
 

 

 

PERFORMANCE OF SECOND-ORDER LATENT GROWTH CURVE MODELS WITH 

SHIFTING INDICATORS: A MONTE CARLO STUDY 

by 

KATHERINE ANNE RACZYNSKI 

(Under the Direction of Deborah Bandalos) 

ABSTRACT 

 Second-order latent growth models with shifting indicators (“the shifting indicators 

model”) allow longitudinal researchers to add or drop items to develop models that closely 

represent prevailing developmental theory.  To date, however, published research evaluating the 

performance of the shifting indicators model has been minimal. Simulation methods were used to 

generate data where all indicators were present at all time points.  Data for selected indicators 

were then deleted to create models with shifting indicators.  The performance of shifting 

indicators models was compared to the original model with all indicators present.  The number of 

shifting indicators per factor, the number of measurement occasions with shifting indicators, the 

magnitude of the factor loadings of the shifting indicators, and sample size was manipulated.  

Samples were drawn from multivariate normal populations, and for each cell 1000 replications 

were obtained.  The results of the study indicated that the performance of the shifting models 

was quite similar to the performance of the models with all items included at each time point.  

Nonconvergence and inadmissible solutions were rare.  Mean values of relative bias in the 

growth parameter estimates and their standard errors did not exceed .05 and .1, respectively, for 

all cells with sample size exceeding 250.  The shifting indicators models were slightly less 



 

efficient than the models with all indicators present, but the difference was small.  The 

investigation into model fit presented one potential caution.  Having fewer items per factor was 

associated with better measures of fit, especially when the sample size was 250.  This result 

indicates that model fit, as measured by chi-square and related fit indices, may be improved 

simply by dropping items from the model.  The overall findings were promising and support the 

continued study of the shifting indicators model.  A demonstration of the shifting indicators 

model with real data reinforced these findings.  
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CHAPTER 1 

INTRODUCTION 

Investigating change is a fundamental component of empirical research.  Rather than 

merely collecting a snapshot of the targeted phenomenon, psychological and behavioral 

researchers are often interested in drawing inferences about how and why outcomes change over 

time.  Fortunately, many options exist for researchers who want to move beyond cross-sectional 

studies.  In recent years, longitudinal research methods have become more widespread, more 

sophisticated, and more accessible (Singer & Willett, 2003, p. 3). 

Two common overarching goals of longitudinal data analysis are investigating changes in 

means over time and changes in individual differences over time (Marsh & Grayson, 1994). 

Take, for example, a team of researchers who are interested in measuring bullying behaviors 

during childhood.  The team may want to understand the mean amount of bullying that takes 

place over time.  On average, do rates of bullying increase, decrease, or stay the same as students 

get older?  Does growth or decline take a linear form, or does it follow some other pattern?  The 

team likely also wants to investigate differences in individuals.  Do individuals start with about 

the same amount of aggressive behavior?  Do they follow the same developmental trajectories 

over time?  Are differences in starting points related to differences in trajectories?    

There are several ways to investigate these types of questions.  In this study, the primary 

focus is on latent growth curve models (LGMs), a structural equation modeling (SEM) based 

approach to longitudinal data analysis.  LGMs are a popular approach to investigating 

longitudinal change due to their flexibility and advantages over methods of longitudinal data 

analysis such as MANOVA and lagged regression.  Lance, Vandenberg, and Self (2000) 
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summarize these advantages, which include the ability to (a) model individual and group-level 

change, (b) describe individual differences in slope and intercept, (c) investigate change at the 

latent-construct level (i.e., accounting for measurement error), (d) investigate different types of 

growth trajectory (e.g., linear, quadratic), (e) model growth in multiple constructs simultaneously 

(i.e., multivariate growth modeling), (f) include predictors and outcomes related to intercept and 

slope, and (g) test hypotheses related to mediators of longitudinal change.  Other longitudinal 

analysis methods may include some but not all of these advantages (Lance, Vandenberg, & Self, 

2000).   

Despite these advantages, the most popular type of LGMs—first-order LGMs—have 

several drawbacks.  First-order LGMs include a single indicator (i.e., manifest variable) at each 

time point.  This indicator is typically a sum or average of several items (Ferrer, Balleurka, & 

Widaman, 2008).  One problem is that by utilizing a single composite variable, restrictive 

assumptions are made regarding the relationships of the items to each other and to the latent 

construct.  Specifically, items are assumed to relate to the latent construct in the same way (i.e., 

equal factor loadings) as each other and over time.  Another drawback is that the measurement 

errors of individual items are incorporated into the composite (Hancock, Kuo, & Lawrence, 

2001).  Further, first-order LGMs lack a mechanism for evaluating longitudinal measurement 

invariance.   

Leite (2007) demonstrated that LGMs that use composite scores yielded adequate results 

only under restrictive conditions.  To meet these conditions, the items of which the scale is 

composed needed to have equal loadings with each other and demonstrate strict longitudinal 

invariance (i.e., equal factor loadings, item intercepts, and unique variances over time).  These 

conditions are not likely to be encountered often in applied settings.  Complicating matters, 
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longitudinal measurement invariance cannot be explicitly tested in first-order LGMs, although it 

is a prerequisite for investigating change.  Therefore, first-order LGMs utilizing composite 

scores may not be the most appropriate method for examining growth.  

Second-order LGMs provide a more comprehensive way to understand growth that 

leverages several advantages over first-order LGMs.  Second-order LGMs incorporate a 

measurement model into the examination of growth; that is, the latent construct of interest is 

measured by multiple indicators at each time point (Hancock, Kuo, & Lawrence, 2001).  Each 

item has an associated error term, and the latent construct at each time point has a disturbance 

term which captures occasion-specific (i.e., transient) error.  The result is that the focus of the 

investigation—the structural model concerned with the growth of latent constructs over time—is 

rendered theoretically error-free (Hancock, Kuo, & Lawrence, 2001; Chan, 1998).   

Second-order LGMs can be used to explicitly test measurement invariance assumptions 

that underlie investigations of longitudinal change, including measurement invariance at the 

configural (i.e., factor structure), metric (i.e., factor loading), and scalar (i.e., item intercept) 

levels.  This investigation is achieved via a series of nested models; chi-square
 
difference tests 

are employed to determine whether adding equality constraints on item loadings and intercepts 

across time results in significantly poorer model fit (Ferrer, Balleurka, & Widaman, 2008).   

In standard second-order LGMs, identical indicators are present at each time point.  

Depending on the nature of the study and the construct measured, identical indicators may not 

always be available or appropriate.  Hancock and Beuhl (2008) describe a variation of a second-

order LGM where shifting indicators of the latent construct across time are utilized.  In 

longitudinal studies that follow participants through developmental changes, appropriate 

indicators of the same latent construct may change throughout the study.  For example, a study of 
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the development of problem solving skills may include different measures for toddlers versus 

school-aged participants.  The goal is to measure the same underlying construct while presenting 

the most relevant set of indicators at each time point.  Presenting different but appropriate 

indicators across time is a particularly salient issue for research on developmental changes over 

the lifespan (McArdle & Grimm, 2011).    

Measures may also undergo revision over time.  Items that have not demonstrated 

adequate psychometric properties over time may be dropped and replaced with more appropriate 

ones.  The wording of items may be updated to reflect changes in popular culture or 

nomenclature.  For example, a set of items measuring cyberbullying may need to be revised 

relatively frequently to reflect rapidly-changing technologies.   

Practical considerations may also limit the availability of the same indicators at each data 

collection wave.  For example, funding limitations may impact the ability of researchers to 

collect full information at each assessment wave.  Studies may also lack complete data when 

errors are made with data collection or if data become corrupted.  In short, there are a variety of 

theoretical and practical reasons why a model that allows for shifting indicators may be 

beneficial to longitudinal researchers.  

Despite these advantages, second-order LGMs—both with and without shifting 

indicators—have received relatively little attention in the literature, both in terms of applications 

of the model and methodological investigations of its performance. To my knowledge there is 

only one applied (Pettit, Keiley, Laird, Bates, & Dodge, 2007) and one methodological (Hancock 

& Buehl, 2008) examination of the performance of second-order LGMs with shifting indicators.  

In the applied study, parental monitoring was examined as students progressed from grade 5 to 

grade 11.  As the children got older, the questions changed to account for the types of activities 
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older children may engage in.  A second-order LGM incorporating these shifting indicators was 

employed to investigate changes in parental monitoring over time.   

In the methodological examination of second-order LGMs with shifting indicators, 

Hancock and Buehl (2008) demonstrated several desirable characteristics of the model.  Using 

simulated data, the identical and shifting indicators models recovered the same solution, and 

when real data were used, similar results were obtained.  However, the scope of this investigation 

was relatively limited.  Only one real data set was used, and this data set demonstrated excellent 

fit and overall longitudinal invariance.  

The purpose of this study is to further evaluate the performance of second-order LGMs 

with shifting indicators.  Given the general lack of published research utilizing second-order 

LGMs with shifting indicators, longitudinal researchers in the social sciences may be unaware of 

these models or uncertain about when they may be appropriate.  This study aims to provide a 

more fine-grained understanding of the performance of these models with special attention paid 

to sample size, the number of measurement occasions with shifting indicators, the proportion of 

shifting to non-shifting indicators, and the magnitude of the factor loadings of the shifting 

indicators.  The next chapter provides a more comprehensive overview of LGMs and 

longitudinal measurement invariance and connects this literature to the research questions and 

rationale for the current study. 
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CHAPTER 2 

REVIEW OF LITERATURE 

Well-designed longitudinal studies aim to understand changes in the construct(s) of 

interest over time while minimizing the impact of irrelevant influences.  Latent growth curve 

models (LGMs) are a technique for longitudinal analysis that have gained popularity for their 

flexibility, ease of use, and desirable measurement characteristics (Lance, Vandenberg, & Self, 

2000).  Second-order LGMs with shifting indicators are a potentially useful extension to 

traditional LGMs, but the performance of this type of model has not been extensively evaluated.  

The purpose of this study is to evaluate the performance of second-order LGMs with shifting 

indicators using Monte Carlo simulation.   

In this chapter, I provide an overview and comparison of first-order LGMs, second-order 

LGMs, and second-order LGMs with shifting indicators.  I describe how the use of shifting 

indicators of a construct over time may enhance the ability of researchers to investigate change 

given a variety of theoretical and practical considerations, and I present the research questions 

and rationale for the current study.  I argue that second-order LGMs with shifting indicators 

represent a promising approach that may allow a larger number of researchers to employ a more 

sophisticated framework for assessing change, but because these models are relatively untested, 

additional research is warranted.   

First-order LGMs 

LGMs are a popular and flexible approach to investigating longitudinal change. LGMs 

combine aspects of variable-centered and person-centered analyses.  Researchers may model 
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linear or non-linear trajectories, and measurement occasions may be equally or unequally spaced.  

LGMs can include predictors and/or outcomes related to intercept and slope, among many other 

extensions to the model (Hancock & Lawrence, 2006).  

In a first-order LGM, a single indicator variable is included in the model at each time 

point, typically a composite score such as a sum or average of multiple items (Ferrer, Balleurka, 

& Widaman, 2008; Leite, 2007).  This type of LGM can be represented by the covariance and 

mean structures of the composites.  The covariance structure is expressed as  

cc     , (1) 

where cc  is the covariance matrix of the composites,   is the matrix of loadings relating the 

composites to the latent intercept and slope factors,   is the covariance matrix of the latent 

intercept and slope factors, and   is the covariance matrix of measurement errors associated 

with the composites. 

 The mean structure of the composites is expressed as   

 c c      (2) 

where cc
 is the vector of the means of the composites,   is the matrix of factor loadings 

relating the composites to the latent intercept and slope factors, and   is the vector of the 

means of the latent intercept and slope.   

In many configurations of LGMs, five key parameters are estimated to describe the data: 

the intercept mean (  ) and variance (  ), the slope mean (  ) and variance (  ), and the 

slope/intercept covariance (
).  The means of the intercept and slope represent the average 

initial level and rate of change, respectively, across individuals.  The variances of the intercept 

and slope describe how individuals vary with respect to starting point and rate of change.  

Kat
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Variance values that are significantly different from zero indicate that significant variation in 

individuals’ intercepts and slopes exists in the data.  The slope/intercept covariance provides an 

indication of the relationship between the intercept and the slope.  

First-order LGMs make up the majority of LGMs employed in research.  A first-order 

LGM with four waves of data is presented in Figure 2.1.  Manifest variables (i.e., Y1-Y4) are 

represented by squares, and latent variables (i.e., intercept and slope) are represented by circles.  

All paths connecting the intercept to manifest variables are set to one, and the paths connecting 

the slope to each manifest variable are set to [0, 1, 2, 3] to invoke a linear growth pattern at four 

equally-spaced time points.  At each time point, an error term associated with each manifest 

variable represents variance in the indicator that is not explained by the latent variables.  The 

constant 1, represented by a triangle, is included to obtain the means of the intercept (  ) and 

slope ( ) factors.  The other key parameters, namely the variances of the intercept (  ) and 

slope (  ) and the intercept/slope covariance (
), are also included in the model.  A wide 

range of variation on this model is possible.  For instance, LGMs may include non-linear growth 

trajectories, data collected at unequally spaced measurement occasions, and predictors of the 

slope and intercept, among many other options (e.g., Preacher, Wichman, MacCallum, & Briggs, 

2008). 
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Figure 2.1. First-order LGM. 

 

 

Second-order LGMs 

A fairly recent extension of latent growth curve modeling involves incorporating a 

measurement model into the examination of growth.  A second-order LGM investigates growth 

in a latent construct of interest measured by multiple indicators at each time point (Hancock, 

Kuo, & Lawrence, 2001).  This type of model has also been called a curve of factors model 

(McArdle, 1988), a latent variable longitudinal curve model (Tisak & Meredith, 1990), and a 

multiple indicator growth model (Muthén & Muthén, 2010).  
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The second-order LGM incorporates a latent growth model, a measurement (i.e., factor 

analytic) model, and the mean structure of the items.  The measurement model can be expressed 

as 

yy y y        ,
 (3) 

where yy is the covariance matrix of the items, y  is the matrix of loadings relating the items to 

the latent constructs,   is the covariance matrix of the latent factors, and  is the covariance 

matrix of the item uniquenesses.  The covariance matrix of the latent factors is expressed as  

     
,
 (4) 

where   is the covariance matrix of the loadings relating the latent constructs to the latent 

intercept and slope,   is the covariance matrix of the intercept and slope, and   is the 

covariance matrix of the disturbances ( ).    

The mean structure of the items includes a first-order component relating the item means 

to the latent construct means, and a second-order component relating the latent construct means 

to the means of the latent intercept and slope.  The mean structure relating the item means to the 

latent construct means is  

y   y  y ,
 (5) 

where  y
 is the vector of item means, y  is the covariance matrix of the loadings relating the 

latent constructs to the latent intercept and slope,   is the vector of means of the latent 

constructs, and  y  is the vector of item intercepts. 
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The mean structure relating the latent construct means to the latent intercept and slope is  

µη = Ληµαβ    
(6) 

where Λη  is the covariance matrix of the loadings relating the latent constructs to the latent 

intercept and slope and µαβ  is the vector of the means of the latent intercept and slope. 

Figure 2.2 presents a second-order LGM with four waves of data measured at equally 

spaced time points.  Compared with a first-order LGM, the model presented in Figure 2.1 adds a 

second level of latent variables (η ) representing a latent construct measured by multiple items at 

each time point (in this case, grades 6 – 9).  The factor loading (λ ) for each item is interpreted as 

a regression slope relating the observed score to the latent construct.  That is, loadings represent 

the amount of change in the observed score given a one unit change in the amount of the latent 

construct.  Item intercepts (τ ) represent the value of the observed score on an item when the 

value of the latent construct is zero.   
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Figure 2.2. Second-order LGM with identical indicators. 

In order to identify the measurement part of the model, one indicator at each time point is 

designated the scale indicator.  The loadings of the scale indicators are set to one and the 

intercepts are set to zero.  This sets the metric of the latent variable equal to the metric of the 

scale indicator.  Intercepts for the remaining indicators are obtained by regressing the variables 

on the constant 1 (represented by a triangle).  In the example presented in Figure 2.2, intercepts 

and loadings for corresponding items (e.g., item 2 measured at each time point) are constrained 

to be equal.   

Advantages of Second-order LGMs 

Second-order latent growth curve modeling provides several advantages over first-order 

latent growth curve modeling.  These advantages relate to the use of multiple indicators at each 

time point rather than a composite (e.g., mean) score.  As stated earlier, first-order LGMs include 

only one indicator, often the mean of several items, per measurement occasion.  However, the 
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use of a composite score introduces several potential sources of bias.  First, a mean score does 

not differentially weight the items composing the scale (Hancock, Kuo, & Lawrence, 2001). 

Each item contributes equally to the mean, which implies that each item is equally related to the 

construct.  Second-order LGMs, on the other hand, are used to directly model the growth of the 

latent constructs rather than the observed indicators.  By employing a latent variable 

measurement model, items are weighted according to their relationship to the construct; items 

that are more related to the latent construct (i.e., have higher factor loadings) are weighted more 

heavily (Sayer & Cumsille, 2001).  Further, the unique variance for each indicator () is 

explicitly modeled instead of being incorporated into a composite (Sayer & Cumsille, 2001).   

This error term represents a combination of random response error and item-specific errors of 

measurement.  Under first-order LGMs these errors are confounded with transient (i.e., occasion-

specific) error.   

A second problem with the use of composite scores is the inability to explicitly test for 

measurement invariance.  Measurement invariance refers to a test’s ability to measure the same 

latent variable under different conditions, such as at different measurement occasions (Horn & 

McArdle, 1992).  Before interpreting results obtained from a common measure over time, 

researchers should evaluate whether respondents respond to and interpret the measure in a 

similar way across measurement occasions.  Without evidence of longitudinal measurement 

invariance, differences in item response over time may be due to actual growth or decline in the 

construct of interest or to differences in how respondents interact with the measure.   

One process of testing for measurement invariance involves comparing the fit of nested 

models as equality constraints are placed on item parameters in a stepwise fashion.  The most 

common levels of measurement invariance investigated are configural (i.e., pattern of fixed and 
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free factor loadings), metric (i.e., equality of factor loadings), and scalar (i.e., equality of item 

intercepts).  The equality of the unique variance of corresponding items across time may also be 

investigated.  Measurement invariance is supported when adding equality constraints does not 

result in significantly worse model fit as measured by the chi-square difference test (Vandenberg 

& Lance, 2000).   

When individual items are collapsed into a composite score, the relationship of each item 

to the latent construct is lost, and it is not possible to conduct this series of tests.  Therefore, in 

most cases, longitudinal invariance is assumed, but not investigated (Lance, Vandenberg, & Self, 

2000; Ferrer, Balleurka, & Widaman, 2008).  However, when measurement invariance does not 

hold or is left untested, real differences in the construct over time may be confounded with 

measurement differences, and score interpretations, as well as interpretations of the growth 

parameters, may be flawed.  

The problems with composite scores described above have important implications for the 

use of first-order LGMs.  Specifically, first-order LGMs may perform well only under restrictive 

conditions.  In a simulation study conducted by Leite (2007), first-order LGMs performed 

adequately only when (a), all items had equal loadings in relation to each other, (b), all items had 

equal loadings over time (i.e., demonstrated metric invariance), (c), all items had equal intercepts 

over time (i.e., demonstrated scalar invariance), and (d), all items had equal unique variances 

over time.  Finding measures that meet this strict set of restrictions may be difficult to achieve in 

practice (Byrne & Stewart, 2006).  Given second-order LGMs, some of these restrictions may be 

relaxed.  First, the items that make up the measure do not necessarily need to have factor 

loadings that are equal to each other.  In second-order LGMs, an individual loading is estimated 
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for each item, and the items are not collapsed into a composite, thus eliminating the need for 

items with equal loadings. 

Second, while the measure should exhibit an adequate degree of longitudinal 

measurement invariance, the minimum level of invariance to be met may be less stringent when 

second-order LGMs are employed. If the items that compose a measure are intended to be 

collapsed into a composite score, the measure should exhibit adequate measurement invariance 

at the configural, metric, scalar, and unique variance levels (Bontempo & Hofer, 2007; Schmitt 

& Kuljanin, 2008).  However, when items are not combined, an adequate degree of invariance at 

the configural, metric, and scalar levels has been deemed sufficient (Meredith, 1993; Byrne & 

Stewart, 2006; Bontempo & Hofer, 2007).  By explicitly modeling the unique variances of each 

of the items rather than collapsing them into a composite, the researcher does not need to meet 

the restrictive condition of equal unique variances over time.   

Further, using a second-order LGM allows the researcher to try to establish partial 

measurement invariance if full measurement invariance is not met. If metric, scalar, or item 

uniqueness invariance does not hold, the researcher may conduct additional analyses to attempt 

to establish partial measurement invariance.  A measure exhibits partial measurement invariance 

when a subset of item parameters is equivalent over time (Byrne, Shavelson, & Muthén, 1989).  

The equality constraints on the non-invariant parameters are released, and these parameters are 

estimated freely to improve model fit.  There is some debate in the literature about whether and 

how partial measurement invariance should be included in latent variable models (e.g., Byrne, 

Shavelson, & Muthén, 1989; Vandenberg & Lance, 2000); however, it is clear that exploring 

partial measurement invariance in the absence of full invariance is a popular option for many 

researchers.  As evidence of this popularity, a review of empirical studies using the term 
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“measurement invariance” published from 2000 to 2007 indicated that 50% of studies included 

some test of partial invariance (Schmitt & Kuljanin, 2008).  In sum, second-order LGMs allow 

researchers to investigate longitudinal change at the latent construct level, thereby avoiding 

many of the limitations and problems implicit with using composite scores.   

Second-order LGMs with Shifting Indicators 

While traditional LGMs employ the same items at each time point, under some 

circumstances it may be desirable in longitudinal research to drop or add items at different time 

points.  Hancock and Beuhl (2008) describe an extension of second-order LGMs to incorporate 

changing indicators of the latent construct over the course of the study.  While the latent 

construct is theorized to remain conceptually the same, the items used as indicators of the 

construct are allowed to vary across time.   

Figure 2.3 depicts a second-order LGM with shifting indicators that is a reduced form of 

the model presented in Figure 2.2.  Data are still collected in four waves, but the second item has 

been dropped from the sixth-grade wave of data (i.e., item 62), and the fourth item has been 

dropped from the ninth-grade wave of data (i.e., item 94).  This example is meant to reflect a 

situation where one item (i.e., item 62) is not developmentally appropriate at the first time point, 

and one item (i.e., item 94) is not developmentally appropriate at the last time point.  The first 

item functions as the scale indicator with the loading set to one and the intercept set to zero at 

each time point.  As with the full indicator model presented in Figure 2.2, other loadings and 

intercepts are set to be equal across corresponding items to reflect the case where longitudinal 

measurement invariance holds. 
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Figure 2.3. Second-order LGM with shifting indicators. 

 

 

Scaling of Second-order LGMs with Shifting Indicators  

As with the full indicator model, a scale indicator may be used in the shifting indicators 

model to set the metric for the measurement model.  (Note that “the shifting indicators model” 

and “the shifting model” will be used as shortened terms for “second-order LGM with shifting 

indicators” in the remainder of this manuscript.)  With the shifting indicator model, it is possible 

to set the scale of the measurement model even when the scale indicator is not present at each 

time point.  Hancock and Buehl (2008) presented an example where a total of five items are 

measured over four time points, but there was little overlap among items.  In this study, the five 
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items were labeled with letters (i.e., A-E) instead of numbers.  Time 1’s indicators were A and B, 

time 2’s indicators were B and C, time 3’s indicators were C and D, and time 4’s indicators were 

D and E.   

The scale of the measurement model was set as follows.  Item A was used as the scaling 

indicator, although it only was only measured at time 1.  All of the corresponding loadings and 

intercepts for the other items were set to be equal over time.  For example, the loadings and 

intercepts for item B were set to be equal at times 1 and 2, the loadings and intercepts for item C 

were set to be equal at times 2 and 3, and so forth.  Because of the equality constraints on the 

loadings, the items were linked across time, and the scaling set by item 1 at the first time period 

was carried forward to the other time points.  Specifically, at time 1, a one-unit change in the 

latent variable (i.e., 



1) resulted in a one-unit increase in the value of item A and 



B -unit 

increase in the value of item B.  At time 2, a one-unit change in 



2  also resulted in a 



B -unit 

increase in the value of item B, as well as a 



C -unit increase in the value of item C.  At time 3, a 

one-unit change in 



3  resulted, again, in a 



C -unit increase in the value of item C along with a 



D -unit increase in the value of item D.  At time 4, a one-unit change in 



4  resulted in a 



D -unit 

increase in the value of item D and a 



E -unit increase in the value of item E.  The connection 

between each set of corresponding items allowed for the entire set of measures to be placed on 

the same scale. 

Performance of Second-order LGMs with Shifting Indicators  

Second-order LGMs with shifting indicators have performed well in evaluations of the 

performance of the model, although few such studies have taken place.  Hancock and Beuhl 

(2008) used one simulated and one real dataset to demonstrate the flexibility of the shifting 

indicators model.  As described above, they present models where the measured indicators at 



19 
 

each time point are common to adjacent time points alone.  Although these models had a 

minimal degree of item overlap, they reported that the performance of the models was 

comparable to corresponding full models with all items present at each time point (i.e., “the full 

model”).  Under simulated data, the full model and the shifting indicators models recovered the 

same correct estimates of key parameters.  In the set of analyses using real data, some variation 

occurred in parameter estimation, but the pattern of significant and non-significant values of key 

parameters was the same in the two models (Hancock & Beuhl, 2008).  Specifically, under the 

full and the shifting indicators models, the intercept mean and variance were significant, all other 

key parameters were non-significant, and the comparative fit index (CFI) and root mean square 

error of approximation (RMSEA) values indicated adequate fit.  These results are promising, as 

there may be theoretical or practical reasons for longitudinal researchers to drop or add indicators 

of a latent construct over time. 

Advantages of Second-order LGMs with Shifting Indicators 

Second order LGMs with shifting indicators represent an approach to data analysis that 

may provide solutions to some common problems in longitudinal data collection and analysis.  A 

promising application of second-order LGMs with shifting indicators involves the use of the 

models to account for theoretically expected changes in the manifestation of a latent construct 

over time.  Depending on the nature of the construct, appropriate indicators of a latent construct 

of interest may shift in predictable ways as participants progress through developmental stages.  

For instance, in a study of the development of aggression in children, an item that asks about 

stealing other children’s toys may no longer be relevant after a certain age.  At the same time, 

other indicators of aggression may become more appropriate, even as the overall construct of 

aggression is conceptually unchanged.  In this situation, theory dictates which indicators are 
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appropriate at a given stage and why.  Given a well-developed theory and high quality indicators 

to choose from, researchers have the ability to use second-order LGMs with shifting indicators to 

develop models that closely represent prevailing developmental theory. 

When longitudinal research is conducted over a long period of time, the ability to add or 

drop indicators may become especially valuable.  Consider the usefulness of an indicator such as 

alcohol use as a measure of deviancy from childhood through early adulthood.  In an elementary 

age population, one would imagine alcohol use to be quite rare, even among students with high 

levels of deviancy.  Deviancy at this age tends to be associated with, for example, fighting, 

stealing, and lying, rather than drug use.  In middle and high school, alcohol use may be a more 

appropriate indicator of deviancy, yet in early adulthood (i.e., after age 21), moderate alcohol use 

ceases to be a viable indicator of deviancy, given that it becomes a legal activity. Assuming that 

theory supports a common definition of deviancy across this time span, a shifting indicators 

model can measure the trajectory of deviancy while accommodating these changes in the 

manifestations of the latent construct.   

Above and beyond theoretical reasons, practical considerations may contribute to the 

need to use shifting indicators.  Changes in cultural touchstones and popular nomenclature may 

predicate changes in the measurement of a construct over time.  As norms change, existing items 

may no longer be appropriate.  A measure of job satisfaction, the Job Description Index, was 

developed in 1969 and has been revised several times based on societal changes in the workplace 

and common phrasing regarding work (Lake, Gopalkrishnan, Sliter, & Withrow, 2010).  Chan, 

Drasgow, and Sawan (1999) investigated the performance of items on the Armed Services 

Vocational Aptitude Battery (ASVAB) and found that the item parameters of 25 out of 200 items 

changed significantly over a period of 16 years.  Items that were more semantically laden were 
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more likely to exhibit measurement changes, indicating that shifts in the use of language over 

time may contribute to differences in item response.  Some fields, such as those related to 

consumer technology or popular culture may require relatively frequent updates to ensure that 

items are relevant.   

Other unexpected occurrences may render a longitudinal dataset incomplete.  For 

instance, administrative or printing errors may result in items being inadvertently dropped from 

the dataset.  A reduction in funding or access to participants may cause researchers to exclude 

some indicators from certain waves of data collection.  Data may be incorrectly gathered in the 

field or corrupted before analyses take place.  All of these problems represent less than ideal 

circumstances impacting the availability of indicators at each time point.  However, these 

problems are not rare.  Given sufficient overlap in indicators and evidence that the intact data are 

suited for longitudinal analysis (e.g., exhibit longitudinal invariance), second-order LGMs with 

shifting indicators may provide an opportunity to salvage a line of research in light of 

unexpected setbacks. 

Theoretical and Practical Considerations Pertaining to the Use of Second-order LGMs 

with Shifting Indicators 

While second-order LGMs with shifting indicators may provide solutions to some 

measurement problems faced by researchers, they are not appropriate in all situations and should 

not be employed in the absence of sound theory.  As mentioned earlier, before engaging in any 

type of latent growth curve modeling, the latent construct of interest should be stable in meaning 

across time.  Manifestations of the construct may change across time, but the essence of the 

construct should, as defined by theory, remain the same.  For example, the indicators of parental 

monitoring may be different in middle school than in high school (where one would expect high 
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school students to have more freedom), but the underlying construct likely remains the same.  It 

is possible that theory dictates the essence of the latent construct does change.  For instance, 

theory may suggest that parental monitoring in infancy (e.g., attending to and being receptive of 

the baby’s needs) is qualitatively different than monitoring in adolescence (e.g., knowing the 

child’s friends, following the child’s progress in school).  In this case, latent growth modeling of 

monitoring as a single construct across time would be inappropriate. 

 Given that there is a theoretical basis for the construct’s stability in meaning across time, 

theory should also inform the inclusion or exclusion of indicators (given that items are to be 

added or dropped in a planned fashion).  Theory must be detailed enough to guide the selection 

of appropriate indicators at each time point.  Researchers should be able to explain the theoretical 

basis for the inclusion or exclusion of each item at each measurement occasion.  This may prove 

to be a stumbling block for some researchers, as the theory may not be sufficiently well 

developed to provide direction at this level of detail.  

 In addition to theoretical preconditions, several practical considerations impact the 

appropriateness of second-order LGMs with shifting indicators. First, there must be sufficient 

overlap across indicators to identify the model.  Hancock and Buehl (2008) provide guidance for 

determining whether sufficient linkages exist across time.  The first step involves developing a 

configuration matrix.  In this matrix, asterisks indicate at which time points each item is 

measured.  From the configuration matrix, an incidence matrix is created.  The incidence matrix 

indicates which time points have one or more constrained indicators in common.  Time points 

with shared indicators are designated with a “1,” and time points with no shared indicators are 

designated with a “0.”  In order to meet the minimum amount of overlap needed for model 

identification, the incidence matrix must have a minimum of T-1 non-zero elements (i.e., “1’s”) 
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below the diagonal arranged in a particular configuration, where T is the number of measurement 

occasions.  Vertical and horizontal lines are drawn through the row or column containing each 

non-zero element below the diagonal.  These lines are extended to cross out the elements above, 

below, and to the sides of the non-zero elements.  If all of the elements are crossed out after the 

lines are extended, the minimum condition for model identification has been met.   

 A model presented by Hancock and Buehl (2008) is used to illustrate this process.  The 

relevant matrices are displayed in Figure 2.4.  As described earlier, the model involves four time 

points and five items. From the configuration matrix, overlap among the items across time points 

can be easily identified.  In this case, there is overlap among time 1 and time 2 (i.e., item B), time 

2 and time 3 (i.e., item C), and time 3 and time 4 (i.e., item D).  This information is used to 

develop the incidence matrix.  In the second step involving the incidence matrix, vertical and 

horizontal lines are drawn through the non-zero elements of the incidence matrix.  In this 

example, all of the zero elements are crossed out by the lines, indicating that the minimum 

amount of overlap for model identification is met.   

 

 

Figure 2.4. Matrices involved in determining sufficient overlap. 

  

 

1 2 3 4 1 2 3 4 1 2 3 4

A * 1 1

B * * 2 1 2 1

Item C * * 3 0 1 3 0 1

D * * 4 0 0 1 4 0 0 1

E *

Time

Time

Configuration Matrix

Time Time

Time

Incidence Matrix: Step 1 Incidence Matrix: Step 2
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Some circumstances faced by researchers may not meet these model identification 

conditions.  For example, if researchers want to use an entirely new set of indicators to measure 

the latent construct, there must be a wave of data collection where the new and at least some of 

the old measures are administered.  Depending on the length of the measures and other factors, 

this may not be practicable.  Further, in the case of unexpected loss or corruption of data, there 

may be insufficient intact indicators to identify the model. 

 Another practical consideration is that invariant indicators need to be available at each 

time point.  If indicators that lack measurement invariance are selected, model fit will likely be 

unacceptable and interpretations of the outcomes will be flawed.  Ferrer et al. (2008) 

demonstrated the consequences of using indicators that failed to meet invariance assumptions 

using second-order LGMs.  Using a dataset that failed to exhibit longitudinal invariance at any 

level, the authors estimated a second-order LGM using each indicator, in turn, as the scale 

indicator.  In this dataset, the choice of scale indicator greatly impacted the parameter estimates, 

resulting in different interpretations depending on the item designated as the scale indicator.  As 

much as possible, researchers should select indicators that have already demonstrated favorable 

measurement characteristics, including exhibiting longitudinal invariance.  However, this 

principle does not exclusively apply to the use of second-order LGMs with shifting indicators.  

Regardless of the type of analysis that is employed, the use of high-quality items is essential to 

drawing meaningful inferences.    

Comparison of Second-order LGMs with Shifting Indicators to Item Response Theory 

Approaches  

At a basic level, the goal of second-order LGMs with shifting indicators is to render 

comparable scores on measures that differ to some extent.  Researchers operating under many of 
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the theoretical traditions within the field of measurement (e.g., classical test theory, item 

response theory) have developed other techniques for approaching this kind of research goal.  In 

this section, I describe several alternative approaches to obtaining comparable scores—both 

cross-sectionally and longitudinally—and compare them to second-order LGMs with shifting 

indicators.  

 By way of background, a brief introduction to item response theory (IRT) is first 

presented.  IRT models relate item response to the level of a latent trait, , possessed by each 

respondent, and characteristics of the item.  In a dichotomously scored item, the probability of 

endorsing the item (e.g., responding “yes” in a symptom checklist) increases as the level of the 

underlying latent trait increases (e.g., the respondent possesses more depression).  The shape of 

this growth follows a monotonically increasing S-shaped curve called the item characteristic 

curve (ICC) which is defined by the item parameter(s).   

The one parameter logistic model, also known as the Rasch model (Rasch, 1960), is a 

common IRT model. The probability of endorsing an item for a given level of  is modeled as 

1
( )

1 exp[ ( )]
i

i

P
b





  

 , (7) 

where  is the item difficulty parameter.  For this model, the difficulty parameter indicates the 

point on the latent continuum where the probability of endorsing the item is .5.  

 The two parameter logistic (2PL) model is another popular item response model 

(Birnbaum, 1968).  The 2PL includes two item parameters, difficulty and discrimination.  The 

probability of endorsing an item for a given level of  is modeled as 

1
( )

1 exp[ ( )]
i

i i

P
a b





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where bi
 is the item difficulty parameter, and ai

 is the item discrimination parameter for this 

model. The discrimination parameter describes how well the item differentiates between 

respondents above and below the point at b.   

  Birnbaum’s (1968) three-parameter model (3PL) is a common IRT model that adds an 

item parameter to account for the impact of guessing on item response.  The probability of 

endorsing an item for a given level of   is modeled as 

1
( ) (1 ) ,

1 exp[ ( )]
i i i

i i

P c c
a b




  
    

 (9) 

where ci  is the pseudo-guessing parameter, bi  is the difficulty parameter, and ai is the 

discrimination parameter.   

Previous researchers have demonstrated the connections between IRT- and SEM-based 

(i.e., factor analytic) analyses of categorical measurement models (e.g., Takane & de Leeuw, 

1987).  If dichotomous or categorical data are used, factor analytic and IRT methods may be 

employed to estimate equivalent models (e.g., Edwards & Wirth, 2009).  Specifically, the factor 

loading parameter can be transformed into a discrimination parameter, and the item intercept can 

be transformed into an item difficulty parameter (Kamata & Bauer, 2008).  Although IRT and 

SEM have traditionally employed a separate vocabulary and different computer software 

programs, a growing literature relating IRT and factor analysis has expanded our understanding 

of the connections between the two frameworks (e.g., Takane & de Leeuw, 1987; Kamata & 

Bauer, 2008; Edwards & Wirth, 2009; Reise, Widaman, & Pugh, 1993; Chan, 2000).  

Linking Under IRT and CTT 

Holland (2007) provides a framework for organizing methods for linking scores from one 

test to another using CTT and IRT methods.  He defines linking as a transformation of a score on 
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one test to a score on another test.  In this section, I describe types of linking, data collection 

designs related to linking, and options related to the technical process of linking using CTT and 

IRT methods, and I compare these to the SEM-based approaches to linking embodied by the 

shifting indicators model. 

Types of linking.  Two major sub-categories within Holland’s (2007) typology are scale 

aligning (also called scaling), and equating.  Scale aligning involves making scores on different 

tests comparable. The types of tests to be linked may measure different or similar constructs, 

may have similar or dissimilar psychometric properties (i.e., difficulty, reliability), and may be 

taken by a common or different populations of examinees.  Equating is the process of making 

scores on different tests interchangeable.  Equating requires more restrictive assumptions than 

scale aligning.  Specifically, the tests to be linked must measure the same construct with 

comparable levels of reliability and difficulty, which implies that the tests should be built to the 

same specifications and administered under comparable conditions (Holland, 2007).   

The shifting indicators design shares some commonalities with both scale aligning and 

equating.  For example, there are similarities between the shifting indicators model and 

calibration, which falls under scale aligning in Holland’s (2007) typology.  According to 

Holland, calibration involves linking tests that measure similar constructs with different 

reliability taken by a common population.  A common use of calibration involves linking scores 

from a short form of a longer assessment.  The shifting indicators model may also involve the 

use of a truncated assessment (i.e., an assessment where items have been dropped), although the 

assessment could be the same length over time if dropped items are replaced with other items.  

Within the scale aligning category, the shifting indicators model also bears resemblance to 

vertical scaling.  A common application of vertical scaling is to put achievement tests taken by 
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students in adjacent grades on the same scale.  Under vertical scaling, the populations of test 

takers are different (e.g., third graders and fourth graders), while under the shifting indicators 

model, the population of test takers is the same (e.g., the same population assessed as third 

graders one year and fourth graders the next year). 

The shifting indicators model also shares features of equating.  Holland (2007) 

differentiates equating from other forms of linking by stating that “[w]hat distinguishes test 

equating from other forms of linking is its demanding goal of allowing scores from both tests to 

be used interchangeably for any purpose” (p. 22).  Like equating, the shifting indicators model 

imposes restrictive assumptions on the data (such as the equality constraints on loadings and 

intercepts over time).  The goal of the shifting indicators model is to obtain measures of the 

latent construct that can be considered interchangeable in the sense that the scores are used to 

interpret growth.  If scores are not reflective of the amount of the latent construct possessed by 

the respondents at each time point, interpretations of growth in that latent construct will be 

flawed.   

 Data collection designs.  Many different data collection designs for scaling and equating 

tests have been developed.  A major distinction among these methods pertains to the use of a 

common population or a common set of items.  

Among the methods that utilize a common population, a single group design involves 

having a single group of respondents complete both forms of a test. The counterbalanced design 

is similar to the single group design, but varies the order of the two tests among respondents to 

counteract fatigue and other order effects.  The equivalent group design (also known as the 

random groups design; Kolen & Brennan, 2004, pp. 13-15) entails randomly assigning members 

of a common population to take different forms of a test.  
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Another category of equating procedures relies on a common set of items rather than a 

common population.  This type of design has been called the non-equivalent groups with anchor 

test design, also known as NEAT (Holland, 2007).  Under the NEAT design, a common set of 

items, known as an anchor test, is used to link different tests taken by different populations of 

respondents.  The anchor test is designed to reflect the content and statistical properties of the 

larger test.   

The shifting indicators design has some commonalities with equating procedures that call 

on common items and those that call on a common population.  As described earlier, the shifting 

indicators model accomplishes linking based on the presence of common items.  However, the 

shifting indicators design also involves a common population of respondents over time.  A key 

difference between the data collection designs described here and the shifting indicators model is 

that the shifting indicators model is a longitudinal model.  Longitudinal IRT models are possible 

and are introduced in a subsequent section. 

 Technical processes of linking.  The technical process of linking may be accomplished 

given a number of different methods.  Mean equating, linear equating, and equipercentile 

equating employ a classical test theory framework.  Mean equating adjusts scores on different 

forms of a test so that they have the same mean (Kolen & Brennan, 2004, p. 30).  Linear 

equating adjusts scores to give the two forms of a test the same mean and standard deviation 

(Kolen & Brennan, 2004, p. 31).  Equipercentile equating adjusts scores to give the two forms of 

the test approximately the same score distribution (Kolen & Brennan, 2004, pp. 36-37). 

IRT methods may also be used for linking.  For the data collection designs that involve 

non-equivalent groups and common items, three types of available procedures are concurrent 

calibration, fixed common item parameter calibration, and separate calibration.  
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Under concurrent calibration, all parameters are estimated simultaneously given the full 

set of data available (Lord, 1980, p. 201).  That is, responses on both forms of the test are 

collapsed into a single dataset, and item and ability parameters are estimated together in one run.  

Responses are coded missing for the items on the test form that each set of examinees did not 

take.  The item parameters of the anchor items are assumed to be the same (i.e., invariant) across 

the two forms of the test; thus, the metric of test forms is set by these common items.  Fixed 

common item parameter calibration is similar to concurrent calibration, however, the parameters 

of the common items are already known (e.g., are pulled from an existing item bank) and are 

fixed across the different forms a priori (Jodoin, Keller, & Swaminathan, 2003).   

Separate calibration involves estimating item parameters for each test form separately 

and then linking the forms using items that are common to both forms. Under separate 

calibration, the goal is to obtain transformation constants, typically called the slope constant and 

the location constant (or A and B; Kolen & Brennan, 2004, p. 163) that place the parameters 

from different forms on the same scale.   

One way to obtain these transformation constants is via the item parameter estimates of 

the common items.  The mean/sigma method uses the means and standard deviations of the b-

parameters to calculate the transformation constants (Kolen & Brennan, 2004, p. 167).  After 

transformation, the mean and standard deviation of the b-parameters will be identical for the two 

forms of the test.  The mean/mean method uses the means of the a-parameters and the b-

parameters to calculate the transformation constants (Kolen & Brennan, 2004, p. 167).  The 

outcome of the mean/mean method is that the means of the a- and b- parameters will be the same 

for both forms of the test.  



31 
 

Characteristic curve methods are also suitable for designs involving non-equivalent 

groups and common items.  These methods consider all of the item parameters simultaneously 

by comparing the difference between the item characteristic curves of the common items taken 

by different populations.  The differences in test characteristic curves may also be considered.  

The goal of these methods is to obtain the transformation constants that minimize this difference.  

Two common characteristic curve methods are the Haebara approach and the Stocking and Lord 

approach (Kolen & Brennan, 2004, pp. 168-169). 

In comparison to the CTT and IRT methods described above, the shifting indicators 

model employs a linking process that is most similar to concurrent calibration.  The shifting 

indicators model estimates item and ability parameters in a single run, and sets the metric via 

equality constraints placed on the common items.  That is, for the set of common items, the 

factor loadings and item intercepts are set to be equal across time points.  In a case where item 

parameters are known ahead of time, it would also be possible to fix them a priori in a manner 

similar to the fixed common item parameter calibration method.   

Longitudinal IRT Methods 

Another important aspect of linking in the shifting indicators model pertains to the 

longitudinal nature of the data.  Many of the CTT and IRT methods described to this point are 

generally employed in cross-sectional contexts, such as large-scale achievement testing.  

However, IRT methods are being used in an increasingly wide variety of measurement contexts, 

including longitudinal settings.  In this section, I describe some of the methods for longitudinal 

item response theory (LIRT) and contrast them with the shifting indicators model.   

Many of the LIRT models operate under the Rasch framework.  The linear logistic test 

model (LLTM: Fischer, 1973) is an example of an item response model that was later extended 
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to the longitudinal case (Fischer, 1989).  A longitudinal extension of this model is the linear 

logistic test model with relaxed assumptions (LLRA).  At the first time point, the probability of 

item response may be expressed as  

P(xij 1|ij ) 
exp(ij )

1 exp(ij )
,  (10) 

where  is an item-specific ability parameter.  After the initial time point, other effects are 

added to the model such that   

P(xij 1|ij ) 
exp(ij  ij )

1 exp(ij  ij )
,  (11) 

where 
 
is the sum of the changes undergone by the respondent between time 1 and time 2.  

This change parameter typically includes a group-specific treatment effect and a trend effect 

capturing change not related to the treatment. 

Several distinctive features characterize this model.  A stepwise model testing procedure 

is employed to draw conclusions about growth and treatment effects; the fit of a baseline model 

is compared to more restrictive models that constrain the change parameter(s) to be equal across 

time and/or treatment group, in order to draw conclusions about growth.  Drawbacks to the 

model are that (a) it measures only group-level change, (b) any change in item parameters is 

assumed to be the same for all items, and (c) estimation can be problematic when there is change 

in predominately one direction, such as measuring children’s motor skills over time (Glück & 

Spiel, 1997). 



ij



ij
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Andersen (1985) proposed another Rasch-based model for estimating latent abilities of 

examinees at different time points.  Andersen’s model may be expressed as  

P(xi(k ) j 1| jk

* ,bi ) 
exp( jk

*  bi )

1 exp( jk

*  bi )
,  (12) 

where  is the ability of person j at time k, and  is the difficulty for item i.  One defining 

feature of this model is that latent abilities are occasion-specific.  These abilities are assumed to 

be different (although correlated) at each time point.  The difficulty parameter for each item is 

assumed to be constant over time.  As with all Rasch models, the item discrimination parameters 

are set to equality for all items at each time point.  Thus, the model assumes longitudinal 

measurement invariance at the metric and scalar levels.   

Andrade and Tavares (2005) proposed a 3PL longitudinal IRT model, which von Davier, 

Xu, and Carstensen (2011) classified as an extension of the Andersen (1985) model.  The model 

may be expressed as  

 

*

*

( ) *

exp[ ( )]
( 1| , , , ) (1 ) ,

1 exp[ ( )]

i jk i

i k j jk i i i i i

i jk i

a b
P x a b c c c

a b







   

 
  (13) 

where 
*

jk  and 
ib  are as previously defined, and 

ia  and 
ic  are the discrimination and pseudo-

guessing parameters, respectively.   In this model, the item parameters are assumed to be known 

and fixed over time, and ability parameters are estimated at each time point. Therefore, this 

model also assumes longitudinal measurement invariance at the metric and scalar levels. 

Another model for longitudinal measurement is the multidimensional Rasch model for 

learning and change (MRMLC: Embretson, 1991).  Embretson’s model may be expressed as  



 jk

*



bi
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P(xi(k ) j  1| j ,bi ) 

exp  jm  bi

m1

k









1 exp  jm  bi

m1

k









,  (14) 

where  is a vector of examinee abilities where  is the initial ability at the first time point 

(i.e., k = 1) and  through  are modifiabilities, and  is the difficulty for item i.  A 

distinguishing characteristic of the MRMLC is the inclusion of “modifiabilities” that represent 

individuals’ gain or decline in ability over time.  A simplex structure links the probability of item 

response to initial ability and one or more modifiabilities.  In this model, different items are 

administered at each time point.  Items are paired on difficulty, so item 1 at time 1 has the same 

difficulty as item 1 at time 2, for example.  Therefore, longitudinal measurement invariance at 

the metric and scalar levels is assumed, even though different items are used across time. 

Another approach to LIRT involves incorporating IRT parameters into a hierarchical 

linear modeling (HLM) framework.  This hybrid of the Rasch model and multilevel modeling is 

known as the hierarchical generalized linear model (HGLM: Kamata, 2001).  Pastor and 

Beretvas (2006) demonstrated an extension of this model to the longitudinal context.  A total of 

three levels are modeled: items at level 1, time at level 2, and persons at level 3. The first level 

models the log odds of endorsing an item as a function of a) an overall effect (i.e., common to all 

items) related to the examinee’s latent ability at time k and b) an item effect related to the item 

difficulty at time k.  The second level models variation in latent trait estimates and item effect 

estimates within persons over time.  The third level models variations in growth among persons 

over time.  An advantage of this approach is the ability to draw conclusions at both the individual 

and the item level.  That is, this approach allows for the investigation of changes in latent trait for 

individuals and changes to the item parameters over time.  (However, longitudinal measurement 



 j



 j1



 j 2


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invariance can only be examined at the scalar, and not the metric, level because the model is 

Rasch-based.)   

Similarities between HLM and latent growth modeling (LGM) have been described in 

detail (e.g., Preacher, Wichman, MacCallum, & Briggs, 2008).  HLM and LGM models may be 

specified to obtain equivalent key parameters (i.e., slope mean and variance, intercept mean and 

variance, slope-intercept covariance).  Given this connection—along with the relationship 

between IRT discrimination and SEM intercept parameters—it seems possible to specify 

equivalent HGLM and second-order LGM models, although I am not aware of any published 

works expositing this link.   

While IRT- and SEM-based methods may both be used to develop a common metric for 

measures that change over time, second-order LGMs with shifting indicators offer several 

advantages that may make them attractive to researchers.  First, not all applied researchers have 

training in IRT methods (especially longitudinal IRT) or access to IRT software.  Researchers 

may be more inclined to use analytical techniques that are familiar to them, and second-order 

LGMs with shifting indicators combine two popular techniques: confirmatory factor analysis and 

latent growth curve modeling.  Further, IRT software may not be equipped to estimate growth 

models.  Second-order LGMs with shifting indicators estimate the measurement model and the 

growth model simultaneously.  This process may be less demanding than estimating these 

parameters in separate steps and possibly different software programs.  Third, it appears that 

longitudinal SEM methods are currently more flexible than longitudinal IRT methods with 

regard to testing for longitudinal measurement invariance and allowing for partial measurement 

invariance if necessary.  Of the LIRT methods described above, only the longitudinal extension 

to the HGLM (Pastor & Beretvas, 2006) allows item parameter estimates to vary over time.  
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However, because this method is based on the Rasch model, longitudinal measurement 

invariance can only be investigated at the scalar level.  As psychological and behavioral 

researchers look to adopt more sophisticated methods for examining longitudinal growth, 

second-order LGMs with shifting indicators may represent an accessible and user-friendly 

method of investigating longitudinal trajectories given a set of items that change over time.  

Conditions Affecting the Accuracy of Second-order LGMs with Shifting Indicators 

 To date, empirical investigations of the performance of second-order LGMs with shifting 

indicators have been quite limited in scope.  Hancock and Beuhl (2008) describe the model and 

demonstrate its use, but they do not evaluate the performance of the model under various 

manipulated conditions (e.g., by varying the number of items, loading magnitudes, etc.).  

Although research on the conditions affecting the accuracy of second-order LGMs with shifting 

indicators is limited, the literature related to models with similar features, including IRT models, 

CFA models, and other LGMs, may be useful in drawing inferences about which conditions may 

impact the performance of the shifting indicators model.  In particular, I consider connections 

from related models to the impact of the proportion of shifting indicators in the model, the 

loading magnitudes of shifting indicators, and sample size.   

Proportion of Shifting Indicators in the Model 

One area of interest that has not been investigated in second-order LGMs with shifting 

indicators relates to the proportion of shifting indicators in the model.  Two relevant conditions 

in this area are (a) the proportion of shifting to non-shifting indicators within a measurement 

occasion (e.g., two out of eight items are dropped versus four out of eight) and (b) the proportion 

of measurement occasions that involve shifting indicators (e.g., items are dropped at one time 

point versus three time points).  In other words, does the performance of the shifting indicator 
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model vary given a small versus large proportion of shifting indicators within one measurement 

occasion?  And, does the performance vary given a small versus large proportion of 

measurement occasions with shifting indicators? A related issue pertains to how the number of 

indicators per factor impacts the quality of measurement because a larger number of shifting 

indicators results in a smaller number of items per factor unless new items are added to replace 

the dropped ones.  

Work in equating and vertical scaling indicates that employing a larger set of common 

items is preferable (e.g., Kolen & Brennan, 2004, p. 271, Fitzpatrick, 2008).  A larger set of 

common items has been associated with a reduction in equating error (Budescu, 1985; 

Wingersky, Cook, & Eignor, 1987).  One rule of thumb that has been suggested is that the set of 

common items should comprise at least 20% of the total test length (Cook & Eignor, 1991).  

In SEM models, researchers have investigated the relationship between the number of 

indicators per factor and the quality of the measurement model.  Using a series of simulation 

studies, Marsh, Hau, Balla, and Grayson (1998) demonstrated that using more indicators per 

factor resulted in greater model convergence, more accurate parameter estimates, more stable 

parameter estimates, and greater reliability of factors.  For model convergence, the advantage of 

having a larger number of indicators per factors was amplified in cases where sample size was 

small.  In one example, given a sample size of 50, a proper solution was obtained 99% of the 

time with nine indicators per factor and only 41% of the time with three indicators per factor.  

For parameter estimates, increases in the number of items per factor were related to more 

accurate estimates of factor loadings, uniquenesses, and factor correlations, although this effect 

appeared to level out once the number of items per factor reached four.  However, the standard 

deviations of those estimates continued to systematically decrease as the number of items per 
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factor increased.  Additional items per factor were also related to increased factor reliability.  

The relationship between factor reliability and model estimation is described in the next section. 

Building on the work of Marsh, Hau, Balla, and Grayson (1998), Gagné and Hancock 

(2006) reported advantages of using more versus fewer indicators per factor in a related study.  

They found that increasing the number of indicators per factor generally leads to improvement in 

model convergence and parameter estimation in CFA models.  They also found an interaction 

between the number of items per factor and sample size on model convergence; these facets of 

the model worked in a compensatory fashion, with larger values in one area able to make up for 

smaller values in the other.  For example, with four indicators per factor, an average sample size 

of 1,000 was required to meet a satisfactory rate of convergence (i.e., ≤ 1,100 samples generated 

to attain 1,000 properly converged replications) across tested conditions, whereas with 12 

indicators per factor, the average necessary sample size to meet this criterion was 200.  In terms 

of the accuracy of parameter estimates, they found that under conditions that had a relatively 

high likelihood of model convergence (i.e., those that met the “satisfactory” criterion described 

above), parameters, standard errors, and chi-square estimates were generally accurate, although 

standard errors and chi-square values were occasionally inflated.  The authors did not report 

results of these bias analyses for each of the independent variables (i.e., number of items per 

factor, sample size, loading magnitudes) separately; however, they concluded that more 

indicators per factor, larger sample size, and larger loading magnitudes increase the likelihood 

that the model will converge and provide unbiased estimates. 

A study investigating the performance of second-order LGMs indicated that a greater 

numbers of items per factor may have an adverse impact on bias in estimates of the chi-square 

statistic given small sample sizes.  Leite (2007) found that the relative bias of the chi-square 
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statistic increased as the number of items per factor increased from five to 10 and from 10 to 15.  

However, at sample sizes of at least 500, the level of bias did not increase beyond an acceptable 

level.  Similar results were obtained for the CFI and the Tucker-Lewis index (TLI). 

This inverse relationship between fit as assessed by the chi-square fit statistic and the 

number of items per factor was also observed by Marsh, Hau, Balla, and Grayson (1998).  They 

found systematic variation among properly specified CFA models with regard to the number of 

indicators per factor, with goodness of fit appearing to be worse as items per factor increased, 

especially at smaller sample sizes.        

Given these findings, it is expected that models that employ a greater proportion of non-

shifting items (i.e., have more common indicators per factor within each measurement occasion 

and across time) will result in better rates of proper convergence, more accurate parameter 

estimates, and more stable parameter estimates in comparison to models with fewer common 

items.  However, models with a greater number of items per factor (i.e., fewer shifting items) 

may exhibit larger values of relative bias with regard to the chi square (and related) fit statistics, 

especially when sample size is small.    

Loading Magnitudes of the Shifting Indicators 

Researchers interested in second-order LGMs with shifting indicators may also want to 

better understand how the magnitude of the loadings of the omitted items relates to the 

performance of the model.  Items that are identified based on theory as being developmentally 

inappropriate at certain time points are likely to be poor indicators of the latent construct at those 

measurement occasions.  Therefore, if they are included in the model, they likely will have low 

factor loadings and will not be contributing much reliable variance at those times.  On the other 

hand, in some cases indicators with high loadings may be omitted from some measurement 
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occasions due to unexpected occurrences--such as problems with data collection.  While no other 

studies have investigated how the loading magnitudes of omitted items relates to the 

performance of second-order LGMs with shifting indicators, connections can be drawn from 

research in confirmatory factor models.   

Gagné and Hancock (2006) evaluated model convergence and parameter estimation of 

confirmatory factor models given varying levels of loading magnitude, sample size, and number 

of indicators per factor.  The results of this study were briefly described in the previous section 

and are elaborated on here.  The authors found that estimation improved as levels of the 

independent variables increased; higher loadings, larger samples, and more indicators per factor 

resulted in better convergence rates and more accurate parameter estimates and variances.  With 

regard to factor loadings, they demonstrated that models with higher factor loadings required a 

smaller sample size to obtain satisfactory rates of model convergence.  A satisfactory level of 

convergence was defined as less than or equal to 1,100 samples generated to attain 1,000 

properly converged replications.  For example, given six indicators per factor with loading 

magnitudes of .8, a sample size of 25 was needed to meet the criterion for satisfactory 

convergence.  In a 6-indicator model with loadings of .2, a sample size of 1,000 was needed.  

One contribution of this study that is particularly relevant to the shifting indicators model 

is the investigation of the impact of various configurations of heterogeneous loading magnitudes 

on estimation of CFA models.  While Marsh, Hau, Balla, and Grayson (1998) only investigated 

models with loading magnitudes of .6 for all items, Gagné and Hancock (2006) investigated 

models given four different levels of loading magnitudes: .2, .4, .6, and .8.  Further, they 

generated models with homogenous loadings (i.e., all loadings are the same for each indicator in 

the model), heterogeneous loadings (i.e., loadings differ within the model), and with different 
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numbers of indicators.  This arrangement allowed the researchers to investigate questions such as 

whether adding additional items per factor improves estimation when the loadings of the added 

items are low.  This line of inquiry may be particularly pertinent to the shifting indicators model 

given that researchers may choose to omit items with low loadings at selected time points.   

The results of the study indicated that in almost all cases, adding indicators to the model 

improved convergence, including cases where the added indicators had loadings of .2.  The only 

exception to this pattern was in the case where the sample size was less than 50; in this case, the 

addition of multiple indicators with loadings of .2 decreased the convergence rate under some 

conditions.   

In summarizing the impact of loading magnitude and number of indicators per factor on 

model estimation, the authors focused on construct reliability.  Construct reliability is a function 

of the number of items per indicator and the factor loadings of those items and is often estimated 

using coefficient omega, expressed as  

 

 

ai

i1

k


 

 
 

 

 
 

2

ai

i1

k


 

 
 

 

 
 

2

 (1 ai

2)
i1

k



, (15) 

where 



ai  refers to the loadings for the set of k indicators (Gagné & Hancock , 2006).  The 

authors conclude that as construct reliability is enhanced (i.e., the number of indicators per factor 

and/or loading magnitudes increase), the likelihood that the model will converge will also 

increase.  

A drawback to this study is that the impact of loading magnitudes or any of the other 

studied conditions on bias in other quantities (i.e., parameter and standard error estimates, and 

chi-square values) was not reported separately.  However, the authors in general linked the 
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likelihood of convergence to reductions in bias.  They concluded that more indicators per factor, 

larger sample size, and larger loading magnitudes increase the likelihood that the model will 

converge and provide accurate estimates. 

The results of this study provide several implications for the shifting indicators model.  

First, in terms of convergence, it may be undesirable to voluntarily drop items from a study, even 

when the loadings of those items are low.  If the items are available, it may be preferable to 

include them.  However, omitting items with low loadings from the shifting indicators model 

should have less of an impact on the estimation of the model than omitting items with higher 

loadings.  Researchers can determine the loss of construct reliability caused by omitting an item 

with a given loading magnitude using the formula for coefficient omega.  

Sample Size 

Applied researchers may be particularly interested in recommendations related to 

adequate sample size in the shifting indicators model.  Based on work in confirmatory factor 

analysis (CFA) and latent growth curve modeling contexts, it is expected that the quality and 

stability of estimation of shifting indicators models will improve as sample size increases.  

However, a key question relates to the minimum sample size needed in order for researchers to 

expect reasonably stable and accurate results given a second-order LGM with shifting indicators.  

The answer to this question will depend on the characteristics of the data and the model.   

Leite (2007) demonstrated that second-order LGMs with identical indicators performed 

well under a variety of conditions with sample sizes of at least 500.  The independent variables 

of this simulation study were sample size, number of items, number of time points,  equal versus 

unequal loadings across items, level of reliability, and level of longitudinal measurement 

invariance.  The dependent variables were percentage of inadmissible solutions, bias of the 
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parameter estimates and standard errors, bias of the chi-square statistic, and performance of other 

fit indices (CFI, TLI, RMSEA).   

In terms of admissible solutions, sample size and the number of measurement occasions 

impacted the rate of convergence to a proper solution.  Given a sample size of 100, the 

percentage of inadmissible solutions was 32.4% with three measurement occasions and 0.9% 

with five measurement occasions.  With a sample size of 1000, 8.9% of solutions were 

inadmissible with three measurement occasions, while no inadmissible solutions were produced 

given five measurement occasions.  This result indicates that sample size and number of 

measurement occasions can serve a compensatory function for each other.  

With regard to bias, second-order LGMs were shown to accurately estimate the key 

growth parameters.  Under all conditions except one, the relative bias of the growth parameters 

and standard errors were within the acceptable limit (i.e., .05 for parameter estimates and .1 for 

standard errors; Hoogland & Boomsma, 1998).  The anomalous result occurred in the condition 

with a sample of 100, 15 items, and five measurement occasions.  In this case, the relative bias of 

one of the parameter estimates (i.e., the slope/intercept covariance) exceeded the acceptable 

limit.  Overall, this result suggests that even when sample size is small, the accuracy of 

estimating growth parameters is suitable given second-order LGMs.  

Sample size played a more influential role in terms of the performance of fit indices.  In 

the conditions where sample size was 100 or 200, the relative bias of the chi-square statistic 

exceeded the acceptable limit (i.e., .05).  Furthermore, CFI, TLI, and RMSEA fit indices 

demonstrated similar results.  When the sample size was 500 or 1000, the percentage of analyses 

indicating adequate fit according to the CFI, the TLI and the RMSEA was at or near 100%.  With 

sample sizes of 100 or 200, the pattern was more complicated.  When the number of 
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measurement occasions and the number of items per factor was smaller, and the construct 

reliability of the factors was higher, a higher percentage of fit indices indicated adequate fit.  For 

example, with a sample size of 200, three time points, and five items per factor, and a construct 

reliability of .9, the adequate fit percentage exceeded 98% for the CFI, the TLI, and the RMSEA.  

(Note that the RMSEA was not impacted by construct reliability.)  On the other hand, in 

conditions with more time points, more items per factor, and lower construct reliability, the 

performance of the fit indices declined.  For example, with five time points, 15 items per time 

point, and a sample size of 100, the percentage of the analyses with fit indices indicating 

adequate fit was zero, regardless of the construct reliability.   

Based on the problematic performance of the chi-square statistic and the other fit indices 

investigated under small sample sizes, Leite (2007) recommends the use of the second-order 

LGMs only when the sample exceeds 500.  In an applied study, Pettit, Keiley, Laird, Bates, and 

Dodge (2007) successfully employed a shifting indicators model given a sample size of 522.   

Given the manipulated variables in this study, it is expected that a relatively larger 

sample size will be required when the proportion of shifting indicators is larger.  This study aims 

to further clarify the relationship of sample size to the other independent variables to help 

researchers decide whether second-order latent growth modeling with shifting indicators may be 

appropriate given the characteristics of their data.    

Research Questions and Rationale 

 Initial evaluations of the performance of second-order LGMs with shifting indicators 

have been promising.  Due to these positive results, additional work to determine the 

performance of second-order LGMs with shifting indicators under a wider range of conditions is 

warranted.  The goal of this study is to provide a clearer understanding of the performance of 
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second-order LGMs with shifting indicators under a variety of conditions so that researchers are 

better informed about when and how the use of the model may be appropriate.  Simulated data 

were generated with all items present at each time point.  Given a common generating data set, 

the performance of two types of LGMs were compared: (1) a second-order LGM with shifting 

indicators, and (2) a second-order LGM with all items present at each time point (i.e., a “full 

model”).  

The shifting indicators model is of primary interest in this study.  This model represents 

the case where items have been omitted from the measure on theoretical or practical grounds.  

The full model served as a comparison model.  This model represents the case where all items 

are available and included in each time point.   

 Monte Carlo simulation was employed to address four research questions.  For each 

question, the performance of a second-order LGM with shifting indicators was compared to the 

full LGM.  The research questions and associated hypothesis are:  

1. How does the number of shifting to non-shifting indicators within the affected 

measurement occasions influence model convergence, bias in growth parameter 

estimates, bias in standard error estimates, efficiency, and model fit? 

It is hypothesized that models with more indicators per factor within each measurement 

occasion will have better rates of proper convergence, less bias in parameter estimates, 

less bias in the standard errors of the parameter estimates, and more efficient estimation.  

With regard to fit, models with more indicators per factor within each measurement 

occasion are hypothesized to have larger model rejection rates based on the chi-square 

(i.e., Type I errors) and related fit statistics.   
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2. How does the number of measurement occasions with shifting indicators influence model 

convergence, bias in growth parameter estimates, bias in standard error estimates, 

efficiency, and model fit? 

It is hypothesized that models with fewer occasions involving shifting indicators will 

have better rates of proper convergence, less bias in the parameter estimates, less bias in 

the standard errors of the parameter estimates, and more efficient estimation.  With 

regard to fit, models with fewer occasions of shifting indicators are hypothesized to have 

larger model rejection rates based on the chi-square (i.e., Type I errors) and related fit 

statistics.   

3. How does the magnitude of the factor loadings for the omitted items influence model 

convergence, bias in growth parameter estimates, bias in standard error estimates, 

efficiency, and model fit? 

It is hypothesized that models that drop items with low loadings will have better rates of 

proper convergence, less bias in the parameter estimates, less bias in the standard errors 

of the parameter estimates, and more efficient estimation than models that drop items 

with high loadings.  With regard to fit, models that drop items with low loadings are 

hypothesized to have smaller model rejection rates based on the chi-square (i.e., Type I 

errors) and related fit statistics.   

4. How does sample size influence model convergence, bias in growth parameter estimates, 

bias in standard error estimates, efficiency, and model fit? 

It is hypothesized that models with larger sample sizes will have better rates of proper 

convergence, less bias in the parameter estimates, less bias in the standard errors of the 

parameter estimates, and more efficient estimation than models with smaller sample 
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sizes.  With regard to fit, models with larger sample sizes are hypothesized to have 

smaller model rejection rates based on the chi-square (i.e., Type I errors) and related fit 

statistics than models with smaller sample sizes.   

The research questions addressed in this study are intended to focus on areas that would be of 

practical interest to applied researchers faced with making a decision about whether to use the 

shifting indicators model given the characteristics of their data.  In the next chapter, I elaborate 

on the operationalization of these research questions. 

  



48 
 

 

 

CHAPTER 3 

METHODS 

 This study evaluated the performance of second-order LGMs with shifting indicators 

under several different conditions.  Specifically, the number of shifting to non-shifting 

indicators, the number of occasions with shifting indicators, the magnitude of the factor loadings 

of the shifting indicators, and sample size were examined.  These were manipulated to 

investigate the impact on model convergence, growth parameter and standard error estimation, 

efficiency, and model fit.  Monte Carlo simulation was employed to generate data where all 

indicators are present at all time points.  Data for selected indicators at selected time points were 

then deleted to mimic a design in which shifting indicators are encountered.  The performance of 

the second-order LGM with shifting indicators was then compared to the model with all 

indicators present at all time points.   

Independent Variables 

 Five independent variables were manipulated in this study.  They are:  

1. model type (two levels: full and shifting); 

2. the magnitude of the factor loadings of the shifting indicators (two levels);  

3. the number of shifting indicators per measurement occasion (three levels); 

4. the number of measurement occasions with shifting indicators (four levels); and, 

5. sample size (four levels).   

For the purpose of this study, shifting indicators are defined as items that are dropped from 

models in the shifting condition and corresponding items in the full models that have low factor 
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loadings (i.e., representing the case when the item is not developmentally appropriate).  Table 

3.1 summarizes the levels of the independent variables compared in this study.   

Table 3.1 

 Levels of the Independent Variables   

Independent Variable Level 

  

Model type 
Full 

Shifting 

  

Number of shifting indicators per occasion 

0 

2 

4 

  

Number of measurement occasions with shifting 

indicators 

0 

1 

2 

3 

  

Loadings of items omitted in shifting conditions 
.3 

.7 

  

Sample size 

250 

500 

750 

1000 

 

Two types of second-order LGMs were compared: a full model with all indicators present 

at each measurement occasion, and a shifting indicators model.  The models that included the 

full set of indicators served as a comparison for the shifting indicator models.   Figure 3.1 depicts 

the basic components of a full model.   For the full models, eight items measured the latent 

construct at each time point.  A total of eight items were chosen to compose the full model to 

represent a realistic number of items for a scale measuring psychological or behavioral 

constructs.  For example, the scales listed in Measuring Bullying, Victimization, Perpetration, 

and Bystander Experiences: A Compendium of Assessment Tools generally range from five to 10 

items (Hamburger, Basile, & Vivolo, 2011).  Further, a full model of eight items allows for sets 
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of items to be dropped from the model while maintaining a minimum of four items per factor, as 

suggested by Marsh, Hau, Balla, and Grayson (1998).    

 

 

Figure 3.1.  Basic components of a full model.   

 

Three levels of the number of shifting indicators per measurement occasion were 

compared: zero, two, and four.  When two items were dropped at the impacted measurement 

occasions, six items remained.  This condition represents the case where a smaller number of 

items is shifted.  When four items were dropped at the impacted measurement occasions, only 

four items remained.  This condition represents a more extreme case where a larger number of 

items are shifted over time.  Although this circumstance (i.e., half of all items are dropped) 

would not be ideal, it was of interest to investigate whether model performance would degrade 

when a large proportion of items were dropped.  

Four levels of the number of measurement occasions with shifting indicators were 

investigated: zero times, one time, two times, and three times.  In all cases, three measurement 

occasions were included in the model.  In the one-time condition, items were dropped from the 

last occasion.  This configuration is meant to reflect the case where some items are no longer 
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relevant at the end of the study.  In the two-times condition, items were excluded from the first 

and last measurement occasions.  This configuration is meant to reflect a situation where some 

items are more relevant for participants at earlier stages of the study, and other items are more 

relevant for participants at later stages of the study.  In the final condition, shifting indicators 

were included in all measurement occasions.  Figure 3.2 depicts a simplified measurement model 

with two shifting indicators.  Figure 3.3 depicts a simplified measurement model with four 

shifting indicators.   

 

 

Figure 3.2. Simplified measurement model with two shifting indicators.  Shifting items are 

designated with grey boxes.  Top: One measurement occasion has shifting indicators. Middle: 

Two measurement occasions have shifting indicators.  Bottom: All measurement occasions have 

shifting indicators.  The pattern of shifting indicators has been configured to meet identification 

requirements.  
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Figure 3.3. Simplified measurement model with four shifting indicators.  Shifting items are 

designated with grey boxes.  Top: One measurement occasion has shifting indicators. Middle: 

Two measurement occasions have shifting indicators.  Bottom: All measurement occasions have 

shifting indicators.  The pattern of shifting indicators has been configured to meet identification 

requirements.  

 

Two levels of magnitude of the factor loadings for the items omitted in the shifting 

conditions were compared: .3, and .7. The loading magnitude of .3 is intended to reflect 

situations where items are less relevant at certain measurement occasions due to developmental 

changes. A loading magnitude of .3 is lower than the commonly used cut-point of .4 for selecting 

an item (Ding, Velicer, & Harlow, 1995).  However, researchers may have reasons for wanting 

to keep a scale intact over time.  For instance, when a scale has been previously validated and 

performs well (i.e., has high loadings) at most time points, researchers may wish to use the intact 

scale rather than drop items with low loadings.  This level of loading magnitude was selected to 

investigate the impact of keeping items with low loadings in the model and to help determine 

whether the “more items are better” recommendation (e.g., Marsh, Hau, Balla, & Grayson, 1998; 

Gagné & Hancock, 2006) holds for second-order LGMs when loading magnitudes are low.    
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The second level of loading magnitude was .7.  In this level, the loading magnitudes of 

the dropped items were the same as the intact items.  This case is intended to reflect situations 

where relevant items are lost due to unplanned circumstances, such as problems with data 

collection.  This level of loading magnitude was selected to investigate the impact of the 

inadvertent loss of items on model estimation to help determine the circumstances (if any) under 

which the performance of the model would be acceptable.  

 Four levels of sample size were compared: 250, 500, 750, and 1000.  These values are 

similar in range to the larger values of sample size (i.e., >100) investigated by Leite (2007), 

Marsh, Hau, Balla, and Grayson (1998), and Gagné and Hancock (2006).  The values were 

chosen at equally-spaced intervals to provide information along this continuum.  Leite (2007) 

found that a minimum sample size of 500 was necessary for the adequate performance of full 

second-order LGMs under most conditions.  For the purpose of this study, it was of interest to 

determine whether a similar degradation of performance is found with sample sizes of 250 given 

the different shifting model conditions that were manipulated in this study.   The shifting 

indicator models have fewer parameters to estimate, so the sample size requirement might not be 

as large for the shifting models as the full models. 

Dependent Variables 

Five dependent variables were investigated in this study.  They are:  

1. model convergence;  

2. bias in parameter estimates;  

3. bias in standard error estimates,  

4. efficiency, and;  

5. model fit. 
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Rates of model convergence and inadmissible solutions were recorded for each of the 

conditions studied.  When a model fails to converge or produces inadmissible solutions, it can 

present a major setback to the researchers’ analytical plan.  It is important for researchers to feel 

reasonably confident ahead of time that the model will converge and produce an admissible 

solution.   

In the case when a model fails to converge, no usable output data (e.g., parameter 

estimates) is produced by the Mplus program.  In a simulation study, the number of models that 

fail to converge is apparent by the number of missing records at the end of the data analysis 

phase.  For instance, when 998 output documents are produced by 1000 replications of a model, 

it can be deduced that two models failed to converge.  For each combination of conditions, the 

number of models that failed to converge was recorded. 

Improper solutions were also identified.  Improper solutions are observed when the 

converged solution involves a non-positive definite variance/covariance matrix of the growth 

parameter estimates.  In particular, negative values of the slope variance, intercept variance, or 

standard errors of the growth parameters were flagged.  An overall convergence rate of at least 

90% was considered satisfactory, in accord with Gagné and Hancock (2006).      

The relative bias in estimates of the five key parameters of LGMs (i.e., slope mean, 

intercept mean, slope variance, intercept variance, slope/intercept covariance) was calculated.  

The relative bias in parameter estimates averaged across replications is calculated as: 

1
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where  is the population parameter,  is the parameter estimate for the jth sample, and  is 

the number of replications.  When the relative bias of the parameter estimate is less than .05, it is 
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considered acceptable (Hoogland & Boomsma, 1998).  The relative bias estimates across 

replications were compared for each of the conditions using ANOVA.  Within these five-way 

ANOVAs, the dependent variable is the relative bias of the parameter estimate, and the 

independent variables are model type (i.e., shifting vs. full), the number of shifting indicators, the 

number of occasions with shifting indicators, loading magnitude, and sample size.  Effect size, 

measured by partial eta-squared, provides information regarding the level of practical 

significance of these results.  Partial eta-squared (Cohen, 1973) is calculated as:  

2 .between

between error

SS

SS SS





 

 (17) 

An advantage of eta-squared is that the effects of other variables on the effect size estimate are 

controlled for, so results may be more easily compared across studies.  In accordance with Leite 

(2007), partial eta-squared values of at least .05 were reported. 

 The relative bias in standard errors of the growth parameters (i.e., slope mean, intercept 

mean, slope variance, intercept variance, slope/intercept covariance) was calculated.  The 

relative bias of the standard errors is calculated as: 
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where ˆ( )iSE   is the estimated population standard error of  and is an estimate of the 

standard error of  for the jth sample.  A relative bias of the standard error of less than .1 is 

considered acceptable (Hoogland & Boomsma, 1998).  The estimated population standard error, 

ˆ( )iSE  , can be calculated as the standard deviation of the parameter estimates across all 

replications.  This value, as given in Bandalos (2006), can be calculated as:  
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(19) 

In this equation, ˆ
i  is the average estimated parameter value across replications within a cell, and 

all other elements are as previously defined.  Values of the relative bias of the standard errors 

were compared for each of the conditions using ANOVA, and partial eta-squared values of at 

least .05 are reported.   

Efficiency is another criterion that is of interest in Monte Carlo studies.  When comparing 

different methods of estimating the same parameters (in this case, the growth parameters of 

second-order latent growth models), the method that produces the lowest sampling variance is 

considered the most efficient.  In this study, a simple measure of efficiency—the average 

standard error of the parameter estimate across replications, within each cell—is employed.  

Another common measure of efficiency is the mean square error (MSE; Paxton, Curran, Bollen, 

Kirby, Chen, 2001), which is the squared difference between the estimated parameter and the 

true population parameter.  When parameter estimates are unbiased, MSE quantifies the 

sampling variability of the estimate.  When bias exists in the parameter estimates, the MSE does 

not solely describe this variability but also incorporates bias (Enders, 2001).  In this study, it was 

unknown a priori whether estimates produced by the shifting indicators model would be 

unbiased.  Therefore, the average standard error of the parameter estimate was considered a more 

direct measure of efficiency.     

Model fit was investigated using the chi-square fit index, the comparative fit index (CFI), 

the Tucker-Lewis index (TLI), and the root mean square error of approximation (RMSEA). The 

chi-square fit index tests the null hypothesis that the population covariance matrix is equal to the 

model-implied covariance matrix.  A discrepancy function, F, measures the difference between 
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the matrices, and is minimized to produce
minF .  The test statistic

min( 1)T N F   has a large 

sample chi-square distribution, where 1N   is the model degrees of freedom.  This value, 

commonly called the chi-square fit statistic, is compared against the critical value in the chi-

square distribution at significance level  (Hu & Bentler, 1998).  A non-significant chi-square 

value is desirable, as it indicates that the population and model-implied covariance matrices are 

not significantly different.   

For every replication, the value of the chi-square fit statistic was compared to the critical 

value at the .05 level of significance; datasets that produced chi-square values that exceeded the 

critical value were considered to be rejected.  Because the tested models fit the data perfectly in 

the population, rejected models represent Type I errors.  The Type I error rate was calculated as 

the number of rejected models divided by the total number of replications within a cell.  

Rejection rates were compared across cells using Bradley’s (1978) liberal criterion of .5  .  

In this study, .05  , so Type I error rates in the range of 2.5-7.5% were considered acceptable.     

 Although the chi-square fit index is a very popular measure of model fit, several 

drawbacks to its use have been reported (e.g., Bentler, 1990).  For example, the chi-square index 

tests for exact fit between the population and model-implied matrices, when it is assumed that 

any given model will only produce an approximation of reality (Hu & Bentler, 1998).  Also, the 

chi-square test is sensitive to trivial differences in the matrices under large sample sizes.  

Therefore, the chi-square test may be significant (indicating poor fit) even when differences 

between the population and model-implied covariance matrices are small.  Because of these 

drawbacks, the chi-square fit statistic is often used in concert with other measures of model fit, 

such as the CFI, TLI, and RMSEA.  Each of these other fit indices provides a descriptive 

measure of fit along a continuum, rather than a statistical test of model fit.  The CFI, TLI, and 
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RMSEA were chosen to correspond with the fit indices investigated in Leite (2007) and because 

they are commonly used fit indices with established criteria for values indicative of good fit (Hu 

& Bentler, 1998, 1999).    

CFI and TLI are incremental fit indices that compare the improvement in fit of the tested 

model versus a baseline model.  The baseline model specifies that the observed variables have no 

relationship with one another.  The TLI takes into account the parsimony of a model and is 

relatively insensitive to distribution and sample size.  Values above .95 are recommended (Hu & 

Bentler, 1998, 1999).  The CFI compares noncentrality parameters of the proposed and baseline 

models.  It is also relatively insensitive to distribution and sample size. Values above .95 are 

considered indicative of good fit (Hu & Bentler, 1998, 1999).   

 The RMSEA is a stand alone fit index (i.e., it does not compare the tested model to a 

baseline) that is a measure of lack of fit.  It corrects for model complexity and is insensitive to 

model type, sample size, and distribution.  RMSEA values of less than .06 are desirable (Hu & 

Bentler, 1998), and a confidence interval is typically reported.   

For each of these fit indices, the value of each index for every replication was compared 

to the criteria for acceptable fit described above.  Each dataset was then classified as either 

meeting or not meeting the criteria for acceptable fit.  Rejection rates for each of the fit indices 

were calculated as the number of rejected models divided by the total number of replications 

within a cell.  Rejection rates were descriptively compared across cells. 

Data Generation 

 Longitudinal data were generated using the external Monte Carlo function of the Mplus 

software program (version 6; Muthén & Muthén, 2010).  The SAS software program (version 

9.3; SAS Institute, 2011) was used to interact with Mplus and automate the data generation and 
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analysis process.   Examples of SAS syntax to generate data and analyze full and shifting models 

are provided in Appendices A and B.  

 Samples were drawn from multivariate normal populations, and for each cell 1000 

replications were conducted.  This number of replications is consistent with Leite (2007).  The 

population means for the intercept and slope were set to 1, in congruence with the parameter 

values assigned in Leite (2007).  The intercept variance was set to 1, and the slope variance was 

set to .2.  These values reflect the five to one ratio forwarded by Muthén and Muthén (2002) as 

being common in the applied literature.  The slope/intercept covariance was set to .179, also in 

accordance with Leite.  This value corresponds to a slope/intercept correlation of .4.  The factor 

variances were set to 1, which in turn set the measurement error variances to one minus the 

squared loading of the item.  Measurement error variances were uncorrelated.  Factor loadings 

were set to .7 for the non-shifting items.  Factor loadings in the range of .6-.8 are commonly seen 

in simulation studies (see, for example, the meta-analysis conducted by Hoogland & Boomsma, 

1998).  While some applied studies may have lower values of factor loadings, it was desirable to 

employ relatively high factor loadings in this study due to the number of dropped items within 

certain conditions.  Because this is one of the first studies investigating the shifting indicators 

model, it is desirable to evaluate the performance of the model given high, but realistic, factor 

loadings for the non-shifting indicators.  If the model performs well, future studies may evaluate 

the impact of lower overall factor loadings for the non-shifting indicators.  Item intercepts were 

set to 0.  If the results of this study are promising, future studies may evaluate the impact of non-

zero item intercepts.  An example of a generating model for one set of conditions, including 

population values for all parameters, is presented in Figure 3.4.    
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Figure 3.4.  Example of a generating model with no indicators dropped.  This example represents 

the full model for the set of conditions where four indicators are shifted at each of the three time 

points.  The items to be shifted have a loading magnitude of .3 in the full model.  Item intercepts 

are set to 0.  Measurement error variances are set to one minus the squared item loading. 

Measurement errors are uncorrelated.  

 

In total, 76,000 replications were conducted; that is, 1000 replications of 76 cells were 

obtained.  The conditions of the study were not completely crossed.  In the full model condition, 

simulated data were generated for 28 cells.  After data were generated with all items present at 

each of these conditions, items were dropped according to the number of items and number of 

occasions conditions to create the shifting indicators models.  There are 48 cells in the shifting 

model condition.  Figures 3.5 and 3.6 provide a pictorial representation of the design of the 

study.    

The discrepancy in the number of conditions under the full model and the shifting 

indicators model is due to the arrangement of the full models when the loading magnitude of 

shifting items condition takes a value of .7.  It is easiest to describe this aspect of the study 
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design by first elaborating on the development of the full models under the loading magnitude 

condition of .3. Under this condition, full models are created that include certain items with a 

loading magnitude of .3.  The number and arrangement of the items with a loading of .3 depend 

on the levels of two other independent variables: the number of shifting items variable and the 

number of time points with shifting items variable.  For example, when the number of items 

variable takes a value of two and the number of time points variable takes a value of three, the 

full model includes two items at every time point with a loading of .3, and all other items have a 

loading of .7.  (The corresponding shifting indicator model drops the items with a loading of .3.)  

From this example, it can be seen that the full model will have a different combination of items 

with loadings of .3 and .7 for every level of the number of items and number of time points 

variables.   

In contrast, this is not the case when the loading magnitude of items to be dropped 

condition takes a value of .7.  In this case, in the full model all loadings are .7 regardless of the 

levels of the number of items and number of time points variables.  Therefore, there is no 

difference in the full model regardless of the levels of these variables, as is reflected in Figure 

3.4.  However, the shifting model does change with each level of these variables, as different 

combinations of items are dropped.  This feature of the design accounts for the difference in the 

number of cells under the shifting indicators model versus the full model.   
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Figure 3.5. The 28 cells in the full model condition.  The datasets generated under this condition serve as the complete datasets from 

which items are dropped for the shifting conditions. Sample size: 1 = 250, 2 = 500, 3 = 750, 4 = 1000.   

 

 

 

Figure 3.6. The 48 cells in the shifting model condition.  All datasets were initially generated with all items present at each time point. 

Under the shifting indicators model, items were dropped according to the number of items (two items or four items) and number of 

occasions (one, two, or three occasions) conditions, respectively.  Sample size: 1 = 250, 2 = 500, 3 = 750, 4 = 1000. 
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One other aspect of the study design warrants further description.  Longitudinal equality 

constraints were imposed on the factor loadings of most items.  In the case of the shifting 

indicators model, all item loadings for corresponding items were constrained to be equal over 

time (e.g., item 1 at time 1, item 1 at time 2, item 1 at time 3).  In the case where items are 

dropped (e.g., if item 1 at time 1 is dropped), the remaining items were still constrained to be 

equal (e.g., item 1 at time 2, item 1 at time 3).  Within the full model condition, equality 

constraints were also placed on the loadings of corresponding items in order to match the 

constraints on the shifting indicators model.  In the case where the magnitude of the factor 

loadings of the shifting items condition took the value of .7, all item loadings were constrained to 

be equal to corresponding items at each time point.  That is, full longitudinal measurement 

invariance at the metric level was imposed.  In the case where the magnitude of the factor 

loadings of the shifting items condition took the value of .3, all items with factor loadings of .7 

were constrained to be equal, but items with a factor loading of .3 were released.  This is because 

constraining corresponding items with radically different factor loadings (i.e., .3 and .7) to be 

equal over time would represent an improper constraint.  Therefore, partial longitudinal 

measurement invariance at the metric level was imposed.  Note that there was only one cell 

where .3 loadings could be constrained to be equal over time because under all other conditions, 

corresponding items did not have .3 loadings at adjoining time points.  In the one case where 

four items shifted across three time points, there were four items that had .3 loadings at adjoining 

time points.  However, in this case, the .3 loadings were not constrained to be equal due to 

theoretical reasons.  Specifically, it was assumed that in applied settings, items that had low 

loadings across more than one time point would not necessarily have the same low loading over 

time.            



64 
 

 

 

CHAPTER 4 

RESULTS 

This chapter presents the results of the Monte Carlo simulation comparing the 

performance of two types of second-order LGMs: (1) the second-order LGM with shifting 

indicators, and (2) a second-order LGM with all items present at each time point.  Results are 

reported for each model type on the dependent variables in the following order: (1) model 

convergence to a proper solution, (2) growth parameter bias, (3) growth parameter standard error 

bias, (4) efficiency, and (5) model fit. 

Convergence to a Proper Solution 

Model convergence to a proper solution was investigated with regard to two outcomes: 

(1) failure to converge, and (2) convergence to an improper solution (i.e., involving a non-

positive definite variance/covariance matrix).   

With regard to model convergence, the full model and the shifting indicators model both 

performed well.  Under the full model conditions, all of the 28,000 simulated datasets converged, 

for a convergence rate of 100%.  Under the shifting model conditions, 47,986 of the 48,000 

simulated datasets converged, yielding a convergence rate of 99.97%.  The overall convergence 

rate across both conditions was 99.98%.   

Table 4.1 presents the distribution of the 14 datasets that failed to converge.  Of the 14 

datasets that failed to converge, eight occurred when n = 250; however, within that condition, the 

convergence rate was still extremely high (11,992/12,000 = 99.93%).  Half of the datasets that 

failed to converge had items dropped at each of the three measurement occasions. 
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With regard to convergence to solutions with a non-positive definite variance covariance 

matrix, the performance of the full model and the shifting indicators model was similar.  Overall, 

both models performed well.  Across the full model conditions, 27,930 of the 28,000 replications 

(99.75%) converged to a proper solution, and across the shifting model conditions, 47,822 of the 

47,986 converged replications (99.65%) produced a proper solution.  In total, 234 replications 

produced improper solutions, yielding an overall proper convergence rate of 99.67%.  In all 

cases, the out-of-range value that caused the non-positive definite variance/covariance matrix 

was a negative slope variance.    

An inverse relationship existed between sample size and the number of improper 

solutions as presented in Table 4.1.  The majority of improper solutions (94%) were obtained 

when n = 250.  An additional 6% were obtained when n = 500.  When n = 250, the number of 

improper solutions increased as more shifting items were included in the model across more time 

points.     

The shifting indicators models tended to have slightly more improper solutions than the 

corresponding full models.  The largest number of improper solutions was obtained when the 

sample size was 250, the factor loading magnitude of the shifting indicators was .3, the number 

of shifting items was 4, and the number of time points with shifting indicators was 3.  Under 

these conditions, 17 improper solutions were produced under the full model, and 25 were 

produced under the shifting indicators model.  This result indicates that dropping items with low 

loadings rather than retaining them may decrease the likelihood that the model will properly 

converge at small sample sizes, although the magnitude of the difference in convergence rates 

for these cells was small.  
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Table 4.1 

Number of Improper (and Nonconverged) Solutions Obtained Across All Conditions  

Number of 

Times with 

Shifting Items 

 
Full Model 

 
Shifting Model 

 

.3 
 

.7 
 

.3 
 

.7 

 

Number of 

Shifting 

Items   

Number of 

Shifting 

Items  

Number of 

Shifting 

Items  

Number of 

Shifting  

Items 

N 2 4   0   2 4   2 4 

0 

250 -- -- 
 

10 
 

-- -- 
 

-- -- 

500 -- -- 
 

0 
 

-- -- 
 

-- -- 

750 -- -- 
 

0 
 

-- -- 
 

-- -- 

1000 -- -- 
 

0 
 

-- -- 
 

-- -- 

 
           

1 

250 6 6  --  8 6  11 10 (1) 

500 1 0  --  1 0  1 1 

750 1 0  --  0 0  0 0 (1) 

1000 1 0  --  0 0  0 (3) 0 

 
           

2 

250 9 10  --  12 17 (1)  12 14 

500 0 0  --  0 0  1 3 

750 0 0  --  0 0  0 0 (1) 

1000 0 0  --  0 0  0 0 

 
           

3 

250 10 17  --  8 25 (3)  12 (3) 17 

500 0 1  --  0 2 (1)  1 2 

750 0 0  --  0 0  0 0 

1000 0 0   --   0 0   0 0 

Note.  The number of nonconverged solutions within each cell (if any) appears in parentheses. 

For the conditions with .3 loadings of the shifting items, there is a different full model for each 

shifting condition (i.e., depending on the number of times with shifting items and the number of 

shifting items per time point).  For the conditions with .7 loadings of the shifting items, there is 

only one full model, regardless of the levels of the other shifting conditions. Because of this, the 

number of improper/nonconverged solutions under the loading magnitude of .7 is displayed only 

once per sample size condition for the full model. The values for shifting models under the 

loading magnitude of .7 can all be compared to those four values.  

 

Considering all inadmissible solutions (i.e., nonconverged and improper solutions 

together), the performance of both the full and the shifting indicators model was good.  Across 
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all cells, the overall rate of convergence to a proper solution exceeded the criterion value of 90%.  

The lowest convergence rate (97.2%) was obtained under the shifting indicators model when 

four items of loading magnitude .3 were dropped in all three measurement occasions.  Under 

these conditions, if the corresponding full model had been selected by a (hypothetical) 

researcher, the convergence rate would have been slightly higher (i.e., 98.3%), but the magnitude 

of this difference is small.  

One consideration in Monte Carlo studies is whether to retain or replace replications that 

did not converge or failed to properly converge.  Although parameter estimates obtained via 

improper solutions may not be trustworthy, some researchers may still use them despite 

receiving a warning message.  Therefore, it can be informative to report results of the simulation 

with all solutions retained as well as with inadmissible solutions removed and replaced. In this 

study, results are presented both ways in the section summarizing bias in the parameter 

estimates.  In this case, the results were somewhat different between the two methods of analysis.  

For all other results, no substantive differences were observed between the two methods, so 

results are only reported for the analyses that retained the inadmissible solutions.          

Bias in the Parameter Estimates 

Relative bias in the growth parameter estimates (i.e., slope mean, intercept mean, slope 

variance, intercept variance, slope/intercept covariance) was calculated and compared across the 

full model and shifting indicators model.   

Values of relative bias of the growth parameter estimates for both the full models and the 

shifting indicator models were acceptable under all conditions (i.e., did not exceed .05, Hoogland 

& Boomsma, 1998) when the inadmissible solutions were retained.  The slope mean and 

intercept mean estimates had less bias than slope variance, intercept variance, and slope/intercept 
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covariance, but in all cases the amount of bias was small.  Bias in the parameters was largest 

when the sample size was 250, as displayed in Table 4.2.  It was expected that bias would 

systematically decrease as sample size increased.  However, this result was only observed for the 

slope mean.  The fluctuations observed in the other bias values (e.g., a larger slope variance bias 

at n = 750 than n = 500) appear to represent random sampling error around zero, as the values 

are all very small and quite similar to each other.   

 

Table 4.2 
  Mean Relative Bias of Parameter Estimates by Sample Size, 

Collapsed Across All Other Conditions, With Inadmissible 

Solutions Retained 

N 

Slope 

mean 

Intercept 

mean 

Slope 

variance 

Intercept 

variance 

Slope/intercept 

covariance 

250 .0037  .0040 .0201 .0141 -.0190 

500 .0022  .0006 .0077 .0037 .0003 

750 .0017  .0012 .0085 .0077 -.0124 

1000 .0010 -.0007 .0037 .0042 -.0040 

 

Relative bias of the parameter estimates was similar across the full and shifting indicators 

models. Table 4.3 presents mean values of relative bias collapsed across sample size. The full 

model and shifting model values are presented side by side for ease of comparison.  When the 

loading magnitude of the shifting items was low (i.e., .3), there was very little difference between 

the parameter bias in the shifting models (which dropped those items) and the full models (which 

retained those items).  In the case where the loading magnitude of the shifting items was high 

(i.e., .7), the parameter bias in the full model was comparable to the shifting models under all 

circumstances for the slope mean and intercept mean.  For the slope variance, intercept variance, 

and slope/intercept covariance, the shifting models had larger values of bias (in an absolute value 
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sense) as more items were dropped from more time points. In all cases, however, the amount of 

bias present in the estimates was within the acceptable limit.
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Table 4.3 
         Mean Relative Bias of Parameter Estimates, Collapsed Across Sample Size, With Inadmissible Solutions Retained 

      Slope mean   Intercept mean   Slope variance   Intercept variance   

Slope/intercept 

covariance 

Loadings 

of shifting 

items 

# times 

with 

shifting 

items 

# 

shifting 

items Full Shifting 

 

Full Shifting 

 

Full Shifting 

 

Full Shifting 

 

Full Shifting 

.3 1 2 0.002 0.002 
 

0.001 0.001 
 

0.004 0.004 
 

0.007 0.007 
 

-0.003 -0.003 

  

4 0.003 0.003 
 

0.000 0.000 
 

0.005 0.005 
 

0.006 0.006 
 

-0.007 -0.007 

   
              

 

2 2 0.003 0.003 
 

0.001 0.001 
 

0.018 0.018 
 

0.006 0.006 
 

-0.009 -0.009 

  

4 0.002 0.002 
 

0.002 0.002 
 

0.013 0.012 
 

0.005 0.006 
 

-0.001 0.000 

   
              

 

3 2 0.003 0.003 
 

0.001 0.001 
 

0.007 0.008 
 

0.007 0.007 
 

-0.013 -0.013 

  

4 0.002 0.003 
 

0.005 0.005 
 

0.012 0.012 
 

0.009 0.010 
 

0.001 0.002 

   
              

.7 0 0 0.001 -- 
 

0.001 -- 
 

0.006 -- 
 

0.007 -- 
 

-0.012 -- 

   
              

 

1 2  --
a 

0.001 
 

-- 0.001 
 

-- 0.008 
 

-- 0.007 
 

-- -0.013 

  

4 -- 0.001 
 

-- 0.001 
 

-- 0.009 
 

-- 0.008 
 

-- -0.013 

   
              

 

2 2 -- 0.002 
 

-- 0.001 
 

-- 0.009 
 

-- 0.008 
 

-- -0.014 

  

4 -- 0.002 
 

-- 0.000 
 

-- 0.011 
 

-- 0.009 
 

-- -0.016 

   
              

 

3 2 -- 0.002 
 

-- 0.001 
 

-- 0.010 
 

-- 0.008 
 

-- -0.014 

    4 -- 0.002 
 

-- 0.001 
 

-- 0.017 
 

-- 0.012 
 

-- -0.022 

Note.  For the conditions with .3 loadings of the shifting items, there is a different full model for each shifting condition (i.e., 

depending on the number of times with shifting items and the number of shifting items per time point).  For the conditions with .7 

loadings of the shifting items, there is only one full model, regardless of the levels of the other shifting conditions. Because of this, the 

full model bias value is displayed only once. The values for shifting models can all be compared to the same value.  
a  

Elements of the table marked with a dash (--) indicate combinations of conditions for which the full model is the same.   
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The same set of analyses was run with extra replications to replace those that did not 

converge to a proper solution.  Table 4.4 displays the relative bias of the parameter estimates 

reported by sample size. 

 

Table 4.4 

  Mean Relative Bias of Parameter Estimates by Sample Size, 

Collapsed Across All Other Conditions, With Inadmissible 

Solutions Replaced 

N 
Slope 

mean 

Intercept 

mean 

Slope 

variance 

Intercept 

variance 

Slope/intercept 

covariance 

250 .0046  .0049 .0334 .0176 -.0269 

500 .0022  .0007 .0085 .0040 -.0003 

750 .0017  .0012 .0085 .0077 -.0124 

1000 .0010 -.0007 .0037 .0042 -.0040 

 

Similar to the results summarized above, the relative bias in the parameter estimates was 

largest (in an absolute value sense) when the sample size was 250.  For the slope mean, the bias 

values systematically decreased as sample size increased.  For the other parameter estimates, bias 

did not systematically decrease with sample size.  As in the Table 4.2, the magnitude of these 

fluctuations was small and likely represents random sampling error.   

Table 4.5 displays the relative bias of the parameter estimates collapsed across sample 

size.  The same general trends were observed when the inadmissible solutions were replaced as 

when they were retained.  In comparing the full models to the corresponding shifting models, the 

amount of bias was similar between the shifting models that dropped items with low loadings 

and the full models that retained those items.  In the case where the shifting items had high 

loadings, the bias in the slope mean and intercept mean was comparable across the full and 
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shifting models.  The bias in the slope variance, intercept variance, and slope/intercept 

covariance tended to be larger (in an absolute value sense) for the shifting models than the full 

models, especially as more items were dropped from more measurement occasions. 
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Table 4.5 
         

Mean Relative Bias of Parameter Estimates, Collapsed Across Sample Size, With Inadmissible Solutions Replaced 

Loadings 

of shifting 

items 

# times 

with 

shifting 

items 

# 

shifting 

items 

Slope mean 
 

Intercept mean 
 

Slope variance 
 

Intercept variance 
 

Slope/intercept 

covariance 

Full Shifting 

 

Full Shifting 

 

Full Shifting 

 

Full Shifting 

 

Full Shifting 

.3 1 2 0.002 0.002 
 

0.001 0.001 
 

0.006 0.006 
 

0.008 0.008 
 

-0.004 -0.004 

  
4 0.003 0.003 

 
0.000 0.000 

 
0.006 0.007 

 
0.006 0.006 

 
-0.008 -0.009 

                 

 
2 2 0.004 0.004 

 
0.001 0.001 

 
0.020 0.021 

 
0.007 0.006 

 
-0.011 -0.010 

  
4 0.002 0.003 

 
0.003 0.003 

 
0.017 0.018 

 
0.007 0.008 

 
-0.004 -0.004 

                 

 
3 2 0.003 0.003 

 
0.001 0.001 

 
0.011 0.010 

 
0.008 0.008 

 
-0.015 -0.015 

  
4 0.003 0.003 

 
0.005 0.006 

 
0.017 0.020 

 
0.010 0.012 

 
-0.002 -0.003 

                 
.7 0 0 0.001 -- 

 
0.001 -- 

 
0.009 -- 

 
0.008 -- 

 
-0.013 -- 

                 

 
1 2   --

 a
 0.002 

 
-- 0.001 

 
-- 0.011 

 
-- 0.008 

 
-- -0.015 

  
4 -- 0.002 

 
-- 0.001 

 
-- 0.012 

 
-- 0.008 

 
-- -0.015 

                 

 
2 2 -- 0.002 

 
-- 0.001 

 
-- 0.013 

 
-- 0.009 

 
-- -0.016 

  
4 -- 0.002 

 
-- 0.001 

 
-- 0.016 

 
-- 0.010 

 
-- -0.018 

                 

 
3 2 -- 0.002 

 
-- 0.001 

 
-- 0.014 

 
-- 0.009 

 
-- -0.015 

  
4 -- 0.002 

 
-- 0.002 

 
-- 0.023 

 
-- 0.013 

 
-- -0.024 

Note.  For the conditions with .3 loadings of the shifting items, there is a different full model for each shifting condition (i.e., 

depending on the number of times with shifting items and the number of shifting items per time point).  For the conditions with .7 

loadings of the shifting items, there is only one full model, regardless of the levels of the other shifting conditions. Because of this, the 

full model bias value is displayed only once. The values for shifting models can all be compared to the same value.  
a  

Elements of the table marked with a dash (--) indicate combinations of conditions for which the full model is the same.   
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The biggest differences in the bias values once inadmissible solutions were replaced 

occurred when the sample size was 250, as displayed in Figure 4.1.  It is expected that these 

values would differ the most because the majority of inadmissible solutions (96%) occurred 

when n = 250.  In terms of the parameter estimates, the most substantial difference was observed 

in the slope variance.  This result is expected because negative slope variance was the cause of 

all of the improper solutions; therefore, these values changed the most as out-of-range estimates 

were replaced with proper solutions.  The slope variance bias estimate was slightly smaller when 

inadmissible solutions were retained than when they were replaced.  The reasons behind this 

change are discussed in more detail below.    

 

 

Figure 4.1.  Relative bias of the growth parameter estimates at sample size = 250 with 

inadmissible solutions retained and replaced.  
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Although, the parameter estimate bias results were generally similar with or without the 

inadmissible solutions, in two cases, the results were made substantively worse by replacing 

inadmissible solutions.  In the shifting model with four dropped items at three time points and 

sample size of 250, the mean relative bias for the slope variance exceeded the criteria for 

acceptable bias of .05.  This result occurred under both loading magnitude conditions.  When the 

loading magnitude of the shifting items was .3, the mean relative bias for this cell was .054.  

When the loading magnitude of the shifting items was .7, the mean relative bias was .052.  When 

the inadmissible solutions were retained in the data, the mean relative bias for these cells was 

.024 and .031, respectively.   

To explain this change, a closer examination of the parameter estimates for one of the 

cells is instructive.  Figure 4.2 presents the histogram of slope variance estimates for the cell with 

3 items of loading magnitude of .3 dropped at three time points.  In this figure, observations to 

the left of the vertical line represent slope variance estimates that are negative and inadmissible.  

(Note: The true value of the slope variance is .2.)  When these observations are discarded and 

replaced by admissible solutions, as in Figure 4.3, the left tail of the distribution is eliminated.  

The average slope variance bias for the improper solutions in this cell was -.028.  By removing 

these values and replacing them with admissible parameter estimates, the mean of the parameter 

estimate within the cell shifted from .205 to .211.  Therefore, the distribution of the admissible 

solutions eliminated out-of-range values, the mean value was pulled to the right, and the cell 

mean was less accurate.   

All improper solutions were caused by negative slope variance, so this parameter is 

affected more than others by the removal of inadmissible solutions.  This shift in the means of 

the slope variance occurred across all cells (unless there were no inadmissible solutions to 
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replace), but the effect was more pronounced for these two particular cells, which had the largest 

number of inadmissible solutions in the study.  Aside from these cases, the relative bias of the 

parameter estimates for all cells was less than .05.   

 
 

Figure 4.2.  Slope variance estimates for the shifting model with four dropped items of loading 

magnitude .3 at three time points and a sample size of 250.  Inadmissible solutions are retained.  

Observations to the left of the vertical line represent negative slope variance estimates and are 

improper.  
 

 
 

Figure 4.3.  Slope variance estimates for the shifting model with four dropped items of loading 

magnitude .3 at three time points and a sample size of 250.  Inadmissible solutions are removed, 

and 28 replacement observations were generated to replace three runs that failed to converge and 

25 runs with improper solutions.  
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ANOVAs were conducted to investigate whether there were any significant differences in 

relative bias between the levels of the independent variables with a partial eta-squared value of 

greater than .05.  For each dependent variable, ANOVAs were run with inadmissible solutions 

retained and with inadmissible solutions dropped and replaced with additional properly 

converged replications.  Five-way ANOVAs (model type x loading magnitude x number of items 

x number of times x sample size) were conducted including all independent variables as factors.  

However, there are some drawbacks to this method of testing.  Because the study design is not 

completely crossed (see Figures 3.4 and 3.5), there are large differences in sample size across 

levels of some independent variables.  For example, there are 28,000 cases in the full model 

condition and 48,000 cases in the shifting model condition.  Unequal sample sizes can be 

problematic in ANOVA when the equal variance assumption is not met (Keppel & Wickens, 

2004, p. 149).  For all ANOVAs conducted in this study, the equal variance assumption was not 

met (i.e., Levene’s test was significant); a main reason for this is that the variance in the smaller 

sample size conditions are systematically larger than the variance in the larger sample size 

conditions.  The combination of unequal variances and unequal sample sizes renders any 

conclusions drawn from these ANOVAs tentative.   

Results of the ANOVAs indicated that for all growth parameter estimates there were no 

differences that exceeded the .05 partial eta-squared criterion.  These results seem reasonable in 

light of the small differences in means presented in Tables 4.2 – 4.5.   

Bias in the Standard Errors of the Parameter Estimates 

Relative bias in the standard errors of the growth parameter estimates was calculated and 

compared across the full and shifting indicators models.  There were no substantive differences 
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between the sets of results with inadmissible solutions retained or replaced.  Results are reported 

only for the set of results with inadmissible solutions retained.  

The relative bias of the standard errors of the growth parameter estimates was acceptable 

under all conditions (i.e., did not exceed .1).  Table 4.6 presents mean values of relative bias 

reported by sample size.  For the slope variance and intercept variance, the relative bias in the 

standard errors was largest when n = 250.  Otherwise, there did not seem to be a discernible trend 

relating sample size to mean relative bias in the standard errors.  Given that all of the values are 

quite small, it is likely that the small fluctuations seen in the relative bias of the standard errors 

represent random sampling error around zero. 

 

Table 4.6 
   Mean Relative Bias of the Standard Errors Of Growth Parameter 

Estimates by Sample Size 

N 

Slope 

mean 

Intercept 

mean 

Slope 

variance 

Intercept 

variance 

Slope/intercept 

covariance 

250 -.0091  .0038 -.0144 -.0164  .0048 

500  .0174 -.0076 -.0003 -.0030  .0004 

750 -.0114 -.0159 -.0078  .0136  .0054 

1000  .0108 -.0048 -.0104 -.0119 -.0080 

 

Table 4.7 presents mean values of relative bias of the standard errors collapsed across 

sample size.   For the models where the loading magnitude of the shifting items was .3, results 

were generally similar between the full models that retained those items and the shifting models 

that dropped those items.  For the slope variance, intercept variance, and slope/intercept 

covariance, the magnitude of the difference of the bias values between the shifting and full 

models grew when four items were dropped at each of the three measurement occasions.  Even 

in those cases, however, the overall amount of bias was within the acceptable limit. 
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Table 4.7 
             Mean Relative Bias of the Standard Errors of Growth Parameter Estimates, Collapsed Across Sample Size  

      Slope mean   Intercept mean   Slope variance   Intercept variance   

Slope/intercept 

covariance 

Loadings 

of 

shifting 

items 

# times 

with 

shifting 

items 

# 

shifting 

items Full Shifting   Full Shifting   Full Shifting   Full Shifting   Full Shifting 

.3 1 2 -0.015 -0.016   0.004 0.004   -0.018 -0.018   -0.025 -0.025   -0.014 -0.015 

 
 

4 -0.003 -0.003 
 

0.003 0.005 
 

-0.003 -0.004 
 

 0.011  0.012 
 

 0.004  0.004 

                 

 

2 2  0.004  0.004 
 

-0.003 -0.001 
 

0.000 0.001 
 

0.014 0.013 
 

-0.003 -0.002 

 
 

4 -0.006 -0.007 
 

-0.005 -0.003 
 

0.010 0.012 
 

0.013 0.014 
 

 0.008  0.011 

                 

 

3 2  0.010 0.009 
 

0.003  0.004  
 

-0.003 -0.005 
 

 0.000  0.000 
 

-0.006 -0.005 

 
 

4  0.006 0.001 
 

0.002 -0.004 
 

 0.001 -0.010 
 

-0.009 -0.016 
 

-0.005 -0.010 

                 
.7 0 0  0.010 -- 

 
-0.020 -- 

 
-0.014 -- 

 
-0.012 -- 

 
0.006 -- 

                 

 

1 2   --
 a

 0.009 
 

-- -0.020 
 

-- -0.013 
 

-- -0.013 
 

-- 0.008 

 
 

4 -- 0.007 
 

-- -0.019 
 

-- -0.015 
 

-- -0.012 
 

-- 0.009 

                 

 

2 2 -- 0.009 
 

-- -0.021 
 

-- -0.014 
 

-- -0.013 
 

-- 0.006 

 
 

4 -- 0.009 
 

-- -0.017 
 

-- -0.022 
 

-- -0.014 
 

-- 0.004 

                 

 

3 2 -- 0.008 
 

-- -0.018 
 

-- -0.015 
 

-- -0.012 
 

-- 0.006 

    4 -- 0.000   -- -0.012   -- -0.026   -- -0.010   -- 0.004 

Note.  For the conditions with .3 loadings of the shifting items, there is a different full model for each shifting condition (i.e., 

depending on the number of times with shifting items and the number of shifting items per time point).  For the conditions with .7 

loadings of the shifting items, there is only one full model, regardless of the levels of the other shifting conditions. Because of this, the 

full model bias value is displayed only once. The values for shifting models can all be compared to the same value.  
a  

Elements of the table marked with a dash (--) indicate combinations of conditions for which the full model is the same.   
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For the models where the loading magnitude of the shifting items was .7, results were 

generally comparable between the full model that retained those items and the shifting models 

that dropped those items.  Within the shifting models, a clear pattern did not emerge relating 

changes in the bias values to the number of dropped items per factor or the number of 

measurement occasions when items were dropped. 

The five-way ANOVA results indicated that there were no differences in relative bias of 

the standard errors that exceeded to partial eta-squared criterion of .05.  As described earlier, 

these results should be interpreted tentatively due to the violation of the assumption of equal 

variances.  However, the results seem reasonable in light of the small differences in means 

presented in Tables 4.6 – 4.7. 

Efficiency of the Parameter Estimates 

Efficiency of the growth parameter estimates was compared across the full and shifting 

indicators models.  Smaller values are desirable because efficiency was measured as the average 

standard error of the growth parameter estimates.  Table 4.8 presents average standard errors of 

the growth parameters by sample size.  As would be expected, average standard errors decreased 

as sample size increased.  In all cases, the magnitude of the difference in efficiency between n = 

250 and n= 500 was greater than the magnitude of the difference between the other levels of 

sample size. 

 

Table 4.8 
    

Average Standard Errors of the Growth Parameter Estimates by Sample Size 

N 
Slope 

mean 

Intercept 

mean 

Slope 

variance 

Intercept 

variance 

Slope/intercept 

covariance 

250 0.079 0.104 0.103 0.265 0.092 

500 0.056 0.074 0.073 0.187 0.065 

750 0.046 0.060 0.060 0.153 0.053 

1000 0.039 0.052 0.051 0.132 0.046 
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Table 4.9 presents the average values of the standard errors of the growth parameters 

collapsed across sample size.  For the models where the loading magnitude of the shifting items 

was .3, results were generally comparable between the full models that retained those items and 

the shifting models that dropped those items.   

For the models where the loading magnitude of the shifting items was .7, the full model 

generally had lower average standard errors (and thus greater efficiency) than the shifting 

models.  These values were similar when two items were dropped from one time point, but grew 

more disparate as more items were dropped from more time points.  
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Table 4.9 
             

Average Standard Errors of Growth Parameter Estimates, Collapsed Across Sample Size 

   
Slope mean 

 
Intercept mean 

 
Slope variance 

 
Intercept variance 

 

Slope/intercept 

covariance 

Loadings 

of shifting 

items 

# times 

with 

shifting 

items 

# 

shifting 

items Full Shifting 

 

Full Shifting 

 

Full Shifting 

 

Full Shifting 

 

Full Shifting 

.3 1 2 0.053 0.053 
 

0.071 0.071 
 

0.069 0.069 
 

0.178 0.178 
 

0.061 0.061 

  
4 0.054 0.054 

 
0.071 0.071 

 
0.070 0.071 

 
0.179 0.179 

 
0.062 0.062 

                 

 
2 2 0.053 0.053 

 
0.071 0.071 

 
0.070 0.070 

 
0.179 0.180 

 
0.062 0.062 

  
4 0.056 0.056 

 
0.073 0.073 

 
0.072 0.073 

 
0.185 0.186 

 
0.065 0.066 

                 

 
3 2 0.054 0.054 

 
0.072 0.072 

 
0.071 0.071 

 
0.182 0.183 

 
0.062 0.063 

  
4 0.061 0.062 

 
0.077 0.079 

 
0.077 0.080 

 
0.203 0.209 

 
0.072 0.075 

                 
.7 0 0 0.052 -- 

 
0.071 -- 

 
0.069 -- 

 
0.177 -- 

 
0.061 -- 

                 

 
1 2   --

 a
 0.053 

 
-- 0.071 

 
-- 0.069 

 
-- 0.178 

 
-- 0.061 

  
4 -- 0.054 

 
-- 0.071 

 
-- 0.071 

 
-- 0.179 

 
-- 0.062 

                 

 
2 2 -- 0.053 

 
-- 0.072 

 
-- 0.070 

 
-- 0.180 

 
-- 0.062 

  
4 -- 0.056 

 
-- 0.073 

 
-- 0.073 

 
-- 0.186 

 
-- 0.066 

                 

 
3 2 -- 0.054 

 
-- 0.072 

 
-- 0.071 

 
-- 0.183 

 
-- 0.063 

  
4 -- 0.060 

 
-- 0.076 

 
-- 0.076 

 
-- 0.199 

 
-- 0.069 

Note.  For the conditions with .3 loadings of the shifting items, there is a different full model for each shifting condition (i.e., 

depending on the number of times with shifting items and the number of shifting items per time point).  For the conditions with .7 

loadings of the shifting items, there is only one full model, regardless of the levels of the other shifting conditions. Because of this, the 

full model standard error value is displayed only once. The values for shifting models can all be compared to the same value.  
a  

Elements of the table marked with a dash (--) indicate combinations of conditions for which the full model is the same.   
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Results of the ANOVAs indicated that the effect of several of the independent variables 

on efficiency exceeded the partial eta-squared criterion of .05.  These values are presented in 

Table 4.10. 

 

Table 4.10 
    Partial Eta-Squared Values Related to Efficiency that Exceeded .05  

Growth Parameter 

Sample 

Size # Times # Items 

Times x 

Items 

Slope mean .94 .20 .19 .12 

Intercept mean .94 .09 .06 -- 

Slope variance .77 -- -- -- 

Intercept variance .77 .05 -- -- 

Slope-intercept covariance .78 .06 .06 -- 

 

The most substantial effect was of sample size on efficiency.  Figure 4.4 displays the 

change in efficiency values for each of the growth parameters as sample size increases.  As 

would be expected, efficiency improves (i.e., the average standard errors decrease) as sample 

size increases.  

 

 

Figure 4.4.  Average standard errors of the growth parameters by sample size. 
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The number of measurement occasions when items were shifted had a smaller effect on 

the efficiency of four growth parameters: slope mean, intercept mean, intercept variance, and 

slope/intercept covariance.  Figure 4.5 displays the change in efficiency in these parameters as 

the number of times increases.  For each of the growth parameters, a small increase in the 

average standard errors of the parameter estimates accompanied an increase in the number of 

times when items were shifted, indicating a slight decline in efficiency.  For the slope variance, 

the overall trend was the same (i.e., larger standard errors were observed as the number of times 

with shifting indicators increased), but the effect did not exceed the partial eta-squared criteria of 

.05. 

 

 

Figure 4.5.  Average standard errors of the growth parameters by number of times which 

included shifted items. 

 

The number of items variable also had a small effect on the efficiency of three of the 

growth parameters: slope mean, intercept mean, and slope/intercept covariance.  Figure 4.6 

displays the change in efficiency as the number of items that are shifted increased.  As the 

0.00

0.05

0.10

0.15

0.20

0.25

0 1 2 3

A
v

er
a

g
e 

S
ta

n
d

a
rd

 E
rr

o
r 

 

Number of Times 

Slope Mean

Intercept Mean

Intercept

Variance

Slope/Intercept

Covariance



85 
 

number of shifted items increased, the average standard errors of the parameter estimates became 

larger, indicating a reduction of efficiency.   For the slope and intercept variance, average 

standard errors also increased as the number of shifting items increased, but the effect did not 

exceed the partial eta-squared criteria of .05.  

 

 

Figure 4.6.  Average standard errors for the growth parameters by number of shifted items. 

 

For the slope mean, the interaction of the number of times with shifted indicators and the 

number of shifted items per occasion variables exceeded the partial eta-squared criterion of .05.  

Figure 4.7 displays this interaction effect.  When the number of shifting items was 4, there was a 

much larger increase in average standard errors as the number of occasions with shifted items 

increased than when the number of shifting items was 2. 
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Figure 4.7.  The interaction of the number of times and the number of items on the average 

standard errors of the slope mean.   

 

Model Fit 

    Several measures of model fit were compared across the full and shifting indicators 

models.  For every cell in the study design, the proportion of Type I errors in the chi-square fit 

statistic, and the average values of CFI, TLI, and RMSEA (and the upper bound of its confidence 

interval) were calculated.  

 The chi-square rejection rate was investigated across each cell.  Within each cell, the 

percentage of replications that would have been rejected (p < .05) by the chi-square test (i.e., 

Type I errors) were calculated by comparing the observed chi-square fit statistic to the expected 

chi-square value based on the degrees of freedom of the tested model.  Table 4.11 presents the 

percentage of replications with sample chi-square values that exceeded the critical value within 

the cell.  For the cells with a sample size of 250, the Type I error rate was highest.  Of the 19 

cells in the n=250 condition, 14 cells (73.7%) had a Type I error rate of greater than 7.5%, the 

upper bound of Bradley’s (1978) liberal criterion.  The full model condition tended to have 
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higher Type I error rates than the shifting indicator models.  Within the full model condition, 14 

out of 28 cells (i.e., 50%) exceeded the criterion, in comparison to 7 of 48 cells (i.e., 14.6%) in 

the shifting indicators condition.  Within the shifting indicators condition, the Type I error rate 

tended to improve as the number of omitted items increased.  This result indicates that the 

improvement in the rejection rate is likely being driven by the reduction of indicators per factor 

as items are dropped.  The covariance matrix associated with the shifting indicators model is 

smaller than the covariance matrix for the full model, leading to fewer opportunities for 

discrepancies between the original and reproduced covariance matrices.  This effect (i.e., higher 

rates of rejection for models with more indicators per factor) was previously reported for CFA 

models by Marsh, Hau, Balla, and Grayson (1998) and second-order LGMs by Leite (2007).   
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Table 4.11 

Percentage of Type I Errors According to the Chi-Square Statistic Across All Conditions 

    Full Model   Shifting Model 

  

.3 
 

.7 
 

.3 
 

.7 

Number of 

Times 

 

Number of 

Items   

Number of 

Items  

Number of 

Items  

Number of 

Items 

N 2 4   0   2 4   2 4 

0 

250 -- -- 
 

9.7 
 

-- -- 
 

-- -- 

500 -- -- 
 

8.6 
 

-- -- 
 

-- -- 

750 -- -- 
 

7.3 
 

-- -- 
 

-- -- 

1000 -- -- 
 

6.5 
 

-- -- 
 

-- -- 

            

1 

250 11.8 10.6  --  9.4 9.3  9.5 8.3 

500 7.2 7.8  --  6.5 6.6  7.3 7.4 

750 7.0 6.9  --  6.0 6.5  6.8 5.5 

1000 6.2 6.5  --  5.2 6.7  6.1 6.3 

 
           

2 

250 12.9 13.4  --  11.1 7.5  9.2 6.8 

500 8.3 6.8  --  6.5 5.9  7.4 6.0 

750 8.8 8.0  --  7.4 6.0  7.2 5.4 

1000 7.0 5.2  --  6.5 4.3  5.5 5.0 

 
           

3 

250 11.9 12.9  --  7.0 7.4  8.7 7.1 

500 7.0 8.2  --  5.9 5.5  7.5 6.5 

750 6.4 6.4  --  5.7 5.8  5.8 4.9 

1000 6.7 6.8   --   6.9 6.1   6.2 5.2 

Note.  For the conditions with .3 loadings of the shifting items, there is a different full model for 

each shifting condition (i.e., depending on the number of times with shifting items and the 

number of shifting items per time point).  For the conditions with .7 loadings of the shifting 

items, there is only one full model, regardless of the levels of the other shifting conditions. 

Because of this, the percentage of Type I errors under the loading magnitude of .7 is displayed 

only once per sample size condition under the full model. The values for shifting models under 

the loading magnitude of .7 can all be compared to those four values. 

 

 

With regard to CFI and TLI, the average values obtained by the full and shifting models 

indicated that the fit of the model was good.  Values of CFI and TLI increased as sample size 

increased, as displayed in Table 4.12, but even with the smallest sample size the fit indices 

exceeded the recommended cutoff of .95.  
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Table 4.12 
  Mean Values of Fit Indices by Sample Size 

N CFI TLI RMSEA 

RMSEA 

Upper 

250 .997 .999 .011 .029 

500 .999 .999 .006 .020 

750 .999 1.00 .005 .016 

1000 .999 1.00 .005 .014 

RMSEA Upper: The upper bound of the confidence 

interval associated with the value of RMSEA.   

 

Table 4.13 presents the average values of the CFI and TLI collapsed across sample size.  

Very little variation in these values was observed across the levels of independent variables, with 

all values falling within the range of .998-1.00.  For the full models, the CFI decreased slightly 

as more items with loadings of .3 were included in the model.  For shifting models, the TLI 

increased slightly as more items were dropped from more time points. 
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Table 4.13 
      Average Values of Fit Indices, Collapsed Across Sample Size 

       CFI TLI RMSEA RMSEA Upper 

Loadings Times Items Full Shifting Full Shifting Full Shifting Full Shifting 

.3 1 2 0.999 0.999 0.999 0.999 0.007 0.007 0.018 0.018 

  

4 0.998 0.999 0.999 1.000 0.007 0.007 0.017 0.019 

   
        

 

2 2 0.998 0.999 0.999 0.999 0.007 0.007 0.018 0.019 

  

4 0.998 0.999 0.999 1.000 0.007 0.007 0.018 0.021 

   
        

 

3 2 0.998 0.999 0.999 1.000 0.007 0.007 0.018 0.020 

  

4 0.997 0.999 0.999 1.000 0.007 0.008 0.018 0.026 

   
        

.7 0 0 0.999 -- 0.999 -- 0.007 -- 0.018 -- 

   
        

 

1 2   --
 a

 0.999 -- 0.999 -- 0.007 -- 0.018 

  

4 -- 0.999 -- 0.999 -- 0.007 -- 0.019 

   
        

 

2 2 -- 0.999 -- 0.999 -- 0.007 -- 0.019 

  

4 -- 0.999 -- 1.000 -- 0.007 -- 0.021 

   
        

 

3 2 -- 0.999 -- 1.000 -- 0.007 -- 0.020 

    4 -- 0.999 -- 1.000 -- 0.008 -- 0.025 

Note.  For the conditions with .3 loadings of the shifting items, there is a different full model for each 

shifting condition (i.e., depending on the number of times with shifting items and the number of shifting 

items per time point).  For the conditions with .7 loadings of the shifting items, there is only one full 

model, regardless of the levels of the other shifting conditions. Because of this, the full model fit index 

value is displayed only once. The values for shifting models can all be compared to the same value.  
a  

Elements of the table marked with a dash (--) indicate combinations of conditions for which the full 

model is the same.   
RMSEA Upper: The upper bound of the confidence interval associated with the value of RMSEA 
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Rates of “rejection” for the CFI and TLI were calculated for each cell.  (The term “rate of 

rejection” is used in the interest of simplicity to indicate that the fit value did not meet the 

commonly-accepted criterion for acceptable fit of .95.  Because the CFI and TLI are descriptive 

measures of fit with recommended cut-off criteria, rather than tests of statistical inference like 

the chi-square fit statistic, the rate of rejection is not analogous to a Type I error rate.)   Table 

4.14 displays the percentage of rejected models within each level of the independent variables 

for the CFI, and Table 4.15 displays this information for the TLI.  The highest rejection rates 

were observed when the sample size was 250.  For both the CFI and the TLI, the rate of rejection 

when n = 250 was substantially higher than the comparable rate of rejection according to the chi-

square fit statistic.  Hu and Bentler (1999) noted that the TLI and CFI tended to over-reject true 

models at small sample sizes (≤ 250).  At larger sample sizes, the CFI and TLI rates of rejection 

were generally lower than the chi-square Type I error rate.   

For the full models where the loading magnitude of the shifting items was .3, the rate of 

rejection increased as more items at more time points were incorporated into the model with low 

loadings.  The rate of rejection was especially high when four items at each of three 

measurement occasions had a loading magnitude of .3. 

Overall, the rejection rates for CFI and TLI were lower for the shifting models than the 

corresponding full models.  For the shifting models, as more items were dropped across more 

time points, the rejection rate generally decreased.  This trend mirrors what was seen with the 

chi-square rates of rejection presented in Table 4.11.  Again, this result seems to be driven by the 

reduction in the number of indicators per factor when items are dropped. 
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Table 4.14 

Percentage of Rejected Models According to the CFI Across All Conditions 
    Full Model   Shifting Model 

  

.3 
 

.7 
 

.3 
 

.7 

Number of 

Times  

Number of 

Items   

Number of 

Items  

Number of 

Items  

Number of 

Items 

N 2 4   0   2 4   2 4 

0 

250 -- -- 
 

23.4 
 

-- -- 
 

-- -- 

500 -- -- 
 

2.9 
 

-- -- 
 

-- -- 

750 -- -- 
 

0.0 
 

-- -- 
 

-- -- 

1000 -- -- 
 

0.0 
 

-- -- 
 

-- -- 

 
           

1 

250 25.5 31.2  --  22.7 21.1 
 

22.4 22.6 

500 3.6 5.3  --  2.5 3.0 
 

2.6 3.7 

750 0.1 0.7  --  0.1 0.2 
 

0.0 0.1 

1000 0.0 0.0  --  0.0 0.0 
 

0.0 0.0 

 
           

2 

250 30.5 36.4  --  21.8 19.4  21.2 22.1 

500 5.1 8.2  --  3.1 3.0  3.1 3.7 

750 0.8 2.4  --  0.1 0.5  0.1 0.1 

1000 0.1 0.1  --  0.0 0.0  0.0 0.0 

 
           

3 

250 35.9 43.7  --  19.5 23.2  20.3 20.3 

500 6.0 19.5  --  2.6 5.5  2.4 4.4 

750 0.9 6.1  --  0.2 1.3  0.2 0.2 

1000 0.2 2.2   --   0.0 0.0   0.0 0.0 

Note.  For the conditions with .3 loadings of the shifting items, there is a different full model for 

each shifting condition (i.e., depending on the number of times with shifting items and the 

number of shifting items per time point).  For the conditions with .7 loadings of the shifting 

items, there is only one full model, regardless of the levels of the other shifting conditions. 

Because of this, the percentage of rejected models under the loading magnitude of .7 is displayed 

only once per sample size condition for the full model. The values for shifting models under the 

loading magnitude of .7 can all be compared to those four values. 
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Table 4.15 

Percentage of Rejected Models According to the TLI Across All Conditions 

    Full Model   Shifting Model 

  

.3 
 

.7 
 

.3 
 

.7 

Number of 

Times  

Number of 

Items   

Number of 

Items  

Number of 

Items  

Number of 

Items 

N 2 4   0   2 4   2 4 

0 

250 -- -- 
 

21.9 
 

-- -- 
 

-- -- 

500 -- -- 
 

2.7 
 

-- -- 
 

-- -- 

750 -- -- 
 

0.0 
 

-- -- 
 

-- -- 

1000 -- -- 
 

0.0 
 

-- -- 
 

-- -- 

 
           

1 

250 25.1 30.7  --  21.2 20.1  20.9 21.4 

500 2.5 4.7  --  2.2 2.4  2.0 3.3 

750 0.1 0.5  --  0.0 0.1  0.0 0.1 

1000 0.0 0.0  --  0.0 0.0  0.0 0.0 

 
           

2 

250 29.9 36.0  --  20.9 18.6  19.9 21.2 

500 4.9 8.0  --  2.3 2.7  2.7 3.5 

750 0.8 2.3  --  0.1 0.4  0.1 0.1 

1000 0.1 0.1  --  0.0 0.1  0.0 0.0 

 
           

3 

250 35.1 43.8  --  18.6 23.6  19.6 20.7 

500 5.8 19.5  --  2.3 5.8  2.1 4.7 

750 0.8 6.1  --  0.1 1.3  0.2 0.2 

1000 0.2 2.2   --   0.0 0.1   0.0 0.0 

Note.  For the conditions with .3 loadings of the shifting items, there is a different full model for 

each shifting condition (i.e., depending on the number of times with shifting items and the 

number of shifting items per time point).  For the conditions with .7 loadings of the shifting 

items, there is only one full model, regardless of the levels of the other shifting conditions. 

Because of this, the percentage of rejected models under the loading magnitude of .7 is displayed 

only once per sample size condition for the full model. The values for shifting models under the 

loading magnitude of .7 can all be compared to those four values. 

 

With regard to RMSEA, the average values and confidence intervals indicated that model 

fit was good under the full and shifting indicators models.  Under all conditions, the average 

value of RMSEA and the upper bound of the confidence interval was less than .06, as displayed 

in Table 4.12.  As sample size increased, the values of RMSEA improved, as displayed in Table 

4.13.  However, the magnitude of the differences across sample size was quite small.   

The mean RMSEA values were virtually identical across all conditions except sample 

size.  However, the upper bound of the confidence interval differentiated between cells.  For the 



94 
 

models where the loading magnitude of the shifting items was .3, RMSEA upper bound values 

were similar for the full models that included these items and the shifting models that dropped 

them.  However, for the models where the loading magnitude of the shifting items was .7, the 

RMSEA values became progressively higher (i.e., indicated worse fit) in the shifting models as 

more items were dropped from more time points.  In contrast to the chi-square fit statistic, the 

CFI, and the TLI, the RMSEA did not improve as the number of items per factor decreased.   

Rates of rejection based on the RMSEA and the upper bound of the RMSEA confidence 

interval were calculated.  For the RMSEA, the rejection rate was 0.0% for all cells.  That is, none 

of the replications in the simulation would have been rejected based on the value of RMSEA.  

Using the upper limit of the confidence interval for the RMSEA as the basis of the rejection rate, 

only two cells had a rejection rate higher than 0.0%.  Both cells were in the shifting indicators 

condition with four items missing at each of the three time points and a sample size of 250.  

When the factor loadings of the dropped items had a magnitude of .3, the rejection rate was 

2.3%.  When the factor loadings of the dropped items had a magnitude of .7, the rejection rate 

was 1.8%.    

Review of Research Hypotheses and Support from Findings 

The purpose of this study was to compare the performance of second-order LGMs with 

shifting indicators to second-order LGMs with all items present at each time point. Four research 

questions were investigated.  These questions focused on the impact of five independent 

variables related to the structure of the second order LGMs on five dependent variables related to 

model performance.  Specifically, the research questions were: 
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1. How does the number of shifting to non-shifting indicators within the affected 

measurement occasions influence model convergence, bias in growth parameter 

estimates, bias in standard error estimates, efficiency, and model fit? 

2. How does the number of measurement occasions with shifting indicators influence model 

convergence, bias in growth parameter estimates, bias in standard error estimates, 

efficiency, and model fit? 

3. How does the magnitude of the factor loadings for the omitted items influence model 

convergence, bias in growth parameter estimates, bias in standard error estimates, 

efficiency, and model fit? 

4. How does sample size influence model convergence, bias in growth parameter estimates, 

bias in standard error estimates, efficiency, and model fit? 

This section restates the research hypotheses related to each of these questions and 

summarizes the findings in light of these hypotheses.  The hypotheses generally state that the full 

models will outperform the shifting models (except in the case of model fit).  This is due to the 

fact that the full models are properly specified and the shifting models omit items.  Although it 

was expected that the full models would perform better than the shifting models, a critical 

consideration was the degree of difference in performance.  If the shifting models performed 

profoundly worse than the full models, future use of the model may justifiably be limited to 

circumstances when no other alternative is available (i.e., items have been inadvertently lost).  

However, given that the performance of the two types of model was generally comparable, the 

flexibility gained by using the shifting model may outweigh any trivial loss in performance.    
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Hypothesis 1: 

With respect to the number of shifting indicators within each measurement occasion, it 

was hypothesized that models with more indicators per factor within each measurement occasion 

would have better rates of proper convergence, less bias in parameter estimates, less bias in the 

standard errors of the parameter estimates, and more efficient estimation.  With regard to fit, 

models with more indicators per factor within each measurement occasion were hypothesized to 

have larger model rejection rates based on the chi-square and related fit statistics.    

Support for Hypothesis 1: 

The findings of this study were generally in support of hypothesis 1.  Models that had 

more indicators per factor (i.e., full models versus shifting models; shifting models with fewer 

dropped items per occasion versus shifting models with more dropped items per occasion) 

tended to have better rates of proper convergence and more efficient estimation.  The overall 

magnitude of these differences, however, was small.  Bias in the parameter estimates and 

standard errors was mostly comparable across the levels of the number of shifting items that 

were dropped.  For selected growth parameters, bias in the parameter estimates and standard 

errors was larger when more items were dropped.  Models with more indicators per factor within 

each measurement occasion had larger model rejection rates based on the chi-square fit statistic, 

CFI, and TLI, especially when the sample size was small (i.e., 250).   Overall, the results 

indicated that having fewer indicators per factor did not have a substantial impact on model 

performance under the conditions tested in this simulation.   

Hypothesis 2: 

With respect to the number of measurement occasions that include shifting indicators, it 

was hypothesized that models with fewer occasions involving shifting indicators would have 
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better rates of proper convergence, less bias in the parameter estimates, less bias in the standard 

errors of the parameter estimates, and more efficient estimation.  With regard to fit, models with 

fewer occasions of shifting indicators were hypothesized to have larger model rejection rates 

based on the chi-square and related fit statistics.   

Support for Hypothesis 2: 

The findings of this study were generally in support of hypothesis 2.  Models with fewer 

occasions involving shifting indicators (i.e., full models versus shifting models; shifting models 

with fewer occasions with dropped items versus shifting models with more dropped items) 

tended to have better rates of proper convergence and more efficient estimation.  The overall 

magnitude of these differences was small.  Bias in the parameter estimates and standard errors 

was mostly comparable across the levels of measurement occasions when items were dropped.  

For selected growth parameters, bias in the parameter estimates and standard errors rose as items 

were dropped at more measurement occasions, especially when four (versus two) items were 

dropped.  Models with fewer occasions involving shifting indicators did have larger model 

rejection rates based on the chi-square and related fit statistics, especially when the sample size 

was small (i.e., 250).  Overall, the results indicated that dropping items at multiple time points 

did not have a substantial impact on model performance under the conditions tested in this 

simulation.  However, when four items were dropped at all three time points, proper 

convergence, bias, and efficiency became noticeably worse.  

Hypothesis 3: 

With respect to the magnitude of the factor loadings for the omitted items, it was 

hypothesized that models that drop items with low loadings would have better rates of proper 

convergence, less bias in the parameter estimates, less bias in the standard errors of the 



98 
 

parameter estimates, and more efficient estimation than models that drop items with high 

loadings.  With regard to fit, models that drop items with low loadings were hypothesized to 

have smaller model rejection rates based on the chi-square and related fit statistics.   

Support for Hypothesis 3: 

The findings of this study were mixed with regard to hypothesis 3.  With regard to 

inadmissible solutions, the shifting models that dropped items with high loadings did have more 

inadmissible solutions than the shifting models that dropped items with low loadings.  In terms 

of the relative bias of the parameter estimates, results were generally comparable between the 

shifting models that dropped items with low loadings and the shifting models that dropped items 

with high loadings.   In terms of the relative bias of the standard errors of the parameter 

estimates, there were some differences between the two types of model, but a clear pattern was 

difficult to discern.  Efficiency, as measured by the average value of standard errors of parameter 

estimates, was quite similar between the shifting models that dropped items with low loadings 

and the shifting models that dropped items with high loadings.  Under certain conditions (i.e., 

when there was a large number of dropped items across two or three measurement occasions), 

the shifting models that dropped items with low loadings had slightly larger standard errors, 

indicating worse efficiency.  With regard to measures of model fit, rejection rates tended to be 

generally comparable between the two types of models.  Overall, the results indicated that 

dropping items with low versus high loadings did not have a substantial impact on model 

performance under the conditions tested in this simulation.   

Hypothesis 4: 

With respect to sample size, it was hypothesized that models with larger sample sizes 

would have better rates of proper convergence, less bias in the parameter estimates, less bias in 
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the standard errors of the parameter estimates, and more efficient estimation than models with 

smaller sample sizes.  With regard to fit, models with larger sample sizes were hypothesized to 

have smaller model rejection rates based on the chi-square and related fit statistics than models 

with smaller sample sizes.   

Support for Hypothesis 4: 

The findings of this study were generally supportive of hypothesis 4.  Models with larger 

sample sizes had better rates of proper convergence and more efficient estimation.  Bias in the 

parameter estimates was highest when n = 250.  The relationship of sample size to bias in the 

standard errors was more complex.  For the slope variance and intercept variance, the relative 

bias in the standard errors was largest when n = 250.  Otherwise, no discernible pattern emerged. 

Models with larger sample sizes had smaller model rejection rates based on the chi-square and 

related fit statistics.  The magnitude of these differences was most profound between the n = 250 

condition and the n = 500 condition.  When n = 250, rates of rejection due to poor fit were quite 

high.  Overall, the results indicated that sample size played an important role with regard to 

model performance.  In general, once n = 500, all models performed well under the conditions 

tested in this simulation.   

 

 

  



100 
 

 

 

CHAPTER 5 

DEMONSTRATION OF THE SHIFTING INDICATORS MODEL WITH REAL DATA 

In this chapter, I present a demonstration of the use of second-order LGMs with shifting 

indicators using real data.  The purpose of this chapter is to exemplify how the model can be 

used in applied settings.  This demonstration explicates the steps needed to run a second-order 

LGM with shifting indicators and compares the performance of the shifting indicators model to a 

model with the full set of items.  

Methods 

Participants 

Data for this demonstration comes from the Healthy Teens Longitudinal Study, a study of 

adolescent social and academic development.  A cohort of students in Georgia was assessed 

yearly from Grade 6 to 12.  Students were randomly selected from nine middle schools located in 

six counties in Northeast Georgia.  In sixth grade, 939 students were invited to participate and 

745 accepted (79.3%).   

The middle school data collection was a part of the Multisite Violence Prevention Project 

(MVPP, 2004, 2009).  One scale is used in this demonstration.  Responses from students who 

completed the scale at least once during grades 6-8 were included in the example dataset; the 

final sample comprised 720 students (48.2% girls; 48.9% White, 33.3% African American, 

12.2% Hispanic, 1.7% Asian, 3.9% Multiracial/Other).    
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Measures 

One scale from the Goals and Strategies measure, based on Hopmeyer and Asher (1997), 

was used in this demonstration.  The Goals and Strategies measure presents respondents with 

vignettes of conflict scenarios, such as one student taking another student’s seat.  After a 

description of the scenario, a series of items assesses the respondent’s 1) strategies for 

responding to the situation by asking “what would you do?” followed by a list of options and 2) 

goals in responding to the situation by asking “what would be your goal?” followed by a list of 

options.  

In this demonstration, the scale that measures the goal of “maintaining a good 

relationship” was used.  The scale is composed of four items, one for each of four vignettes.  

After each vignette, respondents rate how much they agree with the following statement about 

their goal in responding to the conflict if it had happened to them: “My goal would be trying to 

get along with this student.”  Five response categories were numbered from 1 to 5, and the 

endpoints were labeled really disagree and really agree. The middle response categories were 

not labeled with a verbal description.  The data were subsequently recoded to range from 0 to 4.   

Means, standard deviations, skewness, and kurtosis of the items at each time point are 

presented in Table 5.1.  At each of the three waves of data collection, the scale demonstrated 

acceptable internal consistency (see Table 5.1). Table 5.2 presents the correlations among all 

items.   
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Table 5.1 
              Example Data Item Means, Standard Deviations, and Scale Internal Consistency            

  Grade 6   Grade 7   Grade 8 

Item M SD Skewness Kurtosis   M SD Skewness Kurtosis   M SD Skewness Kurtosis 

1 2.66 1.468 -.691 -.916 
 

2.40 1.416 -.396 -1.076 
 

2.28 1.398 -.289 -1.116 

2 2.69 1.475 -.743 -.879 
 

2.58 1.415 -.589 -.893 
 

2.45 1.402 -.455 -1.012 

3 2.72 1.496 -.789 -.839 
 

2.54 1.452 -.508 -1.084 
 

2.42 1.450 -.417 -1.124 

4 2.73 1.500 -.788 -.859 
 

2.51 1.508 -.498 -1.184 
 

2.48 1.455 -.491 -1.090 

Internal 

consistency 
0.807   0.767   0.808 

 

Table 5.2 

              Example Data Item Intercorrelations 

    Grade 6   Grade 7   Grade 8 

  

Item 

1 

Item 

2 

Item 

3 

Item 

4   

Item 

1 

Item 

2 

Item 

3 

Item 

4   

Item 

1 

Item 

2 

Item 

3 

Item 

4 

Grade 

6 

Item 1     

 

    

 

    

Item 2 .570    

 

    

 

    

Item 3 .536 .672   

 

    

 

    

Item 4 .501 .631 .728  

 

    

 

    

Grade 

7 

Item 1 .274 .308 .370 .355 

 

    

 

    

Item 2 .320 .285 .341 .352 

 

.571    

 

    

Item 3 .287 .296 .307 .381 

 

.526 .670   

 

    

Item 4 .241 .293 .296 .359 

 

.531 .670 .743  

 

    

Grade 

8 

Item 1 .229 .272 .274 .330 

 

.325 .348 .335 .373 

 

    

Item 2 .171 .271 .231 .273 

 

.303 .405 .339 .401 

 

.551    

Item 3 .231 .265 .273 .347 

 

.379 .412 .428 .420 

 

.561 .691   

Item 4 .197 .223 .252 .298   .367 .446 .389 .442   .556 .644 .780   

All correlations are significant at the p < .05 level 
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Estimation Method 

Basic descriptive statistics were obtained using SPSS 19.  All SEM-based analyses were 

conducted using Mplus 6. 

For the purpose of reducing the complexity of the demonstration, the data were 

considered continuous.  Although ordered categorical data are inherently not continuous, under 

certain circumstances it may be acceptable to treat categorical data as continuous (Finney & 

DiStefano, 2006, p. 298-299).  Specifically, at least five response categories should be present, 

and responses should be approximately normally distributed or only moderately non-normal (i.e., 

skew < |2| and kurtosis < |7|; Finney & DiStefano, 2006, p. 299).  An inspection of the response 

frequencies and associated histograms indicated that responses favored the really agree end of 

the scale.  However, all of the scale points were used, and skewness and kurtosis values were 

relatively small. In particular, skewness values did not exceed |0.8|, and kurtosis values did not 

exceed |1.2|.  Further, these values did not exceed the limit for moderate non-normality indicated 

by Finney and DiStefano (2006, p. 299).  Given the guidance provided in Finney and DiStefano 

(2006), treating the data as continuous in this case appears justified and substantially simplifies 

the demonstration.  Furthermore, the inherent non-normality of the data was taken into account 

in the selection of the estimator.   

For all SEM analyses, a maximum likelihood estimator with robust standard errors 

(MLR) was employed to account for the presence of non-normality of the data.  When data are 

non-normal, chi-square values may be inflated and standard errors underestimated under 

maximum likelihood (ML) estimation (Finney & DiStefano, 2006, p. 273).  MLR produces a chi-

square test statistic and estimates of standard errors that are adjusted for the level of non-

normality present in the data.  MLR is an extension of the Satorra-Bentler method (Satorra & 
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Bentler, 2001) that accommodates missing data using a full information maximum likelihood 

approach (FIML; Muthén, 2009).  FIML estimates parameters and standard errors based on all 

available information. 

The dataset was screened for outliers using the macro given in DeCarlo (1997), which 

identifies multivariate outliers based on the Mahalanobis distance for each observation.  Eleven 

cases met the criteria for multivariate outliers at the .05 level of significance.  These outliers 

were retained, as they appeared to reflect true variation in the sample, rather than miscoding or 

other errors in the dataset.   

Analyses 

Three phases of data analysis were conducted.  First, a shifting indicators model was 

developed.  Second, the items were screened for longitudinal measurement invariance.  The third 

phase of data analysis entailed fitting the full and shifting indicators second-order LGMs to the 

data.  The performance of the two models was compared with regard to parameter estimates and 

measures of model fit.  

1) Development of the shifting indicators model. 

The first phase of data analysis was developing the shifting indicators model.  The 

shifting indicators model is a reduced form of the full model.  Under both cases, a linear growth 

trajectory was specified for the three equally-spaced time points.  The first item was designated 

as the scaling indicator, which sets the metric of the measurement model.  The intercept and 

loading for item 1 at each time point were set to zero and one, respectively. Measurement errors 

of corresponding items at adjacent time points were allowed to co-vary.  For the full model, the 

latent trait at each measurement occasion was measured by all four items.  Under the shifting 
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indicators model, a different item was dropped at each time point.  A graphical representation of 

the full and the shifting indicators model is provided in Figure 5.1 

 

 

Figure 5.1. The full and shifting indicators models.  The full model includes four items at each 

measurement occasion.  In the shifting indicators model, one item per occasion is dropped, as 

shown in grey. 

 

The purpose of this demonstration is to provide a step-by-step illustration of the 

application of a shifting indicators model and not to draw substantive conclusions about the 

development of the latent construct.  It was beyond the scope of the demonstration to create a 

theoretically-based shifting indicators model.  Instead, the development of the shifting indicators 

model was based on practical considerations.  At each of the three time points, one item was 

dropped and three items were retained, in accordance with the three item per factor minimum 

suggested by Marsh, Hau, Balla, and Grayson (1998).  At the first time point, item 2 was 

dropped.  At the second time point, item 3 was dropped, and at the third time point, item 4 was 

dropped.   
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A primary consideration in developing a shifting indicators model is determining whether 

sufficient overlap in indicators exists to identify the model.  As described earlier, Hancock and 

Buehl (2008) provided extensive guidance for determining whether the model will be identified.  

A series of matrices was developed based on this guidance, including the configuration matrix 

and the incidence matrix, presented in Figure 5.2. 

 

 

Figure 5.2. Matrices involved in determining sufficient overlap. 

 

 In the configuration matrix, asterisks identify the items that measure the latent construct 

at each time point.  The incidence matrix identifies which time points share constrained items in 

common.  In the present case, all three time points share constrained items in common, so the 

matrix contains all 1’s.  In the second step of the incidence matrix, vertical and horizontal lines 

are drawn through the non-zero elements of the incidence matrix.  The shifting indicator model 

has sufficient overlap for identification if there are no zeros left that are not crossed out in the 

matrix.  In this case, the incidence matrix had no zeros whatsoever, so the criteria for sufficient 

overlap for model identification was met.        

2) Longitudinal measurement invariance. 

As discussed earlier, it is important to obtain evidence that the measures exhibit adequate 

longitudinal measurement invariance.  Ferrer et al. (2008) describe two methods for examining 

Configuration Matrix Incidence Matrix: Step 1 Incidence Matrix: Step 2

1 2 3 1 2 3 1 2 3

1 * * * 1 1

2 * * Time 2 1 Time 2 1

3 * * 3 1 1 3 1 1

4 * *

TimeTime Time

Item
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longitudinal measurement invariance of second-order LGMs.  The first method involves running 

a series of nested confirmatory factor analytic (CFA) models where additional equality 

constraints are invoked at each step and models are compared using chi-square difference tests.  

The second method involves running a series of nested LGMs with equality constraints added at 

each step.  Nested models are compared using a chi-square difference test.  In this demonstration, 

the LGM-based method was utilized.  

To assess configural invariance, the second-order LGMs were run with all loadings and 

intercepts freely estimated.  In the second step, corresponding loadings were constrained to 

equality to test for metric invariance.  In the third step, corresponding loadings and intercepts 

were constrained to equality to test for scalar invariance.  At each step, the effect of the added 

equality constraints on the fit of the model was assessed with a chi-square difference test.  

3) Comparison of second-order LGMs with identical and shifting indicators. 

The third phase of data analysis involved running the full second-order LGM and the 

shifting indicators model.  The models were then compared on model fit and estimates of growth 

parameters.      

Assessing the fit of the models. 

Model fit was determined using the chi-square fit index, the comparative fit index (CFI), 

the Tucker-Lewis index (TLI), and the root mean square error of approximation (RMSEA).  As 

described earlier, the chi-square fit index measures the discrepancy between the original and 

model-implied covariance matrices.  A non-significant chi-square value indicates that the 

matrices are not significantly different.  However, in large samples chi-square may be sensitive 

to trivial differences in the matrices.  Therefore, this measure of model fit is often used in concert 

with other fit indices.  In this demonstration, CFI, TLI, and RMSEA are also reported.  As 
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described earlier, values of CFI and TLI that exceed .95 are indicative of good fit (Hu & Bentler, 

1998, 1999), as are values of RMSEA of less than .06 (Hu & Bentler, 1998).    

Obtaining estimates of growth parameters. 

The full model and shifting indicators model were compared on estimates of the five key 

growth parameters (i.e., slope mean, intercept mean, slope variance, intercept variance, and 

slope/intercept covariance) and their standard errors.  Estimates were compared in terms of the 

statistical significance of parameter estimates, the direction of parameter estimates, and the 

magnitude of the parameter estimates and their standard errors.      

Results 

Examining Longitudinal Measurement Invariance 

In order to test for measurement invariance, a series of nested LGMs was fit to the data 

and compared using the chi-square difference test.  This process was conducted with both the full 

model and the shifting model.  Table 5.3 displays the results of these analyses. 

 

Table 5.3 
      Sequential Chi-square Difference Tests of Longitudinal Invariance 

    Full   Shifting 

Test Type Comparison 
Chi-square 

difference 

df 

difference 
  

Chi-square 

difference 

df 

difference 

Metric 

Invariance 
Model 1 vs 2 5.01 6 

 
2.74 3 

Scalar 

Invariance 
Model 2 vs 3 12.01 6   5.10 3 

Model 1: No invariance constraints 

    Model 2: Invariance of loadings  

    Model 3: Invariance of loadings and thresholds 

   Under MLR estimation, an adjustment to the chi-squared values and degrees of 

freedom used to conduct the difference test is required.  All difference tests were 

adjusted according to the guidance provided on the Mplus website: 

www.statmodel.com.   
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Model 1 allowed intercepts and loadings to freely vary across time.  This model was used 

to test for configural invariance, or that the factor structure is similar across time points.  The 

overall fit of the model was acceptable for the full model (χ
2
 (44) = 108.801, p < .001, CFI = 

.975, TLI = .962, RMSEA = .045) and the shifting indicators model (χ
2
 (21) = 39.928, p = .008, 

CFI = .987, TLI = .978, RMSEA = .035).  In both full and shifting cases, the chi-square
 
value 

was significant, indicating that the model-implied covariance matrix was significantly different 

than the original covariance matrix.  However, values of the other fit indices were indicative of 

good fit, and factor loadings were significant at each time point.     

Model 2 constrained corresponding loadings to equality. A comparison of Model 1 and 

Model 2 provided evidence that metric invariance held for these data under the full and the 

shifting cases.  A non-significant chi-square
 
difference test indicated that adding equality 

constraints to corresponding loadings did not significantly decrease model fit.  

Model 3 constrained corresponding factor loadings and item intercepts to equality.  A 

comparison of Model 2 and Model 3 indicated that scalar invariance held for these data under the 

full and the shifting cases.  A non-significant χ
2 

difference test indicated that adding equality 

constraints to corresponding item intercepts did not significantly decrease model fit.   

Comparison of Second-order Growth Model with Identical and Shifting Indicators 

Because the data under both the full and the shifting cases exhibited longitudinal 

measurement invariance at the configural, metric, and scalar levels, the next step of data analysis 

was conducted.  In this phase, the two models were compared on measures of model fit and 

estimates of growth parameter estimates. 
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Model fit. 

Each of the models exhibited acceptable model fit, as displayed in Table 5.4.  In both 

cases, the chi-square value was significant.  While a significant chi-square value can be a sign of 

poor model fit, the chi-square
 
test may be undesirably sensitive to trivial differences in the 

original and reproduced matrices under large sample sizes, as in this case.  All other measures of 

fit yielded values indicative of good fit according to the recommendations outlined above.   

 Overall, the shifting indicators model appeared to exhibit better fit than the full model, 

although the differences in the fit indices were quite small.  This result falls in line with the 

results of the simulation study, which found that a reduction in the number of indicators per 

factor led to better model fit according to the chi-square fit statistic, the CFI, and the TLI.   

 

Table 5.4 
       Fit Indices of Second-order LGMs with Identical and Shifting Indicators 

  Chi-square         

Model 
Value df p-value CFI TLI RMSEA 

RMSEA 

CI 

Full 127.042 56 <.0001 0.972 0.967 0.038 .032-.052 

Shifting 47.79 27 0.0081 0.986 0.982 0.037 .017-.048 

RMSEA CI: RMSEA confidence interval 

    

 

Comparison of the growth parameter estimates. 

Table 5.5 presents results of the comparison of growth parameters estimated by the full 

and shifting indicators models.  For both models, the direction of the estimates was in 

concordance.  That is, the slope mean and the intercept/slope covariance were negative, and all 

other values were positive.  In all but one case, the statistical significance of the estimates was in 

agreement.  In the full model, all five growth parameters were statistically significant at the .05 
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level.  In the shifting indicators model, four growth parameters were statistically significant and 

one parameter, the intercept/slope covariance, was on the cusp of significance (i.e., .052).   

Overall, the estimates and standard errors were quite similar across the two models.  The 

largest difference in the parameter estimates occurred for the intercept variance, which was 

estimated as .535 in the full model and .573 in the shifting model. The largest difference in the 

standard errors was also observed in the intercept variance, which was estimated as .09 in the full 

model and .1 in the shifting model.  Across the board, the standard errors were slightly larger in 

the shifting model.  On the whole, these differences in the parameter estimates and standard 

errors seem trivial.   

 

Table 5.5 
    Estimates of Key Parameters Obtained by Second-order LGMs 

    Estimate 

Standard 

Error Est./S.E. p-value 

Intercept Mean       

 

 

Full  2.557* 0.046 55.179 <.001 

 

Shift  2.574* 0.047 54.545 <.001 

     
 

Slope Mean 

   
 

 

Full -0.111* 0.023 -4.744 <.001 

 

Shift -0.132* 0.025 -5.171 <.001 

     
 

Intercept Variance 

   
 

 

Full  0.535* 0.090 5.940 <.001 

 

Shift  0.573* 0.100 5.734 <.001 

     
 

Slope Variance 

   
 

 

Full  0.128* 0.040 3.162 0.002 

 

Shift  0.134* 0.044 3.032 0.002 

     
 

Intercept/Slope 

Covariance 

   

 

 

Full -0.096* 0.046 -2.078 0.038 

  Shift  -0.103 0.053 -1.943 0.052 

* p < .05 
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Figure 5.3 presents the model-implied growth trajectories for the full and the shifting 

indicators models.  As displayed in the figure, the growth trajectory of the shifting indicators 

model had a slightly higher intercept and a slightly larger negative slope, resulting in an overall 

larger drop in the latent construct over the three time points in comparison to the full model.  

However, this difference is trivial.  The overall model-implied decrease in the latent construct 

over time was .222 for the full model and .264 for the shifting model, for a total difference of 

.042 across a five-point scale.    

 

 

Figure 5.3. Growth trajectories implied by the full and shifting indicators model 

 

In sum, in this demonstration the full and shifting indicators models produced similar 

results.  The fit of the models, the direction of the parameter estimates, and the magnitude of the 
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parameter estimates and standard errors were comparable.  In every case, the significance of the 

parameter estimates was in concordance except for the intercept/slope covariance.  While this 

parameter was significant in the full model, it was on the cusp of significance (i.e., .052) in the 

shifting model.  The overall model-implied growth trajectories were virtually the same across the 

two models.   

The results of this demonstration provide evidence that the shifting indicators model can 

produce similar results as a corresponding full model under real-world circumstances.  The data 

employed in this demonstration had good model fit and exhibited longitudinal measurement 

invariance, but they were not contrived (e.g., missingness was encountered; data were Likert-

type instead of continuous).  Even under the current circumstance when items were dropped 

arbitrarily, the shifting indicators model produced similar estimates to the full model.  Possible 

real-world applications of the shifting model include circumstances when items are a) omitted in 

a planned fashion to mirror developmental theory or b) lost due to unplanned circumstances.  

The results of this demonstration of the shifting indicators model are promising, even when items 

are lost without reference to theory. 
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CHAPTER 6 

DISCUSSION 

 Longitudinal data analysis, as many developmental researchers know, can be messy and 

fraught with complication.  Researchers may uncover problems with some items after data 

collection has begun, may have evolving ideas of how to best measure a construct, or may have a 

theoretical basis for wanting to measure a construct differently as participants mature.  A benefit 

of the shifting indicators model is its flexibility in light of these types of circumstances.  The 

shifting indicators model provides a mechanism for measuring growth that accommodates a 

changing array of items over time.   

 The purpose of this study was to investigate the performance of the shifting indicators 

model to provide information about the circumstances under which it may be appropriate.  In the 

next section, I summarize the results of the study, make connections to what was previously 

known about the model, and explore the implications of these findings. 

Conclusions and Implications 

Convergence to a Proper Solution 

The result of the simulation study indicated that non-convergence was not a problem in 

either the full model or the shifting indicators model.  Only 14 of 76,000 datasets failed to reach 

convergence, for an overall convergence rate of 99.98%.  Inadmissible solutions were also 

extremely rare (overall convergence rate: 99.67%) and were virtually non-existent when the 

sample size was greater than 250.  For all cells, the rate of proper convergence was greater than 

95%.   
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These results were unsurprising in light of previous research.  The inverse relationship 

between sample size and frequency of inadmissible solutions is well documented in the SEM 

literature (e.g., Anderson & Gerbling, 1984; Boomsma, 1985; Chen, Bollen, Paxton, Curran, & 

Kirby, 2001).  Studies by Leite (2007) and Hamilton, Gagné, and Hancock (2006) demonstrated 

this relationship in latent growth models. 

Taken as a whole, these results are promising with regard to the shifting indicators model.  

Although rates of convergence to a proper solution were somewhat lower for the shifting 

indicators model, this effect was most pronounced when the sample size was 250.  If rates of 

proper convergence were low, this would represent a significant drawback to the use of the 

shifting indicators model.  However, the results of the simulation suggest that when shifting 

models are otherwise properly specified and an adequate sample size is employed, convergence 

is likely.      

Bias in the Parameter Estimates and Standard Errors 

Bias in the parameter estimates was not a substantial problem.  When all solutions (i.e., 

admissible and inadmissible) were considered, the average values of relative bias of the growth 

parameters were acceptable across all cells.  Replacing the nonconverged/inadmissible solutions 

did not have a substantial impact on the relative bias of the parameter estimates.  For two cells, 

replacing the nonconverged/inadmissible solutions caused the relative bias of the slope variance 

to exceed the acceptable limit (i.e. .05).  These cells had a sample size of 250, four items dropped 

at each of the three measurement occasions, and the lowest rates of proper convergence in the 

study.   

Similar results were obtained with regard to the relative bias in the standard errors of the 

parameter estimates when all solutions were considered.  In this case, the average values of the 
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relative bias of the standard errors of the growth parameters were acceptable across all cells.  

Cells in the shifting indicator condition tended to exhibit slightly more bias than the cells from 

the full model condition, but this difference was small.  

The overall lack of bias observed in parameter estimates and standard errors when all 

solutions were considered mirrors the results found in Leite (2007).  In his study of second-order 

LGMs, the relative bias of the parameter estimates and their standard errors was acceptable 

under all conditions.  Results with inadmissible solutions were not described in that paper but are 

presented in a dissertation based on the same study (Leite, 2005).  These results indicate that 

once inadmissible solutions were removed, several of the parameters (i.e., slope variance, 

intercept variance, and slope intercept/covariance) and their standard errors exhibited bias above 

the cutoff.  Bias occurred most often in the small to moderate sample size conditions (i.e. 100, 

200, 500) and was mostly associated with the estimates of slope variance and intercept/slope 

covariance and their standard errors.  The bias values reported by Leite (2005) were larger than 

those found in the current study, likely because he included conditions (e.g., reliability) that were 

not manipulated in this study.   

The demonstration of the shifting indicators model in Chapter 5 provided an additional 

window into the performance of the models with regard to parameter and standard error 

estimation.  Across all five growth parameters, the estimates obtained by the shifting indicators 

model were similar to the full model parameter estimates.  The values of the standard errors were 

larger in the shifting models, and in one case, the larger standard error led to a difference in the 

statistical significance of the associated parameter estimate (i.e., the slope/intercept covariance).    

Together, the results indicate that an otherwise properly specified  shifting indicators 

model is unlikely to have substantial problems with bias in parameter estimates and standard 
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errors, so long as the sample size is moderate (i.e., >250).  However, standard errors may be 

slightly larger than those produced by a corresponding full model.  For parameter estimates on 

the borderline of being significant, the larger standard errors may contribute to a higher 

probability of Type II errors.  That is, significance testing may falsely indicate that a parameter is 

not significantly different than zero, when a significant effect should have been found. 

Efficiency 

Efficiency was investigated by examining the average standard errors of the growth 

parameter estimates.  An examination of these values indicated that efficiency was slightly better 

for the full models than the shifting models, although the magnitude of the difference was small.  

Further, partial eta-squared values indicated that there were no practical differences in efficiency 

between the full and shifting indicators models.  Several other conditions, most notably sample 

size, did have practically significant effects (i.e., partial eta-squared exceeded .05) on efficiency.  

As sample size increased, efficiency was improved for all five growth parameters.  Additional 

practically significant effects of other conditions were obtained for the efficiency of selected 

growth parameters.  In general, efficiency was reduced when larger numbers of items across 

more time points were either dropped or had low loadings.  This is not surprising, because 

efficiency should be higher for situations in which estimates are based on more information.  

These results are encouraging in terms of future applications of the shifting indicators 

model.  Although the shifting indicators models were slightly less efficient, the difference was 

small.  The differences in efficiency between the full and the shifting indicators models were 

more notable when the factor loading condition was .7.  This condition was intended to simulate 

an unplanned loss in data.  These results suggest that any reduction in efficiency will be more 
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pronounced when items with large factor loadings are unexpectedly lost, as opposed to when 

items with low loadings are dropped because they are no longer developmentally appropriate.   

Chi-square Fit Statistic 

The performance of the chi square fit statistic generally behaved as expected given 

previous research findings.  Model fit (as measured by Type I error rates) was worse when 

sample size was small.  This result falls in line with Leite (2007), who found that for properly 

specified second-order LGMs, model fit increased as sample size increased.   

In the current study, the number of items per factor appeared to play an important role in 

differentiating rates of rejection between the full and the shifting indicators models.  For almost 

every case, the shifting indicators models, which had fewer indicators per factor, had lower Type 

I error rates than the corresponding full models.  Within the shifting indicators models, the 

models with four dropped items tended to have fewer Type I errors than models with two 

dropped items.  This pattern, in which better estimates of model fit were associated with models 

that had fewer items per factor, is similar to findings from Leite (2007) and Marsh, Hau, Balla, & 

Grayson (1998).  Also in accord with these previous findings, the effect was more pronounced at 

smaller sample sizes.   

The results of the applied demonstration also suggested that the fit of the shifting model 

was better than the fit of the full model.  Although both model types had significant chi-square 

values, the chi-square/degrees of freedom ratio for the full model (127.042/56 = 2.268) was 

further from the ideal value of 1.00 than that of the shifting model (47.79/27 = 1.77).  Because 

the items dropped from the shifting model were chosen arbitrarily, there are no theoretical 

reasons for the fit of the model to be improved.  It seems likely that the estimates for fit of the 

shifting model are slightly improved due to having fewer items per factor. 
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These simulation and applied data results, taken together, indicate that model fit, as 

measured by chi-square Type I error rates, may be improved simply by dropping items from the 

model.  This result raises a potential caution for the future use of the shifting indicators model.  It 

would be considered poor practice to conduct arbitrary, pre- or post-hoc modifications to second-

order LGMs for the sole purpose of enhancing model fit.    

Other Fit Indices 

The average values of the CFI, TLI, and RMSEA were indicative of good fit under all 

conditions.  The percentage of rejected models according to the CFI and TLI cut-points were 

informative in differentiating across sample size conditions.  For the n = 250 condition, the rates 

of rejection were quite high for the CFI (range: 19-43%) and the TLI (range: 18-43%).  For all 

other sample size conditions, the rates of rejection were generally less than 5%, and when n = 

1000, rejection rates were nearly zero.  Average RMSEA values also indicated that fit improved 

as sample size increased, although the rejection rate was unaffected by sample size (i.e., the 

rejection rate was zero across all conditions).  The association between sample size and model fit 

mirrors results reported by Leite (2007), who found that the percentage of rejected models 

decreased as sample size increased.   

As with the chi-square results, the same pattern of lower rejection rates for the shifting 

versus the full model was observed with the CFI and TLI.  For the full model, when increasing 

numbers of items with high loadings were replaced with items with low loadings, and CFI and 

TLI rejection rates generally increased.  Conversely, as more items were dropped from the 

shifting models, rejection rates improved.  It is likely that a similar explanation holds for the 

CFI/TLI results as with the chi-square results.  That is, there is an improvement of fit when the 

number of items per factor decreases.   Several other studies (Ding, Velicer, & Harlow, 1995; 
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Kenny & McCoach, 2003) have indicated that mean fit values of CFI and TLI decrease as the 

number of items per indicator increase.  At larger sample sizes, this effect was minimized; this 

result was also observed in the current study.    

Taken as a whole, the model fit results for the shifting indicators models were favorable.  

Given a sufficient sample size (i.e., > 250), the chi-square values and measures of fit obtained by 

the CFI, TLI, and RMSEA led to a high percentage of replications that met the criteria for 

acceptable fit.  This result suggests that for shifting indicators models that are not otherwise 

misspecified (beyond the omitted items), model fit does not substantially degrade due to the 

exclusion of items, and in fact appears to  somewhat improve.  This slight improvement in model 

fit appears to be reflective solely of a reduction in the number of items per factor.   

Limitations and Future Directions 

This study aimed to investigate the performance of a type of model that has not received 

extensive attention in the literature.  Because the shifting indicators model has not been 

comprehensively tested, the simulation was designed to test the model under somewhat idealistic 

conditions.  The reasoning behind this decision is that if the model fails to perform well under 

idealistic conditions, it will almost certainly not perform well under real-world conditions.   

This study examined the performance of second-order LGMs with shifting indicators 

with simulated data that were continuous, multivariate normal, and had no missing values.  The 

factor loadings for the non-shifting indicators were all set to .7, and item intercepts were set to 0.  

In order to gain a more complete understanding of the performance of the shifting indicators 

model, additional investigations using more realistic data should be conducted.  For example, 

categorical data, data that violate the assumption of normality, and data that include missing 

values should be considered in future studies.  Further, the current study only used models that 
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were properly specified apart from the omitted items.  Studies that investigate the effects of 

different types of model misspecification on the performance of the shifting indicators model are 

warranted.   For example, the performance of the shifting indicators model could be compared to 

full models under differing degrees of longitudinal measurement invariance with different types 

of items (invariant/non-invariant) dropped in the shifting models.       

There are many other arrangements of shifting models that could be investigated in the 

future.  For example, researchers could investigate the impact of having different numbers of 

items dropped at different time points (e.g., dropping two items at one measurement occasion 

and four at another), dropping the same number of items at different time points (e.g., dropping 

two items from time one versus dropping two items at time two), or adding items instead of 

dropping items.   

Another possible line of research pertains to comparing the shifting indicators model to 

other methods of accounting for missingness in the case where items are inadvertently lost due to 

technical (or other data collection) problems.  In the case where items are unintentionally 

omitted, the shifting indicators model can be used to exclude these items from the analysis.    

However, it may also be possible to code those items as missing and employ other missing data 

techniques.  It would be of interest to investigate similarities and differences between the shifting 

indicators model and other methods of accounting for missingness.   

In addition to research into the technical aspects of the shifting indicators model, applied 

researchers may benefit from additional work considering the practical aspects of deciding when 

to use the model.  For example, the current study indicated that using the shifting indicators 

model may slightly increase bias (for at least some parameters and standard errors) and decrease 

efficiency.  Some cautious researchers may be hesitant to consider dropping items for this 
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reason, even if they are using some items that may be no longer developmentally appropriate.  

One aspect of the shifting indicators model that was not explored in this study relates to the 

experience of responding to items that are developmentally inappropriate.  For example, if many 

items seem too childish to an adolescent population, it seems reasonable that at least some 

respondents may conclude that the survey is not worth taking seriously.  These respondents 

could subsequently rush through the survey, be less thoughtful in their responses, or drop out of 

the study altogether.  Longitudinal researchers need to consider the survey-taking experience as 

they seek to maintain the engagement of participants over time and avoid attrition.  This type of 

concern cannot be investigated through simulation studies, but nonetheless represents an 

important consideration for applied researchers and an avenue for future research.   

Guidance for Applied Researchers 

 The results of this study were generally promising in terms of the performance of the 

second-order LGM with shifting indicators.  No serious problems were uncovered with regard to 

proper convergence, bias, efficiency, or model fit.  However, as discussed earlier, the data used 

in this study were simulated under idealistic conditions.  To the extent that real data differs from 

these conditions, the performance of the shifting indicators model may deteriorate.  However, the 

demonstration in Chapter 5, in accord with Hancock and Buehl (2008), provided additional 

evidence that the shifting model is able to perform similarly to a corresponding full model using 

real data.  In that demonstration, the parameter estimates, standard errors, and model implied 

growth trajectories were generally comparable (although in one case the significance test of a 

parameter estimate was not in agreement between the full and shifting models).   

Researchers who wish to apply the shifting indicators model should consider both 

theoretical and methodological issues.  For example, as discussed in Chapter 2, there should be a 
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strong theoretical basis for identifying which items should be dropped.  In terms of 

methodological considerations, the results of this study indicate that relatively large sample sizes 

(>250) are needed in order for the model to perform adequately.  Somewhat larger sample sizes 

may be needed for the shifting indicators model to match the performance of full models.  

Furthermore, the results indicated that it may be unwise to have a large number of shifting items 

at multiple measurement occasions.      

The overall findings from this study support the continued investigation into the 

performance of second-order LGMs with shifting indicators.  Given the growing importance of 

longitudinal data methods and the flexibility of the shifting indicators model, this method of 

measuring growth may become an increasingly popular tool for researchers in the social 

sciences.  
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APPENDIX A: 

EXAMPLE FULL MODEL SYNTAX 

Example of SAS Program to Generate Data and Analyze Models for a Full Model with All 

Loading Magnitudes of .7 
 

/* STEP 1: Generate MPlus syntax files */ 

 

options noxwait xsync; 

proc iml workspace = 90000; 

 

%macro mplus; 

 

%do n = 1 %to 4; 

n = {250, 500, 750, 1000}; 

nn = n[&n,]; 

s = {62224 87136 41842 27611}; 

ss = s[&n]; 

 

file "C:\dis\model-7000-n&n..inp"; 

 

put ("MONTECARLO:"); 

put ("NAMES = y11-y18 y21-y28 y31-y38;"); 

put ("NOBSERVATIONS = ") @; put (nn) @; put (";"); 

put ("NREPS = 1000;"); 

put ("SEED = ") @; put (ss) @; put (";"); 

put ("REPSAVE = ALL;"); 

put ("SAVE = C:\dis\model-7000-") @;put ("n") @; put ("&n.") @; put 

("*.DAT;") ; 

put ("MODEL MONTECARLO:"); 

put (" t1 by y11-y18*.7;") ; 

put (" t2 by y21-y28*.7;") ; 

put (" t3 by y31-y38*.7;") ; 

put (" y11-y38*.51;") ; 

put (" i s | t1@0 t2@1 t3@2;"); 

put (" [i@1 s@1];"); 

put (" i*1 s*.2;"); 

put (" i with s*.179;"); 

put (" t1-t3@1;"); 

put (" [y11-y38@0];"); 

 

put (" MODEL:"); 

put (" t1 by y11-y18*.7;") ; 

put (" t2 by y21-y28*.7;") ; 

put (" t3 by y31-y38*.7;") ; 

put (" y11-y38*.51;") ; 
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put (" i s | t1@0 t2@1 t3@2;"); 

put (" [i@1 s@1];"); 

put (" i*1 s*.2;"); 

put (" i with s*.179;"); 

put (" t1-t3@1;"); 

put (" [y11-y38@0];"); 

put ("OUTPUT: tech9;"); 

 

closefile "C:\dis\model-7000-n&n..inp"; 

 

%end; 

 

/*Call Mplus and run files created above*/ 

 

%do n = 1 %to 4; 

 

X call "C:\Program Files\Mplus\Mplus.exe" "C:\dis\model-7000-n&n..inp" 

"C:\dis\model-7000-n&n..out"; 

 

%end; 

 

%mend; 

%mplus; 

 

run; 

 

/* STEP 2: Generate Mplus syntax files to run data */ 

 

options nodsnferr noxwait xsync cleanup nonotes NOSOURCE NOSOURCE2 

errors=0; 

 

proc iml workspace = 90000; 

 

%macro analyze1; 

 

%do n = 1 %to 4; 

%do i = 1 %to 1000; 

 

file "C:\dis\model-7000-run-n&n.i&i..inp" ; 

 

put ("data: file = C:\dis\model-7000-") @; put ("n") @;  

put ("&n.") @; put ("&i.") @; put (".dat;"); 

put ("variable: names = y11-y18 y21-y28 y31-y38;"); 

put ("model: t1 by y11-y18*.7 (1-8);"); 

put ("t2 by y21-y28*.7 (1-8);"); 

put ("t3 by y31-y38*.7 (1-8);"); 

put ("y11-y38*.51;"); 

put ("i s | t1@0 t2@1 t3@2;"); 

put ("[i*1 s*1];"); 

put ("i*1 s*.2;"); 

put ("i with s*.179;"); 

put ("t1-t3@1;"); 
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put ("[y11-y38@0];"); 

put ("output: TECH1 MODINDICES (ALL 5);"); 

put ("savedata: results are C:\dis\model-7000-run") @; put ("n") @; 

put ("&n.") @; put ("i") @; put ("&i.") @; put (".res;"); 

 

closefile "C:\dis\model-7000-run-n&n.i&i..inp" ; 

            

%end; 

%end; 

 

/*call Mplus and run files created above*/ 

 

%do n = 1 %to 4; 

%do i = 1 %to 1000; 

 

X call "C:\Program Files\Mplus\Mplus.exe" "C:\dis\model-7000-run-

n&n.i&i..inp" 

"C:\dis\model-7000-run-n&n.i&i..out"; 

 

%end; 

%end; 

 

%mend; 

%analyze1; 

 

/* STEP 3: Write data to .dat file*/ 

 

options nodsnferr noxwait xsync cleanup errors=1 notes; 

proc iml workspace = 90000; 

 

%macro writedata; 

 

%do n = 1 %to 4; 

%do i = 1 %to 1000; 

 

x copy "C:\dis\null-full.txt" "C:\dis\7000.dat"; 

x copy "C:\dis\model-7000-runn&n.i&i..res" "C:\dis\7000.dat"; 

 

data one; 

infile "C:\dis\7000.dat" truncover scanover flowover; 

input im sm y11-y18 iv iws sv r11-r18 r21-r28 r31-r38 imse smse se11-

se18 ivse iwsse svse rse11-rse18 rse21-rse28 rse31-rse38 chi chidf 

chip cfi tli logh0 logh1 freepar aic bic bica rmsea rmsealo rmseahi 

rmseapr srmr; 

rep= &i; 

n = &n; 

model = 7000; 

 

file "C:\dis\results-7000.dat" mod; 

put rep 4.0 +1 @; put n 1.0 +1 @; put model 4.0 +1 @;  

put im 6.4 +1 @;  

put sm 6.4 +1 @; 
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put iv 6.4 +1 @; 

put iws 6.4 +1 @; 

put sv 6.4 +1 @; 

put imse 6.4 +1 @; 

put smse 6.4 +1 @; 

put ivse 6.4 +1 @; 

put iwsse 6.4 +1 @; 

put svse 6.4 +1 @; 

put chi 9.4 +1 @; 

put chidf 3.0 +1 @; 

put chip 5.4 +1 @; 

put cfi 6.4 +1 @; 

put tli 6.4 +1 @; 

put logh0 10.4 +1 @;  

put logh1 10.4 +1 @; 

put freepar 2.0 +1 @; 

put aic 9.4 +1 @; 

put bic 9.4 +1 @; 

put bica 9.4 +1 @; 

put rmsea 5.4 +1 @; 

put rmsealo 5.4 +1 @; 

put rmseahi 5.4 +1 @; 

put rmseapr 5.4 +1 @; 

put srmr 6.4 +1 ; 

 

run; 

 

%end; 

%end; 

 

%mend; 

%writedata; 
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APPENDIX B: 

EXAMPLE SHIFTING MODEL SYNTAX 

Example of SAS Program to Analyze a Shifting Model with Two Items Dropped at Time 1 

and Time 3 

 
 
/* STEP 1: Generate Mplus syntax files to run data */ 

 

options nodsnferr noxwait xsync cleanup nonotes NOSOURCE NOSOURCE2 

errors=0; 

 

proc iml workspace = 90000; 

 

%macro analyze1; 

 

%do n = 1 %to 4; 

%do i = 1 %to 1000; 

 

file "C:\dis\model-7221-run-n&n.i&i..inp" ; 

 

put ("data: file = C:\dis\model-7000-") @; put ("n") @;  

put ("&n.") @; put ("&i.") @; put (".dat;"); 

put ("variable:"); 

put ("names = y11-y18 y21-y28 y31-y38;"); 

put ("usevariables = y13-y18 y21-y28 y31-y36;"); 

put ("model: t1 by y13-y18*.7 (3-8);"); 

put ("t2 by y21-y28*.7 (1-8);"); 

put ("t3 by y31-y36*.7 (1-6);"); 

put ("y13-y18*.51;"); 

put ("y21-y28*.51;"); 

put ("y31-y36*.51;"); 

put ("i s | t1@0 t2@1 t3@2;"); 

put ("[i*1 s*1];"); 

put ("i*1 s*.2;"); 

put ("i with s*.179;"); 

put ("t1-t3@1;"); 

put ("[y13-y18@0 y21-y28@0 y31-y36@0];"); 

put ("output: TECH1 MODINDICES (ALL 5);"); 

put ("savedata: results are C:\dis\model-7221-run") @; put ("n") @; 

put ("&n.") @; put ("i") @; put ("&i.") @; put (".res;"); 

 

closefile "C:\dis\model-7221-run-n&n.i&i..inp" ; 

            

%end; 

%end; 
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%do n = 1 %to 4; 

%do i = 1 %to 1000; 

 

X call "C:\Program Files\Mplus\Mplus.exe" "C:\dis\model-7221-run-

n&n.i&i..inp" 

"C:\dis\model-7221-run-n&n.i&i..out"; 

 

%end; 

%end; 

 

%mend; 

%analyze1; 

 

/* STEP 2: Write data to .dat file*/ 

 

options nodsnferr noxwait xsync cleanup errors=1 notes; 

proc iml workspace = 90000; 

 

 

%macro writedata; 

 

%do n = 1 %to 4; 

%do i = 1 %to 1000; 

 

x copy "C:\dis\null-full.txt" "C:\dis\7221.dat"; 

x copy "C:\dis\model-7221-runn&n.i&i..res" "C:\dis\7221.dat"; 

 

data one; 

infile "C:\dis\7221.dat" truncover scanover flowover; 

input im sm y1-y8 iv iws sv r11-r16 r21-r28 r31-r36 imse smse se1-se8  

ivse iwsse svse rse11-rse16 rse21-rse28 rse31-rse36 chi chidf chip cfi 

tli logh0  

logh1 freepar aic bic bica rmsea rmsealo rmseahi rmseapr srmr; 

rep= &i; 

n = &n; 

model = 7221; 

 

file "C:\dis\results-7221.dat" mod; 

put rep 4.0 +1 @; put n 1.0 +1 @; put model 4.0 +1 @;  

put im 6.4 +1 @;  

put sm 6.4 +1 @; 

put iv 6.4 +1 @; 

put iws 6.4 +1 @; 

put sv 6.4 +1 @; 

put imse 6.4 +1 @; 

put smse 6.4 +1 @; 

put ivse 6.4 +1 @; 

put iwsse 6.4 +1 @; 

put svse 6.4 +1 @; 

put chi 9.4 +1 @; 

put chidf 3.0 +1 @; 

put chip 5.4 +1 @; 
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put cfi 6.4 +1 @; 

put tli 6.4 +1 @; 

put logh0 10.4 +1 @;  

put logh1 10.4 +1 @; 

put freepar 2.0 +1 @; 

put aic 9.4 +1 @; 

put bic 9.4 +1 @; 

put bica 9.4 +1 @; 

put rmsea 5.4 +1 @; 

put rmsealo 5.4 +1 @; 

put rmseahi 5.4 +1 @; 

put rmseapr 5.4 +1 @; 

put srmr 6.4 +1 ; 

 

run; 

 

%end; 

%end; 

 

%mend; 

%writedata; 
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