.9624 19.0916 3.2512 
NOx 11.4836 22.3268 2.1854 4.1033 3.7274 18.5692 3.1227 
NH4 13.1991 25.7455 2.4465 4.7242 3.1373 21.4419 3.5747 

PN-Abiotic 13.1681 25.6618 2.4031 4.7109 3.1290 20.3810 4.5505 
Ti 2,177 4,064 512 782 514 3,318 613 

  
 
 
 
Table 4.4:  Fractional transfer coefficients (FTC’s), ηij, for summer 1986 for the Neuse River 

estuary nitrogen model.  Numbers in the table have been multiplied by 103. 

 
ηij × 103 PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 6.33 6.08 4.61 6.05 6.24 6.18 5.60 
PN-Hetero 6.10 6.39 4.74 6.08 6.15 6.20 5.86 
Sediment 6.10 6.09 6.54 5.94 6.08 6.10 6.19 

DON 5.80 5.77 4.33 6.91 5.76 5.75 5.30 
NOx 5.27 5.49 4.27 5.25 7.25 5.60 5.09 
NH4 6.06 6.34 4.78 6.04 6.10 6.46 5.83 

PN-Abiotic 6.05 6.31 4.69 6.02 6.09 6.14 7.42 
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Table 4.5: Control ratios, crij, for summer 1986 for the Neuse River estuary nitrogen model.   
 

crij PN-Phyto PN-Hetero 
 

Sediment 
 

DON 
 

NOx 
 

NH4 
 

PN-Abiotic 
PN-Phyto 0.00 0.00 −0.24 0.04 0.15 0.02 −0.07 
PN-Hetero 0.00 0.00 −0.22 0.05 0.11 −0.02 −0.07 
Sediment 0.24 0.22 0.00 0.27 0.30 0.22 0.24 

DON −0.04 −0.05 −0.27 0.00 0.09 −0.05 −0.12 
NOx −0.15 −0.11 −0.30 −0.09 0.00 −0.08 −0.16 
NH4 −0.02 0.02 −0.22 0.05 0.08 0.00 −0.05 

PN-Abiotic 0.07 0.07 −0.24 0.12 0.16 0.05 0.00 
 
 
 
Table 4.6: Control difference parameters, cdij, for summer 1986 for the Neuse River estuary 

nitrogen model.  Dimensional units for cdij are (m2 season)/mmol-N.  Numbers in the table have 

been multiplied by 103.   

cdij× 103 
PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 0.00 −0.02 −1.49 0.25 0.96 0.12 −0.45 
PN-Hetero 0.02 0.00 −1.35 0.32 0.65 −0.13 −0.46 
Sediment 1.49 1.35 0.00 1.61 1.81 1.32 1.49 

DON −0.25 −0.32 −1.61 0.00 0.52 −0.29 −0.72 
NOx −0.96 −0.65 −1.81 −0.52 0.00 −0.51 −0.99 
NH4 −0.12 0.13 −1.32 0.29 0.51 0.00 −0.31 

PN-Abiotic 0.45 0.46 −1.49 0.72 0.99 0.31 0.00 
 
 
Table 4.7: System control vector, scj, for the summer of 1986 Neuse River estuary nitrogen 

model.  Dimensional units for scj are (m2 season)/mmol-N.  Numbers in the table have been 

multiplied by 103.    

 scj × 103 
PN-Phyto  0.64 
PN-Hetero  0.95 
Sediment −9.07  

DON  2.66 
NOx  5.44 
NH4  0.82 

PN-Abiotic −1.44 
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Table 4.8:  System control vectors, scj, for 16 consecutive seasons from spring 1985 through 

winter 1989 for the seven component Neuse River estuary nitrogen model.  TC = total system 

control.  Dimensional units for scj and TC are (m2 season)/mmol-N.  TST = total system 

throughflow (mmol-N/(m2 × season)). 

 
scj × 103 Spr 85 Sum 85 Fall 85 Win 86 Spr 86 Sum 86 Fall 86 Win 87 Spr 87 Sum 87 Fall 87 Win 88 Spr 88 Sum 88 Fall 88 Win 89

PN-Phyto −0.32 0.37 1.26 2.06 1.11 0.64 1.19 0.74 0.61 0.31 −0.26 −0.54 1.95 0.62 1.32 1.22
PN-Hetero −0.48 0.53 1.43 3.52 0.82 0.95 1.30 −0.24 0.64 0.65 2.06 2.87 1.55 0.56 3.14 0.40
Sediment −3.79 −7.33 −15.99 −23.09 −11.16 −9.07 −13.40 −6.72 −9.07 −7.82 −12.23 −20.81 −17.57 −8.10 −21.25 −15.46

DON −1.86 0.74 5.19 2.42 1.35 2.66 1.33 1.11 1.19 1.46 −0.25 1.06 3.06 0.76 2.74 5.03
NOx 8.10 6.22 9.21 10.99 8.36 5.44 9.44 5.81 7.35 5.78 12.26 14.51 10.73 6.89 13.30 8.68
NH4 −0.39 0.60 1.55 3.53 0.89 0.82 1.34 0.19 0.33 0.58 1.99 2.42 1.95 0.58 2.99 0.92

PN-Abiotic −1.26 −1.13 −2.64 0.56 −1.37 −1.44 −1.19 −0.89 −1.06 −0.97 −3.60 0.49 −1.67 −1.30 −2.25 −0.79
TC × 103 8.10 8.46 18.64 23.09 12.53 10.51 14.59 7.85 10.13 8.79 16.34 21.36 19.24 9.40 23.50 16.25

TST 9,120 20,182 8,780 6,880 12,915 11,980 9,863 7,907 11,533 15,621 7,325 8,680 6,898 16,814 5,732 5,789

   
 
 
Table 4.9:  Nondimensional ratios of individual component throughflows, Ti, to boundary flows, 

zi and yj for nitrogen flow in the Neuse River estuary, USA: 16 seasons.  The symbol ∞ denotes 

division by an output boundary flow, y, very close to zero.    

 
T/z Spr 85 Sum 85 Fall 85 Win 86 Spr 86 Sum 86 Fall 86 Win 87 Spr 87 Sum 87 Fall 87 Win 88 Spr 88 Sum 88 Fall 88 Win 89

PN-Phyto 370 625 445 665 519 726 1,985 108 182 1,546 942 157 504 3,331 1,326 178
PN-Hetero 709 1,597 421 395 1,035 813 853 188 526 1,342 698 526 449 1,455 446 245
Sediment 57 70 36 24 60 64 28 32 64 69 33 33 45 63 22 28

DON 17 67 8 10 27 14 34 5 9 31 13 119 16 31 11 4
NOx 6 9 4 3 6 8 7 1 2 13 7 3 3 8 5 2
NH4 182 298 109 109 235 158 189 50 100 314 213 149 61 214 97 78

PN-Abiotic 80 161 68 46 119 102 142 37 105 202 63 42 86 184 83 52
T/y        

PN-Phyto 101 357 445 333 389 311 496 42 61 618 236 70 756 555 332 533
PN-Hetero 394 2,661 368 276 647 1,355 853 8   ∞   ∞   ∞   ∞ 70   ∞   ∞ 15
Sediment 10 7 2 1 4 4 4 1 2 8 5 2 2 6 2 1

DON 12 97 53 9 35 39 36 8 13 49 11 27 39 32 15 18
NOx 333    ∞   ∞   ∞ 160 257 89 97 26 5,120 283 45 312 483 309 354
NH4 182 5,959 1,249 545 667 1,659 530 123 164 2,352 1,280 261 532 2,457 485 746

PN-Abiotic 44 138 95 69 99 153 142 14 26 269 84 63 108 132 83 156
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 4.11 FIGURE LEGENDS 
 
Figure 4.1: Fractional transfer coefficients (FTC’s), ηji and ηij, with their respective boundary 

flows z and y, between component pairs, Hi and Hj, in an n-component system.  ηji, 

defined by equation (4-6), is represented in Figure 4.1a.  Similarly, ηij, defined by 

equation (4-5), is represented in Figure 4.1b.  

Figure 4.2: Control difference, cdij, relationship defined by equation (4-8). 
 
Figure 4.3: System diagrams for equations (4-3) and (4-4) of an n-component model showing, 

in particular, the fractional transfer coefficients (FTC’s), ηjk and ηkj, between components 

Hk and Hj, where j ≠ k.  

Figure 4.4: Digraph of nitrogen flux in the Neuse River estuary, North Carolina, USA 

(Christian and Thomas, 2003). 

Figure 4.5: System control vectors, scj, for nitrogen flow in the Neuse River estuary, 16 

consecutive seasons.   

Figure 4.6: Nondimensional total system control, TC, as a function of total system throughflow, 

TST, for nitrogen flow in the Neuse River estuary, discrete time analysis over 16 

consecutive seasons.   

Figure 4.7: Boundary outputs from all model components, yj, for the Neuse River estuary 

nitrogen model given a unit boundary input, z5 = 1, to NOx-5, discrete time analysis over 

16 consecutive seasons. 

Figure 4.8:  Sixteen season average of boundary outputs, yj, for the Neuse River estuary nitrogen 

model as a result of a unit boundary input, z5 = 1, to NOx-5. 
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Figure 4.9: Boundary inputs from all model components, zi, for the Neuse River estuary 

nitrogen model given a unit boundary output, y3 = 1, from Sediment-3, discrete time 

analysis over 16 consecutive seasons. 

Figure 4.10:  Sixteen season average of boundary inputs, zi, for the Neuse River estuary nitrogen 

model as a result of a unit boundary output, y3 = 1,  from Sediment-3.  
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Figure 4.1 
 
 
 

 
 
 
 
 
 
 
 

Figure 4.1a, Top: fraction of throughflow input environ 
represented by yj × ηji of Hj as oriented from Hi, reference 
equations (4-2) and (4-6) when k = j.  Bottom: fraction of 
throughflow output environ represented by ηji × zi of Hi 
oriented towards Hj, reference equations (4-3) and (4-6) 
when k = i.  Top and bottom figures show the FTC, ηji, is 
identical for Hi oriented towards Hj either through Hi’s 
output environ or through Hj’s input environ. 

 
 
 
 
 
 
 
 

Figure 4.1b, Top: fraction of throughflow output environ 
represented by ηij × zj of Hj as oriented towards Hi, 
reference equations (4-1) and (4-5) when k = j.  Bottom: 
fraction of throughflow input environ represented by yi × 
ηij of Hi as oriented from Hj, reference equations (4-4) and 
(4-5) when k = i. Top and bottom figures show the FTC, 
ηij, is identical for Hj oriented towards Hi either through 
Hj’s output environ or through Hi’s input environ. 
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Figure 4.2 
 
 

The diagram to the right shows one control difference 
combination out of four possible from the FTC environ 
diagrams of Figures 4.1a and 4.1b.  The FTC’s model the 
relationship between Hi and Hj as open-loop controllers which 
augment boundary inputs, z, to the total combined direct and 
indirect fractions of throughflow between two components in 
an n-component system.  The strongest open-loop controller 
dominates and establishes direction of control.  cdij = ηij - ηji 
quantifies both magnitude and orientation.       
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Hj Hi 
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Figure 4.3 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 4.3a, Top: fraction of throughflow output 
environ represented by ηjk × zk of Hk oriented forward 
towards Hj, reference equation (4-3) coupled with 
equation (4-6), as embedded in an n-component 
model.  The remaining FTC’s for components k + 1 
through n are not shown for clarity. 

 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 4.3b, Bottom: fraction of throughflow input 
environ represented by yk × ηkj of Hk oriented back 
towards Hj, reference equation (4-4) coupled with 
equation (4-5), as embedded in an n-component 
model.  The remaining FTC’s for components k + 1 
through n are not shown for clarity.     
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Figure 4.4 
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Figure 4.5 
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Figure 4.6 
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Figure 4.7 
 

0.00

0.25

0.50

0.75

1.00

spr
85

sum
85

fall
85

win
86

spr
86

sum
86

fall
86

win
87

spr
87

sum
87

fall
87

win
88

spr
88

sum
88

fall
88

win
89

Season

O
ut

pu
t f

ra
ct

io
ns

PN-abiotic
NH4
NOx
DON
Sediment
PN-hetero
PN-phyto

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

196

Figure 4.8 
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Figure 4.9 
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Figure 4.10 
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5.1 INTRODUCTION 

The specific focus of this dissertation has been development of a formal mathematical 

approach to ecosystem control within the framework of network environ analysis (NEA).  While 

codifying the dissertation’s key concepts and results, this chapter elicits or addresses the 

significance of the more salient points and begins to develop their broader implications.  

5.2 PREFACE 
 

… by long and often cruel experience and by collecting and analyzing the historical 
material, we are gradually learning to get a clear view of the indirect, more remote, social effects 
of our productive activity, and so the possibility is afforded us of mastering and controlling these 
effects as well. 

To carry out this control requires something more than mere knowledge.  It requires a 
complete revolution in our hitherto existing mode of production, and with it our whole 
contemporary social order.   

— Frederick Engels, Dialectics of Nature, (written 1874-1882, published posthumously 
1940) 

 
 

Engels was specifically addressing how the reigning human social order affected the 

earth’s natural systems.  Assuming, what are now called ecosystems serve as natural resource 

suppliers necessary for human survival, both he and Marx continually posited that a 

decentralized societal power structure would synchronize the human experience with the earth’s 

ecosystems.  Engels’ ecological systems observations, in particular, the indirect effects, were 

way ahead of the systems science to which he inadvertently referred.  Further, his dialog 

uniquely mirrors the current state of ecosystem control in several ways.  First, we are only now, 

after persistent labor, beginning to appreciate the indirect and remote effects fundamental to 

consideration of the concept.  Second, something more than the existing mainstream knowledge 

will be required to move us forward.  Although somewhat allegorical in its true sociological 

underpinnings, Engels’ reference to a “…long and often cruel experience…” uniquely describes 

the current states of control and ecosystem control as they pertain to our studies of the natural 

systems which blanket and sustain us. 
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5.3 CONTROL 
 

What is control?  Control is an ambiguous concept when using the hundreds of related 

synonyms available in the English language vernacular.  Scientifically, however, the control 

sequence, in its simplest interpretation, is about the propagation of cause (Patten et al., 1976).  

Specifically, control is rooted in determinism’s small but significant sub-category of causation 

(the coupling of cause-and-effect through state).  If the cause has produced an effect, a control 

action has occurred by the state.  Although the philosophical principles of determinism and 

causality are profound in their broadest scope, the mechanistic or somewhat practical view of 

causation is that the state of the system generally links the past with the future.  For each unique 

input, a system generates a unique output.  The unique antecedent is always followed by the 

same consequence.  All of the previous events constitute the complete cause.  This is the main 

pillar of inductive science (Mill, 1843).      

The system’s continuous link or linkages (causal bond) between the cause-and-effect are 

necessary in the controlling action.  Kalman’s (1963) controllability and observability and later 

Šiljak’s (1991) input and output reachability are concepts which acknowledge the necessity of 

the transactive connectivity in the system necessary for the propagation-of-cause chain (a.k.a., 

control) to sequence properly.  To cause is to initiate control.  An effect is having been 

controlled.  According to Kalman and Šiljak, the cause-and-effect need to be connected.  Simple 

enough.  Using modern parlance (Dorf, 1980), the cause is the input.  The system state is the 

open–loop controller.  The effect is the output.  Aristotle’s (1947) belief in the non anticipatory 

nature of efficient cause-and-effect are relayed properly in the open–loop model.  Von Uexkūll’s 

(1926) function–circles, which identify that an organism’s output (world-of-action) over a time-

forward march can then reach the same organism’s input (world-as-sensed), acknowledge the 
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classical closed-loop control configuration’s existence in natural systems.  Patten (1978a) 

grouped the world-of-action and the world-as-sensed together in a comprehensive whole he 

simply called the surrounding world.  Cause-and-effect through state are inherently, by 

definition, an open-loop, non-anticipatory control sequence.  The ecosystem, a “surrounding 

world”, is inherently, almost by definition, a web of closed-loop control sequences that allow for 

non-anticipatory causal action. 

5.4 ECOSYSTEM CONTROL  
 

What is ecosystem control?  The broadest perspective on the concept suggests that it is 

about tracing and quantifying cause-and-effect sequences in natural systems.  The analytical 

process of considering or observing these natural actions and reactions is pervasive throughout 

the typical ecological contemplation.  We qualify, quantify, or sometimes just hypothesize why 

events unfold as witnessed.  Considering common macro-descriptions in mainstream cataloging 

of phenomena (in population, community, ecosystem, empirical, and theoretical ecology, etc.), 

the typical subtopics (such as growth, demographics, density dependence, limiting factors, life 

history traits, predation, resources, competitors, metapopulations, climax theory, etc.) can be 

aligned with either positive growth, negative feedback, equilibria, or factors that affect these 

three areas.  For example, evolution is about speciation (positive pressure to expand) and 

extinction (feedback to check expansion) occurring near some spatially and temporally 

heterogeneous equilibrium.  Evolution, the contrapositive of survival of the fittest, meaning death 

to the unfit, is fundamentally a negative feedback process.  In living systems, speciation and 

biotic growth always represent positive pressure counterpoised by biotic (e.g., competition) or 

abiotic (e.g., resource deficiencies) negative pressures moving towards local or global equilibria.  
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So long as a biotic component exists in our ecosystems, the classical control model is applicable 

within or across any spatial or temporal hierarchy. 

Consider, bottom-up and top-down control in food webs.  Comfortably ensconced in the 

Lindeman (1942) trophic level paradigm and coaxed by Hairston et al., 1960, we generally refer 

to control sequences as top-down (via. consumption) (Shears and Babcock, 2002; Worm and 

Myers, 2003), bottom-up (via. resource limitation) (Power, 1992; Brose, 2003), or combinations 

of both (Slobodkin et al., 1967; Hunter and Price, 1992; Rosemond et al., 2001; Worm et al., 

2002).  With a controlled perturbation, starting at some trophic level or species, we trace the 

direct cause-and-effect sequence through several trophic levels or species in a food web, 

carefully noting the ecosystem subtleties.  Subsequently, and fortunately, our understanding of 

ecosystem functionality increases with each confirmed cause-and-effect observation.  However, 

as the basic model descriptions we use to observe these action-reaction sequences are challenged 

over time [e.g., trophic levels (Polis, 1991); ecosystems (O’Neill, 2001)], our periscopic 

interpretation of direct causal linkages in a highly connected multi-dimensional system are also 

ripe for critique based on the obvious complexity.  After all, in a very simple input and output 

reachable system, matrix multiplication of the adjacency matrix in graph theory shows that 

pathway connectivity between two components is a divergent function.  When all path lengths 

are considered, there are in the limit an infinite number of routes (passing through the remaining 

system’s components) between two components.  To move beyond the one-dimensional top-

down, bottom-up, alternating subtleties, the deep understanding of these innumerable and multi-

dimensional indirect pathways and their effects becomes central to our continued pursuit of first-

principle rules within ecosystem functionality. 
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5.5 CHAPTER 1, OBJECTIVES AND CONCLUSIONS 

Fortunately Engel’s first assertion (in the quotation at the head of the chapter) was also 

optimistic.  By virtue of the current circumstances, we are afforded the possibility to control or at 

least master our understanding of these indirect effects.  Network analysis, coupled with environ 

theory’s two-environment approach (Patten, 1978a; Patten and Auble, 1981; Fath and Patten, 

1999; Fath, 2004), has helped broach the mathematics necessary to quantify these indirect 

manifestations.  Specifically, this dissertation has begun to address, while accounting for the 

embedded indirect effects, the mathematics associated with the distributed controlling pair-wise 

relationships that occur between components in a multi-component system.   

Chapter 1’s main objective was to presuppose the distributed control methodology using 

the nitrogen cycle of the Neuse River estuary by providing a literature based foundation of key 

concepts necessary for the dissertation’s premise.  The ecologically surmised control theory of 

growth and feedback leading to some homeostatic equilibria remains the essential model where 

the most basic concept of control is initially embedded in Zadeh’s premise mechanistic (Zadeh 

and Desoer, 1963; Zadeh, 1964) that cause drives effect through state.  Linear systems theory 

specifically models this cause-and-effect sequence as an open-loop controller (see, for example, 

Dorf, 1980).  Open-loop control sequences, connected in temporally varying parallel 

arrangements, create closed-loop non-anticipatory but error-correcting arrangements with the 

power to regulate outputs.  Clearly, this model can be applied to ecosystems growing (positive 

feedback) against resistance (negative feedback) towards some homeostatic equilibrium 

(performance indices) at any temporal or spatial hierarchy.  Fortunately, the mathematical 

mapping of an ecosystem as a set of distributed controllers allows for the quantitative accounting 

of cause-and-effect controlling relationships in a network.  As such, NEA coupled with 
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automatic control theory, ecosystem control theory, and nitrogen as a controlling transactional 

element were together articulated as important dimensions in the foundation of NEA distributed 

control.  

5.6 CHAPTER 2, OBJECTIVES AND CONCLUSIONS 

Chapter 2’s purpose — to tie NEA mathematics back to first principles — specifically 

laid the analytical foundation for the distributed control methodology.  This was accomplished 

by achieving three objectives:  (1) incorporating a strict Eulerian conservation-law methodology 

into NEA, (2) synthesizing the throughflow- and storage-based environ-equation development 

into a seamless, consistent derivation, and (3) clarifying various vague concepts and 

terminologies such as self-flow, storage, turnover rate, and the necessary inclusion of a discrete 

time step in environ storage analysis.  The 16-model average of the Neuse River estuary nitrogen 

cycle was then investigated with an enhanced NEA perspective.  Three avenues emerged for 

further consideration.   

(1) Due to its theoretical and mathematical nature, the current natural science audience 

for NEA is limited.  Significant systems and mathematical skills are necessary to elicit the 

essence of the methodology, its results, or corresponding conclusions.  This chapter, intended for 

the journal Ecological Engineering, attempts to extend NEA accessibility in the literature.  Mass 

and energy transport dynamics are a mature science outside ecology whose primary laws and 

equations are fundamental to the typical engineering curriculum.  Tying NEA back to this field 

opens its methodology to additional prospective uses and, therefore, to a much wider audience.  

Those individuals well versed in transport dynamics will find this chapter a seamless derivation 

of the environ equations using well established vernacular and mathematical techniques.  The 

allure of capturing or quantifying the power of indirect effects in networks currently resides only 



 

 

206

in the mathematics.  Developing a wider audience beyond the mathematics will create more 

opportunities for practical applications. 

(2) The Eulerian control surface’s existence and analytical rigidity, embedded in the 

mathematical model, significantly helps streamline NEA equation development and clarify 

subsequent interpretation.  The control surface separates the focal unit (compartment or system) 

from its environment, both conceptually and pictorially (ref. Figure 2.1), and analytically 

[conservation equation’s development where equations (2-1)–(2-19) are for mass and equations 

(2-20)–(2-28) are for energy].  The Eulerian mathematical model respects the control surface’s 

three-dimensional location and orientation whereas the generalized focal unit or “compartment” 

common in ecological network analysis or NEA does not posses this information.  Integral 

calculus is then able to elegantly evaluate and, if necessary, compensate for location and 

orientation, particularly when three-dimensional constructs are simplified to two- or one-

dimensional systems, as in NEA.  The accounting of all directions, orientations, and qualities of 

flow is driven by the analytical description of the control surface.  For example, the previously 

vague, if not multi-defined, self-flow was clarified in a simple interpretation of the unyielding 

analytical model.  Although a mass conservation development was used with the nitrogen cycle 

example, the larger impact of the Eulerian control surface contribution to ecological network 

analysis may eventually reside with the conservation of energy.  The types and qualities of 

energy crossing the control surface due to mass flow, heat transfer, or work are specifically 

organized into their respective analytical terms.  Simplifying assumptions which combine these 

terms, common in transport dynamics, are not clearly or correctly defined in the ecological 

literature.  The Eulerian control surface construct will help ecological network analysis in 

general become better aligned with the more mature field of transport dynamics.  
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(3) Lastly, some commentary regarding network analysis is appropriate given both 

Christian and Thomas’s (2000, 2003) original research on the Neuse River estuary and the NEA 

methodology as articulated herein.  Specifically, how have (a) NEA methodology and (b) 

Christian and Thomas’s work benefited from this dissertation?   

(a) The NEA derivation herein, is subtly different.  The conservation equations are 

derived using a Reynolds transport Eulerian control volume approach.  This perspective provides 

a rigid analytical model of flows and storages necessary for model interpretation and helpful to 

subsequent NEA development.  Most importantly, similar to the mature field of transport 

dynamics, the control volume (CV)/control surface (CS) derivation clarifies the importance of 

the latter to the model’s analytical development and interpretation.   For example, self flows can 

be defined nicely within the original conservation equation format.  Then reaching back and 

embracing the original methodology (Patten, 1978a; Barber et al., 1979), the concepts of 

conservation and throughflow, each with algebraic terms directionally oriented across the 

modeled control surface, were introduced separately at first [conservation equations (2-29)–(2-

31); throughflow equations (2-32)–(2-39)] and then combined [equations (2-40) and (2-50)] to 

provide a clear expression of the oriented perspective to ecological network analysis inherent to 

NEA.  The origination of this explicit equation orientation is a critical aspect to the 

understanding of NEA and can be lost in the, often too coarse, algebraic substitutions leading to 

the final environ implicit equations.  The new, parallel and consistent, algebraic development of 

the throughflow and storage NEA equations also helps to minimize the same algebraic 

difficulties and improve the subsequent system interpretations.  Also, while this discussion is 

addressing Chapter 2, it is still important to briefly acknowledge by stretching into Chapter 3 that 

the NEA distributed control methodology successfully quantifies the virtually imperceptible, 
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minute magnitudes of pair-wise flow relationships in a network that are distributed over a 

diverging set of indirect pathways.  Establishing and quantifying magnitude and direction (+/−) 

of basic cause-and-effect relationships between compartment pairs in a multi-component system, 

which includes these unobservable and divergent pathways, significantly enhances the power of 

NEA to both identify but also capture the importance of indirect effects.   

(b)  Christian and Thomas (2000) eloquently summarized the various network theories 

and supporting software available at the time of their analysis.  Their summary demonstrated that 

ecological network analysis has grown considerably in its logical breadth and pragmatic 

offerings.  Therein lays the significance of this dissertation to Christian and Thomas’s Neuse 

River estuary study.  Our distributed control model offers some inviting considerations regarding 

the potential makeup of the Neuse nitrogen cycle including most prominently the roles of both 

nitrates and sediment as donors and receivers in the extended nitrogen pathways.  As such, the 

model stimulates new questions as a result of a new perspective.  However, for the moment, the 

primary advancement is not the new questions asked or the potential novel findings.  Simply, it’s 

the continued work in ecological network analysis that eventually produces yet more practical 

tools for the ecosystem manager.  Whereas the work herein relies on Christian and Thomas’s 

empirical model, their model relied on the theoretical and empirical models before them.  Their 

deft use of established ecological network theory and the conclusions they achieved demonstrate 

the need to continually push for additional theoretical investigations of the network perspective.  

Practical and pragmatic uses emerge from this process.  Chapter 2’s objectives fundamentally 

streamlined the development of NEA while making its use more practical and accessible to a 

wider audience.  The necessary analytical foundation for the distributed control methodology 

was clearly formulated.   
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5.7 CHAPTER 3, OBJECTIVES AND CONCLUSIONS 

 Chapter 3’s purpose — to articulate and demonstrate a distributed control in the environ 

structure of a multi-component network model — established a comprehensive methodology for 

both current consideration and future growth.  Chapters one and two, and the literature they 

reference, gradually research, streamline, but then also subtly force the confrontation of the 

epistemological underpinnings and shortcomings of the current state of control theory in 

ecological multi-component systems — dominated by indirect interactions.  The fortuitous 

nature of the current situation lends credence to Engel’s optimistic assertion elucidating the 

rationale for taking the next step.  By virtue of the current circumstances, “…the possibility is 

afforded us of mastering and controlling these [indirect] effects as well.”  Chapter 3’s purpose — 

to develop the distributed control methodology within environ theory — was accomplished by 

achieving these three objectives:  (1) providing a historical & mathematical foundation for a 

distributed control perspective, (2) formulating the analytical pair-wise transactive relationships 

in a network, and (3) expanding the pair-wise relationships in a network to establish a distributed 

control methodology.  A 16-model-average representation of nitrogen flow in the Neuse River 

estuary was then investigated.  Achieving the objectives opened three areas for further 

discussion. 

(1) This research initially assumed that magnitude differentials in transport flows 

represented dominating/subordinating associations between donors and receiver components.  

These pairings were deemed controlling/controlled relationships.  It is worth reviewing this logic 

based on the study’s overall assertions.  Control is about causing action.  The mechanistic and 

practical view of cause-and-effect, fundamental to inductive science, is that cause drives effect 

through state.  The potential transactional or relational materials present in the causal actions and 
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reactions is as diverse as the imagination.  To quantify causal sequences, we chose to focus on 

conservative transactions.  If the state (temperature, pressure, amount, etc.) of a material 

changes, the initiating cause has sequenced to a subsequent effect.  To track and capture these 

sequences, we focused on material quantities.  Evidence of a control action is now available and 

with historical precedence, this sequence is modeled as an open-loop controller.   

In steady-state NEA, the transitive closure matrices, N and N', once computed augment 

or attenuate the boundary flows (y and z) of a system through all direct and indirect pathways to 

the respective component throughflows.  The scalar transitive closure values, nij and n'ij, or their 

fractional equivalents, ηij, are regarded as distributed open-loop controllers or transfer functions 

in the classical control theory sense wherein the closed-loop feedback is inherent to the 

distributed interactions of the open-loop controllers acting in parallel.  The strength or magnitude 

of the incoming versus outgoing environ contributions to control can then be compared to 

identify augmentative and suppressive relationships.  The controller magnitudes, per se, offer a 

weighted means to facilitate this comparison.  As such, the distributed control methodology 

successfully tracks and accounts for magnitude differentials of the transactive element, 

subsequently allowing attribution of quantitative significances to long and indirect causal chains 

in systems.    

(2) Inevitably the expressions unit input and unit output are mentioned when NEA is 

discussed.  The proclivity towards these expressions is most likely owed to some of the earlier 

(and more powerful and recognizable) environ analyses (Patten 1978a) which consist of tracing a 

system’s transactions of a steady-state unitary input-into or output-from one compartment in the 

environ network of a model.  For example, a steady-state unit input can be supplied into the 

output environ of one component in a multi-component model and traced forward using the 
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information in the N matrix through the system’s internal cycling until its fractions completely 

exit from multiple components across the system boundary.  Christian and Thomas (2003) used 

this technique (a unidirectional environs analysis) in their study of NOx-N entering the Neuse 

River estuary.  They demonstrated that the majority of imported NOx-N was deposited in the 

Sediment compartment in all summers and falls, half of the springs, and never in the winter 

before it exited the system.  They also showed that Phytoplankton uptake of an atom of imported 

N ranged from about 2 to 35 times during its stay in the estuary with strong seasonality over their 

16-season data set.  Although the nitrogen entered as NOx, most of the Phytoplankton uptake was 

in the form of NH4-N as a result of recycling.  Unit boundary values allow for easy accounting of 

flows as they simply split into fractions of the original unit.  By superposition, if the inputs and 

outputs are scaled-up to their original values, then added into the model one-by-one, the original 

model steady-state flows are eventually obtained.  In short, unit environ analysis scales the 

model flows to values that allow convenient readout of magnitudes and routings.   

However, a per unit of boundary flow statement is germane to other areas of environs 

analysis unrelated to the above example, and subsequently, can be misinterpreted.  Consider, that 

the original environ control matrix is a construct of the transitive closure matrices N and N' 

(Patten 1978b).  Discussions of the ratios calculated from the respective interstitial matrix values, 

nij and n'ij, often referenced the material or energy transferred as per unit of input, zi, or per unit 

of output, yj (e.g., Patten and Auble, 1981; Patten, 1982).  Similar statements have been made in 

this dissertation.  These statements, although technically true and appropriate in their context, 

can also be misleading if not completely understood, and have led to the incorrect labeling of this 

distributed control evaluation as a unit environ analysis.  In fact, this is not a unit boundary 

analysis.  The statements merely acknowledge that the boundary flow vector, zi or yj, when 
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multiplied together with the respective interstitial transitive closure matrix value, nij or n'ij, will 

scale-up the final combination to the total throughflow magnitude, Tout or Tin.  Considered 

another way, without the boundary flow vector magnitude, the interstitial matrix value, nij or n'ij, 

when removed from its algebraic equation is technically on a per unit of boundary flow basis.  

We are acknowledging the dimensional units which carry with the numerical magnitude of nij or 

n'ij.  This is not suggesting unit environ analysis.  The analytical open-loop control model 

developed and used herein helps to clarify this point further.  The interstitial transitive closure 

values, nij and n'ij, are considered transfer functions in an open-loop control configuration which 

augment or attenuate the flows they receive.  Traditional control theory measures dominant and 

suppressive pairings by comparing the strengths (magnitudes) of the transfer functions.  Control 

theory does not compare the transfer functions coupled with their inputs which, in the end, would 

just be a comparison of the two systems’ outputs.  We are measuring the ability to change, not 

the result of the change.  Given an open-loop controller, what is its propensity to enact change?  

It is the weight of the transfer function on a per unit basis.  Between two transfer functions, 

which is the stronger?  The one with a greater capacity to enact change when the two are 

compared, on a per unit basis.   

As a final thought, consider that a steady-state system is really dynamic over short-term 

micro adjustments but approaches an assumed steady-state operation over the long term.  During 

these micro transient periods with the inputs and outputs varying ever so slightly, the strength of 

the transfer functions, also varying ever so slightly, represent the weighted capability for each 

component to enact change in the system.  A comparison of these transfer functions determines 

which is the one that will institute the greatest impact on the micro change of delta input that it 

receives as each input magnitude varies ever so slightly.  As such, both the original and the 
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present environ control analyses are not unit environ analyses in the traditional sense, they are 

comparisons of individual component’s abilities to enact change to the input they receive, on a 

per unit input basis.  Although one component may receive a larger input than another 

component in the same system, the first component’s overall strength to modify the signal could 

be far weaker than the second component’s.  Subtle to tease out in a so-called steady-state model, 

the clarity of the distinction between a unit analysis and a per unit input can be more evident 

when the system’s micro transient dynamics are included in the descriptive comparison.   

(3)  The Neuse River estuary control metric results are intriguing but require a realistic 

appreciation of their significance.  As Patten (1982) expressed with his original formulation, 

“The dominance expressed in this example is not exactly like that which results from direct 

competition in the ‘struggle for existence.’”  The control metrics meet the technical definition of 

control, as derived herein, but practically applied, the results represent the quantification and 

comparison of nitrogen flow potentials through all the direct and indirect pathways of the Neuse 

River estuary.  Without mentioning the specific cause-and-effect sequencing, at least the 

following explicit statements are quantifiably true, from the mathematics, for a per-unit 

boundary, fractional-environ control comparison of NOx and Sediment:  (1) Sediment, through 

its output environ oriented towards NOx, generates a fraction of throughflow [η53 = 0.00071 (m2 

× season)/mmol-N] that is 44% less than the fraction of throughflow [η35 = 0.00126 (m2 × 

season)/mmol-N] available to Sediment through its input environ from NOx;  (2) Conversely, 

NOx, through its output environ oriented towards Sediment, generates a fraction of throughflow 

[η35 = 0.00126 (m2 × season)/mmol-N] to Sediment that exceeds the fraction of throughflow [η53 

= 0.00071 (m2 × season)/mmol-N] that is available to NOx through its input environ oriented 

from Sediment by 77%;  (3) NOx is more efficient at moving nitrogen to Sediment on a per-
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throughflow basis than conversely.  Thus, NOx supplies a greater fraction of throughflow 

through all the direct and indirect pathways to Sediment than Sediment returns back to NOx.  

Further, all components are more efficient at moving nitrogen to Sediment (cr31 = 0.33, cr32 = 

0.29, cr34 = 0.33, cr35 = 0.44, cr36 = 0.29, cr37 = 0.34; Equation 3-22), than conversely, and NOx 

is more efficient at moving nitrogen to all other components (cr15 = 0.28, cr25 = 0.24, cr35 = 0.44, 

cr45 = 0.24, cr65 = 0.21, cr75 = 0.28; Equation 3-22), than conversely.   

It remains the hypothesis of this research, an extension of Patten’s (1978b) and Patten 

and Auble’s (1981) original idea, that this overall weighted environ comparison offers a 

quantitative methodology to compare pair-wise dominance or control relations in a network.  The 

term “control” is not used in the common perspective of a transient closed-loop negative 

feedback system, but rather, given a dynamic steady-state model, control resides in the 

component’s action as an open-loop, augmenting or diminishing, checks-and-balances-type 

transfer function representing potential for change.  The closed-loop feedback is inherent in the 

distributed interactions of the open-loop controllers acting in parallel.  The orientation of the 

controlling relationship (greater magnitude denotes dominance, therefore control) was derived 

based on an energy flow derivation in the Cone Spring energy model (Patten, 1978b; Patten and 

Auble, 1981).  In the aquatic energy cycle, plants have complete control (cij = 1) over every other 

component — “bottom-up control” in contemporary parlance.  This established the direction of 

control (greater magnitude dominates) that remained plausible with the remaining component 

pair-wise relations when considered independently.  The established direction of the controlling 

relationship was then carried forward to this review of nitrogen cycling.  The direction of control 

herein, although intuitively plausible (e.g., Sediment is controlled by all other components while 

NOx controls all other components), remains inconclusive absent additional research.  For 
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instance, if a limiting factor perspective is used (e.g., Sediment sequesters N with a controlled 

release to NOx), the conclusions could be opposite, i.e., Sediment controls all other components 

and all other components control NOx.  I close the discussion of this section with the same 

statement that I used to introduce it, “the Neuse River estuary control metric results are 

intriguing but require a realistic appreciation of their significance.”  We have successfully 

mapped the cause-and-effect distributed controlling magnitudes and directions (+/−) of a 

conservative material through the direct and indirect pathways of a multi-component system. 

5.8 CHAPTER 4, OBJECTIVES AND CONCLUSIONS 

Chapter 4’s primary purpose was to identify correlations or causations within the indirect 

environ control patterns exhibited by a sequence of static models approximating a time-

continuous dynamic model.  The mathematics for a dynamic NEA has yet to be developed, 

necessitating the discrete-time approximation approach.  Chapter 4’s purpose — to review 

temporal control relations — was achieved through the following specific objectives:  (1) 

dynamic distributed control characteristics inherent in Christian and Thomas’s (2003) sixteen 

season nitrogen cycling models were calculated,  (2) temporal control patterns were elicited, and  

(3) external and internal parameter correlations or causations relating to these control patterns 

were identified.  The results are interesting but not conclusive.  Those concerning NOx and 

Sediment are summarized here. 

Considering all seven model components, the only statistically significant scj correlations 

to TST were sc3 (Sediment) and sc5 (NOx) (sc3 vs. loge TST, r = 0.63, n = 16, p < 0.01; sc5 vs. 

loge TST, r = 0.64, n = 16, p < 0.01).  The remaining five component’s (r = 0.10 to 0.54) did not 

correlate.  The only statistically significant scj correlations with respective component 

throughflows, Tj, were also sc3 and sc5 (sc3 vs. loge T3, r = 0.67, n = 16, p < 0.01; sc5 vs. loge T5, 
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r = 0.82, n = 16, p < 0.001).  These r values are larger than the remaining five component’s (r = 

0.00 to 0.41) which did not statistically correlate.  Both TST and Tj reflect internal system 

activity since they include recycling.  This is particularly pertinent for the Neuse models because 

their recycling rates were extremely high with the Finn Cycling Index averaging over 89%.     

No system control parameter correlated with TN loading, an external system driver.  

Christian and Thomas (2003) similarly concluded that primary production tends to be associated 

with nitrogen cycling inside the estuary (correlated with TST) rather than nitrogen import 

through TN loading.  Nitrogen cycling within the system was very high whereas TN boundary 

inflow averaged only 11% of the total phytoplankton uptake.  The present analysis similarly 

found no correlations between the distributed control metrics and either TN loading or individual 

nitrogen inputs, zi, or outputs, yj.  Direct causation or correlation from outside the system 

boundaries was not statistically evident.  However, with two exceptions, the boundary flows, y3 

and z5, were the highest boundary flows over all 16 seasons. 

There appears to be a relationship between the dominance of boundary flows, within a 

component’s throughflow and the indicated control magnitudes of NOx and Sediment.  The input 

boundary flow at NOx, z5, and the output boundary flow from Sediment, y3, dominated their 

respective component throughflows (i.e., T3/y3 < Tj/yj for j = 1, 2, 4, 5, 6, 7; T5/z5 < Ti/zi for j = 

1, 2, 3, 4, 6, 7).  Further consideration of this finding leads to conflicting conclusions.  On 

average, most boundary input to NOx leaves the system as boundary output from Sediment.  This 

suggests a unique connectivity relationship in the indirect pathways of the network 

interconnecting these components.  However, the correlation of T3/y3 to sc3 was statistically 

significant (sc3 vs. T3/y3, r = 0.68, n = 16, p < 0.01) whereas that of T5/z5 to sc5 was not (sc5 vs. 

T5/z5, r = 0.36, n = 16, p at α 0.05 = 0.50).  
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Thus, control strengths of NOx and Sediment appear to correlate with internal system, 

presumably biological, activity reflected in both global (TST) and local (T5 and T3) throughflow 

characteristics.  Also, their consistent control direction over all 16 seasons appears related to the 

consistent dominance of y3/T3 and z5/T5 ratios.  The control parameter correlations to these ratios 

and the unit environ analysis of the NOx and Sediment connectivity are conflicting but 

nevertheless encouraging for future pursuits. 

5.9 POSTSCRIPT 

Research always involves assumptions and concessions, etc. that are mitigated or 

resolved along the way or remain for future endeavors.  The pair-wise environ control 

approached developed herein revealed the importance of component throughflows in 

mathematically formulating the distributed control concept.  This was codified with the 

formulation of the relative vs. absolute control designations.  The fraction-of-throughflow 

concept of absolute control was explored, but the magnitude-of-throughflow concept of relative 

control remains for further work.  The open-loop control strategy of comparing transfer-function 

strengths for dominance aligns with automatic control theory.  This is appropriate for steady-

state analysis, but in a dynamic NEA theory with time-varying transfer functions a closed-loop 

approach might be better.  Although the open-loop concept was used here to identify and capture 

transfer function magnitudes, the generalization is made that network structure inherently 

involves closed-loop dynamics — hence the system of checks and balances one can envision 

distributed control to represent.  The mathematics associated with combining open-loop transfer 

functions both in parallel and in series are complex and still remain to be explored within environ 

methodology.    
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In closing, this research further develops the formal mathematics of distributed control in 

ecosystems.  Network environ analysis and its dual environment model are strengthened and 

expanded as a means to trace the indirect effects pervasive and dominant in natural systems.  A 

significant amount of work remains to understand distributed control within the hierarchical 

fabric of decentralized networks where Engel’s dialectic prenotion, 

“To carry out this control requires something more than mere knowledge.  It 
requires a complete revolution in our hitherto existing mode of production, and with it 
our whole contemporary social order.”   

 
foretells an extended era of discovery. 
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Appendix A 
 

Inter-compartment flows, fij; boundary flows, z and y; throughflows, T; and Storage, X, values as 
collected and determined by Christian and Thomas for the Neuse River estuary nitrogen model, 
North Carolina, USA.  The 17 tables below include 16 consecutive seasons from Spring 1985 to 
Winter 1989 and an average data set as calculated by Christian and Thomas which represents all 
16 seasons. 
 

Table A1, Average data set (as calculated by Christian and Thomas) representing 
16 consecutive seasons from Spring 1985 through Winter 1989 for the Neuse 
River estuary nitrogen model.  Inter-compartment flows, fij; boundary flows, z 
and y; and throughflows, T, have dimensional units of mmol-N/(m2 × season).  
Storage, X, has dimensional units of  mmol-N/m2.  TST is total system 
throughflow. 

fij PN-
Phyto 

PN-
Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

PN-
Abiotic 

Input, 
z 

Throughflow 
T 

Storage, 
X 

PN-
Phyto 0 0 0 1,176 918 4,816 0 16 6,927 85 
PN-

Hetero 4,859 0 555 1,388 583 5,999 1605 24 15,005 64 

Sediment 611 7 0 0 66 80 463 28 1,255 5,200 

DON 1,363 1,138 0 0 0 0 0 187 2,688 270 

NOx 0 0 123 0 0 1,037 0 419 1,578 59 

NH4 0 11,714 159 0 0 0 0 82 11,955 36 
PN-

Abiotic 57 2,005 0 0 0 0 0 39 2,099 61 

Output, y 37 148 418 124 11 23 31  TST = 41,517  
 

Table A2, Spring 1985 data set for the Neuse River estuary nitrogen model.  
Inter-compartment flows, fij; boundary flows, z and y; and throughflows, T have 
units of mmol-N/(m2 × season).  Storage, X, has dimensional units of mmol-
N/m2.  TST is total system throughflow.   

fij PN-
Phyto 

PN-
Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

PN-
Abiotic 

Input, 
z 

Throughflow 
T 

Storage, 
X 

PN-
Phyto 0 0 0 191 191 726 0 3 1,111 18 
PN-

Hetero 735 0 201 459 104 1,745 296 5 3,545 14 

Sediment 131 1 0 0 37 14 95 5 283 1,300 

DON 222 448 0 0 0 0 0 41 711 81 

NOx 0 0 37 0 0 237 0 59 333 5 

NH4 0 2,704 18 0 0 0 0 15 2,737 15 
PN-

Abiotic 12 383 0 0 0 0 0 5 400 13 

Output, y 11 9 27 61 1 15 9  TST = 9,120  
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Table A3, Summer 1985 data set for the Neuse River estuary nitrogen model.  
Inter-compartment flows, fij; boundary flows, z and y; and throughflows, T have 
units of mmol-N/(m2 × season).  Storage, X, has dimensional units of mmol-
N/m2.  TST is total system throughflow.   

fij PN-
Phyto 

PN-
Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

PN-
Abiotic 

Input, 
z 

Throughflow 
T 

Storage, 
X 

PN-
Phyto 0 0 0 508 366 1,621 0 4 2,499 29 
PN-

Hetero 1,706 0 323 1,221 101 3,897 731 5 7,984 22 

Sediment 264 2 0 0 2 54 228 8 558 1300 

DON 499 1,222 0 0 0 0 0 26 1,747 68 

NOx 0 0 33 0 0 386 0 50 469 6 

NH4 0 5,820 119 0 0 0 0 20 5,959 5 
PN-

Abiotic 23 937 0 0 0 0 0 6 966 25 

Output, y 7 3 83 18 0 1 7  TST = 20,182  

 
 

Table A4, Fall 1985 data set for the Neuse River estuary nitrogen model.  
Inter-compartment flows, fij; boundary flows, z and y; and throughflows, T have 
units of mmol-N/(m2 × season).  Storage, X, has dimensional units of mmol-
N/m2.  TST is total system throughflow.   

fij PN-
Phyto 

PN-
Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

PN-
Abiotic 

Input, 
z 

Throughflow 
T 

Storage, 
X 

PN-
Phyto 0 0 0 238 238 1,298 0 4 1,778 23 
PN-

Hetero 1,237 0 128 176 103 960 335 7 2,946 18 

Sediment 167 2 0 0 1 7 134 9 3,20 1,300 

DON 355 16 0 0 0 0 0 51 4,22 35 

NOx 0 0 31 0 0 231 0 80 3,42 4 

NH4 0 2,468 7 0 0 0 0 23 2,498 9 
PN-

Abiotic 15 452 0 0 0 0 0 7 474 17 

Output, y 4 8 154 8 0 2 5  TST = 8,780  

 
 
 
 
 



 

 

225

 
 
 
 

Table A5, Winter 1986 data set for the Neuse River estuary nitrogen model.  
Inter-compartment flows, fij; boundary flows, z and y; and throughflows, T have 
units of mmol-N/(m2 × season).  Storage, X, has dimensional units of mmol-
N/m2.  TST is total system throughflow. 

fij PN-
Phyto 

PN-
Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

PN-
Abiotic 

Input, 
z 

Throughflow 
T 

Storage, 
X 

PN-
Phyto 0 0 0 108 108 448 0 1 665 14 
PN-

Hetero 458 0 0 366 184 1,517 232 7 2,764 12 

Sediment 64 1 0 0 26 5 41 6 143 1,300 

DON 133 347 0 0 0 0 0 55 535 48 

NOx 0 0 22 0 0 204 0 92 318 17 

NH4 0 2,143 15 0 0 0 0 20 2,178 17 
PN-

Abiotic 8 263 0 0 0 0 0 6 277 9 

Output, y 2 10 106 61 0 4 4  TST = 6,880  

 
 

Table A6, Spring 1986 data set for the Neuse River estuary nitrogen model.  
Inter-compartment flows, fij; boundary flows, z and y; and throughflows, T have 
units of mmol-N/(m2 × season).  Storage, X, has dimensional units of mmol-
N/m2.  TST is total system throughflow. 

fij PN-
Phyto 

PN-
Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

PN-
Abiotic 

Input, 
z 

Throughflow 
T 

Storage, 
X 

PN-
Phyto 0 0 0 260 260 1,034 0 3 1,557 16 
PN-

Hetero 1,111 0 169 684 21 2,721 463 5 5,174 18 

Sediment 116 2 0 0 37 14 124 5 298 1,300 

DON 311 625 0 0 0 0 0 36 972 89 

NOx 0 0 37 0 0 226 0 57 320 5 

NH4 0 3,966 18 0 0 0 0 17 4,001 13 
PN-

Abiotic 15 573 0 0 0 0 0 5 593 17 

Output, y 4 8 74 28 2 6 6  TST = 12,915  
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Table A7, Summer 1986 data set for the Neuse River estuary nitrogen model.  
Inter-compartment flows, fij; boundary flows, z and y; and throughflows, T have 
units of mmol-N/(m2 × season).  Storage, X, has dimensional units of mmol-
N/m2.  TST is total system throughflow. 

fij PN-
Phyto 

PN-
Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

PN-
Abiotic 

Input, 
z 

Throughflow 
T 

Storage, 
X 

PN-
Phyto 0 0 0 379 379 1,416 0 3 2,177 29 
PN-

Hetero 1,453 0 233 383 131 1,432 427 5 4,064 18 

Sediment 264 2 0 0 2 54 182 8 512 1300 

DON 435 292 0 0 0 0 0 55 782 99 

NOx 0 0 33 0 0 414 0 67 514 14 

NH4 0 3,178 119 0 0 0 0 21 3,318 8 
PN-

Abiotic 18 589 0 0 0 0 0 6 613 20 

Output, y 7 3 127 20 2 2 4  TST = 11,980  

 
 

Table A8, Fall 1986 data set for the Neuse River estuary nitrogen model.  
Inter-compartment flows, fij; boundary flows, z and y; and throughflows, T have 
units of mmol-N/(m2 × season).  Storage, X, has dimensional units of mmol-
N/m2.  TST is total system throughflow. 

fij PN-
Phyto 

PN-
Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

PN-
Abiotic 

Input, 
z 

Throughflow 
T 

Storage, 
X 

PN-
Phyto 0 0 0 364 250 1,370 0 1 1,985 17 
PN-

Hetero 1,446 0 153 263 100 992 453 4 3,411 15 

Sediment 124 2 0 0 1 7 109 9 252 1,300 

DON 397 229 0 0 0 0 0 19 645 73 

NOx 0 0 31 0 0 275 0 49 355 16 

NH4 0 2,628 7 0 0 0 0 14 2,649 17 
PN-

Abiotic 14 548 0 0 0 0 0 4 566 15 

Output, y 4 4 61 18 4 5 4  TST = 9,863  
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Table A9, Winter 1987 data set for the Neuse River estuary nitrogen model.  
Inter-compartment flows, fij; boundary flows, z and y; and throughflows, T 
have units of mmol-N/(m2 × season).  Storage, X, has dimensional units of 
mmol-N/m2.  TST is total system throughflow. 

fij PN-
Phyto 

PN-
Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

PN-
Abiotic 

Input, 
z 

Throughflow 
T 

Storage, 
X 

PN-
Phyto 0 0 0 326 326 636 0 12 1,300 21 
PN-

Hetero 903 0 1 263 322 992 317 15 2,813 18 

Sediment 96 2 0 0 26 5 59 6 194 1,300 

DON 258 266 0 0 0 0 0 146 670 51 

NOx 0 0 22 0 0 195 0 464 681 84 

NH4 0 1,791 15 0 0 0 0 37 1,843 14 
PN-

Abiotic 12 383 0 0 0 0 0 11 406 13 

Output, y 31 371 156 81 7 15 30  TST = 7,907  

 
 

Table A10, Spring 1987 data set for the Neuse River estuary nitrogen model.  
Inter-compartment flows, fij; boundary flows, z and y; and throughflows, T have 
units of mmol-N/(m2 × season).  Storage, X, has dimensional units of mmol-
N/m2.  TST is total system throughflow. 

fij PN-
Phyto 

PN-
Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

PN-
Abiotic 

Input, 
z 

Throughflow 
T 

Storage, 
X 

PN-
Phyto 0 0 0 580 273 1,868 0 15 2,736 21 
PN-

Hetero 1,980 0 103 215 87 690 599 7 3,681 16 

Sediment 153 2 0 0 37 14 109 5 320 1,300 

DON 544 224 0 0 0 0 0 93 861 40 

NOx 0 0 37 0 0 197 0 179 413 18 

NH4 0 2,740 18 0 0 0 0 28 2,786 7 
PN-

Abiotic 14 715 0 0 0 0 0 7 736 15 

Output, y 45 0 162 66 16 17 28  TST = 11,533  
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Table A11, Summer 1987 data set for the Neuse River estuary nitrogen model.  
Inter-compartment flows, fij; boundary flows, z and y; and throughflows, T have 
units of mmol-N/(m2 × season).  Storage, X, has dimensional units of mmol-
N/m2.  TST is total system throughflow. 

fij PN-
Phyto 

PN-
Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

PN-
Abiotic 

Input, 
z 

Throughflow 
T 

Storage, 
X 

PN-
Phyto 0 0 0 333 333 2,424 0 2 3,092 33 
PN-

Hetero 2,211 0 329 244 176 1782 623 4 5,369 18 

Sediment 300 2 0 0 2 54 182 8 548 1,300 

DON 558 12 0 0 0 0 0 19 589 94 

NOx 0 0 33 0 0 441 0 38 512 7 

NH4 0 4,569 119 0 0 0 0 15 4,703 11 
PN-

Abiotic 18 786 0 0 0 0 0 4 808 20 

Output, y 5 0 67 12 0.1 2 3  TST = 15,621  

 
 

Table A12, Fall 1987 data set for the Neuse River estuary nitrogen model.  
Inter-compartment flows, fij; boundary flows, z and y; and throughflows, T have 
units of mmol-N/(m2 × season).  Storage, X, has dimensional units of mmol-
N/m2.  TST is total system throughflow. 

fij PN-
Phyto 

PN-
Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

PN-
Abiotic 

Input, 
z 

Throughflow 
T 

Storage, 
X 

PN-
Phyto 0 0 0 61 61 819 0 1 942 21 
PN-

Hetero 602 0 202 122 220 1,518 124 4 2,792 18 

Sediment 153 2 0 0 1 7 124 9 296 1,300 

DON 168 18 0 0 0 0 0 16 202 108 

NOx 0 0 31 0 0 213 0 39 283 4 

NH4 0 2,540 7 0 0 0 0 12 2,559 5 
PN-

Abiotic 15 232 0 0 0 0 0 4 251 17 

Output, y 4 0 56 19 1 2 3  TST = 7,325  
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Table A13, Winter 1988 data set for the Neuse River estuary nitrogen model.  
Inter-compartment flows, fij; boundary flows, z and y; and throughflows, T have 
units of mmol-N/(m2 × season).  Storage, X, has dimensional units of mmol-
N/m2.  TST is total system throughflow. 

fij PN-
Phyto 

PN-
Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

PN-
Abiotic 

Input, 
z 

Throughflow 
T 

Storage, 
X 

PN-
Phyto 0 0 0 74 74 475 0 4 627 28 
PN-

Hetero 360 0 39 385 207 2,469 216 7 3,683 8 

Sediment 127 1 0 0 26 5 32 6 197 1,300 

DON 125 348 0 0 0 0 0 4 477 15 

NOx 0 0 22 0 0 169 0 123 314 17 

NH4 0 3,094 15 0 0 0 0 21 3,130 3 
PN-

Abiotic 6 240 0 0 0 0 0 6 252 7 

Output, y 9 0 121 18 7 12 4  TST = 8,680  

 
 

Table A14, Spring 1988 data set for the Neuse River estuary nitrogen model.  
Inter-compartment flows, fij; boundary flows, z and y; and throughflows, T have 
units of mmol-N/(m2 × season).  Storage, X, has dimensional units of mmol-
N/m2.  TST is total system throughflow. 

fij PN-
Phyto 

PN-
Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

PN-
Abiotic 

Input, 
z 

Throughflow 
T 

Storage, 
X 

PN-
Phyto 0 0 0 386 172 950 0 3 1,511 11 
PN-

Hetero 1,116 0 50 182 102 449 339 5 2,243 12 

Sediment 80 1 0 0 37 14 87 5 224 1,300 

DON 302 245 0 0 0 0 0 36 583 84 

NOx 0 0 37 0 0 179 0 96 312 10 

NH4 0 1,551 18 0 0 0 0 26 1,595 3 
PN-

Abiotic 11 414 0 0 0 0 0 5 430 12 

Output, y 2 32 119 15 1 3 4  TST = 6,898  
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Table A15, Summer 1988 data set for the Neuse River estuary nitrogen model.  
Inter-compartment flows, fij; boundary flows, z and y; and throughflows, T have 
units of mmol-N/(m2 × season).  Storage, X, has dimensional units of mmol-
N/m2.  TST is total system throughflow. 

fij PN-
Phyto 

PN-
Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

PN-
Abiotic 

Input, 
z 

Throughflow 
T 

Storage, 
X 

PN-
Phyto 0 0 0 446 446 2,438 0 1 3,331 24 
PN-

Hetero 2,419 0 260 372 34 2,034 696 4 5,819 22 

Sediment 218 2 0 0 2 54 218 8 502 1,300 

DON 666 151 0 0 0 0 0 27 844 78 

NOx 0 0 33 0 0 386 0 64 483 7 

NH4 0 4,772 119 0 0 0 0 23 4,914 5 
PN-

Abiotic 22 894 0 0 0 0 0 5 921 24 

Output, y 6 0 90 26 1 2 7  TST = 16,814  

 
 

Table A16, Fall 1988 data set for the Neuse River estuary nitrogen model.  
Inter-compartment flows, fij; boundary flows, z and y; and throughflows, T have 
units of mmol-N/(m2 × season).  Storage, X, has dimensional units of mmol-
N/m2.  TST is total system throughflow. 

fij PN-
Phyto 

PN-
Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

PN-
Abiotic 

Input, 
z 

Throughflow 
T 

Storage, 
X 

PN-
Phyto 0 0 0 261 3 1,061 0 1 1,326 13 
PN-

Hetero 951 0 68 42 304 172 242 4 1,783 12 

Sediment 95 1 0 0 1 7 87 9 200 1,300 

DON 265 30 0 0 0 0 0 30 325 71 

NOx 0 0 31 0 0 213 0 65 309 9 

NH4 0 1,434 7 0 0 0 0 15 1,456 5 
PN-

Abiotic 11 318 0 0 0 0 0 4 333 12 

Output, y 4 0 94 22 1 3 4  TST = 5,732  
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Table A17, Winter 1989 data set for the Neuse River estuary nitrogen model.  
Inter-compartment flows, fij; boundary flows, z and y; and throughflows, T 
have units of mmol-N/(m2 × season).  Storage, X, has dimensional units of 
mmol-N/m2.  TST is total system throughflow. 

fij PN-
Phyto 

PN-
Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

PN-
Abiotic 

Input, 
z 

Throughflow 
T 

Storage, 
X 

PN-
Phyto 0 0 0 190 190 679 0 6 1,065 20 
PN-

Hetero 748 0 1 174 137 625 269 8 1,962 13 

Sediment 91 1 0 0 26 5 41 6 170 1,300 

DON 212 79 0 0 0 0 0 94 385 47 

NOx 0 0 22 0 0 180 0 152 354 12 

NH4 0 1,457 15 0 0 0 0 19 1,491 6 
PN-

Abiotic 12 294 0 0 0 0 0 6 312 9 

Output, y 2 131 132 21 1 2 2  TST = 5,739  
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Appendix B 
 
Efferent and afferent transitive closure matrices, N and N', for the Neuse River estuary nitrogen 
model, North Carolina, USA.  The 17 tables below include 16 consecutive seasons from Spring 
1985 to Winter 1989 and an average data set as calculated by Christian and Thomas which 
represents all 16 seasons. 
 

Table B1, Transitive closure matrices, nij and n'ij, for the average data set representing 16 consecutive 
seasons from Spring 1985 through Winter 1989 for the Neuse River estuary nitrogen model.  

nij PN-Phyto PN-Hetero 
 

Sediment 
 

DON 
 

NOx 
 

NH4 
 

PN-Abiotic 

PN-Phyto 9.4017 8.7262 5.8723 8.6192 8.9334 8.9804 7.9603 
PN-Hetero 19.1590 20.1550 13.2690 18.7890 19.1350 19.5800 18.3210 
Sediment 1.5820 1.5589 2.0433 1.4971 1.5807 1.5703 1.6411 

DON 3.3025 3.2450 2.1615 4.1205 3.2085 3.2515 2.9553 
NOx 1.4691 1.5340 1.1208 1.4349 2.4674 1.5831 1.4189 
NH4 15.1490 15.9230 10.6120 14.8500 15.1300 16.4770 14.5030 

PN-Abiotic 2.6361 2.7635 1.8204 2.5803 2.6290 2.6889 3.5123 
n'ij        

PN-Phyto 9.4017 18.9150 1.0641 3.3451 2.0366 15.5010 2.4147 
PN-Hetero 8.8386 20.1550 1.1092 3.3641 2.0125 15.5920 2.5639 
Sediment 8.7308 18.6480 2.0433 3.2065 1.9888 14.9590 2.7474 

DON 8.5093 18.1240 1.0092 4.1205 1.8847 14.4610 2.3099 
NOx 6.4441 14.5850 0.8908 2.4426 2.4674 11.9860 1.8879 
NH4 8.7766 19.9970 1.1140 3.3390 1.9984 16.4770 2.5488 

PN-Abiotic 8.6898 19.7470 1.0874 3.3012 1.9758 15.3000 3.5123 
 

Table B2, Transitive closure matrices, nij and n'ij, for Spring 1985 for the Neuse River estuary nitrogen 
model.  

nij PN-Phyto PN-Hetero 
 

Sediment 
 

DON 
 

NOx 
 

NH4 
 

PN-Abiotic 

PN-Phyto 9.1070 8.3876 7.6378 7.8613 8.6917 8.5550 8.0208 
PN-Hetero 27.0471 28.2265 25.3557 25.4880 27.1463 27.6508 26.9096 
Sediment 2.1359 2.0924 2.9079 1.9246 2.2017 2.1061 2.2390 

DON 5.2378 5.2431 4.7305 5.7919 5.1674 5.2038 5.0034 
NOx 2.0774 2.1494 2.0709 1.9457 3.0930 2.1998 2.0824 
NH4 20.7664 21.6633 19.5254 19.5637 20.8463 22.2250 20.6681 

PN-Abiotic 3.0205 3.1402 2.8219 2.8386 3.0268 3.0798 3.9939 
n'ij        

PN-Phyto 9.1070 26.7633 1.9455 5.0309 2.6052 21.0755 2.8878 
PN-Hetero 8.4765 28.2265 2.0242 5.1120 2.5500 21.3484 3.0363 
Sediment 8.3850 26.2102 2.9079 4.8352 2.5906 20.3688 3.1647 

DON 8.1846 26.1420 1.8829 5.7919 2.4202 20.0321 2.8149 
NOx 6.9310 22.8819 1.7600 4.1543 3.0930 18.0810 2.5014 
NH4 8.4295 28.0586 2.0189 5.0821 2.5363 22.2250 3.0205 

PN-Abiotic 8.3895 27.8298 1.9965 5.0456 2.5198 21.0734 3.9939 
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Table B3, Transitive closure matrices, nij and n'ij, for Summer 1985 for the Neuse River estuary nitrogen 
model.  

nij PN-Phyto PN-Hetero 
 

Sediment 
 

DON 
 

NOx 
 

NH4 
 

PN-Abiotic 

PN-Phyto 21.6213 21.0205 17.9552 20.9786 21.4763 21.1821 20.1447 
PN-Hetero 67.3262 68.8826 58.4318 67.7203 67.6234 68.2714 65.9168 
Sediment 4.6817 4.6710 4.9779 4.6260 4.6806 4.6765 4.7096 

DON 14.6220 14.7403 12.5286 15.5540 14.6386 14.6790 14.1115 
NOx 3.5206 3.5933 3.1222 3.5352 4.5346 3.6296 3.4561 
NH4 50.0764 51.2086 43.6559 50.3518 50.2928 51.7643 49.0549 

PN-Abiotic 8.1004 8.2775 7.0228 8.1407 8.1339 8.2073 8.9214 
n'ij        

PN-Phyto 21.6213 67.1578 4.0092 14.6657 4.0306 50.5100 7.7870 
PN-Hetero 21.0732 68.8826 4.0838 14.8181 3.9724 50.9556 7.9754 
Sediment 20.9669 66.8334 4.9779 14.4831 3.9341 49.9415 8.1531 

DON 20.9161 67.3648 4.0017 15.5540 3.9299 50.0699 7.8029 
NOx 18.7591 61.1709 3.7147 13.1683 4.5346 46.1174 7.1185 
NH4 21.0003 68.6105 4.0879 14.7616 3.9583 51.7643 7.9522 

PN-Abiotic 20.9553 68.4137 4.0566 14.7224 3.9491 50.6285 8.9214 
 

Table B4, Transitive closure matrices, nij and n'ij, for Fall 1985 for the Neuse River estuary nitrogen model.  
nij PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 10.4139 9.8658 5.1600 9.9879 10.2335 10.1635 8.4314 
PN-Hetero 16.4525 17.4965 8.9893 16.5760 16.7451 16.8467 14.9070 
Sediment 1.7707 1.7666 1.9168 1.7354 1.7699 1.7681 1.7904 

DON 2.1686 2.0649 1.0791 3.0842 2.1342 2.1208 1.7644 
NOx 1.4497 1.5302 0.8860 1.4558 2.4723 1.5724 1.3319 
NH4 13.8218 14.6963 7.5727 13.9245 14.0669 15.1519 12.5274 

PN-Abiotic 2.6121 2.7677 1.4227 2.6275 2.6555 2.6705 3.3583 
n'ij        

PN-Phyto 10.4139 16.3469 0.9287 2.3706 1.9684 14.2793 2.2477 
PN-Hetero 9.9296 17.4965 0.9764 2.3744 1.9439 14.2848 2.3985 
Sediment 9.8386 16.2639 1.9168 2.2886 1.8916 13.8020 2.6521 

DON 9.1370 14.4149 0.8183 3.0842 1.7296 12.5538 1.9818 
NOx 7.5367 13.1809 0.8290 1.7963 2.4723 11.4853 1.8460 
NH4 9.8379 17.3320 0.9701 2.3523 1.9259 15.1519 2.3771 

PN-Abiotic 9.7983 17.2018 0.9605 2.3392 1.9160 14.0737 3.3583 
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Table B5, Transitive closure matrices, nij and n'ij, for Winter 1986 for the Neuse River estuary nitrogen 
model.  

nij PN-Phyto PN-Hetero 
 

Sediment 
 

DON 
 

NOx 
 

NH4 
 

PN-Abiotic 

PN-Phyto 4.3889 3.7288 0.9775 3.4369 3.7280 3.8514 3.2677 
PN-Hetero 15.0461 16.8056 4.0353 14.5343 15.1640 16.2298 14.6728 
Sediment 0.7742 0.7482 1.2016 0.6681 0.7941 0.7575 0.8045 

DON 2.7667 2.8556 0.7021 3.5121 2.6493 2.8078 2.4956 
NOx 1.2194 1.3429 0.4897 1.1648 2.2312 1.3962 1.1972 
NH4 11.7469 13.1083 3.2547 11.3389 11.8403 13.6628 11.4606 

PN-Abiotic 1.4845 1.6439 0.3957 1.4243 1.4877 1.5906 2.4355 
n'ij        

PN-Phyto 4.3889 15.4984 0.2102 2.7650 1.7827 12.6139 1.3612 
PN-Hetero 3.6200 16.8056 0.2088 2.8133 1.7446 12.7889 1.4705 
Sediment 3.6004 14.4609 1.2016 2.4996 1.7659 11.5371 1.5583 

DON 3.4390 14.7530 0.1877 3.5121 1.5747 11.4306 1.2921 
NOx 2.5499 11.6721 0.2202 1.9597 2.2312 9.5630 1.0428 
NH4 3.5866 16.6352 0.2137 2.7853 1.7287 13.6628 1.4576 

PN-Abiotic 3.5638 16.4039 0.2043 2.7509 1.7079 12.5068 2.4355 
 

Table B6, Transitive closure matrices, nij and n'ij, for Spring 1986 for the Neuse River estuary nitrogen 
model.  

nij PN-Phyto PN-Hetero 
 

Sediment 
 

DON 
 

NOx 
 

NH4 
 

PN-Abiotic 

PN-Phyto 12.9582 12.2545 9.2394 12.0897 12.4010 12.4157 11.5000 
PN-Hetero 41.3773 42.6411 31.7001 41.0747 40.0827 42.0677 39.9218 
Sediment 2.3185 2.3039 2.7380 2.2415 2.3516 2.3085 2.3714 

DON 7.5865 7.5986 5.6747 8.3765 7.3189 7.5616 7.1195 
NOx 2.0873 2.1402 1.7218 2.0644 3.0355 2.1724 2.0311 
NH4 31.8568 32.8246 24.4643 31.6202 30.8664 33.3854 30.7443 

PN-Abiotic 4.7072 4.8404 3.5997 4.6653 4.5585 4.7784 5.5320 
n'ij        

PN-Phyto 12.9582 40.7224 1.7684 7.5473 2.5487 31.9045 4.3799 
PN-Hetero 12.4516 42.6411 1.8258 7.7164 2.4790 32.5305 4.5755 
Sediment 12.1140 40.0020 2.7380 7.3111 2.5252 30.9939 4.7189 

DON 12.1525 40.4479 1.7398 8.3765 2.4095 31.1254 4.3435 
NOx 10.1562 34.6041 1.6035 6.2706 3.0355 27.1621 3.7638 
NH4 12.3972 42.4480 1.8221 7.6818 2.4687 33.3854 4.5567 

PN-Abiotic 12.3594 42.2330 1.8089 7.6470 2.4599 32.2404 5.5320 
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Table B7, Transitive closure matrices, nij and n'ij, for Summer 1986 for the Neuse River estuary nitrogen 
model.  

nij PN-Phyto PN-Hetero 
 

Sediment 
 

DON 
 

NOx 
 

NH4 
 

PN-Abiotic 

PN-Phyto 13.7826 13.2383 10.0261 13.1635 13.5756 13.4524 12.1982 
PN-Hetero 24.7974 25.9522 19.2800 24.7288 24.9737 25.2130 23.8019 
Sediment 3.1224 3.1204 3.3461 3.0416 3.1106 3.1219 3.1671 

DON 4.5357 4.5099 3.3886 5.4071 4.5070 4.4996 4.1476 
NOx 2.7113 2.8238 2.1939 2.6971 3.7274 2.8766 2.6184 
NH4 20.1170 21.0196 15.8544 20.0445 20.2521 21.4419 19.3489 

PN-Abiotic 3.7079 3.8707 2.8772 3.6928 3.7317 3.7654 4.5505 
n'ij        

PN-Phyto 13.7826 24.7131 2.3580 4.7285 3.2053 20.5030 3.4348 
PN-Hetero 13.2834 25.9522 2.4290 4.7583 3.1586 20.5849 3.5902 
Sediment 13.2763 24.7686 3.3461 4.6456 3.1228 20.2311 3.7918 

DON 12.6269 23.4376 2.2187 5.4071 2.9624 19.0916 3.2512 
NOx 11.4836 22.3268 2.1854 4.1033 3.7274 18.5692 3.1227 
NH4 13.1991 25.7455 2.4465 4.7242 3.1373 21.4419 3.5747 

PN-Abiotic 13.1681 25.6618 2.4031 4.7109 3.1290 20.3810 4.5505 
 
 

Table B8, Transitive closure matrices, nij and n'ij, for Fall 1986 for the Neuse River estuary nitrogen model.  
nij PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 20.8420 20.2396 15.3705 20.0148 20.4221 20.5190 19.1589 
PN-Hetero 34.9741 35.9204 27.0713 34.3840 34.8244 35.2260 33.9624 
Sediment 2.5130 2.5065 2.8969 2.4402 2.4840 2.5038 2.5640 

DON 6.5164 6.4595 4.8916 7.3113 6.4224 6.4687 6.1119 
NOx 3.1137 3.1886 2.5299 3.0573 4.0981 3.2365 3.0392 
NH4 27.0156 27.7445 20.9375 26.5589 26.8994 28.2094 26.2375 

PN-Abiotic 5.7658 5.9136 4.4576 5.6652 5.7388 5.8040 6.5914 
n'ij        

PN-Phyto 20.8420 34.7795 1.9513 6.5035 3.6523 27.3828 5.4629 
PN-Hetero 20.3529 35.9204 2.0000 6.5018 3.6243 27.3567 5.6355 
Sediment 19.7950 33.9277 2.8969 6.2459 3.4992 26.3202 5.7588 

DON 20.0544 34.1600 1.9111 7.3113 3.5348 26.5669 5.3633 
NOx 17.4104 30.6372 1.7959 5.5549 4.0981 24.1507 4.8456 
NH4 20.2438 35.7253 1.9918 6.4668 3.6049 28.2094 5.6060 

PN-Abiotic 20.2211 35.6383 1.9847 6.4559 3.5994 27.1640 6.5914 
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Table B9, Transitive closure matrices, nij and n'ij, for Winter 1987 for the Neuse River estuary nitrogen 
model.  

nij PN-Phyto PN-Hetero 
 

Sediment 
 

DON 
 

NOx 
 

NH4 
 

PN-Abiotic 

PN-Phyto 2.4750 1.5492 0.3734 1.8124 1.9316 1.8934 1.2639 
PN-Hetero 4.0660 4.6309 0.8320 3.7962 4.1678 4.3389 3.7366 
Sediment 0.2883 0.2324 1.0538 0.2315 0.2882 0.2579 0.3346 

DON 0.8757 0.7454 0.1528 1.7187 0.7775 0.7861 0.6042 
NOx 0.3090 0.3402 0.1842 0.2839 1.3158 0.4295 0.2924 
NH4 2.6111 2.9664 0.6112 2.4349 2.6759 3.7825 2.4049 

PN-Abiotic 0.5764 0.6448 0.1167 0.5336 0.5853 0.6082 1.5204 
n'ij        

PN-Phyto 2.4750 3.3522 0.0557 0.9341 1.0119 2.6842 0.3947 
PN-Hetero 1.8791 4.6309 0.0574 0.9042 1.0090 2.8428 0.5393 
Sediment 1.9320 3.3703 1.0538 0.7996 1.0115 2.4505 0.7003 

DON 1.6991 3.1294 0.0442 1.7187 0.7902 2.1622 0.3661 
NOx 0.5898 1.4053 0.0525 0.2793 1.3158 1.1623 0.1743 
NH4 1.8418 4.5276 0.0643 0.8852 0.9888 3.7825 0.5298 

PN-Abiotic 1.8458 4.4676 0.0558 0.8806 0.9817 2.7611 1.5204 
 

Table B10, Transitive closure matrices, nij and n'ij, for Spring 1987 for the Neuse River estuary nitrogen 
model.  

nij PN-Phyto PN-Hetero 
 

Sediment 
 

DON 
 

NOx 
 

NH4 
 

PN-Abiotic 

PN-Phyto 9.0494 8.4902 4.1676 8.2161 8.1437 8.7671 7.5271 
PN-Hetero 11.6975 12.5941 5.9782 11.0247 10.9208 11.7646 11.1352 
Sediment 0.9653 0.9675 1.4782 0.8918 0.9743 0.9632 1.0063 

DON 2.5111 2.4545 1.1924 3.3045 2.2838 2.4591 2.1742 
NOx 0.7311 0.7786 0.4915 0.6869 1.6913 0.8051 0.7065 
NH4 8.7615 9.4290 4.5331 8.2566 8.1839 9.8113 8.3452 

PN-Abiotic 2.3184 2.4897 1.1825 2.1835 2.1629 2.3300 3.2014 
n'ij        

PN-Phyto 9.0494 11.4227 0.4874 2.5856 1.2293 8.9274 2.0248 
PN-Hetero 8.6945 12.5941 0.5197 2.5787 1.2253 8.9041 2.2264 
Sediment 8.2533 11.1291 1.4782 2.3996 1.2575 8.3855 2.3145 

DON 7.9796 10.4937 0.4432 3.3045 1.0955 7.9570 1.8586 
NOx 4.8436 6.9395 0.3808 1.4321 1.6913 5.4312 1.2590 
NH4 8.6043 12.4581 0.5207 2.5517 1.2132 9.8113 2.2046 

PN-Abiotic 8.6186 12.4521 0.5141 2.5543 1.2137 8.8199 3.2014 
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Table B11, Transitive closure matrices, nij and n'ij, for Summer 1987 for the Neuse River estuary nitrogen 
model.  

nij PN-Phyto PN-Hetero 
 

Sediment 
 

DON 
 

NOx 
 

NH4 
 

PN-Abiotic 

PN-Phyto 35.1918 34.7431 30.5486 34.2889 34.9507 34.9309 33.6693 
PN-Hetero 60.1896 61.4011 53.6578 59.4652 60.4630 60.5737 59.4289 
Sediment 6.0918 6.1003 6.3523 5.9712 6.0838 6.0947 6.1344 

DON 6.4854 6.4072 5.6329 7.3209 6.4425 6.4392 6.2090 
NOx 5.2939 5.3912 4.7937 5.2264 6.3151 5.4185 5.2366 
NH4 52.5440 53.5768 47.0420 51.9014 52.7749 53.8715 51.9059 

PN-Abiotic 9.0164 9.1911 8.0331 8.9051 9.0550 9.0711 9.8962 
n'ij        

PN-Phyto 35.1918 60.3285 5.4142 6.5318 5.7874 53.1306 8.7985 
PN-Hetero 34.6631 61.4011 5.4767 6.5236 5.7659 53.0598 8.9437 
Sediment 34.3720 59.7675 6.3523 6.4180 5.6842 52.3053 9.0449 

DON 34.0458 58.4043 5.2408 7.3209 5.6003 51.4153 8.5176 
NOx 31.9701 56.5344 5.1307 6.0124 6.3151 49.7723 8.2640 
NH4 34.5452 61.1639 5.4814 6.5001 5.7454 53.8715 8.9177 

PN-Abiotic 34.5033 61.0732 5.4482 6.4915 5.7378 52.7987 9.8962 
 
 
 

Table B12, Transitive closure matrices, nij and n'ij, for Fall 1987 for the Neuse River estuary nitrogen 
model.  

nij PN-Phyto PN-Hetero 
 

Sediment 
 

DON 
 

NOx 
 

NH4 
 

PN-Abiotic 

PN-Phyto 11.9181 11.5099 9.3393 10.5506 11.5495 11.6289 10.3000 
PN-Hetero 32.8652 34.8469 28.1769 30.9708 34.2730 34.1194 31.1353 
Sediment 3.4943 3.5130 3.8466 3.1769 3.4978 3.5039 3.6358 

DON 2.3374 2.2774 1.8473 3.0813 2.2808 2.2939 2.0377 
NOx 2.8615 3.0135 2.5441 2.6842 3.9685 3.0407 2.7456 
NH4 29.9815 31.7848 25.7247 28.2506 31.2623 32.1227 28.4111 

PN-Abiotic 2.9207 3.0789 2.4901 2.7415 3.0318 3.0203 3.7512 
n'ij        

PN-Phyto 11.9181 34.1143 2.9346 2.2624 3.4698 31.5907 2.7445 
PN-Hetero 11.0885 34.8469 2.9872 2.2407 3.4740 31.2721 2.7991 
Sediment 11.1204 33.1364 3.8466 2.1680 3.3441 30.2925 3.0831 

DON 10.9002 31.4774 2.7069 3.0813 3.1953 29.0600 2.5320 
NOx 9.5248 29.7308 2.6609 1.9159 3.9685 27.4954 2.4351 
NH4 11.0366 34.6788 2.9756 2.2300 3.4573 32.1227 2.7867 

PN-Abiotic 10.9613 34.2478 2.9365 2.2063 3.4183 30.7927 3.7512 
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Table B13, Transitive closure matrices, nij and n'ij, for Winter 1988 for the Neuse River estuary nitrogen 
model.  

nij PN-Phyto PN-Hetero 
 

Sediment 
 

DON 
 

NOx 
 

NH4 
 

PN-Abiotic 

PN-Phyto 4.3203 3.8816 1.4800 3.8032 3.6996 3.9196 3.5150 
PN-Hetero 20.5525 24.3236 9.0188 22.8207 21.6254 23.4879 21.9940 
Sediment 1.1721 1.1338 1.4386 1.0970 1.1428 1.1363 1.1545 

DON 2.8033 3.0721 1.1472 3.9145 2.7809 3.0008 2.7789 
NOx 1.0680 1.2346 0.5757 1.1621 2.1132 1.2509 1.1313 
NH4 17.3549 20.5200 7.6860 19.2547 18.2540 20.8182 18.5646 

PN-Abiotic 1.3806 1.6222 0.6019 1.5235 1.4446 1.5681 2.4669 
n'ij        

PN-Phyto 4.3203 22.8006 0.4650 2.8933 1.8528 19.5669 1.4127 
PN-Hetero 3.4989 24.3236 0.4824 2.9556 1.8437 19.9612 1.5049 
Sediment 3.7306 21.1974 1.4386 2.6561 1.8215 18.0534 1.4769 

DON 3.6848 23.7205 0.4738 3.9145 1.8306 19.6905 1.4681 
NOx 2.1325 14.4806 0.3612 1.7654 2.1132 12.4696 0.9079 
NH4 3.4765 24.1454 0.4838 2.9343 1.8312 20.8182 1.4947 

PN-Abiotic 3.4351 23.7082 0.4705 2.8837 1.8000 19.4766 2.4669 
 
 

Table B14, Transitive closure matrices, nij and n'ij, for Spring 1988 for the Neuse River estuary nitrogen 
model.  

nij PN-Phyto PN-Hetero 
 

Sediment 
 

DON 
 

NOx 
 

NH4 
 

PN-Abiotic 

PN-Phyto 9.4802 8.6817 4.0800 8.9870 8.5484 9.0856 7.6699 
PN-Hetero 13.3702 13.9565 6.2839 13.2093 12.6787 13.3703 12.2743 
Sediment 1.2521 1.2395 1.5894 1.2159 1.2840 1.2527 1.2988 

DON 3.3552 3.2596 1.5018 4.2390 3.0934 3.2763 2.8737 
NOx 1.2557 1.2990 0.7645 1.2369 2.2076 1.3680 1.1788 
NH4 9.3459 9.7503 4.4730 9.2317 8.8703 10.3460 8.5919 

PN-Abiotic 2.5368 2.6392 1.1896 2.5035 2.4024 2.5340 3.3214 
n'ij        

PN-Phyto 9.4802 12.8875 0.6048 3.4675 1.7651 9.5907 2.1827 
PN-Hetero 9.0069 13.9565 0.6276 3.4333 1.7636 9.5076 2.3531 
Sediment 8.4461 12.4114 1.5894 3.1647 1.7884 8.9201 2.4931 

DON 8.6959 12.5410 0.5770 4.2390 1.6555 8.9636 2.1195 
NOx 6.0812 9.3385 0.5489 2.3112 2.2076 6.9935 1.6246 
NH4 8.8537 13.7116 0.6282 3.3743 1.7351 10.3460 2.3163 

PN-Abiotic 8.9142 13.7669 0.6197 3.3943 1.7431 9.3992 3.3214 
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Table B15, Transitive closure matrices, nij and n'ij, for Summer 1988 for the Neuse River estuary nitrogen 
model.  

nij PN-Phyto PN-Hetero 
 

Sediment 
 

DON 
 

NOx 
 

NH4 
 

PN-Abiotic 

PN-Phyto 25.9462 25.3899 20.9266 24.9017 25.8325 25.6413 24.1405 
PN-Hetero 44.7044 45.7467 37.3040 43.7866 44.6545 45.0324 43.4006 
Sediment 3.8057 3.8164 4.1300 3.6932 3.7999 3.8117 3.8616 

DON 6.3477 6.2636 5.1521 7.1151 6.3237 6.2953 5.9529 
NOx 3.2008 3.2688 2.7514 3.1322 4.1971 3.3010 3.1215 
NH4 37.5630 38.4203 31.5710 36.7837 37.5207 38.8334 36.5070 

PN-Abiotic 7.0395 7.1960 5.8694 6.8916 7.0311 7.0879 7.8273 
n'ij        

PN-Phyto 25.9462 44.3542 3.1538 6.3095 3.7458 37.8269 6.6747 
PN-Hetero 25.5903 45.7467 3.2182 6.3509 3.7065 38.0287 6.8692 
Sediment 25.2527 44.2383 4.1300 6.2093 3.6561 37.3121 7.0848 

DON 25.0525 43.1844 3.0644 7.1151 3.6189 36.6529 6.4960 
NOx 22.0742 39.3817 2.8597 5.4732 4.1971 33.5838 5.9522 
NH4 25.4624 45.4961 3.2252 6.3177 3.6879 38.8334 6.8423 

PN-Abiotic 25.4599 45.4651 3.1992 6.3154 3.6873 37.8174 7.8273 
 
 

Table B16, Transitive closure matrices, nij and n'ij, for Fall 1988 for the Neuse River estuary nitrogen 
model.  

nij PN-Phyto PN-Hetero 
 

Sediment 
 

DON 
 

NOx 
 

NH4 
 

PN-Abiotic 

PN-Phyto 11.3443 10.8140 5.7359 10.5079 10.7678 11.1470 9.3574 
PN-Hetero 14.1184 15.0416 7.9333 13.2820 14.9610 14.2919 13.0038 
Sediment 1.5642 1.5725 1.8324 1.4594 1.5682 1.5638 1.6215 

DON 2.5047 2.4143 1.2798 3.3235 2.4037 2.4682 2.0889 
NOx 1.9116 2.0215 1.2268 1.7964 3.0113 2.0782 1.7896 
NH4 11.4096 12.1524 6.4446 10.7333 12.0874 12.5492 10.5152 

PN-Abiotic 2.6121 2.7724 1.4625 2.4560 2.7576 2.6414 3.3969 
n'ij        

PN-Phyto 11.3443 14.5411 0.8651 2.5755 2.5092 12.2399 2.3499 
PN-Hetero 10.4997 15.0416 0.8899 2.4210 2.5928 11.6708 2.4286 
Sediment 10.3704 14.0187 1.8324 2.3715 2.4228 11.3844 2.6998 

DON 10.2192 13.2450 0.7876 3.3235 2.2853 11.0575 2.1403 
NOx 8.2031 11.6647 0.7941 1.8894 3.0113 9.7925 1.9286 
NH4 10.3909 14.8817 0.8852 2.3958 2.5653 12.5492 2.4049 

PN-Abiotic 10.4015 14.8444 0.8784 2.3970 2.5589 11.5494 3.3969 
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Table B17, Transitive closure matrices, nij and n'ij, for Winter 1989 for the Neuse River estuary nitrogen 
model.  

nij PN-Phyto PN-Hetero 
 

Sediment 
 

DON 
 

NOx 
 

NH4 
 

PN-Abiotic 

PN-Phyto 4.2995 3.4958 0.8443 3.7017 3.7225 3.8756 3.1249 
PN-Hetero 6.9180 7.6100 1.5532 6.8534 6.7722 7.1632 6.7653 
Sediment 0.5824 0.5323 1.1308 0.5280 0.6017 0.5648 0.6075 

DON 1.1344 1.0023 0.2306 2.0128 1.0137 1.0599 0.8945 
NOx 0.7018 0.7568 0.2976 0.6884 1.6914 0.8420 0.6916 
NH4 5.1888 5.6982 1.2532 5.1360 5.0822 6.3693 5.0776 

PN-Abiotic 1.0851 1.1797 0.2423 1.0687 1.0567 1.1171 2.0490 
n'ij        

PN-Phyto 4.2995 6.4401 0.1348 1.3382 1.2373 5.4258 0.9155 
PN-Hetero 3.7552 7.6100 0.1346 1.3448 1.2219 5.4436 1.0758 
Sediment 3.6488 6.1434 1.1308 1.1958 1.2529 4.9536 1.1150 

DON 3.1380 5.1078 0.1018 2.0128 0.9321 4.1047 0.7249 
NOx 2.1113 4.1945 0.1429 0.7487 1.6914 3.5465 0.6096 
NH4 3.7063 7.4982 0.1429 1.3262 1.2066 6.3693 1.0625 

PN-Abiotic 3.7039 7.4186 0.1320 1.3187 1.1990 5.3382 2.0490 
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Appendix C 
 
Fractional Transfer Coefficients (FTC’s) for the Neuse River estuary nitrogen model, North 
Carolina, USA as calculated by equations (3-5) or (3-6).  The 17 tables below include 16 
consecutive seasons from Spring 1985 to Winter 1989 and an average data set as calculated by 
Christian and Thomas which represents all 16 seasons. 
 

Table C1, Fractional Transfer Coefficients (FTC’s), ηij, for the average data set representing 16 consecutive 
seasons from spring 1985 through winter 1989 for the Neuse River estuary nitrogen model.  Numbers in the 
table have been multiplied by 103 for efficiency of presentation. Dimensional units for η are (m2 
season)/mmol-N. 
ηij × 103 PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 1.36 1.26 0.85 1.24 1.29 1.30 1.15 
PN-Hetero 1.28 1.34 0.88 1.25 1.28 1.30 1.22 
Sediment 1.26 1.24 1.63 1.19 1.26 1.25 1.31 

DON 1.23 1.21 0.80 1.53 1.19 1.21 1.10 
NOx 0.93 0.97 0.71 0.91 1.56 1.00 0.90 
NH4 1.27 1.33 0.89 1.24 1.27 1.38 1.21 

PN-Abiotic 1.25 1.32 0.87 1.23 1.25 1.28 1.67 
 

Table C2, Fractional Transfer Coefficients (FTC’s), ηij, for Spring 1985 for the Neuse River estuary 
nitrogen model.  Numbers in the table have been multiplied by 103 for efficiency of presentation.  
Dimensional units for η are (m2 season)/mmol-N. 
ηij × 103 PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 8.20 7.55 6.87 7.08 7.82 7.70 7.22 
PN-Hetero 7.63 7.96 7.15 7.19 7.66 7.80 7.59 
Sediment 7.55 7.39 10.28 6.80 7.78 7.44 7.91 

DON 7.37 7.37 6.65 8.15 7.27 7.32 7.04 
NOx 6.24 6.45 6.22 5.84 9.29 6.61 6.25 
NH4 7.59 7.91 7.13 7.15 7.62 8.12 7.55 

PN-Abiotic 7.55 7.85 7.05 7.10 7.57 7.70 9.98 
 

Table C3, Fractional Transfer Coefficients (FTC’s), ηij, for Summer 1985 for the Neuse River estuary 
nitrogen model.  Numbers in the table have been multiplied by 103 for efficiency of presentation.  
Dimensional units for η are (m2 season)/mmol-N. 
ηij × 103 PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 8.65 8.41 7.18 8.39 8.59 8.48 8.06 
PN-Hetero 8.43 8.63 7.32 8.48 8.47 8.55 8.26 
Sediment 8.39 8.37 8.92 8.29 8.39 8.38 8.44 

DON 8.37 8.44 7.17 8.90 8.38 8.40 8.08 
NOx 7.51 7.66 6.66 7.54 9.67 7.74 7.37 
NH4 8.40 8.59 7.33 8.45 8.44 8.69 8.23 

PN-Abiotic 8.39 8.57 7.27 8.43 8.42 8.50 9.24 
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Table C4, Fractional Transfer Coefficients (FTC’s), ηij, for Fall 1985 for the Neuse River estuary nitrogen 
model.  Numbers in the table have been multiplied by 103 for efficiency of presentation.  Dimensional units 
for η are (m2 season)/mmol-N. 
ηij × 103 PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 5.86 5.55 2.90 5.62 5.76 5.72 4.74 
PN-Hetero 5.58 5.94 3.05 5.63 5.68 5.72 5.06 
Sediment 5.53 5.52 5.99 5.42 5.53 5.53 5.60 

DON 5.14 4.89 2.56 7.31 5.06 5.03 4.18 
NOx 4.24 4.47 2.59 4.26 7.23 4.60 3.89 
NH4 5.53 5.88 3.03 5.57 5.63 6.07 5.01 

PN-Abiotic 5.51 5.84 3.00 5.54 5.60 5.63 7.08 
 
 
 

Table C5, Fractional Transfer Coefficients (FTC’s), ηij, for Winter 1986 for the Neuse River estuary 
nitrogen model.  Numbers in the table have been multiplied by 103 for efficiency of presentation.  
Dimensional units for η are (m2 season)/mmol-N. 
ηij × 103 PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 6.60 5.61 1.47 5.17 5.61 5.79 4.91 
PN-Hetero 5.44 6.08 1.46 5.26 5.49 5.87 5.31 
Sediment 5.41 5.23 8.40 4.67 5.55 5.30 5.63 

DON 5.17 5.34 1.31 6.56 4.95 5.25 4.66 
NOx 3.83 4.22 1.54 3.66 7.02 4.39 3.76 
NH4 5.39 6.02 1.49 5.21 5.44 6.27 5.26 

PN-Abiotic 5.36 5.93 1.43 5.14 5.37 5.74 8.79 
 
 
 

Table C6, Fractional Transfer Coefficients (FTC’s), ηij, for Spring 1986 for the Neuse River estuary 
nitrogen model.  Numbers in the table have been multiplied by 103 for efficiency of presentation.  
Dimensional units for η are (m2 season)/mmol-N. 
ηij × 103 PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 8.32 7.87 5.93 7.76 7.96 7.97 7.39 
PN-Hetero 8.00 8.24 6.13 7.94 7.75 8.13 7.72 
Sediment 7.78 7.73 9.19 7.52 7.89 7.75 7.96 

DON 7.81 7.82 5.84 8.62 7.53 7.78 7.32 
NOx 6.52 6.69 5.38 6.45 9.49 6.79 6.35 
NH4 7.96 8.20 6.11 7.90 7.71 8.34 7.68 

PN-Abiotic 7.94 8.16 6.07 7.87 7.69 8.06 9.33 
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Table C7, Fractional Transfer Coefficients (FTC’s), ηij, for Summer 1986 for the Neuse River estuary 
nitrogen model.  Numbers in the table have been multiplied by 103 for efficiency of presentation.  
Dimensional units for η are (m2 season)/mmol-N. 
ηij × 103 PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 6.33 6.08 4.61 6.05 6.24 6.18 5.60 
PN-Hetero 6.10 6.39 4.74 6.08 6.15 6.20 5.86 
Sediment 6.10 6.09 6.54 5.94 6.08 6.10 6.19 

DON 5.80 5.77 4.33 6.91 5.76 5.75 5.30 
NOx 5.27 5.49 4.27 5.25 7.25 5.60 5.09 
NH4 6.06 6.34 4.78 6.04 6.10 6.46 5.83 

PN-Abiotic 6.05 6.31 4.69 6.02 6.09 6.14 7.42 
  
 

Table C8, Fractional Transfer Coefficients (FTC’s), ηij, for Fall 1986 for the Neuse River estuary nitrogen 
model.  Numbers in the table have been multiplied by 103 for efficiency of presentation.  Dimensional units 
for η are (m2 season)/mmol-N. 
ηij × 103 PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 10.50 10.20 7.74 10.08 10.29 10.34 9.65 
PN-Hetero 10.25 10.53 7.94 10.08 10.21 10.33 9.96 
Sediment 9.97 9.95 11.50 9.68 9.86 9.94 10.17 

DON 10.10 10.01 7.58 11.34 9.96 10.03 9.48 
NOx 8.77 8.98 7.13 8.61 11.54 9.12 8.56 
NH4 10.20 10.47 7.90 10.03 10.15 10.65 9.90 

PN-Abiotic 10.19 10.45 7.88 10.01 10.14 10.25 11.65 
 
 
 

Table C9, Fractional Transfer Coefficients (FTC’s), ηij, for Winter 1987 for the Neuse River estuary 
nitrogen model.  Numbers in the table have been multiplied by 103 for efficiency of presentation.  
Dimensional units for η are (m2 season)/mmol-N. 
ηij × 103 PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 1.90 1.19 0.29 1.39 1.49 1.46 0.97 
PN-Hetero 1.45 1.65 0.30 1.35 1.48 1.54 1.33 
Sediment 1.49 1.20 5.43 1.19 1.49 1.33 1.72 

DON 1.31 1.11 0.23 2.57 1.16 1.17 0.90 
NOx 0.45 0.50 0.27 0.42 1.93 0.63 0.43 
NH4 1.42 1.61 0.33 1.32 1.45 2.05 1.30 

PN-Abiotic 1.42 1.59 0.29 1.31 1.44 1.50 3.74 
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Table C10, Fractional Transfer Coefficients (FTC’s), ηij, for Spring 1987 for the Neuse River estuary 
nitrogen model.  Numbers in the table have been multiplied by 103 for efficiency of presentation.  
Dimensional units for η are (m2 season)/mmol-N. 
ηij × 103 PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 3.31 3.10 1.52 3.00 2.98 3.20 2.75 
PN-Hetero 3.18 3.42 1.62 3.00 2.97 3.20 3.03 
Sediment 3.02 3.02 4.62 2.79 3.04 3.01 3.14 

DON 2.92 2.85 1.38 3.84 2.65 2.86 2.53 
NOx 1.77 1.89 1.19 1.66 4.10 1.95 1.71 
NH4 3.14 3.38 1.63 2.96 2.94 3.52 3.00 

PN-Abiotic 3.15 3.38 1.61 2.97 2.94 3.17 4.35 
 
 
 

Table C11, Fractional Transfer Coefficients (FTC’s), ηij, for Summer 1987 for the Neuse River estuary 
nitrogen model.  Numbers in the table have been multiplied by 103 for efficiency of presentation.   
Dimensional units for η are (m2 season)/mmol-N. 
ηij × 103 PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 11.38 11.24 9.88 11.09 11.30 11.30 10.89 
PN-Hetero 11.21 11.44 9.99 11.08 11.26 11.28 11.07 
Sediment 11.12 11.13 11.59 10.90 11.10 11.12 11.19 

DON 11.01 10.88 9.56 12.43 10.94 10.93 10.54 
NOx 10.34 10.53 9.36 10.21 12.33 10.58 10.23 
NH4 11.17 11.39 10.00 11.04 11.22 11.45 11.04 

PN-Abiotic 11.16 11.38 9.94 11.02 11.21 11.23 12.25 
 
 

Table C12, Fractional Transfer Coefficients (FTC’s), ηij, for Fall 1987 for the Neuse River estuary nitrogen 
model.  Numbers in the table have been multiplied by 103 for efficiency of presentation.  Dimensional units 
for η are (m2 season)/mmol-N. 
ηij × 103 PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 12.65 12.22 9.91 11.20 12.26 12.34 10.93 
PN-Hetero 11.77 12.48 10.09 11.09 12.28 12.22 11.15 
Sediment 11.81 11.87 13.00 10.73 11.82 11.84 12.28 

DON 11.57 11.27 9.14 15.25 11.29 11.36 10.09 
NOx 10.11 10.65 8.99 9.48 14.02 10.74 9.70 
NH4 11.72 12.42 10.05 11.04 12.22 12.55 11.10 

PN-Abiotic 11.64 12.27 9.92 10.92 12.08 12.03 14.94 
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Table C13, Fractional Transfer Coefficients (FTC’s), ηij, for Winter 1988 for the Neuse River estuary 
nitrogen model.  Numbers in the table have been multiplied by 103 for efficiency of presentation.  
Dimensional units for η are (m2 season)/mmol-N. 
ηij × 103 PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 6.89 6.19 2.36 6.07 5.90 6.25 5.61 
PN-Hetero 5.58 6.60 2.45 6.20 5.87 6.38 5.97 
Sediment 5.95 5.76 7.30 5.57 5.80 5.77 5.86 

DON 5.88 6.44 2.41 8.21 5.83 6.29 5.83 
NOx 3.40 3.93 1.83 3.70 6.73 3.98 3.60 
NH4 5.54 6.56 2.46 6.15 5.83 6.65 5.93 

PN-Abiotic 5.48 6.44 2.39 6.05 5.73 6.22 9.79 
 
 
 

Table C14, Fractional Transfer Coefficients (FTC’s), ηij, for Spring 1988 for the Neuse River estuary 
nitrogen model.  Numbers in the table have been multiplied by 103 for efficiency of presentation.  
Dimensional units for η are (m2 season)/mmol-N. 
ηij × 103 PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 6.27 5.75 2.70 5.95 5.66 6.01 5.08 
PN-Hetero 5.96 6.22 2.80 5.89 5.65 5.96 5.47 
Sediment 5.59 5.53 7.10 5.43 5.73 5.59 5.80 

DON 5.76 5.59 2.58 7.27 5.31 5.62 4.93 
NOx 4.02 4.16 2.45 3.96 7.08 4.38 3.78 
NH4 5.86 6.11 2.80 5.79 5.56 6.49 5.39 

PN-Abiotic 5.90 6.14 2.77 5.82 5.59 5.89 7.72 
 
 
 

Table C15, Fractional Transfer Coefficients (FTC’s), ηij, for Summer 1988 for the Neuse River estuary 
nitrogen model.  Numbers in the table have been multiplied by 103 for efficiency of presentation.  
Dimensional units for η are (m2 season)/mmol-N. 
ηij × 103 PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 7.79 7.62 6.28 7.48 7.76 7.70 7.25 
PN-Hetero 7.68 7.86 6.41 7.52 7.67 7.74 7.46 
Sediment 7.58 7.60 8.23 7.36 7.57 7.59 7.69 

DON 7.52 7.42 6.10 8.43 7.49 7.46 7.05 
NOx 6.63 6.77 5.70 6.48 8.69 6.83 6.46 
NH4 7.64 7.82 6.42 7.49 7.64 7.90 7.43 

PN-Abiotic 7.64 7.81 6.37 7.48 7.63 7.70 8.50 
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Table C16, Fractional Transfer Coefficients (FTC’s), ηij, for Fall 1988 for the Neuse River estuary nitrogen 
model.  Numbers in the table have been multiplied by 103 for efficiency of presentation.  Dimensional units 
for η are (m2 season)/mmol-N. 
ηij × 103 PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 8.56 8.16 4.33 7.92 8.12 8.41 7.06 
PN-Hetero 7.92 8.44 4.45 7.45 8.39 8.02 7.29 
Sediment 7.82 7.86 9.16 7.30 7.84 7.82 8.11 

DON 7.71 7.43 3.94 10.23 7.40 7.59 6.43 
NOx 6.19 6.54 3.97 5.81 9.75 6.73 5.79 
NH4 7.84 8.35 4.43 7.37 8.30 8.62 7.22 

PN-Abiotic 7.84 8.33 4.39 7.38 8.28 7.93 10.20 
 
 

Table C17, Fractional Transfer Coefficients (FTC’s), ηij, for Winter 1989 for the Neuse River estuary 
nitrogen model.  Numbers in the table have been multiplied by 103 for efficiency of presentation.  
Dimensional units for η are (m2 season)/mmol-N. 
ηij × 103 PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 4.04 3.28 0.79 3.48 3.50 3.64 2.93 
PN-Hetero 3.53 3.88 0.79 3.49 3.45 3.65 3.45 
Sediment 3.43 3.13 6.65 3.11 3.54 3.32 3.57 

DON 2.95 2.60 0.60 5.23 2.63 2.75 2.32 
NOx 1.98 2.14 0.84 1.94 4.78 2.38 1.95 
NH4 3.48 3.82 0.84 3.44 3.41 4.27 3.41 

PN-Abiotic 3.48 3.78 0.78 3.43 3.39 3.58 6.57 
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Appendix D 
 
Control Ratios, crij, for the Neuse River estuary nitrogen model, as calculated by equation (3-7).  
The 17 tables below include 16 consecutive seasons from Spring 1985 to Winter 1989 and an 
average data set as calculated by Christian and Thomas which represents all 16 seasons. 
 

Table D1, Control Ratios, crij, for the data set representing an average (as calculated by Christian and 
Thomas) of 16 consecutive seasons from spring 1985 through winter 1989 for the Neuse River estuary 
nitrogen model.  

crij PN-Phyto PN-Hetero 
 

Sediment 
 

DON 
 

NOx 
 

NH4 
 

PN-Abiotic 

PN-Phyto 0.00 -0.01 -0.33 0.01 0.28 0.02 -0.08 
PN-Hetero 0.01 0.00 -0.29 0.04 0.24 -0.02 -0.07 
Sediment 0.33 0.29 0.00 0.33 0.44 0.29 0.34 

DON -0.01 -0.04 -0.33 0.00 0.24 -0.03 -0.10 
NOx -0.28 -0.24 -0.44 -0.24 0.00 -0.21 -0.28 
NH4 -0.02 0.02 -0.29 0.03 0.21 0.00 -0.05 

PN-Abiotic 0.08 0.07 -0.34 0.10 0.28 0.05 0.00 
 
 

Table D2, Control Ratios, crij, for Spring 1985 for the Neuse River estuary nitrogen model.  
crij PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 0.00 -0.01 -0.09 -0.04 0.20 0.01 -0.04 
PN-Hetero 0.01 0.00 -0.03 -0.03 0.16 -0.01 -0.03 
Sediment 0.09 0.03 0.00 0.02 0.20 0.04 0.11 

DON 0.04 0.03 -0.02 0.00 0.20 0.02 -0.01 
NOx -0.20 -0.16 -0.20 -0.20 0.00 -0.13 -0.17 
NH4 -0.01 0.01 -0.04 -0.02 0.13 0.00 -0.02 

PN-Abiotic 0.04 0.03 -0.11 0.01 0.17 0.02 0.00 
 
 

Table D3, Control Ratios, crij, for Summer 1985 for the Neuse River estuary nitrogen model.   
crij PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 0.00 0.00 -0.14 0.00 0.13 0.01 -0.04 
PN-Hetero 0.00 0.00 -0.13 0.01 0.10 0.00 -0.04 
Sediment 0.14 0.13 0.00 0.13 0.21 0.13 0.14 

DON 0.00 -0.01 -0.13 0.00 0.10 -0.01 -0.04 
NOx -0.13 -0.10 -0.21 -0.10 0.00 -0.08 -0.12 
NH4 -0.01 0.00 -0.13 0.01 0.08 0.00 -0.03 

PN-Abiotic 0.04 0.04 -0.14 0.04 0.12 0.03 0.00 
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Table D4, Control Ratios, crij, for Fall 1985 for the Neuse River estuary nitrogen model.  

crij PN-Phyto PN-Hetero 
 

Sediment 
 

DON 
 

NOx 
 

NH4 
 

PN-Abiotic 

PN-Phyto 0.00 -0.01 -0.48 0.09 0.26 0.03 -0.14 
PN-Hetero 0.01 0.00 -0.45 0.13 0.21 -0.03 -0.13 
Sediment 0.48 0.45 0.00 0.53 0.53 0.45 0.46 

DON -0.09 -0.13 -0.53 0.00 0.16 -0.10 -0.25 
NOx -0.26 -0.21 -0.53 -0.16 0.00 -0.18 -0.30 
NH4 -0.03 0.03 -0.45 0.10 0.18 0.00 -0.11 

PN-Abiotic 0.14 0.13 -0.46 0.25 0.30 0.11 0.00 
 

Table D5, Control Ratios, crij, for Winter 1986 for the Neuse River estuary nitrogen model.  
crij PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 0.00 0.03 -0.73 0.00 0.32 0.07 -0.08 
PN-Hetero -0.03 0.00 -0.72 -0.01 0.23 -0.02 -0.11 
Sediment 0.73 0.72 0.00 0.72 0.72 0.72 0.75 

DON 0.00 0.01 -0.72 0.00 0.26 0.01 -0.09 
NOx -0.32 -0.23 -0.72 -0.26 0.00 -0.19 -0.30 
NH4 -0.07 0.02 -0.72 -0.01 0.19 0.00 -0.08 

PN-Abiotic 0.08 0.11 -0.75 0.09 0.30 0.08 0.00 
 

Table D6, Control Ratios, crij, for Spring 1986 for the Neuse River estuary nitrogen model.   
crij PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 0.00 -0.02 -0.24 -0.01 0.18 0.00 -0.07 
PN-Hetero 0.02 0.00 -0.21 0.02 0.14 -0.01 -0.05 
Sediment 0.24 0.21 0.00 0.22 0.32 0.21 0.24 

DON 0.01 -0.02 -0.22 0.00 0.14 -0.02 -0.07 
NOx -0.18 -0.14 -0.32 -0.14 0.00 -0.12 -0.17 
NH4 0.00 0.01 -0.21 0.02 0.12 0.00 -0.05 

PN-Abiotic 0.07 0.05 -0.24 0.07 0.17 0.05 0.00 
 

Table D7, Control Ratios, crij, for Summer 1986 for the Neuse River estuary nitrogen model.   
crij PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 0.00 0.00 -0.24 0.04 0.15 0.02 -0.07 
PN-Hetero 0.00 0.00 -0.22 0.05 0.11 -0.02 -0.07 
Sediment 0.24 0.22 0.00 0.27 0.30 0.22 0.24 

DON -0.04 -0.05 -0.27 0.00 0.09 -0.05 -0.12 
NOx -0.15 -0.11 -0.30 -0.09 0.00 -0.08 -0.16 
NH4 -0.02 0.02 -0.22 0.05 0.08 0.00 -0.05 

PN-Abiotic 0.07 0.07 -0.24 0.12 0.16 0.05 0.00 
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Table D8, Control Ratios, crij, for Fall 1986 for the Neuse River estuary nitrogen model.   

crij PN-Phyto PN-Hetero 
 

Sediment 
 

DON 
 

NOx 
 

NH4 
 

PN-Abiotic 

PN-Phyto 0.00 -0.01 -0.22 0.00 0.15 0.01 -0.05 
PN-Hetero 0.01 0.00 -0.20 0.01 0.12 -0.01 -0.05 
Sediment 0.22 0.20 0.00 0.22 0.28 0.20 0.23 

DON 0.00 -0.01 -0.22 0.00 0.14 0.00 -0.05 
NOx -0.15 -0.12 -0.28 -0.14 0.00 -0.10 -0.16 
NH4 -0.01 0.01 -0.20 0.00 0.10 0.00 -0.03 

PN-Abiotic 0.05 0.05 -0.23 0.05 0.16 0.03 0.00 
 

Table D9, Control Ratios, crij, for Winter 1987 for the Neuse River estuary nitrogen model.   
crij PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 0.00 -0.18 -0.81 0.06 0.69 0.03 -0.32 
PN-Hetero 0.18 0.00 -0.75 0.18 0.66 -0.04 -0.16 
Sediment 0.81 0.75 0.00 0.81 0.82 0.75 0.83 

DON -0.06 -0.18 -0.81 0.00 0.64 -0.11 -0.31 
NOx -0.69 -0.66 -0.82 -0.64 0.00 -0.57 -0.70 
NH4 -0.03 0.04 -0.75 0.11 0.57 0.00 -0.13 

PN-Abiotic 0.32 0.16 -0.83 0.31 0.70 0.13 0.00 
 

Table D10, Control Ratios, crij, for Spring 1987 for the Neuse River estuary nitrogen model.   
crij PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 0.00 -0.02 -0.50 0.03 0.41 0.02 -0.13 
PN-Hetero 0.02 0.00 -0.46 0.05 0.36 -0.06 -0.11 
Sediment 0.50 0.46 0.00 0.50 0.61 0.46 0.49 

DON -0.03 -0.05 -0.50 0.00 0.37 -0.04 -0.15 
NOx -0.41 -0.36 -0.61 -0.37 0.00 -0.34 -0.42 
NH4 -0.02 0.06 -0.46 0.04 0.34 0.00 -0.05 

PN-Abiotic 0.13 0.11 -0.49 0.15 0.42 0.05 0.00 
 

Table D11, Control Ratios, crij, for Summer 1987 for the Neuse River estuary nitrogen model.   
crij PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 0.00 0.00 -0.11 0.01 0.09 0.01 -0.02 
PN-Hetero 0.00 0.00 -0.10 0.02 0.06 -0.01 -0.03 
Sediment 0.11 0.10 0.00 0.12 0.16 0.10 0.11 

DON -0.01 -0.02 -0.12 0.00 0.07 -0.01 -0.04 
NOx -0.09 -0.06 -0.16 -0.07 0.00 -0.06 -0.09 
NH4 -0.01 0.01 -0.10 0.01 0.06 0.00 -0.02 

PN-Abiotic 0.02 0.03 -0.11 0.04 0.09 0.02 0.00 
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Table D12, Control Ratios, crij, for Fall 1987 for the Neuse River estuary nitrogen model.   

crij PN-Phyto PN-Hetero 
 

Sediment 
 

DON 
 

NOx 
 

NH4 
 

PN-Abiotic 

PN-Phyto 0.00 0.04 -0.16 -0.03 0.18 0.05 -0.06 
PN-Hetero -0.04 0.00 -0.15 -0.02 0.13 -0.02 -0.09 
Sediment 0.16 0.15 0.00 0.15 0.24 0.15 0.19 

DON 0.03 0.02 -0.15 0.00 0.16 0.03 -0.08 
NOx -0.18 -0.13 -0.24 -0.16 0.00 -0.12 -0.20 
NH4 -0.05 0.02 -0.15 -0.03 0.12 0.00 -0.08 

PN-Abiotic 0.06 0.09 -0.19 0.08 0.20 0.08 0.00 
 

Table D13, Control Ratios, crij, for Winter 1988 for the Neuse River estuary nitrogen model.   
crij PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 0.00 0.10 -0.60 0.03 0.42 0.11 0.02 
PN-Hetero -0.10 0.00 -0.57 -0.04 0.33 -0.03 -0.07 
Sediment 0.60 0.57 0.00 0.57 0.68 0.57 0.59 

DON -0.03 0.04 -0.57 0.00 0.37 0.02 -0.04 
NOx -0.42 -0.33 -0.68 -0.37 0.00 -0.32 -0.37 
NH4 -0.11 0.03 -0.57 -0.02 0.32 0.00 -0.05 

PN-Abiotic -0.02 0.07 -0.59 0.04 0.37 0.05 0.00 
 

Table D14, Control Ratios, crij, for Spring 1988 for the Neuse River estuary nitrogen model.   
crij PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 0.00 -0.04 -0.52 0.03 0.29 0.03 -0.14 
PN-Hetero 0.04 0.00 -0.49 0.05 0.26 -0.02 -0.11 
Sediment 0.52 0.49 0.00 0.53 0.57 0.50 0.52 

DON -0.03 -0.05 -0.53 0.00 0.25 -0.03 -0.15 
NOx -0.29 -0.26 -0.57 -0.25 0.00 -0.21 -0.32 
NH4 -0.03 0.02 -0.50 0.03 0.21 0.00 -0.09 

PN-Abiotic 0.14 0.11 -0.52 0.15 0.32 0.09 0.00 
 

Table D15, Control Ratios, crij, for Summer 1988 for the Neuse River estuary nitrogen model.   
crij PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 0.00 -0.01 -0.17 -0.01 0.15 0.01 -0.05 
PN-Hetero 0.01 0.00 -0.16 0.01 0.12 -0.01 -0.05 
Sediment 0.17 0.16 0.00 0.17 0.25 0.15 0.17 

DON 0.01 -0.01 -0.17 0.00 0.13 0.00 -0.06 
NOx -0.15 -0.12 -0.25 -0.13 0.00 -0.10 -0.15 
NH4 -0.01 0.01 -0.15 0.00 0.10 0.00 -0.03 

PN-Abiotic 0.05 0.05 -0.17 0.06 0.15 0.03 0.00 
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Table D16, Control Ratios, crij, for Fall 1988 for the Neuse River estuary nitrogen model.   

crij PN-Phyto PN-Hetero 
 

Sediment 
 

DON 
 

NOx 
 

NH4 
 

PN-Abiotic 

PN-Phyto 0.00 0.03 -0.45 0.03 0.24 0.07 -0.10 
PN-Hetero -0.03 0.00 -0.43 0.00 0.22 -0.04 -0.12 
Sediment 0.45 0.43 0.00 0.46 0.49 0.43 0.46 

DON -0.03 0.00 -0.46 0.00 0.21 0.03 -0.13 
NOx -0.24 -0.22 -0.49 -0.21 0.00 -0.19 -0.30 
NH4 -0.07 0.04 -0.43 -0.03 0.19 0.00 -0.09 

PN-Abiotic 0.10 0.12 -0.46 0.13 0.30 0.09 0.00 
 

Table D17, Control Ratios, crij, for Winter 1989 for the Neuse River estuary nitrogen model.   
crij PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 0.00 -0.07 -0.77 0.15 0.43 0.04 -0.16 
PN-Hetero 0.07 0.00 -0.75 0.25 0.38 -0.04 -0.09 
Sediment 0.77 0.75 0.00 0.81 0.76 0.75 0.78 

DON -0.15 -0.25 -0.81 0.00 0.26 -0.20 -0.32 
NOx -0.43 -0.38 -0.76 -0.26 0.00 -0.30 -0.42 
NH4 -0.04 0.04 -0.75 0.20 0.30 0.00 -0.05 

PN-Abiotic 0.16 0.09 -0.78 0.32 0.42 0.05 0.00 
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Appendix E 
 
Control Difference, cdij, parameters for the Neuse River estuary nitrogen model, North Carolina, 
USA as calculated by equation (3-8).  The 17 tables below include 16 consecutive seasons from 
Spring 1985 to Winter 1989 and an average data set as calculated by Christian and Thomas 
which represents all 16 seasons. 
 

Table E1, Control Difference, cdij, parameters for the data set representing an average (as calculated by 
Christian and Thomas) of 16 consecutive seasons from spring 1985 through winter 1989 for the Neuse 
River estuary nitrogen model.  Dimensional units for cdij are (m2 season)/mmol-N.   
cdij × 103 PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 0.00 -0.02 -0.41 0.02 0.36 0.03 -0.10 
PN-Hetero 0.02 0.00 -0.36 0.04 0.30 -0.03 -0.09 
Sediment 0.41 0.36 0.00 0.39 0.55 0.36 0.44 

DON -0.02 -0.04 -0.39 0.00 0.29 -0.03 -0.13 
NOx -0.36 -0.30 -0.55 -0.29 0.00 -0.26 -0.35 
NH4 -0.03 0.03 -0.36 0.03 0.26 0.00 -0.07 

PN-Abiotic 0.10 0.09 -0.44 0.13 0.35 0.07 0.00 
 

Table E2, Control Difference, cdij, parameters for Spring 1985 for the Neuse River estuary nitrogen 
model.  Dimensional units for cdij are (m2 season)/mmol-N.   
cdij × 103 PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 0.00 -0.08 -0.67 -0.29 1.58 0.11 -0.33 
PN-Hetero 0.08 0.00 -0.24 -0.18 1.20 -0.12 -0.26 
Sediment 0.67 0.24 0.00 0.15 1.56 0.31 0.86 

DON 0.29 0.18 -0.15 0.00 1.42 0.17 -0.06 
NOx -1.58 -1.20 -1.56 -1.42 0.00 -1.01 -1.31 
NH4 -0.11 0.12 -0.31 -0.17 1.01 0.00 -0.15 

PN-Abiotic 0.33 0.26 -0.86 0.06 1.31 0.15 0.00 
 

Table E3, Control Difference, cdij, parameters for Summer 1985 for the Neuse River estuary nitrogen 
model.  Dimensional units for cdij are (m2 season)/mmol-N.   
cdij × 103 PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 0.00 -0.02 -1.21 0.03 1.09 0.07 -0.32 
PN-Hetero 0.02 0.00 -1.05 0.04 0.81 -0.04 -0.31 
Sediment 1.21 1.05 0.00 1.12 1.73 1.05 1.17 

DON -0.03 -0.04 -1.12 0.00 0.84 -0.05 -0.35 
NOx -1.09 -0.81 -1.73 -0.84 0.00 -0.70 -1.05 
NH4 -0.07 0.04 -1.05 0.05 0.70 0.00 -0.26 

PN-Abiotic 0.32 0.31 -1.17 0.35 1.05 0.26 0.00 
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Table E4, Control Difference, cdij, parameters for Fall 1985 for the Neuse River estuary nitrogen model.  
Dimensional units for cdij are (m2 season)/mmol-N.   
cdij × 103 PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 0.00 -0.04 -2.63 0.48 1.52 0.18 -0.77 
PN-Hetero 0.04 0.00 -2.47 0.73 1.21 -0.16 -0.78 
Sediment 2.63 2.47 0.00 2.87 2.94 2.49 2.59 

DON -0.48 -0.73 -2.87 0.00 0.80 -0.55 -1.36 
NOx -1.52 -1.21 -2.94 -0.80 0.00 -1.03 -1.71 
NH4 -0.18 0.16 -2.49 0.55 1.03 0.00 -0.62 

PN-Abiotic 0.77 0.78 -2.59 1.36 1.71 0.62 0.00 
 

Table E5, Control Difference, cdij, parameters for Winter 1986 for the Neuse River estuary nitrogen 
model.  Dimensional units for cdij are (m2 season)/mmol-N.   
cdij × 103 PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 0.00 0.16 -3.94 0.00 1.77 0.40 -0.45 
PN-Hetero -0.16 0.00 -3.77 -0.08 1.26 -0.15 -0.63 
Sediment 3.94 3.77 0.00 3.36 4.01 3.80 4.20 

DON 0.00 0.08 -3.36 0.00 1.29 0.04 -0.48 
NOx -1.77 -1.26 -4.01 -1.29 0.00 -1.05 -1.61 
NH4 -0.40 0.15 -3.80 -0.04 1.05 0.00 -0.48 

PN-Abiotic 0.45 0.63 -4.20 0.48 1.61 0.48 0.00 
 

Table E6, Control Difference, cdij, parameters for Spring 1986 for the Neuse River estuary nitrogen 
model.  Dimensional units for cdij are (m2 season)/mmol-N.   
cdij × 103 PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 0.00 -0.13 -1.85 -0.04 1.44 0.01 -0.55 
PN-Hetero 0.13 0.00 -1.60 0.12 1.06 -0.07 -0.45 
Sediment 1.85 1.60 0.00 1.68 2.51 1.63 1.89 

DON 0.04 -0.12 -1.68 0.00 1.08 -0.12 -0.54 
NOx -1.44 -1.06 -2.51 -1.08 0.00 -0.93 -1.34 
NH4 -0.01 0.07 -1.63 0.12 0.93 0.00 -0.37 

PN-Abiotic 0.55 0.45 -1.89 0.54 1.34 0.37 0.00 
 

Table E7, Control Difference, cdij, parameters for Summer 1986 for the Neuse River estuary nitrogen 
model.  Dimensional units for cdij are (m2 season)/mmol-N.   
cdij × 103 PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 0.00 -0.02 -1.49 0.25 0.96 0.12 -0.45 
PN-Hetero 0.02 0.00 -1.35 0.32 0.65 -0.13 -0.46 
Sediment 1.49 1.35 0.00 1.61 1.81 1.32 1.49 

DON -0.25 -0.32 -1.61 0.00 0.52 -0.29 -0.72 
NOx -0.96 -0.65 -1.81 -0.52 0.00 -0.51 -0.99 
NH4 -0.12 0.13 -1.32 0.29 0.51 0.00 -0.31 

PN-Abiotic 0.45 0.46 -1.49 0.72 0.99 0.31 0.00 
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Table E8, Control Difference, cdij, parameters for Fall 1986 for the Neuse River estuary nitrogen model.  
Dimensional units for cdij are (m2 season)/mmol-N.   
cdij × 103 PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 0.00 -0.06 -2.23 -0.02 1.52 0.14 -0.54 
PN-Hetero 0.06 0.00 -2.01 0.07 1.23 -0.15 -0.49 
Sediment 2.23 2.01 0.00 2.10 2.73 2.03 2.30 

DON 0.02 -0.07 -2.10 0.00 1.34 0.00 -0.53 
NOx -1.52 -1.23 -2.73 -1.34 0.00 -1.04 -1.58 
NH4 -0.14 0.15 -2.03 0.00 1.04 0.00 -0.35 

PN-Abiotic 0.54 0.49 -2.30 0.53 1.58 0.35 0.00 
 

Table E9, Control Difference, cdij, parameters for Winter 1987 for the Neuse River estuary nitrogen 
model.  Dimensional units for cdij are (m2 season)/mmol-N.   
cdij × 103 PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 0.00 -0.25 -1.20 0.09 1.03 0.04 -0.45 
PN-Hetero 0.25 0.00 -0.90 0.24 0.98 -0.07 -0.26 
Sediment 1.20 0.90 0.00 0.97 1.21 1.00 1.44 

DON -0.09 -0.24 -0.97 0.00 0.74 -0.15 -0.41 
NOx -1.03 -0.98 -1.21 -0.74 0.00 -0.82 -1.01 
NH4 -0.04 0.07 -1.00 0.15 0.82 0.00 -0.19 

PN-Abiotic 0.45 0.26 -1.44 0.41 1.01 0.19 0.00 
 

Table E10, Control Difference, cdij, parameters for Spring 1987 for the Neuse River estuary nitrogen 
model.  Dimensional units for cdij are (m2 season)/mmol-N.   
cdij × 103 PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 0.00 -0.07 -1.49 0.09 1.21 0.06 -0.40 
PN-Hetero 0.07 0.00 -1.40 0.14 1.08 -0.19 -0.36 
Sediment 1.49 1.40 0.00 1.40 1.85 1.38 1.54 

DON -0.09 -0.14 -1.40 0.00 0.99 -0.11 -0.44 
NOx -1.21 -1.08 -1.85 -0.99 0.00 -0.99 -1.23 
NH4 -0.06 0.19 -1.38 0.11 0.99 0.00 -0.17 

PN-Abiotic 0.40 0.36 -1.54 0.44 1.23 0.17 0.00 
 

Table E11, Control Difference, cdij, parameters for Summer 1987 for the Neuse River estuary nitrogen 
model.  Dimensional units for cdij are (m2 season)/mmol-N.   
cdij × 103 PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 0.00 0.03 -1.24 0.08 0.96 0.12 -0.27 
PN-Hetero -0.03 0.00 -1.14 0.20 0.73 -0.11 -0.31 
Sediment 1.24 1.14 0.00 1.33 1.74 1.12 1.25 

DON -0.08 -0.20 -1.33 0.00 0.73 -0.10 -0.48 
NOx -0.96 -0.73 -1.74 -0.73 0.00 -0.64 -0.98 
NH4 -0.12 0.11 -1.12 0.10 0.64 0.00 -0.19 

PN-Abiotic 0.27 0.31 -1.25 0.48 0.98 0.19 0.00 
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Table E12, Control Difference, cdij, parameters for Fall 1987 for the Neuse River estuary nitrogen model.  
Dimensional units for cdij are (m2 season)/mmol-N.   
cdij × 103 PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 0.00 0.45 -1.89 -0.37 2.15 0.63 -0.70 
PN-Hetero -0.45 0.00 -1.78 -0.18 1.63 -0.20 -1.11 
Sediment 1.89 1.78 0.00 1.59 2.83 1.78 2.36 

DON 0.37 0.18 -1.59 0.00 1.81 0.32 -0.83 
NOx -2.15 -1.63 -2.83 -1.81 0.00 -1.47 -2.38 
NH4 -0.63 0.20 -1.78 -0.32 1.47 0.00 -0.93 

PN-Abiotic 0.70 1.11 -2.36 0.83 2.38 0.93 0.00 
 

Table E13, Control Difference, cdij, parameters for Winter 1988 for the Neuse River estuary nitrogen 
model.  Dimensional units for cdij are (m2 season)/mmol-N.   
cdij × 103 PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 0.00 0.61 -3.59 0.19 2.50 0.71 0.13 
PN-Hetero -0.61 0.00 -3.31 -0.24 1.94 -0.18 -0.47 
Sediment 3.59 3.31 0.00 3.16 3.97 3.31 3.47 

DON -0.19 0.24 -3.16 0.00 2.13 0.14 -0.22 
NOx -2.50 -1.94 -3.97 -2.13 0.00 -1.85 -2.13 
NH4 -0.71 0.18 -3.31 -0.14 1.85 0.00 -0.29 

PN-Abiotic -0.13 0.47 -3.47 0.22 2.13 0.29 0.00 
 

Table E14, Control Difference, cdij, parameters for Spring 1988 for the Neuse River estuary nitrogen 
model.  Dimensional units for cdij are (m2 season)/mmol-N.   
cdij × 103 PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 0.00 -0.22 -2.89 0.19 1.63 0.15 -0.82 
PN-Hetero 0.22 0.00 -2.73 0.30 1.49 -0.15 -0.67 
Sediment 2.89 2.73 0.00 2.85 3.28 2.79 3.03 

DON -0.19 -0.30 -2.85 0.00 1.34 -0.17 -0.89 
NOx -1.63 -1.49 -3.28 -1.34 0.00 -1.18 -1.81 
NH4 -0.15 0.15 -2.79 0.17 1.18 0.00 -0.51 

PN-Abiotic 0.82 0.67 -3.03 0.89 1.81 0.51 0.00 
 

Table E15, Control Difference, cdij, parameters for Summer 1988 for the Neuse River estuary nitrogen 
model.  Dimensional units for cdij are (m2 season)/mmol-N.   
cdij × 103 PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 0.00 -0.06 -1.30 -0.05 1.13 0.05 -0.40 
PN-Hetero 0.06 0.00 -1.19 0.10 0.91 -0.08 -0.35 
Sediment 1.30 1.19 0.00 1.25 1.87 1.17 1.32 

DON 0.05 -0.10 -1.25 0.00 1.01 -0.03 -0.43 
NOx -1.13 -0.91 -1.87 -1.01 0.00 -0.80 -1.17 
NH4 -0.05 0.08 -1.17 0.03 0.80 0.00 -0.27 

PN-Abiotic 0.40 0.35 -1.32 0.43 1.17 0.27 0.00 



 

 

256

 
Table E16, Control Difference, cdij, parameters for Fall 1988 for the Neuse River estuary nitrogen model.  
Dimensional units for cdij are (m2 season)/mmol-N.   
cdij × 103 PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 0.00 0.24 -3.50 0.22 1.93 0.57 -0.79 
PN-Hetero -0.24 0.00 -3.41 0.02 1.85 -0.33 -1.03 
Sediment 3.50 3.41 0.00 3.36 3.87 3.39 3.72 

DON -0.22 -0.02 -3.36 0.00 1.58 0.22 -0.95 
NOx -1.93 -1.85 -3.87 -1.58 0.00 -1.58 -2.49 
NH4 -0.57 0.33 -3.39 -0.22 1.58 0.00 -0.71 

PN-Abiotic 0.79 1.03 -3.72 0.95 2.49 0.71 0.00 
 

Table E17, Control Difference, cdij, parameters for Fall 1989 for the Neuse River estuary nitrogen model.  
Dimensional units for cdij are (m2 season)/mmol-N.   
cdij × 103 PN-Phyto PN-Hetero 

 
Sediment 

 
DON 

 
NOx 

 
NH4 

 
PN-Abiotic 

PN-Phyto 0.00 -0.24 -2.63 0.53 1.51 0.16 -0.54 
PN-Hetero 0.24 0.00 -2.34 0.89 1.31 -0.17 -0.33 
Sediment 2.63 2.34 0.00 2.51 2.70 2.48 2.80 

DON -0.53 -0.89 -2.51 0.00 0.69 -0.69 -1.10 
NOx -1.51 -1.31 -2.70 -0.69 0.00 -1.03 -1.43 
NH4 -0.16 0.17 -2.48 0.69 1.03 0.00 -0.17 

PN-Abiotic 0.54 0.33 -2.80 1.10 1.43 0.17 0.00 
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Appendix F 
 
Total system throughflow, TST; System Control, scj; and Total System Control, TC; for the Neuse River estuary nitrogen model, 
North Carolina, USA.  The table below includes 16 consecutive seasons from Spring 1985 to Winter 1989 and an average data set as 
calculated by Christian and Thomas which represents all 16 seasons. 
 
 

 

Table F-1, System control vectors, scj, for nitrogen flow in the Neuse River estuary, USA: 16 seasons.  TST = total system 
throughflow (mmol-N/(m2 × season).  TC = total system control.  Dimensional units for scj are (m2 × season)/mmol-N.   

 scj × 103 Avg Spr 
85 

Sum 
85 

Fall 
85 

Win 
86 

Spr 
 86 

Sum 
86 

Fall 
86 

Win 
87 

Spr 
 87 

Sum 
87 

Fall 
87 

Win 
88 

Spr 
88 

Sum 
88 

Fall 
88 

Win 
89 

PN-
Phyto 0.13 -0.32 0.37 1.26 2.06 1.11 0.64 1.19 0.74 0.61 0.31 -0.26 -0.54 1.95 0.62 1.32 1.22

PN-
Hetero 0.12 -0.48 0.53 1.43 3.52 0.82 0.95 1.30 -0.24 0.64 0.65 2.06 2.87 1.55 0.56 3.14 0.40

Sediment -2.52 -3.79 -7.33 -15.99 -23.09 -11.16 -9.07 -13.40 -6.72 -9.07 -7.82 -12.23 -20.81 -17.57 -8.10 -21.25 -15.46

DON 0.32 -1.86 0.74 5.19 2.42 1.35 2.66 1.33 1.11 1.19 1.46 -0.25 1.06 3.06 0.76 2.74 5.03

NOx 2.12 8.10 6.22 9.21 10.99 8.36 5.44 9.44 5.81 7.35 5.78 12.26 14.51 10.73 6.89 13.30 8.68

NH4 0.13 -0.39 0.60 1.55 3.53 0.89 0.82 1.34 0.19 0.33 0.58 1.99 2.42 1.95 0.58 2.99 0.92

PN-
Abiotic 0.30 -1.26 -1.13 -2.64 0.56 -1.37 -1.44 -1.19 -0.89 -1.06 -0.97 -3.60 0.49 -1.67 -1.30 -2.25 -0.79

TC 28.2 8.10 8.46 18.64 23.09 12.53 10.51 14.59 7.85 10.13 8.79 16.34 21.36 19.24 9.40 23.50 16.25

TST 41,517 9,120 20,182 8,780 6,880 12,915 11,980 9,863 7,907 11,533 15,621 7,325 8,680 6,898 16,814 5,732 5,789
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Appendix G 
 

 
Forces in a Cantilevered Live Oak Branch 

 
 
Assume: L = 12 meter section 
  D = 0.25 meter diameter 
   ρ = 14,455 N/m3 green density for Live Oak  
  10% estimated multiplier for branches 
 
 
Weight = Volume x Density = (ПR2L) × ρ  
 

Weight = (1.1)П(0.25m/2)2 × 12 m × 14,455 N/m3   =   9,364 newtons 
 
 
From standard static beam analysis assuming a uniformly distributed load:   

 
Twisting moment at the base, M = W × L/2 

 
M = 9,364 N × 12 m/2 = 56,182 joules 

 
 
Torque output of Ford F150 4.6L engine at 2,500 rpm = ~375 joules 
 
 
Equivalent quantity of Ford F150 engines = 56,182 joules / 375 joules = ~150 
 
 
 


