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ABSTRACT 

This study investigated different calculus professors‘ conceptions about mathematics and 

mathematical learning, calculus teaching with or without the use of computing technology, and 

the experiences in which those conceptions were grounded. Through the qualitative research 

methodology called grounded theory, six college professors were purposefully selected and 

studied. The results showed the professors‘ perceptions of the effects of technology use on 

pedagogy and students‘ learning; their perceptions of barriers and challenges to the adoption and 

use of technology for teaching and learning calculus; and their experience, knowledge, and 

motivation for adopting instructional technology that made unique and significant contributions 

to explaining faculty use of technology for teaching and learning calculus. Some professors were 

categorically opposed to the use of computing technology in calculus, but others envisioned that 

computing technology could play a multitude of roles in their calculus classrooms. The more that 

the calculus professors wanted to focus on real-world applications and wanted students to apply 

calculus concepts in their academic disciplines, the more they were concerned about their own 

ability to facilitate such learning and the need to integrate computing technology into calculus. 

The more that the calculus professors focused on procedural understanding in mathematics and 



 
 

on teacher-centered lessons, the more they were concerned about students misusing computing 

technology and failing to develop a proper understanding of calculus concepts. 
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CHAPTER 1: INTRODUCTION 

 

Technology is changing the way we teach.  

Not because it‘s here, but because it‘s everywhere.  

John Kenelly (quoted in K. B. Smith, 2000, p. 234) 

 

At the beginning of the 21st century, technology is gaining recognition as the driving 

force of scientific progress as well as a key source of national economic welfare. Simultaneously, 

higher education is now perceived as the conduit for transition from a declining industrial age to 

a developing information age. Over the last three decades, the emergence of the Internet, 

accompanied by rapid advances in computing and communication technology, has dramatically 

changed the landscape of higher education. The use of computer technology has evolved from 

data storage to become a common component in teaching and learning, including areas like 

research and information distribution. In colleges and universities around the world, instructors 

in all disciplines are using various forms of technology to improve instruction and enrich the 

classroom experience for their students. In particular, instructors of undergraduate mathematics 

now have computing technology tools available that allow a more interactive and comprehensive 

form of teaching than has previously been possible. These tools are widely available, accessible, 

and cost-effective, and have been proven to enhance the learning process of a mathematics 

student. Given the overwhelming evidence of the advantages of computing technology, one 

might assume that this technology has been fully integrated into mathematics classrooms. 

Despite the vast advances in computing technology, however, along with its increased 

availability, many mathematics instructors are still not incorporating this technology into 

curricula or classrooms. 
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Technology in Higher Education 

As higher education becomes more technologically driven, computing technology is 

being heralded as an agent of change. Many researchers have noted the trend among colleges and 

universities to transform the nature of the courses and degree programs they offer by creating 

new instructional delivery methods (Adams, 2002; Bates, 2001; Becker & Devine, 2007; Bullock 

& Schomberg, 2000; Harley, 2001). The new products and technologies are constantly reshaping 

methods and materials used for classroom instruction. Course management software packages 

such as WebCT, combined with broadband Internet access, have made the delivery of curriculum 

materials over the Internet a common practice (Jones, Asensio, & Goodyear, 2000). As a result, 

the United States has seen an explosive growth of online universities such as Nova and the 

University of Phoenix. As technology has become more prevalent in all dimensions of the higher 

education system, college faculties have witnessed many advances in the functions of 

educational technologies. These technologies are expanding beyond their existing functions as 

they evolve into novel applications, including the ability to offer course casting (audio or video 

online course broadcasting) and online tutoring.  

Although the dominant view in higher education about computing technology has been 

that it will reduce costs and make education more accessible and more effective, the penetration 

of this technology into undergraduate teaching practices shows a great disparity across colleges 

(Adams, 2002; Bates, 2001; Bruff, 2009; Bullock & Schomberg, 2000; Crawford, 2003; 

Davidson-Shivers, 2002; White & Myers, 2001). Technology use and expertise among faculty 

and students at higher education institutions varies tremendously. Many institutions have added 

the effective use of technology to their criteria for awarding tenure to faculty members (e.g., 
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Seton Hall University), and some institutions now require every student to have a personal 

computer (e.g., the University of Florida).  

Understandably, then, the use of computing technology in higher education has created 

controversy and excitement. It has, however, also remained highly individualized because of 

disparate faculty interests, high levels of faculty autonomy, and wide variance in technology 

expertise evidenced among faculty in colleges and universities (Davidson-Shivers, 2002; Ertmer, 

Gopalakrishnan, & Ross, 2001; Howland & Wedman, 2004). In a research study of 33,398 

faculty members at 378 U.S. institutions of higher education (K. C. Green, 2000), 87% of the 

faculty was convinced of the benefits of the use of computing technology for education, but only 

22% used computing technology for instruction in undergraduate classes. Several researchers 

have identified having a positive attitude toward and expertise with computing technology as a 

critical variable in the adoption and subsequent integration of these processes (Becker & Devine, 

2007; Harley, 2001; Zhao & Cziko, 2001).  

Since the integration process demands fundamental changes in pedagogy, curriculum, 

and assessment, which significantly affect the role of the instructor, faculty members must be 

convinced of the feasibility of using a particular computing technology before assimilation can 

occur (Ertmer, 1999; Lan, 2001; Liaw, 2002; Tucker & Leitzel, 1995). Among the issues 

preventing the incorporation of computing technology into higher education are barriers such as 

a lack of institutional and financial support, time, technical knowledge, technology support, and 

reliable technology (Betts, 2001; Groves & Zemel, 2000; Kersaint, Horton, Stohl, & Garofalo, 

2003; Khadivi, 2006; McCracken, 2008; Morris & Finnegan, 2008). Several researchers have 

also identified the establishment of a department-wide vision or rationale consistent with the 

values, histories, students, faculties, and missions of the institution as one of the key components 
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of successful technology integration (Milheim, 2001; Rice & Miller, 2001; Roblyler & Knezek, 

2003; D. L. Rogers, 2000).  

Computing Technology and Undergraduate Mathematics Education 

For more than three decades, the undergraduate mathematics education community has 

been experimenting with and debating the advantages of computing technology. The 

advancements in computing technology have changed not only how some mathematics faculty 

members teach, but also what is taught and when it is taught (Hillel, 2001; Thomas & Holton, 

2003). The availability of computing technology has elevated the importance of certain 

mathematical topics like discrete and nonlinear mathematics while simultaneously decreasing the 

importance of mathematical skills such as paper-and-pencil arithmetic and symbolic 

manipulation. Increased access to technology has also provided research tools for exploring the 

properties of mathematical structures and objects in fractal geometry and chaos theory, and it has 

created new choices about content and pedagogy by providing new ways to represent 

mathematical concepts (Alsina, 2001). Examples of these new choices include the visualization 

of mathematical objects with two- and three-dimensional graphics and the creation of an 

interactive environment in which students can explore and experiment with vectors, matrices, 

and transformations (Anthony, Hubbard, & Swedosh, 2000; Hillel, 2001; Thomas & Holton, 

2003).  

The integration of computing technology into undergraduate mathematics education 

started as a support in the learning of traditional mathematics curriculum topics, such as solving 

equations, differentiating, integrating, and showing slope fields in differential equations 

(Baldwin, 1998; Heid, 2002; Hillel, 1993; Palmiter, 1986). Later, technology integration efforts 

expanded into designing a technology-enhanced curriculum for various new topics, including 
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cryptography, chaos theory, group theory, and linear algebra. Recently, a large number of 

colleges and universities have started to offer online mathematics courses. These courses range 

from basic developmental mathematics through college algebra, trigonometry, calculus, and 

abstract algebra.  

Nevertheless, in a very real sense, computing technology has failed to penetrate the 

undergraduate mathematics curriculum. Some of these failures can be found in the breadth of 

utilization, such as the proportion of departments and courses in which it is used, or the 

proportion of faculty using it as part of the instructional process. Others reflect a shortfall in the 

depth to which technology is integrated into individual courses and into the curriculum as a 

whole (Santucci, 2007). In collegiate mathematics education, the use of computing technology 

has remained a highly personal decision for faculty members. A huge gap remains between the 

availability of computing technology in mathematics departments, and its effective use and 

integration into mathematics instruction by the faculty (Hillel, 2001; Santucci, 2007).  

As part of higher education, mathematics faculty members hold various perspectives 

regarding the role of computing technology in their mathematics instruction and its role in the 

student‘s learning process. Although many instructors engage in innovative forms of research 

and teaching projects, many others do not want to bring computing technology into their 

classrooms. According to Gadanidis, Kamran, and Liang (2004), the main barrier to the use of 

computing technology in the mathematics classroom is ―the inability of American college 

mathematicians to recognize the value of such facilities and their unwillingness to make the 

effort to use the facilities which are available‖ (p. 279). Despite the availability of various forms 

of computing technology, their penetration into undergraduate mathematics teaching practice has 

been very slow and reflects a great disparity across colleges (Hazzan & Zazkis, 2003; Holton, 
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2001; Santucci, 2007). Research indicates that although technological tools have been acquired 

and installed on campuses throughout the country, the use and integration of these tools into 

course instruction by mathematics faculty has lagged behind (Healey, 2000; Santucci, 2007). As 

Hillel (2001) succinctly stated, undergraduate mathematics education ―is still dominated by the 

‗chalk-and-talk‘ paradigm‖ (p. 64).  

Calculus and the Calculus Reform Movement 

Historically, calculus has been, and will likely continue to be, the most important course 

in the undergraduate mathematics curriculum. For the majority of students, it is the last course in 

which they will form, adjust, or change their image of mathematics and the process of learning 

mathematics. Furthermore, calculus has also been, and will probably continue to be, a gateway 

class for future teachers, scientists, economists, engineers, and mathematicians. Thus, the 

calculus course deserves special attention and requires substantial involvement and effort by all 

undergraduate mathematics instructors. 

In the last three decades, mathematics instructors have been subjected to a constant 

pressure to change the ways in which calculus is taught and learned. Several national 

organizations have declared a state of emergency in undergraduate calculus teaching (Committee 

on the Undergraduate Program in Mathematics, 1991; National Research Council, 1991; 

National Science Foundation, 1996). These declarations of crisis in calculus teaching have 

variously been based upon high student failure rates (Hoft, 1991); poor teaching abilities of 

instructors (Kasten, 1988; Kolata, 1987); inadequate student preparation (Cole, 1993; Holton, 

2001); limited use of computing technology (Cole, 1993; Curtis & Northcutt, 1988); and a nearly 

uniform nationwide calculus curriculum based heavily on memorization and procedural learning 

(Davis, 1989; Jost, 1992).  
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To address concerns about calculus instruction, a series of conferences were organized by 

concerned mathematicians in the 1980s to determine which aspects of instruction needed to be 

changed and the best ways to implement the changes (Jost, 1992). During those conferences, 

participants argued that the calculus curriculum should incorporate the use of computing 

technology, and that calculus ideas should be represented graphically, numerically, and 

symbolically. Also debated was the theory that calculus courses should teach students the big 

ideas of calculus rather than some arbitrary collection of manipulative skills. A student‘s ability 

to read and write about mathematical ideas is essential, and the instructor should emphasize the 

use of real-world applications and interdisciplinary projects to motivate learning calculus ideas 

(Beers, 1991; Child, 1991; Cole, 1993; Dubinsky & Schwingendorf, 1991; Hoft, 1991; Small, 

1991; D. A. Smith & Moore, 1991). General agreement about what to change centered on the 

modes of instruction and use of computing technology, along with an increased focus on 

conceptual understanding and decreased attention to symbolic manipulation. The major theme 

shared across the various conferences was that the use of computing technology‘s graphing and 

symbol manipulation capabilities could provide greater access to multiple representations, along 

with greater opportunity for a problem-solving focus. This increased access could create changes 

in the traditional calculus curriculum regarding what instructional goals would be feasible and 

what instructional focus should be emphasized (Ferrini-Mundy & Graham, 1991; Kasten, 1988; 

Kolata, 1987; Tucker & Leitzel, 1995).  

In order to support the movement to reform calculus instruction, the National Science 

Foundation (NSF) provided financial backing for the development of various initiatives (Jost, 

1992; Kasten, 1988). Between 1988 and 1990, NSF awarded financial support for 43 different 

calculus reform projects, totaling nearly seven million dollars (NRC, 1991; Tucker & Leitzel, 
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1995). Several calculus reform programs were proposed, such as the Harvard Calculus 

Consortium curriculum, the Calculus and Mathematica project at the Ohio State University, and 

the Project CALC at Duke University. Although these initiatives advocated the use of a variety 

of teaching approaches and philosophies, they all emphasized the use of computing technology 

as a vehicle to implement the reform movement‘s goals for learning and teaching calculus (Cole, 

1993; Porzio, 1994). Many reform calculus courses used various computing tools to stress visual 

and numerical representations in addition to the traditional symbolic representations (Brown, 

Porta, & Uhl, 1990; Graves & Lopez, 1991; Heid, 1988; Muller, 1991; Ostebee & Zorn, 1990; 

Small, 1991). Although the majority of calculus reform projects were not adopted very far 

beyond their local colleges and universities, collective efforts managed to create a noticeable 

shift in calculus instruction. This shift has been the driving force in reform of collegiate curricula 

at all levels (Hillel, 2001; Knight & Trowler, 2000).   

Within the calculus reform movement, there have been intensely heated debates over 

various issues. A major focus of the debates has been to determine the benefit achieved by using 

computing technology and how much emphasis should be placed on a student‘s previous 

algebraic knowledge. A wide variety of factors motivated the creation of the reform initiatives. 

Some of those factors were based on an altruistic desire to make calculus ideas and concepts 

more understandable for a broader range of students. Other factors focused more on practical 

considerations regarding what calculus topics need to be taught, reflection on the type of 

mathematics that is suitable in an information age, and a growing aspiration to understand how 

students learn calculus concepts (D. A. Smith & Moore, 1991). Although calculus reform 

initiatives have been both praised and condemned in various studies (Cipra, 1988; Hillel, 1993; 

Peterson, 1987; Small, 1991; Stacey, Kendal, & Pierce, 2002; Wilson, 1986), a careful analysis 
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of the research findings provides ample evidence for implementing the proposed suggestion of 

incorporating computing technology into calculus instruction.  

The Calculus Reform and Computing Technology 

The calculus reform initiatives implemented a wide range of pedagogical methods for the 

integration of computing technology. Some reform projects assigned computer projects to be 

completed outside of class, whereas other projects demonstrated various technological tools and 

examples of ways to use them to enrich lectures. Still other projects used software as a primary 

means for delivering calculus concepts to the students. A considerable body of research 

conducted over the last 30 years, in contrast, supports the contention that conceptual 

understanding of calculus concepts is enhanced through use of multiple representations 

(numerical, graphical, and symbolic) while linking the representations using computer or 

calculator technology (Heid, 1988; Porzio, 1994; D. A. Smith & Moore, 1991).  

Some of the commonly cited advantages of using multiple computing approaches in 

calculus instruction include emphasizing the usefulness and relevance of mathematics (Ferrini-

Mundy & Graham, 1991; Kolata, 1987; Small & Hosack, 1986); developing cost-effective 

methods for teaching and learning mathematics (Anderson & Loftsgaarden, 1987; Schrock, 

1989; Ubuz & Kirkpinar, 2000; Zorn & Viktora, 1988); employing multiple-representations to 

support intuition and concepts (Small &Hosack, 1986; Zorn, 1986); and enhancing the ability to 

seek counterexamples (D. A. Smith & Moore, 1991). Additionally, the use of multiple 

computing approaches allows instructors to enhance the exploration of complex problems and 

mathematical ideas (Groves & Zemel, 2000; Schrock, 1989; Small & Hosack, 1986; Tucker, 

1990) by creating more interesting exercises with real-world data (Ganguli, 1992; Porzio, 1999) 

and facilitating discovery approaches (Schrock, 1989; Porzio, 1994, 1999; Ubuz & Kirkpinar, 
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2000). Ultimately, instructors can use technology to enliven courses and get students more 

involved (Ganguli, 1992; Porzio, 1999; Tucker, 1990; Zorn & Viktora, 1988) while also 

motivating them to assume more responsibility for their learning (Heid, 2002; Porzio, 1999; D. 

A. Smith & Moore, 1991; Ubuz & Kirkpinar, 2000). Although some of these goals may be 

achieved without technological tools, the tools are already available and accessible. 

Technological advances in computing make it easier to teach mathematics concepts without prior 

or concurrent mastery of algorithms (Heid, 2002), and to construct a meaningful concept image 

of doing mathematics proofs (Dubinsky & Schwingendorf, 1991).  

Statement of the Problem 

Despite the presence of an ever-increasing number of research findings, the efforts of 

dedicated collegiate mathematics instructors, and the growing access to technology, computing 

technology has not become an integral part of calculus classes. The role of technology in 

teaching and learning calculus has been, and is still, a very heated topic of debate. In the 1980s, a 

small fraction of instructors adopted computing technology, developing innovative ways to 

incorporate it into their teaching. Many instructors, however, resist using computing technology 

in their classrooms; others have vacillated between using computing technology and not using it. 

Simply placing technology in calculus classes, without a plan or strategy for incorporation and 

implementation, has not been (and will not be) productive in most classes. Adopting computing 

technology successfully involves more than the instructor‘s ability to use it as a tool; successful 

adoption requires changing the pedagogical practices of instructors (Park, 1996; Roschelle, 

Kaput, & Stroup, 2000). The integration process itself reveals and embodies what some 

instructors of calculus want to emphasize or avoid. Instructors are compelled to examine their 

feelings about technology as a legitimate means to an end by considering questions such as: 
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What do students really need to learn? And have paper-and-pencil skills remained relevant in 

today‘s world?  

Research studies have shown that an instructor‘s conception of the importance of 

computing technology is a critical determining factor in the effectiveness of its implementation 

in the classroom (Groves & Zemel, 2000; Roblyer & Knezek, 2003; D. L. Rogers, 2000). 

Mathematics instructors‘ understanding regarding how students learn and their personal 

conceptions of what constitutes positive instructional practices influence the way they use 

computers in the classroom (Santucci, 2007; Simonsen & Dick, 1997). Any attempt to 

implement policy changes and adjustments, therefore, must be viewed in terms of the instructor, 

who ultimately controls how the technology will be used in the classroom. The successful 

execution of changes in the way that undergraduate mathematics is taught depends largely on 

individual instructors and their collective actions. Without instructor involvement, all computing 

technology integration initiatives will fail. With an instructor‘s enthusiastic support, great 

benefits can be realized for both the students and the educational institution. In order to achieve a 

successful integration of computing technology into classrooms, there is a need for a more 

complete understanding of the most constructive ways to promote change among mathematics 

instructors, with a particular focus on calculus instructors.    

Over the past 10 years, I have made repeated visits to several calculus classes to observe 

the use or lack of use of various types of computing technology. Additionally, I have initiated 

informal conversations on the subject with several of my peers. Overall, I have been shocked and 

dismayed to see the widespread absence of computing technology in calculus classes. I have 

consistently found that very few calculus instructors exhibit an enthusiasm or a willingness to 

learn about the integration of computing technology into their instruction. Although there are 
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instructors who believe that computing technology is the gateway to the empowerment of 

students, there seem to be far more who are highly skeptical of the benefits to be gained from 

using that technology. I have also encountered colleagues who seem to be threatened by the 

incorporation of computing technology into my classroom instruction. In conversations with 

other collegiate mathematics instructors, I have discovered that their attitudes toward using 

computing technology cover a very broad spectrum, encompassing everything from reverence to 

indifference to scorn.  

As my interest in calculus instructors‘ conceptions of teaching with computing 

technology grew, I began to look for related research literature. Despite the central role of the 

instructor in the educational applications of computing technology, relatively little research has 

been conducted on how and why collegiate mathematics instructors use (or do not use) that 

technology. In addition, I was unable to find a research study on collegiate mathematics 

instructors‘ conceptions of teaching and learning mathematics. Most research about computing 

technology has focused on its impact on student learning; little attention has been given to the 

instructors. Numerous research studies of collegiate mathematics education have focused on 

students: how they learn, what attributes enhance their success (or lack of it), what 

misconceptions students bring to specific content areas, and learning issues concerning gender 

and ethnicity. Interestingly, I was able to find a great deal of research on methods of teaching 

calculus by using computing technology. I was also able to find research that demonstrates the 

ways that learning calculus in a technologically integrated classroom results in a significant and 

positive change in students‘ attitudes towards mathematics (Laurillard, 1993; Rahilly & Saroyan, 

1997; Santucci, 2007). Despite the overwhelming amount of research indicating the advantages 

of using computing technology in calculus instruction, however, almost none of the research 
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provides insight into instructors‘ apparent unwillingness to integrate that technology into 

calculus courses. As a result, there continues to be a gap in our knowledge and understanding of 

the factors and processes that mathematics faculty members use when choosing whether or not to 

adopt computing technology in the classroom.  

Framing the context for technology integration in undergraduate mathematics education 

requires uncovering the diversity of instructors‘ purposes, goals, interests, and values. As Hodas 

(1993) noted, ―Real change happens within organizations when employees, who are presented 

with a new way of working, shift their attitudes and beliefs about how work gets done‖ (p. 181). 

Therefore, I decided to conduct a study to examine the positive and negative steps taken by 

mathematics instructors when choosing whether or not to use computing technology in teaching 

calculus. Ultimately, my goal was to provide insight into the rich detail involved in the way a 

faculty member seeks or resists change related to the integration of technology into methods of 

instruction. My initial investigation of this topic indicated that several major factors influence 

instructors‘ decisions about using computing technology in calculus instruction. Exploration of 

those influences, and an examination of the interactive web of instructors‘ conceptions, may be 

able to provide a foundation for the development of successful professional programs aimed at 

promoting technology integration. If mathematics educators are to understand how computing 

technology is diffused and what kind of adaptation is needed, they must understand the 

conceptions of calculus instructors, as those beliefs reveal the instructors‘ real reasons for use 

and nonuse of computing technology (Ertmer, 1999; Kersaint et al., 2003). As Kilpatrick (1994) 

pointed out: ―Researchers in mathematics education have yet to examine how the availability of 

computer technology might interact with teachers‘ beliefs and capabilities, as well as with 

institutional and social constraints on the improvement of mathematics instruction‖ (p. 3649). 
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By looking beyond an individual instructors‘ personal view of computing technology, the 

collegiate mathematics community will benefit from a deeper understanding of the following 

questions: Do instructors use computing technology in teaching calculus? If so, why? In what 

ways do instructors use computing technology to teach calculus? What happens when they do? 

Why do instructors choose not to use computing technology? What factors influence the 

implementation of computing technology at the collegiate level? The struggles, challenges, and 

successes encountered by calculus instructors when attempting to integrate technology into the 

classroom are important. Such information can become the foundation of effective professional 

development strategies designed to ease the transition through the technology integration 

process.  

In the present study, my ultimate goal was to improve the way that undergraduate 

mathematics is taught, with a specific focus on the instruction of calculus. In order to achieve my 

goal, it was critical to understand the nature of collegiate calculus instructors‘ views and attitudes 

with respect to the use of computing technology. Although I may not have uncovered all of the 

aspects of this complex topic, I do hope to have shed significant light on effective ways to 

integrate the use of computing technology into collegiate level mathematics education. The 

findings of this study may enable a better understanding of the characteristics that influence the 

ability of instructors to integrate computing technology effectively into the classroom. My aim 

was to develop a vision of computing technology integration and a program focused on 

addressing patterns of change.   

Research Questions 

This report, therefore, is the account of my research efforts to understand why calculus 

instructors use or do not use computing technology in their calculus classes. To understand the 
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why or why not, it was necessary to examine the ways in which instructors currently use 

computing technology as well as their previous experiences with various types of technology. 

My goal was to understand why instructors do what they do—to describe and interpret how their 

conceptions inform and shape the way that they choose to teach collegiate level calculus. The 

method I used in conducting this research was to examine the categories, themes, patterns, and 

implications of using computing technology. In particular, this study addressed the following 

research questions: 

1. For instructors using computing technology to teach calculus, 

a. What are their conceptions of mathematics and learning mathematics? 

b.Why do they use computing technology? 

c. How do they use computing technology? 

2.  For instructors who never use computing technology to teach calculus, 

a. What are their conceptions of mathematics and learning mathematics? 

b.Why do they not use computing technology? 

c. How do they teach calculus without using computing technology? 

3. For instructors who once used computing technology to teach calculus, 

a. What are their conceptions of mathematics and learning mathematics? 

b.Why do they no longer use computing technology? 

c. How do they teach calculus without using computing technology? 

4. How do instructors in community colleges and universities differ in their teaching of calculus 

with or without computing technology? 

To investigate these research questions, I chose six mathematics instructors based on 

their response to an initial technology survey. The research participants included three from a 
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research university and three from a community college. The selection of participants was 

targeted at three types of instructors, one from each institution: two who were currently using 

technology in their calculus classes, two who had never used computing technology in the 

classroom, and two who had used it in the past and had mixed feelings about its use in their 

calculus classes. To uncover their conceptions regarding the use of computing technology in 

calculus instruction, I conducted a series of interviews with each research participant.  In 

addition, I carried out observations that focused on their classroom methods and instructional 

style.   
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CHAPTER 2: LITERATURE REVIEW 

 

Conceptions 

 

In this study, a conception was defined as personal assessment of one‘s knowledge, 

beliefs, values, and concepts in a given domain. Many researchers have described the need for 

research into the conceptions and practices of higher education faculty members, as teaching 

practices are influenced by their conceptions about teaching and learning (Pajares, 1992; 

Pehkonen & Törner, 2004; Pepin, 1999). Gaining an understanding of instructors‘ conceptions 

and of how those conceptions influence their perceptions and actions is critical to improving 

teaching practices since the conceptions held by faculty members significantly influence the 

educational outcomes of students. This influence can be either explicit or implicit, reflected in 

the manner in which the instructor seeks change, delivers instruction, and defines classroom 

success. Furthermore, the formation of and adherence to a particular set of conceptions can serve 

to give faculty members a sense of constancy, reinforcing both the self and group identity 

(Nixon, 1995). As reform efforts to integrate technology take hold, resistance may be more 

closely tied to the changing group dynamic than to the introduction of a specific technology. It is 

important to maintain an awareness of these underlying issues, since they have the potential to 

become barriers that would prove difficult to negotiate. As Kreber (2000) succinctly put it: 

The new policy seeks great change in knowledge, learning, and teaching, yet these are 

intimately held human constructions. They cannot be changed unless the people who 

teach and learn want to change, take an active part in changing, and have the resources to 

change. It is, after all, their conceptions of knowledge, and their approaches to learning 

and teaching that must be revamped. (p. 76) 
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To make the issue more complicated, conceptions often include feelings based on 

subjective knowledge. Several researchers note that conceptions are not easily observed; rather, 

they must be inferred (Pajares, 1992; Pehkonen & Törner, 2004) since individuals frequently do 

not have an awareness of their own conceptions. Because they are often unconsciously held, 

conceptions must be inferred from individuals‘ demonstrated actions, statements, and behaviors 

(Pajares, 1992; Rokeach, 1968).  

The Formation of Conceptions 

According to Rokeach (1968), direct and indirect experiences and observations form 

conceptions of individuals differing in consideration to the social and physical world. These 

conceptions are somehow organized ―into architectural systems having describable and 

measurable structural properties which, in turn, have observable behavioral consequences‖ (p. 1). 

Other researchers suggest that conceptions may or may not be logically formed, that they vary in 

strength, and that the difficulty of changing one‘s conceptions will be dependent on how strongly 

they are held (Windschitl & Sahl, 2002). According to Windschitl and Sahl (2002), conceptions 

can be descriptive, inferential, or informational. Descriptive conceptions emerge from 

observations; inferential conceptions are a result of inferences made from those observations; 

and informational conceptions are those gathered from outside sources.  

According to Rokeach (1968), conceptions have three distinct components: cognitive, 

affective, and behavioral. The cognitive component of conceptions represents an individual‘s 

knowledge and experience, and is held with varying degrees of certitude. The affective 

component of conceptions is the feeling or emotional reaction surrounding the conception. This 

emotional reaction prompts individuals to form an internal judgment of something as negative or 

positive, good or bad. The behavioral component of conceptions reflects an individual‘s 
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predisposition to act in certain ways, based on a combination of both the cognitive and affective 

components. Rokeach believed that our conceptions of one area of thought are connected to 

many of our other connections, that they impact and modify each other and that each conception 

has bearing on our other conceptions. The contrasts of the conceptions‘ interconnectedness are 

contained in four categories. First, the shared conceptions about existence and self and 

conceptions that are unshared in this regard. Second, conceptions that are existential versus ones 

that are non-existential in nature. The third contrast is the conceptions that regard the 

individual‘s personal preferences. And forth, conceptions that are derived and those conceptions 

that are not.  

The four contrasting implications between the interconnectedness of conceptions begins 

with a stipulation that when a conception is shared between group members, the functionality 

and connectedness are stronger than the conceptions that are held by individuals. In contrast to 

this, the second viewpoint states that when one‘s ―existence and identity‖ (Rokeach, 1968, p. 5) 

are more intertwined into their conceptions, their existential conceptions are stronger than those 

who fail to see a connection of their existence and identity to their conceptions. The third 

viewpoint suggests that conceptions are defined and shaped by an individual‘s personal 

preferences alone, and the individuals that exemplify this connection form conceptions with less 

function and influence than other, stronger conceptions. The forth viewpoint posits that the 

strongest, most functional conceptions are those conceived out of experience directly, rather than 

the derived conceptions that are conceived out of indirect reference to another individual‘s 

conceptions. 

According to Pajares (1992), the most difficult conceptions to modify are those derived 

from direct experience and observation. These conceptions become intertwined into the 
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personality and views of an individual into conception systems. The structure that is built 

dictates whether or not new ideas will enter the conception system or be rejected, based on 

whether or not the new ideas are consistent with previously formed conceptions. Some of these 

conceptions may join the system, however, and as a result the individual holds conflicting 

conceptions. As expressed by T. F. Green (1971), conceptions are held in ―clusters, more or less 

in isolation from other clusters and protected from any relationship with other sets of 

conceptions‖ (p. 48). This protection of conflicting conceptions may explain why higher 

education faculty might demonstrate inconsistencies in what they profess to believe and the way 

they actually act.  

Conceptions as Impediments to Faculty Change 

In a 1986 study, Schoenfeld noted that conceptions relating to acceptable classroom 

instruction are complex, and are often a result of ―an intricate interaction of cognitive and social 

factors existing in the context of schooling‖ (p. 45). According to Schoenfeld (1986), 

conceptions are formed through an individual‘s experiences and are heavily modified by the 

culture of the institution‘s classroom setting and curriculum. In the studies of Ball and Cohen 

(2000) and Barnett (2011) that focused on the connections between conceptions and practice, 

they note the conceptions of instructors and the implementation of teaching practices are strongly 

connected to each other, and have strong bearing on the conceptions they have for student 

learning. Understanding the conceptions held by higher education faculty becomes extremely 

important, given that any new conception introduced to faculty members will be filtered through 

the lens of previously held conception structures and experiences (Borko & Putnam, 1996). Ball 

and Cohen (2000) stated: 

In ways not well understood, the odyssey [for improving teaching] probably entails 

revising deeply held notions about learning and knowledge and reconsidering one‘s 
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assumptions about students and images of oneself as a thinker, as a cultural and political 

being, as a teacher. (p. 105)  

 

In higher education, the enculturation into a particular academic discipline makes the 

implementation of reform initiatives difficult to attain through its dominant role in the 

development of a faculty member‘s conceptions (E. L. Boyer, 1990). Enculturation into a 

particular discipline leads individuals to adopt conceptions generally upheld by the reference 

group. Conceptions that are created and fostered by the discipline will ―generally endure, 

unaltered‖ (Pajares, 1992, p. 316) unless they are deliberately challenged. Faculty members who 

receive little to no training in teaching methods are generally influenced by the ―guiding images‖ 

of their profession (LaBerge, Zollman, & Sons, 1997), which then ultimately influence their 

classroom practices. The conceptions held by mathematics faculty members are tacit and often 

difficult to change (Pajares, 1992). The faculty involvement in new experiences can either lead to 

the reinforcement of existing conception structures or result in the development of new 

conceptions that challenge existing conception systems. 

Previously instructing purely through constant lecture, Nixon (1995) recounted his 

experience as a faculty member of a higher education institution who transitioned to a small-

group learning format, an opportunity that gave him the freedom to observe students on a 

personal level as he walked around the room among his small groups. Although Nixon saw 

strong evidence that he was adequately teaching in this manner (some students demonstrated 

―intelligent remarks‖ regarding the subject matter), he began to postulate that this merely inflated 

his ego and led him to assume his techniques would be universally effective for all students. As 

he came to this realization, he reflected that he may have been doing something wrong in his 

instruction, or perhaps that he neglected to include something into his lecture that he should 

have. As he said, ―I always feel a twinge of guilt in using the small-group method, for I have 
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been accustomed to identifying teacher-speaking with student learning. Doesn‘t a singer sing, a 

preacher preach, and a teacher teach?‖ (p. 1028). Although Nixon made no explicit mention of 

his experiences as a student, one can assume that his own education and training involved the 

dominant use of the lecture method. Lecture is what teachers do, and that is how students learn. 

For Nixon, this deviation from what he ought to do as a mathematics instructor yielded certain 

feelings of guilt and a lack of adherence to what the profession called for. Although Nixon 

recognized the effectiveness of small-group activity, he still felt residual guilt for not following 

the precepts of his profession. 

The Formation of Mathematics Professors’ Conceptions 

The method by which faculty members shape their instruction, especially in terms of 

conceptions of learning and applying pedagogy (J. M. Boyer, 1997), is greatly affected by the 

instructors‘ processes of disciplinary enculturation. These conceptions are grounded in an 

instructor‘s experiences from early schooling (grades K-12) to higher education (graduate 

school), the latter of which being where the instructor experienced more formative and specific 

disciplines. Experiences in the classroom, which provided social interactions with students and 

colleagues, further shaped these conceptions. The discipline of mathematics is defined for each 

instructor by the conceptions formed from an enculturation into the discipline, beginning with 

their introduction to school and ending where they begin to interact with their peers within not 

only the educational, but also social confines of mathematics with their peers consisting of 

students and colleagues alike. Hersh (1997) noted:  

One‘s conception of what mathematics is affects one‘s conception of how it should be 

presented. One‘s manner of presenting it is an indication of what one believes to be most 

essential in it. The issue, then, is not, ‗What is the best way to teach?‘ But, ‗What is 

mathematics really about‘? (p. 13)   
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A mathematics instructor‘s conceptions of the subject are an amalgamation of the 

individual‘s concepts, conscious and subconscious, combined with the individuals understanding 

of the rules, meanings and preferences within the discipline. The instructor‘s individual 

understanding of mathematics forms in the individual the teaching process he or she chooses to 

implement in the classroom (Entwistle, Skinner, Entwistle, & Orr, 2000; Hersh, 1997). The 

process of deciding how to implement teaching methods is dictated by the individual‘s 

conceptions that are formed.  

Several research studies have examined various ways in which the conceptions of 

mathematics instructors influence their actions in the classroom (Alsina, 2001; Pepin, 1999; 

Thompson, 1984; Thomas & Holton, 2003; Wilson, 1986). Ernest (1989) took the research even 

further when he differentiated and defined three key components that shape the views of 

mathematics instructors.  He labeled the resulting teaching styles as the instrumentalist, the 

platonist, and the problem solver. Ernest pointed out that each viewpoint is distinguished by a 

particular set of conceptions about the nature of mathematics. These conceptions lead to a 

particular way of defining the role of the instructor, which then leads to a distinctive style or 

method of teaching in the classroom. 

According to Ernest (1989), the instrumentalist views mathematics as ―an accumulation 

of facts, rules and skills to be used in the pursuance of some external end. Thus, mathematics is a 

set of unrelated but utilitarian rules and facts‖ (p. 250). The main goal of instruction, according 

to the instrumentalist, is achieving a solid mastery of specific skills and proper performance. The 

platonist view regards mathematics ―as a static but unified body of a certain knowledge. 

Mathematics is discovered, not created‖ (p. 250). Platonists, according to Ernest, have a more 

absolutist view than the other two types. Ernest states than an absolutist view of mathematics 
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does not focus on ―describing‖ mathematics or mathematical knowledge. Platonists view 

mathematical knowledge as pure and timeless, even superhuman. Mathematics is viewed as 

isolated and unaffected by the world at large, which gives it universal validity; it is both value-

free and culture-free (p. 2). The platonist is concerned with developing conceptual understanding 

and providing unified knowledge of mathematics. The problem solver sees the study of 

mathematics ―as a dynamic, continually expanding field of human creation and invention, a 

cultural process. Mathematics is a process of enquiry and coming to know, not a finished 

product, for the results remain open to revision‖ (p. 250). The problem solver defines the role of 

instructor as a facilitator whose goal is to ensure his or her students are confident problem posers 

and solvers. These conceptions about mathematics, according to Ernest, are more likely to be 

―implicitly held philosophies‖ (p. 250) that become automatic over time rather than consciously 

held views. 

A series of case studies from Ball and Cohen (2000) of teaching mathematics showed that 

the conceptions of teachers affected their perceptions and actions towards changing the way that 

they taught mathematics. Among teachers, the nature of mathematics and the way it is learned 

differed in their conceptions, and as a result, influenced what material was taught and the 

implementation of instruction. Instructors‘ personal conceptions reflected in their instructional 

practices, and especially involving mathematics, this reflection was discovered through research 

studies and findings (LaBerge et al., 1997; Pepin, 1999). Ball and Cohen (2000) note: 

Teachers‘ conceptions and conception systems are grounded in their personal experiences 

and hence, are highly resistant to change. Typically, though, these experiences are a 

byproduct of the school context in which they work. If school practitioners are not given 

outside information about this context that can help them be critical of their past 

experiences or about new contexts that portend some new experiences entirely, then the 

risk is that research will actually reify that context rather than reform or restructure it. (p. 

27) 
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In some instances, members of a faculty performed in contrasting ways to their claimed 

conceptions. In a study of the conceptions of mathematics professors, 26 faculty members were 

selected for observation in the classroom following an interview about their conceptions. Some 

of the faculty members demonstrated a traditional classroom of lecture and note-taking, although 

they implied in their interviews that they would like to implement more modern techniques and 

activities, speculating that students in lower level classes might not be ready to perform these 

activities, while also making note of the ―negative conceptions and expectations related to 

mathematics‖ (LaBerge et al., 1997, p. 15) that undergraduate students hold. 

Influences Shaping Mathematics Faculty Members’ Conceptions 

According to Wegner (1998), Calderhead (1996) and Dunkin (2001), the conceptions of 

teachers in the mathematic field affect their interpretations of teaching methods and 

interpretations of the content, which drastically affects classroom activity. Over the span of a 

career of any given faculty member, direct experience and social influence shape their 

conceptions and in turn, what is considered to be valid knowledge (Pajares, 1992; Pehkonen & 

Törner, 2004). Conceptions between faculty members can drastically vary, as faculty members 

may not experience the same events during schooling, or one faculty member may be more 

impressed by a particular event than another. In spite of literature suggesting that a teacher‘s 

conceptions about mathematics are not related in a simple cause-and-effect way to his or her 

instructional practices (Pepin, 1999), the research findings indicate that there is often a 

considerable level of agreement between conceptions and actions (Abelson, 1979; Movshovitz-

Hadar & Hazzan, 2004). As a result, the parameters established by faculty members‘ conceptions 

of the discipline serve as a constraint on the future opportunities of students. 
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According to Ernest (1989), the expectations and norms of an academic institution and 

the actual experiences of a faculty member‘s classroom defined the preferred models of teaching 

and learning mathematics. These two factors often conflict and can divide an instructor‘s 

intentions from his or her behaviors. Some instructors adopt methods more aligned with an 

institution‘s expectations due to the social context of students, faculty members or 

administration, even when those methods contrast with the instructors‘ personal conceptions. 

Socialization is further defined by the institution‘s curriculum, student placement assessment, 

and the administration‘s perception of mathematical skill acquirement. 

Faculty members are not always fully aware of their mathematical conceptions or the 

way that they may act upon them, and as a result, Alsina (2001) noted that the conceptions of 

faculty members are rarely challenged or seen. From institution to institution, conceptions 

became self-incorporated as a result of personal experience and further defined by the 

institution‘s other faculty members. Even though the conceptions cannot be easily seen or 

evaluated, they heavily impact the methods of an instructor of any given institution. 

Some mathematics instructors emphasized a desire to require students to perform 

activities out of the classroom as well as out to demonstrate real-world application of problem- 

solving skills and critical thinking, but revealed that achieving this was unrealistic due to  the 

fact that students ―haven‘t been taught to be self-sufficient‖ (LaBerge 1997 p. 12). The faculty 

members could implement these desired methods and techniques if the previous schooling of 

their students was effective enough, but lack of appropriate prior instruction instead drove a wall 

between them and the students. 

The age of faculty members reflect the amount of time spent in a field as well as an 

indication of how solidified a persons‘ conceptions would be. The longer a conception exists in a 
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person‘s mind, the more deep-rooted it will be. Because of these firm conceptions, successful 

academic reform may require a complete modification in the conceptions of older faculty 

members. Wilson (1986) explains: 

To affect a change of the magnitude the system [demands] is to literally ask a person who 

has spent his adult life becoming the person he is to become someone else. No one 

throws over his identity easily, especially when a natural hardening of the professional 

arteries and a certain level of conservatism has set in. (p. 201) 

 

In order to implement successful reform, consideration should be taken in regards 

to the amount of resistance that will be encountered among faculty members, especially 

in the case of senior members. Some faculty members could perceive technology 

integration with contempt, anxiety or doubt, although it may manifest as cynicism and 

mockery. If the integration is described as supplemental to teaching practices rather than 

fixing a perceived problem, some of the reluctant instructors may be more open by 

decreasing their anxieties. 

Higher Education Culture and Technology Integration 

As a higher education facility attempts to integrate technology into the curriculum, the 

perspectives of the faculty are shaped by the institution‘s culture, and have a strong influence on 

the implementation of technology in the classroom (J. M. Boyer, 1997). Providing education is a 

highly normative activity, so lasting change can require a cultural transformation along with the 

active involvement of faculty. Several research studies have demonstrated that the instructors are 

the primary impetus for technology integration in the classrooms of higher education institutions. 

Additionally, the integration process is facilitated when the faculty of an institution is open to the 

inclusion of technology in the classroom (Ely, 1999; Ertmer et al., 2001). Thus, technology 

integration initiatives in higher education must be designed as collaborative undertakings rather 

than predefined policies. For technology integration to be successful, the instructors must first 
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see a need for the use of the new technology and significant benefits to be gained from its 

implementation. This change in the institutional culture is necessary to overcome the resistance 

by faculty members regarding adjusting their beliefs, behaviors, and teaching styles. 

What Is Higher Education Culture? 

In addition to being scholars, the members of a university faculty are also teachers.  

There are, however, significant differences in the way that elementary or high school teachers 

view their roles, and the way that university professors do (Cox, 2001; Hativa, 1998; Kember, 

1997). Surprisingly, many higher education faculty members consider themselves ―a breed apart 

from school teachers. … [Many professors] hardly consider themselves ‗teachers‘ at all, instead 

visualizing themselves more as a member of their discipline‖ (Kember, 1997, p. 255). In their 

study of six higher education institutions, Hativa, Barak, and Simhi (2001) found that while the 

higher education culture encouraged autonomy, disciplinary scholarship, and research, it was 

also very steeped in tradition and resistant to change.  

The higher education culture can be either the catalyst or an inhibiting factor when 

implementing changes because the faculty members strive for positive reinforcement and have a 

strong emotional attachment to their organization through its culture (Kane, Sandretto, & Heath, 

2002; Kline, 1977; Knight & Trowler, 2000). The management style of many universities and 

colleges can be described as a "loose-tight" principle: the individual creativity and innovation of 

a faculty member is fostered, so long as the faculty member‘s behavior properly aligns with 

institutional values. If the faculty member‘s behavior defies the institution‘s values, the 

institution ―tightens‖ in order to guide the faculty member‘s behavior back to the accepted norms 

(Nixon, 1995). According to Kluckholm (1962), the higher education culture can be defined as 

persistent patterns of norms [of behavior], [shared] values, practices, beliefs, and 

assumptions that shape the behavior of individuals and groups in a college or university 
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and provide frame of reference within which to interpret the meaning of events and 

actions on and off the campus. (p. 245)  

 

Shared values are important concerns and goals shared by the majority of people in a 

group.  Those values tend to shape overall group behavior, and they often persist over time. Even 

when group members change, the values tend to remain stable and are adopted by new group 

members as they fully assimilate into the group. Norms of behavior can be defined as the 

common or pervasive ways of acting that are found in a group, as well as the behavioral 

expectations of members within the culture. Those behaviors persist because group members 

teach the practices to new members by example, rewarding those who fit in and sanctioning 

those who do not. 

From universities and colleges throughout the United States, 800 faculty members were 

selected for a study (Braxton, Bayer, & Finkelstein, 1996) that identified the behavioral norms of 

teaching styles within an institution. The first behavior identified was the interpersonal 

relationships of instructors between their students and their colleagues, especially regarding their 

feelings and opinions. The second was the grounding of fair grading practices in outstanding 

academic performance. Participants also cited the moral behavior of faculty as the third 

behavioral norm, in regards to their interactions with students and other classroom practices. The 

final behavioral norm of instructors was identified as proper planning for the class, citing 

organization and adequate preparation. Understanding these teaching norms is important, 

because they help to realize a reflection of culture within a faculty, as well as the way in which 

the instructors shape their teaching styles. As teaching is the primary activity of universities and 

colleges, a guide to professional behaviors can be attained through understanding these 

behavioral norms. The faculty members‘ conceptions of teaching and learning are formed early 
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and shaped within the framework of their culture and experiences as students (Rahilly & 

Saroyan, 1997), and the higher education culture plays an important role in reform initiatives.   

Looking beyond shared values and behavioral norms, several researchers have also 

proposed that faculties actually operate within four overlapping, yet distinct, cultures: the 

academic profession in general, the individual discipline, the specific institution, and the 

institutional type (J. M. Boyer, 1997; Miller, Binder, Harris, & Krause, 2011; K. B. Smith, 

2000). These studies emphasize the importance of the culture of the particular discipline on the 

development of a teacher‘s conceptions and behaviors, noting that the faculty members have 

spent years being socialized into their discipline of choice. A student experiences the beginning 

of socialization during the formative years of his or her education, and grows stronger as he or 

she continues along the professional path. As a student establishes a sense of belonging, the 

student strengthens self-identity among peers within the discipline (E. L. Boyer, 1990; Rahilly & 

Saroyan, 1997; Richardson, 1996; Sporn, 1996). The theories and methods regarding the specific 

academic area ―become paradigms that structure the way their members see the world‖ (p. 156) 

according to J. M. Boyer (1997). Several researchers note that socialization of faculty members 

are within an ―academic discipline‖ rather than a ―teaching profession.‖ Boyer (1997) and Grubb 

(1999) assume the as an individual‘s mastery of the subject evolves and adapts, so will the 

individual‘s teaching skills. In order to implement change to methods of teaching information, an 

instructor must accept that the changes are consistent with the way instructors are growing and 

changing. The instructors must realize that previous methods are no longer sufficient, and accept 

and implement a shift in teaching methods. 
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How Does the Culture Affect Technology Integration in Higher Education? 

In higher education, the adoption of new technological innovation appears to be a 

function of the financial resources available, the perceived value that faculty ascribes to the 

innovation, and the extent to which faculty members communicate with other adopters of the 

innovation (K. B. Smith, 2000). However, different funding structures for departments, support 

from senior faculty members, and influences of a unifying group identity among colleagues all 

contribute to the acceptance of technology within a specific discipline. The atmosphere in the 

discipline plays an especially important role in technology integration by faculty because each 

department designs and manages its technology integration programs in a manner that is 

consistent with the policies and mission under which it operates (Surry & Ely, 2006; Surry & 

Land, 2000). Thus, when a department sets out on the journey of technology integration, it must 

uncover and then address the invisible assumptions and premises on which its decisions and 

actions are based.  

The department and instructors within demonstrate a commitment to improving teaching 

methods, serving as a catalyst towards technology integration. Two conditions must be met in 

order to successfully integrate technology: a consideration for the environment of the institution, 

regarding knowledge of the benefits of computing technology and the faculty members‘ previous 

prejudices that have been constructed (McAlpine & Gandell, 2003; Sporn, 1996). When an 

atmosphere of support and encouragement are established within every level of the institution 

from departments to individuals, successful integration can occur. The new technologies are 

―adopted by the community through the discourse of its members and the evolution of practice 

over time‖ (D. L. Rogers, 2000, p. 24). Thus, the acceptance and diffusion of new technology 
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into a culture occur more rapidly when the culture is open to change and continuous 

improvement.  

Second, an environment must be created that fosters collaboration between all 

participants; faculty-to-faculty influence, in regard to the adoption of instructional technology, is 

important to the process of change and cannot be underestimated (McCracken, 2008). 

Opportunities for the faculty to observe models of integrated technology use should be provided 

to allow the faculty to reflect on and discuss their ideas with peers, and to allow collaboration 

between the faculty on meaningful projects as they test new concepts regarding teaching and 

learning with technology. Part of the challenge for higher education institutions attempting to 

integrate technology in the classroom is to create a culture that values and develops faculty 

interest in teaching with computing technology. An enabling environment that explores new 

practices and provides insentives for taking risks in regards to improving learning and teaching 

must be created for the process. At the same time, the resistance to change must be met with 

patience and understanding. According to a variety of studies, the essential components are peer 

collaboration and faculty mentoring that must be implemented in order to successfully integrate 

technology into the classroom (Durrington, Repman, & Valente, 2000). Furthermore, the 

importance and influence of interpersonal networks on the adoption of innovations by 

individuals have been noted in several studies (Durrington et al., 2000; E. M. Rogers, 1995). 

In his 1995 book on the mechanisms of technology diffusion, E. M. Rogers discusses the 

concept of homophily in communication networks. Homophily refers to the tendency of 

individuals to associate and bond with others who are similar to themselves. Rogers asserts that 

homophilic communication—defined as the degree to which pairs of individuals who 

communicate are similar—can limit the spread of an innovation to individuals within the same 
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network. This observation was supported in a study by Durrington, Repman, and Valente (2000) 

in which the adoption of technology by a university‘s faculty was hindered by lack of 

communication between friendship networks.  

As noted by Schifter (2003), it can be difficult to attain the creation of communities that 

collaborate within the faculty of a university setting, a type of facility that creates a schism of the 

instructors by motivating for the strong scholastic performances of individuals rather than 

collaborations, especially when strong individual performance is recognized and rewarded. The 

participants in Schifter‘s case study indicated that core values in their academic institutions 

might affect their use of technology in classroom instruction. The faculty members expressed 

support for a conservative approach to the diffusion of technology in education and stated that 

instructors should not be pushed to use technology, unless it was essential to the content of the 

course. Interestingly, even the faculty members who were already using technology in their 

instruction thought that the professional autonomy of others who did not use technology must be 

maintained and respected. 

Community College Culture and Institutional Type 

Vast differences exist among the cultures of higher education institutions. Traditions, 

history, resources, styles of leadership, reward structures, expected teaching load, physical space, 

collegial relationships, and the process of governance are some of the many areas of potential 

differentiation among colleges and universities (McClenney, McClenney, & Peterson, 2007). 

The degree of emphasis placed on teaching norms varies across institutions according to the 

value that is placed on teaching (Braxton et al., 1996). The main source of these differences can 

be attributed to the institution‘s mission and to the student and faculty populations. Unlike 

universities, community colleges are rarely cited for academic excellence, as that distinction is 
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most frequently ascribed to prestigious research institutions (Ehrenberg & Zhan, 2005; Grubb, 

1999). As open access institutions, comprehensive community colleges provide educational 

opportunities to a wide spectrum of students. The mission of the community college is to provide 

a stepping stone into higher education. Accordingly, community colleges give individuals living 

in communities that do not have access to larger universities the opportunity to further their 

education, while also providing educational opportunities to traditionally low achievers 

(Hagedorn, Maxwell, Cypers, Moon, & Lester, 2007).  

Community college students are infamous for being underprepared, a trait that provides a 

substantial challenge to the mission of the community college, the achievement of student 

objectives, and the classroom practices of faculty members (Feldman, 1987; Forest, 1998; Frost 

& Teodorescu, 2001; Grubb, 1999). The National Center for Education Statistics (NCES, 2004) 

indicated that 98% of community colleges offered remediation in reading, writing, and 

mathematics, with 42% of first-year students enrolled in at least one precollegiate course. In 

mathematics classes offered, community colleges differ significantly from universities. For 

example, in a study for the American Mathematical Association of Two-Year Colleges 

(AMATYC), Serow, Van Dyk, McComb, and Harrold (2002) found that the percentage of 

student enrollment in mathematics courses at community colleges in 2005 was as follows: 

Developmental Basic Skills Mathematics (57%), Precalculus (19%), Calculus (6%), Statistics 

(7%), and other mathematics courses (11%). 

Student population and the expectations of students are the second major source of 

difference between colleges and universities. Community colleges differ from four-year schools 

in their student population regarding age, gender, race, enrollment status, preparation and 

objectives (Diel-Amen, 2011; McClenney et al., 2007). Eagan and Jaeger (2009) described the 
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students of community colleges as older with a balance towards women and racial minority 

groups, that they are attending part time, and are more likely to be the first person to attend 

college in their families when compared with four-year schools. Ryan (2004) noted the following 

demographic characteristics of community college students: The average age was 29; 36% of the 

students were 18–21 years old, 15% were 40 years or older; 58% were women; 33% were 

minority students; 61% took a part-time course load; 80% were employed; and 41% were 

employed full time. The diverse nature of students at the community college is also reflected in 

their stated reasons for enrolling. These reasons include a desire to better themselves financially, 

to obtain or improve job skills, to fulfill a personal interest, to earn a degree, or to prepare for 

transfer to a senior university (Chism & Banta, 2007; Conley, 2005; Grubb, 1999).  

The diverse nature of community college students provides many challenges for 

community college faculty. Community college faculty members express frustration in working 

with underprepared students and dissatisfaction with the level of academic preparedness of their 

students (Blix, Cruise, Mitchell, & Blix, 1994; Bowen, Chingos, & McPherson, 2009; Burke, 

2005; Chism & Banta, 2007; Grubb, 1999).  Community college instructors in the mathematics 

division are frequently challenged by the prospect of working with students who are 

academically unprepared, and are therefore less likely to be successful than their counterparts 

attending four-year institutions. Because universities have restrictive admissions policies, the 

range of accepted students does not cover an overly large variety of skill sets, rather, it covers a 

smaller and more focused range. Despite their worthwhile mission to provide equitable 

educational opportunities to all students, community colleges are typically viewed as inferior to 

traditional colleges or universities. Oseguera and Rhee (2009) stated, ―[There] is a nagging, 

pervasive sense, for both faculty and students, that being at a community college means being 
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near the bottom of the higher education totem pole‖ (p. 550). Community colleges, because they 

are primarily noted for their commitment to the lower-achieving student, are perceived as having 

watered down their curricula. Some university professors, according to a research study 

conducted by E. Barnett (2011), view community colleges as extensions of high schools with 

insufficient instruction by poorly trained faculty members. The principle of the open-door policy 

at community colleges is perceived to create an inevitable acceptance of ―lower standards, which 

will eventually inundate the universities with transfers of poor quality‖ (Attewell, Lavin, 

Domina, & Levey, 2006, p. 897).  

The third major source of difference is the faculty population and the conceptions of 

community college faculty. The differences between the conceptions of university faculty 

members and those of community college faculty members are very acute. In the research 

literature, these differences have been attributed to five primary factors. First, teaching is 

reported in the literature as being the existence of the community college professor (E. Barnett, 

2011; Grubb, 1999) as opposed to doing research, which is the reason for the existence of the 

university professor. Second, community colleges are student-centered; therefore, faculty 

members are encouraged to be available to students at all times (Bahr, 2008). Third, given the 

broad range of abilities of students enrolled in community colleges, faculty members must have a 

correspondingly broad knowledge base of teaching in addition to their specialized disciplinary 

focus (Bailey, Crosta, & Jenkins, 2006). Fourth, the quality of teaching is the main criterion in 

the hiring process at community colleges (Barefoot et al., 2005). Finally, the community college 

is inclusive of all abilities and interests, providing educational opportunities to a diverse student 

population (Oseguera & Rhee, 2009).  
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Archibald and Feldman (2008) found that in community colleges there were many more 

faculty-student interactions and more active learning than in four-year institutions, especially at 

doctorate-granting universities. Kozeracki (2005) noted that one aspect of the community college 

that attracts applicants for a faculty position is the focus on teaching. Additionally, commitment 

to teaching is an important element of job satisfaction for community college faculty. The main 

difference between community college and university faculties is the perceived value of 

conducting research. In addition to teaching duties, university faculty members are also expected 

to conduct research; in a study of community college hiring practices, Bailey et al. (2006) found 

that one of the main reasons that some community college faculty members chose to work at the 

community college was its emphasis on teaching rather than research. A desire to avoid research-

driven tenure processes at a university was cited in a study by Allen (2003) of new members of a 

community college faculty as another factor that drove participants to consider teaching at a 

community college.  

These differences may be due in part to the fact that community college faculty members 

are typically required to possess a master‘s degree rather than a doctoral degree, despite the fact 

that both degrees demonstrate the possessor‘s mastery in a specific discipline. In 2005, according 

to the American Mathematical Association of Two-Year Colleges (AMATYC), the full-time 

faculty members who taught mathematics in two-year colleges had the following characteristics: 

female (44%), ethnic minorities (13%), above the age of 50 (46%), full-time faculty with a 

master‘s degree (82%), and full-time faculty with a doctorate (16%). Furthermore, there is a 

growing reliance on part-time faculty in community colleges; in 2005, adjunct faculty taught 

44% of all two-year college mathematics sections (AMATYC, 2006). 
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A commonly held norm among higher education faculty members is a strong 

commitment to teaching. The findings from several research studies of faculty members at 

various higher education institutions, however, reveal that a huge difference exists among faculty 

members concerning the value of teaching as compared with other scholarly activities, such as 

research or presentations (R. Barnett, 1996). According to a study (J. M. Boyer, 1997) of 

undergraduate teaching at research institutions, teaching is generally undervalued. In Research 1 

institutions, although teaching, research, and service are common workload components, there is 

a stronger emphasis on research. Fairweather (1996) revealed that department chairs routinely 

ranked ―teaching quality‖ at the top of their lists of criteria for faculty promotion and tenure. At 

liberal arts institutions and community colleges, teaching quality was usually ranked first, 

whereas at research institutions it was more commonly ranked third. In practice, the promotion 

and tenure policies at research institutions were primarily based on research-related activities. 

Fairweather found that the faculty members within higher education research institutions in the 

study expressed that individual achievement in research and publishing were of the highest value 

rather than the act of teaching. One member went as far as to say that ―in the end such 

evaluations of tenured professor performance revolve more around two questions: how [many] 

research publications have you done, and how much grant money have you brought in?‖ (p. 

423). 

This emphasis on conducting research hinders the diffusion of technology in classroom 

instruction at research institutions. If a technology is to be used, it must be perceived as being of 

benefit or value to the instructor, but promotion and tenure review boards seldom recognize 

instructional excellence or the development and implementation of instructional materials 

utilizing new technology as important (Camblin & Steger, 2000; Finley &Hartman, 2004; Lan, 
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2001). Technology integration is hindered in institutions that have merit, tenure, and promotion 

systems that support research over teaching, as faculty members are left with less time to 

advance their knowledge of technology, construct technology-rich curriculums, or implement 

new teaching strategies that are enhanced by the use of technology  (Lederman & Niess, 2000; 

K. B. Smith, 2000). In a study by Frost and Teodorescu (2001), faculty members thought that the 

lack of incentives and rewards for using technology was directly linked to the lack of emphasis 

on teaching and the increased emphasis on research. Many faculty members believed that their 

time would be better spent pursuing the areas the university emphasized as necessary for tenure 

or promotion than on duties that were not valued as highly. Their general perception was that to 

achieve tenure, it would be wiser for a faculty member to concentrate on research and 

publishing, and not on using technology in teaching.  

Until university promotion and tenure review processes recognize and value work with 

instructional technology in developing materials, there is little immediate benefit or value for 

faculty members seeking tenure or promotion. Because of barriers of intellectual property rights, 

faculty work requirements and compensation, Stone (1999) suggested that academic institutions 

adopt policies and incentives such as grants and recognition to address these issues. The 

incorporation of some or all of these rewards would help to create a culture that encourages 

technology integration. Stone explains that a faculty commitment toward the implementation of 

technology in instruction can only be obtained through a material demonstration of the value and 

benefits that it provides and by including it in the process of awarding promotion and tenure. 

The Perceived Conflict between Research and Teaching 

The pressures of demonstrating sufficient research productivity are expressed by many 

faculty members, especially in research institutions at the doctorate-granting level. According to 
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several studies, teaching and service commitments are sacrificed in order to meet the demands of 

research (R. Barnett, 1996; Fairweather, 1996; Frost & Teodorescu, 2001; Johnston, 1997; Kline, 

1977). Fairweather‘s (1996) study indicated a strong negative correlation between the time 

devoted to research compared to teaching in a study of 424 higher education institutions. He 

referred to the fact that ―the more time faculty members spent on one activity, the less they spent 

on the other‖ (p. 365) as the ―exchange‖ relationship, as faculty members‘ time is constantly 

divided by a competition between their teaching and research responsibilities. ―As long as 

teaching and research are seen as competitors in terms of their status within universities, 

technology integration activities will remain in a tenuous position in the minds of faculty‖ 

(Johnston, 1997, p. 33). A better balance must be achieved in faculty reward systems in regards 

to the responsibilities of faculty members as instructors, such as teaching and service, and as 

researchers (Alsina, 2001; Fairweather, 1996). This balancing act often requires a new outlook 

on the roles of faculty members. 

 R. Barnett (1996) claims that accomplishments of researchers and teachers need to be as 

distinct and separate as their individual roles, and the priority of higher education institutions 

should be focused on the advancement of teaching and learning of the subject. All faculty 

members must remain up to date in the research community of their study, however ―it does not 

follow that the teacher has to be engaged in actually moving the frontier‖ (p. 403). Barnett makes 

reference to a connection between the relationship of teaching and research and the relationship 

of a musician and the creation of music: 

There is no demand on the soloist that he or she be a composer, be able to produce new 

scores. But, it is paramount that the soloist be so directly acquainted with the score that 

he or she is able to offer us a personal interpretation of it; in a sense, a critical 

commentary on it. Indeed, being a composer may even be a drawback; for it might lessen 

the critical distance that the soloist needs to maintain in order to bring a fresh 

interpretation to bear. (p. 403)  
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 At many institutions, because the rewards of promotion and tenure are based in individual 

research accomplishments of faculty members and not their teaching milestones, research studies 

show that research and teaching are conflicting activities, although the university administrators 

claim that the two are mutually beneficial (Fairweather, 1996; Frost & Teodorescu, 2001; 

Johnston, 1997; Michalak & Friedrich, 1996; Weimer, 1997). In fact, at research institutions, the 

faculty members held in the highest regards have no teaching responsibilities at all (Knapper, 

1997). Research studies show that teachers with lower basic salaries at research universities, 

doctorate-granting institutions and comprehensive colleges are the full-time faculty members that 

are more devoted to teaching and instruction (J. M. Boyer, 1997; Fairweather, 1996), while 

―faculty who spend the greatest time on research and scholarship receive the highest 

compensation, …[and] the greater the publication record, the higher the compensation‖ 

(Fairweather, 1996, p. 367). The relationship between teaching and research may be more 

difficult and complex to dissect than previously thought, some researchers posit (Hilton, 1986; 

Johnston, 1997), as the institutional contexts may vary between facilities. More inclusive 

definitions of the constitution of research activities have been called on in reports from the 

Carnegie Foundation (J. M. Boyer, 1997), as well as developing and reshaping the concept of 

teaching. Conceptions of teaching must reach beyond just a collection of techniques, and must be 

viewed as an ongoing scholarly activity.  

 A greater emphasis on accomplishments in research activities is grounded in the fact that 

teaching accomplishments are difficult to measure (Hilton, 1978). Faculty members are generally 

reluctant to grasp the evaluations of their teaching, according to a study of support and the 

improvement of teaching among 240 of Emory University‘s full-time faculty members (Frost & 

Teodorescu, 2001). The faculty members re-enforced the ideal that teaching could not be 
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accurately measured, and that these evaluations served more as a source of judgment rather than 

constructive criticism, and did little to guide or support their development as instructors. Many 

participants called for clarification of the role and expectations from instructors in departmental 

evaluations when considering promotion and tenure guidelines. The faculty members were 

supportive of evaluation from peers outside of the department, but expressed concerns involving 

the time required from development and review of undergraduate level teaching portfolios, as 

well as issues of validity and reliability of student evaluations. In the study, faculty members at 

Emory University expressed a desire for the administration to consider rewards of promotion and 

tenure with more emphasis on support for excellence in teaching. 

What About the Mathematics Department’s Culture? 

 According to Bass (1997), ―the disposition of many mathematicians toward the problems 

of education well reflects their professional culture‖ (p. 20). In general, most academic 

departments in a university have unique cultures that reflect their specific discipline. For 

example, the culture of the romance languages department will vary immensely from the culture 

of the mathematics department. As with other departments, the culture that exists within college 

and university mathematics departments is passed on through ―the graduate school socialization 

process‖ (Braxton et al., 1996, p. 245). On the journey towards a mathematics Ph.D., candidates 

are most concerned with the courses, exams and other academic components of getting their 

degree, while their philosopies of the subject are internalized through their interactions with their 

professors and other graduate students (Braxton et al., 1996; Fairweather, 1996; Knapper, 1997). 

Because most members of the mathematics go through this form of training, their major focus is 

doing mathematical research rather than learning how to teach. In their instruction, they will 

most likely ―try to reproduce the models that they have been exposed to during their own 
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education‖ (Keynes & Olson, 2001, p. 4) in an amalgamation of their individual experiences in 

their undergraduate and graduate programs, and as a result will not implement new teaching 

methods because of a lack of training specifically for teaching or professional development. As a 

career in teaching mathematics continues, the instructor‘s ―teaching pedagogy‖ is refined in the 

classroom through interactions with students and institutional expectations. 

Mathematicians are motivated by a connection to the subject that allows them to see a 

certain beauty and elegance in mathematics (King, 1992), aspiring to contribute to the existing 

knowledge of mathematics through their own legacy or by creating a ―lasting work of art‖ 

(Hersh, 1997, p. 86). Devoting most of their time to thinking about their research, they attempt to 

discover new ideas in their research through the use of rigorous proofs, and regard their work as 

real and timeless truths that are integral to the structure of the world.  Many mathematicians hold 

themselves in high regard with a select few colleagues, and view mathematics as an esoteric 

subject in which a practitioner either has the aptitude for it or does not.  The legendary 

mathematician Henri Poincarѐ (1910) observed: 

We know that this feeling, this intuition of mathematical order, that makes us divine 

hidden harmonies and relations, cannot be possessed by everyone. Some will not have 

either this delicate feeling so difficult to define, or a strength of memory and attention 

beyond the ordinary, and they will be absolutely incapable of understanding higher 

mathematics. Such are the majority. (p. 322) 

 

 Even though academic mathematicians devote a considerable percentage of their time to 

classroom instruction, few mathematics departments provide them with professional preparation 

or development for mathematics pedagogy (Bass, 1997; Johnston, 1997; Weimer, 1997).  A 

report produced by the National Research Council (NRC, 2003) on the evaluation and 

improvement of teaching mathematics at the undergraduate level disclosed that the existence of 

much needed formal and ongoing professional development in teaching for faculty continues to 
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be rare at most institutions. Although institutions have made access to technological tools for 

development of teaching methods, most faculty members have cited a lack of time to devote to 

them, and do not review research literature regarding teaching or learning (Weimer, 1997).  

Because they hold research as their highest priority due to promotions and rewards (Johnston, 

1997), many faculty members do invest time for developing their pedagogy or teaching methods. 

Krantz (2000) succinctly stated,  

Depending on the sort of department in which he [the mathematician] works, he may also 

feel that hotshot researchers and book writers get all the perks and that ―mere teachers‖ 

are viewed as drones. After all, he/she has tenure and is probably more worried about 

where his/her next theorem or next grant or next raise is coming from than about such 

prosaic matters as calculus. (p. 7) 

 

Computing Technology and Undergraduate Mathematics Education 

Computing technology has come to be seen as providing potentially valuable tools for 

mathematics education reforms, not only at the elementary and secondary levels, but for higher 

education as well. Computing technology is important in undergraduate mathematics education 

because of its impact and influence on mathematical research, mathematical thinking, and 

mathematics teaching and learning. As a result, higher education mathematics faculties have 

been given greater access to innovative technology. Although federal, state, and local 

governments and organizations (e.g., Mathematical Association of America, 1991) recognize the 

importance of computing technology in mathematics education and mandate policies specifying 

their use on all levels, their usage in undergraduate mathematics teaching is far from universal 

and even further from optimal (Benjamin, 2000). Despite better access over the years, 

mathematics faculty members‘ utilization of computing technology has remained low. Although 

some have started using computing technology to teach in innovative and creative ways, most 



45 
 

mathematics professors at higher education institutions make little use of computing technology 

as a tool for teaching (Biggs, 1999; Lim, 2000). 

Computing Technology and Mathematics 

Some educational researchers and mathematicians have identified computing technology 

as the impetus of change in mathematics and have claimed it has changed what mathematics is 

and what methods are used in mathematical research (Norton, McRobbie, & Cooper, 2000; 

LaBerge et al., 1997; Steen, 1987). The nature of mathematics has changed considerably due to 

the addition of computing technology. Not only does this technology amplify computing, it also 

transforms magnitude and dimensions of mathematical research (Penn & Bailey, 1991). 

According to the NRC (1991), computing technology has had a major impact on modern 

mathematical research: 

Computers have profoundly influenced the mathematical sciences themselves, not only in 

facilitating mathematical research, but also in unearthing challenging new mathematical 

questions. (p. 16) 

 

In recent years, the utilization of computing technology as an active tool for mathematical 

research has become increasingly more prevalent, and new mathematical theorems and 

conjectures have been discovered partly or entirely using it. Furthermore, it has centralized 

access to updated research publications, and mathematics has become a much more collaborative 

discipline through email communication (Pierson, 2011). A common misconception is that 

computing technology is useful only to applied mathematical fields such as combinatorics, 

algebraic geometry, differential equations, dynamical systems, differential geometry, algebraic 

topology, probability and statistics, numerical analysis, computer science, fluid mechanics, and 

mathematics education. However, computing technology has recently had a major impact on 

theoretical mathematics as well (Pierson, 2011). Although contributions are naturally larger to 
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the applied mathematical fields where numerical approximations are routine, computing 

technology is being used to provide tools to make advances in pure fields such as number theory, 

group theory, and graph theory.  

 Computing technology is capable of generating data and demonstrating it visually 

through a variety of representational options. Use of computing technology in mathematics 

primarily provides new insight and intuition. Technology can help to discover new mathematical 

patterns and relationships, and then uses displays to demonstrate the underlying principles. With 

technology, a mathematician can test conjectures, experiment results towards formal proofs, and 

confirm the results derived from them. The technology can also recognize any symbol or 

combination of symbols; thus, it can be used to discover proofs in mathematics, to generate new 

combinations, and to employ means-ends analysis in general problem solving.  

 According to Heid (2002) and Grassl and Mingus, (2007), computing technology has 

changed the very nature of mathematical experience. They suggest that mathematics, like physics 

and chemistry, may yet become an empirical discipline, a place where new concepts are 

discovered because they are seen. According to Keith Devlin, a well-known contemporary 

mathematician who writes a column on computing technology for the Notices of the American 

Mathematical Society, computing technology is changing the nature of proof in mathematics. He 

posits that in the near future the importance of proof will diminish, saying, ―You will see many 

more people doing mathematics without necessarily doing proofs‖ (quoted in Horgan, 2003, p. 

652). Currently, computing technology is commonly being used to provide aid in proving 

mathematical theorems. The classical example that began the trend of using computing 

technology for doing proofs in mathematics occurred in 1976, when Kenneth Appel and 

Wolfgang Haken used a computer to check a large, but finite, number of cases that could not be 
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ruled out by humans. The resulting data, made possible by the new technology, transformed the 

Four-Color conjecture into the Four-Color theorem. This theorem was the first major theorem to 

be proved using a computer, and it opened the door to new possibilities for future research. 

 

Computing Technology and Mathematics Faculty 

In a recent quantitative research study of 596 mathematics faculty members by Quinlan 

(2007), participants were asked about their usage of computing technology, including all types of 

software (email, Word Perfect, Excel, mathematics software, etc.). More than half of the 

respondents (54.3%) said they used software daily for email communication purposes, and more 

than three quarters (79.9%) did so at least weekly. The study also revealed large percentages for 

daily usage in teaching and in presenting results, gaining insight, performing computational 

reasoning and calculation, and doing visual representation and reasoning. A majority of the 

mathematics professors indicated, however, that they did not use computing technology for proof 

checking, detecting differences or similarities, creating new representations, performing logical 

induction or deduction, making predictions, or verifying analytical results.  

The participants in Quinlan‘s (2007) study also indicated the importance of using 

computing technology in the following courses: Number Theory, Discrete Mathematics, Linear 

Algebra, and Calculus (36%, 51%, 53%, and 45%, respectively). The majority of participants 

said they believed the future advancements in computing technology would have a direct impact 

on their mathematical work, primarily through an increase in the speed of computing 

technology‘s central processing unit (CPU). The enhanced speed would facilitate the use of 

multiprocessors, provide greater access to digital libraries, allow more online availability of 
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literature (e.g., electronic journals), and aid in software development for topics such as abstract 

algebra. 

The same study showed that a considerable amount of time is spent working with 

computing technology. More than one quarter (25.6%) of the participants reported interacting 

with computing technology for more than 30 hours a week, and almost 60% spent more than 20 

hours a week using computing technology in some capacity. Overall, the participants in this 

survey ranked themselves high on a scale of computing technology expertise. Approximately 

40% of the participants selected 8 or above on a 10-point scale when asked to indicate their level 

of expertise with computing technology, whereas only 20% rated themselves below a 5. When 

examining self-ranking technological expertise, Quinlan (2007) found nearly identical 

distributions across university professorial ranks, which suggests that the younger 

mathematicians do not see themselves as more technologically savvy than the older 

mathematicians. This conclusion, however, might just as easily be interpreted as the older 

generation of mathematicians only perceiving itself to be as technologically savvy as the newer 

generation. 

In Quinlan‘s (2007) study, the majority of participants (78%) indicated that technology 

was significantly important to the field of mathematics. Only 30%, however, believed 

technology was important in primary or secondary school mathematics. Additionally, 62% of the 

participants indicated that technology was highly important to their specific area of research. 

Only 7.5% responded that technology had little to no importance to mathematics, but 22% 

indicated technology had very little or no importance to their area of research. The participants 

also expressed the view that technology is more important in teaching mathematics (59%) than in 

learning mathematics (49%). Slightly more than 5% indicated that technology was not at all 
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important to learning mathematics, even in graduate school. Regarding the integration of 

computing technology, approximately 50% thought it is important in undergraduate mathematics 

education, and 59% had similar beliefs with regard to graduate school mathematics. The 

participants indicated that the importance of technology increases with grade level. Overall, the 

participants expressed negative attitudes toward students‘ use of technology, especially 

calculators, in elementary school. 

Computing Technology for Teaching and Learning in Undergraduate Mathematics 

In addition to being a central tool in mathematical application and research, computing 

technology has also provided tools for both teaching and learning mathematics. Computing 

technology affects mathematical thinking and understanding, content and curriculum, and 

teaching and learning (Heid, 2002; Judson, 2007; Kaput, Noss, & Hoyles, 2002). Computing 

technology has not only changed how mathematics is taught, but has also redefined the idea of 

what type of mathematics should be taught. Over the past three decades, many forms of 

computing technology have been introduced into the undergraduate mathematics classroom, and 

these have had a substantial effect on the way mathematics is taught and learned (Higgins & 

Moseley, 2001; Zbiek, 1995). Various forms of computing technology, such as calculators, 

computer algebra systems, and interactive Web sites, have become important elements in 

undergraduate mathematics curricula. Besides becoming more prevalent in the classroom, they 

have been major tools used to initiate educational reforms at the undergraduate level. In fact, 

some researchers claim that undergraduate mathematics reform initiatives have no chance to 

succeed without technology. A prominent undergraduate mathematics education researcher, Heid 

(1998), claims that ―the single most important catalyst for today‘s mathematics education reform 
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movement is the continuing exponential growth in personal access to powerful computing 

technology‖ (p. 5). 

Several researchers suggest that the use of technology will enhance conceptual learning 

and that successful education projects will integrate technology into the curriculum (e.g., Higgins 

& Moseley, 2001). In a report released in 1991, the Mathematical Association of America 

(MAA) stated that technology is essential in undergraduate mathematics, and it recommended 

that collegiate mathematics faculty members incorporate computing technology naturally and 

routinely into their teaching. The MAA called for technology to be used to enhance the 

understanding of mathematical ideas and recommended that computing technology be included 

in the entire undergraduate major program. That same year, the NRC (1991) echoed the MAA 

position concerning undergraduate mathematics teaching: 

Nothing in recent times has had as great an impact on mathematics as computers, yet in 

most college courses mathematics is still taught just as it was 30 years ago as a cerebral, 

paper-and-pencil discipline for which computers either are irrelevant or can be ignored. 

Computers serve mathematics these days as indispensable aids in research and 

application. Yet only in isolated experimental courses has the impact of computing on the 

practice of mathematics penetrated the undergraduate curriculum. (p. 17) 

 

Computing technology can be used to facilitate mathematical discovery and to assist 

students in learning and making connections among concepts. Several researchers identified 

technology as a tool that supports mathematical thinking because technology makes highly 

abstract, sophisticated, and fundamental mathematical ideas accessible to students (Dubinsky & 

Schwingendorf, 1991; Heid, 2002). Computing technology provides visual representations of 

abstract mathematical objects, and visual exploration and reasoning is an essential analytic tool 

to mathematicians (Penn & Bailey, 1991). Furthermore, computing technology can also provide 

concrete data in a number of ways; with these data, students can more easily discuss and search 

for patterns and analyze the elements of a problem (Heid, 1988).  



51 
 

Over the past three decades, researchers have completed an abundance of studies that 

examine the use of computing technology in undergraduate mathematics classrooms (Drijvers, 

2000; Heid, 1988; Stacey et al., 2002). Computing technology has proven beneficial, with many 

studies demonstrating that a student‘s conceptual understanding of mathematics will rise as a 

result of technology utilization (Stacey et al., 2002; Wepner, Scott, & Haysbert, 2003). 

Furthermore, educational efforts have produced extensive research focused on the effects of 

computing technology on student achievement (Dunleavy & Heinecke, 2007), attitude (Heid, 

2002), engagement and creativity (Drijvers, 2000), conceptual development (Artigue, 2001), 

multiple representations (Dunleavy & Heinecke, 2007), and understanding (Heid, 2002).  

Studies have also demonstrated that this technology can be used to remove the burden of 

mastering computational skills, which then provides more time for students to explore 

mathematical concepts in class (Dunleavy & Heinecke, 2007; Heid, 1988). The use of computing 

technology can also save instructional time because the classroom time that an instructor would 

normally have spent performing routine hand calculations and graphing can instead be spent on 

interpreting results of real-world problems and mastering concepts (Artigue, 2001). In addition, 

computing technology can provide students with poor or borderline mathematics skills the 

opportunity to study levels of mathematics they would never have understood otherwise. The 

technology can provide alternate ways of seeing a problem, and can be used to generate a larger 

number and a greater range of examples for students to encounter (Heid, 2002). With computing 

technology, the existing curriculum can be extended by increasing the range of problems with 

which students come into contact. Computing technology provides students with richer 

mathematical experiences because it allows the student to handle mathematical questions more 
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complicated than most could do with only pencil and paper (Kersaint, Horton, Stohl, & Garofalo, 

2003).  

In some research studies, there have been reports of negative learning outcomes. For 

example, Doerr and Zangor (2000) found that students often use technology without having a 

meaningful strategy. They documented that students may attack a problem by just pressing 

buttons without a true understanding of each option‘s use. These research findings were 

supported in Forster and Taylor‘s (2006) study; they found that some students, when first 

introduced to the graphing calculator, concentrated on pressing the correct buttons and did not 

think about understanding what mathematical operations were being used. Stacey et al. (2002) 

demonstrated that some students significantly lacked in areas of algebraic insight. The students 

had difficulty in recognition of the pen-and-paper expressions when compared to the 

computations of the technological device. Some researches suggested that correct syntax within 

the technology is necessary and a lack thereof can create this problem. The successful use of 

computing technology requires compliance with strict syntax rules; failure to follow those rules 

will result in an incorrect result or expression. Because students sometimes have problems 

remembering and understanding the correct syntax to use when entering data and algebraic 

expressions, they are not always able to recognize equivalent algebraic processes. In a study by 

Graham and Thomas (2000), when the computing technology produced results in inconsistent 

forms, the students became confused and spent valuable time investigating the various forms 

rather than producing a mathematical result. Graham and Thomas suggested that students must 

possess a level of algebraic insight in addition to a working knowledge of the machine-specific 

alternative syntax that will enable them to recognize when multiple mathematical expressions are 

the same.  



53 
 

It is evident that the effective use of computing technology in the mathematics classroom 

can be quite beneficial; however, the simple presence of computing technology does not and will 

not automatically produce positive results. The faculty must know how to integrate the 

technology efficiently into the learning process in order to produce successful learning outcomes. 

Frequently cited problems of incorporating computing technology into mathematics classrooms 

and curriculum include the shortage of many elements: knowledge, time, software, hardware, 

and confidence in the product. Many faculty members already feel pressed for time between 

teaching and research responsibilities, so it is difficult to convince them to make time to learn 

about new technology. Many educational institutions are focused on cost-cutting measures; they 

are not going to be inclined to spend money on new technology that is perceived with some 

skepticism by the faculty members. In addition, the use of this new technology can require 

upgrading the hardware found in classrooms, which further increases the cost of integrating 

technology into the curriculum (Harley, 2001). In Quinlan‘s (2007) study, 556 mathematics 

faculty members were interviewed to determine their beliefs and perceptions about computing 

technology and its usefulness in the classroom. Of these participants, 21% said technology in the 

classroom was not necessary; 15% indicated that their own lack of expertise limited their use; 

and 18% cited a lack of time to learn the software. Only 7% of the participants reported that no 

factor limited their use of technology. 

The perceptions and knowledge regarding computing technology of a mathematics 

instructor heavily influences the activities that he or she creates and implements to teach students 

mathematics (Hamrick, Schuh, & Shelley, 2004). Although common sense tells us that a 

teacher‘s attitude toward technology will affect the ways in which the technology is used, there is 

―precious little evidence about [the faculty member‘s] attitudes and conceptions about 
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technology and how the university mathematics community as a whole feels about this issue‖ 

(Alsina, 2001, p. 406). Doerr and Zangor (2000), in their effort to study instructors‘ experiences 

with technology in the mathematics classroom, stated that for instructors to effectively teach with 

technology, they must believe in its value, be confident in its use, and be aware of the extent of 

its abilities. 

Hamrick, Schuh, and Shelley (2004) suggested a four-step integration process for 

instructors to follow. This process is designed to help faculty members become more skilled and 

effective when using technology in the classroom, while also helping to ―mold their 

understandings, conceptions, and perceptions‖ (p. 420) of teaching with technology. Zbiek and 

Hollebrands (2008) suggest that the instructor begin by simply playing with the technology, 

becoming familiar with its capabilities. Once instructors have become comfortable with 

navigating the software, they should then focus on using it in a structured way as an instrument 

for doing mathematics. During the play stage, it is recommended that the instructors rely on 

appropriate guidance such as teaching materials and tutoring. The development experienced by 

the instructor during this stage ―includes the transition of the technology as the developer‘s tool 

into the teacher‘s instrument for doing mathematics‖ (p. 295). The instructor is encouraged to 

interact with students and other colleagues rather than just the classroom activities that 

recommend technology. The instructor will build confidence in his or her abilities with the 

technology through these interactions and collaborations. Next, technology should be integrated 

into classroom instruction, even if only gradually, or possibly only with groups of students more 

advanced in the subject. Finally, the instructor should assess what the new technology is actually 

teaching the students by asking for student feedback, or by comparing test scores with students in 

other classes. By following this program, instructors should find that the technology is more 
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accessible than their preconceived notions would suggest, and it will assist them in successfully 

integrating the technology in a constructive way. 
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CHAPTER 3: METHODOLOGY 

 

I have no data yet. It is a capital mistake to theorize before 

one has data. Insensibly one begins to twist facts to suit 

theories, instead of theories to suit facts.  

Sir Arthur Conan Doyle (quoted in Creswell, 2003, p. 22) 

 

Mathematics education experts are asking for clearly articulated a priori theoretical 

frameworks to provide a structure for conceptualizing and designing research studies. The 

emphasis on an a priori theoretical framework development reflects the view that a research 

study well-anchored in theory will contribute more to mathematics education practice than an 

atheoretical one. What is a theoretical framework? According to Creswell (2003), it is the 

abstraction of general ideas from particular experiences that serves as the basis for a 

phenomenon that is to be investigated, representing its relevant features as determined by the 

research perspective, and serving as a magnifying glass to conceptualize and guide the research.  

One of the most perplexing problems for a novice researcher is the development of an 

adequate theoretical framework for a proposed study. The process requires asking the following 

initial questions before implementing the study: What methods will be used? What research 

methodology will govern the choice and use of methods? What theoretical perspective lies 

behind the methodology? According to Creswell (2003), a theoretical framework should include 

four dimensions, each of which informs the rest: epistemology theoretical perspective 

research methodology methods. In this study, I adopted symbolic interactionism (Merriam, 

1998) as the epistemological stance, and the data were analyzed to generate a grounded theory 

(Glaser & Strauss, 1967; Strauss & Corbin, 1998). More specifically, the theoretical framework 
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for this study can be expressed as follows: symbolic interactionism phenomenology 

grounded theory initial questionnaire, nonparticipant observations, interviews, classroom 

artifacts, and online communications. 

Before delineating the context underlying this study and outlining the research methods 

and principles used, I want to refer back to my starting point: the research question. To reiterate, 

the purpose of this study was to examine calculus instructors‘ conceptions of teaching calculus 

with or without computing technology. I have adopted the term conception to avoid the 

ambiguities associated with the terms belief, perception, norm, attitude, and value used in several 

research reports (Nespor, 1987; Pajares, 1992). In the literature, these terms, especially the term 

belief, have been subject to a variety of interpretations. Despite acknowledging the need for 

explicit definitions to distinguish or separate one effective educational outcome from another 

(Pepin, 1999; Thompson, 1992), mathematics educators use theoretical definitions of belief, 

knowledge, and attitude inconsistently, and most research studies on these effective educational 

outcomes avoid giving an explicit definition and settle for an operational definition. Aside from 

not being explicit about meaning, many researchers use these terms interchangeably, and even 

when a definition is given, the researcher may not be satisfied with it (Pehkonen & Törner, 

2004). 

In the present study, by the term conception, I refer to a personal assessment of one‘s 

knowledge, principles, beliefs, values, and concepts that guide teaching activity. It has been 

given many names: perspective, knowledge base, personal philosophy, value, and belief (see, 

e.g., Calderhead, 1996; Carter & Doyle, 1987; Pehkonen & Törner, 2004). I assumed that 

instructors‘ conceptions are not fixed or inherent in their educational practices. I also assumed 
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that conceptions play a major role in establishing a sense of personal and social identity for 

instructors through their experiences.  

An examination of conceptions regarding the practice of using computing technology 

suggests particular methods that are aligned with naturalistic inquiry. Symbolic interactionism 

provides an approach for the analysis of human activities that focuses on how people interpret 

and define situations influencing social action (Merriam, 1998). Symbolic interactionism is 

based on the study of social processes and how people understand the world through meaning 

that is created and changed continuously by self-reflection and social interactions with others; 

meaning is assumed to be interactional and interpretive. This theoretical framework stems from 

the idea that ―people transform themselves and their worlds as they engage in social dialogue‖ 

(Strauss & Corbin, 1998, p. v). Symbolic interactionism specifically emphasizes three 

fundamental premises of how people create meaning together within a particular context 

(Merriam, 1998; Strauss, 1987). First, people act towards something according to the meaning 

that it has for them. Meaning is always dynamic and purposeful, and it cannot be separated from 

the interpretation of behavior. Second, people constantly change their personal interpretations of 

something once they communicate with others and consider the actions of others toward it. 

Third, meaning is constantly changed in interpretive processes as people engage with the world. 

I used a grounded theory approach as a methodology to explore and then understand and 

generate descriptions of instructors‘ conceptions about using or not using computing technology 

in teaching and learning calculus. This approach also helped me to achieve methodological 

cohesion—when the research question fits the method of data collection, method of data 

analysis, participant selection, assumptions of the approach, and results expected from the 

approach. In implementing grounded theory, my aim was to discover, understand, and present a 
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rich description of the meaning of using (or not using) computing technology from the 

instructor‘s perspective (Bogdan & Biklen, 2002).  In addition, I also wanted to discover what 

relationships exist between an instructor‘s conceptions of teaching calculus with (or without) 

computing technology and his or her conceptions of teaching and learning calculus.  

Grounded theory is an inductive research method that generates theory from data that are 

gathered, organized, and examined systematically in an ongoing interplay between analysis and 

data collection (Glaser & Strauss, 1967; Strauss, 1987). Grounded theory, therefore, fits this 

study well because, as a methodology, grounded theory assumes individuals in groups 

comprehend events from a personal perspective, and common patterns of behavior can be 

discovered. Grounded theory captures the complexities of the context in which the action unfolds 

(Glaser, 1998). One of the strengths of grounded theory is that it explains what is happening in 

real life rather than describing what should be going on. As Glaser (1992) argues, the purpose of 

grounded theory is not to discover the theory but rather a theory that aids understanding in the 

area under investigation. He also recommends that the researcher enter the field ―with abstract 

wonderment of what is going on that is at issue and how it is handled‖ (p. 22). The researcher‘s 

purpose in using the grounded theory method is to provide a tentative explanation of a social 

process or construction by identifying the core and subsidiary processes operating in it (Glaser, 

1992; Strauss & Corbin, 1998).  

The main advantage of using grounded theory is that concepts do not have to be 

identified as predetermined variables but emerge from observations and discussions with 

participants. The goal, therefore, is to develop an ―integrated set of hypotheses [that accounts] 

for much of the behavior seen in a substantive area‖ (Glaser, 1998, p. 3). The researcher asks: 

What are the concerns of people in the substantive area, and what accounts for most of the 
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variation? In grounded theory, the researcher looks for the principal theme or themes that 

integrate behavioral patterns explaining the main concern for the people in the setting. The 

researcher classifies plausible relationships among concepts through a systematic, detailed 

examination of data; the aim is to bring out the complexity of what lies in, behind, and beyond 

the data (Glaser, 1998). Glaser and Strauss (1967), developers of grounded theory, also suggest 

using the theory to explore for situations in which a change process or transition is expected or 

ongoing and has a number of stages. A cursory glance over current practices of teaching calculus 

will reveal that conceptions about using computing technology in learning and teaching calculus 

can be represented along a continuum of views (Almeida, 2000). A grounded theory approach 

mainly seeks to explore and understand processes of transition, change, and the evolution of 

social constructions in areas previously unexplored or underexplored. The use of this approach to 

develop an understanding of calculus instructors‘ conceptions regarding the use of computing 

technology in teaching and learning calculus provided methodological cohesion for this study. 

Institutions and Participant Selection 

The study was conducted in the mathematics departments of a large public research 

university and a large community college, both located in the southeastern United States. The 

site selection was based on previous research demonstrating how the institutional culture in 

higher education is shaped by the mission of the institutions (Beard & Hartley, 1987; Bogdan & 

Biklen, 2002; Burke, 2005; Cox, 2001). By employing two educational settings, I was able to 

explore and compare the cultures of two mathematics departments, where ideologies, norms, and 

values are internalized through a socialization process (Braxton et al., 1996, Fairweather, 1996; 

Knapper, 1997). In addition, working with two institutions and selecting a broad range of 
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information-rich participants enabled me to address the aims of the study, as well as draw 

meaningful conclusions from the results. 

As a part of an initial participant selection strategy, I generated a list of all the full-time 

mathematicians from the university and a list of all the full-time mathematics instructors from 

the college. All department members on each list were asked to complete a voluntary initial 

questionnaire that focused on using computing technology in teaching calculus (see Appendix A 

on page 184). The questions were a combination of multiple-choice, Likert-scale, and open-

ended items. The goal of the questions was to obtain initial information about the instructors‘ 

familiarity with the calculus reform movement, their comfort level with using computing 

technology, and their perception of the role of computing technology in the classroom. I used 

these data only to select participants and design interview questions.  

To better understand the content, character, and expression of calculus instructors‘ 

conceptions of using or not using computing technology in teaching and learning calculus, I 

chose a set of three calculus instructors from each institution for the present study. The selection 

of the participants was purposeful and was partly based on their initial questionnaire responses. 

Because the study aimed to explore a complex and little-understood phenomenon, the 

participants were chosen because of their experience with the phenomenon being studied, as well 

as their ability to articulate the meaning of that experience. Furthermore, a selection of 

information-rich participants from broad backgrounds also aimed to facilitate the expansion of 

the developing theory (Bogdan & Biklen, 2002; Glaser, 1998). Among the three participants 

from each institution, I included one instructor who was using computing technology in calculus 

classes during the study, one who had never attempted to use computing technology, and one 

who had used computing technology in the past but was not using it currently. By selecting such 
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individuals, I aimed to discover similarities as well as differences in experience among the 

participants. The six calculus instructors were chosen because they were similar in some respects 

and dissimilar in others. All the names of participants and institutions used in this dissertation are 

pseudonyms to protect their privacy.  

Braun University. The first institution used for this research was Braun University, a 

prominent Research I university, located in a small city in the southeastern United States. The 

full-time and part-time faculty members numbered over 1300, and the student body exceeded 

34,000—including in-state, out-of-state, and international students. The university was highly 

selective, and students were admitted based on various criteria, including SAT or ACT 

examination scores. According to its Web page, this institution accepted students from various 

racial, ethnic, religious, and economic backgrounds who demonstrated excellent academic 

promise and personal integrity. The faculty handbook emphasized the pursuit of excellent 

teaching, productive research agendas, and the creation of scholarly work.  

At Braun University, the mathematics department faculty consisted of 35 full-time 

mathematicians. Mathematics instructors generally taught in the department‘s classrooms but 

might regularly use classrooms outside the department building as well. In this study, all 

classroom observations were made in mathematics department classrooms, each of which had 

three chalkboards and computer projector equipment. The department also had several computer 

labs that were accessible to students. The department offered a wide range of graduate and 

undergraduate mathematics courses, as well as mathematics content courses for education 

majors. The department granted bachelor‘s, master‘s, and doctoral degrees in mathematics. In 

any given semester, the department offered various sections of Differential Calculus classes for 

different clientele, such as Calculus for Economics for economics majors, Calculus I Science & 
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Engineering for engineering majors, and Differential Calculus Theory for mathematics majors. 

At Braun University, the student population for the calculus courses reflected typical 

demographics for freshman-level courses at other universities: recent high school graduates in 

the 18- to 20-year-old age bracket. Class sizes numbered 30 to 36 students for calculus classes, 

and most students took calculus in their first or second term.  

The majority of students took the generic section of calculus: Analytic Geometry and 

Calculus. In the fall semester of 2008, when data collection for this study started, the department 

offered 26 sections of Analytic Geometry and Calculus, 2 sections of Calculus for Economics, 6 

sections of Calculus I for Science and Engineering, and 1 section of the Differential Calculus 

Theory course. Prior to Fall 2008, the Analytic Geometry and Calculus course was a 4 credit 

hour course, with 3 hours of in-class lecture on calculus concepts and 1 hour of independent 

computer laboratory work to show the applications of calculus ideas and concepts. In most cases, 

the classes and computer laboratory sections were taught by different instructors. In Fall 2008, 

the department replaced the computer laboratory section of the course with a 1-hour problem-

solving section conducted by teaching assistants. The format of the course was a 50-minute 

meeting three days a week or 75-minute meetings two days (lecture format) a week with an 

additional 50-minute problem-solving period one day a week. According to several faculty 

members, the decision to take this retrograde step away from the use of computing technology in 

the Analytic Geometry and Calculus course was supported by the majority of the faculty. 

According to departmental policy for the course, calculus instructors were expected to cover 

required concepts in their classes but were free to adjust the syllabi or use any kind of computing 

technology as they saw fit. I contacted 10 Braun University calculus instructors before selecting 

the 3 (2 male and 1 female) to participate in the study. A brief profile of each participant follows.  
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Joe.  Joe had earned a Ph.D. in mathematics and, at the time of the study, was a professor 

of mathematics at Braun University. He taught introductory calculus classes regularly.  I had 

been a student of his in a previous graduate level mathematics course and had some idea of his 

conceptions of teaching calculus using computing technology. Joe had more than 28 years of 

experience teaching college-level mathematics and had received awards for his teaching. As a 

mathematician, Joe had almost 20 years of experience in using graphing calculators in the 

classroom in innovative ways. He was generally considered by his students and his peers to be an 

excellent mathematics instructor. At the time of the study, Joe was teaching a Calculus I course 

with approximately 32 students enrolled in the class. 

Joe: Technology is a big part of the students‘ lives, and the more you understand where 

the students are coming from, the better it is—the easier it is to teach them, to relate to 

them. (Interview, September 5, 2008) 

 

Lynn.  Lynn was a European female who had earned a Ph.D. in mathematics in the 

United States, and, at the time of the study, had been a professor of mathematics at Braun 

University for 15 years. She had 20 years of experience teaching college-level mathematics. She 

believed her teaching style came from her own mathematical experience; she focused more on 

doing mathematical proofs and providing reasons behind concepts than on the applications of 

calculus concepts. I selected Lynn for three reasons: She had been recommended by other 

mathematics professors; she was known for not using computing technology at all in her calculus 

teaching; and she was interested in my research and willing to participate. At the time of this 

study, she was teaching a Calculus I course with approximately 29 students enrolled.  

Lynn: I have a fairly strong bias against it [technology]. I have a reason for that bias. I 

deal with a lot of students; I have dealt with a lot of students for a long time, and the one 

thing I see students consistently do is turn off the brain when they turn on the calculator. 

(Interview, September 6, 2008) 
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Ken.  Ken had earned a Ph.D. in mathematics and had been teaching at Braun University 

for 3 years. He had 8 years of experience teaching college-level mathematics and received a 

teaching award from his previous institution. For the previous 4 years, Ken had used 

instructional technology in his courses, as well as in his research. I selected Ken for two reasons: 

As a relatively new faculty member, Ken seemed to find it somewhat easier to adapt to new 

instructional technology; and, in a previous private conversation we had made, Ken told me that 

he used computing technology in his calculus classes in the past. But he was against the use 

computing technology in teaching calculus, and I wanted to understand his conceptions of using 

computing technology beyond what I had heard. At the time of this study, he was teaching 

Calculus I with approximately 31 students in the course. 

Ken: I have mixed feelings about the graphing calculator, the TI89, and so on.  I 

sometimes let them [the students] use it. (Interview, September 8, 2008) 

 

Fairway College, The second institution involved in this study was Fairway College, a 

public community college established in the early 1960s and also located in the southeastern 

United States. The full-time and part-time faculty members numbered over 300; approximately 

7500 enrolled students attended classes on two campuses (the student population had an almost 

equal gender distribution, with less than 20% minorities, including African American, Hispanic, 

and Native American). According to its Web page, the college‘s mission was to provide a bridge 

between high school and baccalaureate studies as well as open access to education beyond 

secondary school, including but not limited to vocational and technical preparation and remedial 

education. The college faculty handbook emphasized the comprehensive components of teaching 

and public service for faculty members. The college granted a wide range of associate degrees 

along with bachelor‘s degrees in seven fields. Students mostly came from surrounding counties, 

and most of them were the first in their families to attend college. The college had an open 
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admission policy; therefore, students varied with respect to their personal and academic 

backgrounds as well as their educational goals and personal aspirations. In recent years, the 

college had been trying to use classroom and laboratory space to better accommodate a growing 

student population without investing in additional facilities. The administration had provided 

several incentives for the faculty to motivate them to teach online or hybrid courses—courses 

that included elements of both traditional face-to-face and online course components.  

At Fairway College, the mathematics department consisted of 26 full-time instructors and 

offered several mathematics courses, including learning support classes; classes in statistics, 

calculus, linear algebra, and differential equations; and mathematics content courses for 

elementary education majors. Mathematics courses at Fairway College were taught in the 

department‘s own classrooms, which varied in size but were well equipped, with whiteboards, 

overhead projectors, and smart board equipment in each room. In the Fall 2008 semester, when 

data collection for this study began, the department was offering 7 sections of Differential 

Calculus and 2 sections of Calculus for Business. At Fairway College, the student population 

demographic for calculus courses included a large number of recent high school graduates in the 

18- to 20-year-old age bracket and a small number of nontraditional students (over 24 years old). 

Calculus class sizes at Fairway College were normally about 26 to 32, and most students took 

calculus in their second or third term. Calculus classes usually met for 110 minutes in lecture-

format blocks two days a week. According to departmental policy, calculus instructors were 

expected to cover required concepts in their classes but were free to adjust the syllabi or use any 

kind of computing technology except the TI-89 graphing calculator (or any other calculator that 

had Computer Algebra System capability) as they saw fit. I contacted 7 calculus instructors 
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before selecting the 3participants (two females and one male) from Fairway College to 

participate in the study. A brief profile of each participant follows.  

Dorothy.  Dorothy had earned a Ph.D. in mathematics and, at the time of this study, was a 

professor of mathematics at Fairway College. Her research interests included differential 

geometry and topology. Before entering a doctoral program in pure mathematics, she spent 1 

year in a mathematics education doctoral program. She had more than 20 years of experience 

teaching college-level mathematics. Dorothy was passionate about incorporating technology 

(graphing calculators and Maple—a commercial software package) into her mathematics 

teaching, and she was involved in several different distance education programs. At the time of 

this study, Dorothy was teaching a Calculus I course with approximately 30 students in the class. 

Dorothy: Once you get started doing calculus with technology, you get so used to 

computing derivatives integrals using Maple, it is so hard to go back to doing it by hand. 

(Interview, September 14, 2008) 

 

Ron.  Ron was in his 30th year of teaching when the data collection began. He had both a 

B.S. and an M.S. in mathematics and had completed additional graduate coursework to obtain a 

teaching certificate in the early 1980s. He had received a number of teaching awards and had 

been involved in some curriculum development projects at Fairway College. At the time of the 

study, Ron was an associate professor of mathematics. He had never attempted to use computing 

technology in his calculus teaching. He remained critical and held strong views on the 

appropriate and relevant use of technology. At the time of this study, Ron was teaching a 

Calculus I course with approximately 28 students in the class. 

Ron: It makes me think technology is bad, because I don‘t know how to use it very much. 

I don‘t let them use calculators. So many times, I have seen students who will do many 

steps and very complicated things within the calculator that could actually be done faster 

by hand. (Interview, September 18, 2008) 
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Janet.  Janet earned a M.Ed. in mathematics education, and her undergraduate degree 

was in business. She was an assistant professor of mathematics at Fairway College at the time of 

the study. She had taught 2 years at a high school prior to teaching at Fairway and had 6 years of 

experience teaching college-level mathematics. At the time of this study, Janet was teaching a 

Calculus I course with approximately 30 students enrolled. I selected Janet because she was 

using computing technology in the course, but she was against letting her students use it in class. 

Janet perceived the main advantage of computing technology as a means of providing prompt 

feedback to student responses and viewed technology as a tool for improved communication 

between student and instructor. However, as a result of her past experiences, Janet was opposed 

to the use of computing technology in teaching calculus.  

Janet: I have some negative experiences with technology. So my experience is that there 

are students who have used calculators so extensively that they don‘t even understand 

basic arithmetic from grammar school. The idea is ―There is this black box, and it will 

give me the answer‖ as opposed to ―Okay, I can figure this out for myself.‖ (Interview, 

September 14, 2008) 

 

Data Collection 

Understanding conceptions is very problematic because personal decisions and comments 

result from different causes. There are strong connections between an instructor‘s conception of 

using or not using computing technology in calculus classes and other conceptions that he or she 

might have about such matters as the nature of mathematics and mathematics teaching and 

learning. Furthermore, in mathematics classes, the impact of an instructor‘s conceptions of his or 

her teaching typically occurs implicitly rather than explicitly (Pepin, 1999). To study instructors‘ 

conceptions, an examination of their words alone is not enough—the examination should be 

supplemented with classroom observations and other data sources (Pajares, 1992; Thompson, 

1992).  
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In this study, the main sources of data were questionnaire responses, recorded interviews, 

field observation notes, and artifacts (e.g., calculus project handouts, instructors‘ curriculum 

vitae, examinations, and instructors‘ online communication postings). Each research participant 

was asked to participate in three semi-structured interviews that took the form of a conversation 

intended to address the research questions (Creswell, 2003). The semi-structured interviews 

aimed to facilitate a participant-led discussion that freed me to gather information by 

supplementing participant reflections through questions that probed for clarification and further 

explanation. Each participant was interviewed three times over the course of the academic 

semester to gather information about his or her conceptions of using computing technology in 

teaching and learning calculus. The end result was a total of 18 interviews from which the data 

were gathered.  Interviews 1 and 2 ranged from 45 to 85 minutes per participant. The goal of the 

first two questions in the first interview was to give the participant an opportunity to discuss his 

or her personal conceptions of mathematics, technology, and the benefits and drawbacks of 

teaching and learning calculus with computing technology. The participants were asked 

questions regarding their previous experience in teaching calculus with computing technology, as 

well as what they perceived to be the ideal way to incorporate computing technology into the 

classroom. A complete list of the main questions across all three interviews is included in 

Appendix B on page 187.  

As a researcher, my primary goal was to motivate the participants to discuss their 

teaching methods and their conceptions about teaching and learning calculus with computing 

technology. The format of the interviews was designed to encourage a free-flowing dialogue, 

with opportunities to explore many channels of interests. The third interview specifically focused 

on any lingering issues or questions that I felt required clarification. Interview 3, therefore, was 
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brief and did not generally exceed 30 minutes. The overall purpose of the first two interviews 

was to uncover information about how each participant thought of and valued mathematics, 

teaching calculus in particular, their perspective on the learning process undertaken by their 

students, and the use of computing technology in the classroom. Therefore, after the first two 

interviews with each research participant, I tried to seek new insights by reflecting on the data 

and the interview process.  

In addition to interviewing the participants, I observed each of them teaching a calculus 

lesson on at least five occasions, during which I took extensive field notes. A total of 38 

classroom observations were conducted at various times during the two terms. These 

observations were done from the point of view of a nonparticipant observer; I tried to keep 

myself apart from the classroom activities as much as possible. The purpose of the observations 

was to gain a deep understanding of the classroom environment and the teaching behavior that 

represented the instructor‘s practice. I tried to see how the instructor‘s actions and interactions 

aligned with his or her conceptions. Each observation was of a full lesson ranging from 50 to 110 

minutes. During the classroom observations, I focused on what (and how) computing technology 

was being used (by both instructor and students) and the classroom dynamics with or without 

computing technology. Combining interviews with document analysis and observations of the 

research participants‘ actions and interactions allowed for a holistic interpretation of the calculus 

instructors‘ conceptions (Bogdan & Biklen, 2002). A timeline of these data collection activities 

is given in Table 1 and a detailed timeline for data collection is given in Appendix C on page 

189. 
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Table 1 

Timeline of Data Collection Activities 

Date  Activity  

August 14, 2008 Survey administration in both institutes  

August 25, 2008 Participants recruited  

September 5–18, 2008 First interview conducted with all participants  

September 7, 2008–April 12, 2009 Classroom observations (38 total)  

October 16–31, 2008 Second interview conducted with all participants  

December 18, 2008–January 19, 2009 Third interview conducted with all participants  

March 15, 2008–May 1, 2009 Sharing interview scripts with research participants  

 

Data Analysis 

Data analysis ―is the process of bringing order, structure, 

and meaning to the mass of collected data. … Data analysis 

is a search for general statements about relationships 

among categories of data; it builds grounded theory.‖  

(Merriam, 1998, p. 111) 

The data collection process for this research study was extensive. As a researcher, I also 

wanted to engage in a learning experience. Thus, in this study, the data analysis process was not 

a discrete phase of research; rather, it was an essential part of the design and data collection 

(Bogdan & Biklen, 2002). The main goal of the analysis was to extract the essence of the 

calculus instructors‘ conceptions of using or not using computing technology in teaching and 

learning calculus so that the essence could be used to communicate and to explore the meaning 

of those conceptions. I looked across the data to identify the calculus instructors‘ conceptions 

(Glaser, 1998).  

The grounded theory approach guided the analysis of the data (Glaser & Strauss, 1967), 

and the analysis was written up using methods outlined by Creswell (2003). The data analysis 

process, furthermore, was expanded and extended beyond giving mere descriptions of the 

concepts. I provided the essential link between the data and concepts, which resulted in a theory 

generated from the data (Glaser, 1998). The data analysis generated by the identification of 

coding units reflected the areas of concern from the research questions, the categorization of 

concepts that emerged, and the development of a theory. The first step was to identify the coding 
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units that reflected areas of interest. The initial coding units were the philosophy of mathematics, 

the philosophy of mathematics education, the philosophy of technology, and the role of 

computing technology in the instruction and the study of calculus. Some examples of these roles 

included providing a method of demonstration or a tool of investigation, relieving the tedium of 

symbol manipulations, and exploring complex ideas prior to gaining comprehension.  

The coding units were compared across all interviews and field notes for evidence to 

support the descriptions and hypotheses that addressed the research questions. Strauss and 

Corbin (1998) define coding as a process such that ―data are fractured, conceptualized, and 

integrated to form theory‖ (p. 3). The collected data, therefore, were systematically broken down 

and organized into manageable chunks to allow the abstraction and explication of the calculus 

instructors‘ conceptions. As categories became more apparent and discreet, I reevaluated them to 

identify other possible connections or explanations in the data (Merriam, 1998). In this process, I 

tried to delineate the relationships between categories sufficiently to reach theoretical 

saturation—the state in which the researcher ―makes the subjective determination that new data 

will not provide any new information or insights for the developing categories" (Creswell, 2003, 

p. 450). As the data analysis progressed, categories became saturated through comparison and 

verification of concepts and incidents (Glaser, 1998).  

I also used the constant comparative method. According to Bogdan and Biklen (2002), 

the constant comparative method ―explores differences and similarities across incidents within 

the data currently collected and provides guidelines for collecting additional data‖ (p. 493). Thus, 

the data analysis process involves explicitly comparing each incident in the data with other 

incidents appearing to belong to the same category and exploring their similarities and 

differences (Glaser & Strauss, 1967). In the analysis, I checked the tentative hypotheses for 

similarities and differences by constantly comparing them with other hypotheses, emerging and 

evolving categories, and developing theories. Through this process, I was able to see where gaps 

existed in data collection and which categories needed to be clarified.  
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As the analysis progressed, I sought to move beyond providing mere descriptions, and I 

focused on creating relationships among the categories. Glaser (1992) warns that many 

researchers who claim to use grounded theory stop once they have rich descriptions of the 

concepts identified in their data; they fail to conceptualize their data. Conceptualization in 

grounded theory must ―be done as a careful part of theory generating and emergence, with each 

concept earning its way with relevance into the theory‖ (p. 24). According to Strauss and Corbin 

(1998), theorizing is the process of developing a theory that accounts for much of the obtained 

data.  

Issues of Objectivity, Validity, and Generalizability 

In qualitative research, a number of procedures can be applied to enhance the credibility 

and rigor of an educational research study‘s findings: prolonged engagement, participant 

validation, data triangulation, peer debriefing, negative case analysis, and clarification of 

researcher bias (Creswell, 2003; Merriam, 1998). To maintain credibility and to enhance the 

legitimacy of the research findings, I employed several strategies:  prolonged engagement (over 

the course of 9 months), working with two peer debriefers, data triangulation, participant 

validation, and multiple observations (38 in all). At first, I tried to attain credibility in the study 

by locating my role as a critical interpreter and being consistent with practices in acquiring, 

indexing, and coding data. I had two roles in the data analysis process. Although my initial 

orientation was through an uncritical exploration to gain a descriptive understanding of 

instructors‘ conceptions, during the process of data analysis, my role switched to that of a critical 

interpreter (Bogdan & Biklen, 2002).  

Furthermore, I also worked with two peer debriefers (two recent graduates of 

mathematics education doctoral programs) to build procedures for coding and analyzing the data, 

in order to offer the opportunity for discussion of findings and possible researcher biases. 

Sessions were scheduled with each peer debriefer to examine coded data and allow for probing 

questions and different explanations or alternative coding of the data (Creswell, 2003; Merriam, 

1998). With extended engagement over 9 months, I also tried to develop trust between the 
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research participants and me as a researcher to reduce the likelihood that they would exhibit 

contrived behaviors. Furthermore, being present for such a long period of time in the 

participants‘ classes and spending a substantial amount of time with the participants helped me to 

ensure that I would gain more than a snapshot view of the instructors‘ conceptions. 

Once the research findings were revealed, I tried to implement participant validation as 

much as possible by taking the findings back to the participants for elaboration, correction, and 

accuracy. I also used data triangulation by trying to verify results and conclusions from multiple 

data sources such as observations, field notes, and interview transcripts. This process allowed me 

to be as consistent as possible in the methodology as well as data collection and analysis.  

With respect to the educational implications of these research findings, the reader must 

judge, keeping in mind that ―drawing on tacit knowledge, intuition, and personal experience, 

people look for patterns that explain their own experience as well as events in the world around 

them‖ (Merriam, 1998, p. 211), or as Crotty (1998) puts it, ―[Research findings are] suggestive 

rather than conclusive. They will be plausible, perhaps even convincing, ways of seeing things—

and, to be sure, helpful ways of seeing things—but certainly not any ‗one true way‘ of seeing 

things‖ (p. 13).  
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CHAPTER 4: TEACHING CALCULUS USING COMPUTING TECHNOLOGY 

 

Joe’s and Dorothy’s Conceptions of Mathematics and Learning Mathematics 

Joe had been teaching college level mathematics for more than 28 years. He had taught a 

variety of courses, ranging from Learning Support to Linear Algebra. While teaching, Joe had 

participated in several curriculum development projects and had served on several college 

committees, including Faculty Senate and Admission. Furthermore, he served as the faculty 

advisor to the mathematics club at his college for the previous 4 years. He had also made several 

mathematical research presentations at national and international conferences and reviewed 

articles for publishing companies and mathematical journals.   

Joe defined mathematics as a quasi-empirical discipline: ―It is not the same as physics, 

but it is more akin to an empirical science than we mathematicians want to admit‖ (Interview 1/ 

September 12). To Joe, mathematics essentially involved an understanding of logical structures 

and learning how to solve problems that have been modeled mathematically. The process of 

finding solutions to problems brought him both excitement and satisfaction. He described the 

problem-solving process as a ―challenging and exciting journey where the mind‘s creativity can 

be harnessed to produce a solution‖ (Interview 1/ September 12). Joe believed that doing 

mathematics involved carrying out laborious, deliberate experimental work and ―trying to 

understand the problem, exploring ways to approach the problem, performing calculations to see 

patterns, and working through examples for finding some useful generalizations‖ (Interview 1/ 

September 12). 



76 
 

Dorothy had a similar amount of teaching experience as Joe; she had been teaching 

mathematics at Fairway College for 14 years. She received her Ph.D. in Topology from a 

university in the Southern U.S. and started teaching in the same region. She had taught a variety 

of courses ranging from Learning Support to mathematics content courses for education majors. 

While teaching, she had also participated in several curriculum development projects and taught 

several online mathematics courses. At the time of data collection, Dorothy was teaching 

calculus and college algebra classes at Fairway College. 

Dorothy was always fascinated by the connections between mathematics and other 

disciplines, and she described mathematics as ―a multifaceted discipline‖ (Interview 1/ 

September 11). Following that line of reasoning, she compared it to an octopus because an 

octopus has many arms that are able to cover multiple areas and can be applied to many different 

tasks. Similarly, she stated that ―math has many uses beyond mathematical settings‖ (Interview 

1/ September 11). For Dorothy, mathematical ability involved more than being able to carry out 

specific rule-based procedures in routine situations; rather, it required the ability to think through 

and solve mathematical problems. From Dorothy‘s perspective, students should be able to 

identify and solve kinds of mathematical problems, check proposed solutions to problems, and 

interpret and validate the solutions. 

Dorothy and Joe both believed that the introduction of computers had provided a new and 

powerful tool for doing mathematics. The main factor that helped them to develop such a 

positive conception of computing technology was rooted in their observations of how the 

introduction of such technology, especially computers, considerably benefited many areas of 

mathematical research. Joe said that computers provided a completely new tool in doing 

mathematical research and stressed that they were continuing to have ―a significant impact on the 
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way in which many mathematicians carry out their research‖ (Interview 1/ September 12). Joe 

claimed that the very existence of computers had especially widened ―the scope and dimensions 

of mathematical explorations‖ that mathematicians could conduct (Interview 1/ September 12). 

Both Dorothy and Joe were convinced that the availability of computers relieved many 

mathematicians of a great many calculations and encouraged them to attack problems that they 

could not do before. Joe claimed that with the use of computers, mathematicians were able to 

―carry out calculations in a very short time period which would require a lifetime‖ (Interview 1/ 

September 12), thus enabling mathematicians to make mathematical discoveries by observations 

before the validity of their conjectures had been established. Dorothy expressed the same idea by 

saying the computer had made it possible to experiment with large data sets and had helped 

mathematicians ―to see patterns and structures of the data to develop mathematical conjectures‖ 

(Interview 1/ September 11). Although they both saw how the use of computers had had an 

enormous effect on applied mathematics, Joe also claimed that the computer had significantly 

changed the conception of what is a satisfactory solution of a mathematics problem. As an 

example, he cited the use of computers in the famous proof of the Four Color Theorem. 

Joe‘s and Dorothy‘s conceptions of learning mathematics derived from their major 

epistemological belief that engaged learning was active learning. They both identified active 

student engagement as vitally important for successful mathematical learning. If students are 

going to understand and learn mathematics, they must be engaged in the learning process as it 

unfolds. Joe expressed the need for students to be active in their learning process by stating, ―I 

always remind students to be active, to be engaged-do more than just watch‖ (Interview 1/ 

September 12), and Dorothy expressed the same idea by saying, ―There is one effective way to 
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learning mathematics and that is by doing it. This will always be my point of view‖ (Interview 1/ 

September 11). 

Joe and Dorothy both saw the process of problem solving as an important tool for getting 

students to be active in their learning. When they talked about problem solving, they related it to 

the process of learning mathematics: Joe stated that solving problems was not only an end, but 

also a means for learning mathematics because ―a consequence of the [mathematical] 

understanding is to be able to solve problems‖ (Interview 1/ September 12). He also saw the 

process of problem solving as a vehicle to help students become independent learners. The active 

characteristic of his teaching was that the students should have found answers to the questions by 

using their own faculties. Joe portrayed learning mathematics as similar to learning how to ride a 

bicycle and believed that the only way one could learn mathematics was by conducting 

mathematical explorations through problem solving: ―You can‘t teach a child to ride a bicycle by 

telling, and you can‘t teach a student to do mathematics by lecturing‖ (Interview 1/ September 

12). 

Although Joe considered active learning to be of the utmost importance, that did not 

mean that he believed lectures were unimportant. In fact, he always analyzed the way in which 

he presented information in order to ensure that he was effectively teaching students. For 

example, whenever students did not perform as well as Joe thought they should, he did not 

necessarily blame them. He was willing to consider that the way he taught the material might 

have been a cause of the students‘ lack of success. He looked for reasons students did not 

understand and considered that he might be one of those reasons, instead of assuming that the 

students did not try hard or study. Once, for example, when a group of his calculus students did 

not grasp the topic of related rates as well as his previous classes had done, Joe commented, ―I 
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don‘t know if it was the group I had the year before that was just a little bit sharper, or whether I 

just did a better job teaching it, or whether—I don‘t know‖ (Interview 2/ October 28). He was 

willing to admit that multiple factors might affect the transmission of information and students‘ 

understanding of that information. 

Dorothy also saw the process of problem solving as an important medium to get students 

to be ―excited about mathematics and develop their confidence to do significant mathematics‖ 

(Interview 1/ September 11). But she also warned how accomplishing that aim required the 

careful selection of problems. Dorothy complained about the way many instructors worked 

examples in class similar to those they would assign for homework, and said that approach did 

not challenge or excite the students. For successful mathematics learning, Dorothy claimed that 

the instructor should have given carefully chosen mathematical problems based on each student‘s 

cognitive development and mathematical knowledge base. She provided an analogy of crossing a 

stream for guiding students through problem solving and fine-tuning the difficulty level of 

problems. To Dorothy, the selection of problems was akin to placing rocks for crossing a stream. 

If the instructor placed the rocks very close together by selecting easy problems, then ―crossing 

the stream was nothing more than an exercise‖ (Interview 2/ October 26). If the instructor placed 

the rocks too far apart by selecting very difficult problems, then most students would lose their 

confidence and would ―fall into the stream‖ (Interview 2/ October 26). Just like the adjustment of 

the distance between stepping stones, the difficulty level of mathematics questions must be 

carefully considered so that each student is successfully challenged. Thus, the instructor should 

be adjusting the difficulty level of questions based on each student‘s current mathematical 

knowledge; this adjustment might necessitate adding a rock for one student, but removing a rock 

for another. 
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Dorothy‘s focus was on ensuring that all students were learning, no matter what level 

they were at. She defined learning as ―the acquisition of new knowledge and the application of 

that knowledge‖ (Interview 1/ September 11). She thought it was important for students to be 

able to use the mathematics they learned in class to describe real-world phenomena, and she 

believed that such use would promote understanding. It was exciting to Dorothy when students 

saw a reason for learning mathematics, and she believed that using applications of mathematics 

would help students understand the mathematics better. For example, she used a motion detector 

along with a CBL (Calculator-Based Laboratory) for an activity in which students walked in 

front of the motion detector, and a graph of time versus distance was displayed. She said the 

activity would lead students to meaningful mathematics learning because it was showing ―the 

motion of walking away from the wall and getting into a line of positive slope; walking toward 

the wall and getting into a line of negative slope‖ (Interview 2/ October 26). 

Dorothy and Joe both wanted their students, in learning mathematics, to be active and 

independent by developing mathematical competence through meaningful activities. They both 

repeatedly told their students that getting the answer right was not critical; rather, developing an 

understanding of the problem-solving process was more important. Furthermore, they also 

thought that students‘ algebraic backgrounds were not determinants of their calculus learning. 

Joe claimed there was a large range of levels among the students in the class, and ―the instructor 

cannot take for granted that all of the students have all of the necessary algebra skills‖ (Interview 

2/ October 28). Referring back to her experiences with students, Dorothy claimed, ―I have 

students now, and have always had students, who are very competent with all their algebraic 

manipulations. And sometimes those students struggle with calculus, and sometimes they don‘t‖ 

(Interview 2/ October 26). Although both Dorothy and Joe admitted that there were definitely 
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students who were held back by the level of their algebra skills, they also contended that if a 

student had the desire to learn, he or she could practice and improve algebraic skills and 

concepts. 

Joe’s and Dorothy’s Conceptions of Teaching Calculus 

Joe and Dorothy did a considerable amount of planning and thinking about their 

instruction. They firmly believed the amount of time a teacher put into preparation would 

directly translate to how the students learn. For Joe, teaching provided an opportunity for 

continual learning and growth, even after years of experience: ―I have been always interested in 

reflecting on what I was doing or thinking and in thinking about ways to improve my teaching‖ 

(Interview 2/ October 28). According to Dorothy, successful teaching was a process of 

experimentation in which ―the instructor experiments with ideas and finally distills out the best 

learning experience for the students‖ (Interview 2/ October 26). They both claimed that having a 

genuine passion for the subject matter was one of the single most important components of 

effective mathematics teaching, as it would lead to thorough preparation, continuous evolution of 

teaching skills, and the pleasure of watching students learn. But above all, Joe and Dorothy both 

believed that teaching required openness to change; the instructor should continually examine his 

or her teaching techniques and experiment with ways to become a more effective teacher by 

integrating technology, adapting practices to address the needs an increasingly diverse student 

body, understanding different learning styles, and incorporating various assessment strategies.  

Joe thought that the instructor should definitely build a positive rapport with students 

while still maintaining healthy and respectful boundaries. The instructor should be sensitive to 

students‘ feelings and show respect by not dismissing any information or a particular step in 

algebraic simplification. Over time, Joe had learned to be more sensitive to his students‘ feelings.  
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For example, he tried to choose his words carefully, in recognition that his students‘ confidence 

could be affected by a thoughtless word choice: ―I have learned to not say ‗easy algebraic steps,‘ 

because it might make a student feel bad if they don‘t know the algebra. Students react very 

negatively if they are made in any way to feel that their knowledge is inadequate‖ (Interview 2/ 

October 28). 

Joe tried to use the content of his courses to promote self-awareness of learning; students 

needed to be aware of themselves as learners and develop confidence in their ability to tackle 

learning tasks on their own. One of his hopes as an educator was to instill a love of learning 

mathematics in his students. For Joe, teaching was more than transmitting knowledge: ―Teaching 

is about inspiring students to discover their potential‖ (Interview 2/ October 28). As a professor, 

Joe believed he had the opportunity to affect the lives of students, and he took that role seriously. 

He wanted his students to enjoy and appreciate mathematics, and he wanted to extend the 

enjoyment of mathematics beyond the small circle of mathematically talented students. Joe 

eagerly compared doing mathematics with performing music. Although few people are gifted 

enough to compose music, many people can understand and enjoy it. He believed the number of 

people who could understand and enjoy mathematical ideas could be increased if their interest 

was stimulated and their aversion to mathematics was eliminated. To dispel the attitude that 

mathematics is very difficult, Joe shared his own passion and learning experiences in 

mathematics with his students: ―If I am very open and maintain an open dialogue with my 

students, it is much easier for me to achieve these things since students usually reciprocate‖ 

(Interview 2/ October 28). 

Joe‘s image of mathematics as a quasi-empirical discipline was the main influencing 

factor that shaped and directed his calculus teaching. He particularly enjoyed the problem-
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solving aspect of doing mathematics and wanted to help his students learn calculus through 

problem-solving activities: ―Problem solving is a great interest of mine. In class, I generally 

point out the students‘ particular skills that will help them in their problem solving‖ (Interview 2/ 

October 28). With the implementation of a problem-based calculus curriculum, he wanted his 

students to see that doing mathematics involves carrying out challenging and deliberate 

experimental work.  

Joe believed that, with the help of problem-solving activities, his students could develop 

more confidence in doing mathematics because they could figure things out for themselves and 

would also, therefore, enjoy his calculus class. In Joe‘s opinion, students were not passive 

receivers but active builders, and his role in teaching mathematics was to facilitate student 

learning through problem-solving activities. He stated that all he was ―concerned with is that 

they [students] know how to apply the information to simple situations‖ (Interview 2/ October 

28). When Joe assigned a mathematics problem, he wanted his students to have enough 

confidence to work with the problem until they were able to find the answer. He liked to use 

problem-solving activities to provide ample opportunities for him to address students‘ needs 

regarding learning and, thus, to be able to cultivate and sustain success. Problem-solving 

activities helped him ―to examine and understand the way in which students think through a 

problem‖ (Interview 2/ October 28). Through active observation and questioning when students 

were working on a problem-solving activity, he was able to find out about their prior knowledge, 

and consequently, he could design subsequent tasks or pose questions designed to guide his 

students‘ learning effectively.  

Joe believed that his students‘ ability to solve calculus problems demonstrated their 

mastery of the concepts: ―If they [students] understand the principles behind that portion of the 
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course, then they are going to be able to solve those problems‖ (Interview 2/ October 28). In his 

calculus classes, Joe presented his students some simple problems at the beginning of the course, 

followed by more complicated problems. If the students had difficulty with complicated 

problems, he tried to break the complex problems into smaller parts, believing this strategy 

would help the students see where to go with the problem: ―Sometimes they [students] would 

look at complicated problem and [have] no idea where to start. It isn‘t lack of knowledge. They 

simply didn‘t know how to apply what they learned‖ (Interview 2/ October 28). 

Joe considered himself responsible for developing a supportive environment in the 

classroom, and he regarded the learning process to be a team effort between himself and the 

students. Through problem-solving activities, Joe wanted to lead his students to explore, inquire, 

synthesize, and report their findings. His calculus classes were interactive, with reporting and 

questioning shared between him and the students. His teaching focused on what the students did 

and discussed and consequently came to know: 

I'm not interested in having lectures just merely being the presentation of a whole bunch 

of information and something to be gotten through. The real value I think that a lecture 

can have is to provide a sense of excitement when students really start to investigate stuff. 

(Interview 2/ October 28) 

 

Rather than developing a curriculum aimed at the typical student, Joe also thought 

instructors should modify their calculus instruction to meet students‘ readiness levels, 

preferences, and interests. Joe noted that developing a curriculum around student interests 

fostered intrinsic motivation and stimulated the passion to learn. The predominant belief that 

guided Joe‘s teaching was his concern for the welfare of the students. This concern was reflected 

in his encouraging and supportive attitude. In his calculus classes, he did not dismiss students‘ 

questions with a short yes-or-no answer, believing that the way he responded to students‘ 

questions was integral to the effectiveness of his teaching style. When he was teaching, and a 
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student asked a question, Joe took a moment to determine the best response he could give to the 

student before he began to answer the question. The quality of his responses made the students 

feel as though they had contributed to the knowledge being presented in the classroom. Joe 

regarded the students‘ questions as a valuable part of their learning process, and he believed the 

students deserved respectful treatment in the classroom, even when their questions might be 

tangential to the subject at hand.   

Joe also emphasized the importance of the teacher‘s responsibility to ask effective 

questions designed to guide the students to further their mathematical understanding and also 

encourage them to keep working on the task. In addition, Joe did not settle for cursory responses 

to the questions he posed. He continued with follow-up questions that were intended to deepen 

the discussion and set expectations. He saw the teacher's role as that of a guide who provided 

access to information rather than as a primary transmitter of information. The instructor needed 

to ―provide opportunities for students to express, discuss, and argue about mathematics‖ so that 

they could construct their own knowledge (Interview 2/ October 28). Joe strived to create an 

active, collaborative learning environment filled with curiosity and inquiry in which participants 

were both the students and himself, and where the students could ―discover knowledge rather 

than be passive recipients‖ (Interview 2/ October 28). 

Joe wanted to develop both ability and confidence in students so that they could learn 

how to solve problems: ―I came to accept that one of my tasks as an instructor was helping 

students to develop lifelong learning skills and confidence‖ (Interview 2/ October 28). Above all 

else, Joe enjoyed the moments when the students realized they were in control of their own 

learning. To Joe, part of being in control of one‘s own learning, however, included the ability to 

seek knowledge while working as a group. To that end, he encouraged collaboration and 
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cooperative learning; he had students work individually or in teams over time to develop 

solutions to problems. He urged the students to be personally involved and tried to develop a 

classroom community. Seeing students working together to come up with solutions to 

mathematics problems gave him great satisfaction. He said, ―It is fun to see students come up 

with an answer themselves. Especially when a student doesn‘t think he is going to be able to do a 

certain problem and is finally able to answer it correctly‖ (Interview 2/ October 28). Seeing the 

excitement in students while they actively constructed their knowledge supported and 

encouraged Joe‘s teaching.  

Like Joe‘s teaching, the object of Dorothy‘s teaching was identifying the needs of her 

students and basing her teaching upon meeting their needs. She recognized that the students had 

differing learning needs, and it was her responsibility to help the students realize those needs. 

For Dorothy, the instructor should engage the students with the mathematical knowledge with 

the intention of helping students develop their conceptual understanding. In her approach to 

teaching calculus, the instructor‘s purpose was to enable the student to learn the material through 

practicing the disciplinary knowledge, engaging with the material in ways similar to that of the 

academic practitioner. 

Dorothy summarized good mathematics teaching as follows: ―If the students learn what 

they want to learn, then I have done my job‖ (Interview 2/ October 26). Dorothy believed that 

mathematics instruction, especially calculus teaching, should be tailored to students‘ needs. She 

said that instructors should recognize the diversity in the student population, and therefore the 

complexity and presentation of the material should be adjusted to best meet students‘ needs: 

―Every time I teach, my attitude is first to look at the audience, find out who they are, what‘s 
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their background, what‘s their level of expertise and knowledge, what are their objectives, and 

ask myself, ‗What do I want them to accomplish?‘‖ (Interview 2/ October 26). 

Dorothy said that the traditional one-size-fits-all instructional approach to teaching 

calculus did not really serve the majority of students; to the contrary, it created a barrier for 

students who would succeed in majors such as biology or business. Dorothy noted, 

Calculus should not become a barrier to students in those other majors just because they 

have to take the course with engineering, science, and math majors. Those students just 

need to understand the concepts of the problems, not all the nitty-gritty details like an 

engineering or math student would. (Interview 2/ October 26) 

  

Dorothy also thought that the traditional calculus sequence lacked an applied component, which 

severely limited its usefulness to those students who were not proceeding to physics or 

mathematics. 

In her teaching, Dorothy wanted to create a sense of connectedness between her students, 

mathematics, and the real world. One of the main purposes of her teaching was to persuade her 

students of the importance of mathematics so that it could enhance their lives: ―I will teach what 

I think would benefit them most‖ (Interview 2/ October 26). Dorothy was not happy with the 

common rationale that it is required for their academic discipline to take her calculus class. ―I 

hear it all the time, but I don‘t like it very much‖ (Interview 2/ October 26). One thing as an 

instructor she thought she could do was encourage students to see how mathematics fits into life 

experiences and various career choices. Dorothy tried to help the students learn mathematics, 

especially calculus, by applying mathematical concepts to their own particular discipline. 

Dorothy suggested that the students would be more engaged if the instructor used real-world 

problems instead of hypothetical problems or physics problems. For example, she claimed that 

the life science majors needed to see how calculus concepts could be used to analyze population 

growth models, membrane diffusion, enzyme kinetics, and Le Chatelier‘s Principle for chemical 



88 
 

equilibrium. She offered an example to illustrate her point: ―Last year, I had a lot of pharmacy 

majors, and many of them worked in drugstores. We were learning about exponential growth and 

decay, so I put a question on the test about how much anesthesia a dog would need in order to be 

in surgery for 45 minutes‖ (Interview 2/ October 26). 

According to Dorothy, an emphasis on real-world problems in teaching calculus also 

helped to pique her students‘ interest and increased their conceptual understanding. She believed 

that the use of real-world problems could provoke and facilitate meaningful mathematical 

learning since ―many students were not convinced mathematics was something other than an 

academic hurdle‖ (Interview 2/ October 26). Dorothy also claimed that students were more 

motivated to learn mathematics when these connections were explicitly demonstrated in the 

classroom. She said that the presentation of the connection between mathematics and other 

academic disciplines could dispel the misconception that ―doing mathematics was doing 

calculations and taking exams‖ (Interview 2/ October 26). She believed that mathematics and 

real-world connections should have been made explicit in all aspects of her calculus teaching—

the classroom, homework, projects, and exams. Dorothy was convinced that her approach to 

teaching calculus was working and stated, ―I seem to be going a lot more into making it relevant 

to them more than just delivering the facts‖ (Interview 2/ October 26). One example of Dorothy‘s 

efforts to reveal these connections happened around Valentine‘s Day. She lectured on polar 

coordinates and then asked her students to create a valentine card by plotting r = 1 – sinΘ in 

polar coordinates, which produces an image that is similar in shape to a Valentine‘s Day heart. 

In an effort to enhance her instruction, Dorothy incorporated various kinds of technology, 

including Maple, a graphing calculator, a SMART Board, and online animated visuals and self-

assessment tools. In class, she used an on-screen projector display about half the time when she 



89 
 

was demonstrating concepts and conducting mathematical investigations. Dorothy thought one 

of the main advantages of computing technology was to provide immediate visual and 

mathematically meaningful consequences: ―[Technology] helps to get across visually a lot of 

things that are very difficult to describe using words‖ (Interview 2/October 26). She used visual 

aids, explorations, and active learning modules to contribute to the development of students‘ 

conceptual understanding. She believed that the visualization power of technological tools 

especially enhances mathematical concepts and can create genuine interest in mathematics. For 

example, Dorothy used animations to teach the volume of revolution to show how the volume is 

forming, or she sometimes used interactive Internet applets illustrating the formal definition of 

the limit with moveable δ‘s and ε‘s. For each section of the text, she provided a diverse array of 

online resources as supplementary material. Dorothy said that her students viewed these 

resources as value added to the course and responded positively to using them. 

Dorothy claimed that the use of technological tools helped the students collaborate with 

each other in the process of learning mathematics. In her online and traditional calculus classes, 

she routinely observed how her students were working collaboratively on class projects and 

homework through the Internet, email, and instant messaging. She understood that learning 

mathematics was a collaborative effort and stated that ―rather than laboring alone on homework 

and projects, students can work in small groups at any time, and wherever they happen to be‖ 

(Interview 2/ October 26). She claimed that the very existence of various instructional 

technological tools would require getting beyond the current system of information and delivery. 

Students could be asked and empowered to master more basic material online at their own pace, 

and the classroom could become a place where the application of that knowledge could be honed 

through mathematical experiments and discussions with her. In making a case for all of this 
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collaborative effort, Dorothy stated that the world did not care what students know: ―The world 

only cares, and will only pay, for what you [students] can do with what you know‖ (Interview 2/ 

October 26). Although Dorothy still saw a huge value in the traditional college experience and 

the teacher-student and student-student interactions it facilitated, she advocated a blended model 

that combined online lectures and demonstrations with a teacher-led classroom experience as the 

ideal for calculus teaching.  

Dorothy described her role as a mathematics instructor as similar to that of a coach. Just 

like a coach and her players, Dorothy and her students shared a responsibility for the learning 

process when they were together in the classroom. Like a coach telling her players what she 

expected them to do and correcting her players‘ mistakes, Dorothy determined the learning 

outcome and corrected students‘ misunderstandings. A coach not only instructs players, but also 

designs practices and the game plan, just as the instructor does with lesson plans. Just like a 

coach, Dorothy provided students access to hands-on activities and allowed adequate time and 

space to use materials that reinforce the lesson being studied, creating an opportunity for 

individual discovery and construction: ―My job is to provide them with an environment in which 

they can learn. Of course, I should ensure that what they are trying to learn is within their grasp‖ 

(Interview 2/ October 26). As a coach helps players improve their skills to the maximum of each 

player‘s abilities, Dorothy wanted to help each of her students reach his or her full potential for 

understanding mathematics. She described her responsibility as working with every single 

student, regardless of skill level, with the student‘s improvement as her goal. Dorothy knew that 

good instruction, like good practice, needed to be challenging to encourage students to think and 

talk about their ideas. The instructor, like a good coach, had to challenge all students by pushing 

them to move beyond their comfort zones. She stated: 
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It is rewarding to set high goals for the students. I think it is a big mistake when 

[instructors] water down classes. I think that is a terrible disservice to the students. I give 

no partial credit on homework problems, instead opting to let the students rework 

incorrect answers for full credit. This forces students to identify their mistakes and come 

to my office for help. (Interview 2/ October 26) 

 

Both Joe‘s and Dorothy‘s teaching were aimed at focusing on their students‘ conceptions 

of the subject matter rather than their own conceptions. They saw their role as helping their 

students develop their mathematical understanding. They also thought that the instructor should 

assess students‘ mathematical learning at various points and needed to revise or modify learning 

goals, instructional methods, or content when necessary. They both considered that success in 

teaching mathematics depended on motivating students. According to both professors, the main 

task for instructors was to arouse interest and enthusiasm in learning and a love for mathematics 

so that students would be seduced into learning. Whereas Dorothy used real-world problems 

from students‘ academic disciplines, Joe tried to accomplish the same goal through a problem-

based teaching approach. 

Joe’s and Dorothy’s Experiences of Teaching Calculus 

In the mid-1990s, Joe participated in several curriculum projects dealing with integrating 

computing technology into calculus classes. Those projects were instrumental in formulating 

Joe‘s views on integrating technology in the classroom and fundamentally changed the way that 

he taught. The first curriculum project Joe took part in was to teach an experimental version of a 

calculus lab, in which he used graphing calculators. That curriculum project not only helped Joe 

to become acquainted with computing technology, but also helped him to learn how to use them 

in a manner he considered to be effective for teaching calculus.  

The student feedback Joe received during his experimental section of calculus indicated 

that his students thought the graphing calculator was easier for them to use than the computer 



92 
 

software Maple. Joe liked the idea that his students had the calculators at their disposal outside of 

class and that they could use it for their homework. He said that initial experiment was promising 

but far from a complete success story. He found that ―it was still difficult to do substantial things. 

We didn‘t come close to exploiting the full power of the calculator‖ (Interview 2/ October 28). 

Joe concluded that the projects he created were often difficult for students because he was trying 

to cram too much into each project. Joe reflected on his past projects: ―If you look at some of the 

projects that I created in the very first year, you would find that they are designed to push beyond 

the boundaries that students normally go‖ (Interview 2/ October 28). Joe determined that his first 

few projects were overly ambitious, and he decided to adjust the difficulty level to more closely 

match the level he thought was appropriate for his students. In addition, Joe listened to his 

students‘ complaints that those first projects were not very relevant to their academic disciplines, 

and he created a new set of projects that his students found more relevant and easier to engage 

with. 

Joe tried not to be disheartened by that first calculus lab project, even though he claimed 

that it was relatively unsuccessful. Joe reported that many students thought the technology was 

too difficult to use, and some students used the technology to cheat (e.g., finding the maximum 

or minimum of the functions by using computers instead of finding derivatives) in ways with 

which Joe previously did not have to be concerned. However, Joe reported that he learned many 

valuable lessons during that first attempt. Through the initial experiment, Joe learned to consider 

his students‘ background and technological competence in his technology integration decision. 

Ultimately, although the initial experiment was not entirely successful, Joe decided to use the TI-

83 graphing calculator in his calculus classes. Joe explained his reasoning: 

Many students have worked with TI-83s in high school, and are somewhat proficient with 

them. There are perhaps 20–25% of the students who have not used them, so I knew I 
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would have to explain how to do various kinds of procedures, such as graphing a 

function, zooming in, or finding roots. (Interview 2/ October 28) 

 

During this second integration attempt, Joe was pleased with the feedback he received 

from his students regarding their experiences learning with the graphing calculators. In class 

projects, Joe‘s students used their calculators to find zeros or graph functions. Joe believed his 

second technology integration attempt was successful because he took his students‘ 

technological backgrounds into account when selecting the computing technology tool he would 

use, and when preparing the class projects. Joe had learned that it was more convenient to use a 

technology tool that his students could use anytime they wanted instead of being limited to a 

software program such as Maple, which was accessible only in the school‘s computer lab. 

Joe‘s experiments with technology led him to conclude that for computing technology to 

be truly integrated into teaching and learning, it must become an integral part of the course. He 

also determined that to achieve the best possible results, he needed to allow his students to be 

actively involved in their own learning. Joe was willing to undertake the additional time and 

effort to figure out the best way to incorporate technology, and he claimed the results 

demonstrated to him that his extra efforts were quite worthwhile. Joe reported that his students 

were able to perform tasks using higher order concepts than they would have been able to do 

without the calculators, which, to him, indicated significant learning gains for the students. As a 

result of those experiences, Joe affirmed that integrating technology into the classroom could 

enhance and transform the learning process, and he continued to embrace the use of technology 

in his classroom. 

Dorothy‘s enthusiasm for using computing technology in calculus teaching started a 

decade before. She was inspired by a colleague‘s presentation that demonstrated the use of 

Internet resources in teaching. That demonstration intrigued her, so she began contemplating 
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ways in which various Web-based tools could serve her teaching needs. Initially, she considered 

using computing technology as a way of providing information more easily and with better 

visual representations than she could draw on the blackboard. As she explored further, Dorothy 

became impressed with how interactive technology could potentially enhance feedback 

opportunities. When she used technology to illustrate a concept, she found that her students had 

greater opportunities to formulate questions and point out specific elements they did not quite 

comprehend. Through this more informative feedback, Dorothy was able to adjust her 

instructional approach in a timelier manner than before. She recounted her path of 

experimentation as one that began with creating simple hyperlinks for her students to follow for 

further demonstrations, but that eventually transformed into a full-fledged online course that she 

has taught several times. When planning the online class, Dorothy initially structured it to be ―a 

good replica of what happens in the classroom‖ (Interview 2/October 26). Eventually, however, 

she perceived this approach to be unnecessarily restricting. 

Through her online teaching, Dorothy experienced what she called a paradigm shift, one 

that led her to the realization that, regarding the use of educational technology, she needed to 

change her beliefs about how to teach. Dorothy concluded that instead of adapting the 

technology to the traditional classroom environment, she should use the technology to create a 

completely new classroom experience, both for herself and for her students. Although the 

transformation began gradually, Dorothy noted, ―as I get more into [using technology], it‘s 

become less of an extension of a traditional classroom and more of a challenge to think of 

different ways of doing things‖ (Interview 2/October 26). 

Dorothy‘s decision to teach an online business calculus class turned out to be a major 

turning point in the way that she used technology to teach all of her classes. Not only did the 
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process of creating the course force Dorothy to gain technical knowledge about various 

computing tools, but it also stimulated her to reflect on the potential educational impact of 

teaching mathematics in a new way. During her first online business calculus class, Dorothy was 

surprised by the quality of online discussions and the depth of the mathematical dialogue 

occurring among the students. Because she did not see similar discussions taking place in her 

classes held in traditional classrooms, Dorothy attributed the depth of mathematical 

conversations to the online format of the new course. As a teacher, Dorothy said that she always 

wanted her students to be active participants in their own learning process, but she soon realized 

that succeeding in an online class requires participation from students in a way that the 

traditional classroom does not: ―It‘s only in the online classes that they really have to be actively 

engaged in learning. They don‘t have a choice. I‘m not standing in front of them and teaching 

calculus from scratch. They need to learn on their own‖ (Interview 2/October 26). Dorothy 

reported that she enjoyed her online mathematical conversations with students, and she believed 

that students enrolled in online courses must focus their mathematical thinking more than they 

have would have to with face-to-face instruction. She suggested that communicating 

mathematical concepts and questions in writing was more difficult than communicating verbally 

because it required a certain amount of thinking through to simply formulate a good question:  

In an actual class, a student can simply point and say, ―I‘m having a problem here.‖ 

When the teacher and students are not physically in each other‘s presence, then the 

students must do more than just point to a problem. They are forced to be more 

descriptive in asking a question, and this leads to greater understanding and more 

thoughtful questions. (Interview 2/October 26) 

 

This learning experience changed Dorothy‘s conception of teaching as well. She 

struggled at first with the increase in the amount of time required to monitor, respond to, sustain, 

and manage incoming and outgoing course communications. Dorothy said she was wrong to 
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think initially that when the online class was created, the bulk of her job was over. As Dorothy 

had since learned, ―There is an enormous amount of time commitment required from both the 

student and the teacher. My colleagues didn‘t know that I‘ve been spending far more time 

reading and responding to students‘ email messages than I would have spent on a lecturing 

course‖ (Interview 2/October 26). Although Dorothy admitted that she used to resent the time 

required to keep up with the needs of her online students, she eventually accepted the time 

investment after she saw the payoff in the performance of her students. 

Participating in different calculus curriculum projects made both Joe and Dorothy engage 

in reflection that led to what they saw as better calculus teaching. Their reflection focused on 

learning from and about their experience of teaching, and then linking it to their future actions. 

The main factor that stimulated such a change was their desire or motivation to value teaching 

and to be good at it. During these experiences, they showed a willingness and an ability to take 

risks in their actions and to do things differently. They discovered how to guide students from the 

sidelines rather than being the sage on center stage. Joe explained this transformation: ―My 

teaching style has changed. Now I set problems for the students and let them explain how they 

should go about doing it, and then I correct them if necessary‖ (Interview 2/ October 28). 

Dorothy summarized a similar transformation: ―Before, I told them how to do it. They learn 

better by explaining or experimenting by themselves than by me just telling them‖ (Interview 2/ 

October 26). Both professors had learned that there were different styles and different strategies 

that they could use and that they should always be willing to try out new strategies and modify 

existing ones to suit their students‘ needs in the course.  
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CHAPTER 5: TEACHING CALCULUS BUT NEVER USING COMPUTING 

TECHNOLOGY 
 

 

Lynn’s and Ron’s Conceptions of Mathematics and Learning Mathematics 

Lynn had 20 years of experience teaching college-level mathematics. She had taught 

various undergraduate and graduate level mathematics classes, and she believed her teaching 

style came from her own mathematical experiences.  

In her calculus classes, she focused more on doing mathematical proofs and providing 

reasons behind concepts than on the applications of calculus concepts. Lynn described 

mathematics as a very powerful and elegant process that is similar to a beautiful golden eagle‘s 

flight—one can rise as high as one desires. Similarly, Lynn compared calculus to a peacock; 

calculus showcases mathematics by presenting ―a beautiful display of some of the most 

fundamental mathematical thinking and methods‖ that are also scientifically very powerful 

(Interview 1/ September 12). In Lynn‘s opinion, calculus provided an open door to higher 

mathematics. It is primarily an analytical tool that represents the world in symbolic forms. Lynn 

stated that as an elegant intellectual achievement, ―calculus can reduce complicated 

mathematical problems to simple but precise rules and procedures‖ (Interview 1/ September 12). 

When teaching, Lynn emphasized practicing mathematical proofs, believing that the 

skills and thought processes involved in writing proofs is necessary for learning mathematics. 

According to her, proofs make the beauty of mathematics accessible to students, and the 

arguments found in proofs are easy for students to retain. She stated, ―A mathematician does not 

learn about proofs per se, but he or she learns about mathematical concepts through proofs‖ 
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(Interview 1/ September 12). Thus, Lynn claimed that the study of proofs provided a student 

with some of the most effective mathematical techniques and ideas ever developed. She thought 

that the ideas found in proofs could also be a springboard for advanced concepts the student 

might encounter in future studies. Thus, proofs can serve as important tools for clarification, 

validation, and deeper understanding. Lynn claimed, ―The only way to understand a 

mathematical result is to prove it yourself—find your own proof‖ (Interview 1/ September 12). 

She claimed that practicing proofs could provide a student with a developing ability to answer 

such questions as ―How do we know that? And why do we believe this?‖ She believed that 

answering such questions could demonstrate true learning and understanding of mathematics. 

Lynn thought that the process of learning mathematics was just figuring things out: ―Figuring out 

the meaning of definitions, ideas, and concepts to bring them into consideration‖ (Interview 1/ 

September 12). 

Instead of using computing technology, Lynn preferred her students to use pencil and 

paper so that they could put their ideas clearly in writing, and then she could interpret them. 

Lynn believed that the only meaningful way of learning mathematics was to actually do 

mathematics by hand. She thought it was a mistake to teach calculus with computing technology 

without teaching with paper and pencil first. I was struck by the degree to which she stressed the 

importance of understanding mathematics through learning with paper and pencil and the 

intensity of her resistance to the idea of being taught to ―press buttons.‖ She claimed most 

students had absolutely no experiential basis for understanding the abstract structure of 

mathematics, because they had not frequently worked with paper and pencil: 

You study math gradually. First, you start at the bottom. You pick things up with your 

fingers and you do everything by hand. Eventually, you start to step back and examine 

what you have been doing. One cannot understand methods and concepts unless one has 
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a certain amount of experience of doing things with one‘s bare hands. (Interview 2/ 

October 28) 

 

In Lynn‘s opinion, mathematics is a hierarchical subject that builds upon what one has 

already learned. Students cannot rise to a higher-level understanding without first having a solid 

foundation. She expressed that advanced concepts and ideas ―cannot be approached until 

corresponding elementary and intermediate areas have been covered‖ (Interview 2/ October 28). 

As a consequence, Lynn argued that it is not feasible for students to be learning basic 

mathematical techniques at the same time that they are supposed to be using more advanced 

techniques in applications and in problem solving in their other studies. Students‘ knowledge gap 

prevents them from being able to learn calculus well if they are still struggling with basic 

concepts. Lynn further explained why students should have had a solid knowledge base and a 

well-developed skill set for learning mathematics:  

[Students] don‘t even understand the order of operations, or they would use parentheses 

correctly. They square a binomial and get two terms instead of three. Students at the 

university entry level are supposed to master these topics, which are included at different 

grades, in the mathematics curriculum. (Interview 1/ September 12) 

 

Like Lynn, Ron had been teaching mathematics for a number of years. He was in his 30th 

year of teaching, had received multiple teaching awards, and had been involved in some 

curriculum development projects at Fairway College. Also similar to Lynn, Ron remained 

critical and held strong views on the appropriate and relevant use of technology in calculus 

learning. Ron considered mathematics to be a connected body of knowledge and believed 

instructors need to make connections between topics in order to help students understand the 

bigger picture. Students needed to see that learning is connected and that mathematics can be 

applied in many different contexts. For successful mathematics learning, Ron explained, students 
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need to construct ―an understanding of how mathematical ideas are related‖ (Interview 1/ 

September 19). 

Although Ron knew that mathematics was a challenging subject that many people did not 

like, he was proud to be in the minority of people who enjoyed the subject. Ron believed that 

practicing mathematics was a form of self-growth, and he loved the challenge of understanding 

abstract concepts. He stated,  

When I am doing mathematics, it feels as though what I am working on is real. You feel 

you can almost pull it into pieces and focus on each piece separately. Just like a puzzle; I 

like to put it back together. (Interview 1/ September 19) 

 

According to Ron, mathematics defines everything happening around us: ―Knowing mathematics 

opens one‘s eyes to the laws of nature and offers entirely new experiences‖ (Interview 1/ 

September 19). Thus, if one wants to learn about nature, it is necessary to understand the 

language—to know mathematics. He believed that, with the help of mathematical knowledge, 

one can attain a deeper understanding of everyday life:  

You don‘t need to have mathematical knowledge to blow bubbles, but if you know 

mathematics, you realize that those bubbles are only round because that‘s the most 

efficient energy form for them. Everything is mathematics, and mathematics is 

everywhere. (Interview 1/ September 19) 

 

Ron believed the main purpose of learning mathematics was not about learning a series of 

facts but about training the mind to think. He asserted that the focus of a college mathematics 

education should be on teaching people how to think. If students were not trained to think, Ron 

believed, ―the university has given them too little that will be of real value beyond a credential 

that may help them find a job‖ (Interview 1/ September 19). Ron claimed a student might 

graduate from college and find a satisfactory job, but that would be useless if he or she had not 

been taught how to think. However, Ron recognized that the burden of educating students was 

not entirely on the university; students must also contribute to their own education. He claimed 
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students often lack the motivation, focus, and seriousness of purpose necessary for productive 

education, and he had observed that such students often graduate ―without knowing how to think 

logically, write clearly, or speak coherently‖ (Interview 1/ September 19). According to Ron, 

learning mathematics and developing good critical thinking skills might actually ―help [students] 

learn ways to process facts and information that they can then use to evaluate, analyze, and 

synthesize solutions to problems‖ (Interview 1/ September 19). 

In analyzing the difficulties students face, Ron believed that the single greatest obstacle 

to learning mathematics was a student‘s reading deficiencies, particularly where symbols and 

abstractions were concerned. He clarified that by ―reading deficiencies,‖ he did not mean their 

lack of ability to ―pronounce words or associate names and symbols but rather their inability to 

comprehend the material‖ (Interview 2/ October 23). For example, in his calculus classes, much 

of many students‘ difficulty arose from their not knowing how to translate a word problem into 

an appropriate equation. 

Ron claimed that progressive knowledge development was the key to long-term progress 

in mathematics because everything that one learns is merely a foundation for the next level. Ron 

related learning mathematics to building a house. Learning mathematics requires a solid grasp of 

a large amount of basic knowledge and techniques, just as a solid foundation is required for the 

structural integrity of a house to remain intact. There are no concepts in mathematics that can 

exist without a foundation, just as all houses need solid foundations. Ron stated that students 

should master the fundamental skills and establish a knowledge base. Thus, every instructor‘s 

focus should be on teaching mathematics fundamentals. He believed that the reason many 

students do not understand fundamental concepts, such as why the fundamental theorem of 

calculus is true, is that ―they have not grasped what an abstractly defined function is, or what 
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derivative truly means‖ (Interview 2/ October 23). In Ron‘s opinion, students needed to take time 

to build a solid foundation of basic skills and concepts, constantly refining and adding to this 

base, so they could expand their knowledge. Having such a solid foundation in the basic 

concepts makes subsequent progress possible. Therefore, Ron noted that a failure to develop a 

proper understanding of fundamental concepts or skills would prevent the student from 

improving his or her mathematical knowledge:  

It is impossible to succeed in mathematics if you don‘t know what a function is or how to 

solve basic equations. You need to learn some basic ―tricks of the trade‖ and how to use 

them in a very simple context. (Interview 2/ October 23) 

 

Lynn and Ron both saw that the value of learning mathematics was not about learning a 

bunch of facts but about training the mind to think. They perceived that their main objective was 

to make students think by helping them strengthen their critical thinking and analytical skills, as 

well as expand their mathematical knowledge. They also believed that having a solid algebraic 

knowledge base and symbolic manipulation skills was a must for learning calculus. For 

successful mathematics learning, they both preferred that their students use pencil and paper so 

that they could put their ideas clearly on a piece of paper instead of using computing technology. 

Lynn’s and Ron’s Conceptions of Teaching Calculus 

In her calculus classes, Lynn chose to follow a chronological order when presenting 

concepts rather than using the order that appeared in the textbook. According to her, ―Calculus 

books are not written in an order that makes the most sense for [students‘] learning‖ (Interview 

1/ September 12). Lynn thought that following the order of material as presented in the books 

gave students the wrong impression by conveying a false history of mathematics. She 

reorganized the order of material in her syllabus so that she could present the information in an 

order that she considered more logical. To provide the historical background of calculus 
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concepts, Lynn taught concepts in a logical order, instead of strictly following a historical order 

in which concepts were developed chronologically, so that her students could understand the 

ideas of calculus and see how they were developed out of prior ideas. Using her own notes, Lynn 

claimed that she did not ―spend a certain amount of time by thinking about whether a given 

problem or theorem was true as stated‖ or working through the material and trying to determine 

how the author‘s exposition of this material dovetailed with her own conceptual framework 

(Interview 1/ September 12). Furthermore, she also expressed that just as ―writing a research 

paper solidifies one‘s understanding of some of the subject,‖ writing one‘s notes would force her 

to think about the interdependence between problems that she might not ―see merely working 

through or teaching out of textbook‖ (Interview 1/ September 12). 

Through her teaching, Lynn wanted her students to view calculus as an ongoing 

intellectual activity and not as an end in itself. In her classes, she told her students not to become 

focused on getting the right answer, but to focus on learning the process. She argued that if 

students understood the processes, ―they will understand why and when certain mathematical 

algorithms are implemented (Interview 1/ September 12). According to Lynn, a primary goal of 

teaching calculus was to enable the students to understand the foundational features that lie at the 

heart of calculus: ―Students need to understand rates of change [related rates] to see that the 

world is not linear‖ (Interview 1/ September 12). With the development of such an 

understanding, students could start to see calculus as a fascinating intellectual adventure that 

allows them to see the world differently. Furthermore, seeing that the concepts of calculus had 

been some of the most influential ones throughout human history, students could finally start 

appreciating why the concepts of calculus had been so powerful in their applications.  
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Lynn conceived of teaching as the transmission of knowledge and tried to address the 

issue of the students‘ understanding and use of the material. As the instructor, she recognized the 

importance of structuring the information and organizing her teaching to make it easier for 

students to understand or remember the knowledge and skills. She perceived good calculus 

instruction to include delivering the lecture, presenting relevant ideas and theories, 

conceptualizing as precisely as possible, and using concrete examples. She elaborated: ―It is 

important to give more concrete and updated examples. When you give examples, you can 

capture their attention and make it easier for them to remember‖ (Interview 2/ October 28). 

In her calculus classes, lecturing was the main instructional method that Lynn 

implemented. Lynn always started her teaching with a brief synopsis of the material covered in 

the previous session because she did not want to slow down the lecture. She explained that ―at 

the start I refer to the synopsis, and I show what we‘ve done‖ (Interview 2/ October 28). She then 

typically used her lectures to demonstrate calculus concepts, to present derivations of 

mathematics theorems, and to show examples of how concepts could be used to solve problems. 

She believed that good lecture demonstrations of applications of calculus concepts and ideas 

were ―absolutely indispensable as tools for helping students to relate calculus to the real world‖ 

(Interview 2/ October 28). Lynn thought the least effective way of using lecture time was to 

present the solutions to the traditional drill type of calculus exercises. Although Lynn 

acknowledged that it could be useful to first watch an expert exercise some mathematical skills, 

she argued that those skills still had to be learned through repeated practice; simply watching an 

expert was not ―the most important part of the learning mathematics process. If it were, the 

millions who watch professional sports would themselves naturally develop into top-notch 

players‖ (Interview 2/ October 28). 
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Just because Lynn emphasized that students must practice mathematics a lot on their own 

to develop their skills did not mean she believed that the role of the instructor was in any way 

diminished. On the contrary, she believed that instructors could have enormous effects on 

students through their teaching: ―You really can. ... Well, in that sense of stimulating a desire to 

find answers‖ (Interview 2/ October 28). She thought that she had significant control over how 

much her students would learn. As the instructor, she would present the calculus concepts and 

draw links between them and other parts of mathematics. She perceived it as her duty to motivate 

her students by ―opening the door, saying, ‗Here‘s something you didn‘t know, and it‘s 

worthwhile knowing, and you can find out‘‖ (Interview 2/ October 28). However, Lynn clearly 

saw the learning of the material as nonproblematic. If material was ―presented properly, so long 

as students paid attention, they would learn‖ (Interview 2/ October 28). Regarding the students‘ 

role in learning mathematics during lectures, Lynn asserted, ―They‘ve just got to sit there and 

pay attention‖ (Interview 2/ October 28). 

In explaining her approach to curriculum and subsequent assessments, Lynn stated that 

she was proud of setting high standards by developing challenging assignments and then grading 

them rigorously. She believed her students learned more when they wrestled with the material, 

which she claimed happened when she provided fundamental ideas, rather than just formulaic 

approaches that were easily learned and just as easily forgotten. Lynn asserted that the best 

evidence that her strategy worked came from the dozens of students who returned after taking 

one or more advanced courses to tell her that they could ―now appreciate just how much they had 

learned in [my] class‖ (Interview 2/ October 28). 

In addition to an insistence on a difficult curriculum, Lynn also insisted that her 

instruction not rely on any computing technology. She did not believe there was any way that 
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computing technology could be used to enhance her teaching or help to deliver knowledge to her 

students. She opposed efforts to push the integration of computing technology into calculus 

classes, remarking, ―There is probably a great place in education for hammers and shovels, too, 

but the calculus class isn‘t it‖ (Interview 2/ October 28). Lynn believed her responsibility was to 

teach her students how to think through a problem, and she could not see any value in providing 

shortcuts by using computing technology. Her classroom policy forbade the use of calculators on 

any test in her courses. Lynn allowed students to use calculators in class only to work on 

problems that she considered to be very complicated and difficult. Although she thought that it 

would be helpful to create graphs by using computing technology, she chose not to do so because 

she thought it just took up class time when she could ―easily draw a graph very quickly by hand‖ 

(Interview 2/ October 28). 

Lynn called the use of computing technology nothing but a ―showcase‖ of teaching 

calculus; she claimed that the technology could provide some intriguing and entertaining tricks, 

but lacked real substance. Although the use of technology might attract students‘ attention, Lynn 

believed it could also derail the instructor‘s efforts to help students learn the actual concepts. 

When asked which animal she would choose to describe the technology, Lynn chose an elephant. 

She thought technology, like an elephant, can be very helpful for some tasks, but it also has the 

potential to be very destructive: ―I like to look at elephants; everyone likes elephants because 

they are cute. They are really neat, and they can do a lot of stuff. But they are really just slow 

moving creatures‖ (Interview 2/ October 28). Lynn explained that elephants, like computing 

technology, may be beneficial for difficult tasks but not for simpler ones. For example, an 

elephant may be useful for moving large, heavy objects; however, it would be an inefficient use 

of time and energy to hoist a lightweight item onto an elephant‘s back in order to transport it. A 
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person could complete this task much more easily on his or her own. Similarly, computing 

technology may be useful for advanced level mathematical investigations; however, Lynn 

explained that students could solve simpler problems (such as those they encounter in calculus 

courses) more quickly and efficiently without the encumbrance of computing technology, which 

only serves to make the task unnecessarily complicated, thereby slowing down the students‘ 

progress. 

For Ron, the primary function of his calculus class was to provide experiences or 

exposure to thinking through abstract and technical material, which students found challenging 

because of the inherent abstraction and precision. Lamenting that so many students take calculus 

classes without possessing the necessary basic mathematical knowledge, Ron believed that 

students should not be allowed to take calculus until they had a good understanding of functions, 

as demonstrated by a clear grasp of algebra. If a student could not demonstrate a satisfactory 

level of algebraic fluency, Ron believed that the student was not ready for calculus and would 

likely fail his course. Complaining about the current trend of de-emphasizing mathematical 

proofs, Ron suggested that such trends diminish the rigor of calculus classes. As an example, he 

noted: 

Current reform movements have taken all of the brilliant ideas out; for example, what 

does it mean to have a limit? That‘s an idea you never hear about anymore. We‘ve taken 

those ideas out because the people coming in don‘t have the background for it. (Interview 

1/ September 19) 

 

Personally, Ron enjoyed solving equations and understanding how mathematical theories 

work in a problem-solving context. Based on his classroom experiences, Ron thought that 

students who were engaged in a variety of problem-solving activities tended to retain more 

information than those who received only lecture-based instruction. Accordingly, one of Ron‘s 

main goals as an instructor was to help his students discover how to apply general problem-
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solving strategies to a rich variety of problems. In all of his classes, Ron emphasized problem-

solving skills as the way to develop conceptual knowledge. He thought the investigation of 

practical problems should lead to formal definitions and procedures, instead of the other way 

around. Ron‘s experiences had shown him that students who focus solely on mathematical 

theorems and proofs often fail to understand how, why, or when to apply their knowledge. Ron 

observed, ―Sadly, students too often believe that passing exams defines mathematical learning, 

but they really do not understand most of the mathematics they are doing or why they are doing 

what they are doing‖ (Interview 2/ October 23). He believed that students graduate from high 

school without developing the necessary skills for solving problems. Ron claimed the goal for 

most students in high school was not to learn mathematics through understanding the problem 

but to get an answer that agreed with the one in the back of the book. As a result, students 

learned to do computations but never understood why a particular algorithm worked. In 

reflecting upon the prevailing attitudes among students towards mathematics, Ron said: 

[Doing computations] is almost irrelevant, as computers can do this. Students need to 

know mathematics, and not just do calculations. In my classes, only a few students 

actually know how to solve problems; the rest of them are sitting and waiting. They are 

waiting for the problem to be solved by somebody other then themselves, or they are 

waiting for me to tell them how to solve it. They show no initiative and are totally 

unfamiliar with problem solving. (Interview 2/ October 23) 

 

Ron typically gave his students some simple problems at the beginning of class and then 

followed up with more complicated problems. If his students had difficulty with complicated 

problems, Ron tried to break the problems into smaller parts because he believed that strategy 

helped the students see where to go with the problem. Ron noted, ―Sometimes [my students] 

look at a complicated problem and have no idea where to start. They just don‘t know how to 

apply what they know‖ (Interview 2/ October 23). In his classes, Ron told his students that 

arriving at a wrong answer is not necessarily a bad thing; it can lead to gaining a better 
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understanding of the concepts of the problem solving process, which is a lesson of the utmost 

importance. Ron encouraged his students to work together to solve problems because ―through 

collaboration, students learn that others‘ mistakes may actually be helpful in figuring out the 

problem as a whole. They discover that using and combining the techniques and ideas of others 

can help to simplify the problem-solving process‖ (Interview 2/ October 23). Ron had seen that 

when students compared and contrasted their solutions with those of their peers, they could learn 

to explain how they arrived at their answers. Ron noted that when students learned how to 

verbalize their reasoning process, ―they are actually learning more than if I just told them that 

their answer was correct‖ (Interview 2/ October 23). 

Ron also emphasized the need for students to develop a better sense of whether an answer 

that they generate is reasonable. In order to know if a conclusion is reasonable, Ron thought it 

was imperative that students understand enough of the conceptual underpinnings of the 

mathematical model to be confident in its predictions over the full range of conditions under 

which the process is applied. Ron compared the problem-solving process to swimming: ―It is 

important to work problems through and then check your answers, just like it is important to 

practice swimming in shallow water before diving into the deep end‖ (Interview 2/ October 23). 

Ron saw the presenting of material to students or students‘ completion of assigned problems as 

being the same as the students learning the material. If the material was presented clearly to 

students, then they would learn the material. He saw mathematics as intrinsically interesting and 

believed that the concepts of calculus, which he claimed had intrinsic interest for students, would 

motivate students to keep up with the rest of the course. Overall, Ron demonstrated a teacher-

focused information transmission model of teaching; he seemed to focus on how the students 
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appeared to respond to the teaching and the material, rather than what they might have learned or 

not learned. After teaching the related rate concepts, Ron stated:  

I was pretty sure they were all with me through it, and that‘s why I sort of went over 

things. I know they were sort of concentrating and that they were paying attention. They 

were nodding heads, so I knew that they were concentrating, and they were paying 

attention. (Interview 2/ October 23) 

 

In his calculus classes, as a policy, Ron encouraged students to use calculators on 

homework problems, but not during tests. He did not allow students to use calculators during 

exams, because he believed some questions would be much easier with their use, and he was not 

testing his students‘ abilities to find the answers by using computational technology. Letting his 

students use computing technology during a test would have prevented Ron from seeing ―how 

[students] are thinking about the problem, as well as gauging their mathematical understanding‖ 

(Interview 2/ October 23). When Ron was asked what animal he would choose to describe 

technology, his response was a work horse. Just as a work horse is useful for completing heavy 

and mundane work, so, too, computing technology, in Ron‘s opinion, is useful for carrying out 

the laborious calculations necessary to solve complex mathematical problems.  

Although Ron found computing technology extremely useful for doing mathematical 

research, he still preferred to perform mathematical calculations by hand rather than with a 

computer or calculator. Ron could not foresee himself integrating technology in any meaningful 

way into his calculus classes: ―I don‘t see [validity in] the argument that it can be used, or that it 

is an advantage for first and second semester calculus students‖ (Interview 1/ September 19). 

Although he was convinced that computing technology can be used to provide help with 

visualization in upper level classes, such as to demonstrate certain graphs or vector spaces, Ron 

could not envision using the same technology in regular calculus classes. When asked what it 

would take for him to integrate computing technology into his calculus classes, Ron‘s response 
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was ―I guess it would take a lobotomy. I just can‘t imagine doing it‖ (Interview 1/ September 

19). 

Ron perceived mathematics as work best performed with paper and pencil. He believed 

the main role computing technology can play is to help students visualize the mathematical 

properties under consideration. He did not, however, think the use of computing technology was 

necessary for creating a successful visual representation: ―I don‘t see why it is any better than 

what I can draw on the chalkboard‖ (Interview 1/ September 19). Ron believed that some 

instructors might choose to use computing technology if they have a hard time in getting a point 

across because having a visual component, such as graphs and pictures, can help to demonstrate 

certain principles. Ron said that he, however, did not have any difficulty in making visual 

components clear to students; therefore, he did not believe that computing technology would add 

any value to his teaching or to students‘ learning, and he did not think it would be useful in his 

calculus teaching. He could, however, imagine that computing technology had the potential to be 

useful, but it was not necessary to make the technology an integral part of calculus classes. Ron 

wanted to see examples of successful implementations of technology integration before he would 

be convinced that it would be beneficial to integrate them into his calculus classes: ―If I can 

somehow see how it would help [students] if we did use some technology in the classroom, then 

I probably would use it. But right now, I just can‘t see it. I would need to see how they do it 

first‖ (Interview 2/ October 23). 

Ron viewed technology as a tool and a resource, like a dictionary. He believed it should 

not be the main feature in mathematics instruction, but rather a supporting tool, at most: ―I am 

not against it in any real way, but I don‘t use it, purely because I don‘t think it is useful for what I 

have been doing‖ (Interview 2/ October 23). As a resource and a tool, Ron argued, computing 
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technology can be used to make students‘ work easier, but not to replace the need for developing 

one‘s own basic knowledge in learning calculus. According to Ron, the main problem is not the 

utilization of technology per se, but how it is used by students and instructors. He thought that 

instructors need to examine the purpose of the lesson—that is, the nature of students‘ current 

needs—and how the technology fits with that purpose. In upper-level mathematics classes with 

mathematically mature students, if the activities are well designed and used, the use of 

computing technology can increase the variety of problems that students can work with and 

ultimately solve. Ron did agree that the university mathematics curriculum should investigate 

taking advantage of computing technology to assist students in gaining mathematical 

understanding. Ron believed that gaining a solid mathematical foundation helps students to 

become powerful and thoughtful thinkers, communicators, and problem solvers. In mathematics 

instruction, however, Ron maintained his belief that the use of computing technology should not 

be an instructor‘s primary focus in teaching calculus. 

 Lynn and Ron both held this conception of teaching as a teacher-centered activity. Its 

main aim was to transmit knowledge to the students, who were considered passive recipients of 

information. Lynn‘s and Ron‘s calculus teaching was content centered, and their attentions were 

directed more towards the class as a whole, although that did not imply there was no recognition 

of individual differences. They tended to put more emphasis on the need to ensure that all 

students met the same externally imposed standard, rather than to tailor their teaching to suit the 

different needs of the individual students. In their calculus classes, the students‘ roles were 

reactive; that was, they were asked to internalize patterns of thought explained to them by the 

instructor and then to make those thought patterns a part of their own intellectual repertoires.  
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Lynn’s and Ron’s Experiences of Teaching Calculus 

Lynn and Ron both saw learning mathematics, especially calculus, not as a process of 

learning how to get an answer, but rather one of learning how to think. They believed that 

students should be able to understand what they are doing and be able to solve calculus problems 

without the use of technology. Recalling previous calculus teaching episodes, they were 

categorically opposed to the use of computing technology in their calculus classes based on their 

belief that a heavy reliance on technology would prevent their students from actually thinking 

through the problems. In Lynn‘s opinion, ―The iPod generation of today wants to be spoon-fed 

with little of their own effort. They think all answers are accessible at the push of a button‖ 

(Interview 1/ September 12). Ron expressed the same idea: ―Unfortunately, there are a lot of 

students becoming totally dependent on technology to do mathematics‖ (Interview 1/ September 

19). 

Lynn‘s calculus teaching style came from her own mathematical experiences. When she 

was a student, she had focused more on doing mathematical proofs and providing reasons behind 

concepts than on showing the applications of calculus concepts. Through her calculus teaching 

over the years, Lynn saw that the use of computing technology served as an obstacle to helping 

students learn basic mathematical skills and concepts. She recalled several instances when she 

had observed students who wanted or expected to be able to use their calculators for basic 

arithmetic calculations and mathematical operations. Witnessing those experiences continuously 

in her calculus classes made her believe that such early and heavy dependence on calculators 

prevented the students from developing a clear conceptual understanding of calculus concepts. 

Furthermore, those experiences convinced Lynn that a student could not be successful in calculus 

classes without a good foundation in algebra. She offered an example of students who had an 
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algebraic knowledge gap to demonstrate how computing technology could serve as an 

impediment for students‘ calculus learning: 

Ask students to calculate 8
-2/3

 [and] you will see many students write [using their 

calculators] 0.0552, and some will write 0.25, instead of 1/4. The first answer 

demonstrates students don‘t know how to use their calculators, but I am not happy with 

the answer 0.25 either. Although calculating such a power is quite easy for many, the 

procedure reflects considerable mathematical knowldege gap for those students who just 

punching keys to get the answer. You see that these students have difficulties in 

understanding negative and rational exponents and the rules of exponents. (Interview 2/ 

October 28) 

 

Lynn also thought computing technology got in the way of teaching calculus, and not just 

learning. She insisted that when students become dependent upon computing technology, they 

resisted developing a proper understanding of the underlying concepts. Lynn observed that 

especially the use of graphing calculators became a distraction and made students resistant to 

learning even fundamental concepts, such as the transformation of functions and the unit circle: 

―In one class, when I asked students if they knew how to graph 1/x, most of them answered yes. 

But when asked who knew the properties of the function, none of them could come up with an 

answer‖ (Interview 2/ October 28). 

Lynn thought that students should not have accepted computing technology as an 

authority, but rather as a medium to engage with as they were developing their understanding of 

mathematical procedures, structures, and relationships. She thought students ought to understand 

what they were doing rather than blindly trusting a machine to provide the correct answer. Lynn 

further explained that simply getting a correct answer did not also mean the method was correct 

or that the answer was always the best one. She wanted her students to understand the 

importance of developing a level of mathematical competency to decide whether the computing 

technology had provided a reasonable answer. Because computing technology might give 
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answers that are misleading unless analyzed intelligently, Lynn did not let her students use it in 

her calculus classes. She explained her reasoning:   

Students can perform very complex mathematical operations with the touch of buttons, 

but they lose the opportunity to reflect upon the actual calculations. Students often 

engage in trial-and-error, guessing the answer from feedback without developing a proper 

mathematical understanding. I think students gain more intuitive understanding about 

mathematics by actually going through the process rather than just pushing buttons and 

getting an answer. (Interview 2/ October 28) 

 

Similar to Lynn‘s experience, one of the main reasons Ron provided for not encouraging 

his students to use computing technology in his calculus classes was his consistent observation of 

its detrimental effect on the development of a student‘s sense of numbers. Ron was discouraged 

by his students‘ lack of ability to do basic arithmetic, which he attributed to the overuse of 

calculators: ―My experience is that there are students who have used calculators so extensively 

they don‘t even understand basic arithmetic from grammar school‖ (Interview 2/ October 23). He 

said that early introduction and overuse of calculators prevented some students‘ development of 

a sense of numbers. He claimed to have students who ―did not know what the square root of 16 

is,‖ and he declared, ―I am old enough and conservative enough to think this is scandalous‖ 

(Interview 2/ October 23). Ron witnessed many of his students‘ lack of ability to do basic 

arithmetic, which he considered an unquestionable mathematical skill that they should have 

mastered before they started to learn calculus. He claimed to have several students in his calculus 

class who could not do problems that involved multiplying two digit numbers: ―The students had 

to multiply 13 by 65, but I didn‘t allow them to use a calculator. So this one student wrote the 

number 65 thirteen times in a row and added them all up‖ (Interview 2/ October 23). 

All these experiences convinced Ron that the availability of calculators made students 

lose their number sense. He claimed that undergraduate students do not have a sense of or a 

desire for doing arithmetic in their heads because of the overuse of calculators. He contended 
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that an inappropriate use of calculators might also interfere with the students‘ ability to 

understand the meaning of fractions and to compute with fractions. Ron found that students are 

especially losing their capability to notice detail, which is a skill required to understand concepts 

in algebra. He observed: 

It is hard to learn factorization if you have no number sense. If you don‘t have a 

calculator, it is a lot easier to multiply two numbers by breaking them up into intelligent 

parts. I think if we do more mental math and more mathematics without a calculator, we 

can develop a better sense of the distributive property and all the different parts you can 

break a number down into. (Interview 2/ October 23) 

 

One of the reasons Ron was reluctant to invest his time in learning how to integrate 

computing technology into his calculus classes was that he believed that the integration of 

computing technology was not emphasized in his department. There was no incentive structure 

in place to encourage technology integration efforts, and there was no clearly articulated vision 

for how technology could be effectively integrated into mathematics courses. According to Ron, 

the attempts to integrate technology into mathematics courses were in actuality attempts to put a 

good face on the department, but without true conviction behind the efforts. Ron explained, ―It is 

required for a mathematics department to appear more modern or forward thinking in the eyes of 

the university. It is not necessarily clear [throughout the department] that this is a good thing‖ 

(Interview 2/ October 23). Ron claimed that when he examined the gap between the promises of 

technology in calculus teaching and learning and the reality, what he found was ―a lot of wishful 

thinking.‖ In theory, he could see that computing technology had the potential to be used to 

produce better calculus instructional practices, but his own experiences with students in the 

classroom had demonstrated the opposite effect.  

Through their previous calculus teaching initiatives, Lynn and Ron both became 

convinced that when students became dependent on a graphing calculator, they did not develop a 



117 
 

proper understanding of the underlying concepts of calculus. These professors‘ previous negative 

experiences of teaching and learning calculus with computing technology had convinced them 

that especially the use of graphing calculators became a distraction and made students resistant to 

learning fundamental concepts of calculus such as the limit and maximum and minimum 

problems. They observed that students tended to blindly accept computing technology as an 

authority rather than as a medium to engage with as they develop an understanding of 

mathematical procedures, structures, and relationships. They wanted their students to understand 

what they were doing, rather than blindly trusting a machine to provide the correct answer. They 

also wanted their students to understand the importance of having a level of mathematical ability 

sufficient to decide whether the technology had provided a reasonable answer.  
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CHAPTER 6: TEACHING CALCULUS AFTER ONCE USING COMPUTING 

TECHNOLOGY 

 

Ken’s and Janet’s Conceptions of Mathematics and Learning Mathematics 

Ken had 8 years of experience teaching college-level mathematics and had received a 

teaching award from his previous institution. He took pleasure in mathematical research, and he 

described moments of exicetment he had experienced when he was engaged in it. Ken eagerly 

explained the thrilling sensation a mathematician got from doing mathematical research by 

seeing farther, as when he has been ―struggling with a lack of understanding,‖ but all of sudden, 

he ―finds the right way to think about a problem‖ (Interview 1/ September 18). 

Ken liked mathematics as a subject because it was very logical, and he stated, ―Math is 

about thinking clearly and precisely. I think there is something wrong with society to think that is 

a bad thing‖ (Interview 1/ September 18). For Ken, learning mathematics was not about 

memorizing facts, but a process of learning how to think. He believed that mathematics is not 

―what ends up on the board; mathematics is what happens in our head‖ (Interview 1/ September 

18). For Ken, the primary function of learning mathematics was to provide experiences or 

exposure to thinking through abstract and technical material. Lamenting that so many students 

were taking his calculus classes without possessing the necessary basic mathematical knowledge, 

Ken believed that the students should not have been allowed to take calculus until they had an 

extensive understanding of functions, as demonstrated by a clear grasp of algebra. If a student 

had not demonstrated a satisfactory ability to perform algebra fluently, Ken believed that the 

student was not ready for learning calculus and would likely fail in his course.  
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In Ken‘s opinion, mathematics is a hierarchical subject that builds upon what the student 

has already learned. If a student was still struggling with basic concepts, that knowledge gap 

would prevent the student from being able to fully grasp calculus concepts. Ken claimed that 

developing a successful mastery of calculus was dependent upon first gaining a solid 

understanding of algebra. He noted that true algebraic competence includes not just learning ―the 

rules for algebraic manipulations but also understanding the logical reasons that underlie those 

rules‖ (Interview 1/ September 18). He stated that the development of competence in algebra 

required that students be able to draw on their previous mathematical experiences in order to 

monitor their own progress and figure out the appropriate next step in a problem. 

Ken defined learning mathematics as his students achieving an acceptable level of 

mathematical competency. His definition of mathematical competency included the abilities to 

devise mathematical arguments to justify mathematical claims, to follow and analyze others‘ 

justifications of claims, ―to understand what mathematical proofs and conjectures are and how 

they differ from other kinds of mathematical reasoning,‖ and to handle the scope and limitations 

of given concepts (Interview 1/ September 18). Ken stated that he viewed learning as involving 

basic transmission of information; however, my classroom observations indicated that he 

frequently engaged students in the lecture. He did not simply assume that what he said was 

absorbed; he continued to ask students questions throughout the lecture in order to make sure 

that they comprehended the lesson. For meaningful mathematics learning, Ken believed that 

placing an emphasis on grasping the meaning behind the concepts and allowing time for self-

discovery was important. During his class lectures, he stated that he tried to facilitate students‘ 

understanding by using a Socratic method to guide the conversation: ―In my experience, if 
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students are simply given an answer, they are not forced to go through any thought processes to 

figure out the problem‖ (Interview 2/ October 23). 

Ken also expressed a personal belief in the beauty of mathematics, and he enjoyed 

sharing a subject in which he found beauty. He also mentioned the challenging aspect of 

mathematics as a discipline; in fact, the challenge he found in mathematics had always appealed 

most to him. In addition to enjoying conversations with people about mathematics, he viewed 

teaching mathematics as ―a pathway to meaningful discussions‖ (Interview 2/ October 23). Ken 

described learning mathematics as like learning to dance or play an instrument: ―It takes so much 

practice to get the feeling of certain movements into one‘s fingers or legs‖ (Interview 2/ October 

23). According to him, learning mathematics required a great deal of practice to attain a level of 

mastery over mathematical concepts; therefore, memorization was a necessary evil. For Ken: 

It [doing mathematics] requires a lot of practice. I mean, it is not like they [students] 

should be sitting comfortably there and just watching me do it—like sort of attending a 

concert when somebody plays piano and thinking that they are going to learn by just 

watching somebody. I want them to get their hands dirty and, you know, learn the 

concept. I want them to do a lot of problems. (Interview 2/ October 23) 

 

According to Ken, mathematics learning consisted primarily of two components: the 

formal symbol manipulation, which was relatively straightforward and routine, and the more 

complex mathematical modeling. In Ken‘s conception, mathematics was a symbolic language as 

well as a tool one used in order to think and analyze. The importance of symbolic fluency hinged 

upon symbols‘ roles as simplifiers; they allowed people to express certain ideas briefly, 

accurately, and eloquently. Thus, the development of symbolic fluency was necessary for 

understanding abstract mathematical structures, concepts, and patterns. Ken described symbolic 

language as a medium to create mathematics and symbols, as well as a necessary tool to express 

mathematical thinking. Ken believed that symbolic language is ―like using notes to record music 
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in your head. You can use different notes to create different musical tunes. Once you understand 

the rules, you can start being creative and expressing yourself‖ (Interview 2/ October 23). 

Regarding the use of computing technology in mathematics, Ken was concerned about 

possible interference with learning because he thought that his students lacked the maturity to 

use the technology in a way that would further their mathematical understanding. He thought the 

use of computing technology prevented some students from developing logical thinking skills, 

which he contended should be the primary purpose of learning calculus. Ken said that the use of 

computing technology, especially the calculator, gave ―students a false sense of confidence about 

their mathematical ability.‖ He expressed the concern that students spent far too much time 

trying to learn how to use the calculator, ―instead of learning how to do the mathematics‖ 

(Interview 2/ October 23). Consequently, they focused on learning technology skills, but not 

necessarily on how to think logically when organizing and processing information. Although 

Ken did admit that a graphing calculator could potentially provide motivation and assistance, its 

positive effects would likely be overshadowed by the inappropriate dependence on computing 

technology that students developed: ―If a student can‘t multiply a number by ten or by negative 

one without whipping out his calculator, he is demonstrating an unfortunate lack of number 

sense. The calculator is hindering the learning process instead of helping it‖ (Interview 2/ 

October 23). 

Like Ken, Janet also emphasized the ways that learning calculus could positively affect 

students‘ logical reasoning abilities. Janet had earned an M.Ed. in mathematics education, and 

her undergraduate degree was in business. She was an assistant professor of mathematics at 

Fairway College at the time of the study. She had taught 2 years at a high school prior to 

teaching at Fairway and had 6 years of experience teaching college-level mathematics. Janet 
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believed that the number of undergraduates she had taught provided her with a certain 

perspective on teaching mathematics as well as a wisdom that she was willing to pass on to 

students. She also thought that calculus concepts could change the way students think without 

the students even realizing it. She stated that calculus was everywhere: ―It is a significant 

achievement of human thinking that should be enjoyed and appreciated by all students‖ 

(Interview 1/ September 5). 

Janet perceived calculus as a powerful tool that provided many different ways of thinking 

and looking at problems. She knew there was a difference between the kinds of problems that 

someone at the precalculus level could work on, as opposed to someone who had studied 

calculus. She believed that without calculus, people would be attempting to solve problems 

without the fundamental tools and unique thought processes that come from learning the subject. 

According to Janet, most students who had taken her calculus class would not directly use 

calculus in their day-to-day lives, but all of her students should use some basic concepts and 

thinking skills that were shaped by calculus. For instance, the ability to think in more continuous 

terms rather than in discrete terms can help people deal with life changes: ―Calculus describes 

and deals with motion and allows us to view even static objects in a dynamic way.‖ (Interview 1/ 

September 5) 

Janet saw mathematics as paper-and-pencil work. For learning mathematics, Janet stated 

that the development of basic skills was a must. Without mastering the fundamental building 

blocks of mathematics concepts (e.g., finding the derivatives of certain functions), students 

cannot move on to the complex mathematical concepts and their applications. She expressed that 

concept by comparing the process of learning mathematics to building a house: ―You need a 

solid foundation to start with. As an instructor, I am eager to build a solid foundation, and then to 
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move on. Without that solid foundation, students are left building houses of cards‖ (Interview 1/ 

September 5). Janet believed it was her job to help students develop a strong foundation through 

logically structured lectures, and her interview transcripts contained several references to 

frequent quizzes and tests to make sure that the students had learned the material: ―I give [the 

students] a lot of assignments, and a lot of quizzes to force them to study. Basically this is the 

only way that I think will work‖ (Interview 1/ September 5). Without such constant assessment, 

Janet claimed that students would not study or learn the material and would, therefore, not have 

the solid foundation of knowledge necessary for learning future material. 

Janet‘s conception of seeing mathematics as paper-and-pencil work shaped her vision of 

computing technology‘s integration into calculus classes. She saw the use of technology as a 

more advanced skill, and she claimed that most students in calculus classes did not possess the 

mathematical maturity or the knowledge base required to handle learning mathematics in 

conjunction with technology. She observed, ―I want to work on how we learn the old-fashioned 

way. Learning with technology is a more advanced skill. We have to have some foundation 

before we add in technology‖ (Interview 2/ October 16). Janet thought that there was a great deal 

of difference between knowing something and understanding it. She argued that the use of 

computing technology could deceive some students into believing that they ―know a lot about 

mathematical concepts, even though, they actually do not understand or possess the required 

skills to even approach the concepts‖ (Interview 2/ October 16). Without achieving a certain 

degree of competence in basic skills, Janet argued, her students would not be able to handle more 

advanced mathematics. As she put it, ―There are basic skills I want them to have, and they need 

more practice with them‖ (Interview 2/ October 16). In her opinion, trying to learn mathematics 

without doing it by hand first was putting the cart before the horse. 
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According to Janet, power gained with the use of technology required control, and if 

students had not mastered the necessary mathematical concepts, it was not helpful to give them 

new tools that they were not capable of mastering. She claimed that if ―students do not know 

enough algebra to solve a certain problem, then they will lack the fluency or experience to use 

computing technology effectively and confidently in problem solving‖ (Interview 2/ October 16). 

Janet believed that using computing technology before mastering basic skills only hindered 

students‘ skill development and mathematical understanding. She did not, however, object to the 

use of computing technology once students had learned the concepts and developed the requisite 

skills. For example, she did not object to a Calculus II student finding the derivative of a function 

by using a TI-89 calculator; however, she opposed the use of the same device by the same 

student doing integration. She explained,  

I am uncertain about introducing a calculator to multiply numbers for the first time. I 

want students to be able to multiply numbers by hand, but at the same time, I don‘t want 

students always to do it by hand. (Interview 2/ October 16) 

 

When introducing a mathematical concept for the first time, Janet maintained that a technology-

free approach was best for students‘ learning. 

The learning outcome Ken and Janet sought, as a matter of traditional expectation, was 

students‘ knowledge of the curriculum material as demonstrated by their answers to questions in 

both informal and formal settings. They acknowledged that students may have had problems 

understanding the material, and they saw the clarification and illustration of textbook material as 

a key part of their role. By explaining the ways in which textbooks represented and structured 

established knowledge, they believed they helped their students to understand the knowledge as 

it was presented. They believed that if a student were struggling with basic concepts, that 

knowledge gap would prevent the student from being able to fully grasp calculus concepts. 
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Furthermore, both Janet and Ken held the belief that many of their students lacked the ability or 

motivation to grapple with difficult mathematical concepts and, in general, lacked the will to 

succeed. 

Ken’s and Janet’s Conceptions of Teaching Calculus 

Ken viewed teaching as a basic transmission of information, and he perceived his job as 

presenting concepts and ideas in a clear and comprehensible manner. For him, students needed to 

show an interest in learning mathematics, and the rigorous nature of calculus classes should not 

be compromised. Because Ken found mathematics intrinsically challenging and beautiful, he 

perceived his job as showing and sharing that beauty with students by ―helping them move 

forward when they stumble on a roadblock as they learn‖ (Interview 2/ October 23). 

Although Ken stated that he saw teaching mathematics as transmission, he frequently 

engaged students in the lecture to ensure that they were appropriately involved. Ken did not 

simply assume that what he taught was absorbed; he continued to ask students questions 

throughout the lecture in order to make sure that they comprehended the lesson. Ken believed 

that placing an emphasis on grasping the meaning behind the calculus concepts and allowing 

time for self-discovery was important. However, he noted that attempting to carry that out in the 

classroom was an inefficient use of classroom time because it took away from the time needed to 

cover all the material on the syllabus. In his calculus teaching, his main emphasis was on 

covering the whole syllabus and meeting the examination requirement. This conception could be 

illustrated clearly by the following comment of his perceived responsibility as an instructor: 

You should teach [the students] what they should know about calculus. I will cover the 

syllabus fully. I will not skip any part of it, and I will not teach only the materials that 

will be examined. I always teach them all the topics included in the syllabus. (Interview 

2/ October 23) 
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According to Ken, one of his main responsibilities as a mathematics instructor was to 

broaden students‘ understanding of mathematics by developing their problem-solving skills. 

Therefore, Ken believed that by working on challenging mathematics problems, students could 

learn how to approach problems in ways they might otherwise never have considered. 

Consequently, he believed that if students learned problem-solving skills in his calculus class, 

they might then be able to apply similar mental strategies in other aspects of their lives. In his 

experience, Ken found that students in general liked to avoid thinking critically; however, he 

hoped that, through problem solving, mathematics could help students broaden their critical 

thinking and reasoning abilities. Ken said, ―I think some of these students don‘t use their brains 

that much, and math, I think, kind of forces them to actually use their brains‖ (Interview 1/ 

September 18).  

For Ken, the primary function of his calculus class was to provide experience or exposure 

to thinking through abstract and technical material, which some of his students might find 

challenging because of the inherent abstraction and precision. He lamented that so many students 

were taking calculus classes without possessing the necessary basic mathematical knowledge, 

and he believed that students should not be allowed to take calculus until they had an extensive 

understanding of functions, as demonstrated by a clear grasp of algebra. If a student had not 

demonstrated a satisfactory ability to perform algebra fluently, his or her knowledge base and 

skillset was not extensive enough to properly succeed in calculus, and would probably result in a 

failing grade. 

Ken‘s teaching also reflected a content-oriented approach more than a process-oriented 

approach. He viewed the role of instructor as a guide who attempted to present the content in a 

clear and logical manner by stressing underlying mathematical procedures and logical relations 
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among concepts. He believed that it was not good enough for his students to know only how to 

carry out mathematical procedures; instead, Ken believed that ―students also need to understand 

the logic behind mathematical procedures‖ (Interview 2/ October 23). Although Ken also 

believed that part of his job was to convince students that calculus itself was worthwhile, he had 

never considered how to link that belief directly to lecturing in an attempt to persuade students 

that his lectures were worth listening to. He was very proud of not teaching in a canned 

presentation kind of way: ―I don‘t want to engage in endless hand-holding or walking students 

step-by-step through by saying, ‗These are the three things to know—here, learn them … boom, 

boom, boom‘‖ (Interview 1/ September 18). Building on that strategy, Ken tried to encourage 

students to think creatively. As an instructor, he attempted to enhance students‘ conceptual and 

practical understanding of mathematics through integration of concepts.  

Part of Ken‘s teaching involved presenting the material in a logical manner. According to 

Ken, progressive knowledge development was the key to long-term progress in mathematics 

because everything that one learns becomes a foundation for the next level. He believed his 

responsibilities as a teacher were to show his students what they needed to learn and to then 

ensure that they accumulated the required knowledge. He clarified by stating that ―if a student 

does not understand something, he or she can simply ask,‖ and he would ―find another way to 

explain it to them‖ (Interview 2/ October 23). Ken thought a good teacher should dominate the 

classroom and its elements, and the most important ways he could be a good teacher were to 

prepare lesson plans for efficient use of class time, prescribe course objectives, and disseminate 

information clearly and effectively. His goals for his students were that they learn the material 

quickly, remember it well, and reproduce it on demand.  
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Beyond simply teaching calculus, Ken also wanted to make a difference in the lives of his 

students, and he was committed to being a good role model for the undergraduates. Although 

Ken described his courses‘ subject content as really important, he also believed that his teaching 

could help students learn about life and prepare them for decisions they would have to make in 

the future. Ken claimed to derive great pleasure and joy from helping struggling students if he 

saw that they were sincerely trying to learn. He attributed the high failure rates in his calculus 

courses, however, to the challenging nature of mathematics as a subject, combined with the 

students‘ avoidance of seeking deep intellectual challenges. Ken stated, ―My responsibility is not 

to babysit my students and not to make them feel comfortable with the concepts and everything. 

My responsibility is to get them interested enough to come to class and to do the work that they 

are supposed to be doing‖ (Interview 1/ September 18). 

In addition to promoting students‘ interest in calculus, Ken also thought that his 

instruction should help them develop ―mathematical competency‖ (Interview 1/ September 18). 

For Ken, mathematical competency implied developing proficiency at detecting, recognizing, 

and utilizing mathematical structures, and then drawing useful connections among different 

structures. Ken complained about the decrease in the rigor of calculus books and the removal of 

certain concepts like Kepler‘s Laws over the years. He also complained about the current trends 

of de-emphasizing doing mathematical proofs and emphasizing the use of computing technology, 

and he believed such trends diminished the rigor of calculus classes. He claimed that the 

publishers had simplified the language of calculus books to remove the vigor of calculus ideas: 

―They [the book publishers] took big words out because today‘s students don‘t know how to 

pronounce three-syllable words: ‗OK, we won‘t say rectilinear motion; we will say motion along 

a line.‘ All calculus books are like that‖ (Interview 1/ September 18). 
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In discussing the changing atmosphere of the calculus class, Ken explained that he had 

used computing technology in the past but had since decided not to use it in his calculus classes. 

He explained that he was comfortable with using a traditional lecturing method, and the 

additional issues presented by the integration of computing technology were not welcome 

changes in his classes. He did not have a clear idea of how he might actually use computing 

technology to better teach calculus to his students. He acknowledged that computing technology 

could be a valuable tool to build students‘ conceptual understanding, but only if it were used 

appropriately. For example, Ken thought that computing technology could be used effectively in 

upper level mathematics classes or with high-level students who were expected to have the 

ability to analyze problems, apply mathematical tools to establish mathematical models, and use 

calculus to solve the problems. In a regular survey-level calculus class, however, where Ken 

perceived the goal to be learning how to learn, he did not want the technology getting in the way. 

According to Ken, the aims of teaching a basic survey level calculus course were that ―students 

should gain a basic knowledge of the concepts and theories of calculus, understand the idea of 

analysis, develop skill in corresponding computations, and learn to work independently‖ 

(Interview 2/ October 23). 

Regarding mathematics instruction, Janet expressed concerns similar to those of Ken; her 

main focus was to emphasize the mathematical content and the development of fundamental 

skills. Janet thought helping students develop strong mathematical skills and a solid knowledge 

base were the most important goals in teaching calculus. She believed that laying a solid 

foundation was very important, and that ―the development of basic skills should be a part of the 

education of every student‖ (Interview 1/ September 5). 
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In her calculus classes, the principle of simplicity guided Janet‘s teaching. She believed 

that one of her main responsibilities as an instructor was to organize the class in such a way that 

her teaching would be clearly articulated and presented. In that way, Janet believed that students 

could easily follow her lectures. She said that one of the lessons she had learned early in her 

teaching career was that ―it is essential that I work through all of the computations, including the 

ones I think are routine‖ (Interview 1/ September 5). Janet tried to use simple language when 

teaching; for example, she used the word steepness as opposed to slope. She further clarified 

what she meant when she said she employed simple language: 

Simple doesn‘t mean dumb. Simple means direct and efficient without anything 

extraneous. I try to take away anything confusing by presenting the concept, algorithms, 

and ideas in a clear and logically progressive manner. (Interview 2/ October 16)  

 

Janet believed that successful calculus instruction started with the creation of a well-

thought-out lesson plan, much like an architect‘s starting point when building a house was to first 

create an architectural design of the house. Once the lesson plan is completed, ―the instructor 

should decide what tools to use for teaching‖ (Interview 1/ September 5). The creation of lesson 

plans should come first, and the selection of instructional methods and educational tools should 

come second. Janet thought technology should be used if and only if it assisted students‘ learning 

and deepened their experience. Then, an instructor could choose to utilize technological 

investigations to solidify and further the students‘ already existing understanding. Janet‘s 

reasoning was predicated on the belief that ―the chain of reasoning and the steps taken to solve 

mathematical problems and equations are important‖ (Interview 2/ October 16). And she thought 

her students would not be learning reasoning skills if she allowed them to overuse computing 

technology. Janet mainly regarded computing technology as only a teaching aid that helped 

facilitate her work and the presentation of her classroom material. She did not view her students 
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use of computing technology as a necessity that needed to be a fundamental part of her 

classroom instruction. However, she believed that computing technology could be occasionally 

utilized by instructors to improve teaching methods. For Janet, teaching was a form of 

storytelling. During our first interview, Janet described teaching as follows: 

It [mathematics] is a story; I like being a story teller. When you are preparing a class or 

the curriculum for a whole semester, you are telling a story. I enjoy telling what I think is 

a good story or a beautiful story. As far as how that colors my lectures, when I create a 

lecture or a series of lectures, I look at it as a story. Do these parts link together and have 

flow like a good story? Is this a cohesive thing that makes sense? If it is just a bunch of 

disparate little facts, then that loses effectiveness. (Interview 1/ September 5) 

 

In a calculus class, Janet claimed that the use of computing technology could affect only 

the interface of the story, or how the story was presented, but it did not materially affect one‘s 

understanding of that story. In her calculus teaching, she used technology such as PowerPoint 

and a SMART Board to help her make the story accessible to the students, and she claimed that 

those types of technology were useful in the classroom. She wanted to accelerate the pace of the 

class and to focus the students on understanding the information rather than on note taking. She 

reported that she had been eager to adopt SMART Board technology in her calculus classes 

because it would not require her to make any major changes in her teaching. For Janet, one 

advantage of using SMART Board technology to teach calculus was obvious: ―The fact is that on 

the chalkboard, if I write a bunch of stuff and fill a board with chalk, it will eventually be erased. 

Then it‘s gone. With the SMART Board, every page is saved‖ (Interview 1/ September 5). 

According to Janet, an instructor should not be creating lesson plans to highlight or 

introduce technology into the classroom. Instead, she tried to create lesson plans that highlighted 

the development of students‘ critical thinking and problem-solving skills. In other words, she 

believed that there must be ―a convincing reason why a particular [computing] technology has to 

be used to meet the objectives of the lesson‖ (Interview 2/ October 16). Otherwise, she thought 
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she risked the students‘ learning becoming too dependent on a particular computing technology. 

According to Janet, when instructors teach calculus, they ―should be teaching what the concepts 

mean, and not just how to do them with the calculator‖ (Interview 2/ October 16). After an initial 

introduction phase, however, once students had mastered a concept and the same concept was 

then required to reach a more complex abstract objective, Janet thought it was appropriate to use 

computing technology to move more quickly through the previously mastered steps. Even with 

that use, however, Janet cautioned that a good instructor should incorporate the technology into 

the calculus teaching thoughtfully: ―The best thing about integrating technology is the process of 

blending thinking skills and hands-on skills together‖ (Interview 2/ October 16). She believed 

students should have solved a mathematical problem manually the first time in order to 

completely understand the details of the process. As an example, Janet described how the use of 

graphing calculators prevented some of her students from being able to sketch a curve by hand. 

She stated, ―I don‘t like them having the calculator when they work on curves. I‘m really old 

fashioned: I want them to be able to think through it‖ (Interview 2/ October 16). 

Janet did not allow her students to use any computing technology on examinations or in 

class, because she thought her students were generally weak in their basic skills and that they 

lacked knowledge in algebra and trigonometry. If she were to allow her students to use 

calculators to circumvent the need for those basic skills, she believed the students would have 

had difficulty developing an acceptable level of proficiency. Without achieving a certain degree 

of competence in basic skills, Janet argued that her students would not be able to handle more 

advanced mathematics. As she put it, ―There are basic skills I want them to have, and they need 

more practice with them‖ (Interview 2/ October 16). She thought graphing calculators did too 

much of the work for the students, and she wanted them to learn how to complete certain 
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mathematical processes without the assistance of calculators. When sketching curves, Janet 

specifically told the students to put their graphing calculators away and then asked them to do the 

first and second derivative tests without a technological aid. Janet thought that most students 

used a calculator to get away from the thinking component of doing mathematics, and that they 

were often confused about how to interpret the output of the calculator because they had not 

learned the underlying concepts. Janet‘s reasoning was as follows: ―The technology does the 

crunching, but it doesn‘t do the thinking. I emphasize the thinking part of the process when I 

explain why I don‘t allow graphing calculators in my classroom‖ (Interview 2/ October 16). 

Janet lamented that students‘ heavy reliance on calculators had caused many of them to 

forget how to think. Janet‘s policy that forbade the use of calculators allowed her to teach them 

how to think again. She said, ―Technology does not tell students what methods they should use 

to solve problem; even when they use technology, students still have to be able to set the 

problem up themselves‖ (Interview 2/ October 16). In calculus courses, Janet reported that the 

students tended to uncritically accept the output provided by computing technology. She thought 

that they viewed the technology as foolproof, or as a mathematical authority, and she believed 

that they would internalize new concepts better if they worked on problems without using 

technology. Furthermore, she pointed out how the limitations of some graphing calculators might 

lead students to inaccurate mathematical information. For example, most graphing calculators 

were incapable of displaying a discontinuity adequately. Janet witnessed her students‘ naive 

acceptance of a graph and seeing the vertical asymptote as a part of the graph. Ultimately, her 

students‘ dependence on graphing calculators and their quick acceptance of graphs convinced her 

not to let them use calculators in her calculus class, because the calculators interfered with her 

teaching. She noted: 
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[Calculators] become a crutch. I don‘t like it when Calculus III students or Calculus II 

students are not able to graph the function f(x) = x
2
 without touching their calculators. 

And I don‘t let them touch calculators when this is a basic quadratic function that they 

need to be able to graph on their own. I want them to have a mental picture of what they 

want to get. (Interview 2/ October 16) 

 

Janet did not anticipate that her students would develop new mathematical understanding 

by using calculators. Rather, she claimed that most of the students used them as a substitute for 

skills that ought to be learned, and that belief led her to view graphing calculators as potentially 

harmful tools. This perception controlled her attitude and behavior. For example, even though 

she thought it was sometimes harder for her to justify finding limit values analytically, Janet still 

insisted that her students learn how to find the limit of functions analytically. In her opinion, the 

ability to find limits analytically demonstrated students‘ understanding of the concept and their 

mathematical readiness to move to the next level. Janet later explained, ―When it comes to the 

way I expect them to format their answers on a test, I am looking for analytical solutions. I want 

them to be able to know all those things‖ (Interview 2/ October 16). 

Like Ken, Janet believed that before any technological tool was used in teaching calculus, 

students should have achieved the required foundational skill level and should be ready to 

proceed to an investigative level where the instructor could use computing technology. She 

perceived technology to be appropriate only as an add-on to traditional instruction; as a student-

utilized tool, she believed technology had an inherently detrimental effect on students‘ learning. 

Although she also complained about her students‘ lack of motivation and their unwillingness to 

engage in difficult work, Janet did not have a strategy to address that concern; she believed that 

her job should entail understanding the material and then presenting it clearly. She presented the 

material to be learned with the intention of transferring information to the students. She believed 



135 
 

that there was a body of knowledge to be presented to the students, and it was her job to present 

it to them. 

Ken’s and Janet’s Experiences of Teaching Calculus 

Ken held strong conceptions regarding the use of computing technology in teaching and 

learning calculus. Although he had used various types of computer software in his calculus 

instruction in the past, he had since decided not to use them anymore because he had observed 

their detrimental effect on students‘ algebraic readiness. In his teaching during the previous 8 

years, first as a graduate student and then as a faculty member, his classroom observations led 

him to believe that students‘ difficulties with calculus reflected an underlying and even more 

troublesome struggle with algebra. Ken described the problems he saw in his classroom:  

I can tell [that] my students don‘t even understand the order of operations, since they 

don‘t use parentheses correctly. They square a binomial and get two terms instead of 

three. Students at the university entry level are supposed to have already mastered these 

topics, which are included at different grades in the mathematics curriculum. (Interview 

1/ September 18) 

 

One of the main reasons for Ken‘s reluctance to use computing technology in his classes 

was rooted in his observations during his graduate school and postdoctoral study, when he 

witnessed many students struggling with syntax problems associated with mathematical 

software. He observed how the students spent a great deal of time trying to learn the syntax of 

the software and how to use it to understand calculus concepts. In Ken‘s opinion, the time a 

student spent learning syntax would have been better spent developing a deeper conceptual 

understanding of calculus. He noted,  

I don‘t think students get out of [using computer software] what they should, because 

they spend so much time trying to master how to plot something, and trying to do any 

number of things. I think they just become a little bit frustrated. (Interview 1/ September 

18) 
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Ken explained that his hope was to eventually see his students reaching a threshold of 

using computing technology in an exploratory way; he wanted to witness instances in which 

students were working on a mathematics problem without computing technology and then say, 

―Aha, Maple [a computer program] will help to explore this!‖ (Interview 2/ October 23). Then 

the students would use Maple to further explore the problem in greater detail; however, he had 

never seen those moments in his classes.  

Furthermore, Ken also became convinced that the use of calculators blocked the 

development of a solid grasp of mathematical concepts. In his calculus classes, he saw that 

students were overusing calculators in order to avoid performing even simple calculations of 

integrals or derivatives. Ken would go so far as to say that the very existence of computing 

technology prevented the students from developing a conceptual understanding of calculus. 

Although his students might have refuted the claim that relying on technology was hindering 

their mathematical understanding, Ken did not agree: 

I found out that it really didn‘t help them much. I mean, they were very efficient and very 

good with Maple, but not with understanding of concepts. Eventually, I noticed that 

students were abusing technology, by which I mean they were using technology too 

much, and they were not really thinking. They were just punching the keys. (Interview 1/ 

September 18) 

 

Ken was convinced that computing technology is far more likely to interfere with, than to 

promote, learning mathematics. The extensive use of computing technology could impede the 

acquisition of fluency in students‘ basic skill development and computational procedures. 

Students were inclined to use technology as a crutch to avoid developing the determination and 

mathematical maturity needed to perform advanced mathematics. He had witnessed students 

going through many complicated steps with a calculator in a calculation that could have been 

done faster by hand. Those observations led him to conclude that there was a degree of 
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mathematical creativity or learning that students were giving up by using technology. Thus, in 

Ken‘s opinion, computing technology could hamper students‘ learning even more than it might 

simplify a mathematical task. Rather than trying to understand the concept, some students might 

choose to just use technology as a substitute. He noted that most technology, and especially 

calculators, serves as a hindrance in learning mathematics: ―I have found it does not help and 

hasn‘t enhanced their understanding. By allowing my students to do more things with 

calculators, they didn‘t even have an understanding of what was going on. They were just 

punching buttons‖ (Interview 2/ October 23). Ken did not want to teach his students just how to 

punch buttons; he wanted them to learn underlying mathematical concepts, reasoning, and 

processes. 

Although Ken stated that he enjoyed teaching, his loyalties were somewhat divided, since 

he would have preferred to spend more time doing mathematical research. He enjoyed doing 

research, and he described the thrilling sensation a mathematician may have experienced from 

seeing farther, as when hee has been ―struggling with a lack of understanding,‖ (Interview 1/ 

September 18) but all of sudden, he or she found ―the right way to think about a problem‖ 

(Interview 1/ September 18). Although Ken would have preferred to devote more time to 

research, he understood he had to work within the climate of his university‘s mathematics 

department, which affected the division of his time between teaching and research. According to 

Ken, the extrinsic rewards of publication, scholarly recognition, and the current emphasis on 

producing research meant that instructors were less motivated to examine how their methods of 

instruction affected how well their students were learning calculus: 

Many of us are here to do research. While teaching is important and necessary, it comes 

secondary to many of the professors. If a professor is going to be evaluated [primarily] on 

his research, where is the motivation to devote enough time to students‘ learning? 

(Interview 2 / October 23) 
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Although Ken could envision some potential benefits of using computing technology to 

teach calculus, he claimed that it was difficult to achieve that outcome for several reasons. Most 

importantly for him, because of current demands on his time, he thought that too much time 

would be required to effectively integrate technology into his teaching. Ken was in a tenure-track 

position at his university, and he spent much of his time and effort on his research. He believed 

that to focus on learning and incorporating technology into his courses would require valuable 

time he could be spending on research projects. Second, Ken thought that his students lacked the 

maturity to use the technology in a way that would further their mathematical understanding. He 

said that the use of computing technology, especially the calculator, ―gives students a false sense 

of confidence about their mathematical ability‖ (Interview 1/ September 18). 

Like Ken, Janet had tried various forms of computing technology in her calculus classes, 

including several varieties of software, clickers, graphing calculators, a SMART board, and 

Web-based tools and demonstrations, as well as online homework. In the past, she had assigned a 

number of Web-based tools and demonstrations to support her classroom instruction, thinking 

they could serve as an additional source for learning the course material, and that they would go 

beyond the text and classroom lectures. Janet had hoped the Web-based tools would help her 

students achieve a higher level of conceptual understanding, which then would have been 

reflected in higher examination scores. After 2 years of using the additional tools, however, Janet 

did not think that they had resulted in significant improvement. Therefore, she returned to using 

computing technology exclusively as a way to present course material in class, and her students 

no longer had access to Web-based tools. Janet explained,  

I use technology, but what I use is different from what I expect students to use. I use 

technology to facilitate my story telling. I use PowerPoint slides; I use Maple to draw 
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figures. I use the technology to help me to draw visualizations, to present the material, to 

work with it. (Interview 1/ September 5) 

 

In her calculus classes, Janet observed that if the students had been allowed to use 

calculators in introductory mathematics classes, they might have become dependent upon them 

and would be unable to comprehend the underlying concepts of the operations. She was 

convinced that the use of graphing calculators hindered students‘ skill development and learning. 

She provided anecdotes from various classes to demonstrate how that heavy dependence on 

calculators negatively affected students‘ learning. For example, she had observed that being able 

to use a symbolic graphing calculator in Calculus I classes negatively affected the student‘s 

ability to learn new material in Calculus II:  

What I noticed is that students who differentiate functions using a calculator don‘t learn 

how to integrate functions, because they always use the calculator. It‘s like they don‘t 

really understand the concept; for them it is just punching the keys. (Interview 2/ October 

16) 

 

As another example, Janet described a time that she tried to use graphing calculators in 

her calculus classes to teach the concept of the limit. She hoped that using graphing calculators 

would save her some instructional time and would also help the students develop a fuller 

understanding of the limit concept. She had tried to teach the limit concept analytically, 

graphically, and numerically, and she found that the analytical approach to mathematics was 

superior to the geometrical and numerical approaches. With that perspective as her framework, 

Janet used the graphing calculator to show students a graphical analysis of a function so that they 

could see a visual image of why a limit does or does not exist. She also used the table feature in 

the calculator to make a table of values, so the students could see it numerically. In her 

instruction on indeterminate forms, Janet created table values and let the students observe 

patterns to estimate the limit of the function. Later, she showed her students how the same exact 
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value of the limit could be found by using L‘Hopital‘s rule. When she demonstrated the rule, 

Janet reported that her students were quite surprised: ―Of course, it [the limit value] came out to 

be the same number. There was this shocked look on their faces, like they were thinking, ‗Wow, 

… it really IS the same!‘‖ (Interview 2/ October 16). Even though she thought it was sometimes 

harder for her to justify finding limit values analytically, Janet still insisted her students learn 

how to find the limit of functions using paper and pencil before using computing technology to 

find the limits. In her opinion, the ability to find limits analytically demonstrates students‘ 

understanding of the concept and their mathematical readiness to move to the next level.  

Janet was not prepared to deal with the potential negative consequences of the use of 

technology in her classes, and so her experiences convinced her not to let her students use 

calculators. She observed that when she did allow graphing calculators to be used in class, she 

had difficulty motivating her students to find the limit values analytically. Her aim was to use the 

technology to create learning activities geared towards helping students develop an increased 

understanding of the concept. Instead of seeing her students manage their use of graphing 

calculators to further their mathematical understanding, however, Janet found that the students 

allowed the calculators to restrict what they learned. Janet said: 

I think that graphing calculators are a wonderful tool for visualizing things, but some 

students tend to think of them as some kind of magic box that gives a correct answer, and 

it is very hard for them to come to terms with the limitations of it. (Interview 1/ 

September 5) 

 

 As a result of those setbacks, and in an effort to avoid such difficulties in the future, Janet 

concluded that she should not allow her students use calculators. Without calculators, her 

students could develop a proper understanding of the limit concept. According to Janet, the use 

of graphing calculators caused her students to lose sight of the mathematical goal of the lesson. 

Instead of attempting to internalize the concept, Janet said, her students used the calculators as a 
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shortcut that allowed them to bypass gaining an understanding of what they were actually doing. 

She stated: 

Calculators can give incorrect answers if students don‘t know what is happening. So, 

sometimes I think there are students who rely too much on them. There are plenty of 

students that don‘t want to learn and so they abuse the power they gain from the use of 

calculators. (Interview 2/ October 16) 

 

Although both Ken and Janet had used various types of computing technology in their 

calculus instruction in the past, they had since decided not to use it anymore because of their 

observation of its detrimental effects on students‘ algebraic readiness. Through their classroom 

experiences, both Ken and Janet were convinced that computing technology was far more likely 

to interfere with, than to enhance, learning calculus. They claimed that the extensive use of 

graphing calculators could impede the acquisition of fluency in students‘ development of basic 

skills and computational procedures. So, although their initial attempts at technology integration 

derived from their desire to use technology to be more effective at getting their students to learn 

calculus, their experiences with such technology were problematic overall. Ken and Janet came 

to believe that using computing technology, especially calculators, was more of an impediment 

than an asset, and that belief stopped them from using such technology regularly.  
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CHAPTER 7: SUMMARY, CONCLUSIONS, AND IMPLICATIONS 

This study investigated the conceptions that different groups of calculus instructors had 

about teaching calculus with or without computing technology. For the purposes of this study, I 

adopted the definition of the word conception as a personal assessment of one‘s knowledge, 

beliefs, values, and concepts in a given domain. My initial interest for the study stemmed from 

an awareness of increasing availability of, and educational emphasis on, the integration of 

computing technology in calculus teaching and learning. I thought that a greater knowledge of 

these conceptions held by calculus faculty on the use of computing technology in calculus 

classes could influence the undergraduate education of future college professors. The four 

research questions guiding this inquiry attempted to answer what the conceptions of mathematics 

and learning mathematics were, why the professors chose to use or not to use computing 

technology, the implementation of teaching with or without technology, and how the professors 

in community colleges and universities differed in their teaching of calculus with or without 

technology. 

Data collection strategies included classroom observations, interviews, and secondary 

data. The constant comparative method of analysis took place while the data were being 

collected, through an iterative coding process, and through writing the data stories of the calculus 

professors. Six calculus professors were purposefully chosen to participate in the study, and data 

stories were written about the participating professors in three groups. Among the research 

participants selected in each institution was a professor who was currently using computing 

technology in calculus classes, one who never used computing technology in calculus classes, 
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and one who had used computing technology in the past and had decided not to use it any longer. 

The stories of each group were written to reflect the conceptions of the professors: Their 

conceptions about mathematics, learning mathematics, and teaching calculus with, or without, 

computing technology were first described. Then the grounding of the professors‘ conceptions 

was discussed: their experiences with computing technology, their vision of the computing 

technology integration, the roles of computing technology in teaching and learning in the 

calculus classroom, and their concerns about the use of computing technology. Brief summaries 

of the similarities and contrasts between each of the three groups‘ two members were given at 

the end of each data story, and research questions were addressed through those data stories. The 

common themes that emerged were then analyzed in order to address the research questions in a 

more general sense.  

Instructors Using Computing Technology 

The first research question was the following: 

 

For instructors using computing technology to teach calculus, 

a. What are their conceptions of mathematics and learning mathematics? 

b. Why do they use computing technology? 

c. How do they use computing technology? 

 

The conceptions of the faculty members had a strong influence on their methods for 

teaching calculus. This influence was evident in the decisions and techniques implemented in the 

classrooms, and the conceptions varied across the three groups. Adopting Ernest‘s (1989) 

categorization of an individual‘s mathematical philosophy, I concluded that the mathematical 

conceptions of the professors who were using technology were most aligned with the problem 

solver category: Mathematics is a continually expanding field of human creation and invention. I 

further aligned the professors‘ categorization through Rokeach‘s (1968) three components of a 

conception: the professors‘ cognitive, affective and behavioral dimensions of his or her 
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conceptions of teaching mathematics. The cognitive component of the professors‘ conceptions 

was their view that the subject was a quasi-empirical science, and they believed that performing 

mathematical research and teaching mathematics involved carrying out a substantial amount of 

experimental work before coming up with useful generalizations. The affective component of the 

conception was defined by the fact that the professors were actively engaged with their students, 

focusing on what the students were learning, and were responsive to their students‘ needs. They 

had a strong connection with their students and viewed them as individuals. The professors 

wanted to challenge each student as an individual rather than just the class as a whole. The 

behavioral component of the conceptions was defined by the perception of performing 

mathematics through carrying out laborious, deliberate experimental work. They saw learning 

mathematics as a process of inquiry and coming to know oneself, and defined their role of 

instructor as a facilitator whose goal was to ensure that their students would become confident in 

their ability to pose and solve problems.  

The professors saw that the transition towards the use of technology would open up new 

ways to explore mathematics (Grassl & Mingus, 2007; Norton, McRobbie, & Cooper, 2000), in 

the same way that a microscope allowed biologists to explore life on a molecular level. Because 

they believed problem solving and trial and error were the best way to learn mathematics, they 

used technology to help students learn in that style. Fascinated by the connections between 

mathematics and other disciplines, they wanted their students to realize that mathematics really 

does make sense, and encouraged the students to perform in the classroom as mathematicians 

would through mathematical explorations. The professors were primarily focused on the 

interplay between seeing mathematics as a set of skills and procedures and finding value by 

applying it to the real world. Because they viewed mathematics as a subject that could be 
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implemented in other subjects as well as a tool to use in real-life problem solving, they 

concluded that technology could be used to strengthen problem-solving skills. 

Like Ely (1999), the professors had been dissatisfied with the status quo, feeling a need to 

change. That dissatisfaction had motivated them to adopt and use computing technology for 

teaching and learning calculus. They believed that the use of computing technology allowed 

them to show connections between mathematics and other academic disciplines through real-

world problems. They believed that learning mathematics required that students see and learn the 

application of calculus concepts and ideas in context. Their problem solver conception of 

mathematics made them realize that solving real-world problems from different academic 

disciplines could serve an important tool for getting students to be active in their calculus 

learning. They also saw that the use of computing technology allowed the students to take more 

initiative and become more independent in their calculus learning. In their experience, the use of 

the computing technology increased the students‘ motivation and engagement. 

The professors had extensive experience with the available tools, and knowledge about 

the way they work. Because they were experienced with the tools, they believed strongly that the 

introduction of computers had provided new and powerful tools for doing mathematics. It helped 

mathematicians make new mathematical discoveries and develop new conjectures, and the 

application of applied mathematics methods had widened the scope and dimensions of 

mathematical research. These professors saw technology as an integral part of their students‘ 

lives, and they were aware of the fact that many of their students had used different computing 

technological tools before they came to college. Overall, the professors‘ journey towards 

integration of computing technology into calculus supported McCracken‘s (2008) findings that 

faculty would experiment with technology integration if they felt the integration of the 
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computing technology was consistent with their teaching style and conceptions of mathematics. 

These professors thought their students were knowledgeable and competently skilled, and they 

could see how it was pedagogically useful in students‘ learning of calculus. They saw that the 

nature of the technology design largely determined the impact of integration efforts on student 

achievement, and ongoing formative evaluations were necessary for continued improvements in 

technology integration. 

These professors saw teaching as an opportunity for continual learning and growth; they 

constantly reflected on what they were doing and sought new ways to improve their teaching 

through revision of class activities and their choice of computing technology tools as well as the 

ways they used these tools in teaching and learning calculus. They believed that technology 

could, and should, be used to facilitate mathematical understanding and thus could be used 

profitably at most any stage of the calculus learning process as supported by several previous 

research findings (Dubinsky & Schwingendorf, 1991; Heid, 2002; Judson, 2007). The professors 

could help their students to develop an intuitive understanding of calculus by using multiple 

representations of the concepts through the use of computing technology. They believed strongly 

that technology should be constantly available to their students; the availability was intended to 

provide a variety of choices to both instructor and student. Because the faculty members felt a 

strong connection with their students, they decided to implement technology to better convey 

information in a form of learning that they thought the students were more accustomed to, as 

well as providing a means of better connection and relationship between the instructor and the 

student. The professors believed that the process of learning mathematics required problem 

solving and learning from mistakes, and they consistently implemented technology as learning 

tools in order to help better understand and teach the material. 
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As implied by Hamrick, Schuh, and Shelley (2004), the professors saw various 

opportunities to implement technology in the classroom and decided to capitalize on it in their 

instruction of calculus. From their perspective on teaching, these professors saw students as 

partners in the learning process, and they tried to develop a positive rapport with students by 

being sensitive to their aims for taking their classes as well as helping them to fill their 

knowledge gaps in algebra and precalculus concepts. They tried to accomplish that aim by 

providing certain Web page links for reviewing these concepts, by encouraging students to come 

to them during office hours, and by paying special attention to students‘ questions by not 

dismissing any information or a particular step in algebraic simplification. They used technology 

for various purposes including communicating with their students, making class notes available 

online for them to review later, motivating them to learn concepts, and showing the applications 

of those concepts in various academic disciplines. The professors took opportunities to 

demonstrate the ways that technology could be used by finding the function of a line tangent to 

the function f(x) at point X, the average rate of change of a function, the mean value theorem, 

Rolle‘s theorem, and using the secant method for solving equations. They used various 

computing technologies for in-class demonstrations and students‘ explorations in order to help 

them develop an intuition for calculus concepts and processes. These professors tried to graph 

functions and their derivatives simultaneously to help their students see the intuitive connection 

between a function and its derivative. They also used technology to help students visualize 

abstract concepts and provide a dynamic representation of the idea of convergence, such as 

showing how the secant line becomes a tangent line as ∆x goes to zero. These instructors saw the 

opportunities that technology had to offer, and took full advantage of it in their instruction. They 

used the zoom feature of a calculator to narrow in on a graph so that students could understand 
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the concept of local linearity when learning about the derivative and linear approximations. They 

constantly searched for creative ways to integrate technology such as using it to plot a 

Valentine‘s Day card by graphing polar equations and using Newton‘s method to find solutions 

to equations that were derived from mathematical models in problems from different disciplines. 

In that environment, the faculty members could turn to technology whenever they deemed it 

valuable or appropriate. Similarly, during certain classroom activities, students were given the 

option of using technology or not, and the professors were adamant that their students be allowed 

to use computing technology in all situations. 

Instructors Never Using Computing Technology 

The second research question was the following: 

For instructors who never use computing technology to teach calculus, 

a. What are their conceptions of mathematics and learning mathematics? 

b. Why do they not use computing technology? 

c. How do they teach calculus without using computing technology? 

 

The faculty members who never used technology in the classroom were most aligned 

with Ernest‘s (1989) platonist view: mathematics is a unified body of certain knowledge. The 

cognitive component of Rokeach‘s (1968) definition of conception in regards to these professors 

was the thought that mathematical knowledge was pure and timeless, and that it had universal 

validity. They liked the subject because it was very logical and required precise thinking, and 

were motivated by intellectual curiosity and a desire to know the truth. The affective component 

of their conceptions was defined through their belief that the study of mathematics is beautiful 

and pure. These professors saw mathematics primarily as an elegant intellectual achievement and 

an analytical tool that represents the world in symbolic forms, and as a hierarchical subject that 

builds upon what one has already learned. The behavioral component of their conceptions was 

demonstrated through their attitudes of performing proofs and exercises as the best way to learn 
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mathematics, and they thought teaching mathematics was mainly about teaching students to 

think clearly and logically. For them, the role of the students was to learn the fundamentals, and 

each one of their students needed to be equally willing and prepared to learn the fundamentals of 

mathematics. These instructors equated the aptitude of performing mathematics and developing 

their skills to the talent and patience of artists or musicians: you either have it or you do not 

(King, 1992; Poincaré, 1910). Because they considered mathematics as a timeless and pure 

science, they believed that technology only got in the way of an already perfected strategy of 

learning mathematics. They believed that students‘ algebraic preparedness was necessary for 

learning calculus, and poor performance was indicative of a lack of knowledge, preparedness, or 

willingness to succeed in the field. Thus, they treated the student body as a whole, rather than 

focusing on the individual. 

Seeing themselves as explorers of mathematics, these professors loved the challenge of 

understanding abstract concepts, and saw the practice of mathematics as a form of self-growth. 

Though the professors did believe that to some extent the real-world application of mathematics 

was also important, they described mathematics primarily as a way of thinking. They said that 

developing fluency with symbolic manipulation and basic skills was necessary since students 

needed to have those skills to communicate and learn more advanced concepts. According to 

these professors, mathematics was essentially an abstract subject, and it should be taught as a set 

of concepts, skills, and calculations. They emphasized developing students‘ reasoning abilities, 

which they defined as a line of thought and a way of logical thinking, adapted to producing 

assertions and reaching mathematical conclusions. They saw mathematical reasoning as 

objective and rigorous, and believed students should be able to use their own logic without the 

use of technology for reflection, explanation, and justification. 
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Because they viewed mathematics as a pure science and theory, these professors 

concluded that technology would be of no use to their calculus teaching. They were mainly 

concerned with helping students to develop a conceptual understanding of calculus concepts and 

believed that the presence of computing technology prevented them from achieving that goal. 

This finding was in line with E. M. Rogers‘s (1995) theory of relative advantage. Rogers argued 

that even if individuals are exposed to innovation messages, such exposure will have little effect 

unless the innovation provides some advantage over the traditional ways of doing things. 

Furthermore, McAlpine and Gandell (2003) argued that even if individuals were exposed to 

innovation messages, such exposure would have little effect unless the innovation was perceived 

as relevant to the individual‘s needs and consistent with the individual‘s attitudes and beliefs. 

A key reason that the professors chose not to implement technology was that they had 

limited knowledge about computing technology tools. They knew how to use some computer 

software to do mathematical investigations and for graphing, but they had very limited 

knowledge about using graphing calculators and were not knowledgeable about the existence of 

various Java applets or Web pages to conduct mathematical explorations or demonstrations of 

calculus concepts. These professors further believed that the early introduction to, and extensive 

use of, calculators had hindered their students‘ development of number sense and algebraic 

skills. They thought it was unacceptable for students to be unable to perform basic arithmetic and 

symbolic manipulation by hand. By not letting their students use computing technology in their 

calculus classes, these professors intended to force the students to develop those skills. They 

thought students should have mastered fundamental skills and concepts before they started to use 

computing technology for learning mathematics. Although they were categorically opposed to 

using computing technology in first- and second-semester calculus, these faculty members were 
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open to its use in upper level mathematics courses. As demonstrated by the findings of LaBerge, 

Zollman, and Sons (1997), some mathematicians believed that students were not sufficiently 

knowledgeable about the subject to utilize the use of computing technology in calculus 

instruction. These professors believed that progressive knowledge development was the key to 

long-term progress in mathematics and, with their emphasis on proofs and deriving the 

relationships, they believed that they were helping students to gain a solid grasp of basic 

knowledge and techniques. The professors‘ insistence that the students needed to be better 

prepared before entering the calculus classroom shaped their decision to not use technology, as 

that would be using a method that was unnecessary for learning. 

Adamant that the use of technology was unnecessary, and perhaps even detrimental to a 

student‘s learning of calculus, these professors chose to teach using more traditional methods. 

They emphasized exploring mathematics through its concepts, and doing mathematical proofs 

served that purpose most efficiently. They were most concerned with helping students to develop 

a conceptual understanding of mathematical knowledge through doing mathematical proofs and 

asking students to provide logical arguments. As Hersh (1997) explained, a professor presented 

mathematics in the same way they understood mathematics. These professors were interested in 

sharing what they found beautiful in doing mathematics, believed that calculus should be taught 

more traditionally, and decided that technology would get in the way. Their instruction was 

focused on providing mathematical proofs and logical deductions. In their classes, they regularly 

presented mathematical proofs of calculus concepts including the chain rule, the mean value 

theorem, and the fundamental theorem of calculus. During their demonstration of proofs, they 

tried to engage the students by asking questions. When a student asked a question during class, 

they generally tried to answer it with more questions, believing that this process allowed them to 
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gauge each student‘s current mathematical conceptual framework. They were also quite adamant 

about showing the derivation of mathematical concepts and ideas from previous ones. In their 

classes, they constantly showed the derivation of trigonometric identities when their use was 

required in solving problems to demonstrate how mathematical ideas were related. Their aim was 

to convince students that while working on problems in the classroom and on exams, the 

solutions should be fully simplified at the end. They insisted that students should have known the 

unit circle values, and they chose classroom exercises and examination questions so that the 

result would exactly correspond to reference angles.  

Their teaching can be summarized as starting with the delivery of the lecture by 

presenting relevant ideas and theories and hoping that their lecture and the use of concrete 

examples would help students to digest the concepts and ideas. They also assigned enough 

exercises when they believed that a successful competition of assigned problems would help 

students to develop fluency with related skills and get ready to wrestle with more abstract 

concepts. They saw that examinations and assignments were ways to help students understand 

their progress in learning calculus and helped to self-evaluate their teaching. If they saw a pattern 

of misunderstanding or observe logical deficits of their students, they tried to remedy the issues 

through their lectures.  

Instructors Who Once Used Computing Technology 

The third research question was the following: 

For instructors who once used computing technology to teach calculus, 

a. What are their conceptions of mathematics and learning mathematics? 

b. Why do they no longer use computing technology? 

c. How do they teach calculus without using computing technology? 

 

The conceptions of the faculty members that had used computing technology in the past 

and decided not to use it anymore aligned most with Ernest‘s (1989) instrumentalist view of 
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mathematics; they saw learning mathematics partly as an accumulation of facts, rules, and skills 

in the pursuit of understanding mathematical concepts. In regards to Rokeach‘s (1968) three 

components of a conception, the cognitive component of the professors‘ conception was their 

view of learning mathematics as hierarchical and as a process of making connections between 

new and previously learned ideas. The affective component of their conception was their view 

that incorporating technology into the classroom had proven to be too time-consuming and 

troublesome.  In addition, they viewed their students as too intellectually immature to use 

technology responsibly. The behavioral component of their conception was that they taught 

mathematics to help students achieve a mastery of designated skills and a level of mathematical 

understanding.  

The professors who had abandoned the use of technology in the classroom were very 

similar to those who had never used it. They believed that the instructor‘s role was to deliver the 

content by giving appropriate lectures. They believed that their students were not intellectually 

mature and were perpetually in a state of learning. As a result, they adopted a belief in line with 

Quinlan‘s (2007) study demonstrating that a majority of mathematics professors believed that the 

use of the computing technology was better suited to teaching rather than learning. They wanted 

their students to understand the importance of the reasoning behind the problem, and they 

believed that the job of the students was to observe and absorb. Furthermore, they had the view 

that the students were not intellectually mature enough to learn to use computing technology to 

further their mathematical understanding. This conception was supported by LaBergeet al. 

(1997), who demonstrated that some mathematics faculty members believed that some of their 

students were not ready for implementing the pedagogical techniques that required more 

initiative for the students to perform independent explorations.  Although they might have liked 



154 
 

to include activities involving the use of computing technology to help the students to learn 

mathematics, these professors believed that many of the students were not prepared by their 

previous education experience to participate in such activities. These professors observed that 

their students would often use technology without a defined or purposeful strategy, thus resulting 

in an overreliance on the technology (Doerr & Zangor, 2000; Forster & Taylor, 2006). Like those 

who never used technology, these professors focused more on the class as a whole rather than on 

the individual students in it. 

The professors thought that the main goal of teaching mathematics was to help students 

achieve mastery of designated skills and a level of mathematical understanding. They claimed 

the use of a graphing calculator hindered the students‘ ability to read and interpret the graph, and 

some students‘ inability to see the first derivative as a function made it harder to understand the 

relationship between the first and second derivatives. They said that they had initially envisioned 

the beneficial effects of technology on instruction and students‘ learning as issues that had 

motivated them to adopt and use technology to help students develop a deeper understanding of 

calculus concepts. However, after their attempts at integrating technology into the classroom, 

they developed misgivings about the use of computing technology and decided that it was not 

helping their students develop a better understanding of calculus concepts. On the contrary, these 

professors felt that the use of technology had hindered the students‘ mastery of fundamental 

algebraic, arithmetic, and calculus skills. They wanted to help students acquire mathematical 

habits of mind, and they believed the use of computing technology hindered that process because 

it replaced students‘ mathematical understanding. 

These professors had experience with the tools they wanted to use but thought the time 

spent on teaching students how to use computing technology to conduct mathematical 
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investigations was not worth it, because it took away time they could use teaching them 

fundamental skills and concepts. Furthermore, they claimed that the majority of their students 

were already anxious about learning the abstract concepts of calculus, and requiring the use of 

computing technology for calculus investigations would create extra pressure on those already 

anxious students. During the time these professors were using technology in the classroom, they 

observed that some of the students would become confused and spend more time working on the 

issues with the computing technology rather than on using it to make progress in their 

mathematical understanding, as noted by Graham and Thomas (2000). 

After their technology integration attempts, these professors came to believe that their 

students lacked the maturity to use computing technology to conduct mathematical explorations, 

and they did not want their students to develop an overreliance on the calculator. This perception 

made them consider continuing to use technology to teach calculus concepts while not allowing 

their students to use technology to work through the problems.  Ultimately, these professors 

became convinced that students should not be allowed to use technology tools in their learning 

because their use prevented the students from developing basic skills and understanding. They 

noted that the use of computing technology in learning calculus without having achieved a 

mastery of basic concepts and skills caused students to develop a false sense of confidence in 

their ability to perform mathematics. 

Although these professors had implemented technology at one point in their teaching 

careers, they eventually realized that the use of technology was a poor substitute for time-tested 

teaching methods. At the time of data collection, these professors were teaching in much the 

same way as those who had never used technology in calculus instruction, utilizing a much more 

traditional method. They delivered the lecture, presented the ideas and theories, and tried to use 
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concrete examples. They thought that when the instructor gave examples, they could capture 

students‘ attention and make it easier for them to remember a conceptual element. In their 

teaching, these professors structured the subject matter in such a way that students had to see 

each detail as a part of an integrated whole. The students‘ roles were reactive; that is, they were 

asked to internalize patterns of thought explained to them by the instructor, and then to make 

those thought patterns a part of their own mathematical knowledge. In class, these professors 

worked examples similar to those they assigned for homework. They believed grading had to 

give points to students who had demonstrated an attempt to improve their ability to perform 

mathematics, and they allowed the students to resubmit the assignments.  

These professors insisted that students should have learned calculus ideas and concepts 

with paper and pencil first, and that faculty should not use technology until after the students 

already knew how to do the mathematics by hand. They believed that students needed to have a 

solid understanding of fundamental mathematical concepts, and that technology could be used to 

enhance that understanding later. This conception was illustrated well through their conceptions 

about students‘ learning of graphing and the limit concept. They wanted their students to know 

how to graph and find limits of functions by hand. The professors thought the role of technology 

in calculus instruction should always be supplementary; it was important to them that the 

technology not be constantly available to the students, and they did not want technology to be 

perceived as the primary source of instruction. Furthermore, they were convinced that students 

should not have used technology before they had mastered basic skills and knowledge, in the 

same way that a student driver is allowed behind the wheel of a car only after passing a written 

exam demonstrating that he or she had the required basic knowledge of traffic rules. 



157 
 

Instructors in Community Colleges or Universities 

The fourth research question was the following: 

How do instructors in community colleges and universities differ in their teaching 

of calculus with or without computing technology? 

 

Among the three groups examined, their conceptions shaped the decision of whether or 

not to implement technology in the classroom, and helped define the methods each used to teach 

calculus. These decisions in the classroom were further defined depending upon whether the 

calculus class was offered at a large university or a smaller community college. The degree of 

emphasis placed on teaching norms significantly varied between the community college and the 

university (J. M. Boyer, 1997; Surry & Land, 2000). The main source of these differences could 

be attributed to their mission, along with their student and faculty populations (Hagedorn, 

Maxwell, Cypers, Moon, & Laster, 2007). For example, the average number of students enrolled 

in calculus classes at the community college was significantly lower than at the university. 

Furthermore, because of the main difference between these academic institutions‘ missions 

(teaching vs. research), the community college calculus instructors were required to have more 

office hours per week compared to university instructors  (12 hours at Fairway vs. 3 hours at 

Braun). These conditions, along with differences in student body demographics between the 

schools, affected the way that technology could be implemented in the classroom. 

As an open-access institution, Fairway College provided educational opportunities to a 

wide spectrum of students, including providing educational opportunities for traditionally low 

achievers (Bowen, Chingos, & McPherson, 2009; Burke, 2005). The faculty all agreed that many 

students did not possess sufficient knowledge or skills involving algebraic concepts, and said that 

a lack of algebraic readiness would be a significant barrier to succeeding in calculus.  However, 

some instructors also noted that previous mastery of algebraic concepts was not the only 
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indicator of potential success in learning calculus, as a student‘s desire to learn would also affect 

their ability to be successful in calculus. Certain restrictions between the two types of institutions 

shaped the decision of whether or not, as well as how, to use technology in the classroom. 

Compared with the university, the community college had much less freedom and more 

restrictions regarding the use of certain computing technologies and assignment techniques. The 

university professors had fewer restrictions and could teach as they pleased, but certain 

restrictions in the community college, such as the department‘s policy of prohibiting the use of 

the TI-89 graphing calculator and the TI-Inspire, hindered at least one instructor‘s decisions. 

That instructor did not believe that the use of advanced calculators interfered with her students‘ 

abilities to learn calculus concepts, and could in fact strengthen their understanding of more 

difficult concepts, but she was forced to comply with the department policies. With the use of 

superior calculators, instead of focusing on symbolic manipulation, students could pull away 

from the more concrete aspects and stick to the more abstract theoretical concepts of calculus. In 

addition to certain technological restrictions, the instructor was also required to conduct an in-

class exam, when she would have preferred to assign a project to the students using real-world 

applications. When working in an open access institution like a community college, some faculty 

members also thought that it was necessary to make changes in their instructional methods. For 

example, one faculty member felt obligated to teach students how to use an instructional 

program, Maple, to better prepare those who would chose to move on to larger institutions that 

made use of the program. 

Faculty members at both institutions were in favor of offering different sections of 

calculus to help overcome certain difficulties. They all agreed that the current generic calculus 

classes were difficult to teach because they were required to accommodate numerous students‘ 
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needs, which varied in terms of their mathematical background, skills, personal experiences, and 

the expectations of their academic disciplines. They all also complained about the difficulty of 

finding class activities and problems that were relevant to students‘ academic disciplines, as 

many were not primarily focused on mathematics. The professors also felt the pressure of 

implementing a differentiated calculus instruction that was responsive to students‘ needs and 

expectations, and they observed that current traditional calculus classes did not really serve the 

needs of students. Although some faculty members were categorically opposed to the idea of 

integrating computing technology into their current generic calculus classes, they were open to 

the idea of exploring the educational opportunities involved in integrating computing technology 

into the other sections of calculus. However, one professor in the university was concerned with 

the possibility of offering different sections of calculus based on the student population without 

sacrificing the rigor of these calculus sections. 

In summary, the contextual conditions in their teaching environments appeared to have 

some impact on professors‘ technology integration decisions.  This finding is supported by the 

assertations of Surry and Ely (2006), which stated that the process of technology integration was 

consistent with the policies and missions of a given institution. The faculty members‘ 

conceptions of mathematics, their conceptions of learning mathematics, and their attitudes and 

beliefs towards technology were the primary agents when they made decisions about the 

integration of computing technology into their calculus teaching regarding activities and lecture 

structure (Hamrick et al., 2004; Hersh, 1997). The professors‘ concerns about teaching with 

technology could be catagorized into two main areas: instructor responsibility and student 

responsibility. The more a professor wanted to focus on conceptual understanding and wanted 

students to take responsibility for that understanding, the more the professor was concerned 
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about his or her own instructional tecniques to facilitate such learning and the need for the 

availability of computing technology. The more a professor focused on procedural understanding 

in calculus and on teacher-centered lessons, the more he or she was concerned with students 

misusing the computing technology and failing to learn fundamental skills, concepts, and 

procedures. The most important issues found among professors in this study were the 

expectations of success and the perceived value of differentiating levels of computing technology 

usage. The professors who were users of technology tended to have more positive attitudes about 

technology integration, to have higher motivation for using technology, and to have more 

positive perceptions of the effects of technology on students‘ learning of calculus. They were 

more knowledgable about the pedagogical opportunities and constraints of a wide range of 

different technological tools.  Furthermore, they had a deeper understanding of the manner in 

which the subject matter could be presented, and they types of representations that could be 

constructed and changed by the integration of computing technology. The faculty members‘ 

conceptions of mathematics also appeared to have a strong influence on the methods they used to 

teach calculus. This influence was evident in the faculty members‘ educational decisions and the 

techniques they implemented in their classrooms. The impact that their conceptions of 

mathematics had on their teaching was comparable to a chef‘s conception of a good meal; the 

ingredients he or she chooses, along with the amount and type of seasoning and the cooking 

technique he or she uses will all contribute to the creation of a fine meal. 

Implications for Calculus Instruction 

This study revealed that some instructors were not aware of the various roles that 

technology could play in teaching and learning calculus. Although previous research studies of 

undergraduate mathematics education provided abundant evidence and possible opportunities, 
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the calculus professors were not aware of the existence of those studies. There is a strong need 

for sharing these research findings with the faculty through professional development 

opportunities. The faculty need to see that technology can play important roles in teaching and 

learning calculus to become convinced that the use of computing technology could motivate 

students and help the students‘ development of procedural and conceptual understanding of 

calculus. The faculty could start seeing that the use of technology could also be motivational to 

students in that students would be more interested in learning mathematics when technology was 

involved in the process. The use of computing technology could encourage students‘ 

involvement through implementation of various real-world problems in classroom activities. 

In this study, while all faculty members were aware of the procedural roles that 

computing technology could play, some were not aware of the conceptual roles that it could also 

play in calculus instruction. These conceptual roles include demonstrations, illustrations, 

visualizations, and explorations, as well as making connections to other mathematics as well as 

to the real world. The professors needed opportunities to see that the use of computing 

technology could serve as a medium through which the students would come to understand a 

mathematical concept. They also needed opportunities to see how its use could help illustrate 

mathematical concepts that might otherwise seem extremely abstract so that they could start 

developing appreciation for the power technology has for allowing students to visualize 

mathematics—to see things that they might not otherwise see. Calculus professors need to see 

how the use of multiple representations, tables and algebraic procedures, when done multiple 

times in close proximity, become dynamic representations of the big picture of teaching calculus. 

And, then, technology becomes a tool that they turn to both powerfully and naturally when it is 

used to allow students to discover, and for the faculty to show, a mathematical relationship.  
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Furthermore, the students‘ success stories should be presented to convince the faculty of 

how technology might help students get beyond procedures and see the big picture. In this study, 

some faculty members also expressed their concerns regarding the existence of technology and 

students‘ basic skill development and their understanding of basic concepts. Several mathematics 

education research studies with undergraduates demonstrated that the integration of computing 

technology did not interfere with students‘ basic skill development and could have been 

introduced (Heid, 1988; Hillel, 1993), and the presentation of these studies in tandem with 

students‘ success stories and activities might challenge some faculty members‘ perception of 

learning mathematics as a hierarchical process. In this study, some faculty members also 

expressed their willingness to try to integrating technology into their calculus classes if they were 

not teaching the generic version of calculus, which made it difficult to integrate computing 

technology and still be responsive to different students‘ needs. There is a need for mathematics 

departments to explore further the feasibility of offering different sections of calculus for 

different clientele. Furthermore, the department should also search for opportunities for the input 

of different academic departments regarding their expectations from calculus classes and search 

for opportunities to make their calculus curriculum more responsive to their needs and 

expectations. 

The successful integration of computing technology into calculus classes requires having 

a clear departmental vision of the computing technology integration and the expectations from 

the faculty to implement such a vision. Creation of such a vision requires getting the faculty 

members‘ input, addressing their concerns, and communicating the departmental expectations 

clearly regarding its implementation. In this vision, the need for aligning the classroom practices 

with the use of computing technology and the technical support for the faculty, as well as the 
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department commitment to help professors gain the necessary technological knowledge and 

expertise to integrate technology into calculus classes, should be addressed. In this study, some 

faculty members said that such a vision and commitment on the part of academic administrators 

in terms of firm and visible evidence of continuing endorsement and support for technology 

integration seemed to be lacking or at best half-heartedly practiced. One of the ways to motivate 

calculus faculty members to integrate computing technology into their calculus classes would be 

to require technological skills and use in teaching as part of faculty evaluation. If faculty 

members are aware that the use of technology in their instruction is part of their evaluation for 

tenure, they might view the implementation of technology more seriously and invest the time and 

effort needed to take the initiative towards integration. That policy would call for the integration 

of technology into the curriculum and instruction and at the same time would make sure the 

contextual conditions for the implementation of educational innovations are in place. 

Mathematics departments might also consider the setting up of educational technology standards 

to guide faculty in their technology integration activities. 

Although this study implied that successful technology integration had proven benefits, 

some professors still had some misgivings about its implementation. These instructors believed 

that technology would essentially perform the work of students for them, and not allow them to 

grow intellectually as mathematicians. Additionally, because a strong fluency in the use of 

technological tools was necessary for successful implementation, too much time would be spent 

learning to use these tools rather than learning mathematical concepts. The professors who 

shared these misgivings seemed to have a time-tested method of teaching calculus concepts, and 

the inclusion of technology in institutional policies would affect their ability to teach in the 

methods that they were accustomed to. They had their own teaching methodology, and it had 
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been proven successful in their eyes—and their methodology may have been successful. Because 

some never used technology in the classroom before, their understanding of available tools was 

limited. There was a steep learning curve for some software packages. The research and 

investment necessary to understand and integrate computing technology in calculus would be 

time consuming. These professors saw that the integration of technology could negatively affect 

their opportunities for rewards through promotion or chances for tenure, or perhaps they did not 

see the future of technology. The integration of computing technology policies should be 

effectively communicated to them, and they should be given enough support to make a smooth 

transition, through demonstrating its value and supporting it with evidence of its benefits.  

Implications for Further Research 

As much as is known about an instructor‘s concept of mathematics and computing 

technology and the role it plays in his or her instructional practice, much more remains unknown 

and must be revealed through study and observation. This study‘s potential to find answers to a 

number of important questions was limited, as the research in each classroom was conducted 

during a single course. Consequently, it was not possible to examine in depth whether 

differences in the composition of the calculus classes had any relationship to the differences in 

the instructors‘ professed conceptions. Therefore, more questions remain. How do instructors 

demonstrate their views of mathematics and computing technologies? Are the instructors‘ views 

communicated explicitly or implicitly? If instructors can effectively demonstrate their views, do 

differences in the instructors‘ concepts have any effect on their students‘ perceived abilities to 

learn calculus? 

This study discovered the difference among instructors based on their level of reflection 

on their previous practices. Their formal and informal pedagogical training had affected their 
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reflection on instructional practices. Several instructors approached their teaching methods 

without any formal or informal pedagogical knowledge and justified their reasons with previous 

personal experience (e.g., I did it that way last time and it worked), rather than an instructional 

principle (e.g., providing examples is helpful for student learning). The instructors who did not 

possess much pedagogical knowledge were prone to focus on how the students appeared to 

respond to the teaching and the material, rather than focusing on what they might or might not 

have learned. Without using pedagogically based reflection, those instructors tended to draw 

solely on their previous personal experience. Further study is required to reveal how instructors‘ 

pedagogical training affects their instructional practices.   

This study also confirmed that instructors‘ conceptions of mathematics affected their 

instructional practices, depending on each instructor‘s individual experiences and his or her level 

of reflection. Their conceptions of mathematics partly determined what they thought a student 

had to know after successfully completing a calculus class. The importance an instructor placed 

on practicing mathematical proofs in calculus classes also proved to affect his or her instructional 

practices and pedagogical decisions, which was evident by the instructor‘s choice of projects and 

whether or not his or her students were allowed to use computing technology. There is a need to 

investigate further the effect that performing mathematical proofs has on students‘ learning in 

calculus classes. Furthermore, there is a need to investigate how instructors emphasize the 

importance of doing mathematical proofs in calculus classes and how it affects their students‘ 

performance and attitudes. 

The study also revealed that the instructors tended to base their instructional strategies 

and technology integration decisions on their students‘ perceived maturity and their algebraic 

understanding.  If an instructor thought his or her students were not mature enough to handle the 
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Introduction to Calculus course or that they did not possess the prerequisite algebraic knowledge 

base to succeed, the instructor tended to refrain from integrating technology into the calculus 

class or did not let the students use computing technology tools in their learning. The connection 

between instructors‘ perception of their students as learners and their instructional and 

technology integration decisions needs to be explored further. In a similar vein, further 

investigation is required to understand the complexities of students‘ previous knowledge base 

and the impact it has on an instructor‘s instructional and technology integration decisions.  

 This study‘s findings also presented evidence to demonstrate that the instructors‘ notions 

of computing technology as well as their visions of the impact technology has on everyday life, 

college students‘ life, and the higher education environment were determining factors in the 

instructor‘s decision to integrate computing technology into calculus teaching. Most of the 

instructors chose their technology integration methods based on their previous experiences. The 

majority of instructors wanted to see succesful computing technology integration 

demonstrations, either to learn more about the benefits and to become convinced about the 

integral part that computing technology could play in teachning calculus, or, for those who were 

already using it in their classes, to learn and explore different activities or pedagogical 

approaches. The calculus instructors asked to see content-specific applications and 

demonstrations of computing technology integration. With these factors in mind, mathematics 

departments should strive to organize relevant workshops and professional development 

activities for the faculty, both to introduce the faculty to new methods and to give them an 

opportunity to see how the methods operate.  

Most of the faculty members in the study stated that time was the main constraint that 

prevented them from integrating technology into their classrooms or improving their current 
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practices involving computing technology, which explained their reluctance to dedicate time to 

integrate or explore different ways to integrate computing technology in their calculus classes. 

The instructors in the research university believed that they would be evaluated on the quality of 

their publications. Thus, they wanted to devote the majority of their time to research, as opposed 

to learning or discovering novel ways to integrate computing technology into their classrooms. 

The tenure-track faculty member was especially under a lot stress and time constraints because 

of the arduous process of establishing a solid profile as a teacher, a department member, and a 

scholar. Further study is required to examine research universities‘ mathematics instructors‘ 

perceived responsibilities regarding teaching, research, and service. How do they perceive and 

interpret the different dimensions of their job? Is there a connection between the instructor‘s 

perceived responsibilities and his or her instructional strategies and decisions? The community 

college faculty members also complained about the time-consuming job of computing 

technology integration and lamented the fact that they did not receive any recognition or perks 

for their attempts to integrate technology into their classes. In order to foster a more supportive 

environment for faculty members attempting to integrate computing technology into their 

classrooms, mathematics departments should offer incentives, such as time off or other rewards, 

and organize workshops to provide support and encouragement to the faculty. The faculty 

promotion and evaluation criteria should include and value the faculty‘s computing technology 

integration initiatives. To encourage faculty members to integrate technology, for example, 

mathematics departments should also allow instructors to contribute their opinions to create a 

clear vision of technology integration and should articulate their expectations regarding the 

faculty‘s responsibilities to implement such a vision. 
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APPENDIX A: INITIAL SURVEY 

 

Dear Instructor, 

 I am a community college mathematics instructor pursuing my doctoral degree under the 

direction of Dr. Jeremy Kilpatrick in the Department of Mathematics and Science Education at 

the University of Georgia. I am conducting research to study issues related to the use of 

computing technologies (computers and graphing calculators) in calculus teaching. I am 

requesting your participation in this study. Would you please offer your expertise by completing 

the attached questionnaire? It will take 5 to 10 minutes of your time. Please know that your 

contribution about what you think about the use of computing technologies (computers and 

graphing calculators) will be invaluable. When you finish, please send the file to me via email. If 

possible, could you please try to complete the questionnaire by August 17, 2008?  

 Return of the questionnaire will be considered consent for participation. Please note that 

you will not be asked to provide your name. At the top of each questionnaire you will find a 

number that I have assigned to each instructor for tracking and coding purposes. As the 

researcher, I alone will know which instructor the returned questionnaire is from. The results of 

the study will be a public record, but neither the instructor‘s name nor his or her affiliation will 

be revealed.  

 As a current mathematics instructor, one of my goals for this research study is to find 

practical and employable strategies for technology integration. The information that you provide  

me by completing the questionnaire will greatly improve the relevance of my findings. Your 

participation in this study is completely voluntary. I know firsthand how precious time is in the 

daily life of a math instructor. I am therefore extremely appreciative of the time that you are 

taking to complete the questionnaire. Additionally, I would be happy to provide you with a copy 

of my results if you would find it useful. If you have any questions or concerns please feel free to 

e-mail me at (hserkan@uga.edu) or call me at 706- 202 4742. 

Thank you in advance, 

Serkan Hekimoglu 
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What is the TOTAL number of hours a week that you spend on a computer?    

          0  Less than 1    1-5  5-9  10-14  15-19  20-29  30+  

 

On what activity do you spend most time when using a computer?  (check ONLY ONE) 
email    
surfing the internet    
preparing for my classes 
researching things unrelated to school 
using in my classes   

word processing    
doing mathematical research    
playing games 
Other ---------------------------- 

    

How would you rate your level of experience with graphing calculators? 

  
Basic   

   
Expert   Very Limited  Intermediate   Advanced 

    

How would you rate your familiarity with the CALCULUS REFORM MOVEMENT? 

  
          Limited 

   
Highly Familiar  

Never Heard            
of 

Average 
Above 

Average 

 

 

Please indicate how strongly you agree or disagree with each statement.  

The instructor should find ways to use computing technologies (computers and graphing 
calculators) in their classroom. 

  
Disagree 

   
Strongly 
Agree  

Strongly 
Disagree  

Neither Disagree 
nor Agree 

Agree 

 

Students should have access to computing technologies (computers and graphing 
calculators) at any time during the instructional day. 

 
    Strongly 
    Disagree  

 
Disagree 

 
Neither Disagree 

nor Agree 

 
Agree 

 
Strongly 
Agree  
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Every mathematics instructor should provide assignments that require using computing 
technologies (computers and graphing calculators). 

 
    Strongly 
    Disagree  

 
Disagree 

 
Neither Disagree 

nor Agree 

 
Agree 

 
Strongly 
Agree  

 

Computing technologies (computers and graphing calculators) HAVE changed how we 
teach calculus. 

 
    Strongly 
    Disagree  

 
Disagree 

 
Neither Disagree 

nor Agree 

 
Agree 

 
Strongly 
Agree  

 

Computing technologies (computers and graphing calculators) WILL change how we 
teach calculus. 

 
    Strongly 
    Disagree  

 
Disagree 

 
Neither Disagree 

nor Agree 

 
Agree 

 
Strongly 
Agree  

 

How frequently do you use computing technologies (computers and graphing 
calculators) in your teaching of mathematics? 

 
Never  

 
Rarely 

 
A fair amount 

 
Usually 

 
Every lesson  

 

What barriers do you see to using computing technologies (computers and graphing 

calculators) in your classroom?  
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APPENDIX B: INTERVIEW PROTOCOL 

 

Interview Protocol I 

1. What do you especially enjoy about mathematics? 

2. What do you see as your ultimate responsibility as a calculus instructor? 

3. What kind of technologies do you use in your calculus class? How comfortable are you using 

them? Do you have concerns about using computing technology in your class? 

If you are not using any computing technologies, what are your reasons for not using them? 

4. Are your students using computing technologies in class? What about outside class? If so, 

what are they? What are your feelings and policies?  

5. Do you think your class is better with(out) using computing technologies? How? 

6. Complete the sentence, ― I would use computing technologies if …‖  

7. Describe any guidelines, imposed by the mathematics department, that relate to teaching 

differential calculus as well as using computing technologies. How do you feel about those 

guidelines? 

8. What do you believe are the overriding purposes and aims of teaching differential calculus? 

What do you feel are the most important calculus concepts and skills for students to learn? Why? 

9. In what direction do you believe calculus teaching is moving at the college level?  

10. How do you feel about teaching separate differential calculus sections for different majors 

such as engineering and business? 

11. Do you think computing technologies need to be adjusted for these different sections? Why 

or why not? And, how?  
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Interview Protocol II 

1. What is the impact of technology on modern society? 

2. If technology were an animal, what would it be? Why? 

3. What does it mean to teach calculus with technology?  

4. Did (Would) computing technologies have an impact in the undergraduate mathematics 

classroom? How so? 

5. Do computing technologies impact students‘ mathematics learning? If so, how? If not, why 

not? 

6. What is the biggest advantage to using computing technologies in teaching calculus? What 

about the biggest disadvantage? 

7. Do you have a vision or image of teaching differential calculus with computing technologies?  

If so, could you describe it?  

8. What are (or might be) the computing technologies most helpful to you? What topic(s) and 

what kind of activities? What are the problems that you have experienced? Are there any 

calculus concepts with which you feel it is necessary to use technology? 

9. Describe your earliest experience teaching calculus with computing technologies. What is the 

most positive experience you have had using computing technologies? What about the most 

negative? What are some situations when you definitely would not use computing technologies 

in your calculus teaching? 
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APPENDIX C: TIMELINE OF DATA COLLECTION 

Table 2: Data Collection Activities 

Date  Activity Instructor 

August 14, 2008 Survey administration in both institutes  

August 25, 2008 Participants recruited  

September 5-18, 2008 First interview conducted with all participants  

September 7, 2008 Classroom observation–limit Lynn 

September 8, 2008 Classroom observation–limit Joe 

September 11, 2008 Classroom observation–limit Ken 

September 12, 2008 Classroom observation–limit Ron 

September 12, 2008 Classroom observation–limit Janet 

September 13, 2008 Classroom observation–limit Dorothy 

September 13, 2008 Classroom observation–continuity Ron 

September 19, 2008 Classroom observation–derivative Lynn 

September 21, 2008 Classroom observation–derivative Ron 

September 21, 2008 Classroom observation–derivative Janet 

September 22, 2008 Classroom observation–derivative Dorothy 

September 22, 2008 Classroom observation–derivative Ken 

September 26, 2008 Classroom observation–derivative Janet 

September 29, 2008 Classroom observation–derivative Joe 

October 3, 2008 Classroom observation–related rates Ron 

October 3, 2008 Classroom observation–linearization Janet 

October 4, 2008 Classroom observation–related rates Dorothy 

October 5, 2008 Classroom observation–related rates Lynn 

October 6, 2008 Classroom observation– linearization Joe 

October 6, 2008 Classroom observation–related rates Ken 

October 10, 2008 Classroom observation–related rates Ron 

October 16-31, 2008 Second interview conducted with all participants  

November 8, 2008 Classroom observation–Mean Value Theorem Joe 

November 9, 2008 Classroom observation–optimization Lynn 

November 13, 2008 Classroom observation–curve sketching Dorothy 

November 14, 2008 Classroom observation–optimization Janet 

November 14, 2008 Classroom observation–curve sketching Ron 

November 16, 2008 Classroom observation–curve sketching Lynn 

Dec.18, 2008-Jan.19, 

2009 

Third interview conducted with all participants  

February 6, 2009 Classroom observation–derivative Ken 

February 14, 2009 Classroom observation–related rates Joe 

February 14, 2009 Classroom observation–The Intermediate Value Theorem Lynn 

March 21, 2009 Classroom observation–linearization Ken 

March 21, 2009 Classroom observation–Newton‘s Method Joe 

March 22, 2009 Classroom observation–Bisection and Newton‘s Method Dorothy 

March 23, 2009 Classroom observation–Rolle‘s Theorem Joe 

April 10, 2009 Classroom observation–curve sketching Dorothy 

April 10, 2009 Classroom observation–curve sketching Lynn 
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April 11, 2009 Classroom observation–optimization Janet 

April 12, 2009 Classroom observation–optimization Dorothy 

 


