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Abstract

This thesis comprises three major parts relating to the electron and phonon dynamics in nanos-

tructures.

In the first part, a finite temperature Green’s function theory for spherically symmetric systems

is advanced, in which a self-consistent dressed random phase approximation is proposed. The finite

element method is generalized to solve the Dyson equations for the Green’s function and the

screening potential. The linear response theory is then used to obtain the electron polarizability.

By the Padé approximant, the imaginary Matsubara frequency dependence is analytically continued

to calculate the polarizability in the real frequency domain This approach has been applied to Gold

and Sodium nanosphere systems.

In the second part, a general theoretical technique is developed to describe wave propagation

through a curved wire of uniform cross section and lying in a plane, but of otherwise arbitrary shape.

The method consists of (i) introducing a local orthogonal coordinate system, the arclength and two

locally perpendicular coordinate axes, dictated by the shape of the wire; (ii) rewriting the wave

equation of interest in this system; (iii) identifying an effective scattering potential caused by the

local curvature; and (iv), solving the associated Lippmann-Schwinger equation for the scattering

matrix. We carry out this procedure in detail for the scalar Helmholtz equation with both hard-

wall and stress-free boundary conditions, appropriate for the mesoscopic transport of electrons and

(scalar) phonons. The results show that, in contrast to charge transport, curvature only barely



suppresses thermal transport, even for sharply bent wires, at least within the two-dimensional

scalar phonon model considered. Applications to experiments are also discussed.

In the third part, a general method is developed to calculate the net rate of thermal energy

transfer between a three-dimensional conductor at temperature Tel and a low-dimensional phonon

system at temperature Tph. The main focus and principal result is a calculation of the rate of energy

transfer between a clean metal film of thickness d attached to an insulating, nonpolar semi-infinite

substrate. The conventional deformation-potential is employed to describe the electron-phonon

scattering. A low-temperature crossover from the familiar T 5 temperature dependence to a strong

T 6 log T scaling is predicted. Comparison with the existing experiments suggests a widespread

breakdown of the standard model of electron-phonon thermalization in supported metallic thin

films.
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Chapter 1

INTRODUCTION AND LITERATURE REVIEW

In the last decade, new directions of modern research, broadly defined as nanoscience and nanotech-

nology, have emerged [1–4]. This new trend involves the fabrication, characterization, manipulation

of materials and artificial structures at the atomic, molecular or macromolecular levels, length scales

of approximately 0.1 to 100 nanometers, providing a fundamental understanding of physical phe-

nomena occuring in this same scale. Nanoscience is intrinsically cross disciplinary including diverse

research areas as engineering, physics, chemistry, material science and biology. There is no doubt

that nanoscience and nanotechnology have become important factors with considerable impact and

will be the most critical, if not dominant, basis for technological innovations in the new century.

Revolutionary consequences can be expected if the most unique properties of nanostructures, their

electronic properties, are exploited.

In typical nanostructures the motion of electrons and phonons are confined in one or more

than one directions in the nanometer scale. Their mean free paths are usually greater than or

comparable to the size of the structures. Therefore, the electron and phonon dynamics will be

significantly different from those in bulk solids. They are thus a very important area in nanoscience

research. Included in this dissertation are three different subjects: the optical (electronic) response

of metallic nanoparticles (to the electromagnetic field), electron and phonon transport through

curved nanowires, and hot-electrons in low-dimensional phonon systems. They will be introduced

separately in the following paragraphs.

As a consequence of reducing material size, the electronic properties change drastically as the

density of states and the length scale of electronic motion are reduced. The energy level structure

of electrons is now determined by the boundaries of the system, and undergoes a cross-over from a

bulk band structure to discrete energy levels (shell structure) [5–7] in clusters (or nanoparticles) of

sub-nanometer to nanometer sizes. Hence the quantum size effect obviously attracts great interest
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from researchers searching for the novel materials with special properties, such as size-dependent

new optical properties which have never been observed in molecules and in bulk materials. Reviews

of the properties of nanoparticles and the underlying physics have been given in [17, 18, 20]. The

research on the structural and physical properties of nanoparticles is a very important field because

it has not only the great academic value [8], but also the promising application potential, such as

optical storage [9], solar energy conversion [11], single electron tunneling [10], catalysis [12,13], and

also biology and biomedicine [14–16].

The study of light-matter interactions has played an important role in the development of

modern physics. The optical spectroscopy method has thus been widely employed in the research

of nanoparticles and clusters [17–28]. The reason is that the optical response of nanoparticles

directly reflects their electronic structures. It can be studied either on free clusters [23–28], or on

structured geometries of nanoparticles [29–32]. The main feature observed in the optical response

of nanoparticles is the surface plasmon excitation which corresponds to the collective oscillation of

the conduction electrons with respect to the ionic background. The conduction electrons in bulk

alkaline and noble metals follows a nearly free electron behavior and their contribution to the

dielectric constant, ε, is described by the Drude formula [33,34]: ε(ω) = 1−ω2
p/
[
ω2 + iω/τ

]
, where

ωp is the volume plasmon frequency of bulk materials (ω2
p = 4πne2/m, n being number density

of conduction electrons and m the effective mass of electron), τ is the electron relaxation time.

In the simple model of free-electron gas embedded in a spherically homogeneous positive charge

distribution [20], classical electrodynamics predicts that the surface plasmon resonance occurs at

ωs = ωp/
√

3. This is the result of the quasi-static approximation when the radius of a sphere is

much smaller than the wavelength of the incident electromagnetic wave, and can also be obtained

through the dipolar approximation of Mie’s classical theory. Most experiments on the alkaline and

some noble metal nanoparticles reveal large deviation from this prediction, such as the red- or

blue-shift of the plasmon frequency with respect to the classical value as the particle size decreases,

depending on the materials or the experimental conditions [17, 18, 20]. Clearly the step function

type electron density at the nanosphere surface may not be an appropriate approximation and

quantum theory should be introduced when the particle size is not substantially larger than the

bulk Fermi wavelength (λF ∼ 0.5nm).
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The application of quantum mechanics gives rise to the electronic shell structure [5–7] which

reveals the quantized motion of the delocalized conduction electrons in the mean field created by

the ions in a cluster. In different experimental conditions, the details of ionic structure have been

found not to affect the properties of alkali and other simple metal clusters [17,18]. This suggests the

use of the jellium model which is defined by a Hamiltonian that treats the electrons in the usually

quantum mechanical way, but approximates the field of the ionic cores by a uniform positively

charged background with a constant charge density ρ
IO

. For a spherically symmetric jellium model,

this charge density is determined by ρ
IO

= e
[
4πr3s /3

]−1
Θ(R−r), where e is the elementary charge,

rs is the Wigner-Seitz radius of the conduction electrons in the corresponding bulk metal, and Θ(x)

is a step function with R = rsN
1/3 being the radius of a jellium sphere consisting of N atoms.

Actually, we have no way to determine the finite-size variation of rs theoretically, so that the

simplest choice is that of the corresponding bulk value [18]. We have to admit that it is really a

naive assumption. But it has proven to be an almost ideal theoretical instrument for approaching

the goal addressed in the review paper [18]: It is simple enough to be applied to spherical metal

clusters containing up to several thousand atoms, but still allows for a self-consistent microscopic

description of the average field felt by the valence electrons, thus correctly reproducing many of

the observed shell structures. At the same time it allows one to extract parameters from finite

clusters that can be directly compared to those of the bulk or planar metal surface to which it has

been applied already for about thirty years. Its success in describing the “supershell” structure in

very large alkaline clusters, for which none of the more detailed structural models have any chance

to compete, speaks of itself. Of course, there are limitations in the application of this model [18].

The conduction electrons must be strongly delocalized, a condition met by metals that are good

conductors. This is why the jellium model has been mainly applied in the study of nanoparticles of

alkali and noble metals.

Alkali metal clusters provide very good testing cases for the jellium model because the con-

duction electrons are free-electron-like and the Fermi surface is nearly spherical. Especially for

sodium, the deviations from a perfect Fermi sphere are negligible [34]. Thus a spherically sym-

metric potential is assumed to simulate the field created by the ionic cores. This is what was done

in reference [5] where the Woods-Saxon potential was used. Solving the corresponding Schrödinger
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equation, they got the shell structure of the conduction electrons. Similar to nuclear physics, the

quantum states of conduction electrons are labeled with the principal quantum number n and the

angular quantum number l. The levels are degenerate due to the spherical symmetry of this back-

ground potential. The energy shells are successively filled by the conduction electrons. As for atoms,

the electronic system of a cluster with exactly the right number (the magic number) of electrons

to complete a shell is very stable. When one more atom is added to the cluster, its valent electrons

will occupy a state with considerably higher energy, and hence reduce the stability of the system.

This is just the scenario shown by the abundance spectrum of sodium clusters. A self-consistent

computation by Chou et. al. [36], based upon the jellium model of sodium cluster of 40 atoms, also

shows the above mentioned shell structure. Fig. 1.1 depicts the corresponding effective potential.

Further examples are given by Ekardt [37, 38], where the density functional theory is applied and

Figure 1.1: Self-consistent effective
potential of jellium sphere with the
corresponding electron occupation of
energy levels [36].

the nonlocalized electronic exchange-correlation is

replaced by a localized potential of the Gunnarsson

and Lundqvist type [41], i.e., using the local den-

sity approximation (LDA). In this approximation,

the shell structures of sodium clusters with different

numbers of atoms are obtained by self-consistently

solving the single-particle Kohn-Sham equations.

Independent work by Beck also suggests the same

result [39]. All these have shown the validity of the

jellium model and have encouraged applications of

this model to larger systems in which the molecular

dynamics computation becomes more and more time

consuming and one is bound to rely on the jellium

model predictions.

Besides the original LDA, various improved approaches have been developed to investigate the

optical properties of the alkaline clusters, such as the time dependent LDA (TDLDA) [40, 42],

the LDA based random phase approximation (RPA) [43–47], Hartree-Fock ground state based full

quantum mechanics RPA [48] and others. Numerous theoretical investigations have already pro-
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vided us with very good understanding of the static and the dynamical properties of the alkaline

nanoparticles, especially the finite size effects – the red-shift of the plasmon frequency and accord-

ingly the increase of the static polarizability with the decreasing particle size. It is believed that this

effect is attributed to the electron spilling out beyond the ionic background charge boundary. The

smaller the cluster, the more prominent the spill out. It reduces the effective electron density and

thereby the resonance frequency. Depending on the element, better agreement with the experimental

results can be achieved by introducing various modifications such as shape deformation, effective

mass corrections, pseudopotentials, core polarization effects or discrete ionic structures [54].

The situation concerning the size dependence of the optical absorption spectrum is more com-

plicated for noble metal nanopartciles because the binding energies of the completely filled d-

band are close to those of the partially filled s-band [20]. The polarization of the core electrons

causes considerable screening of the conduction electrons, which contributes a non-zero suscepti-

bility χd = εd(ω) − 1, and hence results in the shift of the volume plasmon, surface plasmon and

the Mie resonance to lower frequencies. At assumption that the imaginary component of χd is neg-

ligible, one may estimate the magnitude through the resonant condition of ωs = ωp/[2εm + ε′′d]
1/2,

where εm is the dielectric constant of the surrounding matrix. The screening effect on the electrons

near or beyond the surface is weaker than that on the inner ones, which induces an increase of the

plasmon frequency. The smaller the size, the larger the portion of electrons which experiences weaker

screening. In spite of some contradictory results most of the experiments support this blue-shift

with the decreasing particle size. The interplay between the d-electron screening and the spillout

effects is responsible for the overall complexity of the resonance behavior [50]. A phenomenological

two-region dielectric model has been proposed to deal with this complex size dependence [49, 50].

In this model, an effective medium with dielectric constant εd(ω) is assumed for the inner sphere of

radius Rd, and the shell of thickness d is vacuum with dielectric constant ε = 1, where Rd = R− d,

R = rsN
1/3 is the radius of a jellium sphere of N atoms, and the thickness d is in the order of

the Wigner-Seitz radius rs. Employing this model, many theoretical works with TDLDA or RPA

based upon LDA have been carried out to qualitatively and quantitatively explain experimental

observations on the optical response of noble metal clusters, and achieved great success [51–56].
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So far, nearly all the jellium model calculations are within the framework of the density func-

tional theory. In these applications, the local density approximation is used to treat the exchange-

correlation, which use locally the exchange correlation energy per electron exc(ρ) obtained in

many-body calculations for an infinite system of electrons with the constant density ρ, i.e., exc

is taken at the local value ρ = ρ(r) everywhere in this finite system. By construction, this approx-

imation is exact only in those regions of space where the density ρ(r) is constant, while in the

current object of nanoparticle systems the density function shows a strong variation in the sur-

face region. Although its applications have achieved considerable success in almost all branches of

physics including nanoparticle systems, its validity were never analyzed from a theoretical point of

view [54]. A fully quantum theory justification is still in need. We note that Guet and Jognson have

ever developed a fully quantum mechanical matrix RPA based on the Hartee-Fock ground state [48].

In their approach the exchange-correlation is treated nonlocally, and they observed a redshift of

the plasmon frequency with respect to the experimental measurement rather than the blue-shift

reported in the previous LDA-RPA studies. Also an improvement of the agreement between calcu-

lations and experimental data was achieved to a certain extent.

As it is well known, the finite temperature Green’s function method [61–63] is a powerful theo-

retical tool which has been shown to be very successful in dealing with both the equilibrium and

the excited state problems in condensed matter systems. To the best of our knowledge, we have not

found any previous work applying this method to compute the optical properties of nanopartices.

Recently, there has been increasing interests in the temperature effect of the optical properties and

the electron dynamics of nanoparticles [57–60]. The finite temperature Green’s function method

takes the temperature effects into account in a natural way. In the current dissertation work, we

apply this method to calculate the optical properties of any metallic nanoparticle with spherically

symmetric geometry. Our primary goal is to develop novel computational tools for the comprehen-

sive, quantitative modeling of the optical properties of these structures. In our approach, the jellium

model is chosen as the positive background potential to confine the conduction electrons, and the

mutual, repulsive Coulomb interactions between conduction electrons is treated fully quantum

mechanically. The Dyson equations for the nonlocalized screening potential and finite temperature

Green’s function in real-space and imaginary-frequence domain are set up within the framework of
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a so-called “dressed random phase approximation”(DRPA). The lack of translation symmetry in

nanoparticles make the numerical solutions of these coupled self-consistent field equations a great

computational challenge. Considering the spherical symmetry, the angular and radial portions of

these equations are separated by using the angular momentum theory [66]. The finite element

method [67] is extended to the Green’s function calculations, which considerably stabilizes the

self-consistent iterations and saves the computation time. Even though great effort has been made

to develop a highly efficient numerical algorithm to solve these self-consistent field equations,

our computations are still confined by the constraints of currently available high-performance

computing capabilities.

A new class of nanomechanics is attempting to measure extremely minute amounts of energy,

of the order a few neV, and to use such calorimeters to probe fundamental properties of thermal

conduction in the nanoscale regime [76–80]. Like the related case of electrical conduction [81, 82],

low-temperature thermal conduction in nanostructures is entirely different than in macroscopic

materials because the phonons are in the mesoscopic regime, where they scatter elastically but not

inelastically. Because inelastic scattering is required to establish thermodynamic equilibrium, there

is a breakdown of Fourier’s law and the heat equation, which assume a local thermodynamic equi-

librium characterized by a spatially varying temperature profile. These nanodevices have inspired

considerable theoretical work on thermal transport by phonons in the mesoscopic limit [83–97].

There has been considerable attention given to mesoscopic electron transport through curved

wires and waveguides [100], but none to thermal transport. Electron transmission probabilities in

curved wires are usually obtained by mode-matching, a method restricted to piecewise separable

geometries (wires composed of straight segments, circles, and other shapes where the wave equation

is separable). A related problem that has been studied extensively is the formation of electronic

bound states and resonances in curved wires, where the mapping to local curvilinear coordinates

is also often used [100–102]. Surprisingly, we are not aware of any work using moving frames and

then directly solving the resulting Lippmann-Schwinger equation in that basis. Nor are we aware

of the use of this method in the extensive microwave engineering literature [104, 105], where the

(more generally applicable but purely numerical) finite-element method is the technique of choice.
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In this work we introduce a general method to calculate the scattering matrix for waves propa-

gating through a curved wire or waveguide. The wire is assumed to be of uniform cross-section and

lying in a plane, but the curved segment may have any smooth curvature profile. The ends of the

wire (the “leads”) are also assumed to be straight. For definiteness we consider two-dimensional

waves described by the scalar Helmholtz equation

[
∇2 + α

]
Φ(r) = 0, r ≡ (x, y)

Here α(ε) ≡ 2mε/~2 in the case of electrons of energy ε and mass m, whereas α(ε) ≡ ε2/~2v2 in the

case of scalar phonons of energy ε and bulk sound velocity v. The hard wall boundary condition is

assumed for electrons, but the stress free boundary condition for the phonon case. Our approach

involves rewriting this equation and the boundary conditions in terms of new curvilinear coordinates

X and Y , dictated by the shape of the wire, such that the wave equation becomes more complicated

(the wire’s curvature produces an effective potential), but the boundary conditions become trivial.

We choose X to be the arclength along one edge of the wire, and Y is locally perpendicular. This

transformation allows us to apply the standard techniques of scattering theory, including solution

of the Lippmann-Schwinger equation, in the XY frame.

A particularly novel aspect of the phonon transport problem is that the reflection proba-

bility always vanishes in the long-wavelength limit, permitting an analytic (second-order Born

approximation) treatment at low energies. The energy-dependent transmission probability is then

expressed as a simple functional of the curvature profile κ(X), making possible a straightforward

analysis of a variety of wire shapes.

The interaction between electrons and phonons at low temperatures is a subject of considerable

interest and importance, as this coupling is the primary mechanism by which an electron system

can exchange energy with its environment. At low temperatures, electron-electron scattering will

cause nonequilibrium electrons to equilibrate on a timescale that is typically much shorter than the

electron-phonon equilibration time, resulting in an electron distribution that is thermal, but at a

temperature higher than that of the lattice. Understanding the effects of these “hot” electrons is

crucial in studies of transport in semiconductors and metals at low temperatures [114]. The widely

used “standard” model of low temperature electron-phonon thermal coupling and hot-electron
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effects in bulk metals [113, 114] assumes (i) a clean three-dimensional free-electron gas with a

spherical Fermi surface, rapidly equilibrated to a temperature Tel; (ii) a continuum description

of the acoustic phonons, which have a temperature Tph; (iii) a negligible Kapitza-like thermal

boundary resistance [115] between the metal and any surrounding dielectric, an assumption that is

well justified experimentally; and (iv), a deformation-potential electron-phonon coupling, expected

to be the dominant interaction at long-wavelengths. In a bulk metal, the net rate P of thermal

energy transfer between the electron and phonon subsystems is [114]

P = ΣVel

(
T 5

el − T 5
ph

)
,

where Vel is the volume of the metal, and

Σ ≡ 8 ζ(5) k5
B ε

2
FNel(εF)

3π~4ρvFv4
l

.

Here ζ is the Riemann zeta function, εF is the Fermi energy, Nel is the electronic density of states

(DOS) per unit volume, ρ is the mass density, vl is the bulk longitudinal sound speed, and vF is

the Fermi velocity.

This model, which has no adjustable parameters, has successfully explained some experi-

ments [114, 116, 117], but others report a power-law temperature dependence with smaller expo-

nents [118, 119], indicating an enhanced electron-phonon coupling at low temperatures. However,

the experiments typically involve heating measurements in thin metal films deposited on semi-

conducting substrates, and the relevant phonons at low temperature are strongly modified by the

exposed stress-free surface. An attempt to directly probe such phonon-dimensionality effects was

carried out by DiTusa et al. [119], who intentionally suspended some of their samples, necessarily

modifying the vibrational spectrum, although they found no significant difference from their sup-

ported films. We argue that the paradox reported in Ref. [119] is actually quite widespread, and

all experiments known to us on supported films actually contradict the standard model when that

model is modified to account for the actual vibrational modes present in a realistic supported-film

geometry. Our results have important implications for the thermal properties of mesoscopic and

low-dimensional phonon systems and the use of such systems as nanoscale thermometers, bolome-

ters, and calorimeters [120–122].
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Part one of the my dissertation consists of Chapter 2 to 5, including the application of the finite

temperature Green’s function method to the investigation of the optical properties, or say electron

dynamics, of nanoparticles. A brief review of the quantum field theory at finite temperature is

made in Chapter 2.1, for later use in this work. In Chapter 2, we develop the real-space Green’s

function at finite temperature for any spherically symmetric system within the framework of so-

called DRPA. Also in this chapter, by using the angular momentum coupling theory, the angular

parts of these field equations are separated and only leave the radial parts for consideration, which

dramatically reduces the computation strength. Two radial Dyson equations of Green’s function

and the nonlocalized screening electronic interaction potentials are derived, respectively. The finite

element forms of these self-consistent iteration equations are built in Chapter 3. The linear response

theory is setup in Chapter 4 to compute the susceptibility and the polarizability. Chapter 5 gives

the examples on the application of the approaches created in the previously chapters. Part two

of my dissertation appears in Chapter 6, included are our results on the electron and phonon

transport through curved nanowires which is in the manuscript style. In Sec. 6.2 we carry out

the above analysis for the two-dimensional Helmholtz equation. In Sec. 6.3 we consider electron

transport through a circular right-angle bend, recovering results obtained by Sols and Macucci [106]

and by Lin and Jaffe [107] using mode-matching methods. Our main results are given in Sec. 6.4,

where we address thermal transport through curved wires. Sec. 6.5 contains a discussion of our

conclusions and the experimental implications of this work. In part three of my dissertation, i.e.,

Chapter 7, presented is the result for hot-electrons in low-dimensional phonon systems which is in

the manuscript style. The conclusions are in Chapter 8.



Chapter 2

REAL SPACE GREEN’S FUNCTION FOR SPHERICALLY SYMMETRIC SYSTEMS

2.1 Self-consistent dressed random phase approximation at finite temperature

Condensed matter systems usually consist of many interacting particles. A complete understanding

of such systems, involving solution of the many-particle Schrödinger equation, requires the knowl-

edge of the interaction potential between particles, i.e., the Hamiltonian

H = H0 +HV (2.1)

with

H0 ≡
∑

i=1

[
−~

2∇2

2me
+ U(ri)

]
, HV ≡

1

2

∑

i,j

V (ri, rj)

where H0 includes the kinetic energy and some single-particle potential U(r) felt by particles, and

HV is the mutual interaction between particles themselves. It is impossible to directly solve the

corresponding many-particle coupling Schrödinger equations even for finite many-body systems,

such as atoms and nuclei. Therefore other techniques are invoked instead, such as quantum field

theory and Green’s function methods [61–63]. The Green’s function method has proved itself a very

powerful tool. The finite temperature counterpart of the Green’s function method was originated

by Matsubara [64]. It includes the temperature in a natural way, and provides us with both the

complete ground state and the excited state properties of the system. Since the Green’s function

method is formulated in the language of quantum field theory, we need to introduce the second

quantization form of the Hamiltonian

Ĥ = Ĥ0 + ĤV (2.2)

Ĥ0 =
∑

α

∫
d3rΨ̂†

α(r)

[
−~

2∇2

2me
+ U(r)

]
Ψ̂α(r) (2.3)

ĤV =
1

2

∑

αα′

∫ ∫
d3rd3r′Ψ̂†

α(r)Ψ̂†
α′(r

′)V (r, r′)Ψ̂α′(r′)Ψ̂α(r) (2.4)

11
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where Ψ̂α(r) and Ψ̂†
α(r) are the field operators, eliminating and creating, respectively, particles at

position r with spin z component α.

The field operators satisfy simple commutation or anticommutation relations depending on

whether the particle is boson or fermion,

[
Ψ̂α(r), Ψ̂†

α′(r
′)
]

∓
= δαα′δ(r − r′)

[
Ψ̂α(r), Ψ̂α′(r′)

]

∓
=

[
Ψ̂†

α(r), Ψ̂†
α′(r

′)
]

∓
= 0 (2.5)

where the upper (lower) sign refers to bosons (fermions).

In treating system at finite temperature, the grand canonical ensemble is often employed by

introducing the grand canonical Hamiltonian,

K̂ = Ĥ − µN̂ (2.6)

where µ is the chemical potential, and N̂ is the particle number operator. The statistical operator

and the grand partition function may be written as

ρ̂
G

= Z−1
G e−βK̂ = e−β(Ω−K̂) (2.7)

ZG = e−Ω = Tr e−βK̂ (2.8)

where Ω is the grand canonical potential, and β = 1/kBT .

It is very convenient to work in the imaginary-time Heisenberg picture, in which any operator

Ô is related to its Schrödinger counterpart by

ÔK ≡ eK̂τ/~ ÔS e−K̂τ/~ (2.9)

The representation of the field operators in this Heisenberg picture reads,

Ψ̂Kα(rτ) = eK̂τ/~ Ψ̂α(r) e−K̂τ/~ (2.10)

Ψ̂†
Kα(rτ) = eK̂τ/~ Ψ̂α(r)† e−K̂τ/~ (2.11)

We should emphasize that Ψ̂†
Kα(rτ) is not the adjoint of Ψ̂Kα(rτ) as long as τ is real. Actually,

it can be analytically continued to a pure imaginary value i t. As a result, Ψ̂†
Kα(r, it) becomes the

true adjoint of Ψ̂Kα(r, it) as in the original Heisenberg picture.
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Now we give the definition of the single-particle Green’s function as follows,

Gαα′(rτ, r′τ ′) ≡ −Tr
{
ρ̂

G
Tτ

[
Ψ̂Kα(rτ)Ψ̂†

Kα′(r
′τ ′)
]}

(2.12)

Here, Tτ is an operator that orders the operators following itself in such a way so that the one with

the earlier time appears at the right, and also confines the sign of this operation by (−1)P , where P

is the number of permutations required by fermion operators to restore the original order. The trace

(Tr) here implies the grand canonical ensemble average, or say the weighted average over a complete

set of states in the Hilbert space, and the statistical operator plays a role of the weight. A simple

calculation, with the help of the cyclic property of the trace [Tr(ABC)=Tr(BCA)=Tr(CAB)], gives

the periodicity of the temperature Green’s function

Gαα′(rτ, r′τ ′) = ±Gαα′ [rτ, r′(τ ′ + β~)]

Gαα′(rτ, r′τ ′) = ±Gαα′ [r(τ + β~), r′τ ′] (2.13)

Therefore, one needs only consider the Green’s function in the imaginary time domain [0, β~].

Further simplification is reached when the Hamiltonian is time independent, where the Green’s

function is dependent only on the difference τ − τ ′. One may simply write it as Gαα′(r, r′; τ), and

the periodic condition as

Gαα′(r, r′; τ < 0) = ±Gαα′(r, r′; τ + β~) (2.14)

Nevertheless, this property enable us to get the finite temperature Green’s function in the domain

of the Matsubara imaginary frequency through the Fourier transformation

Gαα′

(
r, r′; iωn

)
=

∫ β~

0
dτeiωnτGαα′

(
r, r′; τ

)

Gαα′

(
r, r′; τ

)
=

1

β~

∑

iωn

e−iωnτGαα′

(
r, r′; iωn

)
(2.15)

where iωn is odd Matsubara frequency defined by

ωn ≡





2nπ
β~
, for bosons

(2n+1)π
β~

, for fermions

(2.16)
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As long as Green’s function is obtained, one can, in principle, calculate all the thermodynamics

properties, such as the mean particle density and particle number, i.e.,

〈n̂(r)〉 = ∓ trG(rτ, rτ+) = ∓
∑

α

Gαα(rτ, rτ+) (2.17)

N(T, V, µ) = ∓
∫

trG(rτ, rτ+) (2.18)

To get a close form of the Green’s function is very complicated because we do not know exactly

the eigenstates of the corresponding Hamiltonian in many occasions. Hence the perturbation expan-

sion is a tool to choose, in which one usually decomposes the full grand canonical Hamiltonian into

an easily treated part K̂0 and a perturbation part K̂1 = K̂ − K̂0. Our discussion is then within the

interaction picture. The representation of any mechanical operator in this picture is defined by

ÔI(τ) ≡ eK̂0τ/~ ÔS e−K̂0τ/~ (2.19)

It is related to its counterpart in the Heisenberg picture by

ÔK = Û(0, τ) ÔI(τ) Û(τ, 0) (2.20)

where the evolution operator can be easily obtained by formally solving its dynamical equation,i.e.,

Û(τ, τ ′) =
∞∑

n=0

1

(−~)nn!

∫ τ

τ ′

dτ1 · · ·
∫ τ

τ ′

dτnTτ

[
K̂1(τ1) · · · K̂n(τn)

]
(2.21)

Now the exact temperature Green’s function, based upon the procedures mentioned above, can

be calculated by the following perturbation expansion

Gαα′(rτ, r′τ ′) =

−Tr
{

e−βK̂0
∑∞

n=0(−~)−n 1
n!

∫ β~

0 dτ1 · · ·
∫ β~

0 dτnTτ

[
K̂1(τ1) · · · K̂n(τn)Ψ̂Iα(rτ)Ψ̂†

Iα(r′τ ′)
]}

Tr
{

e−βK̂0
∑∞

n=0(−~)−n 1
n!

∫ β~

0 dτ1 · · ·
∫ β~

0 dτnTτ

[
K̂1(τ1) · · · K̂n(τn)

]}

(2.22)

Feynman diagram technique and Wick’s theorem provide us with very efficient tools to evaluate

the finite temperature Green’s function. The diagram analysis shows that the denominator of

equation (2.22) exactly cancels out the disconnect diagram in the nominator. Thus it reduces to,

Gαα′(rτ, r′τ ′) = −
∞∑

n=0

1

(−~)n n!

∫ β~

0
dτ1 · · ·

∫ β~

0
dτn

×Tr
{

e−βK̂0Tτ

[
K̂1(τ1) · · · K̂n(τn)Ψ̂α(rτ)Ψ̂†

α(r′τ ′)
]}

connected
(2.23)
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Here the field operators Ψ̂α(rτ) and Ψ̂†
α(r′τ ′) are associated with the unperturbed Hamiltonian K̂0

(due to the nature of the interaction picture). Thus the Green’s function estimation is just to add

up all the connected diagrams according to Feynman rules [61], which expresses the full Green’s

function in terms of the unperturbed ones, G0
αα′(rτ, r′τ ′), associated with the Hamiltonian K̂0.

For electron systems in solid, the Hamiltonian H0 in the Eq.(2.3) takes the place of the grand

canonical Hamiltonian, replacing single-particle potential U(r) with the potential built up by the

positive background charges and absorbing −µN̂ term. It is time independent. The two-body

Coulomb interaction V (r − r′) between electrons is treated as the perturbation and hence we

have

K̂1(τ) =
1

2

∑

αα′

∫ ∫
d3rd3r′Ψ̂†

Kα(rτ)Ψ̂†
Kα′(r

′τ ′)V (r − r′)Ψ̂Kα′(r′τ ′)Ψ̂Kα(rτ) (2.24)

The Feynman rules corresponding to this interaction can be easily obtained. The Dyson equation

provides a iteration method to self-consistently solve the Green’s function through an unperturbed

one. The Dyson equations for the Green’s function reads

G(x̃, ỹ) = G0(x̃, ỹ) +

∫ ∫
dz̃1dz̃2G0(x̃, z̃1)Σ(z̃1, z̃2)G(z̃2, ỹ) (2.25)

where Σ is the proper self-energy in the self-consistent iterations [61]. Here we use the generalized

coordinates representing the space, time and spin coordinates, e.g., x̃ = (x, τx, αx) . The integrals

include integrals over real space and imaginary time, and the summations over spin.

The diagrammatic representation of the Dyson for the temperature Green’s function is shown

in Fig.2.1. where the unperturbed Green’s functions G0
αα′(rτ , r′τ ′) are denoted by thin lines each

� G
= �

G0

+
GG0

Σ

(2.26)

Figure 2.1: Diagrammatic Dyson equation for the finite temperature Green’s function

with an arrow along the direction of r − r′, the perturbed (full or dressed) Green’s functions

Gαα′(rτ, r′τ ′) by thick lines with the same arrangement of the arrow directions as for G0. The

proper self-energy diagrams [61] are denoted by filled bulbs. The solid circles on the vertexes imply

the spin summations and the integrals over the space and time coordinates.
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This diagram provides a self-consistent way to calculate the finite temperature Green’s function,

which will start to work as soon as one get the unperturbed Green’s function G0. A typical approach

is to solve the single-particle Schrödinger equation for the corresponding unperturbed first quantized

Hamiltonian H0, and then construct the unperturbed Green’s function by the following expression

(for example, in the Matsubara frequency domain),

G0(r, r′; iωn) =
∑

k

ψk(r)ψ∗
k(r

′)

iωn − Ek + µ
(2.27)

where ψk(r) and Ek are respectively the eigenfunctions and eigenvalues of H0, and k denotes a set

of quantum numbers. Alternatively, it can be obtained by directly solving the following equation

(iωn −H0 + µ)G0(r, r′; iωn) = δ(r − r′) (2.28)

where µ is the chemical potential, and the single-particle Hamiltonian H0 is defined as

H0 ≡
~

2∇2

2me
+ U(r). (2.29)

After an unperturbed Green’s function is obtained, the next step is to compute the self-energy.

Approximations are usually introduced at this stage. The very first ones are the Hartree and Fock

approximations (the first order diagrams), shown in Fig.2.2, We have to emphasize that here we use

ΣHF = +

(2.30)

Figure 2.2: Feynman diagram for the Hartree-Fock self-energy

the dressed Green’s function instead of the unperturbed one because we confine ourself to the self-

consistent computation in the current work. In many situations, the Hartree-Fock approximation

gives rather good result, and at least provides a first insight into the problem under consideration.

In this research, we are interested in the polarization behavior of electrons, here the electron-

hole excitation is important. Thus we need to add up all the contributions of the bulb diagrams as
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shown in Fig.2.3. This is the random phase approximation (RPA) [61, 62, 65]. Here, again, we use

the dressed Green’s functions (the thick solid lines) instead of the unperturbed ones in all the bulb

diagrams. This is why we call our approach the dressed-random-phase-approximation (DRPA).

The DRPA contributes an effective two-body potential for electron-electron interactions, denoted

by the thick zig-zag line, which is the result of the screening effect on the bare electron-electron

interactions denoted by the thin zig-zag lines.

�
= � + + + · ·· (2.31)

Figure 2.3: Ring approximation to the effective two-body interaction

In a self-consistent way, one may get the Dyson equation for this effective potential [denoted

analytically by the operator W (x̃, ỹ)],

W (x̃, ỹ) = V (x̃, ỹ) +

∫ ∫
dz̃1dz̃2V (x̃, z̃1)Π(z̃1, z̃2)W (z̃2, ỹ) (2.32)

with,

V (x̃, ỹ) = V (x− y)δ(τx − τy)δαxαy (2.33)

here the coordinates and the integrals are defined in the same way as in Eq.(2.25). The multiplication

of the delta functions with respect to time and spin coordinates is due to the fact that the bare

potential is independent of the time and spin. Π(z̃1, z̃2) is the polarization operator. The definition

of it can be found in the diagrammatic Dyson equation in Eq.(2.34),

W
=

V
+

WV
Π

(2.34)

Figure 2.4: Diagrammatic Dyson equation for the effective two-body interaction

Now we are ready to evaluate the self-energy associated this effective potential. We call this

self-energy “RPA self-energy” in this dissertation because the effective potential is obtained under
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the RPA. The Feynman diagram is shown in Fig.2.5. Here we subtract the Fock self-energy because

its contribution has already been included previously in Eq.(2.30).

ΣR = − (2.35)

Figure 2.5: Feynman diagram for the self-energy in DRPA approximation

In our current approach we only include the Hartree-Fock and the RPA self-energy, i.e.,

Σ(z̃1, z̃2) = ΣHF(z̃1, z̃2) + ΣR(z̃1, z̃2) (2.36)

Substitute this self-energy into Dyson equation (2.25), we obtain a dressed Green’s function, which

ends our first iteration. With this Green’s function, we start next sequence of computing effective

potential via Eq.(2.32), Hartree-Fock self-energy via Eq.(2.30), RPA self-energy via Eq.(2.35) and

finally the dressed Green’s function via Eq.(2.25). Repeating the above sequence till a required pre-

cision is reached, one may get the Green’s function of the system. Based upon this finite temperature

Green’s function, one may calculate any interesting physical properties.

2.2 Spherically symmetric systems and radial Green’s function

In developing the self-consistent dressed random phase approximation in the previous section, no

pre-assumption is made on the nature of electron systems excepting the time-independence of the

Hamiltonian. We provide only a general framework of DRPA for computing the finite temperature

Green’s function of interacting electron systems confined in some background potential U(r) [see

eq.(2.3)]. The description will become simpler if there is some special symmetry for the system, for

example, the translation invariance in the homogeneous systems. One may use Fourier transfor-

mation to transfer the current formula into momentum space when this happens. The description

in this space becomes pretty simple (comparing to real space case). However, the objectives of the

current research are nanoparticles lack of translation symmetry, especially for small nanopartciles.

In a very rough approximation, one may assume a spherical symmetry. Actually, for the so called
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close-shell metallic nanoparticles consisting of magic number of atoms, spherical symmetry is often

used to simplify the problems [6, 7, 17,18,23,36–40].

In the following sections, we assume the spherical symmetry for our electron system. As a result,

the background potential U(r) are only determined by the position with no relation to the angular

coordinates, i.e.,

U(r) = U(r)

Now the angular quantum number is a good quantum number, one may make use of all batch of

methods developed in the angular momentum theory [66]. The first step is to separate the angular

portion from the radial coordinate. By using the spherical harmonic function, one expands the

two-body Coulomb potential as

V
(
r− r′

)
=

e2

|r− r′| =
∞∑

l=0

m=l∑

m=−l

Fl

(
r, r′

)
Y ∗

lm

(
θ′, ϕ′

)
Ylm (θ, ϕ) (2.37)

with

Fl

(
r, r′

)
≡ 4πφ0

2l + 1

ql
<

ql+1
>

(2.38)

and

φ0 ≡
e2

rs
, q< ≡ min{q, q′}, q> ≡ max{q, q′}, q ≡ r

rs
,

where rs is the Wigner-Seitz radius of electrons in bulk materials, which is used to rescale the length

through out this work.

Similarly, one may expand the Fermion field operators (in the Heisenberg picture) as,

Ψ̂α (r, τ) =
∑

µ

Φnµlµ (r)Ylµmµ (θ, ϕ)Cµα(τ) (2.39)

Ψ̂†
α (r, τ) =

∑

µ

Φnµlµ (r)Y ∗
lµmµ

(θ, ϕ)C†
µα(τ) (2.40)

where, Cµα(τ) and C†
µα are the creation and destruction operators in Heisenberg picture, respec-

tively. α is the spin index. nµ,lµ and mµ are the principal, angular and magnetic quantum number,

respectively, and µ is the abbreviation of them, i.e., µ ≡ {nµ, lµ,mµ}. Substitute them in the

definition of the finite temperature, Eq.(2.12), the following expansion is obtained,

Gαα′

(
r, r′; τ

)
=
∑

µµ′

Ylµmµ (θ, ϕ)Y ∗
lµ′mµ′

(
θ′, ϕ′

)
Φnµlµ (r) Φnµ′ lµ′

(
r′
)
Gαα′

(
µ, µ′; τ

)
(2.41)
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where

Gαα′

(
µ, µ′; τ

)
≡ −Tr

{
ρ̂

G
Tτ

[
C†

µα(τ)C†
µ′α′(0)

]}
(2.42)

It can be shown that Gαα′ (µ, µ′; τ) is diagonal with respect to lµ and mµ, i.e.,

Gαα′

(
µ, µ′; τ

)
= G

(
nµ|nµ′ ; lµ, τ

)
δαα′δlµlµ′

δmµmµ′ (2.43)

Therefore, Eq.(2.41) becomes,

Gαα′

(
r, r′; τ

)
=

∑

lµmµ

Ylµmµ (θ, ϕ)Y ∗
lµmµ

(
θ′, ϕ′

) ∑

nµnµ′

Φnµlµ (r) Φnµ′ lµ

(
r′
)
Gαα′

(
nµ|nµ′ ; lµ, τ

)

(2.44)

Introducing the radial Green’s function

Glµ

(
r, r′; τ

)
≡
∑

nµnµ′

Φnµlµ (r) Φnµ′ lµ

(
r′
)
G
(
nµ|nµ′ ; lµ, τ

)
(2.45)

one may expresses the real-space Green’s function by

Gαα′

(
r, r′; τ

)
=

∑

lµmµ

Ylµmµ (θ, ϕ)Y ∗
lµmµ

(
θ′, ϕ′

)
Glµ

(
r, r′; τ

)
δαα′ (2.46)

The Fourier transformation defined in Eq.(2.15) yields,

Gαα′

(
r, r′; iωn

)
=

∑

lµmµ

Ylµmµ (θ, ϕ)Y ∗
lµmµ

(
θ′, ϕ′

)
Glµ

(
r, r′; iωn

)
δαα′ (2.47)

Glµ

(
r, r′; iωn

)
≡

∑

nµnµ′

Φnµlµ (r)Φnµ′ lµ

(
r′
)
G
(
nµ|nµ′ ; lµ, iωn

)
(2.48)

Gαα′

(
µ, µ′; iωn

)
= G

(
nµ|nµ′ ; lµ, iωn

)
δαα′δlµlµ′

δmµmµ′ (2.49)

With the help of the spherical harmonic functions, the temperature Green’s function has been

successfully decomposed into the multiplication of the angular and the radial parts, which will

enable us to separate the angular part completely. The similar derivations will be applied to the

self-energy, polarization operator, and the screening potential separately in the following sections.
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2.3 Hartree self-energy

According to the Feynman rules and the definition of self-energy in Eq.(2.30), one writes the Hartree

self-energy as

ΣH
(
r, r′

)
=

(2s+ 1)

β~2
δ(r− r′)

∫
d3r0V (r− r0)

∑

iωn

eiωnηG (r0, r0; iωn)

= δ(r− r′)Σ̃H (r) (2.50)

where,

Σ̃H (r) =
(2s+ 1)

β~2

∫
d3r0V (r− r0)

∑

iωn

eiωnηG (r0, r0; iωn) (2.51)

Substituting the expression of the Coulomb potential (2.37) and Eq.(2.47), it becomes

Σ̃H (r) =
(2s+ 1)

β~2

∑

lm

∑

l′m′

∫
d3r0Fl (r, r0)Y

∗
lm (θ, ϕ)Ylm (θ0, ϕ0)Yl′m′ (θ0, ϕ0)Y

∗
l′m′ (θ0, ϕ0)

∑

iωn

eiωnηGl′ (r0, r0; iωn)

Integrating the angular part through relation (A.10), we have

Σ̃H (r) =
(2s+ 1)

β~2

∑

lm

∑

l′m′

∫
r20dr0

√
(2l′ + 1)

4π
Fl (r, r0)Y

∗
lm (θ, ϕ) C̃

(
ll′l′;mm′m′

)
C
(
ll′l′; 000

)

∑

iωn

eiωnηGl′ (r0, r0; iωn)

Summing over m and over m′ using relation (A.12), and then over l, it becomes

Σ̃H (r) =
(2s+ 1)√

4πβ~2

∑

l′

∫
r20dr0(2l

′ + 1)F0 (r, r0)Y
∗
00 (θ, ϕ)C

(
0l′l′; 000

)∑

iωn

eiωnηGl′ (r0, r0; iωn)

With C (0l′l′; 000) = 1 and Y ∗
00 (θ, ϕ) = 1/

√
4π, we get

Σ̃H (r) =
(2s+ 1)

4πβ~2

∑

l′

∫
r20dr0(2l

′ + 1)F0 (r, r0)
∑

iωn

eiωnηGl′ (r0, r0; iωn)

Clearly Σ̃H (r) is not angular dependent, and can be expressed as,

Σ̃H (r) =
(2s+ 1)kBT

4π~2

∑

l′

∫
r20dr0(2l

′ + 1)F0 (r, r0)
∑

iωn

eiωnηGl′ (r0, r0; iωn) (2.52)

and the radial Hartree self-energy is

ΣH
(
r, r′

)
=

1

r2
δ(r − r′)Σ̃H (r) (2.53)
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The partial Green’s function corresponding to the Hartree self-energy can be expressed as

GH
(
r, r′; iΩn

)
=

∫
d3r1d

3r′1G0 (r, r1; iΩn) ΣH
(
r1, r

′
1

)
G
(
r′1, r

′; iΩn

)

=

∫
d3r1G0 (r, r1; iΩn) Σ̃H (r1)G

(
r1, r

′; iΩn

)

=
∑

lm

∑

l′m′

∫
d3r1Ylm (θ, ϕ)G0

l (r, r1; iΩn)Y ∗
lm (θ1, ϕ1)Y

∗
l′m′ (θ1, ϕ1)

Σ̃H (r1)Gl′
(
r1, r

′; iΩn

)
Yl′m′

(
θ′, ϕ′

)

Integrating the angular part using the orthonormal relation of the spherical harmonic functions,

we have

GH
(
r, r′; iΩn

)
=

∑

lm

Ylm (θ, ϕ)Y ∗
lm

(
θ′, ϕ′

)
Gl

(
r, r′; iΩn

)
(2.54)

where the radial Green’s function reads,

GH
l

(
r, r′; iΩn

)
=

∫
r21dr1G

0
l (r, r1; iΩn) Σ̃H (r1)Gl

(
r1, r

′; iΩn

)
(2.55)

2.4 Fock self-energy

The Fock self-energy and the corresponding partial Green’s function are defined by

ΣF
(
r, r′

)
= − 1

β~2
V
(
r− r′

)∑

iωn

eiωnηG
(
r, r′; iωn

)
(2.56)

GF
(
r, r′; iΩn

)
=

∫
d3r1d

3r2G0 (r, r1; iΩn) ΣF (r1, r2)G
(
r2, r

′; iΩn

)
(2.57)

Substituting the expression of the Coulomb potential (2.37) and Eq.(2.47) into Eq.(2.56), one has

ΣF
(
r, r′

)
= − 1

β~2

∑

l1m1

∑

l2m2

Yl1m1
(θ, ϕ)Yl2m2

(θ, ϕ)Y ∗
l1m1

(
θ′, ϕ′

)
Y ∗

l2m2

(
θ′, ϕ′

)
Fl1

(
r, r′

)

∑

iωn

eiωnηGl2

(
r, r′; iωn

)

According to Eq.(A.9), coupling of the spherically harmonic functions gives,

ΣF
(
r, r′

)
= − 1

β~2

∑

lm

∑

l′m′

∑

l1l2

2l2 + 1

4π
Ylm (θ, ϕ)Y ∗

l′m′

(
θ′, ϕ′

)
Fl1

(
r, r′

)
C (l1l2l)C

(
l1l2l

′
)

∑

iωn

eiωnηGl2

(
r, r′; iωn

) ∑

m1m2

C̃ (l1l2l;m1m2m) C̃
(
l1l2l

′;m1m2m
′
)
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Summing over m1m2 using the orthonormal relation (A.7), and then the summation over l′m′ gives,

ΣF
(
r, r′

)
=

∑

lm

Ylm (θ, ϕ)Y ∗
lm

(
θ′, ϕ′

)
ΣF

l

(
r, r′

)
(2.58)

where the radial Fock self-energy is

ΣF
l

(
r, r′

)
≡ − kBT

4π (2l + 1) ~2

∑

l1l2

(2l1 + 1) (2l2 + 1)Fl1

(
r, r′

)
C (l1l2l)

2
∑

iωn

eiωnηGl2

(
r, r′; iωn

)

To obtain the corresponding partial radial Green’s function, we substitute Eq. (2.58) and (2.47)

into (2.57), and get

GF
(
r, r′; iΩn

)
=

∑

lm

∑

l′1m′
1

∑

l′2m′
2

∫
d3r1d

3r2Yl′1m′
1
(θ, ϕ)G0

l′1
(r, r1; iΩn)Y ∗

l′1m′
1
(θ1, ϕ1)Ylm (θ1, ϕ1)

ΣF
l (r1, r2)Y

∗
lm (θ2, ϕ2)Yl′2m′

2
(θ2, ϕ2)Gl′2

(
r2, r

′; iΩn

)
Y ∗

l′2m′
2

(
θ′, ϕ′

)

Integrating the angular parts using the orthonormal relation of the spherically harmonic function,

and then sum over l′1m
′
1 and l′2m

′
2, we obtain

GF
(
r, r′; iΩn

)
=

∑

lm

Ylm (θ, ϕ)Y ∗
lm

(
θ′, ϕ′

)
GF

l

(
r, r′; iΩn

)
(2.59)

and the radial counterpart

GF
l

(
r, r′; iΩn

)
=

∫
r21dr1r

2
2dr2G

0
l (r, r1; iΩn) ΣF

l (r1, r2)Gl

(
r2, r

′; iΩn

)
(2.60)

2.5 polarization operator and screened potential

The polarization operator is defined by,

Π
(
r, r′; ipn

)
=

(2s+ 1)

β~2

∑

iωn

G
(
r, r′; iωn

)
G
(
r′, r; iωn − ipn

)
(2.61)

According to Eq. (2.47), it turns into

Π
(
r, r′; ipn

)
=

(2s+ 1)

β~2

∑

l1m1

∑

l2m2

Yl1m1
(θ, ϕ)Y ∗

l2m2
(θ, ϕ)Y ∗

l1m1

(
θ′, ϕ′

)
Yl2m2

(
θ′, ϕ′

)

∑

iωn

Gl1

(
r, r′; iωn

)
Gl2

(
r′, r; iωn − ipn

)
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Employing the coupling rule of the spherical harmonics, we get

Π
(
r, r′; ipn

)
=

(2s+ 1)

4πβ~2

∑

lm

∑

l′m′

∑

l1m1

∑

l2m2

(2l2 + 1) (−1)m1+m2C̃ (l1l2l;m1 −m2m)

C̃
(
l1l2l

′;−m1m2m
′
)
Ylm (θ, ϕ)Yl′m′

(
θ′, ϕ′

)
C (l1l2l)C

(
l1l2l

′
)

∑

iωn

Gl1

(
r, r′; iωn

)
Gl2

(
r′, r; iωn − ipn

)

Since l1 + l2− l is even, one has C̃ (l1l2l;m1 −m2m) = C̃ (l1l2l;−m1m2 −m), and the non-zero CG

coefficient requires that m = m1 −m2. Thus, this equation becomes

Π
(
r, r′; ipn

)
=

(2s+ 1)

4πβ~2

∑

lm

∑

l′m′

∑

l1m1

∑

l2m2

(2l2 + 1) (−1)mC̃ (l1l2l;−m1m2 −m)

C̃
(
l1l2l

′;−m1m2m
′
)
Ylm (θ, ϕ)Yl′m′

(
θ′, ϕ′

)
C (l1l2l)C

(
l1l2l

′
)

∑

iωn

Gl1

(
r, r′; iωn

)
Gl2

(
r′, r; iωn − ipn

)

Sum over m1m2 using the orthonormal relation (A.7), and then over l′m′, this equation becomes,

Π
(
r, r′; ipn

)
=

(2s+ 1)

4πβ~2

∑

lm

∑

l1l2

(2l1 + 1) (2l2 + 1)

(2l + 1)
Ylm (θ, ϕ) (−1)mYl−m

(
θ′, ϕ′

)
C (l1l2l)

2

∑

iωn

Gl1

(
r, r′; iωn

)
Gl2

(
r′, r; iωn − ipn

)

=
∑

lm

Ylm (θ, ϕ)Y ∗
lm

(
θ′, ϕ′

)
Πl

(
r, r′; ipn

)
(2.62)

where,

Πl

(
r, r′; ipn

)
=

(2s+ 1)kBT

4π (2l + 1) ~2

∑

l1l2

(2l1 + 1) (2l2 + 1)C (l1l2l)
2

∑

iωn

Gl1

(
r, r′; iωn

)
Gl2

(
r′, r; iωn − ipn

)
(2.63)

According to the Dyson equation (2.32), the screened Coulomb potential reads

W
(
r, r′; ipn

)
= V

(
r, r′

)
+

∫ ∫
d3r1d

3r′1V (r, r1) Π
(
r1, r

′
1; ipn

)
W
(
r′1, r

′; ipn

)
(2.64)

To get the radial component, we let this integration equation evolve self-consistently. The zero-order

potential is just the bare one defined in Eq.(2.37), i.e.,

W (0)
(
r, r′; ipn

)
= V

(
r, r′

)
=
∑

lm

Ylm (θ, ϕ)Y ∗
lm

(
θ′, ϕ′

)
W

(0)
l

(
r, r′; ipn

)
(2.65)
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and thus

W
(0)
l

(
r, r′; ipn

)
= Fl

(
r, r′

)
(2.66)

The first-order term is

W (1)
(
r, r′; ipn

)
=

∫
d3r1d

3r′1V (r, r1) Π
(
r1, r

′
1; ipn

)
W (0)

(
r′1, r

′; ipn

)

=
∑

lm

∑

l1m1

∑

l′m′

∫
d3r1d

3r′1Ylm (θ, ϕ)Fl (r, r1)Y
∗
lm (θ1, ϕ1)Yl1m1

(θ1, ϕ1)

Πl1

(
r1, r

′
1; ipn

)
Y ∗

l1m1

(
θ′1, ϕ

′
1

)
Yl′m′

(
θ′1, ϕ

′
1

)
W (0)l′

(
r′1, r

′; ipn

)
Y ∗

l′m′

(
θ′, ϕ′

)

Integrating the angular parts via the orthonormal relation, it becomes,

W (1)
(
r, r′; ipn

)
=

∑

lm

∑

l1m1

∑

l′m′

∫
r21dr1r

′
1
2
dr′1Ylm (θ, ϕ)Y ∗

l′m′

(
θ′, ϕ′

)
Fl (r, r1) Πl1

(
r1, r

′
1; ipn

)

W
(0)
l′

(
r′1, r

′; ipn

)
δll1δmm1

δl1l′δm1m′

Summation over l1m1l
′m′ gives,

W (1)
(
r, r′; ipn

)
=

∑

lm

Ylm (θ, ϕ)Y ∗
lm

(
θ′, ϕ′

)
W

(1)
l

(
r, r′; ipn

)
(2.67)

W
(1)
l

(
r, r′; ipn

)
=

∫
r21dr1r

′
1
2
dr′1Fl (r, r1) Πl

(
r1, r

′
1; ipn

)
W

(0)
l

(
r′1, r

′; ipn

)
(2.68)

Similarly, the second-order term is

W (2)
(
r, r′; ipn

)
=

∫
d3r1d

3r′1V (r, r1) Π
(
r1, r

′
1; ipn

)
W (1)

(
r′1, r

′; ipn

)

=
∑

lm

∑

l1m1

∑

l′m′

∫
d3r1d

3r′1Ylm (θ, ϕ)Fl (r, r1)Y
∗
lm (θ1, ϕ1)Yl1m1

(θ1, ϕ1)

Πl1

(
r1, r

′
1; ipn

)
Y ∗

l1m1

(
θ′1, ϕ

′
1

)
Yl′m′

(
θ′1, ϕ

′
1

)
W

(1)
l′

(
r′1, r

′; ipn

)
Y ∗

l′m′

(
θ′, ϕ′

)

Integrating the angular parts using the orthonormal relation of the spherical harmonics, and then

summing over l1m1l
′m′, we get,

W (2)
(
r, r′; ipn

)
=

∑

lm

Ylm (θ, ϕ)Y ∗
lm

(
θ′, ϕ′

)
W

(2)
l

(
r, r′; ipn

)
(2.69)

W
(2)
l

(
r, r′; ipn

)
=

∫
r21dr1r

′
1
2
dr′1Fl (r, r1) Πl

(
r1, r

′
1; ipn

)
W

(1)
l

(
r′1, r

′; ipn

)
(2.70)

Suppose any n-th order term can be expressed as

W (n)
(
r, r′; ipn

)
=

∑

lm

Ylm (θ, ϕ)Y ∗
lm

(
θ′, ϕ′

)
W

(n)
l

(
r, r′; ipn

)
(2.71)
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Then, the (n+ 1)-th order term reads,

W (n+1)
(
r, r′; ipn

)
=

∫
d3r1d

3r′1V (r, r1) Π
(
r1, r

′
1; ipn

)
W (n)

(
r′1, r

′; ipn

)

=
∑

lm

∑

l1m1

∑

l′m′

∫
d3r1d

3r′1Ylm (θ, ϕ)Fl (r, r1)Y
∗
lm (θ1, ϕ1)Yl1m1

(θ1, ϕ1)

Πl1

(
r1, r

′
1; ipn

)
Y ∗

l1m1

(
θ′1, ϕ

′
1

)
Yl′m′

(
θ′1, ϕ

′
1

)
W

(n)
l′

(
r′1, r

′; ipn

)
Y ∗

l′m′

(
θ′, ϕ′

)

Integrating the angular parts using the orthonormal relation of the spherical harmonics, and then

summing over l1m1l
′m′, we get,

W (n+1)
(
r, r′; ipn

)
=

∑

lm

Ylm (θ, ϕ)Y ∗
lm

(
θ′, ϕ′

)
W

(n+1)
l

(
r, r′; ipn

)
(2.72)

W
(n+1)
l

(
r, r′; ipn

)
=

∫
r21dr1r

′
1
2
dr′1Fl (r, r1) Πl

(
r1, r

′
1; ipn

)
W

(n)
l

(
r′1, r

′; ipn

)
(2.73)

Therefore, we have proved that the screen potential can be expressed as

W
(
r, r′; ipn

)
=

∑

lm

Ylm (θ, ϕ)Y ∗
lm

(
θ′, ϕ′

)
Wl

(
r, r′; ipn

)
(2.74)

Wl

(
r, r′; ipn

)
= Fl

(
r, r′

)
+

∫
r21dr1r

′
1
2
dr′1Fl (r, r1) Πl

(
r1, r

′
1; ipn

)
Wl

(
r′1, r

′; ipn

)
(2.75)

As the contribution of the bare potential has already been counted in Fock self-energy, we need

to subtract it from the total potential. We denote the subtracted potential by ∆W . Clearly, it can

also be expressed as,

∆W
(
r, r′; ipn

)
=

∑

lm

Ylm (θ, ϕ)Y ∗
lm

(
θ′, ϕ′

)
∆Wl

(
r, r′; ipn

)
(2.76)

∆Wl

(
r, r′; ipn

)
= Wl

(
r, r′; ipn

)
− Fl

(
r, r′

)
(2.77)

The self-energy and the partial Green’s function associated with this random phase approxima-

tion can be written as

ΣR
(
r, r′; iΩn

)
= − 1

β~2

∑

ipn

∆W
(
r, r′; ipn

)
G
(
r, r′; iΩ− ipn

)
(2.78)

GR
(
r, r′; iΩn

)
=

∫
d3r1d

3r2G0 (r, r1; iΩn) ΣR (r1, r2; iΩn)G
(
r2, r

′; iΩn

)
(2.79)
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Substituting the expression of the screen potential (2.76) and Eq.(2.47) into Eq.(2.78), one has

ΣR
(
r, r′; iΩ

)
= − 1

β~2

∑

l1m1

∑

l2m2

Yl1m1
(θ, ϕ)Yl2m2

(θ, ϕ)Y ∗
l1m1

(
θ′, ϕ′

)
Y ∗

l2m2

(
θ′, ϕ′

)

∑

ipn

∆Wl1

(
r, r′; ipn

)
Gl2

(
r, r′; iΩn − ipn

)

According to Eq.(A.9), the coupling of the spherically harmonic functions gives,

ΣR
(
r, r′

)
= − 1

β~2

∑

lm

∑

l′m′

∑

l1l2

2l2 + 1

4π
Ylm (θ, ϕ)Y ∗

l′m′

(
θ′, ϕ′

)
C (l1l2l)C

(
l1l2l

′
)

∑

ipn

∆Wl1

(
r, r′; ipn

)
Gl2

(
r, r′; iΩn − ipn

)

∑

m1m2

C̃ (l1l2l;m1m2m) C̃
(
l1l2l

′;m1m2m
′
)

Summing over m1m2 using the orthonormal relation (A.7), and then over l′m′, the RPA self-energy

can be written as,

ΣR
(
r, r′; iΩn

)
=
∑

lm

Ylm (θ, ϕ)Y ∗
lm

(
θ′, ϕ′

)
ΣR

l

(
r, r′; iΩn

)
(2.80)

where the radial RPA self-energy is

ΣR
l

(
r, r′; iΩn

)
≡ − kBT

4π (2l + 1) ~2

∑

l1l2

(2l1 + 1) (2l2 + 1)C (l1l2l)
2

∑

ipn

∆Wl1

(
r, r′; ipn

)
Gl2

(
r, r′; iΩn − ipn

)
(2.81)

To obtain the corresponding partial Green’s function, we substitute equations (2.80) and (2.47)

into the equation (2.79), and get

GR
(
r, r′; iΩn

)
=

∑

lm

∑

l′1m′
1

∑

l′2m′
2

∫
d3r1d

3r2Yl′1m′
1
(θ, ϕ)G0

l′1
(r, r1; iΩn)Y ∗

l′1m′
1
(θ1, ϕ1)Ylm (θ1, ϕ1)

ΣR
l (r1, r2; iΩn)Y ∗

lm (θ2, ϕ2)Yl′2m′
2
(θ2, ϕ2)Gl′2

(
r2, r

′; iΩn

)
Y ∗

l′2m′
2

(
θ′, ϕ′

)

Integrating the angular parts using the orthonormal relation of the spherically harmonic function,

and then summing over l′1m
′
1 and l′2m

′
2, we obtain

GR
(
r, r′; iΩn

)
=

∑

lm

Ylm (θ, ϕ)Y ∗
lm

(
θ′, ϕ′

)
GF

l

(
r, r′; iΩn

)
(2.82)

and the radial counterpart

GF
l

(
r, r′; iΩn

)
=

∫
r21dr1r

2
2dr2G

0
l (r, r1; iΩn) ΣR

l (r1, r2; iΩn)Gl

(
r2, r

′; iΩn

)
(2.83)
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2.6 Dyson equation for radial green’s function

Collecting the previous results, i.e., Eqs. (2.55), (2.60) and (2.83), and introducing transforms,

G̃l

(
r, r′; iΩn

)
= r r′Gl

(
r, r′; iΩn

)

Σ̃F
(
r, r′

)
= r r′ ΣF

(
r, r′

)

Σ̃R
(
r, r′; iΩn

)
= r r′ ΣR

(
r, r′; iΩn

)

Π̃
(
r, r′; iΩn

)
= r2 r′

2
Π
(
r, r′; iΩn

)
(2.84)

we obtain the Dyson equations for the radial Green’s function

G̃l

(
r, r′; iΩn

)
= G̃0

l

(
r, r′; iΩn

)
+

∫
dr1dr2G̃

0
l (r, r1; iΩn) Σ̃l (r1, r2; iΩn) G̃l

(
r2, r

′; iΩn

)
(2.85)

and the Dyson equation for the screening potential

Wl

(
r, r′; ipn

)
= Fl

(
r, r′

)
+

∫
dr1dr

′
1Fl (r, r1) Π̃l

(
r1, r

′
1; ipn

)
Wl

(
r′1, r

′; ipn

)
(2.86)

where the self-energies are defined by

Σ̃l

(
r, r′; iΩn

)
≡ Σ̃H (r) δ(r − r′) + Σ̃F

l

(
r, r′

)
+ Σ̃R

l

(
r, r′; iΩn

)
(2.87)

Σ̃H (r) ≡ (2s+ 1)kBT

4π~2

∑

l′

∫
dr0(2l

′ + 1)F0 (r, r0)
∑

iωn

eiωnηG̃l′ (r0, r0; iωn) (2.88)

Σ̃F
l

(
r, r′

)
≡ − kBT

4π (2l + 1) ~2

∑

l1l2

(2l1 + 1) (2l2 + 1)Fl1

(
r, r′

)
C (l1l2l)

2

×
∑

iωn

eiωnηG̃l2

(
r, r′; iωn

)
(2.89)

Σ̃R
l

(
r, r′; iΩn

)
≡ − kBT

4π (2l + 1) ~2

∑

l1l2

(2l1 + 1) (2l2 + 1)C (l1l2l)
2

×
∑

ipn

∆Wl1

(
r, r′; ipn

)
G̃l2

(
r, r′; iΩn − ipn

)
(2.90)

and the polarization operator reads

Π̃l

(
r, r′; ipn

)
≡ (2s+ 1)kBT

4π (2l + 1) ~2

∑

lm

∑

l1l2

(2l1 + 1) (2l2 + 1)C (l1l2l)
2

×
∑

iωn

G̃l1

(
r, r′; iωn

)
G̃l2

(
r′, r; iωn − ipn

)
(2.91)

For convenience in later usage, we re-denote the unperturbed Green’s function byG0(r, r
′; iΩn, l).

Multiplying the Dyson equation (2.85) by the inverse of this unperturbed Green’s by left side and
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integral the equation in both sides, one re-shapes it as

∫
dr1

[
G̃−1

0 (r, r1; iΩn, l)− Σ̃l(r, r1, iΩn)
]
G̃l(r1, r

′; iΩn) = δ(r − r′) (2.92)

or formally

G̃ =
1

G̃−1
0 − Σ̃

(2.93)

where G̃−1
0 (r, r1; iΩn, l) can be easily obtained via Eq.(2.28), which gives

G̃−1
0 (r, r1; iΩn, l) = [iΩn − H0(l) + µ] δ(r − r′) (2.94)

with

H0(l) ≡ −
~

2

2me

[
d2

dr2
− l(l + 1)

r2

]
+ U(r) (2.95)



Chapter 3

FINITE ELEMENT METHOD AND ITS APPLICATION IN SOLVING THE DYSON

EQUATIONS

3.1 introduction to finite element method

The finite element method [67] is a computational technique for approximately solving the partial

differential equations that arise in scientific and engineering applications. Rather than directly dis-

cretizing the differential equation as in the finite difference approximation, it utilizes the variational

form of the equation which involves an integration of the differential equation over the domain of

the problem to get the action functional. This domain is divided into pieces called finite elements.

The solution of the differential equation is approximated by the polynomials defined in the finite

elements. The action functional of the entire system is obtained by adding up all the contributions

of individual elements, in which the continuity of the solution at boundaries of elements should be

ensured. The condition of the least action leads to an algebraic equation which gives the approxi-

mation solution. It yields not only the solution at the discrete points, but the solution in the form of

piecewise polynomial functions over the whole domain as well. The finite element method originally

developed in engineering fields has been widely used in the numerical solution of the engineering

and scientific problems. It has been introduced to solve pure physical problems recently [68, 69].

This section is a brief introduction of this method. In the next sections, we will discuss its applica-

tions in the quantum mechanics, and then extend this method to solve the Dyson equations of the

finite temperature Green’s function and the corresponding screening potential.

We will begin our discussion with the classical Sturm-Liouville problem, which is expressed by

− d

dx

[
p(x)

du

dx

]
+ q(x)u = f(x) (3.1)

30
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defined in [0, 1] with some boundary conditions. Where p(x) and q(x) are continuously differentiable

in x ∈ [0, 1]. Without loss of the generality, we assume boundary conditions

u(0) = 0, u′(1) = 0. (3.2)

Alternatively, we may combine Eq.(3.1) and the boundary conditions (3.2) to give

Lu = f (3.3)

with L a linear operator acting on a certain class of functions that satisfy the boundary conditions

(3.2) and can be differentiated twice.

In a typical analytical approach, one first constructs an eigenvalue problem for this linear

operator L,

L ũ = λ ũ (3.4)

and then solves it, getting its infinite eigenvalues {λn} and eigenfunctions {ũn(x)} which satisfy

the orthonormal condition

∫ 1

0
ũm(x) ũn(x)dx = δn m, m, n = 1, 2, · · ·,∞ (3.5)

These eigenfunctions span an infinite dimensional Hilbert space H. Projecting the inhomogeneous

function f and the solution u(x) on to this space, one has

f(x) =
∞∑

0

anũn(x) (3.6)

u(x) =
∞∑

0

bnũn(x) (3.7)

Substitute this two expressions into the original equation (3.3), one obtains the solution of the

problem

u(x) =
∞∑

0

an

λn
ũn(x) (3.8)

with

an =

∫ 1

0
ũn(x) f(x) (3.9)

Unfortunately, in many situations, we can not get the analytical solution like this, and have

to use numerical methods, for example, the finite difference method. In this approach the domain
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[0, 1] is divided into N pieces {xi = ih, i = 0, 1, 2, · · ·, N} with h = 1/N , and the derivatives are

replaced by their finite difference forms

du

dx
=

u(xi + h)− u(xi − h)
2h

(3.10)

d2u

dx2
=

u(xi+1)− 2u(xi) + u(xi−1)

h2
(3.11)

Eq.(3.3) immediately reduces to the matrix form

Lh Uh = F h (3.12)

where Uh is the column matrix consisting of N values {ui} of the solution at discrete points {xi},

and F h the column matrix of the corresponding function values {fi}, and Lh is the matrix form of

the operator L. Solving this algebraic equation gives an approximate solution of (3.3) at discrete

point {xi}. One can image that it will tend to the real solution of our problem when the interval of

the mesh, h, goes to zero. The solutions at these discrete points {xi} are linearly independent, and

they create a finite dimensional Hilbert space, denoted by Sh. Comparing this algebraic equation

(3.12) and the operator equation (3.3), one may believe that the space Sh is just a finite dimensional

subspace of the Hilbert space H, spanned by the first N eigenstates of the linear operator L.

The Sturm-Liouville problem can also be described in another way–the variational principle (or

say, the least action principle). We construct the following quadratic functional (action) by inner

product

I(u) = (v, L v)− 2(v, f) (3.13)

Setting the variation of this functional with respect to u equals to zero, i.e.,

δ

δv
I(v) = 0

one obtains a linear equation,

L v = f

which is the same as equation (3.3). This is just the result of the variational principle, which says:

To solve the Sturm-Liouville problem, or equation (3.3), is to find such a function that minimizes

the action functional I(v), i.e.,

δ

δv
I(v)|v=u = 0. (3.14)



33

here function v(x) is called the trial function.

The variational statement is the primary physical principle, and the language of differential

equations is only a secondary consequence. In the regime of the variational principle, our task is

to find a proper trial function v(x) to minimize the action I(v), which leaves plenty of rooms for

interpolating the trial function. In numerical work, the continuous space domain (or perhaps include

time domain) is usually divided into discrete mesh, which results in projecting the continuous

solution function onto a discrete finite N -dimensional subspace of the original Hilbert space as

in the finite difference realization. Suppose we know the eigenfunctions and eigenvalues of our

differential operator L, as a test case, let us try to get the solution of this Sturm-Liouville problem

via the variational principle. We expand our trial function (denoted by vN ) in terms of the linear

combination of the first N eigenfunctions of the Hilbert space H,

vN (x) =
N∑

i=1

ciũi

Then the action is written

I(vN ) =
N∑

i=1

[
c2i λi − 2ci

∫ 1

0
f ũi

]
=

N∑

i=0

[
c2iλi − 2ciai

]

Now finding a solution changes into determining the values of {ci}. The condition ∂vh/∂ci = 0

immediately yields a system of N linear equations,

LC = F

where,

L ≡ {λiδij} , C ≡ {ci} , F ≡ {ai} , i = 1, 2, · · ·, N

here {ai} are the projections of function f onto this N -dimensional subspace, {λiδij} are the

projections of operator L onto a subspace spanned by its eigenfunctions, and therefore matrix L is

diagonal, and {ci} are the quantities we are going to find. The solution of this algebraic equation

is very trivial, which is ci = ai/λi, and thus the trial solution reads

vN (x) =
N∑

n=1

an

λn
ũn

which is exactly the same to the solution in Eq. (3.8) except that the summation here is over a

finite number of eigenstates instead of infinite ones.
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This is only a simplest example of solving numerically the problem in the viewpoint of varia-

tional principle, where the eigenfunctions {ũn} act as the interpolation functions. Actually, approx-

imating the solution of a differential equation based upon this principle is not new. For example,

one often expands the wave function of a Schrödinger equation by a Gaussian basis, in quantum

mechanics/chemistry calculations. We denote those kind of interpolations as global ones because

one has to evaluate the integration over the entire domain when constructing the action defined

by Eq. (3.13). The global interpolation is time consuming and sometimes inconvenient, especially

for large systems. On the contrary, the finite element method interpolates the trial function by

polynomials defined in a finite local range surrounding the interpolation points. The simplest finite

element algorithm is the linear finite element. The domain is divided into the subdomains called

“elements”, and the corresponding mesh is

0 = x0 < x1 < · · · < xN = 1 (3.15)

The j− th element, denoted by ej , is confined in the interval [xj−1, xj ]. Clearly there are two nodes

in each element, N e
node = 2. A “tent function” is defined for each node (Fig. 3.1 only shows two of

them),

φh
j (x) =





x−xj−1

xj−xj−1
, if xj−1 ≤ x < xj

xj+1−x
xj+1−xj

, if xj ≤ xj+1

0, otherwise.

(3.16)

Figure 3.1: 1-D finite element mesh and piecewise tent function
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As shown in Fig. 3.1, φh
j (x) is nonzero only in the two adjacent element containing node xj . It

goes up and down linearly in these two elements and has an unit maximum at x = xj . Actually it

is required that the interpolation function vanishes at all the other nodes but x = xj , i.e.,

φh
j (xi) = δij (3.17)

These N functions serve as the basis of the Hilbert subspace Sh. We may approximate our trial

function by projecting it onto this subspace, i.e.,

vh(x) =
N∑

j=1

uj φ
h
j (x) (3.18)

with the coefficient corresponding to the basis function φh
j for node-j being the values of the solution

at this same node. Now the calculation of the action integral defined in Eq.(3.13) turns into the

summation of sub-actions for all the elements, i.e.,

I(vh) =
N∑

j=1

Ij(vh) (3.19)

where,

Ij(vh) ≡
∫ xj

xj−1

dx vh(x) (L(x)− 2 f(x)) vh(x) (3.20)

In element ej , the trial function includes only two terms,

vh(x) = uj−1 φ
h
j−1(x) + uj φ

h
j (x) (3.21)

The sub-action is itself a 2 by 2 matrix,

Ij(vh) = Ũ j Lj U j − 2 Ũ j F j (3.22)

where Ũ j is the transpose of matrix U j , defined by

Ũ j ≡ (uj−1, uj) . (3.23)

Elements of the matrices L and F are defined by

Lj
m n ≡

∫ xj

xj−1

dxφh
m(x)L(x)φh

n(x), m, n = j − 1, j (3.24)

F j
m ≡

∫ xj

xj−1

dxφh
m(x) f(x), m = j − 1, j (3.25)
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We would like to emphasize that the condition in (3.17) is actually a basic feature of the finite

element interpolation. It guarantees that the expansion (3.18) gives vh(xj) = uj , where {uj} are

just the solution we are looking for. Nevertheless, condition (3.17) also assures the continuity of

the solution at the boundaries between successive elements, which make the summation of two

successive sub-actions a direct summation, e.g.,

Ij(vh) + Ij+1(vh) =
(
Ũ j ∪ Ũ j+1

){ (
Lj ⊕ Lj+1

) (
U j ∪ U j+1

)
− 2

(
F j ⊕ F j+1

) }

Finally the total action is a N by N matrix defined by the direct summation of the sub-action

matrices,

I(vh) =
N∑

j=1

⊕Ij(vh) = Ũ LU − 2 Ũ F (3.26)

with

Ũ = (u1, u2, u3, · · ·, uN ) (3.27)

L = L1 ⊕ L2 ⊕ L3⊕, · · ·,⊕LN (3.28)

F = F 1 ⊕ F 2 ⊕ F 3⊕, · · ·,⊕FN (3.29)

here the solution at the very first point xi = 0 is eliminated due to the boundary condition u(0) = 0.

The variational condition δI(vh)/δuj = 0 results in the algebraic equation,

LU = F (3.30)

which leads to the solution of our problem.

During the creation of the finite element form, the integrals defined in Eqs. (3.24) and (3.25)

are calculated to get the sub-action matrices for all the elements. The two basis functions φh
j−1

and φh
j (actually, only the descent branch of the former and the ascent branch of the latter) are

encountered again and again in different elements when j goes from 1 to N , but all of them are in

the same form. So we treat them systematically through introducing the local coordinate systems

that map the subdomain [xj−1, xj ] onto interval [0, 1] by transformation

ξ = x/sej − j + 1 (3.31)

where sej is the size of j-th element (here in the current example, all the elements have the

same size). Each element has N e
node = 2 nodes, and two basis functions. They are the descent

branch of φh
j−1(x) and the ascent branch of φh

j (x), which actually span a subspace of subspace Sh.
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Figure 3.2: linear basis functions in
local coordinate system

Now each element is associated with a subspace.

We are only interested in one of the elements

since these two basis functions are the same for

all the elements. We rename and re-define them

in a local coordinate system as (see Fig. 3.2),

ϕ1(ξ) = ξ

ϕ2(ξ) = 1− ξ (3.32)

By introducing the local coordinates and local

basis functions, Eqs. (3.24) and (3.25) are re-shaped as

Lj
µ ν ≡

∫ 1

0
ϕµ(ξ)L(ξ)ϕν(ξ) sej dξ, µ, ν = 1, N e

node (3.33)

F j
µ ≡

∫ 1

0
ϕµ(ξ) f(ξ) sej dξ, µ = 1, N e

node (3.34)

It can be easily shown that the matrix equation (3.30) is identical to Eq.(3.12) obtained by the

finite difference method with the derivatives involved in the linear operator L defined by Eq.(3.11).

The linear element is only the simplest application of the spirit of the finite element method. In

practice, one have plenty of flexibility to improve the stability and the precision. For example, one

may create finite element form based on inhomogeneous mesh using dense element for important

regions, which is impossible in the finite difference method. One can also employ higher order

interpolation functions, such as Lagrange polynomial (with N e
node = 3 nodes in each element, seen

in Fig. 3.3),

ϕµ(ξ) =

Ne
node∏

ν=1,ν 6=µ

(ξ − ξν)
(ξµ − ξν)

(3.35)

These functions satisfy ϕµ(ξν) = δµν . In the later parts of the current dissertation, we use cubic

polynomials for our interpolation functions, which gives us much stable result.

In all the previous part, we only focus on the interpolation for the solution functions. However,

one can even interpolate the derivatives, for example the Hermite interpolation (shown in Fig. 3.4)

which interpolates both the function itself and its first order derivative,

vh(ξ) =

Ne
node∑

µ

1∑

σ=0

uµ,σϕµ,σ (3.36)
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where σ = 0 represents interpolation for the function itself, and σ = 1 for the first order derivative.

The interpolation functions must satisfy the following conditions,

ϕµ,0(ξν) = δµν , ϕµ,1(ξν) = 0

dϕµ,0/dξ = 0, dϕµ,1/dξ = δµν (3.37)

which gives the explicit expression,

ϕ10(ξ) = 1− 3ξ2 + 2ξ3, ϕ11(ξ) = ξ − 2ξ2 + ξ3

ϕ20(ξ) = 3ξ2 − 2ξ3, ϕ11(ξ) = −ξ2 + ξ3 (3.38)

Hermite interpolation does not increase the node number in the element but get higher order

polynomials and also solve for the first derivative besides the solution itself.

Figure 3.3: Quadratic Lagrange polynomials Figure 3.4: Cubic Hermite polynomials

3.2 finite element form of schrödinger equation

In this section, we will apply the finite element method to solve the stationary Schrödinger equation.

In fact, this equation can be constructed through the variational principle [70], by considering the

action

I(ψ) =

∫
d2r

{
~

2

2me
∇ψ∗(r) · ∇ψ(r) + ψ∗(r) [U(r)− ε]ψ(r)

}
(3.39)
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If treating ψ and ψ∗ as independent quantities (with their conjugate relation temporarily ignored)

and calculating the variation with respect to ψ∗, we get the stationary Schrödinger equation

− ~
2

2me
∇2ψ(r) + U(r)ψ(r) = εψ(r) (3.40)

Similarly the variation with respect to ψ yields the same equation for ψ∗. All the equations are

consistent if ψ∗ is the complex conjugate of ψ.

The numerical solution of the quantum mechanical problems involves the discretization of the

Schrödinger equation or the action defined upon the continuously space. There are in general two

approaches. One discretizes the differential equation, while the other one the action integral. They

are in two levels. In the differential equation level, one may projext the Schrödinger equation

onto a finite-dimensional subspace of a infinite-dimensional Hilbert space to get the matrix form

of it. One can also use the finite difference method, in which a proper difference form of the

derivatives should be chosen, special attention should be paid to treat the higher order derivatives.

The action description is usually in a weak form, dealing with the lower order derivative. Here

in the stationary case, only the first derivative is included, which is a great advantage for the

numerical computing. Actually the boundary condition has already been involved when the action

in Eq.(3.39) is built. This can be seen by integrating the corresponding differential equation and

applying partial integral for the terms where the secondary derivatives are involved. Discretization

from the level of the variational principle allows a considerable freedom to choose the interpolation

method. One can use either the interpolation functions defined globally on the domain of the

problem as in the quantum chemistry calculations, or the localized interpolation functions in the

finite element analysis. To create a finite element form, we first divide the domain of our problem

into elements {ej , j = 1 to N} with even size s. Each element has N e
node nodes. There are totally

Nnode = N × (N e
node − 1) + 1 nodes. Assign each node a (N e

node − 1)-order polynomial φh
m(x) such

that

φh
m(xn) = δmn, m, n = 0, Nnode (3.41)

and

φh
m(x) =





ϕµ(ξ), if x ∈ ej

0, if x /∈ ej

(3.42)
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with

j = 1 + mod(m,N e
node), ξ = x/s− j + 1, µ = m+ 1− (j − 1)(N e

node − 1) (3.43)

where the polynomial {ϕµ(ξ), µ = 1 toN e
node} are the same to all elements, we call them the local

representation of the interpolation functions, which is introduced just to simplify the evaluation of

the matrices in building up the actions. The use of global counterpart of the interpolation functions
{
φh

m(x)
}

is convenient for the generalized description of the finite element method especially when

comparing with the other methods.

Now we expand the wavefunction as

ψ(x) =

Nnode∑

i=0

ψiφ
h
i (x) (3.44)

where ψi is the value of the wave function at node xi, which is assumed by the condition (3.41).

Substitute this expansion into the definition of the action (3.39), we obtain the matrix form of the

action

I = Ψ† (H − εM)Ψ (3.45)

and

Ψ† ≡
{
ψ∗

0, ψ
∗
1, ψ

∗
2, · · ·, ψ∗

Nnode

}
(3.46)

M ≡
N∑

j=1

⊕M j (3.47)

H ≡
N∑

j=1

⊕Hj (3.48)

The elements of M j and Hj in the local coordinate presentation are given by

M j
µν =

∫ 1

0
sϕµ(ξ)ϕν(ξ) dξ (3.49)

Hj
µν =

∫ 1

0

[
~

2

2mes
ϕ′

µ(ξ)ϕ′
ν(ξ) + sϕµ(ξ)U((ξ + j − 1)s)ϕν(ξ)

]
dξ (3.50)

The variational principle leads to the matrix form of the Schrödinger equation

H Ψ = εM Ψ (3.51)
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which is a generalized eigenvalue problem due to the multiplication of matrix M called the mass

matrix in the terminology of the finite element method. A modern algebraic algorithm has already

been developed for solving this problem (see for example ref. [71]).

Regarding the matrix form of the Schrödinger equation, a short remark will be given in the

following, which provides us with an alternative way for constructing the finite element form.

Combining the kinetic and the potential terms into an operator H, the Schröding equation (3.40)

can be formally expressed by

H|ψ〉 = ε|ψ〉 (3.52)

One can explain this as either an eigenvalue problem of the differential equation, or an algebraic

eigenvalue problem. Actually the matrix form of Schrödinger equation (quantum mechanics) can be

obtained by simply projecting this differential operator equation on to a complete and orthonormal

set {φm},

〈φm|φn〉 = δmn (3.53)

∑

m

|φm〉〈φm| = 1 (3.54)

Projecting Eq.(3.52) on this basis yields

〈φm|H|ψ〉 = ε 〈φm|ψ〉 (3.55)

Substitute the complete condition (3.54) gives

∑

n

〈φm|H|φn〉〈φn|ψ〉 = ε 〈φm|ψ〉 (3.56)

Since the basis |φ〉’s are orthonormal, φn|ψ〉 is just the projection of |ψ〉 onto |φn〉, i.e., cn. Therefore,

Eq.(3.56) changes into
∑

n

〈m|H|n〉 cn = ε cm (3.57)

This is just the Heisenberg’s matrix mechanics

One may also obtain the above matrix equation by the following procedures, in which the

complete condition will not be mentioned. The expansion of |ψ〉 in terms of this {φm} basis reads

|ψ〉 =
∑

n

cn|φn〉 (3.58)
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Substitute this expansion into Eq.(3.52), we have

∑

n

cnH|φn〉 = ε
∑

n

cn |φn〉 (3.59)

Projecting Eq.(3.59) onto 〈φm| yields

∑

n

〈φm|H|φn〉 cn = ε
∑

n

cn 〈φm|φn〉 (3.60)

Employing the orthonormal condition (3.53), one obtains the matrix form of the Schrödinger equa-

tion
∑

n

〈m|H|n〉 cn = ε cm (3.61)

If we define H ≡ {〈m|H|n〉} and Ψ = {cm}, we have the matrix form of Schrödinger equation

HΨ = εΨ (3.62)

It is helpful to compare the matrix form of Schrödinger equation (3.62) with its finite element

form defined by (3.51), where the matrix multiplier appears in the right hand side of the eigenvalue

equation. This is easily understood because in the finite element approach a non-orthonormal basis

is used. Now we try to re-derive the generalized matrix eigenvalue equation (3.51) following the

procedures from Eq.(3.58) to (3.65), but utilizing the finite element basis defined by Eqs.(3.41) and

(3.42). We avoid the derivations by following the way from (3.55) to (3.57) because of the problem

in the completeness of the finite element basis (we will discuss this at the end of the section). We

expand the wave function in the finite element basis (here only the global form of the finite element

basis is involved just for convenience) as

|ψ〉 =
∑

n

ψn|φh
n〉 (3.63)

here the coefficients are {ψn}, the values of the wave function at the nodes. Substitute this expansion

into Eq.(3.52), we have
∑

n

ψnH|φh
n〉 = ε

∑

n

ψn |φh
n〉 (3.64)

Project this equation onto 〈φh
m|, one has

∑

n

〈φh
m|H|φh

n〉ψn = ε
∑

n

ψn 〈φh
m|φh

n〉 (3.65)
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Here, the matrix elements 〈φh
m|φh

n〉 are nothing but the elements of mass matrix M defined previ-

ously. Thus we reach the generalized matrix eigenvalue problem,i.e.,

∑

n

〈m|H|n〉h ψn = ε
∑

n

Mmnψn (3.66)

where the 〈m|H|n〉h, for one dimensional systems, is expressed as

〈m|H|n〉h = 〈φh
m|H|φh

n〉 =

∫
φh

m(x)H φh
n(x)dx

=

∫
φh

m(x)

[
− ~

2

2me

d2

dx2
+ U(x)

]
φh

n(x)dx (3.67)

One may notes that there is a second order derivative included in (3.67) acting on a basis

function here, but in Eq.(3.50) appeared are the product of the two first derivatives of the basis

functions. It is not surprise as we have pointed out previously that this is due to the partial integral

when building up the action. We can also apply this trick here when calculating the matrix element,

〈m|H|n〉h =

∫ xb

xa

[(
~

2

2me

)
dφh

m(x)

dx
· dφ

h
n(x)

dx
+ φh

m(x)U(x)φh
n(x)

]
dx

+
~

2

2me

[
φh

m(xa)
dφh

n(x)

dx

∣∣∣∣
xa

− φh
m(xb)

dφh
n(x)

dx

∣∣∣∣
xb

]
(3.68)

Here we assume that our problem is confined in domain [xa, xb]. For an infinite extending systems,

i.e., defined in (−∞,+∞), it is physically required that the wave function vanishes asymptotically

as x → ±∞, then the last two terms can be dropped. But for those systems with a nonzero

wavefunction at boundaries, for example the scattering problem, this term should be kept (the

action should be revised). In summary, we emphasize that the finite element forms for problems

under investigation can be built up at the level of the differential equation.

Finally we intend to add some words on the completeness of the finite element basis. By defi-

nition it is required that the interpolation polynomials involved in the finite element analysis must

satisfy conditions (3.17), or should the first derivatives also be interpolated, condition (3.37). These

conditions simply gives the following feature

Nnode∑

m=0

φh
m(xk)φ

h
m(xl) = (Nnode + 1) δkl (3.69)

Therefore, it is understood that the completeness of the finite element basis is there, at least for

this discretized system in the numerical realization.
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3.3 finite element form of Dyson equations for radial green’s function and

screening potential

In this section, the methods developed previously are used to create the finite element form of

the Dyson equations for the radial Green’s function and screening potential. The work domain is

[0, Rmax] with Rmax the cutoff radius. It is divided into N elements. The cubic Lagrange polynomials

{φm(r),m = 1, 2, 3, 4} are chosen as the basis. There are N e
node = 4 nodes in each element, and all

together Nnode = 3N +1 nodes {ri, i = 0, 3N}. The expansion of the Green’s function in this basis

reads

G̃l(r, r
′; iΩn) =

∑

k n

φh
k(r) G̃kn(iΩn, l)φ

h
n(r′) (3.70)

According to the property of these interpolation function as we discussed in the previous sections,

the coefficients G̃k n(iΩn, l) is nothing but the value of the Green’s function between these two

discrete points rk and rn, i.e.,

G̃kn(iΩn, l) ≡ G̃l(rk, rn; iΩn) (3.71)

Substitute the expansion (3.70) into (2.92) of section 2.6, multiple by the function φh
m(r) from the

left of the resulting equation and carry out the integrals with respect to r, to obtain

∑

kn

[
(iΩn + µ) Mmk − H0

mk(l) − Σmk(iΩ, l)
]
G̃kn(iΩn, l)φ

h
n(r′) = φh

m(r′) (3.72)

This equation holds for arbitrary variable r′, which yields the finite element form of the radial

Dyson equation
∑

k

Γmk(iΩn, l) G̃kn(iΩn, l) = δmn (3.73)

Formally, we have

ΓG = 1 (3.74)

where 1 is the identity matrix. The corresponding matrices are defined by

Γm k(iΩn, l) ≡ (iΩn + µ) Mmk − H0
mk(l) − Σmk(iΩ, l) (3.75)

where the matrix Mmk is defined by

Mmk ≡
∫ Rmax

0
φh

m(r)φh
k(r) dr (3.76)
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The matrix element H0
mk(l) is

H0
mk(l) ≡

∫ Rmax

0
φh

m(r)

[
− ~

2

2me

d2

dr2
+
l(l + 1)

r2
+ U(r)

]
φh

k(r)dr

=

∫ Rmax

0
φh

m(r)

[
~

2

2me

←−
d

dr

−→
d

dr
+ l(l + 1)r2 + U(r)

]
φh

k(r)dr (3.77)

where,“←” and “→” represents the action on the function at left and right side, respectively. In

the last expansion of this equation only the first order derivatives appear. This is due to the fact

that, we have proved in Appendix B, the radial Green’s function itself tends to zero asymptotically

when r goes to 0 and ∞.

The self-energy matrix is defined as

Σk m (iΩn, l) ≡
∫ Rmax

0
drdr′φh

k(r) Σ̃l

(
r, r′; iΩn

)
φh

m(r′) (3.78)

Expanding the self-energy in the same basis {φm(r)}, one has

Σ̃l

(
r, r′; iΩn

)
=
∑

ij

φh
i (r)Σ̃ij (iΩn, l)φ

h
j (r′) (3.79)

and inserting at Eq.(3.78), we finally have the finite element form of the self-energy matrix

Σkm (iΩn, l) =
∑

ij

Mk iΣ̃ij (iΩn, l)Mjm (3.80)

Please keep in mind that here the self-energy is just the one defined in (2.87) of section 2.6, i.e.,

Σ̃ij (iΩn, l) ≡ Σ̃l (ri, rj ; iΩn) (3.81)

Similarly, as in Eq.(3.79), expanding all the quantities involved in the Dyson equation Eq.(2.86)

of the screening potential in the finite element basis gives the finite element form

∑

k


 δmk −

∑

j

F l
mj Πjk (ipn, l)


Wkn (ipn, l) = F l

mn (3.82)

which is formally expressed as

(1− FΠ ) W = F (3.83)
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where the matrix elements are defined by

F l
mn ≡ Fl (rm, rn) (3.84)

Wkn (ipn, l) ≡ W (rk, rn; ipn, l) (3.85)

Πjk (ipn, l) ≡
∑

mn

Mj mΠ̃ (rm, rn, ipn, l)Mnk (3.86)

with Fl (r, r
′), W (r, r′; ipn, l), and Π̃ (r, r′, ipn, l) defined in chapter 2.

We close this section with a simpler example, the Hartree-Fock approximation. It can be easily

shown that, when only the Hartree-Fock self-energy is considered, solving the Dyson equation for

the Green’s function changes into solving a simple Schrödinger equation-like equation for the wave-

function with the self-energy as a static nolocal potential [61]. The radial portion of the equation

reduces to
{
− ~

2

2me

[
d2

dr2
− l(l + 1)

r2

]
+ U(r)

}
ϕ̃l(r) =

∫
Σ̃HF

l (r, r′) ϕ̃l(r
′)dr′ + εl ϕ̃l(r) (3.87)

where l is the angular quantum number. In the same finite element basis, we can get the matrix

form of this equation with nolocal potential, which is

∑

j

HHF
ij (l)ϕ̃l(rj) = εl

∑

j

Mijϕ̃l(rj) (3.88)

HHF
ij (l) ≡ H0

ij(l) − ΣHF
ij (l) (3.89)

where we denote the j-th node by rj in the wavefunction ϕ̃l(rj) in order not to confuse with the

quantum numbers, H0
ij(l) is defined in Eq.(3.77), and ΣHF

ij (l) is the same to the self-energy in

Eq.(3.80) only if it is the Hartree-Fock self-energy. Once again we get a generalized eigenvalue

problem, which is expressed formally as

HHFϕ = εl Mϕ (3.90)

The eigenenergies {εln} and the eigenstates {ϕ̃ln (rj)} can be obtained, for example, by solving

this equation with a code for algebraic eigenvalue from the FORTRAN program library LAPACK

[71]. Now we can simply construct the radial Green’s function under the Hartree-Fock approxima-

tion

G̃HF
ij (iΩn, l) ≡

∑

n

ϕ̃ln(ri) ϕ̃
∗
ln(rj)

iΩn − εln + µ
(3.91)
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where n is the principal quantum number, iΩn is the Matsubara frequency, and µ is the chemical

potential. This Green’s function is used as a reference when computing the frequence summations

in this work, because one can easily get the analytical sum of this reference Green’s by contour

integral.



Chapter 4

ELECTRON POLARIZATION AND LINEAR RESPONSE THEORY

4.1 electrodynamics of electron polarization

The polarization process of electrons in an external electron field is usually described by the density

of polarization, P (r, t). The charge density due to the polarization can be calculated by,

ρ
M

(r, t) = −∇ · P (r, t) (4.1)

and the time derivative reads,

∂tρM
(r, t) = −∇ · ∂tP (r, t) (4.2)

According to the continuity equation of the current and charge, one has

∂tP (r, t) = JM (4.3)

Formally, we get

P (r, t) =

∫ t

−∞
dt′JM(r, t′)eηt′ , η = 0+ (4.4)

Substitute the inverse Fourier transformation of JM(r, t′) in this equation and integrate over t′,

we obtain the relation between the density of polarization and the current density in frequency

domain, i.e.,

P (r, ω) =
i

ω + iη
JM(r, ω) (4.5)

Then the frequency dependence of the dipole moment due to the polarization can be simply obtained

by,

p(ω) =

∫
d3rP (r, ω)

=
i

ω

∫
d3rJM(r, ω) (4.6)

48
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Considering Ohm’s law,

Jµ(r, ω) =
∑

ν

σµν(r, ω)Eν(r, ω) (4.7)

we may rewrite the Eq.(4.6) as,

pµ(ω) =
i

ω

∑

ν

∫
d3rσµν(r, ω)Eν(r, ω) (4.8)

where µ, ν = 1, 2, 3 represent the components of electric field E, current density JM and the dipole

moment p, σµν is the conductivity density tensor.

Now we have got the basic physical quantities to describe the electron polarization. In order to

relate the dipole moment with the potentials for the later use, we choose the Landau gauge

φ(r, ω) = 0 (4.9)

E(r, ω) = −1

c
∂tA(r, ω) (4.10)

From Eq.(4.10), we get

A(r, t) = −c
∫ t

−∞
dt′E(r, t′)

A similar derivation to that of obtaining Eq.(4.5), we have

A(r, ω) = − ic
ω

E(r, ω)

Using this relation, Eq.(4.7) and (4.8) can be rewritten as

Jµ(r, ω) =
iω

c

∑

ν

σµν(r, ω)Aν(r, ω) (4.11)

pµ(ω) = −1

c

∑

ν

∫
d3rσµν(r, ω)Aν(r, ω) (4.12)

When the wavelength is largely greater than the size of the sample, one may approximate the

electric field E(r, ω) by an uniform field and then the dipole moment can be rewritten as,

pµ(ω) =
∑

ν

αµν(ω)Eν(ω) (4.13)

=
iω

c

∑

ν

αµν(ω)Aν(ω) (4.14)

where αµν is the polarizability tensor, defined by

αµν(ω) ≡ i

ω

∫
d3rσµν(r, ω) (4.15)
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4.2 linear response theory for electron density

The Hamiltonian of a macrosystem of electrons in an external electromagnetic field reads,

HT = Hk +HV

where HV is the potential energy part and Hk is the kinetic energy term defined by,

Hk ≡
∑

σ

∫
d3r

1

2me

[(
i~∇− q

c
A(r, t)

)
Ψ̂†

σ(r)
]
·
[(
−i~∇− q

c
A(r, t)

)
Ψ̂σ(r)

]
(4.16)

here σ is the spin index. A simple derivation changes the Hamiltonian into the following form,

HT = H +HI (4.17)

whereH is the Hamiltonian that includes the potential and kinetic energy terms of the macrosystem

before the electromagnetic field is applied. While the interaction Hamiltonian can be expressed by

HI = −1

c

∫
d3r

q~

2mei

∑

σ

[
Ψ̂†

σ(r)∇Ψ̂σ(r)−
(
∇Ψ̂†

σ(r)
)

Ψ̂σ(r)
]
·A(r, t)

+
1

c

∫
d3r

q2

2mec

∑

σ

Ψ̂†
σ(r)Ψ̂σ(r) |A(r, t)|2 (4.18)

The density of the current induced by the external electromagnetic field is define by

Jµ(r, t) ≡ −cδHT

δAµ
(4.19)

A simple calculation gives,

Jµ(r, t) = J P
µ (r) + J D

µ (r, t) (4.20)

with

J P
µ (r) =

q~

2mei

∑

σ

[
Ψ̂†

σ(r)∂µΨ̂σ(r)−
(
∂µΨ̂†

σ(r)
)

Ψ̂σ(r)
]

(4.21)

J D
µ (r, t) = − q2

mc

∑

σ

Ψ̂†
σ(r)Ψ̂σ(r)Aµ(r, t) (4.22)

By introducing J P
µ and J D

µ , one may rewrite the interaction Hamiltonian as

HI = −1

c

∑

ν

∫
d3r

[
J P

µ (r) +
1

2
J D

µ (r, t)

]
Aν(r, t) (4.23)
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In order to calculate the mean value of the current density, we have to know the density matrix.

The evolution of the density matrix satisfies the following equation of motion in the Schrödinger

picture.

i~∂tρ̂ = [HT, ρ̂] (4.24)

Since the interaction Hamiltonian is switched on at t → −∞, the initial condition for the density

matrix reads,

lim
t→−∞

ρ̂(t) = ρ̂0 (4.25)

where ρ̂0 is the density matrix of the equilibrium grand-canonical ensemble of the macrosystem

before the perturbation, and satisfies,
[
H, ρ̂0

]
= 0 (4.26)

Introducing the Heisenberg representation of the density matrix, the current density and the inter-

action Hamiltonian,

ρ̃(t) ≡ eiHt/~ρ̂(t)e−iHt/~ (4.27)

J̃µ ≡ eiHt/~Jµe−iHt/~ (4.28)

H̃I ≡ eiHt/~HIe
−iHt/~ (4.29)

we obtain the equation of the motion in the interaction picture,

i~∂tρ̃(t) =
[
H̃I(t), ρ̃(t)

]
(4.30)

The formal solution of this equation of motion yields the density matrix,

ρ̃(t) ≈ ρ̃(−∞) +
1

i~

∫ t

−∞
dt
[
H̃I(t

′), ρ̃(t′)
]

(4.31)

To first order in H̃I, it reduces to

ρ̃(t) ≈ ρ̃(−∞) +
1

i~

∫ t

−∞
dt
[
H̃I(t

′), ρ̃(−∞)
]

(4.32)

or

ρ̃(t) ≈ ρ̂0 +
1

i~

∫ t

−∞
dt
[
H̃I(t

′), ρ̂0

]
(4.33)
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Here we have very easily gotten the solution of the density matrix in the Heisenberg representation.

Then the corresponding Schrödinger representation becomes,

ρ̂(t) ≈ ρ̂0 + e−iHt/~
1

i~

∫ t

−∞
dt
[
H̃I(t

′), ρ̂0

]
eiHt/~ (4.34)

Now we are ready to calculate the mean total current density, which reads

〈Jµ(r, t)〉 = Tr
[
ρ̂0Jµ(r, t)

]
+ Tr

{
e−iHt/~

1

i~

∫ t

−∞
dt
[
H̃I(t

′), ρ̂0

]
eiHt/~Jµ(r, t)

}
(4.35)

Employing the operator identities,

Tr(ÂB̂Ĉ) = Tr(B̂ĈÂ) = Tr(ĈÂB̂) (4.36)

Tr([Â, B̂]Ĉ) = Tr(B̂[Ĉ, Â]) (4.37)

the mean current reduces to

〈Jµ(r, t)〉 = Tr
[
ρ̂0Jµ(r, t)

]
+ Tr

{
1

i~

∫ t

−∞
dtρ̂0

[
J̃µ(r, t), H̃I(t

′)
]}

= 〈J P
µ (r)〉+ 〈J D

µ (r, t)〉+ 1

i~

∫ t

−∞
dtρ̂0〈

[
J̃µ(r, t), H̃I(t

′)
]
〉 (4.38)

Here the mean current density 〈J D
µ (r, t)〉 is easily obtained via the definition, which is

〈J D
µ (r, t)〉 = − q2

mc
〈n(r)〉Aµ(r, t) (4.39)

where 〈n(r)〉 is the mean particle number density. Since this current is only due to the external

field, it does not exist when t→ −∞. Therefore the response of the current to the external field is

δ〈Jµ(r, t)〉 =
1

i~

∫ t

−∞
dt〈
[
J̃µ(r, t), H̃I(t

′)
]
〉 − q2

mc
〈n(r)〉Aµ(r, t) (4.40)

Substitute Eq. (4.28),(4.20) (4.29) and (4.23) into the commutator in (4.40), and keep only the first

order term in Aν(r
′, t′), we obtain the linear response of the current to the external field A. It is

just the macro-current density, which is denoted by,

Jµ(r, t) =
∑

ν

∫
d3r′

∫ t

−∞
dt′
[
CP

µν

(
r, t; r′, t′

)
+ CD

µν

(
r, t; r′, t′

)]
Aν(r

′, t′) (4.41)

with

CP
µν

(
r, t; r′, t′

)
≡ − 1

~c
χP

µν

(
r, t; r′, t′

)
(4.42)

CD
µν

(
r, t; r′, t′

)
≡ − q2

mc
〈n(r)〉δµνδ(r− r′)δ(t− t′) (4.43)

χP
µν

(
r, t; r′, t′

)
≡ −iθ(t− t′)〈

[
J̃ P

µ (r, t) , J̃ P
ν

(
r′, t′

)]
〉 (4.44)
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where CP
µν and CD

µν are the susceptibility, and J̃ P
ν is the Heisenberg representation of current density

J P
ν ,i.e.

J̃ P
ν (r, t) = eiHt/~J P

ν (r) e−iHt/~ (4.45)

To relate these susceptibilities with the polarizability, we need to prove the time-translation

invariance of the density-density correlation function, χP
µν (rt, r′t′). Expanding the right hand side

of Eq. (4.44) by substituting Eq.(4.45) gives,

χP
µν

(
r, t; r′, t′

)
= −iθ(t− t′)Tr

{
ρ̂0

[
eiHt/~J P

µ (r) e−iHt/~, eiHt′/~J P
ν

(
r′
)
e−iHt′/~

]}

= −iθ(t− t′)Tr
{
ρ̂0

[
eiH(t−t′)/~J P

µ (r) e−iH(t−t′)/~,J P
ν

(
r′
)]}

= −iθ(t− t′)〈
[
J̃ P

µ

(
r, t− t′

)
; J̃ P

ν

(
r′, 0

)]
〉

= χP
µν

(
r, t− t′; r′, 0

)

Clearly the correlation function is just the function of t− t′. Then we denote it by χP
µν (r, r′; t− t′).

The Fourier transformation of Eq.(4.41) reads

Jµ(r, ω) =
∑

ν

∫
d3r′

[
CP

µν

(
r, r′;ω

)
+ CD

µν

(
r, r′;ω

)]
Aν(r

′, ω)

= − 1

~c

∑

ν

[∫
χP

µν

(
r, r′;ω

)
d3r′ +

~q2

m
〈n(r)〉δµν

]
Aν(r

′, ω)

Comparing with Eq.(4.11), one gets the expression of the conductivity and the polarizability tensor

σµν(r, ω) =
i

~ω

[∫
χP

µν

(
r, r′;ω

)
d3r′ +

~q2

m
〈n(r)〉δµν

]
(4.46)

αµν(ω) = − 1

~ω2

[∫ ∫
χP

µν

(
r, r′;ω

)
d3rd3r′ +

~q2

m
〈N〉δµν

]
(4.47)

where, 〈N〉 is the total number of particles in the system.

4.3 τ-order correlation function and the finite temperature green’s function

For convenience, we rewrite the current density in Eq.(4.21) as

J P
µ (r) =

q~

2mei

∑

σ

[
Ψ̂†

σ(r)∂µΨ̂σ(r)−
(
∂µΨ̂†

σ(r)
)

Ψ̂σ(r)
]

=
q~

2mei

∑

σ

∫
d3Xd3X′Ψ̂†

σ(r + X)Dµ(X,X′)Ψ̂σ(r + X′)
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with

Dµ(X,X′) ≡ δ(X)δ(X′)

( −→
∂

∂X ′
µ

−
←−
∂

∂Xµ

)

where ”←” and ”→” represent that the differential operator acts onto the function at its left and

right, respectively.

Now we turn to the Heisenberg representation of the current operator J P
µ in the imaginary time

domain. It reads

J̃ P
µ (r, τ) = eHτ/~J P

µ (r)e−Hτ/~

=

(
q~

2mei

)2∑

σ

∫
d3rd3r′Ψ̃†

σ(r + X, τ)Dµ(X,X′)Ψ̃σ(r + X′, τ) (4.48)

where,

Ψ̃†
σ(r, τ) = eHτ/~Ψ̂†

σ(r)e−Hτ/~

Ψ̃σ(r, τ) = eHτ/~Ψ̂σ(r)e−Hτ/~

The imaginary time τ -order correlation function is defined by

KP
µν(rr

′, τ) ≡ −〈Tτ

[
J̃ P

µ (r, τ)J̃ P
ν (r′, 0)

]
〉

= −
(

q~

2mei

)2 ∫
d3Xd3X′d3Yd3Y′

∑

σσ′

〈Tτ{Ψ̃†
σ(r + X, τ)Dµ(X,X′)Ψ̃σ(r + X′, τ)

Ψ̃†
σ′(r

′ + Y, 0)Dν(Y,Y
′)Ψ̃σ′(r′ + Y′, 0)}〉

=

(
q~

2mei

)2 ∫
d3Xd3X′d3Yd3Y′Dµ(X,X′)Dν(Y,Y

′)L (τ) (4.49)

with

L (τ) ≡ −
∑

σσ′

〈Tτ

{
Ψ̃†

σ(r + X, τ)Ψ̃σ(r + X′, τ)Ψ̃†
σ′(r

′ + Y, 0)Ψ̃σ′(r′ + Y′, 0)
}
〉

The only useful combination given by Wick’s theorem for the current case is as follows

L (τ) = −
∑

σσ′

〈Tτ

{
Ψ̃†

σ(r + X, τ)••Ψ̃σ(r + X′, τ)•Ψ̃†
σ′(r

′ + Y, 0)•Ψ̃σ′(r′ + Y′, 0)••
}
〉

=
∑

σσ′

〈Tτ

{
Ψ̃σ(r + X′, τ)•Ψ̃†

σ′(r
′ + Y, 0)•Ψ̃σ′(r′ + Y′, 0)••Ψ̃†

σ(r + X, τ)••
}
〉

=
∑

σσ′

Gσσ′(r + X′, r′ + Y; τ)Gσ′σ(r′ + Y′, r + X;−τ)

= (2s+ 1)G(r + X′, r′ + Y; τ)G(r′ + Y′, r + X;−τ) (4.50)
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The Fourier transformation yields,

L (ipn) =
(2s+ 1)

β~

∑

iωn

G(r + X′, r′ + Y; iωn)G(r′ + Y′, r + X; iωn − ipn) (4.51)

Consequently the Fourier transformation of the τ -order correlation function reads,

KP
µν(r, r

′; ipn) = −(2s+ 1)~q2

4βm2

∑

iωn

∫
d3Xd3X′d3Yd3Y′Dµ(X,X′)Dν(Y,Y

′)

G(r + X′, r′ + Y; iωn)G(r′ + Y′, r + X; iωn − ipn) (4.52)

where, ipn is the Matsubara frequency for Bosons.

Considering the following integral,

I1(X,X
′) =

∫
d3Yd3Y′Dν(Y,Y

′)G(r + X′, r′ + Y; iωn)G(r′ + Y′, r + X; iωn − ipn)

=

∫
d3Yd3Y′δ(Y)δ(Y′)

{
G(r + X′, r′ + Y; iωn)

∂

∂Y ′
ν

G(r′ + Y′, r + X; iωn − ipn)

− ∂

∂Yν
G(r + X′, r′ + Y; iωn)G(r′ + Y′, r + X; iωn − ipn)

}

= G(r + X′, r′; iωn)
∂

∂x′ν
G(r′, r + X; iωn − ipn)

− ∂

∂x′ν
G(r + X′, r′; iωn)G(r′, r + X; iωn − ipn) (4.53)

From this integral, we can then construct another one,

I2 =

∫
d3Xd3X′Dν(X,X

′)I1(X,X
′)

=

∫
d3Xd3X′δ(X)δ(X′)

{
∂

∂X ′
µ

G(r + X′, r′; iωn)
∂

∂x′ν
G(r′, r + X; iωn − ipn)

−G(r + X′, r′; iωn)
∂

∂Xµ

∂

∂x′ν
G(r′, r + X; iωn − ipn)

− ∂

∂X ′
µ

∂

∂x′ν
G(r + X′, r′; iωn)G(r′, r + X; iωn − ipn)

+
∂

∂x′ν
G(r + X′, r′; iωn)

∂

∂Xµ
G(r′, r + X; iωn − ipn)

}

=
∂

∂xµ
G(r, r′; iωn)

∂

∂x′ν
G(r′, r; iωn − ipn)− G(r, r′; iωn)

∂2

∂xµ∂x′ν
G(r′, r; iωn − ipn)

− ∂2

∂xµ∂x′ν
G(r, r′; iωn)G(r′, r; iωn − ipn) +

∂

∂x′ν
G(r, r′; iωn)

∂

∂xµ
G(r′, r; iωn − ipn)

(4.54)
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Clearly the integral I2 is the integral in Eq.(4.52). Substitute it in this equation, τ -order correlation

function reduces to,

KP
µν(r, r

′; ipn) =
(2s+ 1)~q2

4βm2
Qµν(r, r

′; ipn) (4.55)

with

Qµν(r, r
′; ipn)

≡
∑

iωn

{
∂2

∂xµ∂x′ν
G(r, r′; iωn)G(r′, r; iωn − ipn) + G(r, r′; iωn)

∂2

∂xµ∂x′ν
G(r′, r; iωn − ipn)

− ∂

∂xµ
G(r, r′; iωn)

∂

∂x′ν
G(r′, r; iωn − ipn)− ∂

∂x′ν
G(r, r′; iωn)

∂

∂xµ
G(r′, r; iωn − ipn)

}

(4.56)

4.4 τ-order correlation function for the polarizability for spherically symmetric

systems

For the spherically symmetric systems, only three equivalent principal tensors contribute to the

conductivity and the polarization due to the cancelation of the off diagonal elements. Therefore we

consider here only the principal element along z-direction, i.e., Q33(r, r
′, ipn). It will be obtained by

integrating over the angular coordinates of r and r. According to the definition of the radial Green’s

function Eq.(2.46), the spherical polar coordinate representation of the derivative in z direction,

∂

∂z
= cos θ

∂

∂r
+

1

r
sin2 θ

∂

∂ cos θ
(4.57)

and the recurrence relation of the spherical harmonic function, we have

Q33(r, r
′; ipn) =

∫
dΩdΩ′Q33(r, r

′, ipn) = Q33(r, r
′; ipn) +Q∗

33(r
′, r; ipn) (4.58)
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with

Q33(r, r
′; ipn)

≡ 1

3

∑

l,iωn

∂2Gl(r, r
′; iωn)

∂r∂r′
[
lGl−1(r

′, r; iωn − ipn) + (l + 1)Gl+1(r
′, r; iωn − ipn)

]

−1

3

∑

l,iωn

∂Gl(r, r
′; iωn)

∂r

∂

∂r′
[
lGl−1(r

′, r; iωn − ipn) + (l + 1)Gl+1(r
′, r; iωn − ipn)

]

+
2

3r

∑

l,iωn

∂Gl(r, r
′; iωn)

∂r′
[
l2Gl−1(r

′, r; iωn − ipn)− (l + 1)2Gl+1(r
′, r; iωn − ipn)

]

+
2

3r′

∑

l,iωn

∂Gl(r, r
′; iωn)

∂r

[
l2Gl−1(r

′, r; iωn − ipn)− (l + 1)2Gl+1(r
′, r; iωn − ipn)

]

+
4

3rr′

∑

l,iωn

l3Gl(r, r
′; iωn)Gl−1(r

′, r; iωn − ipn) (4.59)

Introducing the transformations:

Q̃33(r, r
′; ipn) = r2r′

2Q33(r, r
′; ipn)

Q̃33 = r2r′
2
Q̂33(r, r

′; ipn)

G̃l(r, r
′; iωn) = rr′Gl(r, r

′; iωn)

Eq.(4.58) and (4.59) become,

Q̃33(r, r
′; ipn) = Q̃33(r, r

′; ipn) + Q̃∗
33(r

′, r; ipn) (4.60)

with

Q̃33(r, r
′; ipn)

≡ 1

3

∑

l,iωn

∂2G̃l(r, r
′; iωn)

∂r∂r′

[
lG̃l−1(r

′, r; iωn − ipn) + (l + 1)G̃l+1(r
′, r; iωn − ipn)

]

−1

3

∑

l,iωn

∂G̃l(r, r
′; iωn)

∂r

∂

∂r′

[
lG̃l−1(r

′, r; iωn − ipn) + (l + 1)G̃l+1(r
′, r; iωn − ipn)

]

+
2

3r

∑

l,iωn

∂G̃l(r, r
′; iωn)

∂r′

[
l2G̃l−1(r

′, r; iωn − ipn)− (l + 1)2G̃l+1(r
′, r; iωn − ipn)

]

+
2

3r′

∑

l,iωn

∂G̃l(r, r
′; iωn)

∂r

[
l2G̃l−1(r

′, r; iωn − ipn)− (l + 1)2G̃l+1(r
′, r; iωn − ipn)

]

+
4

3rr′

∑

l,iωn

l3G̃l(r, r
′; iωn)G̃l−1(r

′, r; iωn − ipn) (4.61)
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One may see through Eq.(4.61) that Q̃33(r, r
′; ipn) is symmetric under exchanging r and r′. Thus,it

is real,i.e.,

Q̃33(r, r
′; ipn) = 2Re Q̃33(r, r

′; ipn) (4.62)

Finally, we get the principal tensors of the τ -order correlation function for spherically symmetric

systems along z-direction,

K̃P
33(r, r

′; ipn) =

∫
dΩdΩ′K̃P

33(r, r
′; ipn) =

(2s+ 1)~q2

2βm2
Re Q̃33(r, r

′; ipn) (4.63)

where

K̃P
33(r, r

′; ipn) = r2r′
2KP

33(r, r
′; ipn)

4.5 dynamical polarizability and optical absorption cross section

Employing the Lehmann representation (see for example, Fetter and Walecka [61]), it can be easily

shown that the Matsubara frequency dependence of the susceptibility defined in Sec.4.2 is the same

to that of the τ -order correlation function in Sec.4.3. Also, converting between the expressions

in the real and the Matsubara frequency domains is just the analytical continuation. Hence the

polarizability defined by (4.47) immediately changes into their counterpart in Matsubara frequency

domain, and are related to the τ -order correlation function by

αµν(ipn) = − 1

~ (ipn)2

[∫ ∫
KP

µν

(
r, r′; ipn

)
d3rd3r′ +

~q2

m
〈N〉δµν

]
(4.64)

For the spherically symmetric systems, the integral over the angular coordinates gives

αµν(ipn) = − 1

~ (ipn)2

[∫ ∫
K̃P

µν

(
r, r′; ipn

)
drdr′ +

~q2

m
〈N〉δµν

]
(4.65)

Due to the isotropic nature of the system, all the principal tensors are the same and the others are

zero. We consider only one of them, denoted by α,

α(ipn) = − 1

~ (ipn)2

[∫ ∫
K̃P

33

(
r, r′; ipn

)
drdr′ +

~q2

m
〈N〉δµν

]
(4.66)
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where K̃P
33 (r, r′; ipn) is defined in the last section.

If the close form of α(z) is known, the real frequency dependence can be simply obtained by

the analytical continuation

α(ω) = lim
η→0+

α(ω + iη) (4.67)

Unfortunately, we usually do not have the analytical expression of it. In the Matsubara fre-

quency domain, however, we can calculate only the polarizabilities at the discrete points

{zn = ipn, n = 1, 2, · · ·, N} (where n = 0 is dropped, it need special treatment). These discrete

values α(zn) can be fitted to the N -point Padé approximant PN (z), through which the analytical

continuation can be made.

In the Thiele’s reciprocal-difference method [73], the N -point Padé approximant PN (z) is

expressed by a continued fraction

PN (z) =
c1
1+

c2 (z − z1)
1+

· · · cN (z − zN−1)

1 + (z − zN−1) gN+1(z)
(4.68)

where the coefficients ci are to be determined so that

PN (zi) = α(zi), , i = 1, 2, · · ·N (4.69)

The coefficients ci are then given by the recursion relation

g1(zi) = α(zi), ci = gi(zi), i = 1, 2, · · ·, N (4.70)

gν(zi) =
gν−1 (zν−1) − gν−1(z)

(z − zν−1) gν−1 (z)
, ν ≥ 2 (4.71)

This Padé approximant can further reduce to

PN (z) =
AN (z)

BN (z)
(4.72)

where AN (z) and BN (z) are the polynomials of order (N − 1)/2 for odd integer N . For the even

integer N , however, the orders of AN (z) and BN (z) are (N − 2)/2 and N/2, respectively. They

satisfy the following recursion relations

An+1(z) = An(z) + (z − zn) cn+1An−1(z) (4.73)

Bn+1(z) = Bn(z) + (z − zn) cn+1Bn−1(z) (4.74)

where

A0 = 0, A1 = a1, B0 = B1 = 1 (4.75)



Chapter 5

APPLICATIONS TO SPHERICALLY SYMMETRIC NANOPARTICLES

5.1 systems and background potential

The dynamical response of the conduction electrons in metallic nanoparticles has been a subject of

numerous experimental and theoretical researches, which results in the specific optical absorption

at 400∼ 600nm range. The main feature is the surface plasmon oscillation of these electrons with

respect to the positive charged background. These conduction electrons are delocalized and able to

explore the entire volume of the metallic nanopartices without being substantially scattered by the

ionic cores [44]. Thus the jellium model is used to approximate the ionic cores by a homogenous

positively charged background. The corresponding positive charge density is

ρ
IO

=
3e

4πr3s
Θ(R− r) (5.1)

where Θ(x) is a step function. The size of the nanoparticles is measured by the radius of the N -atom

jellium sphere, R, is related to the Wigner-Seitz radius rs for bulk samples by

R = rsN
1/3 (5.2)

A simple electrostatics calculation gives the background potential felt by the electrons,

U(r) =





Ne2

2R

[(
r
R

)2 − 3
]
, r ≤ R

−Ne2

r , r > R

(5.3)

In this hybrid approximation, the interaction of ionic cores on the electrons is replaced by this

average field, while the correlation effect of the many-conduction-electron system is treated quantum

mechanically by the self-consistent DRPA developed in the previous chapters. In the current

research, we focus on the spherically symmetric metallic Sodium and Gold nanoparticles, distin-

guished by the bulk values of the Wigner-Seitz radius rs.

60
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5.2 computational procedures

5.2.1 Initial Green’s function and a model potential

To start a self-consistent iteration on the Dyson equation (2.85) or on the algebraic finite element

form (3.73), an initial Green’s function is required to compute the self-energy. There is almost no

confinement on the initial Green’s function. However a better guess results in a shorter time for

the Green’s function to converge. Then a better model potential is needed. The spherical square

potential with finite depth is the simplest choice. Even though it can give a rather good description

of the static electron properties, the step function like shape at the boundary can not reproduce

physically the finite size effect. The effective potential obtained in the self-consistent density func-

tional computations is an idealy candidate, but it is given by the numerical data [37]. The numerical

fitting to the data shows that it decays exponentially outside the nanoparticle with the screening

length Ls about one third of the bulk Fermi wavelength. A combination of this two potentials yields

a model potential

Um(r) =





−V0, r ≤ R

−V0e
(R−r)/Ls , r > R

(5.4)

with

V0 = WB +
EF

(1 + δ/R)2
(5.5)

where WB and EF are the bulk work function and Fermi energy, respectively. δ is a measure of

the characteristic length of the electron leakage of a nanoparticle [37]. The second term in the

definition of V0 above is actually a Fermi energy of the free electron gas confined in a sphere of

radius (R + δ), which is often involved in the shell model description of ground electronic state of

nanoparticles [17].

Replacing the background potential U(r) in the definition of H0
ij(l) in eq.(3.77) with Um(r) and

ignoring ΣHF
ij = 0 in eq.(3.89), the solution of the generalized algebraic eigenvalue equation (3.87)

gives a set of eigenstates
{
ϕ0

ln

}
and eigenvalues

{
ε0ln
}
. Then the initial Green’s function reads

G̃0
ij (iΩn, l) ≡

∑

n

ϕ̃0
ln(ri) ϕ̃

0
ln(rj)

iΩn − εln + µ
(5.6)

where the chemical potential µ takes such a value that the mean electron number obtained through

this Green’s function equals to the total number of conduction electrons in the nanoparticle.
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5.2.2 Auxiliary Green’s Function for Frequency Summation

In calculating the mean electron density or the Hartree self-energy in this work, we often encounter

the frequency summation on the Green’s function. However, we have to cut off the summation at

some finite frequency iωM . Sometimes we can not make it very large due to limitations computer

resources. The smaller cutoff will definitely introduce considerable systematical error/deviation

because our Green’s function decays with frequency asymptotically following the 1/ωn law. The

contributions beyond the cutoff frequency should be somehow compensated. To do this, one usually

introduces an auxiliary Green’s function that shows the same asymptotical behavior of the original

Green’s function and can be analytically summed up to infinite frequencies. The Green’s function

built up in Eq.(3.91) of Sec.3.3 under the Hartree-Fock approximation satisfies this requirement

and is then used as the auxiliary one in this work. Here we ignore subscripts and rewrite it as

G̃A
l

(
r, r′; iωn

)
≡
∑

n

ϕ̃ln(r) ϕ̃∗
ln(r′)

iωn − εln + µ
(5.7)

where ϕ̃ln and εln are obtained by solving the finite element form of the radial Hartree-Fock equa-

tion, i.e., Eq.(3.87).

Figure 5.1: Integral contour

The frequency summation of this auxiliary Green’s

function can be easily obtained by considering the fol-

lowing Cauchy integral (the integral contour is shown in

Fig.5.1),

IR = lim
R→∞

1

2πi

∮

C

dzezη

(eβ~z + 1) (z − λ)
(5.8)

where η → 0+ ensures that the integrand is finite as

Re z → −∞. Obviously, the integrand has poles at x =

λ along the real axis and at zn = ± i(2n+1)π
β~

= iωn,

along the imaginary axis. Here the poles zn are just the

Matsubara frequencies for fermions. There will be countable infinity poles along the imaginary axis

as R → ∞. In the same limit, it can be shown that the integrand f(z) = ezη/
[(

eβ~z + 1
)
(z − λ)

]

goes to zero. Thus Jordan’s lemma [74] implies

lim
R→∞

IR = 0 (5.9)



63

While the residue theorem says that this integral equals to the summation of all the residues

inside the contour C. The residue for the pole λ is 1/
(
eβ~λ + 1

)
, and the one for pole zn = iωn is

−1/ [β (iωn − λ)]. Therefore we have

lim
η→0+

1

β~

∑

iωn

eiωnη

iωn − λ
= lim

η→0+

eλη

eβ~λ + 1
=

1

eβ~λ + 1
(5.10)

This gives the frequency summation for the auxiliary Green’s function,

1

β~

∑

iωn

G̃A
l

(
r, r′; iΩn

)
=
∑

n

ϕ̃ln(r) ϕ̃ln(r′)

eβ(εln−µ) + 1
(5.11)

We drop ~ in the denominator of this equation because (εln − µ) has the dimension of energy.

According to the above result, the frequency summation of the Green’s function can be expressed

as

1

β~

∑

iωn

G̃l

(
r, r′; iωn

)
=
∑

n

ϕ̃ln(r) ϕ̃ln(r′)

eβ(εln−µ) + 1
+

1

β~

iωM∑

iωn=−iωM

[
G̃l

(
r, r′; iωn

)
− G̃A

l

(
r, r′; iωn

)]
(5.12)

Here the first term is the infinite sum, while the second term is the finite one which decreases with

the frequency according to a 1/(iωn)2 law.

5.2.3 Determining the Chemical Potential

The mean electron number density reads

〈n(r)〉 = trG(r, r; τ = −η) (5.13)

where η → 0+. The Fourier transformation defined in Eq.(2.15) gives

〈n(r)〉 = 2
∑

lm

|Ylm(θ, ϕ)|2 1

β~

∑

iω

eiωnηGl(r, r; iωn) (5.14)

Integrating over the angular coordinates give the radial electron distribution,

〈n(r)〉 =

∫
dΩ〈n(r)〉

=
2

r2

∑

l

(2l + 1)
1

β~

∑

iω

eiωnηG̃l(r, r; iωn) (5.15)

Finally the mean electron number is calculated by the following integral

〈N〉 =

∫
〈n(r)〉r2dr (5.16)
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Here the frequency can be computed by the method described in Eq.(5.12). Obviously, the mean

electron number is a function of the chemical potential. Changing it results in the change of the

means electron number. However the total conduction electron number remains unchanged. There-

fore the value of the chemical potential is such an one that makes the mean electron number equals

to the total conduction electrons. To match the mean electron number with the total conduction

electrons, a binary searching is used in the current work.

5.2.4 Feedback method and converging Criteria

Figure 5.2: Variation of the chemical
potential with the number of iterations.
For a 1 nm Gold nanoparticle, at temper-
ature T=2500 K, the spatial interval of the
mesh h = λF/8.

In order to accelerate the convergence of the

self-consistent iteration of the Green’s function

and the self-energy through Dyson equations, the

feedback method is employed in the self-energy

iteration. It is formally expressed by

Σ̃m = λΣ̃m−1 + (1− λ)Σ̃m
0 (5.17)

where the self-energy matrix Σ̃m
0 in them-th iter-

ation is the one calculated directly from Eq.(2.87)

using the m-th iteration of the Green’s function.

The parameter 0 ≤ λ < 1 measures the strength

of feedback. This iteration transfers back to the

original one when λ = 0. The parameter λ is something like a damping coefficients. There is a

critical value λc at which the iteration spends the shortest time to converge. It converges very

slowly as long as λ > λc, but will not converge as λ < λc. There is no prior knowledge of what

value it should take, and we have no way but try different values. Fig.5.2 shows the variation of

the chemical potential with the number of iterations for a test case of 1 nm Gold particles at tem-

perature T=2500K. λ = 0.75 is a critical case with shortest iterations. The oscillation will appear

when the feedback parameter is too small, for example, when λ < 0.7006, and the iteration will

never converge.
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To monitor the self-consistent iterations, one can also observe the variation of either the Green’s

function or the self-energy between two successive iterations. The self-energy is usually more sen-

sitive than Green’s function. Therefore, in this research, we trace the variation of the self-energy.

The relative error of the self-energy matrix in two successive iterations is calculated by

δΣ ≡





∑
iωn l,i,j

∣∣∣Σ̃m
l (ri, rj ; iωn)− Σ̃m−1

l (ri, rj ; iωn)
∣∣∣
2

∑
iωn l,m,n

∣∣∣Σ̃m
l (ri, rj ; iωn)

∣∣∣
2





1/2

(5.18)

The iteration will end as soon at the relative error δΣ satisfies the criteria.

δΣ < εΣ (5.19)

where εΣ is the required precision (shown by the horizontal dashed line in Fig.5.3).

Similarly, the error on the Green’s function is estimated by

δG ≡





∑
iωn l,i,j

∣∣∣G̃m
l (ri, rj ; iωn)− G̃m−1

l (ri, rj ; iωn)
∣∣∣
2

∑
iωn l,m,n

∣∣∣G̃m
l (ri, rj ; iωn)

∣∣∣
2





1/2

(5.20)

In Fig.(5.3) and Fig.5.4 plotted are the variation of the relative errors on the self-energy and

the Green’s function, which show similar picture as observed in Fig.5.2.

Figure 5.3: Variation of the relative error on
the self-energy in two successive iterations
with the times of iteration

Figure 5.4: Variation of the relative error
on the Green’s function in two successive
iterations with the times of iteration
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5.2.5 Angular quantum number and Frequency cutoff, temperature and mesh

interval

Figure 5.5: Variation of the chemical potential
with the angular quantum number cutoff.

To start any practical computation, one has

to set finite cutoffs for the angular quantum

number and the Matsubara frequency, as well

as the temperature and the size of intervals for

the spatial mesh. We estimate these parameters

in the Hartree-Fock approximation. The main

reason is that the program consumes much less

time to get a converge result in this approx-

imation. Nevertheless this approximation has

already included most of the contribution of

electron correlation. Now let us consider the

changes of the chemical potential with the angular quantum number cutoff denoted by lmax for

the meshes with different intervals. Shown in Fig.5.5 are the angular momentum cutoff dependence

of the chemical potential for a Gold particles with the radius of 1 nm, at T =2500K. The insertions

are the magnification of the key parts of these dependences, where the symbols represent the calcu-

lated data points. At smaller cutoff, we get higher chemical potential. This is because the important

contribution of higher angular momentum states is ignored and the code has to increase the value

of the chemical potential so that the calculated mean electron number matches the total number of

conduction electrons involved in the system. As the cutoff increases the contribution of these higher

angular momentum states has already been included, and thus the chemical potential decreases.

Since the contribution of the very high angular momentum states is usually very small, there is no

further decay on the value of the chemical potential. For lmax > 20, the chemical potential tends

to a stable value. Thus we set lmax = 20 through out this work. The inserted figure shows us that

the effect of the mesh interval is very weak on the values of the chemical potential, only about five

out of a thousand.

In Fig.5.6 the temperature dependences of the chemical potential for a Gold sphere with dif-

ferent mesh intervals are plotted. It shows a slowly linear increase of the chemical potential with
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temperature below 1300K. A nonlinear variation appears at higher temperatures. However, the

over all variations are within 5%. Once again a very weak dependence on the mesh interval h is

observed. To be more specific, we plot the distribution of the radial electron density in Fig.5.7 for

three different temperatures, where n0(r) is the corresponding bulk conduction electron density.

The variation of the electron density over a wide temperature is much small. This is reasonable

because the characteristic energy for the conduction electrons in nanoparticles is usually much

larger than the thermal energy associated with the temperature of several thousand Kelvins, for

examples, the surface plasmon frequency is several electron volts and the typical gap between the

single-electron energy levels is greater than 0.5eV. Therefore we will be very safe to set the work

temperature for our finite temperature Green’s function computations at T = 2500K. At this tem-

perature, only 32 Matsubara imaginary frequencies are needed in our computation, which greatly

reduces the computation time. The resulting frequency cutoff is about 40eV, much larger than the

plasmon oscillation energy.

Figure 5.6: Temperature dependence of the
chemical potential for a Gold sphere with
the radius of 1nm

Figure 5.7: Distribution of the radial elec-
tron density for a Gold sphere with the
radius of 1nm at different temperatures

5.3 results and discussion

In this section, the results are given for the test cases of Gold and Sodium nanospheres with

radius around 1nm. First we will show the result for the Hartree-Fock approximation. By this
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approximation, one can get a rough insight into the electron dynamics of the system, especially the

electron-hole pair excitation. The Green’s function obtained in this approximation is to be used as

the initial Green’s function for the RPA computation.

5.3.1 Hartree-Fock Approximation

Fig.5.8 and 5.9 show the finite size effect of the electron leakage obtained in the Hartree-Fock

approximation for Gold and Sodium nanospheres, respectively. The electron leakage is measured

by the ratio of the mean number of spilling out electron to that of the total conduction electrons,

i.e., 〈∆N〉/〈N〉. The mean number of spilling out electrons is calculated by integrating the radial

density outside the jellium sphere, i.e.,

〈∆N〉 ≡
∫ ∞

R
〈n(r)〉r2dr (5.21)

The numerical fitting on the data in the figures actually indicate a power law dependence of the

Figure 5.8: Electron leakage from Gold
nanospheres in Hartree-Fock Approxima-
tion

Figure 5.9: Electron leakage from Sodium
spheres in Hartree-Fock Approximation

leakage on the number of atoms consisting of the nanospheres,

〈∆N〉/〈N〉 ∼ N1/3 ∼ 1/R (5.22)

This result explains why nanoscale particles have a higher static polarizability than their macro-

scopic counterpart.
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According to classical electrodynamics a homogeneously charged conductor sphere of radius R

has a static polarizability [20]

α = R3 (5.23)

The spilling out effect results in the enlargement of the effective size of the charged sphere. If the

characteristic range of the leakage is δ, then a estimation of the static polarizability is

α = (R+ δ)3 (5.24)

which results in higher polarizability. The smaller the size of the jellium sphere the larger the

leakage thickness δ, and consequently the bigger the polarizability.

Figure 5.10: Imaginary part of the dynam-
ical polarizability for Gold nanospheres in
Hartree-Fock Approximation

Figure 5.11: Imaginary part of the dynam-
ical polarizability for Sodium nanospheres
in Hartree-Fock Approximation

The imaginary parts of the dynamical electron polarizabilities for Gold and Sodium nanospheres

are shown in Fig.5.10 and Fig.5.11, respectively. They show clearly the finite size effect of the

peak frequencies – the blue shifts with the decreasing cluster size. These sharp peaks represent

essentially the electron-hole excitation that excite electrons at the levels below the Fermi surface

to the empty ones above the Fermi sea. The larger peak frequency for smaller sphere is due to the

bigger gap between the levels [75]. These blue shifts can also be understood through the electron-

hole excitation spectrum obtained in the free electron approximation [62,75]. The excitation occurs
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within the region, in the (ω, q) plane, confined by the relation

q2

2m
− qvF ≤ ω ≤ q2

2m
+ qvF (5.25)

where vF is the Fermi speed, and q is the single-particle momentum. In infinite systems, the electron

can have any momentum with values from 0 to∞. For finite size samples, however, the momentum

is no longer conserved and there is a lower bound on the average momentum due to the constraint

of the uncertainty principle. Electrons in an smaller sphere have a larger minimum momentum and

thus the larger electron-hole excitation energy.

5.3.2 DRPA Approximation

Employing the Green’s function obtained in the Hartree-Fock approximation as the initial Green’s

function, the Green’s functions for nanospheres with different radii are calculated under the DRPA

approximation. Fig. 5.12 and Fig. 5.13 are the size-dependence of the leakage for Gold and Sodium

nanospheres. For the Gold nanospheres, the size effect obtained in DRPA approximation is not

obviously different from that in the Hartree-Fock approximation, i.e., both of them give the R−1

law. Comparing to results under the Hartree-Fock approximation, a bigger leakage is observed for

the Sodium nsnosphere of 20 atoms, while the lower leakages are observed for the ones with the

number of atoms larger that 20. It still follows a power law size-dependence but with the exponents

greater than -1. At present, we have not understood this result. We will search for the answers in

our future research.

Figure 5.12: Electron leakage from Gold
nanoparticles in DRPA Approximation

Figure 5.13: Electron leakage from Sodium
nanoparticles in DRPA Approximation
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Mesoscopic Electron and Phonon Transport Through A Curved Wire1
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6.1 INTRODUCTION

A new class of nanomachines is attempting to measure extremely minute amounts of energy, of

the order a few neV, and to use such calorimeters to probe fundamental properties of thermal

conduction in the nanoscale regime. [76–80] Like the related case of electrical conduction, [81, 82]

low-temperature thermal conduction in nanostructures is entirely different than in macroscopic

materials because the phonons are in the mesoscopic regime, where they scatter elastically but not

inelastically. Because inelastic scattering is required to establish thermodynamic equilibrium, there

is a breakdown of Fourier’s law and the heat equation, which assume a local thermodynamic equi-

librium characterized by a spatially varying temperature profile. These nanodevices have inspired

considerable theoretical work on thermal transport by phonons in the mesoscopic limit. [83–97]

In this work we introduce a general method to calculate the scattering matrix for waves prop-

agating through a curved wire or waveguide. The wire is assumed to be of uniform cross-section

and lying in a plane, but the curved segment may have any smooth curvature profile, [98] such

as that shown schematically in Fig. 6.1a. The ends of the wire (the “leads”) are also assumed to

y

x

X
Y

b

VV

Y

X

b

(a)

(b)

Figure 6.1: (a) An example of the type of two-dimensional curved wire geometry
considered in this paper. The shape of the wire is used to define local orthogonal
coordinates X and Y , with X the arclength along one of the edges. The width of the
wire is b. (b) Scattering problem in the XY frame. Here the wire appears straight,
but the curvature induces an effective potential V that causes scattering.

be straight. For definiteness we consider two-dimensional waves described by the scalar Helmholtz

equation
[
∇2 + α

]
Φ(r) = 0, r ≡ (x, y) (6.1)
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which is appropriate for electrons or scalar phonons in flat wires with rectangular cross-section. [99]

Here α(ε) ≡ 2mε/~2 in the case of electrons of energy ε and mass m, whereas α(ε) ≡ ε2/~2v2 in

the case of scalar phonons of energy ε and bulk sound velocity v. Electron spin is of no importance

here and is neglected. The boundary conditions at the edges of the wire are

Φ(r) = 0, (for electrons)

n ·∇Φ(r) = 0, (for phonons) (6.2)

where n(r) is a local outward-pointing normal. Here we have assumed conventional hard-wall

boundary conditions for the electronic states, but stress-free conditions for the elastic waves because

in this case the wires are usually freely suspended.

Although the wave equation in Eq. (6.1) is certainly simple, the scattering problem described

here is complicated because the boundary conditions (6.2) are applied along the curves defining

the two edges of the wire. Our approach involves rewriting Eqs. (6.1) and (6.2) in terms of new

curvilinear coordinates X and Y , dictated by the shape of the wire, such that the wave equation

becomes more complicated (the wire’s curvature produces an effective potential), but the boundary

conditions become trivial. We choose X to be the arclength along one edge of the wire, and Y is

locally perpendicular. This transformation allows us to apply the standard techniques of scattering

theory, including solution of the Lippmann-Schwinger equation, in the XY frame.

A particularly novel aspect of the phonon transport problem is that the reflection probability

always vanishes in the long-wavelength limit, permitting an analytic (second-order Born approxima-

tion) treatment at low energies. The energy-dependent transmission probability is then expressed

as as a simple functional of the curvature profile κ(X), making possible a straightforward analysis

of a variety of wire shapes. The fact that long-wavelength phonons have perfect transmission is

a consequence of the rigid-body nature of the underlying system: An elastic wave with infinite

wavelength is just an adiabatic rigid translation of the wire, which must transmit energy perfectly.

There has been considerable attention given to mesoscopic electron transport through curved

wires and waveguides, [100] but none to thermal transport. Electron transmission probabilities in

curved wires are usually obtained by mode-matching, a method restricted to piecewise separable

geometries (wires composed of straight segments, circles, and other shapes where the wave equation

is separable). A related problem that has been studied extensively is the formation of electronic
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bound states and resonances in curved wires, where the mapping to local curvilinear coordinates is

also often used. [100–102] Surprisingly, we are not aware of any work using moving frames and then

directly solving the resulting Lippmann-Schwinger equation in that basis. [103] Nor are we aware

of the use of this method in the extensive microwave engineering literature, [104, 105] where the

(more generally applicable but purely numerical) finite-element method is the technique of choice.

In the next section we carry out the above analysis for the two-dimensional Helmholtz equation.

In Sec. 6.3 we consider electron transport through a circular right-angle bend, recovering results

obtained by Sols and Macucci [106] and by Lin and Jaffe [107] using mode-matching methods.

Our main results are given in Sec. 6.4, where we address thermal transport through curved wires.

Sec. 6.5 contains a discussion of our conclusions and the experimental implications of this work.

6.2 APPLICATION TO SCALAR WAVE EQUATION

We now explain our method in detail and apply it to the scalar scattering problem stated in

Eqs. (6.1) and (6.2).

6.2.1 Curvilinear coordinate system

First we use the shape of the wire to define a curvilinear coordinate system, the arclength X along

one edge and a locally perpendicular coordinate Y . Which edge one chooses is of course arbitrary.

The direction of increasing Y will be chosen so that X,Y, and z form a right-handed coordinate

system. Both edges are assumed to be a smooth plane curves. [98]

The unit tangent vector

eX ≡
dr

dX
=

dx

dX
ex +

dy

dX
ey (6.3)

and normal

eY ≡ −
dy

dX
ex +

dx

dX
ey (6.4)

define local orthonormal basis vectors for the XY frame. The sign in Eq. (6.4) is chosen so that

eX × eY = ez. We then use the Frenet-Serret equation

deX

dX
= κ(X) eY (6.5)
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to define a signed curvature κ(X) of the Y =0 edge. According to this definition, κ(X) is positive

when Y increases toward the center of curvature. We will also make use of the metric tensor

g =




(1− κY )2 0

0 1


 (6.6)

in the XY system.

6.2.2 Helmholtz equation in curvilinear coordinates

Next we make a coordinate transformation from r to R≡(X,Y ), and rewrite the wave equation in

terms of these coordinates. A convenient way to do this is to use the identity

∇2 = (det g)−
1
2
∂

∂Xi
(det g)

1
2 g−1

ij

∂

∂Xj
. (6.7)

The Helmholtz equation (6.1) then becomes

[
∂2

X + ∂2
Y − V + α

]
Φ(R) = 0, (6.8)

where we have separated the combination ∂2
X + ∂2

Y from the many terms that appear on the

right-hand-side of Eq. (6.7), and combined the remaining ones into an effective potential V . The

potential V is itself a differential operator; an explicit expression will be given below. The boundary

conditions (6.2) are now

Φ(R) = 0, (for electrons)

∂Y Φ(R) = 0, (for phonons) (6.9)

on the edges Y =0 and Y =b, with b the width of the wire. A scattering state Φ(R) becomes fully

determined once we specify its behavior as X → ±∞.

In the XY frame the wire appears straight, as illustrated in Fig. 6.1b. The scattering potential

vanishes in the leads because the wire is straight there. We are now able to use conventional

scattering theory.

6.2.3 Unperturbed scattering states

The unperturbed (V =0) scattering states for both spinless electrons and scalar phonons are labeled

by three quantum numbers σ, n, and ε, and can be written in the form

φσnε(R) = cnε e
σiknεXχn(Y), (6.10)
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where

knε ≡
√
α(ε)− (nπ/b)2 (6.11)

is the wave number along the wire,

χn(Y ) ≡





√
2/b sin(nπY/b) for electrons

√
(2−δn0)/b cos(nπY/b) for phonons

(6.12)

is a trigonometric function satisfying the transverse boundary conditions of Eq. (6.9), and

cnε ≡
1√
2π

∣∣∣∣
∂knε

∂ε

∣∣∣∣
1/2

(6.13)

is a real normalization constant. σ is a chirality index, defined by

σ =





+1 if moving in +X direction

−1 if moving in −X direction

(6.14)

and n is an integer-valued branch index. The transverse eigenfunctions χn(Y ) are normalized

according to ∫ b

0
dY χn(Y )χn′(Y ) = δnn′ . (6.15)

The dispersion relation given by Eq. (6.11) is shown in Fig. 6.2.
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Figure 6.2: Dispersion relation for unperturbed scattering states, for both spinless
electrons and scalar phonons. α is equal to 2mε/~2 in the case of electrons, or
ε2/~2v2 in the case of phonons. σ is 1 on the right half of the figure, and −1 on
the left. b is the wire width.
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The allowed values of the quantum numbers σ, n, and ε are as follows: The allowed energies

form a continuum, from εmin to ∞. Here

εmin ≡





~
2π2

2mb2
for electrons

0 for phonons

. (6.16)

For each value of energy, the branch index takes the values in a set S of integers defined by

S ≡





1, 2, . . . , N for electrons

0, 1, 2, . . . , N for phonons

(6.17)

where

N(ε) ≡
∞∑

n=0

Θ
[
α(ε)− n2π2

b2

]
− 1, (6.18)

with Θ(x) the unit step function. For electrons, N is the number of propagating channels below

energy ε, whereas for phonons the number of propagating channels is N+1. Finally, for each allowed

value of ε and n, σ takes on the values ±1.

The free scattering states satisfy the orthonormality and completeness conditions

∫
d2R φ∗σnε(R)φσ′n′ε′(R) = δσσ′ δnn′ δ(ε− ε′) (6.19)

and ∫ ∞

εmin

dε
∑

σ=±1

∑

n∈S

φ∗σnε(R)φσnε(R
′) = δ(R−R′), (6.20)

where n takes the values given in Eq. (6.17).

6.2.4 Effective potential

The terms ∂2
X + ∂2

Y have been separated out from the right-hand-side of Eq. (6.7) so that the

eigenfunctions Φ(R) reduce to that of a straight wire when V = 0. Accordingly, the effective

potential is given by

V =
κ2Y 2 − 2κY

(1− κY )2
∂2

X −
κ′Y

(1− κY )3
∂X +

κ

1− κY ∂Y . (6.21)

There will be no singularities in V as long as

−∞ < κb < 1. (6.22)
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The condition (6.22) guarantees that both the Y =0 and Y =b edges of the wire are smooth.

In applications where the radius of curvature |κ|−1 is much larger than b, Eq. (6.21) can be

simplified. To leading order in κb the effective potential reduces to

V = −2κY ∂2
X − κ′Y (1 + 3κY ) ∂X + κ ∂Y . (6.23)

6.2.5 Lippmann-Schwinger equation

The scattering problem in the XY frame can be solved by standard methods. The Lippmann-

Schwinger equation for an eigenfunction Φ(R) with (electron or phonon) energy ε is

Φ(R) = φin(R) +

∫
d2R′G0(R,R

′, ε)V Φ(R′), (6.24)

where φin(R) is a free scattering state coming in from the left, and where G0(R,R
′, ε) is the Green’s

function for the unperturbed Helmholtz equation, satisfying

[
∂2

X + ∂2
Y + α(ε)

]
G0(R,R

′, ε) = δ(R−R′), (6.25)

along with the boundary condition that G0(R,R
′, ε) vanishes as |X −X ′| → ∞. The Lippmann-

Schwinger equation gives the solution of Eq. (6.8) subject to the condition that Φ(R) reduces to

the incident state φin(R) when X → −∞.

The unperturbed Green’s function for both electrons and phonons is

G0(R,R
′, ε) = − i

2

∞∑

n=0

χn(Y )χn(Y ′)

knε
eiknε|X−X′|. (6.26)

We note that the summation in Eq. (6.26) is not restricted to the values given in Eq. (6.17). In

particular, off-shell values of knε are included. Furthermore, in the electron case the n = 0 term in

the summation vanishes, because the transverse eigenfunction χ0(Y ) vanishes.

We will also need to write Eq. (6.24) in the alternative form

Φ(R) = φin(R) +

∫
d2R′ G(R,R′, ε)V φin(R

′), (6.27)

where G(R,R′, ε) is the Green’s function of the perturbed Helmholtz equation, satisfying

G(R,R′, ε) = G0(R,R
′, ε)

+

∫
d2R

′′

G0(R,R
′′, ε)V G(R′′,R′, ε). (6.28)



79

6.2.6 Transmission probability

The transmission coefficient matrix tnn′(ε) gives the probability amplitude for a right-moving elec-

tron or phonon to forward scatter from branch n to branch n′ at energy ε. We define tnn′(ε) to be

zero if one or both branches have minima above ε.

We can obtain a formal expression for tnn′(ε) by writing the X →∞ limit of the unperturbed

Green’s function as

G0(R,R
′, ε)→ − i

2

∑

n∈S

φRnε(R)φ∗Rnε(R
′)

knεc2nε

, (6.29)

where the subscripts R denote right-moving (σ = +1) waves. The summation in Eq. (6.29) is now

restricted to n ≤ N because the higher lying contributions are exponentially small in the X →∞

limit. Then from Eqs. (6.24) and (6.29) we obtain

lim
X→∞

Φ(R) = φRniε(R)− i

2

∑

n∈S

〈φRnε|V |Φ〉
knεc2nε

φRnε(R) (6.30)

where the incoming right-moving wave is assumed to be in channel ni. Therefore we conclude that

lim
X→−∞

Φ = φRniε (6.31)

and

lim
X→∞

Φ =
∑

n∈S

tnin(ε)φRnε, (6.32)

where

tnn′(ε) ≡ δnn′ − i

2

〈φRn′ε|V |Φ〉
kn′εc

2
n′ε

(6.33)

is the amplitude for an incident wave (R, n, ε) to forward-scatter to (R, n′, ε). tnn′(ε) is called the

transmission matrix.

We emphasize that for the case of electron transport, t(ε) is an N×N matrix, where N varies

with energy as indicated in Eq. (6.18). For phonons, t(ε) is N+1-dimensional.

The expectation value in Eq. (6.33) involves the exact scattering state Φ with boundary condi-

tion corresponding to an incident state (R, n, ω). Using Eq. (6.27) we write this as

〈φRn′ε|V |Φ〉 = 〈φRn′ε|V |φRnε〉

+

∫
φ∗Rn′ε(R)VR G(R,R′, ε)VR′ φRnε(R

′), (6.34)
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where VR and VR′ act on R and R′, respectively. The numerical method we use consists of expressing

Eq. (6.28) in a basis of unperturbed scattering states, solving this equation by matrix inversion,

and using Eq. (6.34) to obtain the transmission matrix in Eq. (6.33).

Finally, we define the energy-dependent transmission probabilities Tel and Tph for electrons and

phonons that determine the electrical and thermal currents. For electrons, the relevant quantity is

the ratio of transmitted to incident charge current, given by

Tel(ε) =
N∑

n,n′=1

∣∣tnn′

∣∣2 = Tr t†t. (6.35)

For thermal transport by phonons, the relevant quantity is the fraction of transmitted energy

current, [86] given by

Tph(ε) =
N∑

n,n′=0

vn′

vn

∣∣tnn′

∣∣2, (6.36)

where vn(ε) is the phonon group velocity in the straight wire, which can be written as ~v2knε/ε.

Because the bulk sound velocity v is a constant here, and the scattering is elastic, we can equivalently

write Eq. (6.36) as

Tph(ε) =
N∑

n,n′=0

kn′ε

knε

∣∣tnn′

∣∣2, (6.37)

with the knε given by Eq. (6.11).

6.2.7 Landauer formula

The charge current I and linear conductance

G ≡ lim
V →0

I

V
(6.38)

are related to the electron transmission probability Tel(ε) through the Landauer formula [81,82]

I =
e

2π~

∫ ∞

0
dεTel(ε)

[
nµl

F (ε)− nµr

F (ε)
]
. (6.39)

Here nµl

F (ε) and nµr

F (ε) are the Fermi distribution functions in the left (l) and right (r) leads, with

chemical potentials µl and µr differing in proportion to the applied voltage V = (µl − µr)/e.

Similarly, the thermal current Ith and conductance

Gth ≡ lim
∆T→0

Ith
∆T

(6.40)
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are determined by the phonon transmission probability Tph(ε) according to [84–86]

Ith =
1

2π~

∫ ∞

0
dε εTph(ε)

[
nTl

B (ε)− nTr

B (ε)
]
. (6.41)

nTl

B (ε) and nTr

B (ε) are Bose distribution functions in the left and right leads, with temperatures Tl

and Tr.

6.3 ELECTRON TRANSPORT

R

b

Figure 6.3: Section of quantum
wire with circular right-angle bend.

We turn now to an application of our method to coherent

electron transport through a circular right-angle bend

with outer radius R and width b. In this case the cur-

vature profile is

κ(X) =
1

R
Θ(X) Θ(πR

2 −X), (6.42)

where Θ is the unit step function. The origin of the X

coordinate is taken to be one of the locations where the

straight and curved sections of the wire meet.

As explained above, the numerical method we use to calculate tnn′(ε) requires the matrix ele-

ments 〈φσnε|V |φσ′n′ε′〉 of the effective potential (6.21) in the unperturbed scattering states (6.10).

However, matrix elements of the second term in Eq. (6.21), which contain the curvature gradient

κ′(X) =
1

R

[
δ(X)− δ(X − πR

2 )
]
, (6.43)

involves integrals of a delta function δ times functions F (Θ) of Θ. Integrals of this form, involving

products of generalized functions, have to be evaluated carefully, as we show in Appendix C. Apart

from this technicality, the application of our method to this geometry is straightforward.

Mesoscopic charge transport through bent wires has already been studied extensively, [100] and

we will only consider one case of this, namely R = 1.2 b. First we calculate the individual electron

transmission probabilities |tnn′(ε)|2 from Eq. (6.33) for the lowest few channels n and n′. The results

are given in Fig. 6.4 and are in excellent agreement with the mode-matching results of Sols and

Macucci [106] for the same value of R/b (see Fig. 2a of Ref. [106]). Our result for |t11(ε)|2 also agrees
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qualitatively with that calculated by Lin and Jaffe [107] for a right-angle bend with a slightly larger

curvature (see Fig. 8 of Ref. [107]).

The total electron transmission probability Tel(ε), defined in Eq. (6.35), is presented in Fig. 6.5

for the same curved wire. At energies given by

ε = n2∆el with n = 1, 2, 3, . . . , (6.44)

where ∆el ≡ π2
~

2/2mb2, additional channels in the wire become propagating and contribute to the

transmission probability. The threshold energies (6.44) follows from Eq. (6.11) and Fig. 6.2. The

principal effect of the curvature in the wire is to soften the transitions at these thresholds.

0 2 4 6 8 10 12
ε/∆

el

0

0.2

0.4

0.6

0.8

1

tr
an

sm
is

si
on

 p
ro

ba
bi

lit
y

|t
11

|
2

|t
12

|
2

|t
13

|
2

|t
22

|
2

|t
23

|
2

|t
33

|
2

Figure 6.4: Individual electron transmission
probabilities |tnn′ |2 as a function of energy
for a circular right-angle bend with R/b =
1.20. Here ∆el ≡ π2

~
2/2mb2.

0 2 4 6 8 10 12 14
ε/∆

el

0

1

2

3

to
ta

l t
ra

ns
m

is
si

on
 p

ro
ba

bi
lit

y

Figure 6.5: Total electron transmission
probability Tel. System parameters are the
same as in Fig. 6.4.

6.4 PHONON TRANSPORT

We turn now to the main emphasis of our work, the calculation of transmission probabilities for

two-dimensional scalar phonons with energy ε = ~ω and (bulk) sound velocity v to propagate

through curved wires. We are not aware of any previous work on this problem.

As before, we consider a circular right-angle bend with outer radius R and width b, with

curvature profile given by Eq. (6.42). The method of solution is the same as that outlined in

Sec. 6.3 and Appendix C, except that the transverse parts of the unperturbed scattering states,

defined in Eq. (6.12), are now different. In Fig. 6.6 we give the individual phonon transmission
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probabilities |tnn′(ε)|2, defined in Eq. (6.33), for the lowest channels in a smoothly bent wire with

R = 2 b. In Fig. 6.7 we do the same for a more tightly bent wire, with R = 1.001 b (inner radius is

10−3 b). At energies given by

ε = n∆el with n = 1, 2, 3, . . . , (6.45)

where ∆ph ≡ π~v/b, additional channels in the wire become propagating and contribute to thermal

transport. In both examples, transmission is nearly perfect in the low-energy ε < ∆ph limit, where

there is only a single propagating channel. At higher energies, scattering does occur. However it is

mostly in the forward direction, and the fraction of transmitted energy Tph(ε), defined in Eq. (6.36),

is essentially unchanged from that of a straight wire.
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Figure 6.6: Individual phonon transmission
probabilities |tnn′ |2 as a function of energy
for a circular right-angle bend with R = 2 b.
Here ∆ph ≡ π~v/b.
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Figure 6.7: Individual phonon transmission
probabilities |tnn′ |2 as a function of energy
for a circular right-angle bend with R =
1.001 b.

In Fig. 6.8 we plot the thermal conductance Gth in units of the “quantum” of thermal conduc-

tance

Gq ≡
πk2

BT

6~
≈ 0.95T pW K−2, (6.46)

for a curved wire of width b = 100 nm and outer radius R = 1.001 b. The scalar phonon velocity is

taken to be v = 8.5×105 cm s−1, the longitudinal sound speed in Si. The thermal transport is hardly

affected by the curvature in the wire, as can be seen in Fig. 6.9, which compares an expanded plot

of Gth/Gq to that for a straight wire. The greatest suppression occurs near 200 mK and is only

about 0.5% of the thermal conductance quantum.
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Figure 6.8: Dimensionless thermal conduc-
tance Gth/Gq as a function of tempera-
ture, for a 100 nm curved Si-like quantum
wire, with outer radius R = 1.001 b. Here
Gq ≡ πk2

BT/6~, which is itself linearly pro-
portional to temperature.
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Figure 6.9: The solid curve is the same as
Fig. 6.8. Dashed curve is the dimensionless
thermal conductance for a straight Si-like
wire with b = 100 nm. Thermal transport
is hardly suppressed by the bending.
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Figure 6.10: Individual phonon transmission
probabilities |tnn′ |2 as a function of energy
for a circular right-angle bend with R =
1.00001 b.

It is physically unrealistic to consider a

100 nm wire bent more sharply than R =

1.001 b, because the inner radius of 0.10 nm

in this case is already approaching atomic

dimensions. However, for a wire of width

b = 10µm and the same inner radius of cur-

vature, we have R = 1.00001 b, the trans-

mission probabilities for which are shown

in Fig. 6.10. The transmission probabilities

when R = 1.00001 b are similar to that for

R = 1.001 b, shown previously in Fig. 6.7, as

is the thermal conductance. We find in that in a 10µm Si-like quantum wire with R = 1.00001 b,

the greatest suppression in Gth occurs near 2 mK and is again only about 0.5% of the conductance

quantum in magnitude.
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6.5 DISCUSSION

We have introduced a general method to calculate the transmission of scalar waves appropriate

for mesoscopic electron and phonon transport through a curved wire or waveguide. Applications

to electron transport accurately reproduce results obtained by other methods. Phonon transport

through curved wires is considered here for the first time.

Our results demonstrate that curvature hardly suppresses thermal transport, even for sharply

bent wires, at least within the two-dimensional scalar phonon model considered. This behavior can,

to some extent, be understood by considering transport in the extreme long- and short-wavelength

limits. In the long-wavelength, low energy limit, Tph → 1, a consequence of the rigid-body nature of

the wire. Tph also approaches unity for short wavelengths, because in this limit the phonons cannot

sense the curvature.

Because the phonon reflection probability always vanishes in the long-wavelength limit, a simple

perturbative (Born approximation) treatment is possible at low energies. For example, the energy-

dependent n = 0 transmission probability is

|t00|2 = 1− |r00|2, (6.47)

where, to leading nontrivial order,

r00 = − i~v
2εb

∫
d2Rd2R′ eiεX/~v

× VR G0(R,R
′, ε)VR′ eiεX

′/~v. (6.48)

VR and VR′ act on R and R′, respectively. This result allows the low-temperature thermal transport

though a variety of wire shapes to be addressed quite simply. Although an analogous perturba-

tive expression can be derived for the electronic transmission probability as well, the form of the

transverse part χn of the unperturbed scattering states, as dictated by the hard-wall boundary

conditions, then leads to a divergence in the Born series, [108] consistent with the fact that Tel → 0

in the long-wavelength limit.

We conclude with a brief discussion of the experimental implications of our mesoscopic thermal

transport results, the charge-trasport case having already been discussed in the literature. [100,109]

Thermal transport in carbon nanotubes has been studied experimentally by several groups, [110–
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112] and nanotubes would be interesting systems to use to investigate the effects of bending on

transport. To apply our method of analysis to this system would require the consideration of

scattering of elastic waves in a curved, hollow tube. Although they were obtained for scalar phonons

in two-dimensional strips, our results do suggest that the effects of curvature will be small, if not

completely negligible, in these systems.



Chapter 7

HOT ELECTRONS IN LOW-DIMENSIONAL PHONON SYSTEMS1

1Shi-Xian Qu, Michael R. Geller and A. N. Cleland. Submitted to Phys. Rev. Lett, 03/15/2005.

87



88

The coupling between electrons and phonons plays a crucial role in determining the thermal

properties of nanostructures. The widely used “standard” model of low temperature electron-

phonon thermal coupling and hot-electron effects in bulk metals [113, 114] assumes (i) a clean

three-dimensional free-electron gas with a spherical Fermi surface, rapidly equilibrated to a temper-

ature Tel; (ii) a continuum description of the acoustic phonons, which have a temperature Tph; (iii)

a negligible Kapitza-like thermal boundary resistance [115] between the metal and any surrounding

dielectric, an assumption that is well justified experimentally; and (iv), a deformation-potential

electron-phonon coupling, expected to be the dominant interaction at long-wavelengths. In a bulk

metal, the net rate P of thermal energy transfer between the electron and phonon subsystems

is [114]

P = ΣVel

(
T 5

el − T 5
ph

)
, (7.1)

where Vel is the volume of the metal, and

Σ ≡ 8 ζ(5) k5
B ε

2
FNel(εF)

3π~4ρvFv4
l

. (7.2)

Here ζ is the Riemann zeta function, εF is the Fermi energy, Nel is the electronic density of states

(DOS) per unit volume, ρ is the mass density, vl is the bulk longitudinal sound speed, and vF is

the Fermi velocity.

This model, which has no adjustable parameters, has successfully explained some experiments

[114, 116, 117], but others report a power-law temperature dependence with smaller exponents

[118, 119], indicating an enhanced electron-phonon coupling at low temperatures. However, the

experiments typically involve heating measurements in thin metal films deposited on semicon-

ducting substrates, and the relevant phonons at low temperature are strongly modified by the

exposed stress-free surface. An attempt to directly probe such phonon-dimensionality effects was

carried out by DiTusa et al. [119], who intentionally suspended some of their samples, necessarily

modifying the vibrational spectrum, although they found no significant difference from their sup-

ported films. We argue that the paradox reported in Ref. [119] is actually quite widespread, and

all experiments known to us on supported films actually contradict the standard model when that

model is modified to account for the actual vibrational modes present in a realistic supported-film
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geometry, illustrated in Fig. 7.1. Our results have important implications for the thermal proper-

ties of mesoscopic and low-dimensional phonon systems and the use of such systems as nanoscale

thermometers, bolometers, and calorimeters [120–122].

The Hamiltonian we consider (suppressing spin) is H =
∑

k εk c
†
kck +

∑
n ~ωn a

†
nan + δH, where

c†k and ck are electron creation and annihilation operators, with k the momentum, and a†n and an are

bosonic phonon creation and annihilation operators. The vibrational modes, labeled by an index n,

are eigenfunctions of the continuum elasticity equation v2
t ∇×∇×u−v2

l ∇(∇ ·u) = ω2u for linear

isotropic media, along with accompanying boundary conditions. vt and vl are the bulk transverse

and longitudinal sound velocities. δH ≡ 2
3εF
∫
Vel
d3r ψ†ψ∇ · u is the deformation-potential electron-

phonon interaction, with u(r) =
∑

n(2ρωn)−
1
2 [fn(r) an + f∗n(r) a†n] the quantized displacement field.

The vibrational eigenfunctions fn(r) are defined to be solutions of the elasticity field equations,

normalized over the phonon volume Vph according to
∫
Vph
d3r f∗n · fn′ = δnn′ . It will be convenient to

rewrite the electron-phonon interaction as δH =
∑

kqn[gnq c
†
k+qck an+g∗nq c

†
k−qck a

†
n], with coupling

constant gnq ≡ 2
3εF(2ρωn)−

1
2V −1

el

∫
Vel
d3r ∇ · fn e−iq·r. Note that we allow for different electron and

phonon volumes.

The quantity we calculate is the thermal energy per unit time transferred from the electrons to

the phonons,

P ≡ 2
∑

kqn

~ωn

[
Γem

n (k→ k− q)− Γab
n (k→ k + q)

]
, (7.3)

where

Γem
n (k→ k− q) = 2π |gnq|2 [nB(ωn) + 1]

× nF(εk)[1− nF(εk−q)] δ(εk−q − εk + ωn) (7.4)

is the golden-rule rate for an electron of momentum k to scatter to k− q while emitting a phonon

n, and

Γab
n (k→ k + q) = 2π |gnq|2 nB(ωn)

× nF(εk) [1− nF(εk+q)] δ(εk+q − εk − ωn) (7.5)

is the corresponding phonon absorption rate. nB is the Bose distribution function with temperature

Tph and nF is the Fermi distribution with temperature Tel. The factor of 2 in (7.3) accounts for
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spin degeneracy. It is possible to obtain an exact expression for P ; the result (suppressing factors

of ~ and kB) is

P =
m2V 2

el

8π4

∑

n

∫ ∞

0
dω δ(ω − ωn)

(
ω

eω/Tel−1
− ω

e
ω/Tph−1

)

×
∫
d3k
|gnk|2
|k|

[
ω + Tel ln

(
1+exp[( mω2

2k2 + k2

8m
−ω

2
−µ)/Tel])

1+exp[( mω2

2k2 + k2

8m
+ω

2
−µ)/Tel])

)]
.

The logarithmic term in P can be shown to be negligible in the temperature regime of interest

and will be dropped. Carrying out the k integration then leads to

P =
v4
l ΣVel

24 ζ(5)

∫ ωD

0
dω F (ω)

(
ω

eω/Tel − 1
− ω

eω/Tph − 1

)
, (7.6)

where F (ω) ≡∑n Un δ(ω − ωn) is a strain-weighted vibrational DOS, with

Un ≡
1

Vel

∫

Vel

d3r d3r′
∇ · fn(r) ∇

′ · f∗n(r′)

|r− r′|2 + a2
. (7.7)

Here ωD is the Debye frequency. Un can be interpreted as an energy associated with mass-density

fluctuations interacting via an inverse-square potential [123], cut off at distances of the order of the

lattice constant a. We have reduced the calculation of P to the calculation of F (ω). Allen [124] has

derived a related weighted-DOS formalism.

We now calculate F (ω) and P for a metal film of thickness d attached to the free surface of

an isotropic elastic continuum with L → ∞; see the inset to Fig. 7.1. The film and substrate are

assumed to have the same elastic parameters, characterized by a mass density ρ and bulk sound

velocities vt and vl. Where material parameters are necessary we shall assume a Cu film; however,

the qualitative behavior we obtain is generic. The evaluation of F (ω) requires the vibrational

eigenfunctions for a semi-infinite substrate with a free surface, which have been obtained in the

classic paper by Ezawa [125]. The modes are labeled by a branch index m, taking the five values

SH, +, −, 0, and R, by a two-dimensional wavevector K in the plane defined by the surface, and

by a parameter c with the dimensions of velocity that is continuous for all branches except the

Rayleigh branch m=R. With the normalization convention of Ref. [125] we have

F (ω) =
∑

K

URK δ(ω − cRK)

+
∑

m6=R

∑

K

∫
dc UmKc δ(ω − cK). (7.8)
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Figure 7.1: (inset) Conducting film of thickness d attached to insulator. The top
surface of the metal is stress-free. (main) Temperature dependence of the thermal
power exponent x for a 10 nm (solid curve) and 100 nm (dashed curve) Cu film.

The range of the parameter c depends on the branch m, and is summarized in Table 7.1. The

frequency of mode mKc is cK.

m range of c

SH [vt,∞]
± [vl,∞]
0 [vt, vl]
R cR (discrete)

Table 7.1: Values of the parameter c for the five branches of vibrational modes of a semi-infinite
substrate.

Turning to an evaluation of (7.8), the SH branch is purely transverse, so USH = 0. The normal-

ized eigenmodes for the ± branches are

f± =

√
K

4πcA

{[
∓ α− 1

2

(
e−iαKz − ζ± eiαKz

)
+ iβ

1
2

×
(
e−iβKz + ζ± e

iβKz
)]

eK +

[
± α 1

2

(
e−iαKz + ζ± e

iαKz
)

+ iβ− 1
2

(
e−iβKz − ζ± eiβKz

)]
ez

}
eiK·r, (7.9)

where α≡
√

(c/vl)2 − 1 and β≡
√

(c/vt)2 − 1. Here

ζ± ≡
[(β2 − 1)± 2i

√
αβ]2

(β2 − 1)2 + 4αβ
, with |ζ±| = 1. (7.10)
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Then

∇ · f± = ∓i c
3
2K

3
2

√
4παAv2

l

(
e−iαKz − ζ± eiαKz

)
eiK·r (7.11)

and U± = (c3K/αv4
l Vel) I±(Kd, c), where

I±(Z, c) ≡ Re

∫ Z

0
dx dx′ K0

(√
(x−x′)2 + a2Z2/d2

)

×
[
eiα(x−x′) − ζ±eiα(x+x′)

]
.

K0 is a modified Bessel function. To obtain U± we use translational invariance in the xy plane to

write (7.7) as

UmKc =
A

Vel

∫ d

0
dz dz′

∫

A
d2R

× ∇ · fmKc(R, z) ∇
′ · f∗mKc(0, z

′)

R2 + (z − z′)2 + a2
, (7.12)

where R ≡ (x, y) is a two-dimensional coordinate vector. Then we scale out K, do the angular

integration, and use the identity
∫∞
0 dRR J0(R) [R2 + s2]−1 = K0(|s|), where J0 is a Bessel function

of the first kind.

Next we consider the m = 0 branch, for which

f0 =

√
K

2πβcA

{[
iC e−γKz + iβ e−iβKz + iβA eiβKz

]
eK

+

[
− γC e−γKz + ie−iβKz − iA eiβKz

]
ez

}
eiK·r, (7.13)

where γ ≡
√

1− (c/vl)2,

A ≡ (β2 − 1)2 − 4iβγ

(β2 − 1)2 + 4iβγ
, and C ≡ 4β(β2 − 1)

(β2 − 1)2 + 4iβγ
.

Then

∇ · f0 = − c
3
2K

3
2C√

2πβAv2
l

e−γKz eiK·r (7.14)

and U0 = (|C|2c3K/β v4
l Vel) I0(Kd, c), where

I0(Z, c)≡
∫ Z

0
dx dx′ K0

(√
(x−x′)2 + a2Z2/d2

)
e−γ(x+x′).

Finally, for the Rayleigh branch,

fR =

√
K

KA

{[
ie−ϕKz − i

( 2ϕη
1+η2

)
e−ηKz

]
eK

−
[
ϕe−ϕKz −

( 2ϕ
1+η2

)
e−ηKz

]
ez

}
eiK·r, (7.15)
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where ϕ ≡
√

1− (cR/vl)2, η ≡
√

1− (cR/vt)2, and K ≡ (ϕ − η)(ϕ − η + 2ϕη2)/2ϕη2. cR is the

velocity of the Rayleigh surface waves, given by cR = ξ vt, where ξ is the root between 0 and 1

of ξ6 − 8ξ4 + 8(3 − 2ν2)ξ2 − 16(1 − ν2), with ν ≡ vt/vl. For Cu, ν = 0.52 and ξ = 0.93; hence

cR = 2.4×105 cm s−1. Using (7.15),

∇ · fR =
K

3
2 (ϕ2 − 1)√
KA

eiK·r e−ϕKz (7.16)

and UR = (2πc4RK/K v4
l Vel) IR(Kd), where

IR(Z)≡
∫ Z

0
dx dx′ K0

(√
(x−x′)2 + a2Z2/d2

)
e−ϕ(x+x′).

The final summations in (7.8) are carried out with the aid of the identity limA→∞
∑

K δ(ω −

cK) = ωA/2πc2 and elsewhere replacing K with ω/c. Then we obtain

F (ω) =
ω2

v4
l d

{
cR
K IR(ωd

cR
) +

∫ vl

vt

dc
|C|2
2πβ

I0(
ωd
c , c)

+

∫ ∞

vl

dc
1

2πα

[
I+(ωd

c , c) + I−(ωd
c , c)

]}
. (7.17)

This expression, combined with (7.6), is our principal result. Evaluation of (7.17) can be further

simplified by the use of the powerful identities

I±(Z, c) = Re
[(

2Z − iζ±
α

)
f(Z,α) + iζ±

α e2iαZf∗(Z,α)

+ 2i
(∂f(Z,s)

∂s

)
s=α

]
, (7.18)

I0(Z, c) = 1
γ f(Z, iγ)− e−2γZ

γ f(Z,−iγ), (7.19)

IR(Z, c) = 1
ϕ f(Z, iϕ)− e−2ϕZ

ϕ f(Z,−iϕ), (7.20)

where f(Z, s) ≡
∫ Z
0 dxK0

(√
x2 + a2Z2/d2

)
eisx, thereby reducing the Im to a single one-dimensional

integral f.

The Im have distinct large- and small-Z character, crossing over near Z = 1. Because of the

integration over c in (7.17), F and P accordingly exhibit a broad crossover behavior. However,

once ωd < cR, all branches will have assumed their low-frequency forms. We define a crossover

temperature

T ? ≡ ~cR/kBd (7.21)
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dividing regimes determined by the small and large ωd/cR behavior of F . In the large ωd/cR limit

the m=± modes in (7.17) can be shown to be dominant, and limωd→∞

∫∞
vl
dc 1

αI±(ωd
c , c) = πωd.

Therefore, we obtain F (ω) → Fbulk(ω) ≡ ω3/v4
l , independent of d, leading to a high-temperature

behavior P → ΣVel

[
Φ(ωD/Tel)T

5
el − Φ(ωD/Tph)T

5
ph

]
, where Σ is the coefficient (7.2), and where

Φ(y) ≡ [4! ζ(5)]−1
∫ y
0 dx x

4/(ex − 1). Φ(10) is about 0.97, and Φ(y) rapidly approaches 1 beyond

that. Thus, at temperatures above T ? but sufficiently smaller than the Debye temperature, the Φ

factors are equal to unity, and we recover the bulk result (7.1).

The low temperature asymptotic analysis is somewhat complicated and will be presented else-

where. Briefly, using the small Z expansion

f(Z, s) → −Z lnZ +
(
1 + ln 2 + ψ(1)

)
Z − is

2
Z2 lnZ

+
is

2

(
1
2 + ln 2 + ψ(1)

)
Z2 +O(Z3 lnZ), (7.22)

where ψ is the Euler polygamma function, we find F (ω)→ Fbulk(ω)×[−λ (ω d
cR

) ln(ω d
cR

) +O(ω d
cR

)] in

the small ωd/cR limit. Here

λ ≡ 1

K +

∫ vl

vt

dc
cR|C|2
2πc2β

+

∫ ∞

vl

dc
cR[2−Re(ξ++ξ−)]

2πc2α

is a constant determined by vl, vt, and cR. Each T 5 function in (7.1) therefore crosses over at

low temperature as T 5 → −Λ
(

T 6

T ?

)
ln
(

T
T ?

)
, with Λ = λπ6/189 ζ(5). For a Cu film, λ ≈ 0.815 and

Λ ≈ 3.998. There are also mixed-temperature regimes possible, where only one of the two terms in

(7.1) has crossed over.

The most striking consequence of the crossover is that the temperature exponent increases. In

Fig. 7.1 we fit P (with either Vel or Vph zero) to a power-law T x with a temperature dependent

exponent x, and plot the exponent for 10 nm (T ? = 1.84 K) and 100 nm (T ? = 184 mK) Cu films.

x(T ) is nonmonatonic, displaying a pronounced maximum near T ?, and drifts upward as T → 0.

Such behavior has not (to the best of our knowledge) been observed, even though many experi-

ments [114, 116, 117, 119] have achieved T ¿ T ?. The physical origin of the crossover is that, at

low temperature, the stress-free condition at the metal surface penetrates into the film, reducing

the strain and hence electron-phonon coupling there. The characteristic distance over which the

boundary condition has an effect is of the order of a bulk wavelength. When T À T ?, only a thin



95

outer surface layer of the film has a significantly diminished strain, and bulk behavior is expected.

However, when T ¿ T ? the entire metal film experiences a reduced strain.

The experiments of Refs. [116] and [117], both using Cu films, observe an approximate T 5

dependence even well below T ?. It is therefore interesting to compare the observed prefactors with

the coefficient Σ, evaluated for Cu. Using a free-electron gas approximation [126] and measured

elastic properties [127], we obtain 5.97×107 W m−3 K−5, which is at least an order of magnitude

smaller than observed, consistent with our assertion that there is some unidentified mechanism

enhancing the thermal coupling. Nobel metals are far from free-electron systems because of their

complex Fermi surfaces. We attempt to address this shortcoming by regarding the “Fermi surface”

quantities Nel(εF) and vF as independently adjustable parameters, to be obtained empirically from

heat capacity and cyclotron resonance data. Carrying out this analysis, the details of which will

be presented elsewhere, leads to the modified prefactor Σ = 1.14×108 W m−3 K−5, which is still

considerably smaller than measured.

Although not included in the model considered here, disorder in a bulk metal film is expected

to produce a crossover from the T 5 dependence to a T 6 scaling when the phonon elastic mean free

path ` becomes smaller than the thermal wavelength [128, 129], a behavior which has not been

reported experimentally until very recently [130]. Thus, the crossover predicted here should not be

appreciable affected by disorder unless ` < d. Although thin films are known to scatter phonons

strongly, measured values of ` are still much larger than d in the temperature regime of interest

here [131].

In conclusion, we argue that a wide variety of experiments contradict the predictions of an

essentially exact application of the standard model of electron-phonon thermal coupling in metals

to a supported-film geometry, suggesting a widespread breakdown of that model.



Chapter 8

CONCLUSION

A self-consitent dressed random phase approximation has been advanced to compute the finite tem-

perature Green’s function for the spherically symmetric nanoparticles. The finite element method

is applied for the first time to solve the Dyson equations for the finite temperature Green’s function

and the screening potential, which provides an efficient and easy to operate methods, and leaves

considerable freedom for users to choose the interpolation polynomials. The linear response theory

is used to calculate the dynamical polarizability of the electron systems.

The corresponding large scale computer codes have been completed in the frame of the FOR-

TRAN language. The dynamical polarizabilities for Gold and Sodium nanospheres are calculated,

and the finite size effects have been discussed. The validity of codes and the methods involved in

this work have been proved by these test cases.

A general method is introduced to calculate the transmission of scalar waves appropriate for

mesoscopic electron and phonon transport through a curved wire or waveguide. Applications to elec-

tron transport accurately reproduce results obtained by other methods. Phonon transport through

curved wires is considered here for the first time.

The curvature hardly suppresses thermal transport, even for sharply bent wires, at least within

the 2-D scalar phonon model. Nanotubes would be interesting systems to investigate the effects of

bending on transport.

A general method is developed to compute the net rate of thermal energy transfer between a

three-dimensional conductor at temperature Tel and a low-dimensional phonon system at tempera-

ture Tph. The standard electron-phonon coupling model is applied to a semi-infinite substrate with

free surface. It predicts a low-temerature crossover from the familiar T 5 temperature dependence to

a strong T 6 log T scaling. Comparison with existing experiments suggests a widespread breakdown

of the standard model of electron-phonon thermalization in metals
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Appendix A

Some Useful Relations for The Clebsch-Godan Coefficients

A.1 Redefined Clebsch-Godan coefficients C̃

Considering the feature of this work, we also use the redefined Clebsch-Godan (CG) coefficients

C̃ (ll1l2;mm1m2) =

(
2l + 1

2l2 + 1

)1/2

C (ll1l2;mm1m2) (A.1)

where, C (ll1l2;mm1m2) is the conventional CG coefficients [66]. According to the following equa-

tion,

C (ll1l2;mm1m2) = (−1)l1+m1

(
2l2 + 1

2l + 1

)1/2

C (l1l2l;−m1m2m) (A.2)

and the orthonormal relations

∑

m1,m2

C (l1l2l;m1m2m) 7C
(
l1l2l

′;m1m2m
′
)

= δll′δmm′ (A.3)

∑

l,m

C (l1l2l;m1m2m)C
(
l1l2l;m

′
1m

′
2m
)

= δm1m′
1
δm2m′

2
(A.4)

we obtain the corresponding relations for C̃,

∑

m1,m2

C̃ (ll1l2;mm1m2) C̃
(
l′l1l2;m

′m1m2

)
= δll′δmm′ (A.5)

∑

l,m

C̃ (ll1l2;mm1m2) C̃
(
ll1l2;mm

′
1m

′
2

)
= δm1m′

1
δm2m′

2
(A.6)

and

∑

m1,m2

C̃ (l1l2l;m1m2m) C̃
(
l1l2l

′;m1m2m
′
)

=
2l1 + 1

2l + 1
δll′δmm′ (A.7)
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∑

lm

C̃ (l1l2l;m1m2m) C̃
(
l1l2l;m

′
1m

′
2m
)

=
2l1 + 1

2l + 1
δlmδm2m′

2
(A.8)

By this redefinition, the coupling rule for spherical harmonics [66] becomes

Yl1m1
(θ, ϕ)Yl2m2 (θ, ϕ) =

∑

lm

[
(2l2 + 1)

4π

]1/2

C̃ (l1l2l;m1m2m)C (l1l2l; 000)Ylm (θ, ϕ) (A.9)

Then we have relation,

∫
dΩY ∗

l3m3
Yl2m2Yl1m1

=

[
(2l2 + 1)

4π

]1/2

C̃ (l1l2l3;m1m2m3)C (l1l2l3; 000) (A.10)

A.2 Some special CG coefficients

Consider the following CG coefficients,

C̃(0lµlν ; 0mm) =

(
1

2lν + 1

)1/2

C(0lµlν ; 0mm)

=

[
(lµ − lν)! (lν − lµ)! (lν +m)! (lν −m)!

(lµ + lν + 1) (lµ +m)! (lµ −m)!

]1/2∑

σ

(−1)σ+lµ+m

(lν +m− σ)! (σ − lµ −m)!

Here, the requirements (lµ − lν) ≥ 0 and (lν − lµ) ≥ 0 lead to the conclusion that the CG coefficients

are zero unless lµ = lν . When lµ = lν , the requirements (lµ +m− σ) ≥ 0 and (−lµ −m+ σ) ≥ 0

imply that σ = lµ +m, and then the summation gives,

C̃(0lµlµ; 0mm) = (2lµ + 1))−1/2

Therefore, we have

C̃(0lµlν ; 0mm) = (2lµ + 1)−1/2 δlµlν (A.11)

Then we calculate the following summation (j > 0),

∑

m

C̃(jll; 0mm) =

[
(2j + 1)(2l − j)!

(2l + j + 1)!

]1/2 1

j!

∑

m

∑

σ

(2l − σ)!(j + σ)!

σ!(2l − j − σ)!

j!(−1)σ+l+m

(l +m− σ)!(j − l −m+ σ)!

To make the equation valid, the following conditions should be satisfied,

σ ≥ 0, 2l − σ ≥ 0, 2l − j − σ ≥ 0, (l +m− σ) ≥ 0, (j − l −m+ σ) ≥ 0
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they yield the following limitation,

0 ≤ σ ≤ 2l − j

σ − l ≤ m ≤ j − l + σ

Set l +m− σ = k, the summation becomes,

∑

m

C̃(jll; 0mm) =

[
(2j + 1)(2l − j)!

(2l + j + 1)!

]1/2 1

j!

∑

σ

(2l − σ)!(j + σ)!

(2l − j − σ)!σ!

j∑

k=0

(−1)k j!

k!(j − k)!

Considering formula [72],

m∑

k=0

(−1)k




n

k


 = (−1)m




n− 1

m


 , [n ≥ 1]

One may notes that the last summation in the equation becomes zero. Thus, we have

∑

m

C̃(jll; 0mm) = 0

Considering eq. (A.11), we get

∑

m

C̃(jll; 0mm) = (2l + 1)1/2δj,0 (A.12)



Appendix B

The Asymptotical Behavior of The Radial Green’s Function

The radial Green’s function for a particle in a spherically symmetric potential reads,

{
iωn − V (r) + µ+

~
2

2me

[
1

r2
d2

dr2
r2 − l(l + 1)

r2

]}
Gl(r, r

′; iωn) =
1

rr′
δ(r − r′) (B.1)

Set,

G̃l(r, r
′; iωn) = rr′Gl(r, r

′; iωn) (B.2)

we have the equation for G̃l(r, r′; iω),

{
iωn − V (r) + µ+

~
2

2me

[
d2

dr2
− l(l + 1)

r2

]}
G̃l(r, r

′; iωn) = δ(r − r′) (B.3)

In the limitation x→ 0, it reduces to,

[
d2

dr2
− l(l + 1)

r2

]
G̃l(r, r

′) =
2me

~2
δ(r − r′) (B.4)

Integral over range [r′− ε, r′ + ε] and then take the limitation ε→ 0, one may get the discontinuity

condition of the derivative of the asympototical Green’s function, which is

∂

∂r
G̃l(r, r

′)

∣∣∣∣
r=r′+

− ∂

∂r
G̃l(r, r

′)

∣∣∣∣
r=r′−

=
2me

~2
(B.5)

Suppose the solution of the homogeneous counterparty of eq.(B.4) take the form rs, and substitute

it into this counterparty, we get

s(s− 1) = l(l + 1)

The solutions of it are s = l + 1,−1. Therefore, one may expresse the asymptotical behavior of

G̃l(r, r
′) as,

G̃l(r, r′) =





A<rl+1, r < r′

A>r−l, r > r′
(B.6)
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The continuity of G̃l(r, r
′) and the discontinuity defined in eq.(B.5) at r → r′ give,

A< = − 2me

(2l + 1)~2
r′

−l
, A> = − 2me

(2l + 1)~2
r′

(l+1)
(B.7)

Thus the asymptotical form of the Green’s function is,

G̃l(r, r′) ∼





−rl+1/r′l, r < r′

−r′l+1/rl, r > r′
(B.8)

here we eliminate the constant 2me/(2l + 1)~2. The fisrt order derivative is,

∂

∂r
G̃l(r, r′) ∼





−rl/r′l, r < r′

r′l+1/rl+1, r > r′
(B.9)

and the second order derivative is,

∂2

∂r′∂r
G̃l(r, r′) ∼





rl/r′l+1, r < r′

r′l/rl+1, r > r′
(B.10)

Clearly, the Green’s function vanishes when both r and r′ go to zero. The first order derivative

for l > 0 tends to zero when both r and r′ go to zero. It is finite when r < r′, and is 0 when r > r′

for l = 0. The second order derivative is undefined in the same limitation.



Appendix C

Integrals Involving Products of Dirac Delta Functions and Step Functions

Here we discuss integrals of the form

∫ ∞

−∞
dxF [Θ(x)] δ(x), (C.1)

where F is twice continuously differentiable, and Θ(x) and δ(x) are the unit step and Dirac delta

functions, respectively. Integrals of the form (C.1), which involve products of generalized functions,

depend sensitively on how Θ(x) and δ(x) are defined. It will be necessary to define Θ(x) and δ(x)

according to their appearance in this work.

The step function Θ(x) appearing in Eq. (C.1) originated from the curvature profile of Eq. (6.42)

used to describe a circular segment of wire connected to a straight lead, and the delta function

comes from its derivative with respect to arclength in Eq. (6.43), which is required by the effective

potential V of Eq. (6.21). Therefore we require Θ(x) to be smooth (on some microscopic scale) and

continuous, and δ(x) to be related to it by

d

dx
Θ(x) = δ(x). (C.2)

We also require, of course, that

lim
x→−∞

Θ(x) = 0 and lim
x→∞

Θ(x) = 1. (C.3)

The precise shape of Θ(x) near x = 0 is immaterial, but with no loss of generality we can require

that Θ(0) = 1
2 .

Integrals of the form (C.1) are now well defined. For example,

∫ ∞

−∞
dxΘ(x) δ(x) = 1

2 , (C.4)

as expected, but ∫ ∞

−∞
dx [Θ(x)]2 δ(x) = 1

3 , (C.5)
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instead of 1
4 . These results are obtained by integrating by parts and using the behavior of Θ(x) as

x→ ±∞, not by evaluating Θ(0) and [Θ(0)]2. More generally,

∫ ∞

−∞
dx [Θ(x)]n δ(x) =

1

n+ 1
, (for n > 0) (C.6)

which is different from the naive value of [Θ(0)]n = (1
2)n, unless n = 1.

The reason why ∫ ∞

−∞
dxF [Θ(x)] δ(x) 6= F [Θ(0)] (C.7)

in some of these examples is because the delta function is distributed over a small but finite region of

x, whereas Θ(x) and F [Θ(x)] are generally not slowly varying over that length scale. We conclude,

therefore, that integrals of the form (C.1) appearing in the evaluation of matrix elements of V ,

have to be evaluated using integration-by-parts (or with an equivalent method).


