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ABSTRACT

Hydrological predictions at a watershed scale are generally made by extrapolating and upscaling

hydrological behavior at point and hillslope scales. However, some dominant hydrological drivers

at a hillslope may not be as relevant at the watershed scale because of watershed heterogeneities.

Quantifiable watershed data in the form of watershed descriptors and streamflow indices are be-

coming readily available such that appropriate variable selection provides new insight into the

watershed descriptors that dominate different streamflow regimes at the watershed scale. Stepwise

regression and principal components analysis are commonly used to select descriptive variables

for relating runoff to climate and watershed descriptors. These methods do not derive causal as-

sociations between response and explanatory variables. Therefore, this study compares the ac-

curacy, stability, and predictive power of variables selected by stepwise regression and principal

components analysis with causal selection methods(e.g. HITON Markov Blanket) and their rel-

evance in watershed hydrologic modeling. The results demonstrate that causal variable selection

methods (especially HITON Markov Blanket) have a high probability of selecting true variables

compared to stepwise regression and principal component analysis. Also, variables selected by

causal methods give high classification accuracy of hydrologically similar watersheds and improve

the predictive power for regionalized flow duration curves. Classification of hydrologically similar



watersheds in three Mid–Atlantic regions of Appalachian Plateau (28 basins; 98–1779 km2), Pied-

mont (19 basins; 34.8–620 km2), and Ridge and Valley (25 basins; 48–1857 km2) are highest for

variables selected by causal algorithms using a similarity index (SI) which quantifies agreement

between hydrological similarity (based on streamflow indices) and physical similarity (based on

selected variables). For the HITON-MB method, SI=0.71 for Appalachian, SI=0.90 for Pied-

mont, and SI=0.72 for Ridge and Valley; compared to variables selected by stepwise regression

(SI=0.72 for Appalachian, SI=0.87 for Piedmont, and SI=0.64 for Ridge and Valley) and princi-

pal component analysis (SI=0.71 for Appalachian, SI=0.76 for Piedmont, and SI=0.57 for Ridge

and Valley).
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CHAPTER 1

INTRODUCTION

1.1 Background and justification

Hydrologic modeling and ungauged watersheds

Use of hydrologic models is common practice as a scientific and technical basis for improving

decision making in water resource planning, flood forecasts, prediction of hydrologic responses at

ungauged stream watersheds (Harmel et al., 2008; Kim et al., 2009; Marshall and Randhir, 2008;

Sun et al., 2008), management of surface runoff, sediment, nutrient leaching, and pollutant trans-

port processes. Watershed models are conceptualizations of physical hydrological processes at

watershed scales based on experimental data and field observations. Therefore, accuracy of model

outputs is based on how realistic a model represents watershed and environmental processes. Apart

from model structure, accuracy of data inputs derived from spatial and temporal sampling frequen-

cies influence accuracy of model outputs. Therefore, the modeling process is complicated by lim-

ited understanding of how physical processes scale from point observations to integrated complex

watershed interactions. Even with limited understanding of physical processes that drive hydrolog-

ical processes, there are numerous watershed hydrological models with different model structures,

process conceptualization, data input and resolution, state variables, and model parameters. Singh

and Frevert (2002, 2006), USEPA (2008), and Donigian et al. (1991) discuss over 40 watershed
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models commonly used by water resource managers, engineers, and hydrologists. The challenge

of limited understanding of dominant physical processes at watershed scale can be minimized at

gauged watersheds by calibration of models.

Model calibration is a process of determining model parameters using historical observations

at a specified watershed location such that future predictions of system response can be inferred.

The concept of model calibration is based on the assumption that past observations and water-

shed responses are predictors of future system response under different management practices.

However, the modeling challenges are compounded in ungauged and poorly gauged watersheds,

in watersheds where monitoring has been discontinued, and watersheds with few observations.

Some of the current methodologies for simulating stream flow time series at ungauged and poorly

gauged watersheds include; use of neighboring gauged watershed response characteristics; use of

remote–sensing data; and use of physically based models (Sivapalan et al., 2003). Irrespective of

the method used, the concepts utilize data and data derived relationships at gauged watersheds.

Development of regional frameworks such as hydrologic landscape regions (Wolock et al.,

2004) and Eco-regions (Omernik and Bailey, 1997) that aggregate hydrological, geological, biotic,

and abiotic factors have led to regionalization (Hall and Minns, 1999) of streamflow characteris-

tics such that observed responses in gauged watersheds can be extrapolated to predict responses of

ungauged watersheds in the same physiographic or hydrometric region. The flow duration curves

(FDC) is a commonly used tool for hydrologic predictions in ungauged watershed. Flow duration

curves estimate percentage of time specific stream flows are equaled or exceeded based on his-

torical flow records of a watershed. The flow duration for such analyses ranges from hourly, to

daily, to monthly, and to annual time steps. Vogel and Fennessey (1995) review applications of

flow duration curves in water resource planning and management. Applications of FDC include

water–use planning, waste–load allocations, frequency of suspended–sediment loads, and exami-

nation of streamflow suitability for stream habitat. Mohamoud (2008) illustrates that use of FDC

provides more detailed information on watershed functionality and behavior than indices such as

mean annual flow and the base flow index.
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Regionalized flow duration curves

The regionalization of flow duration curves (FDC) involves development of empirical relation-

ships between major hydrologic, climatic, and watershed characteristics for a region. The region

may be based on geographic proximity or other regional frameworks. The concept is based on

the assumption of watersheds in the same physiographic or hydrometric region have similar hy-

drological behavior over time. However, caution must be taken because geographic neighborhood

of two watersheds may not always produce similar hydrological signatures (Acreman and Sin-

clair, 1986). Castellarin et al. (2004) classified methods of regionalization of FDC into statistical,

parametric, and graphical methods. Statistical approaches include use of log–normal (LeBoutillier

and Waylen, 1993) and normal frequency distributions (Singh et al., 2001). The parametric ap-

proaches fit data to an exponential function (Quimpo et al., 1983), third order polynomial function

(Mimikou and Kaemaki, 1985) and a power function (Franchini et al., 2005). The most commonly

used approach utilizes tools of regression analysis to develop regionalized flow equations link-

ing watershed hydrologic response to climatic and geophysical characteristics (Castellarin et al.,

2007; Chalise et al., 2003; Sanborn and Bledsoe, 2006). Hydrologic response measurements used

include lowest consecutive seven–day, ten–year streamflow, mean annual flow, base flow index,

and stream frequency. Watershed characteristics used include climatic conditions, drainage area,

geology, geomorphology, soils, and land cover and land use.

1.2 Statement of the problem

Most previous studies use multiple stepwise regression and a limited pool of climatic and physio-

graphic data to explore regional physical hydrological drivers (variables) that are operational under

low, medium, and high stream flow regime. Examination of over 42 published papers (Alcázar

et al., 2008; Castellarin et al., 2007; Eng et al., 2007; Johnston and Shmagin, 2008; Kroll et al.,

2004; Laaha and Blöschl, 2006; Mohamoud, 2008; Sanborn and Bledsoe, 2006; Sando et al., 2009,

see, e.g.) determined 72 topographic variables, 66 climatic variables, 98 soil variables, and 15 lan-
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duse and landcover variables used by different researchers. The deductions from these studies vary

depending on: (1) the region; (2) the initial watershed variables used; (3) the conceptualization by

different researchers of what constitutes relevant variables; and (4)the variable selection method.

Although the majority of the variables are statistically redundant, the challenge is to devise an

approach that identifies relevant variables that characterize different flow regimes on a regional ba-

sis. The current approaches include stepwise regression (Barnett et al., 2010; Brandes et al., 2005;

Gong et al., 2010; Heuvelmans et al., 2006; Peña-Arancibia et al., 2010) and principal component

analysis (Alcazar and Palau, 2010; Ma et al., 2010; Morris et al., 2009; Salas et al., 2010). Both ap-

proaches provide useful results but are susceptible to elimination of relevant variables because they

are not based on the principle of causality between dependent and independent variables. Also, use

of a limited pool of independent variables may result in selection of irrelevant variables in absence

of other relevant variables. This phenomenon is referred to as Simpsons paradox (Ma et al., 2010).

For example, regional flow equations developed by: Verdin and Worstell (2008) for contermi-

nous U. S.; Yu et al. (2002) for Taiwan; and Zhu and Day (2009) for Pennsylvania (U.S.) show

that an increase in the watershed mean elevation increases flow while regional flow equations de-

veloped by Mohamoud (2008) for Mid-Atlantic ecoregions (U.S.) show that an increase in median

elevation decreases flow. Also, flow equations developed by Mohamoud (2008) show that mini-

mum elevation has a positive effect while equations by Castellarin et al. (2007) in Italy show that

maximum elevation has a negative effect. The simple justification for the inconsistency of the

impact of elevation on flow (in above studies) can be attributed to difference in regions; however,

these observations can also be attributed to absence of dominant independent variables in the initial

pool of variables such that elevation becomes a surrogate variable. Therefore, the inconsistencies

can broadly be attributed to: (1) different number of initial variables used in the respective studies;

(2) different region of study; (3) the variable selection method used. The above probable sources of

errors in current regional flow equations can be minimized by use of a large initial pool of variables

and use of causal variable selection methods.
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1.3 Objectives

The main research objective of this study is to develop a hydrologic predictive system for ungauged

watersheds based on variable selection methods that infer causal association between response

(dependent) and explanatory (independent) variables. Specific objectives include

1 To assess the accuracy, consistency, and predictive potential of five causal variable selection

methods in comparison to stepwise regression and principal component analysis

a) For accuracy, all methods were evaluated for their ability to select true variables of two

known functional relationships

b) Regarding consistency (reliability), all algorithms were implemented on datasets with

a known functional relationship and watershed data to quantify their ability to select

same variables when data was slightly perturbed item[c)]Selected variable classes for

high, medium, and low flows for each method were classified to quantify the dominant

variable class for Piedmont physiographic province

2 To compare the effectiveness of determining hydrologically similar watersheds using differ-

ent variable selection methods in three Mid-Atlantic ecoregions. The overall variable groups

for comparison included variables

a) that define watershed geographical proximity

b) that define watershed hypsometry

c) selected using causal selection algorithms

d) selected using principal component analysis (PCA) and stepwise regression

3 Daily streamflow prediction for ungauged watersheds by independent estimation of magni-

tude and sequence

a) Prediction of streamflow magnitude using regionalized flow duration curves developed

from variables selected by a causal variable selection method

5



b) Examination of the effect of the relative distance and drainage area of the donor (gauged)

and target (ungauged) watersheds on the accuracy of the predicted sequence

c) Improvement of the accuracy of predicted daily streamflow by generating a sequence

from an ensemble of streamflow data of more than one donor watershed
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CHAPTER 2

LITERATURE REVIEW

2.1 Watershed hydrologic modeling

Overview

Watersheds (or drainage basins apart from aquifers) are the basic units where interactions between

surface, subsurface, groundwater and the respective hydrologic processes are related. Therefore,

hydrologic modeling is a process by which our understanding of interactions between the climatic,

pedologic, lithologic, and hydrospheric are represented at a watershed scale (Singh and Frevert,

2002, 2006). This is because streamflow can be gauged at point outlets. The watershed representa-

tions vary from conceptual to mathematical models and vary in complexity from simple to detailed

mathematical descriptions of interactions between dominant hydrological processes. Hydrologic

models are useful in water resource planning and management to simulate and predict responses

of hydrologic systems due to changes in system inputs (climatic conditions) and system character-

istics (changes in landuse and landcover). Specific uses of hydrologic models include; simulation

of fate and movement of solutes and contaminants (Jacques et al., 2008; Poole et al., 2008) and

design of hydrologic structures (Afshar et al., 2009; Taguas et al., 2008).
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Model types

Model types differ in modeling approach and model structure. Based on modeling approach, some

models are physically based (deterministic) models and some models are stochastic (Obropta and

Kardos, 2007). Deterministic models use physics (e.g. conservation of mass and momentum)

while stochastic models are based on statistical relations from observed data. Deterministic mod-

els produce the same result for given model inputs and do not take into account the uncertainties

in input data and due to model structure. Examples include the Antecedent Precipitation Index

(Pan et al., 2003) and the Sacramento Soil Moisture Accounting (Anderson et al., 2006) models.

Stochastic models consider inputs as random variables with probabilities and therefore, account

for uncertainties in data inputs. Examples include the Markov chain models (Smith and Marshall,

2008; Zhang et al., 2009). Because stochastic models are data driven, some may be specific to a

watershed or region. Based on model structure, some models are lumped and some are distributed

models (Carpenter and Georgakakos, 2006; Reed et al., 2004). Lumped hydrologic models ig-

nore spatial variability of watershed parameters and climatic inputs by lumping them into a single

value while distributed models account for the spatial variability. However, there is some level of

lumping in distributed models since watershed characteristics cannot be represented at every point.

Other model types include scenario based deterministic models (Koutsoyiannis et al., 2007).

Scenario based deterministic models use some aspects of stochastic and deterministic models.

Instead of using random variable inputs, the models produce multiple simulations for predicting

probabilistic values using a deterministic model. Model states such as current soil moisture are

used as stationary conditions for multiple runs. The runs are based on historical records or short

term forecasts. Examples of scenario based deterministic models include the Ensemble Streamflow

Predictions.
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2.2 Historic perspectives of rainfall runoff process

Horton (Horton, 1935a,b) conceptualized runoff generation process as a result of rain falling or

snow melting at intensity in excess of the rate of infiltration into the soil. This conceptual model

is known as the infiltration excess or Hortonian overland flow model. Horton assumed that at the

start of a storm event, all rainfall infiltrates and as the storm event proceeds, the instantaneous

infiltration rate decreases exponentially through time. The infiltration excess runoff generation

is more prevalent in areas where soils have low initial moisture and low infiltration rate like bare

soils in arid and semi-arid environments. Research by Burman (1969) concluded that the Hortonian

model fitted experimental data because of the many parameters in the model rather than the models

representation of the infiltration process.

Forested watersheds have soils with high infiltration rates due to presence of above ground and

decomposing vegetation, therefore infiltration excess runoff process is not as important. Research

(Beven and Freer, 2001a; Steenhuis and Muck, 1988) showed that soils in the Northeast U.S have

infiltration rates that are rarely exceeded by rainfall rate. For such watersheds, runoff generation is

due to precipitation falling on saturated areas or local regions. This process is called the saturation

excess runoff generation. Betson and Marius (1969) deduct that saturation excess runoff is likely

to be generated only on some parts of the hillslope, a concept known as partial area contribution.

Research by Dunne and Black (1970a,b) showed that saturation excess runoff may vary between

two similar storm events, a concept known as variable source area (VSA). The locations of areas

(VSA) generating saturation excess runoff depend on the topography and soil transmissivity of the

watershed, and expand and contract in size as the water table rises and falls respectively.

Earlier conceptualization of rainfall runoff process treated a watershed as a lumped, linear,

and time invariant system Singh (1988). Such models included the Zoch model Zoch (1934), the

Clark model Clark (1945), the Nash model Nash (1960); Nash et al. (1958) and Dooge model

Dooge (1959). The Zoch model represents watershed system behavior with time area concentra-

tion (TAC) curves and routes the watershed through a linear reservoir to form a unit hydrograph. A

unit hydrograph is a runoff hydrograph in response to a uniformly distributed unit rainfall excess
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for a given time duration. The Clark model replaced the unit hydrograph with an instantaneous unit

hydrograph (IUH) by developing a unit hydrograph of a watershed due to instantaneous rainfall

and routing the TAC curves through a linear reservoir. The Nash model assumes that the watershed

behavior is similar to a cascade of linear reservoirs each having a time lag with the instantaneous

rainfall imposed on the uppermost reservoir. The watershed outflow based on the Nash model is

expressed by a gamma distribution with shape and scale parameters (Singh, 1988). The Dooge

model is a generalized instantaneous unit hydrograph that uses the Nash model but accounts for

the effect of flow transition. The concept of a geomorphologic unit hydrograph or a geomorpho-

logic instantaneous unit hydrograph (Moussa, 2008) augments the Dooge model by relating the

watershed IUH to the geometry of the watershed stream network.

2.3 Advances in hydrologic modeling

The technological advancements in remote sensing, satellite sensor technology, geographic in-

formation systems (GIS) and database management have greatly improved representation of wa-

tershed spatial and temporal heterogeneity compared to improved understanding of the underly-

ing physical processes. Compared to the historical perspectives of Hortonian overland flow and

saturation excess runoff generation, studies have shown that pre–event soil moisture constitutes

the bulk of the observed streamflow. Additional understandings of the hydrologic process have

included temporal and spatial scaling effects in hydrologic modeling. However, most of recent

developments are in the areas of remote sensing and data acquisition, use of GIS with improved

computational capabilities, scaling effects in time and space, use of data mining and optimization

techniques, use of chemical and isotopic tracers, and improved statistical methods to explore error

propagation from model inputs and model structure. Therefore, the discussion of recent develop-

ments in hydrologic modeling will focus on the above mentioned areas.
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Data acquisition, visualization, and processing

Advancements in satellite sensor technology and remote–sensing have included measurement of

near surface soil moisture. From 1978 to 1987, the scanning multichannel microwave radiometer

(SMMR) on a space–borne platform was used to measure the vertical and horizontal polarized

radiations (from which near surface soil moisture is derived) at spatial resolutions of 27 km to

147 km (Yu and Gloersen, 2005) . The SMMR was replaced by the special sensor microwave im-

ager (SSM/I) in 1987 (Ferraro et al., 1996). In 2002, an advanced microwave scanning radiometer

(AMSR-E) was launched to improve the spatial resolution to 38 km to 56 km (Njoku et al., 2003)

. Data assimilation for the above radiometers was based on the C-band (frequency, f = 4–8 GHz).

Recent studies (Joseph et al., 2008; Wigneron et al., 2008) have shown that best soil moisture re-

trieval could be achieved using the L-band (f = 1–2 GHz). Therefore, in 2009, the soil moisture and

ocean salinity mission (SMOS) was launched to observe moisture over land surfaces and salinity

over the oceans. Other sensor technologies include the space borne onboard synthetic aperture

radar (SAR) imaging radar designed to achieve images of spatial resolution less than 30 m and the

European remote sensing scatterometers (ERS).

Developments in precipitation estimates include Next Generation Radar (NEXRAD) and the

Tropical Rainfall Measuring Mission (TRMM) data. The NEXRAD data is a high resolution spa-

tial (4 km) and temporal (1 hr) precipitation, however, it is vulnerable to errors such as the com-

plexity of the relationship between radar reflectivity and rainfall rate (Z–R relationship) at the land

surface (Dinku et al., 2002).

Recent developments in GIS applications for hydrologic modeling include integration of GIS

with expert systems and analytic hierarchy process for multi-criteria site analysis (Nekhay et al.,

2009). Most GIS developments related to hydrologic modeling are in the area of watershed rep-

resentation. The availability of GIS datasets in form of digital terrain models (DTM) and digital

elevation models (DEM) has enabled representation of watershed spatial heterogeneity.

Currently available DEM data (Sanders, 2007) include airborne light ranging and detection

(LiDAR) data at one-ninth second (1/9 s) resolution, airborne interferometric synthetic aperture
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radar (IfSAR) data at 1/9 s resolution, United States Geologic Survey (USGS) national elevation

data (NED) at 1/9, 1/3 and 1 second (s) resolution, and shuttle radar topography mission (SRTM)

data at 1 and 3 s resolutions. A DEM resolution of 1 s corresponds to about 30 m. However, most of

the current digital terrain analysis (DTA; techniques used to derive terrain parameters) algorithms,

assume the earth’s spherical surface as a flat surface (Weber et al., 2007). Problems with such

techniques include geometric distortions and spatial data overlapping or spatial data breaking of

derived terrain or topographic parameters. Advancements in DTA have included use of quaternary

triangular mesh (QTM) method to overcome the above mentioned problems.

Use of chemicals and isotopic tracers

The use of chemical tracers (Botter et al., 2008; Flury and Wai, 2003) and isotopic tracers (Jones

et al., 2006) has been fundamental in exploring questions of sources of water contributing to

streamflow, age of water, and sources of solutes and contaminants in surface and ground water.

Chlorine and bromide ions are some of the chemical tracers used in geochemical processes of

groundwater recharge estimation while the water isotope ( δ18O and δ2H) are some of the iso-

topes used to determine different sources of streamflow water. Tracers have been used to separate

pre-event and event based (Kvaerner and Klove, 2006) runoff (Buttle, 1994; Winston and Criss,

2002). Other uses of tracers have included separation of streamflow based on whether the source

is groundwater or event water or soil water. The traditional techniques of tracer studies include

digging of trenches and multiple sampling to generate a representative spatial variation of flow

paths. The recent developments include use of imaging techniques as alternatives.

Computational intelligence and hydrologic modeling

Artificial neural networks are black box modeling systems that relate complex physical phenom-

ena using weights to link inputs and outputs. The modeling approach conceptualizes behavior of

synaptic strength between the neurons of a biological nervous system. Artificial neural networks

(ANN) are used to heuristically estimate response without deterministically defining the under-
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lying nonlinear dynamics of the physical process (Rabunal and Dorado, 2006). Each neuron is

connected to other neurons by means of direct linkages that weigh the transferred information.

Specifically, the data transferred through the links between neurons are multiplied by weights that

define the strength of a transient signal between neutrons. The process of determining the network

of weights for information transfer between neutrons is called learning or training, similar to cal-

ibration of mathematical models. The most used learning procedure for artificial neural networks

uses the feed–forward, error back-propagation algorithm (De Vos and Rientjes, 2008). The ini-

tial randomly estimated weights are corrected during training by comparing the ANN outputs to

target outputs (such as measurements or field data). The errors are then backward propagated to

determine the optimal weight adjustments necessary to minimize the errors.

The capability of ANN to represent nonlinear relationships has led to their application in the

fields of finance and manufacturing (Kamruzzaman et al., 2006), image processing (Mas and Flo-

res, 2008), aircraft design (Jules et al., 2002), cancer diagnosis (Naguib and Sherbet, 2000), and

hydrology (Chen et al., 2008; Lee et al., 2008; Prabha and Hoogenboom, 2008). Recent applica-

tions of ANN have demonstrated their effectiveness in determining soil water content (Jana et al.,

2008), aquifer parameters (Karahan and Ayvaz, 2006), daily evaporation (Tabari et al., 2010) , and

flow forecasting (Lee et al., 2008; Ochoa-Rivera, 2008). Other applications of artificial intelligence

techniques in hydrologic modeling include use of fuzzy logic (Jia and Culver, 2008), support vec-

tor machines (Kaheil et al., 2008), and genetic algorithms (Ines and Mohanty, 2008; Kamp and

Savenije, 2006).

Scaling effects in hydrology

Scaling in hydrologic modeling refers to a process of predicting responses for a longer time scale

(e.g. landuse change in 25 years) based on observations at shorter time scales or the use of large

scale models (models developed based on regional or global observations) to make predictions at

catchment or watershed scale and vice-versa. The scaling processes interpolate or extrapolate hy-

drologic responses in time and space. Scaling effects in hydrologic modeling refer to propagation
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of errors or the uncertainty of the predicted hydrologic responses due to interpolation or extrapo-

lation. Scaling effects may refer to impact of using different spatial representations of watershed.

2.4 Hydrologic predictions in ungauged watersheds

Hydrologic predictions in ungauged watersheds refers to reconstruction of past hydrologic re-

sponses (river flow or water level) of watersheds; 1) that have no flow measuring instruments

(ungauged); 2) that are poorly gauged (less gauges compared to watershed size); and 3) that are

gauged with few years of data records; using climatic inputs, landuse and landcover data, and wa-

tershed topography (Sivapalan et al., 2003). Current and future hydrologic data (e.g. water level

in a river or lake, river discharge, sediment and water quality) for an ungauged watershed is crit-

ical to water supply planning and water engineering works (construction of dams, reservoirs, and

spillways). Also, hydrologic data is relevant in analyzing the impact of significant modifications

of landuse such as deforestation and urbanization, off-stream withdraws, an operation of dams on

magnitude and frequency of downstream flows.

Several methods have been used to model hydrological responses of ungauged watersheds. The

methods include; 1) statistical regionalization, where multiple regression is used to link hydrolog-

ical responses of watersheds to their respective physical and climatic attributes (Kokkonen et al.,

2003) ; 2) use of geospatial similarity (Merz and Bloschl, 2004); and 3) use of regional hydro-

logical model parameters (Bastola et al., 2008). Irrespective of the approach used, all methods

directly or indirectly interpolate or extrapolate observed data at gauged watersheds and use some

form of mathematical representation of our understanding of the underlying physical processes.

Previous studies have shown that geospatial similarity or geographical proximity does not always

translate into hydrological similarity (Kokkonen et al., 2003). Therefore, the folowing literature

review focuses on regionalization of watershed model parameters and regional flow equations.
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2.5 Regionalization of watershed model parameters

The availability of high resolution spatial and temporal watershed and climatic data is the driv-

ing force behind regional calibration of watershed models. The method uses streamflow data and

corresponding climatic and watershed characteristics at gauged watersheds to calibrate watershed

models. The optimized model parameters at gauged watersheds are related to watershed char-

acteristics of ungauged watersheds with similar hydrological response (Singh and Frevert, 2006).

Singh and Frevert (2006) summarizes different methods for regional calibration of watershed mod-

els as; 1) multiple regression, 2) cluster analysis, 3) kriging, 4) artificial neural networks, and 5)

hydrological homogeneity.

Various studies have applied and compared different methods of regionalizing watershed pa-

rameters. Bastola et al. (2008) used regionalization schemes of multiple regressions, artificial

neural network, and partial least squares regression to generate regionalized parameters of TOP-

MODEL (Beven, 1997) for watersheds across the World. The results showed that the above

regionalization schemes did not account for uncertainties in the input data. Heuvelmans et al.

(2006a) compared linear regression and artificial neural network regionalization schemes to gen-

erate SWAT (Brown and Hollis, 1996) model parameters. The artificial neural network scheme

overall performed better within the data range while the linear regression scheme depicted better

extrapolation results. (Gotzinger and Bárdossy, 2007) modified the Lipschitz and monotony con-

ditions to determine regionalized parameters of HBV (GRAHAM and Jacob, 2000) model. The

main challenge of regionalization of watershed model parameters is the existence of multiple pa-

rameter sets with equally good model outputs, a scenario coined as equifinality (Beven and Freer,

2001b) and thus introducing more uncertainties in the model results.

2.6 Regional flow equations

Regional flow equations or regionalized flow indices utilize statistical techniques (e.g. multiple re-

gressions) to relate watershed characteristics and climatic conditions to hydrological responses of
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hydrologically similar watersheds or watersheds in the same geographical proximity (Heuvelmans

et al., 2006a; Kokkonen et al., 2003; Mwakalila, 2003). Watershed characteristics, climatic condi-

tions, and hydrological responses are measured at gauged watersheds and the derived relationships

are transferred to ungauged watersheds. Acreman and Sinclair (1986) showed that geographi-

cal proximity of watersheds does not translate into hydrological similarity. Therefore, statistical

techniques such as cluster analysis have been applied to classify watersheds of similar hydrolog-

ical response (Nathan and McMahon, 1990). Broadly, the explanatory variables used include;

climatic conditions, geological data, geomorphologic data, soils, landuse and landcover data. Dif-

ferent studies have used different climatic data and watershed characteristics. Garcia-Martinó et al.

(1996) used 53 parameters to describe watershed characteristics while (Mohamoud, 2008) used 42

parameters. Some of the used hydrological flow characteristics include; mean annual flow, mean

monthly flow, mean daily flow, flow duration curves, and baseflow indices.

The various approaches to regionalization of watersheds try to group watersheds with simi-

lar hydrologic responses based on physiographic characteristics, geographical location, climatic

conditions, and hydrological response. According to Rao and Srinivas (2008) methods of re-

gionalization of watersheds include; 1)method of residuals, 2) canonical correlation analysis, 3)

region of influence, and 4) cluster analysis. A detailed analysis of each method is contained in the

above analysis. Mazvimavi (2003) uses ordination techniques to select watershed characteristics

that better hydrologic response for regionalization of flow prediction. Ordinate techniques used

include principal component analysis, redundancy analysis, correspondence analysis, detrended

correspondence analysis, and canonical correlation. Discriminant analysis tests the significance of

the cluster difference; thus, each cluster represents one hydrologic region. Principal component

analysis interprets the regional differences and similarities (Chiang et al., 2002).
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Attributes that have been used for watershed regionalization include; physiographic charac-

teristics, soil, landuse and landcover, drainage, geographical location, meteorology, geology, wa-

tershed response time, flood seasonality, and watershed shape indicators. The main measure of

watershed homogeneity is use of flood statistics. Rao and Srinivas (2008) recommend use of flood

seasonality to determine watershed homogeneity compared to other flood statistics of magnitude.

2.7 Flow duration curves

Flow duration curves (FDC) are graphical representation of the frequency of time a streamflow is

equaled or exceeded over a specified historical period for a given watershed. Vogel and Fennessey

(1994) defined FDC as a complement of the cumulative distribution of hourly or daily or weekly

or monthly or annual streamflow that relate streamflow magnitude and frequency. Therefore, FDC

represents the combined effects of climate, geology, geomorphology, soils and vegetation. The

flow duration curves are used in water resource projects like estimation of streamflow at ungauged

watersheds (Mohamoud, 2008), water quality management (Pomeroy et al., 2008), analysis of

hydrological flow regimes (Castellarin et al., 2007), and sediment studies (Schmidt and Morche,

2006) . Additional applications of FDC can be found in Vogel and Fennessey (1995).

Construction of FDC from streamflow data is achieved using two methods. The first method

is the traditional method (Castellarin et al., 2004) which ranks the streamflow data in a descend-

ing order and computes the exceedence probability based on the Weibull plotting position of the

Gumbel distribution (Equation 2.1).

pi = P (Q ≥ qi) =
i

N + 1
(2.1)

Where pi is probability of exceedence, qi is ordered streamflow, i is rank of qi, N is total number

of streamflow records, and Q is random variable of qi.

The second approach was called the annual interpretation of flow duration curves (AFDC) by

Vogel and Fennessey (1994). The method determines annual FDC for each year of the historical
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record using the previous procedure. The mean or median for each quartile for the historical period

is then used to generate the watershed mean or median annual FDC. Vogel and Fennessey (1994)

showed that AFDC are less sensitive to the period of record compared to the traditional FDC and

are effective in estimating low and flood streamflow. Some studies have normalized the streamflow

data used to generate FDC and AFDC.

A common method for determining streamflow predictions at ungauged watersheds is the use

regionalized flow duration curves. Castellarin et al. (2004) reviews and classifies procedures of

regionalization of FDC into three groups; 1) statistical, 2) parametric, and 3) graphical proce-

dures. The statistical approaches include use of log–normal frequency distribution (LeBoutillier

and Waylen, 1993) and use of normal frequency distributions. The parametric approaches fit data

to an exponential function (Quimpo et al., 1983), third–order polynomial function (Mimikou and

Kaemaki, 1985) and a power function. While graphical methods use standardized curves (Gustard

et al., 1992).

2.8 Causal variable selection

The need for variable selection

The availability of multiple landscape and geomorphic variables in observed hydrologic data presents

a challenge of identifying patterns and relationships between causal predictor (independent) and

response (dependent) variables for predictive purposes. The presence of variables with marginal

relevance to the response variable may result in data over–fitting, and thus poor predictive accu-

racy when the resultant model is presented to new observations. Variable selection (also known

as feature selection or feature extraction) addresses the above challenge. The concept of variable

selection involves dimension reduction by transforming the high–dimension variable space to a

subset with the same information content as the original high–dimension variable space.

The most commonly used variable selection methods include stepwise regression (Barnett

et al., 2010; Brandes et al., 2005; Gong et al., 2010; Heuvelmans et al., 2006b; Peña-Arancibia
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et al., 2010) and principal component analysis (Alcazar and Palau, 2010; Ma et al., 2010; Morris

et al., 2009; Salas et al., 2010). Both approaches give high performance results (high coefficient

of determination; R2 ≥ 0.8) but are susceptible to elimination of relevant variables. Stepwise

regression seeks to minimize the prediction error while principal component analysis focuses on

dimension reduction which may not utilize information from the response variable. Therefore,

they are not structured to derive causal associations between dependent and independent variables.

Also, use of a limited pool of independent variables may result in selection of irrelevant vari-

ables as relevant in absence of other relevant variables; a concept referred to as Simpson’s paradox

(Whittaker, 1990, pg. 24), such that two variables are marginally independent in absence of a third

variable, but are dependent when conditioned on third variable.

Causation, Bayesian Networks, and Markov Blanket

Advancements in the fields of artificial intelligence, machine learning, and data mining, in addi-

tion to increased computational speed and capabilities of computers, have led to the development

of algorithms that seek to infer causal associations between explanatory and response variables.

Causal relationships between explanatory and response variables can be discovered by Bayesian

networks. Bayesian networks consist of directed acyclic graphs whose nodes represent random

variables and the edges conditional probabilities (Jensen and Nielsen, 2007; Karimi and Hamilton,

2009; Meganck et al., 2006). The implied causation by this approach is probabilistic causation

based on the theory that causes increase or change the probabilities of their effects such that the

conditional probability of an effect given its cause is greater than the probability of the effect in

absence of the cause (Cartwright, 1979; Hitchcock, 2010; Suppes, 1970).

Causal variables for a given response variable can be inferred from a Bayesian network by

constructing a Markov Blanket for the response variable. A Bayesian network is a graphical repre-

sentation of a joint probability distribution over a set of random variables using a directed acyclic

graph (Fu and Desmarais, 2010). The nodes of the directed acyclic graph are the random variables

while the edges are the direct relationships between the variables. Given a Bayesian network, the
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Markov Blanket M (Equation 2.2) of a response variable is the minimal set of explanatory (pre-

dictor) variables conditioned on which all other variables are independent of the response variable

(Fu and Desmarais, 2010). Other statistical concepts considered in construction of a Markov Blan-

ket include: i) assumptions of Markov condition property; ii) definition of faithfulness; iii) Bayes

feature relevance; and iv) feature irrelevance. For detailed definitions of these concepts, the reader

is referred to Fu and Desmarais (2010), Han et al. (2010) and Aliferis et al. (2010).

(Y ⊥ (X −M) | M) (2.2)

Such that

P (Y, (X −M) | M) = P (Y | M)P ((X −M) | M) (2.3)

Or for

P ((X −M) | M) > 0 (2.4)

P (Y | (X −M) ,M) = P (Y | M) (2.5)

Where X is feature vector or a vector of random variables, Y is response variable, M is subset

of X also called the Markov boundary; P (Y | M) is probability of Y given M ; and P ((X −M) |

M) is probability of the set difference between X and M given M .

Causal selection algorithms

The causal algorithms (discussed below) seek to select causal variables by reconstructing a Markov

blanket of the response variable based on probabilistic definition of causation and variable rel-

evance. The algorithms (defined below) differ on how explanatory variables are added to the

Markov blanket and in the implementation of conditional independence tests.
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Grow–Shrink, GS

The Grow–Shrink (GS) algorithm (Margaritis and Thrun, 1999) induces a Bayesian network by

first identifying each node’s Markov blanket and then connecting the nodes in a consistent way.

The algorithm depends on two assumptions: (1) faithfulness and (2) correct conditional indepen-

dence test. The algorithm first implements the growing phase where variables that form a Markov

boundary of the target and some false positives are added, then the shrinking phase where the false

positives are removed. The algorithm statically orders the variables based on their association with

the target (T ) given the empty Markov Blanket, (MB(T )). It then admits into MB(T ) the vari-

able in the ordering that is not conditionally independent with T given the current MB(T ). One

problem with this approach occurs when spouses form part of the MB(T ), they will be picked last

because the association between spouses and T are weaker than associations between descendants

and T . This means that more false positives will be included in the MB(T ) and thus the condi-

tional independence tests will become more unreliable. The algorithm requires manually defined

parameters to limit the number of conditional independence tests, and therefore, cannot always

give the correct MB(T ).

Incremental Association Markov Blanket, IAMB and its variants

The Incremental Association Markov Blanket, IAMB (Tsamardinos et al., 2003) is similar to the

GS algorithm in that it is based on the same two assumptions and has both the growing and the

shrinking phases. However, instead of statically ordering the associations between variables and T

in the growing phase, each time a new variable enters a candidate MB(T ), the algorithm reorders

the variables based on the updated conditional independence test. This theoretically, allows the

IAMB to outperform the GS. The IAMB is not data efficient since the conditional independence

tests are conditioned on the entire MB(T ) which may include false positives. Therefore, several

variations of the algorithm have been developed (Tsamardinos et al., 2003). The interleaved IAMB,

interIAMB interleaves the growing phase of IAMB with the shrinking phase in an attempt to keep

the size of the MB(T ) small during all the steps of the algorithm execution. This seeks to improve

26



the reliability of the conditional independence tests. The IAMBnPC replaces the shrinking phase

of IAMB with the Peter-Clark algorithm.

Local Causal Discovery, LCD2

The Local Causal Discovery, LCD2 is an extension of the algorithm developed by Cooper (1997).

The method is based on four assumptions (Mani and Cooper, 1999): 1) The Markov condition

property; 2) Faithfulness between directed acyclic graph and a probability distribution; 3) the

statistical test of independence on a finite dataset is approximates results on an infinite dataset; and

4) there exists an instrumental variable (feature) that is not caused by any other measured variable

in the dataset. The method implements five tests of dependence and one test of independence

between the instrumental variable (W ), the response variable (Y ), and the variable of interest (X).

For details the reader is referred to Mani and Cooper (1999). If there exists a causal relationship

between X and Y , then the above six tests hold.

HITON and its variants

The HITON algorithm (Aliferis et al., 2003) first induces the Markov Blanket of the variable to be

predicted or classified, and then seeks to eliminate unneeded variables by using a wrapper tech-

nique (classification). The accuracy of the wrapper (classifier) is evaluated on smaller subsets of

the Markov Blanket and all variables that do not affect classification are removed. A wrapper is an

algorithm that solves the feature selection problem by searching in the space of feature subsets and

evaluates each one with a user–specified classifier and loss function estimator. HITON accelerates

the search with a number of heuristics, including limiting conditioning sets to sizes permitting the

sound estimation of conditional probabilities and prioritizing candidate variables. For detailed de-

scription of the algorithm and its variants of HITON–PC and HITON–MB, refer to Aliferis et al.

(2003).
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Algorithm applications

The GS and interIAMBnPC algorithms have been successfully tested on their ability to recapture a

Bayesian network of a medical monitoring system and hailfinder (Choi and Jun, 2010; Tsamardi-

nos et al., 2003) while the HITON algorithms have been implemented in areas of drug discovery,

clinical diagnosis, gene expression, infant mortality, Ovarian cancer, ecology, and text categoriza-

tion with a variable to sample size ratio ranging between 0.67 and 60 (Aliferis et al., 2010, 2003).
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CHAPTER 3

ADVANCES IN VARIABLE SELECTION METHODS I:

CAUSAL SELECTION METHODS VERSUS STEPWISE

REGRESSION AND PRINCIPAL COMPONENT

ANALYSIS

1Ssegane, H., Tollner E. W., Mohamoud Y. M., Rasmussen T. C., and Dowd J. F. Submitted to Journal of Hydrol-
ogy, 06/24/2011.

41



Abstract

Hydrological predictions at a watershed scale are commonly based on extrapolation and upscal-

ing of hydrological behavior at plot and hillslope scales. Yet, dominant hydrological drivers at a

hillslope may not be as dominant at the watershed scale because of the heterogeneity of water-

shed characteristics. With the availability of quantifiable watershed data (watershed descriptors

and streamflow indices), variable selection can provide insight into the dominant watershed de-

scriptors that drive different streamflow regimes. Stepwise regression and principal components

analysis have long been used to select descriptive variables for relating runoff to climate and wa-

tershed descriptors. Questions have remained regarding the robustness of the selected descriptors.

This paper evaluates five new approaches: Grow-Shrink, GS; a variant of Incremental Associa-

tion Markov Boundary, interIAMBnPC; Local Causal Discovery, LCD2; HITON Markov Blanket,

HITON–MB; and First–Order Utility, FOU. We demonstrate their performance by quantifying

their accuracy, consistency and predictive potential compared to stepwise regression and principle

component analysis on two known functional relationships. The results show that the variables

selected by HITON–MB and the first–order utility are the most accurate while variables selected

by Stepwise regression, although not accurate have a high predictive potential. Therefore, a model

with high predictive power may not necessary represent the underlying hydrological processes of

a watershed system.
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3.1 Introduction

Hydrological predictions in ungauged watersheds include estimation of hydrological responses in

watersheds that have no flow measuring instruments, watersheds with fewer gauges compared to

watershed size, and watersheds that are gauged but have few years of data (Sivapalan et al., 2003).

These predictions are based on climatic inputs, land use and land cover, soil and physical descrip-

tors, and watershed topography. Hydrological predictions are relevant to analysis of changes due

to deforestation, urbanization, stream withdrawals, and installation and operation of reservoirs.

Several methods are used to model hydrological behavior in ungauged watersheds. The methods

include statistical regionalization (Kokkonen et al., 2003) and the use of regional hydrological

model parameters (Bastola et al., 2008). Both approaches use observed data at gauged sites to

conceptualize and derive underlying hydrological processes for predictions at ungauged sites.

Examination of 42 published papers (e.g. Alcazar et al., 2008; Johnston and Shmagin, 2008;

Mohamoud, 2008; Sando et al., 2009) identified 72 unique topographic variables, 66 climatic vari-

ables, 98 soil variables, and 15 land use and land cover variables used by different researchers.

The selection of relevant variables and whether their effect is positive or negative vary: 1) from

region to region; 2) depending on the initial watershed variables used; 3) depending on the con-

ceptualization by different researchers of what constitutes relevant variables; and 4) depending on

the variable selection method. Figure 3.1 summarizes some of the watershed descriptors used in

the above studies. These studies, though not extensive, provide a basis for a priori assumptions on

the role of topography, climate, land use, and soil descriptors at different flows.

[ Figure 3.1 about here ]

Although the majority of the variables are statistically redundant, the challenge is to devise

approaches that minimize variable redundancy and identify relevant variables that characterize the

full behavior of flow regimes on a regional basis. Commonly used approaches include stepwise

regression (Barnett et al., 2010; Brandes et al., 2005; Gong et al., 2010; Heuvelmans et al., 2006;

Peña-Arancibia et al., 2010) and principal component analysis (Alcazar and Palau, 2010; Ma et al.,
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2010; Morris et al., 2009; Salas et al., 2010). Stepwise regression seeks to minimize the prediction

error while principal component analysis focuses on dimension reduction which may not utilize

information from the response variable. Both approaches perform well (high coefficient of de-

termination; R2 ≥ 0.8) but are susceptible to the elimination of relevant variables. Also, neither

method is structured to derive causal associations between dependent and independent variables.

Also, use of a limited pool of independent variables may result in selection of irrelevant vari-

ables as relevant in absence of other relevant variables; a concept referred to as Simpson’s paradox

(Whittaker, 1990, pg. 24). This paradox states that two variables may be marginally independent

in absence of a third variable but become dependent when conditioned on the third variable.

Advancements in the fields of artificial intelligence, machine learning, and data mining, in ad-

dition to increased computational speed and capabilities of computers have led to development of

methods that seek to infer causal associations between explanatory and response variables. Causal

relationships between response and explanatory variables can be discovered using Bayesian net-

works. Bayesian networks consist of directed acyclic graphs whose nodes represent random vari-

ables and the edges conditional probabilities (Jensen and Nielsen, 2007; Karimi and Hamilton,

2009; Meganck et al., 2006). Therefore, the implied causation found using Bayesian networks

is a probabilistic causation based on the precept that causes increase or change the probabilities

of their effects such that the conditional probability of an effect given its cause is greater than

the probability of the effect in absence of the cause (Cartwright, 1979; Hitchcock, 2010; Suppes,

1970).

Some of the causal methods include: Grow-Shrink, GS (Margaritis and Thrun, 1999); a vari-

ant of Incremental Association Markov Boundary (IAMB), interIAMBnPC (Tsamardinos et al.,

2003); Local Causal Discovery, LCD2 (Cooper, 1997); HITON Markov Blanket, HITON–MB

(Aliferis et al., 2003); and First Order Utility, FOU (Brown, 2009). The first four methods seek to

select causal variables by reconstructing a Markov blanket of the response variable based on prob-

abilistic definition of causation and variable relevance, while the fifth method (FOU) uses mutual

information to derive variable relevance, redundancy, and conditional redundancy. The four causal
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selection algorithms have two major phases; the growing phase where variables are added to a

Markov blanket (MB) and a shrinking phase where false positives are removed. The GS statically

orders the variables based on their association with the response variable given the empty Markov

blanket (MB) and then admits into MB the variable in the ordering that is not conditionally inde-

pendent with response given the current MB. The IAMB is similar to GS; however, each time a

new variable enters a candidate MB, the algorithm reorders the variables based on the updated con-

ditional independence test. The interIAMBnPC interleaves the growing phase of IAMB with the

shrinking phase; however it replaces the shrinking phase of IAMB with the Peter-Clark algorithm

(Spirtes et al., 2000). The LCD2 implements five tests of dependence and one test of independence

between an instrumental variable, the response variable, and the variable of interest. The HITON

algorithms first induce the Markov Blanket of response variable and then eliminate false positives

using a wrapper. A wrapper is an algorithm that solves the variable selection problem by searching

in the space of variable subsets and evaluating each one with a user specified classifier and loss

function estimator (Zheng and Zhang, 2008).

A Markov blanket of a response variable is the minimal set of explanatory variables conditioned

on which all other variables are independent of the response variable, while a variable is strongly

relevant to the response if and only if the joint probability of the response given that variable and the

remaining variables is not equal to the conditional probability of the response given the remaining

variables. For details readers may refer to Fu and Desmarais (2010) and Aliferis et al. (2010).

The GS and interIAMBnPC methods have been successfully tested on their ability to recapture a

Bayesian network of a medical monitoring system and hailfinder (Tsamardinos et al., 2003) while

the HITON methods have been implemented in areas of drug discovery, clinical diagnosis, gene

expression, and text categorization with a ratio of variable to sample size ranging between 0.67

and 60 (Aliferis et al., 2003).

Therefore, the objective of this study was to assess the accuracy, consistency, and predictive

potential of the five variable selection methods in comparison to stepwise regression and princi-

pal component analysis. For accuracy, all methods were evaluated for their ability to select true
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variables of two known functional relationships. Regarding consistency (method reliability) and

predictive potential, all methods were implemented on the two datasets of a known functional re-

lationship in addition to watershed and streamflow data from Mid-Atlantic Piedmont ecoregion

(USA). For consistence of the methods, variables selected by each method on subsequent runs

when the original data sample is slightly changed were analyzed to check for ability of methods to

select the same variables.

3.2 Methods

Performance on a known relationship

The methods were initially tested on two datasets with known functional relationships to assess

their ability to select the true variables from a pool of variables. The first dataset consisted of

data for predicting the weight of a hollow cylinder originally generated by (Wallis, 1965) and the

second dataset was generated by the authors from a known functional relationship for predicting

pressure drop of a fluid flowing through a circular pipe.

Weight of a hollow cylinder

The data consisted of 75 synthetic samples of 14 explanatory variables and one response variable

of weight of a hollow cylinder (Wallis, 1965). Only four (radius of inside cylinder, RI; radius

of outside cylinder, RO; density, D; and height, H) of the 14 explanatory variables accurately

define the known functional relationship of weight of a hollow cylinder. Other variables included

diagonals and surface areas of the inner (DIAGI and 2KRIH) and outer (DIAGO and 2KROH)

cylinders in addition to second order powers (RI2, RO2, H2, and D2) and combinations of the

above variables (DDIAGI and DDIAGO). Prior to implementation of the methods, primary variable

reduction (refer to section 3.2) was carried out to minimize the effects of variable redundancy.

This evaluation retained 9 of the 14 explanatory variables. Sample sizes of 10, 20, 30, 40, 50, and

60 were randomly drawn from the original data. Variable selection by each of the methods was
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implemented on each sample size and method reliability or accuracy was estimated as the ratio of

selected true positives to the total number of true positives. The procedure of randomly drawing

different sample sizes and variable selection was repeated 40 times; from which average reliability

for each method and sample size were reported (six sample sizes with 40 replications each gives

240 randomly selected samples with replacement).

Pressure drop in a circular pipe

The pressure drop (∆p) in a circular pipe can be estimated by equation 3.1 as a function of flow

velocity (v), pipe length (L), fluid density (ρ), pipe diameter (d), and pipe friction factor (f ). The

pipe friction factor is a function of the Reynold’s number (Re), while the Reynold’s number is a

function of fluid kinematic viscosity (ν), pipe diameter (d), and flow velocity. Seventy five samples

for each of the five explanatory variables were randomly generated from a uniform distribution and

pressure drop estimated using equation 3.1. Other generated explanatory variables included the

flow cross section area (A = πd2/4), volumetric flow rate (V = v×A), mass flow rate (M = ρV ),

dynamic viscosity (µ), total flow contact area (πdL).

∆p =
v2 × f × L× ρ

2d
(3.1)

Therefore, from the relevant five variables, a total of 14 explanatory variables were generated

to form a pool of potential variables that may drive the dynamics of pressure drop in a circular

pipe. An initial synthetic data of 75 samples was generated. Similar variable selection procedures

undertaken in the preceding subsection were implemented for this dataset.

Watershed data and representative watershed descriptors

The data used in this study consisted of 26 watersheds in the Piedmont physiographic province

of the Mid-Atlantic hydrological region, USA (Figure 3.2). Streamflow data used spanned the

same 42 years (1965 to 2007) across all watersheds. The selected watersheds were predominantly
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forested (greater than 60 % forest cover) with lower levels of urbanization and surface storage

(areal coverage of open water surfaces and wetlands). Data sources included the U.S. Geological

Survey (USGS) for streamflow, the National Weather Service (NWS) for climatic data, the Natu-

ral Resources Conservation Service (NRCS) for STATSGO soil data, and the National Hydrology

Dataset (NHD) compiled by USGS for sample watersheds with minimum level of urbanization

and surface storage. Data preparation was achieved using readily available geographical informa-

tion service (GIS) tools such as MicroDEM (U.S. Navy – public domain), ArcGIS (ESRI Inc. –

proprietary), BASINS 4.0 (USEPA – public domain), and Systems for Automated Geoscientific

Analyses (SAGA-GIS – public domain).

[ Figure 3.2 about here ]

Watershed characteristics were selected based on their likely contribution to the hydrological

response as supported by information from the literature (See, e.g. Alcazar et al., 2008; Castel-

larin et al., 2007; Eng et al., 2007; Johnston and Shmagin, 2008; Mohamoud, 2008; Sanborn and

Bledsoe, 2006; Sando et al., 2009; Srinivas et al., 2008). Tables 3.1 to 3.4 present lists of geo-

morphological descriptors, land use and land cover descriptors, soils and physical descriptors, and

climatic descriptors used in this study to generate the original data.

[ Table 3.1 about here ]

[ Table 3.2 about here ]

[ Table 3.3 about here ]

[ Table 3.4 about here ]

Watershed data preprocessing

The initial set of variables constituted 111 parameters (41 topographic, 39 climatic, 6 land use

and land cover, and 25 soil and physical parameters) for 26 piedmont watersheds (Tables 3.1 to
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3.4). Only a few land use and land cover (LULC) variables because the selected watersheds were

predominantly forested. A correlation matrix of the variables was generated, from which pair-

wise variables with a correlation coefficient greater than 0.9 were identified for primary dimension

reduction. Given two highly correlated variables, the variable which provided the highest incre-

mental gain (information gain) about the response variable was retained. The incremental gain

(Schroedl, 2010) was computed as a function of: 1) mutual information between the variable and

the response variable (variable relevance); 2) mutual information of different variables (variable

redundancy); and 3) the increase of mutual information between previously selected variables and

the response variable conditioned on a selected variable (conditional redundancy). The incremen-

tal gain of highly correlated variables was computed for 19 flow percentiles and the average value

was used as the representative information gain. The 19 flow percentiles were categorized as high

flows (Q0.01, Q0.05, Q0.1, Q0.5, Q1, Q5, Q10); medium flows (Q20, Q30, Q40, Q50, Q60, Q70);

and low flows (Q80, Q90, Q95, Q99, Q99.5, Q99.9); where, as an example Q10 represents the

flow magnitude equaled or exceeded 10 percent of the flow record (1965 to 2007). This process

reduced the 111 original variables to 92 variables.

Watershed data transformation for variable selection

The usefulness of data normalization is to rescale variables of different scales of magnitude onto

a similar scale such that the underlying data structure and not the magnitudes are comparable.

The streamflow percentiles were normalized using drainage area to minimize its effect on variable

selection and were subsequently logarithmic transformed. A minimum–maximum standardiza-

tion method (equation 3.2) was then implemented on the transformed streamflow percentiles and

explanatory variables.

F (Sk) =
Sk −min {S}

max {S} −min {S}
(3.2)

where F (Sk) is the transformed kth term of variable S; and Sk is the kth term of variable S resulting

in 0.0 ≤ F (Sk) ≤ 1.0.
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Variable Selection of watershed descriptors

The causal explorer toolkit was used to implement the variable selection methods of GS, inte-

rIAMBnPC, LCD2, and HITON–MB (Aliferis et al., 2003). The principal component analysis

method (PCA) implemented in this study is based on recommendations of Lu et al. (2007). The

first five principal components of the covariance matrix between transformed variables from Pied-

mont physiographic province were generated in the initial step. These components explained over

99 % of the variability of initial variables. Five clusters were generated by k–means clustering of

the five first–principal components. The selected variables were the closest variables to the cluster

centroids. The euclidean distance was used to determine the closest variables to each cluster cen-

troid. For stepwise regression, the method was implemented to select relevant variables for each

of the 19 streamflows on a single run. For each run a significance level of 0.1 was used to add a

variable and a level of 0.2 to remove a variable (these values were used because significance level

of 0.05 did not select any variable for most streamflows).

Overall, variable selection by each method was implemented by: 1) randomly deleting a single

watershed; 2) running the variable selection methods on the remaining watersheds; 3) summarizing

variables selected by each method for each of the 19 flow percentiles; and 4) repeating Steps 1 to 3

twenty six times to improve the reliability of the results. The slight data perturbation was achieved

by excluding a different watershed with replacement on each run. The top five variables selected

by each method for each streamflow percentile were chosen based on the aggregate number of

times they were selected after 26 runs.

Consistency of methods

Consistency of method (reliability) in this study refers to the ability of an method to select the

same set of variables on subsequent runs when the initial sample data is slightly changed. Method

reliability provides confidence on the robustness and stability of both the method and the selected

variables. For example, if a method selects the same top three variables when a different water-

shed is removed on multiple runs, that method is assumed to be more reliable and increases the
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confidence in the selected variables. Reliability of methods was estimated by computing similarity

indices for variable subsets generated by the same method on subsequent runs. The sample dataset

was changed by randomly excluding a single watershed from the original sample and implement-

ing the variable selection procedure. This process was repeated 26 times and thus provided 25

variable subset pairs for comparison. Three existing measures of method reliability initially used

included; hamming distance (Dunne et al., 2002, equation 3.3), similarity index (Kalousis et al.,

2007, equation 3.4), and the consistency index (Kuncheva, 2007, equation 3.5).

Sh = 1− |A \B|+ |B \ A|
n

(3.3)

SI = 1− |A|+ |B| − 2 |A ∩B|
|A|+ |B| − |A ∩B|

=
|A ∩B|
|A ∪B|

(3.4)

CI =
n |A ∩B| − k2

nk − k2
(3.5)

Where |A \B| is cardinality of set difference of A from B; |B \ A| is cardinality of set difference

of B from A; |A| is cardinality of set A; |B| is cardinality of set B; |A ∩B| is cardinality of set

intersection of A and B; |A ∪B| is cardinality of set union of A and B; n is total number of

variables in the original dataset; and k is the size of features to be compared (the minimum of sizes

of set A and B).

The hamming distance always yielded a high index while the similarity index was more con-

servative than the consistency index. The consistency index overestimated method reliability when

two variable subsets had different number of variables. For example, when the first subset has four

variables, the second subset has six, and the intersection between the two subsets has four, then

the computed consistency index is one (1.0) yet the two variable subsets do not exactly match.

Therefore, this study proposed a fourth index that accounts for the cardinality of the intersection

of two variable sets, the cardinality of the set differences, and unequal number of variables.
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The proposed index assumes that the probability of a random method (which does not consider

causality or correlation) to generate two variable subsets with similar features (cardinality of inter-

section) is low while the probability of generating different variable subsets is high. Therefore, the

cardinality of the set intersection was given a higher weight than the cardinality of the set differ-

ences. This study used weighting factors of two for the cardinality of set intersection and one for

the set differences. Because these preliminary results showed comparable performance between

SI, CI, and RI, subsequent analysis was based on RI.

RI =
1

2

(
1− |A \B|+ |B \ A| − 2 |A ∩B|

|A|+ |B|

)
(3.6)

Predictive potential of selected variables

To examine the predictive performance of the selected variables by each method, a two–layer feed

forward back propagation artificial neural network was used to generate a predictive model. The

choice was based on the increased use of artificial neural networks for prediction and forecasting

in water resources (Chiang and Chang, 2009; He et al., 2011; Maier et al., 2010; Tiwari and Chat-

terjee, 2010) and the approach tries to capture linearities and non–linearities of a system without

knowing the functional relationship.

Each dataset was split into training (70 %) and validation (30 %) subsets. The same training

and validation data was used for variables selected by different methods. The performance of each

trained model on the validation data was used as the predictive potential of selected variables. The

performance metrics used included the coefficient of determination (R2), Nash–Sutcliffe coeffi-

cient of efficiency (NSE), mean absolute error (MAE), and root mean square error (RMSE). The

R2 varies from zero to one, the NSE varies from negative infinity to one, while the MAE and

RMSE depend on the magnitude of the response variable. For both R2 and NSE, a value of

one is optimum while for MAE and RMSE greater prediction power of the selected variables is

indicated by smaller values.
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3.3 Results

Data of known functional relationships

Accuracy and predictive potential of selected variables

Tables 3.5 and 3.6 depict the top–four and top–five most selected variables by each method after

240 runs (40 runs for each of the six sample sizes) for the hollow cylinder and pressure drop data,

respectively. For the 240 runs of the hollow cylinder data, the first order utility (FOU) method

selected at least three of the four true variables on 111 runs while the HITON–MB selected these

on 37 runs, and the stepwise regression on 9 runs. Aggregation of the top–four selected variables

by each method gave three true variables by FOU, two by HITON–MB and LCD2, and none by

all other methods. The prediction performance using a feed–forward back–propagation neural

network was highest for variables selected by GS, interIAMBnPC, and stepwise regression while

lowest for true variables (refer to Table 3.7).

[ Table 3.5 about here ]

[ Table 3.6 about here ]

[ Table 3.7 about here ]

With respect to the 240 runs of the pressure drop data, the first order utility (FOU) method

selected at least four of the five true variables on 132 runs while the HITON–MB on 50 runs,

and the stepwise regression on 9 runs. Aggregation of the top five selected variables by each

method gave four true variables by FOU, four by HITON–MB, three by LCD2, PCA, Stepwise,

and interIAMBnPC, and two by GS. The prediction performance using a feed–forward back–

propagation neural network was highest for variables selected by HITON–MB, true variable, GS,

interIAMBnPC, and PCA while lowest for variables selected by FOU (refer to Table 3.8).

[ Table 3.8 about here ]
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Consistency of the selection methods

Tables 3.9 and 3.10 show reliability indices of variable selection methods as a function of the

sample size for the hollow cylinder and pressure drop data, respectively. The reliability index of

stepwise regression, HITON–MB, FOU, and LCD2 increased with increasing sample size while

the reliability index of GS, interIAMBnPC, and PCA were not significantly affected by sample

size. On average, the LCD2, PCA, and the HITON–MB were the most consistent methods while

the GS and interIAMBnPC were the least consistent.

[ Table 3.9 about here ]

[ Table 3.10 about here ]

Piedmont streamflow percentiles; unknown functional relationship

Consistency and prediction potential

Figure 3.3 compares consistency of the methods using the reliability index (RI) for selected wa-

tershed descriptors across 19 streamflow percentiles. Each data point is an average of 25 pairwise

comparisons for a single flow percentile. Values below 0.6 depicted low method reliability (robust-

ness) while values equal or greater than 0.6 depicted high reliability. A reliability of 0.6 showed

that, on average, the method selected the same three variables of the top five variables on each

of the 25 pairwise comparisons. There was no single method that was consistently more reliable

than others across all flows. However, on average, LCD2, PCA, and HITON–MB were the most

consistent at high, medium, and low flows (more points with RI ≥ 0.8). The first order utility

(FOU) was the least consistent.

[ Figure 3.3 about here ]

Figure 3.4 shows the average coefficients of determination (R2) for each method and for each

streamflow percentile. The simulated flow percentiles for comparison with observed were based
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on flow percentile prediction using selected variables by each method and a feed forward back

propagation neural network. Based on data in the Figure 3.4, one can observe that there was no

single method that consistently outperformed other methods across all flows. However, on average

the variables selected by GS, interIAMBnPC, and stepwise regression gave the best streamflow

predictions across high, medium, and low flows (more points with R2 ≥ 0.8).

[ Figure 3.4 about here ]

Selected watershed descriptors

Table 3.11 shows the percent proportion of variable classes of the most selected variables across

high flows (Q0.01 to Q10; 7 flows), medium flows (Q20 to Q70; 6 flows), and low flows (Q80 to

Q99.9; 6 flows). For high flows, topographic variables were the most commonly selected variables

by all methods while topographic and soil variables were the most commonly selected variables

for medium and low flows.

[ Table 3.11 about here ]

Table 3.12 shows top–five most selected variables (watershed descriptors) by each method for

five sample streamflow percentiles. There was some level of consistence with respect to variables

selected by different methods for the same flow percentile. For example four of the six methods

selected monthly February precipitation (FEBP) for Q10, and three methods selected topographic

wetness index (TWI), Porosity, percent urban coverage (Urban), and convergence index (CI) for

various flows.

[ Table 3.12 about here ]
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3.4 Discussion

Accuracy, consistency and predictive potential of methods

The HITON-MB and first order utility (FOU) methods selected the most true variables based on

results of the most selected variables for data of known functional relationships. Since the relia-

bility index of HITON–MB was relatively better and consistent for data of known and unknown

relationships compared to the FOU, variables selected by HITON–MB were assumed to have a

higher probability of being causal compared to those selected by FOU. The low reliability indices

by FOU on watershed data depict failure of the method to capture uncertainties introduced by the

statistical nature of the data (watershed average values).

The relatively high reliability values for the LCD2 were attributed to its ability to consistently

identify at least one relevant variable on multiple runs while the GS and the interIAMBnPC did

not identify relevant variables on most runs. The poor reliability results by the GS and interIAMB-

nPC are attributed to more false positives the methods identify during the growing phase such that

independent tests are likely to be unreliable during the shrinking phase. And thus, the final se-

lected variables have more false positives. The consistently high reliability of variables selected by

HITON–MB for all flow ranges was attributed to its intrinsic structure which does not require con-

ditioning on the entire Markov blanket to determine conditional independence. Any false positives

can be removed by the wrapper (Fu and Desmarais, 2010).

The most selected variables were determined by aggregating selected variables by all methods

across high, medium, and low streamflow percentiles. For high, medium, and low flows, the most

selected topographic variables were related to the control of rate of flow accumulation and trans-

port. Also, the most selected soil variables for high flows were connected to water accumulation

and movement. For medium and low flows, the most selected soil variables control subsurface

flow and flow under unsaturated conditions and emphasize the relevance of soil pore connectivity

and soil structure with regard to water movement.
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The coefficient of determination (R2) and Nash–Suticliffe efficiency (NSE) values for data of a

known functional relationship show that surrogate variables provide higher predictive performance

than true variables. For example, the most selected variables by GS, interIAMBnPC, and stepwise

regression for the hollow cylinder showed greater predictive potential (Table 3.7; R2 = 0.82 and

NSE = 0.81) than the true variables (R2 = 0.71 and NSE = 0.67), while none of the methods

selected any true variable. This observation is attributed to the inability of the neural network to

capture the underlying functional relationship. However, the neural networked gave high prediction

for pressure drop data (Table 3.8;R2 = 0.97 and NSE = 0.96) using the true variables. Even for

the pressure drop data the highest predictive variables included a surrogate variable (R2 = 0.99

and NSE = 0.96 for variables selected by HITON–MB).

Two major challenges are exhibited by these results; 1) the need to select the true system

variables; and 2) the need to determine the underlying functional relationship. Caution should be

used when evaluating hydrological predictive models with a high coefficient of determination or

Nash–Suticliffe efficiency because results demonstrate that high predictive potential does not infer

system representation. A key observation is that the two most accurate methods (HITON–MB and

FOU) use discrete data compared to other methods that use continuous data.

3.5 Conclusions

This paper compares the accuracy, consistency, and predictive potential of variables selected by

stepwise regression and principal component analysis to variables selected by five methods that

seek to infer causal associations between explanatory and response variables. For accuracy, data

of two known functional relationships: weight of a hollow cylinder and pressure drop of a fluid

within a circular pipe were used. For consistency and predictive potential, data of known and

unknown functional relationships were used. The unknown functional relationship consisted of 26

Mid–Atlantic Piedmont watersheds with 111 watershed descriptors and 19 streamflow percentiles.
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The accuracy of some causal selection methods is greater than others. Overall, the HITON–MB

and first order utility (FOU) methods are the most accurate followed by principal component anal-

ysis (PCA). The accuracy of the Grow–Shrink (GS) and a variant of the incremental association

Markov boundary (interIAMBnPC) were not better than the accuracy of the stepwise regression.

Because of the high accuracy of the HITON–MB and its high consistency on data of known and

unknown functional relationship, variables selected by this method have a high probability of being

causal compared to stepwise regression. The authors recommend use of more than one selection

method to improve the reliability of the selected variables. Future efforts should focus on quan-

tifying the probability that a selected variable for a specific response variable is causal based on

selection accuracy of various methods. Data of known functional relationships with varying system

complexities should be used.
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Table 3.1: Topographic descriptors

Variable Units Description

DA km2 drainage area

EMEAN m mean elevation

EMAX m maximum elevation

EMIN m minimum elevation

EMED m median elevation

ESTD m standard deviation of elevation

RLF m relief; RLF = EMAX − EMIN

SMEAN m/km mean slope

SMAX m/km maximum slope

SSTD m/km standard deviation of slope

CPLAN –
plan curvature; rate of change of aspect along a contour. It measures the
propensity of water to converge as it flows across the land

TWI – topographic wetness index

OLFD m overland flow distance = overland flow distance to the stream network

SLEN m
slope length; distance from the point of origin of overland flow to the point
where either the slope gradient decreases enough that deposition begins,
or the runoff water enters a well-defined channel

MRVBF –
multi resolution index of valley bottom flatness; measures the extent of
watershed valley bottoms at multiple DEM resolutions

MRRTF –
multi resolution index of ridge top flatness; measures the extent of water-
shed ridge tops at multiple DEM resolutions.

Table 3.1: continued on next page
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Variablea Units Description

SHGT m slope height = average watershed peak heights.

VDEP m valley depth = average watershed valley depths.

TSL km total stream length

MCL km main channel length; longest drainage path from watershed divide to outlet

MCS m/km main channel slope; MCS = (Edivide − Eoutlet)/MCL

AMEAN degree average aspect

HPC10 m hypsometric curve elevation corresponding to relative watershed area of 0.1

HPC50 m hypsometric curve elevation corresponding to relative watershed area of 0.5

HPC90 m hypsometric curve elevation corresponding to relative watershed area of 0.9

MCSR km/km Main channel sinuosity; MCSR = MCL/BL; BL = watershed length

CI – convergence index

BP km watershed perimeter

BL km
watershed length; distance of straight line from outlet to intersection of water-
shed divide and longest drainage path

BW km watershed width; BW = DA/BL

SF km/km shape factor; SF = BL/BW

ER km/km elongation ratio; ER =
[

4DA
πBL2

] 1
2

RB km2/km2 watershed rotundity ratio (Lemniscate index); RB = πBL2

4DA

CR km/km compactness ratio (Gravelius shape index); CR = 0.282 BP√
DA

Table 3.1: continued on next page

66



Variablea Units Description

RR m/km relief ratio; RR = RLF
BP

DD km/km2 drainage density; DD = TSL
DA

RN m.km/km2ruggedness number; RN = DD ×RLF

SR – slope ratio; SR = MCS
SMEAN

HI m/m hypsometric integral; HI = EMEAN−EMIN
EMAX−EMIN

HFF km2/km2 Hortons form factor; HFF = DA
BL2

RC km2/km2 circularity ratio; RC = 4πDA
BP 2

a Definitions of watershed shape and channel parameters (variables BL to RC) are given in
Lyon (2003) pages 99 to 111 and Zavoianu (1985) pages 39 to 41.
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Table 3.2: Land use and land cover descriptors

Variable Units Description

Water % open water, generally with less than 25% cover of vegetation or soil

Urban % developed areas of low, medium, and high intensity

Barren % barren areas of bedrock and unconsolidated shores

Forest %
deciduous forest, evergreen forest, mixed forest, shrub/scrub,

and grassland/herbaceous

Agric % pasture or hay and cultivated crops

Wetland % all types of wetlands
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Table 3.3: Soil and physical descriptors

Variable Units Description

WTD cm water table depth

rockDep cm depth to bedrock

hsgA % hydrological soil group A

hsgB % hydrological soil group B

hsgC % hydrological soil group C

hsgD % hydrological soil group D

Hydric % hydric soils

Sdepth cm soil depth

KFACT – soil erodibility factor without rocks

KFFACT – soil erodibility factor with rocks

Sand % sand

Silt % silt

Clay % clay

AWC cm/cm available water content

BulkD g/cm3 bulk density

OM % percent organic matter

PERM cm/hr permeability from STATSGO data

KSAT cm/hr
saturated hydraulic conductivity by pedotransfer function (Saxton et al.,
1986)

SAT cm3cm3 saturation

Table 3.3: continued on next page
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Variable Units Description

Porosity – porosity

Void – void ratio

PSDIa – pore size distribution index

MSCLa cm macroscopic capillary length

T cm2/hr transmissivity

STORG cm storage; STORG = void× Sdepth

a The PSDI and MSCL are functions of the soil texture based on work by Rawls et al. (1982).
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Table 3.4: Climatic descriptors

Variable Units Description

mP mm monthly precipitation (January to December; 12 variables)

mET mm monthly evapotranspiration (January to December; 12 variables)

MAP mm mean annual precipitation

MMP mm mean monthly precipitation (MAP/12)

MAET mm mean annual potential evapotranspiration

MMET mm mean monthly potential evapotranspiration

NAP mm net annual precipitation ; NAP = MAP −MAET

NMP mm net monthly precipitation ; NMP = MMP −MMET

ADI mm annual dryness index ; ADI = MAP
MAET

PI – Prescott index; PI = 0.445MAP
MAET 0.75

RFx mm
Rainfall amount equaled or exceeded x % of the record time (x=[0.01,
0.05, 0.1, 0.5, 1, 5, 10, 20]; 7 variables)
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Table 3.5: Selection results for data of a hollow cylinder

Method Most selected variablesa

GS 2KROH DDIAGO DDIAGI 2KRIH

interIAMBnPC 2KROH DDIAGO 2KRIH DDIAGI

LCD2 DDIAGO 2KROH D DDIAGI

HITON-PC DDIAGO 2KROH D H

FOU RO DDIAGO RI H

PCA DDIAGO 2KROH DIAGI D

STEPWISE DDIAGO 2KROH 2KRIH DDIAGI

True variables D H RI RO

a The bold variables are the true variables

Table 3.6: Selection results for pressure drop data

Method Most selected variables

GS v Re Fr f Q

interIAMBnPC v Fr Q L D

LCD2 f v d Fr Re

HITON-PC v d f Fr L

FOU v D Q f d

PCA Re L v KV D

STEPWISE Q Fr d D f

True variables v d f D L

72



Table 3.7: Prediction performance for hollow cylinder data

Method R2 NSE MAE (kg) RMSE (kg)

GS 0.82 0.81 35 125

interIAMBnPC 0.82 0.81 35 125

LCD2 0.77 0.75 66 140

HITON-MB 0.77 0.74 82 144

FOU 0.76 0.73 97 147

PCA 0.8 0.77 67 137

STEPWISE 0.82 0.81 35 125

True variables 0.71 0.67 100 163

Table 3.8: Prediction performance for pressure drop data

Method R2 NSE MAE (kPa) RMSE (kPa)

GS 0.94 0.92 474 721

interIAMBnPC 0.96 0.89 468 787

LCD2 0.85 0.81 573 1062

HITON-MB 0.99 0.96 320 465

FOU 0.46 0.42 1242 1827

PCA 0.86 0.84 629 960

STEPWISE 0.85 0.83 640 1001

True variables 0.97 0.96 198 482
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Table 3.9: Reliability indexa for hollow cylinder data

Sampleb GS IAMBc LCD2 HITONd FOU PCA STEPWISE

10 0.14 0.07 0.11 0.17 0.49 0.64 0.27

20 0.43 0.19 0.36 0.41 0.48 0.51 0.65

30 0.52 0.19 0.59 0.6 0.47 0.61 0.62

40 0.52 0.19 0.62 0.67 0.52 0.6 0.63

50 0.52 0.19 0.8 0.74 0.63 0.73 0.59

60 0.52 0.19 0.97 0.8 0.71 0.73 0.74

Averagee 0.49 0.19 0.71 0.67 0.59 0.66 0.64

a Each value is an average of 40 values

b Randomly selected sample size from initial data

c interIAMBnPC

d HITON–MB

e Weighted average by sample size

Table 3.10: Reliability index for pressure drop data

Sample GS IAMB LCD2 HITON FOU PCA STEPWISE

10 0.49 0.38 0.47 0.41 0.47 0.83 0.45

20 0.49 0.5 0.65 0.51 0.46 0.84 0.37

30 0.49 0.48 0.73 0.58 0.53 0.82 0.4

40 0.49 0.48 0.78 0.6 0.53 0.83 0.42

50 0.49 0.47 0.91 0.66 0.6 0.86 0.56

60 0.49 0.48 0.99 0.78 0.69 0.86 0.72

Average 0.49 0.48 0.83 0.64 0.58 0.84 0.53
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Table 3.11: Percent proportion of variable classes of most selected variables

GS IAMB LCD2 HITON FOU Stepwise

High flows

Climatic 16.7 14.7 25 34.6 40.4 7.5

LULC 18.3 21.2 15.7 5.5 11.2 6.1

Soil 26.4 12 28.4 19 6 15.5

Topography 38.7 52.1 30.8 40.9 42.4 70.8

Medium flows

Climatic 10.6 36.9 4 19.5 40.5 28.9

LULC 0 0 6.4 11.7 4.4 0

Soil 59.5 22.5 51.9 20.8 28.4 21.9

Topography 29.8 40.5 37.8 48 26.7 49.2

Low flows

Climatic 17 21 34.8 15.4 44.4 11.4

LULC 0 0 0 23 14.5 0

Soil 40.1 30.1 2.1 37.6 19 27.9

Topography 42.9 48.9 63.1 24 22.2 60.7
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Table 3.12: Selected variables for sample streamflow percentiles

Flow GS IAMB LCD2 HITON FOU Stepwise

Q1

TWI VDEP rockDep VDEP Wetland MRVBF

Urban Urban MRVBF RF0.05 MCSR MCL

rockDep MCL Wetland TWI AUGP CPLAN

NOVP CPLAN MCSR APRP RF0.05 Urban

hsgC TWI TWI EMIN RF0.01 VDEP

Q10

FEBP MAYP Forest EMIN JANP FEBP

rockDep Water DecET OLFD SLEN Wetland

PSDI Wetland MarET hsgB APRP Forest

OM FEBP OM JANP OLFD EMIN

JUNP OM NovET FEBP SR MMET

Q50

Porosity JUNP TWI Wetland OM TWI

CI MSCL MRRTF CI SMEAN hsgC

KSAT Porosity Clay APRP CPROF JUNP

Sand hsgC KSAT hsgD RF20 CI

AWC MAYP Porosity HCP90 AUGP MAYP

Q90

MSCL MSCL EMED Rock T VDEP

EMED VDEP MRRTF RF20 AugET MSCL

CI AUGP TWI KSAT Rock RF0.1

Porosity CI CI T RF20 HI

MRRTF Porosity RF20 BW SEPP PERM

Q99

Porosity MSCL EMED Rock MCL MSCL

MSCL AMEAN AugET MCL OLFD HI

EMED VDEP RF20 RF20 SMEAN VDEP

AugET AUGP MMET T Wetland RF10

CI EMIN Porosity AWC FEBP NOVP
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Figure 3.1: Frequency counts of some of the variables found in literature review of 42 studies
(1989 - 2009)
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CHAPTER 4

ADVANCES IN VARIABLE SELECTION METHODS II:

CLASSIFICATION OF HYDROLOGICALLY SIMILAR

WATERSHEDS

1Ssegane, H., Tollner E. W., Mohamoud Y. M., Rasmussen T. C., and Dowd J. F. Submitted to Journal of Hydrol-
ogy, 06/24/2011.
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Abstract

Hydrological flow predictions in ungauged and sparsely gauged watersheds use regionalization

or classification of hydrologically similar watersheds to develop empirical relationships between

hydrologic, climatic, and watershed variables. The watershed classifications may be based on geo-

graphic proximity, regional frameworks such as ecoregions or classification using cluster analysis

of watershed descriptors. General approaches used in classifying hydrologically similar water-

sheds use climatic and watershed variables or statistics of streamflow data. Use of climatic and

watershed descriptors requires variable selection to minimize redundancy from a large pool of

potential variables. This study compares classification performance of four variable groups to

identify homogeneous watersheds in three Mid-Atlantic ecoregions (USA): Appalachian Plateau,

Piedmont, and Ridge and Valley. The variable groups included: (1) Variables that define watershed

geographic proximity; (2) Variables that define watershed hypsometry; (3) Variables selected using

causal selection algorithms; and (4) Variables selected using principal component analysis (PCA)

and stepwise regression. The classification results were compared to reference watersheds classi-

fied as homogeneous using three streamflow indices: Slope of flow duration curve; Baseflow index;

and Streamflow elasticity using a similarity index (SI). Classification performance was highest us-

ing variables selected by causal algorithms (e.g., HITON-MB method, SI=0.71 for Appalachian

Plateau, SI=0.90 for Piedmont, and SI=0.72 for Ridge and Valley) compared to variables selected

by stepwise regression (SI=0.72 for Appalachian Plateau, SI=0.87 for Piedmont, and SI=0.64

for Ridge and Valley) and PCA (SI=0.71 for Appalachian Plateau, SI=0.76 for Piedmont, and

SI=0.57 for Ridge and Valley).
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4.1 Introduction

Development of regional frameworks such as hydrological landscape regions (Wolock et al., 2004)

and ecoregions (Omernik and Bailey, 1997) has led to regionalization (Hall and Minns, 1999) of

streamflow indices such that observed streamflow at gauged sites can be extrapolated to predict

streamflow at ungauged sites in the same physiographic region. The concept of regionalization as-

sumes that watersheds in the same physiographic region have similar hydrological signatures over

a long period of time. Regionalization methods include: 1) statistical regionalization, where multi-

ple regression is used to link hydrological responses to physical and climatic attributes (Kokkonen

et al., 2003); 2) use of geospatial similarity (Merz and Blöschl, 2004); and 3) use of regional hydro-

logical model parameters (Bastola et al., 2008). Irrespective of the approach used, observed data

at gauged sites is used to model underlying hydrological processes at ungauged sites. Although

previous studies have shown that geospatial similarity or geographical proximity does not always

translate into hydrological similarity (Acreman and Sinclair, 1986; Kokkonen et al., 2003), geo-

graphic proximity may infer similarity in climatic conditions and watershed form. Commonly used

approaches include those that infer similarity using climatic and watershed variables and those that

use streamflow statistics or both.

Chiang et al. (2002) used cluster analysis and 16 streamflow statistics to generate six homo-

geneous regions from 94 watersheds in Alabama, Georgia, and Mississippi (USA). Kahya et al.

(2008) used hierarchical clustering and streamflow patterns to classify 80 watersheds in Turkey.

Acreman and Sinclair (1986) used 11 watershed variables to classify 168 watersheds in Scotland

into 5 homogeneous regions. And, Di Prinzio et al. (2011) used six streamflow statistics to estab-

lish reference homogeneous regions and compared results to four alternative classification methods

using 12 watershed variables. The challenge with the above approaches is that there are no univer-

sally accepted similarity metrics (Wagener et al., 2007). Also, the watershed classification results

depend on watershed descriptors used or the effectiveness of the variable selection methods.

On the choice of streamflow indices, Sawicz et al. (2011) suggest six streamflow metrics that

define the different hydrologic functions of watersheds as possible universal metrics. The met-
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rics include runoff ratio, flow duration curves, baseflow index, streamflow elasticity, ratio of snow

days, and rising limb density. However, streamflow indices cannot be used to determine hydro-

logical similarity of ungauged watersheds. On the choice of watershed descriptors, the most used

variable selection methods are principal component analysis (PCA) (Alcázar and Palau, 2010; Ma

et al., 2010; Salas et al., 2010) and stepwise regression analysis (SRA) (Barnett et al., 2010; Gong

et al., 2010; Peña-Arancibia et al., 2010). The conceptual basis of both approaches is not causality

between response and explanatory variables. Stepwise regression analysis focuses on minimiza-

tion of the predictive error while principal component analysis focuses on dimensional reduction

(data extraction) by projecting high dimension data onto a low dimension space while maintaining

the most relevant information.

Causal relationships between response and explanatory variables can be discovered by Bayesian

networks. Bayesian networks consist of directed acyclic graphs whose nodes represent random

variables and the edges conditional probabilities (Jensen and Nielsen, 2007; Karimi and Hamilton,

2009; Meganck et al., 2006). Therefore, the implied causation by this approach is probabilistic cau-

sation based on the theory that causes increase or change the probabilities of their effects such that

the conditional probability of an effect given its cause is greater than the probability of the effect

in absence of the cause (Cartwright, 1979; Hitchcock, 2010; Suppes, 1970). Thus, the possibility

of event A occurring given that event B occurred is higher if event B causes event A and vice–

versa. Some of the algorithms that implement causal variable selection include: Grow-Shrink,

GS (Margaritis and Thrun, 1999); interleaved Incremental Association Markov Boundary with PC

algorithm, interIAMBnPC (Tsamardinos et al., 2003); Local Causal Discovery, LCD2 (Cooper,

1997); and HITON Markov Blanket, HITON–MB (Aliferis et al., 2003). For a brief description of

the methods, the readers should refer to the first part of this study (reference for part I).

Therefore, the objective of the second part of the study is to compare the effectiveness of deter-

mining hydrologically similar watersheds using variables selected by causal algorithms (GS, inte-

rIAMBnPC, LCD2, and HITON–MB), stepwise regression analysis, principal component analysis,

variables of geographical proximity, and watershed hypsometry in three Mid-Atlantic ecoregions:
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Appalachian Plateau, Piedmont, and Ridge and Valley (USA). The variable groups selected for

comparison included: (1) variables that define watershed geographical proximity; (2) variables

that define watershed hypsometry; (3) variables selected using causal selection algorithms; and (4)

variables selected using principal component analysis (PCA) and stepwise regression. Hence, the

focus of this study is on the effect of different variable selection methods on watershed classifica-

tion while many previous studies have focused on different clustering or regionalization methods

using the same set of variables.

We hypothesize that although hydrological similarity between watersheds in the same ecore-

gion is high when compared to watersheds from different ecoregions, all watersheds in the same

ecoregion may not hydrologically behave in a similar manner. Therefore, the study used three

streamflow indices: (1) slope of a flow duration curve (FDC); (2) the baseflow index (BFI); and

(3) streamflow elasticity (SFE) with k–means clustering to classify reference homogeneous wa-

tersheds for each ecoregion. Watersheds classified using streamflow indices were considered to

be the true hydrologically similar watersheds (reference watersheds) for each ecoregion. Then the

ability of the four watershed variable groups to generate the exact homogeneous watersheds for

the Appalachian Plateau, Piedmont, and Ridge and Valley were examined using a similarity index.

The a priori assumption is that watershed classification using variables that typify the cause and

effect relationship with the streamflow indices should give highest similarity when compared to

reference watersheds.

The relevance of this approach was to emphasize the dependence and accuracy of watershed

classification results on the variables used for classification. The interest in geographical proximity

of watersheds is because proximity may infer similar climatic conditions and watershed form.

While the interest in watershed hypsometry is based on the role of topography in hydrological

processes. Stieglitz et al. (1997) highlighted the role of topography on soil moisture distribution,

timing of discharge, and partitioning of streamflow into direct runoff and baseflow. Also, Vivoni

et al. (2008) showed that total runoff reduced as the watershed hypsometric form changed from

convex to concave. Therefore, this study also evaluates whether statistics of a hypsometric curve
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are adequate representatives of topography to differentiate hydrologic behavior across the three

ecoregions.

4.2 Methods

Study area and data

Data used in this study covers three Mid-Atlantic physiographic regions (ecoregions), USA (Figure

4.1); the Appalachian Plateau (26 watersheds), the Piedmont (25 watersheds), and the Ridge and

Valley (29 watersheds). Streamflow data used spanned the same 42 years of 1966 to 2007 epoch

across all watersheds. Figure 4.2 depicts topographic differences of headwaters of representative

watersheds from each ecoregion. The watersheds were selected from Hydro–Climatic Data Net-

work (HCDN) dataset (Slack and Landwehr, 1992) with emphasis on low extent of urbanization

and minimum surface storage. For detailed description of the climatic and watershed descriptors

used in this second part of the study, the reader is referred to part I of the study or Table 4.2.

[ Figure 4.1 about here ]

[ Figure 4.2 about here ]

Streamflow metrics

The common measures of watershed homogeneity or hydrological similarity analysis involve use

of streamflow statistics (Castellarin et al., 2008; Kahya et al., 2008; Patil and Stieglitz, 2010; Srini-

vas et al., 2008). Three measures of watershed function signature were used to define hydrological

similarity for watersheds in the same ecoregion. The measures included the slope of a flow dura-

tion curve (FDC), the baseflow index (BFI), and the streamflow elasticity. These three indices are

a subset of six indices recommended by Sawicz et al. (2011). The choice of the three streamflow

metrics was based on: 1) adequate representation of the watershed hydrologic response by the

three metrics (refer to subsequent subsections); 2) use of fewer variables minimizes challenges of
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using high dimension data for unsupervised learning such as clustering (Ding et al., 2002; Fern

and Brodley, 2003; M”uller et al., 2009); and 3) the three metrics were easily extracted from read-

ily available data compared to extracting all six indices. Watersheds classified as hydrologically

homogeneous based on these indices were considered to be the reference or true homogeneous

watersheds for each ecoregion.

Flow duration curve

A flow duration curve (FDC) is a graphical representation of the percentage of time a streamflow is

equaled or exceeded over a specified epoch (Vogel, 1994; Vogel and Fennessey, 1995). Therefore,

the FDC depicts the integrated impacts of climate, geology, geomorphology, soils and vegetation

on streamflow magnitudes. Flow duration curves for each watershed in the three ecoregions were

generated using daily streamflows and a Weibull plotting position (equation 4.1) for the 1966 to

2007 time period. The streamflows were standardized by the drainage area to minimize the effects

of watershed size on slope of the flow duration curve. The slope of the curve between probabilities

of exceedence of 20 % and 70 % was used as the overall slope.

pi (Q ≥ qi) =
i

N + 1
(4.1)

where pi is probability of exceedence; Q is a random variable of qi; qi is ordered streamflow; i is

rank of qi; and N is total number of streamflow records.

Baseflow index

The baseflow index (BFI) describes the flow path and mean residence time of water through a wa-

tershed and therefore, quantifies the effects of watershed geology. The BFI for each watershed was

estimated using the Eckhardt recursive digital filter (Eckhardt, 2005) in equation 4.2. A recession

constant of 0.98 (α = 0.98) and a maximum baseflow index of 0.8 (BFImax = 0.8) for humid
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areas such as the Mid-Atlantic ecoregions were used.

bt =
(1−BFImax)α + bt−1 (1− α)BFImaxQt

1− αBFImax

(4.2)

where bt is baseflow at time step t (daily); BFImax is maximum value of the baseflow index; α is

a recession constant; bt−1 is baseflow at a previous time step t-1; and Qt is streamflow at time step

t.

Streamflow elasticity

Streamflow (or climatic) elasticity of streamflow defines the sensitivity of streamflow to changes

in precipitation (Sankarasubramanian et al., 2001). According to Zheng et al. (2009), streamflow

is more sensitive to precipitation than to evapotranspiration. Therefore, this study used the pre-

cipitation based non–parametric estimator of streamflow elasticity (equation 4.3) developed by

Sankarasubramanian et al. (2001).

SFE = median

[
Qt − Q̄

Pt − P̄
· P̄
Q̄

]
(4.3)

where SFE is streamflow elasticity on annual basis; Qt is annual total flow for year t; Q̄ is av-

erage annual total flow; Pt is annual total precipitation for year t; and P̄ is average annual total

precipitation.

Watershed classification using streamflow metrics

Multivariate cluster analysis of k–means clustering was used to generate the reference set of hy-

drologically similar watersheds using streamflow metrics. Homogeneity measures developed by

Hosking and Wallis (1997) were used to determine the homogeneity of the classified watersheds.

For heterogeneous groups of watersheds, a discordancy index (Hosking and Wallis, 1997) was

used to eliminate the non–group watersheds.
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K–means clustering

The k–means clustering algorithm was used to classify hydrologically similar watersheds in each

ecoregion using slope of the flow duration curve, baseflow index, and streamflow elasticity. The

algorithm is an unsupervised iterative technique that groups multivariate data into k clusters. Ac-

cording to (Wu et al., 2008) the k–means clustering is one of the top ten influential algorithms in

data mining. Because the studied ecoregions are in close geographic proximity to each other, a

k value of three was used such that each watershed could belong to any of the three ecoregions.

Therefore, for each ecoregion, three clusters were generated. To improve the accuracy of the

formed clusters, the algorithm was run 20 times using a squared euclidean distance as the metric

for measuring within cluster and between cluster distance. Before clustering, all variables were

standardized using min–max transformation (equation 4.4).

S
′

k =
Sk −min {S}

max {S} −min {S}
(4.4)

where S
′

k is transformed kth term of variable S; and Sk is kth term of variable S.

Homogeneity and discordancy tests

The Hosking and Wallis (1997) homogeneity tests were used to measure the degree of heterogene-

ity in a given cluster while the discordancy test was used to determine misclassified watersheds

among the supposedly homogeneous watersheds. The underlying concept of the Hosking and

Wallis (1997) H–statistics (H1, H2, and H3) is to determine the variability of L–moment ratios

(L–coefficient of variation, L−CV ; L–Skewness; and L–Kurtosis) and compare them to expected

variability of a simulated homogeneous region using a four parameter kappa distribution. A group

of watersheds is considered to be homogeneous if H < 1, probably homogeneous if 1 ≤ H ≤ 2 ,

and heterogeneous if H > 2.

For each supposedly homogeneous set of watersheds, the homogeneity tests were computed

on annual flows from 1966 to 2007. A non–supervised regional frequency analysis R–package
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(Viglione and Viglione, 2010) was used to calculate the H–statistics. For watershed groups whose

H–statistics were greater than two, a discordancy test (equation 4.5) was implemented to determine

the misclassified watershed. The critical D–statistic is a function of the number of sites in a group.

For example, if the number of sites in a homogeneous or heterogeneous region is equal to or greater

than 15, the critical D–statistic is three such that sites with values of three or greater are eliminated

from the group. For this study, sites with high D–statistic were eliminated until the H–statistics

were about one or less than one.

Di =
1

3
N(ui − ū)TS−1(ui − ū) (4.5)

where Di is discordancy measure for site i (watershed); N is number of sites in a group; ui is

vector containing the L − CV , L − Skewness, and L − Kurtosis for site i; ū is average of ui;

and S is sample covariance matrix.

The cluster groups (set of homogeneous watersheds) with the maximum number of watersheds

for each ecoregion were considered to be the characteristic (typical) watersheds for that ecoregion.

These characteristic watersheds identified by the above approach were used to validate the accuracy

of homogeneous watersheds identified using non–streamflow watershed characteristics.

To test the null hypothesis that selected homogeneous watersheds across the three ecoregions

came from the same population distribution, nine pairwise comparisons of each streamflow metric

(FDC, BFI, and SFE) were implemented using the Kruskal–Wallis test. Because the size of homo-

geneous watersheds is not the same across the three ecoregions, values of the first ten watersheds

(Table 4.1) from each ecoregion were used for this analysis. Of the nine pairwise comparisons, only

two were not significantly different (Baseflow index between Appalachian, and Ridge and Valley;

and streamflow elasticity between Piedmont and Ridge and Valley). Therefore, the combined use

of all three metrics provides adequate data structure to differentiate the three ecoregions.
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Watershed classification using watershed descriptors

Four watershed variable groups that do not include streamflow statistics were analyzed for their

suitability in watershed classification. This approach has implications for hydrological predictions

in ungauged watersheds (Li et al., 2010; Ouarda and Shu, 2009; Viola et al., 2011). The suitability

of a variable group is defined as its ability to identify the same hydrologically similar watersheds

classified using streamflow metrics (reference watersheds). The four variable groups included

(1) variables that define the geographical proximity of neighboring watersheds, (2) variables that

define the watershed hypsometry, (3) variables selected using causal variable selection algorithms,

and (4) variables selected using principal component analysis (PCA) and stepwise regression. The

third and fourth groups of variables seek to determine the dominant watershed variables that control

streamflow in each ecoregion.

Three streamflow metrics were used and therefore, the top three variables from each variable

group except for the watershed hypsometry were used to minimize misclassification errors due to

differences in data dimensions. The effect of data dimension on clustering results is documented

in literature (M”uller et al., 2009). For each variable group, variable transformation (equation 4.4)

was implemented prior to k–means clustering. The k–means algorithm was run 20 times using the

squared euclidean distance to generate three clusters. The cluster group with the maximum number

of watersheds was considered to be the set of representative homogeneous watersheds classified

by the respective variable group. This procedure was implemented for each variable group on the

three ecoregions. Details of the variable groups are discussed in the subsequent subsection*s.

Geographical proximity

Although Acreman and Sinclair (1986) showed that geographical proximity does not always infer

hydrological similarity, geographical proximity may infer hydrological similarity because water-

shed neighborhood can translate into similarity in physical characteristics (e.g., watershed form)

and climate conditions (e.g., similar rainfall and evapotranspiration). Watershed variables selected

to represent geographical proximity included latitude, longitude, and elevation of the gauge station.
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Watershed hypsometry

A hypsometric curve is a graphical representation of the distribution of area with elevation or

the relative proportion of the watershed area that lies at or above a given height relative to total

watershed relief (Strahler, 1952). According to Luo (2000) a hypsometric curve can distinguish

watersheds dominated by surface runoff (fluvial landforms defined by concave hypsometry) from

watersheds dominated by subsurface runoff (terrestrial sapping landforms defined by convex hyp-

sometry) using five statistical variables derived from the shape of a hypsometric curve. The five

hypsometric variables selected include integral (HI), skewness (skew) and, kurtosis (kurtos) of

the hypsometric curve, plus skewness (denSkew) and kurtosis (denKurtos) of the density func-

tion of the hypsometric curve. The first three hypsometric variables are defined by equation 4.6

(Harlin, 1978; Pérez-Peņa et al., 2009). The last two variables are estimated in a similar way by

replacing f(x) with the density function g(x) = f
′
(x). The f(x) is the relative elevation corre-

sponding to a relative watershed area x.

HI =

∫ 1

0

f(x)dx (4.6a)

µ01 =
1

I

[∫ 1

0

xf(x)dx

]
(4.6b)

µ2 =
1

I

[∫ 1

0

(x− µ01)
2f(x)dx

]
(4.6c)

σ =
√
µ2 (4.6d)

µ3 =
1

I

[∫ 1

0

(x− µ01)
3f(x)dx

]
(4.6e)

µ4 =
1

I

[∫ 1

0

(x− µ01)
4f(x)dx

]
(4.6f)

skew =
µ3

σ3
(4.6g)

kurtos =
µ4

σ4
(4.6h)
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The most common approach is to fit a continuous polynomial to the hypsometric data for

each watershed. For the Mid-Atlantic watersheds, the polynomial fit gave high coefficients of

determination (R2 ≥ 0.9 in most cases), however, the graphical visual fit was not satisfactory.

A combination of third order polynomial and a rational term (refer to equation 4.7) gave high

coefficients of determination and satisfactory graphical visual fits (R2 ≥ 0.999 in over 90 % of

cases). For each watershed 200 points on a hypsometric curve were sampled using system for

automated geoscientific analyses (SAGA) geographic information system (GIS) package (Olaya

and Conrad, 2009).

f(x) = a1 + a2x+ a3x
2 + a4x

3 +
(1− x)a5

(1− x)a5 + a6xa7
(4.7)

Variables selected by causal algorithms

For each ecoregion, four causal variable selection algorithms: GS, interIAMBnPC, LCD2, and

HITON–MB were implemented to determine the dominant variables of 19 flow percentiles. The 19

flow percentiles were categorized as high flows (Q0.01, Q0.05, Q0.1, Q0.5, Q1, Q5, Q10); medium

flows (Q20, Q30, Q40, Q50, Q60, Q70); and low flows (Q80, Q90, Q95, Q99, Q99.5, Q99.9) where

Q10 represented the flow magnitude equaled or exceeded 10 percent of the flow record (1966 to

2007). Each algorithm was run 20 times by eliminating one data point (a watershed) on each run to

improve the reliability of selected variables. The top three most selected variables across all flows

were considered to be the dominant variables selected by each method.

Variables selected by principal component analysis and stepwise regression

Principal component analysis (PCA) is a common approach of reducing high dimension data in hy-

drological modeling (Alcázar and Palau, 2010; Gao et al., 2009; Ma et al., 2010; Salas et al., 2010).

The PCA variable selection method implemented in this study is based on recommendations of Lu

et al. (2007). The first five principal components of variables from each ecoregion were generated

in the initial step. These components explained over 99 % of the variability of initial variables.
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Five clusters were generated by k–means clustering of the five first principal components. The

selected variables were the closest to each cluster centroid. The euclidean distance was used to

determine the closest variables to each cluster centroid. This process was repeated 20 times by

eliminating one watershed (data point) on each run. Again, the top three most selected variables

after 20 runs were considered to be the dominant variables selected by PCA.

For stepwise regression, the method was implemented to select relevant variables for each of

the 19 streamflow percentiles on a single run. For each run a significance level of 0.1 was used

to add a variable and a level of 0.2 to remove a variable. This process was repeated 20 times by

eliminating a watershed on each run. The top three most selected variables across all flows were

considered to be the dominant variables selected by stepwise regression.

Similarity between classifications based on streamflow indices and watershed

descriptors

To assess the classification performance of the variable groups, three existing measures of simi-

larity were initially used. These included the hamming distance (HD) by Dunne et al. (2002), a

similarity index (Ss) by Kalousis et al. (2007), and a consistency index (CI) by Kuncheva (2007).

Given two sets A and B such that set A consists of homogeneous watersheds classified by stream-

flow metrics (reference watersheds or hydrological similarity) and set B consists of homogeneous

watersheds classified by a variable group (physical similarity), the similarities between sets A and

B are computed as follows.

HD = 1− |A \B|+ |B \ A|
n

(4.8)

Ss = 1− |A|+ |B| − 2 |A ∩B|
|A|+ |B| − |A ∩B|

=
|A ∩B|
|A ∪B|

(4.9)

CI =
n |A ∩B| − k2

kn− k2
(4.10)
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Where |A \B| is cardinality of set difference of A from B; |B \ A| is cardinality of set difference

of B from A; |A| is cardinality of set A; |B| is cardinality of set B; |A ∩B| is cardinality of set

intersection of A and B; and |A ∪B| is cardinality of set union of A and B; n is the total number

of features in the original dataset (e.g., 26 watersheds for Appalachian Plateau); k is the size of

features to be compared in set A and B. This study used the minimum size for unequal set sizes.

The hamming distance (HD) does not directly consider the cardinality of the set intersection while

the consistency index (CI) does not directly consider the cardinality of the set differences. Both the

hamming distance and the consistency index are greatly influenced by size of the original dataset

(n) and are suited for equal set sizes. The Kalousis similarity index (Ss) just focuses on the two

sets A and B without direct consideration for the set differences.

Therefore, this study proposed a fourth similarity index (SI) that accounts for the cardinality of

the intersection of A and B, the cardinality of the set difference, and accounts for unequal number

of features in the two sets A and B. The index is based on the assumption that the probability of

a random algorithm (which does not consider correlation or causality) to generate two feature sets

with similar features (intersection) is low while the probability of generating different features is

high. Therefore, the cardinality of the set intersection is given a higher weight (rewarded) than the

cardinality of the set differences (penalized). The index rewards the variable class for selecting the

same homogeneous watersheds as the streamflow metrics (set intersection of A and B), however,

penalizes it for selecting new watersheds not in set A (set differences of B from A) and for elimi-

nating selected watersheds in A (set difference of A from B). This study used weighting factors of

two for the set intersection and one for the set differences. This similarity index (SI) ranges from

zero for totally different sets to one for exact sets.

SI =
1

2

(
1− |A \B|+ |B \ A| − 2 |A ∩B|

|A|+ |B|

)
(4.11)

The performance of the above four similarity metrics was compared to four cluster validity

indices of: 1) Rand index (Rand, 1971); 2) adjusted Rand index (Hubert and Arabie, 1985); 3)

95



Jaccard index (Downton and Brennan, 1980); and 4) Fowlkes and Mallows index (Fowlkes and

Mallows, 1983). The validity indices as defined by Steinley (2004) are expressed below.

RandIndex =
a+ d

a+ b+ c+ d
=

a+ d

N
(4.12)

AdjustedRandIndex =
N(a+ d)− [(a+ b)(a+ c) + (b+ d)(c+ d)]

N2 − [(a+ b)(a+ c) + (b+ d)(c+ d)]
(4.13)

JaccardIndex =
a

a+ b+ c
(4.14)

FowlkesMallows =
a

sqrt(a+ b)(a+ c)
(4.15)

Where a is number of object pairs placed in the same cluster by two methods; b is the number of

object pairs placed in the same cluster by method one but placed in a different cluster by method

two; c is the number of object pairs placed in the same cluster by method two but placed in a

different cluster by method one; and d is number of object pairs that were not placed in the same

cluster by either method. From the definitions of the similarity and cluster validity indices, it can

be deduced that: 1) a = |A ∩B|; 2) b = |A \B|; 3) c = |B \ A|; and 4) d = n− |A ∪B|.

Suppose a dataset consists of 10 catchments (n = 10). Based on hydrological similarity (use

of streamflow metrics), all watersheds are classified as similar (|A| = 10), while using physical

characteristics, only 8 are considered hydrologically similar (|B| = 8). Thus, the cardinality of the

set intersection is 8 (|A ∩B| = 8), cardinality of set difference of A from B is 2 (|A \B| = 2), and

the cardinality of the set difference of B from A is zero (|B \ A| = 0). Therefore using Equations

4.8 to 4.15, the similarity indices are computed as below.

Figure 4.3 depicts more results based on use of variable groups on the Appalachian data. All

similarity metrics showed similar trend with causal variables for the Appalachian giving the high-

est similarity while the PCA selected variables for Piedmont giving the lowest similarity. The
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Hamming distance = 0.80 Rand index = 0.80
Kalousis similarity = 0.80 Adjusted Rand index = 0.00
Consistency index = 1.00 Jaccard index = 0.80
Similarity index (SI) = 0.8889 Fowlkes-Mallows =0.8944

Fowlkes-Mallows index, and the developed similarity index (SI) gave similar results for all vari-

able groups such that the trend lines are on top of each other. The Kalousis similarity index (Ss)

and the Jaccard index gave similar results, and the hamming distance and the Rand index also,

gave similar results. The adjusted Rand index was the most conservative with some values below

zero followed by the consistency index. Work by Steinley (2004) showed that the minimum values

of the adjusted Rand index may fall below zero. Since the performance of the developed similarity

index (SI) is similar to that of Fowlkes-Mallows index and comparable to the Rand index and the

hamming distance with values ranging from zero to one (better interpretation), subsequent assays

in this study are based on SI .

[ Figure 4.3 about here ]

4.3 Results and discussions

Watershed classification by streamflow metrics

Clustering Results of streamflow indices

Figure 4.4 shows results of clustering three streamflow indices into three clusters for each ecore-

gion before the homogeneity and discordancy tests were implemented. The three dimension (3D)

plots depict the three dimension spatial distribution of the clusters while the two dimension (2D)

plots show the dominant clustering variable for each ecoregion. For the Appalachian Plateau, the

cluster centers are more distributed when projected onto streamflow elasticity axis (2D plot), flow

duration curve (FDC) slope axis for the Piedmont, and streamflow elasticity axis for the Ridge and
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Valley. Therefore, streamflow elasticity is the dominant clustering variable followed by the slope

of the flow duration curve. For the Appalachian Plateau and the Piedmont ecoregions, the clusters

with the most number of watersheds are visually obvious, however, for the Ridge and Valley, there

are two clusters each with 12 watersheds. For each ecoregion, homogeneity and discordancy tests

were implemented on clusters with the most watersheds to eliminate misclassified watersheds.

Clusters with the most watersheds after testing for homogeneity and discordancy were considered

to be the reference homogeneous watersheds for each ecoregion.

Reference homogeneous watersheds

Table 4.1 shows the reference homogeneous watersheds (hydrologically similar) for each ecoregion

after homogeneity and discordancy tests with corresponding streamflow metrics and Hosking and

Wallis (1997) H–statistics, while Figure 4.1 shows their map location. The results also depict

the extent of heterogeneity in each ecoregion. For the Appalachian Plateau, 52 % of the sampled

watershed are homogeneous while 75 % for the Piedmont, and 34.5 % for the Ridge and Valley.

This observation was supported by the H–statistics where the homogeneity of typical watersheds

is highest for the Piedmont while lowest for the Ridge and Valley (H1, H2, and H3 values in Table

4.1).

For the Appalachian Plateau, the North Central Appalachian and the Northern Allegheny

Plateau sub-ecoregions have the highest concentration of reference homogeneous watersheds. The

selected reference watersheds are dominated by first–order and second–order streams compared to

the non–selected watersheds. This observation is explained by the average elongation ratios for

the two groups, which is related to the watershed shape. The average elongation ratio (ER) of the

reference watersheds is relatively low with small standard deviation while high with large standard

deviation for the non–selected watersheds. Elongated watersheds (small elongation ratio) tend

to be dominated by first–order and second–order streams compared to circular watersheds (high

elongation ratios). Also, the average summer net precipitation, SNP (difference between summer

precipitation and evapotranspiration) was negative for the reference watersheds while positive for
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the non–selected watersheds. For example, Georges (USGS 01599000) and NB Potomac (USGS

01595000) are close to each other and yet Georges is a reference watershed while NB Potomac is

not. The difference is attributed to difference in shape (ER of 0.68 and 1.45 for Georges and NB

Potomac, respectively) and summer net precipitation (SNP of -117 mm and 17.7 mm for Georges

and NB Potomac, respectively).

For the Piedmont ecoregion, both the Northern Piedmont and the Piedmont sub-ecoregions

have a similar number of selected and non–selected watersheds. The selected reference watersheds

for the Piedmont on average have a smaller drainage area (DA=478.4 km2) and a lower extent

of urbanization (Urban=3.7 %) compared to the non–selected watersheds (DA=888.9 km2 and

Urban=7.9 %). This explains the difference in classification of neighboring watersheds, for exam-

ple, Big Pipe (USGS 01639500) is closer to Monocacy (USGS 01639000) yet Big Pipe (DA=264.2

km2 and Urban=1.8 %) was classified while Monocacy (DA=448.1 km2 and Urban=4.6 %)

was not classified as a reference watershed. Note that some of the non–selected watersheds are

close to neighboring ecoregions. For example, Stony (USGS 02046000) is close to the Piedmont–

Southeastern plains border while West Conewago (USGS 01574000) is at the border between the

Piedmont and Ridge and Valley.

For the Ridge and Valley ecoregion, the reference watersheds are relatively smaller(DA=644.9

km2) and have less surface storage (percent sum of open water and wetlands, SS=0.21 %) com-

pared to non–classified watersheds (DA=756.3 km2 and SS=0.74 %). The non–selected water-

sheds are concentrated in the Northern part of the ecoregion (44.4 % or 8 of 18 in Pennsylvania

state) and are located near a neighboring ecoregion. For example, Cheat (USGS 03069500) and

Youghiogheny (USGS 03075500) are located between two masses of the Central Appalachian.

Wolf Creek (USGS 03175500), Walker (USGS 03173000), and Marsh Creek (USGS 01547700)

are located near the Ridge and Valley and the Appalachian border. While Roanoke (USGS 02055000)

and Marsh Run (USGS 01617800) are closer to the Blue Ridge ecoregion.
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Hypsometry and flow duration curves of reference watersheds

Figure 4.5 shows the general form of hypsometry (top) and flow duration curve (bottom) of the

reference watersheds for each ecoregion. For each ecoregion, the general form was generated by

computing the median of the reference watersheds. Figure 4.6 shows hypsometry and flow duration

curves of three representative watersheds.

[ Figure 4.5 about here ]

[ Figure 4.6 about here ]

As noted previously, the shape of a hypsometric curve can distinguish watersheds dominated

by surface runoff (fluvial landforms–concave shape) from those dominated by sub–surface runoff

(terrestrial sapping landforms–convex shape). The commonly used parameter to distinguish hypso-

metric shape is the hypsometric integral, where 0.5 is the threshold between concave (HI < 0.5)

and convex(HI ≥ 0.5). Vivoni et al. (2008) showed that total runoff was reduced as hypsom-

etry changed from convex to concave if other watershed variables were held constant. There-

fore, from Figure 4.5, the flow that equaled or exceeded 50 % (Q50) of the record time (1966 to

2007) should be highest for the Appalachian Plateau and lowest for the Ridge and Valley because

HIAppa > HIPied > HIRnV . This is demonstrated by the corresponding Q50 in Figure 4.5 in

addition to hypsometric integrals and Q50 of representative watersheds in Figure 4.6. The use of

Q50 for comparison is because the main drivers of flood and drought streamflow conditions are

at their minimum at Q50 and thus Q50 is the best streamflow percentile at which to compare the

effects of topography.

Other watershed variables affect the shape of a flow duration curve. According to Searcy

(1959), a steep curve in the flood region is representative of high flows over a short period, which

is a characteristic of rain–caused floods compared to a relatively flat curve caused by prolonged

travel time (a characteristic of snow–melt floods). These two scenarios are distinct between the

Ridge and Valley (steep FDC in flood region; Q ≤ Q10) and the Appalachian Plateau (relatively

flat FDC in flood region) in Figure 4.5 and Figure 4.6.
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Watershed classification by selected variables

Selected variable classes

Table 4.2 defines the watershed variables while Table 4.3 depicts the three variables used to in-

dependently generate hydrologically similar watersheds by each selection method for each ecore-

gion. Variables of geographic proximity and watershed hypsometry are the same for the three

ecoregions. However, variables selected using stepwise regression, principal component analysis

(PCA), and causal algorithms differ for each ecoregion (refer to Table 4.3). The selected vari-

ables for classification of watersheds in the Appalachian Plateau are dominated by climate using

stepwise regression; climate and topography using PCA; and climate and topography using causal

selection algorithms.

For the Piedmont ecoregion, the selected variables are dominated by soils, topography, and land

use using stepwise regression; climate and topography using PCA; and topography and soils using

causal selection algorithms. For the Ridge and Valley, the selected variables are dominated by

soils and climate using stepwise regression; climate and topography using PCA; and topography,

climate, and soils using causal selection algorithms.

[ Table 4.2 about here ]

[ Table 4.3 about here ]

Classification performance of selected variables

The results of Table 4.4 show that variables of geographical proximity performed best in the Ap-

palachian Plateau. Most methods dominantly selected climatic variables for watershed classifi-

cation in the Appalachian ecoregion (refer to Table 4.3). Accordingly, selected variables of geo-

graphical proximity performed better in the Appalachian (Table 4.4) because geographical prox-

imity may infer the same climatic conditions. The hypsometric variables performed better in the

Piedmont (Table 4.4) where topography was considered relevant by the causal algorithms (interI-

AMBnPC, LCD2, and HITON in Table 4.3).
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[ Table 4.4 about here ]

The performance of the variable selection methods was based on two criteria. The first criterion

was the similarity index (refer to section 4.2): which is the similarity between watersheds classi-

fied as homogeneous using selected variables and the reference watersheds (watersheds classified

using streamflow indices). Similarity index of zero meant that none of the watersheds classified

as homogeneous using selected variables belonged to the reference watersheds while a value of

one meant that all classified watersheds were exactly the same as the reference watersheds. The

second criterion sought to assess the ability of variable selection methods to select variables that

are unique to each ecoregion. For example, variables selected for the Appalachian Plateau should

give the highest classification performance (highest similarity index) when applied to watersheds

from the Appalachian Plateau and give relatively low classification performance for other ecore-

gions. Thus, the second criterion sought to emphasize the uniqueness of an ecoregion. Based on

these two criteria, similarity indices of the main diagonal (3 × 3 matrix) should be higher than

off-diagonal indices (Tables 4.4, 4.5, and 4.6). Ideally, none of the off-diagonal indices should be

equal or greater than the main diagonal similarity indices.

[ Table 4.5 about here ]

[ Table 4.6 about here ]

Based on results from Table 4.4 and Table 4.5, only one method, the HITON Markov Boundary

(HITON-MB) satisfied the two performance criteria. All other methods failed to meet the second

criterion. For example, variables selected by the PCA for Ridge and Valley performed better when

applied to data from the Piedmont (table 4.4 row 9, column 3) than data from Ridge and Valley

(Table 4.4 row 9, column 4). Also, variables selected by stepwise regression for the Appalachian

gave the same performance as variables selected for the Ridge and Valley when applied to data from

Ridge and Valley. Similar examples exist for the GS, interIAMBnPC, and LCD2 methods (Table

4.5). Table 4.6 shows improvement of watershed classification when variables selected by different
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methods are combined. However, combination of variables selected by stepwise regression and

PCA still failed to meet the ecoregion uniqueness criterion.

On average, classification performance was higher for variable groups selected by causal al-

gorithms compared to variable groups selected by stepwise regression and principal component

analysis across all ecoregions. Higher classification performance by variables selected by causal

algorithms was attributed to their intrinsic structure that seeks to establish causal associations be-

tween response and explanatory variables compared to stepwise regression that seeks to minimize

the predictive error or the PCA that seeks to extract a subspace from high dimension data with the

most information. Also, all variable groups performed best in the Piedmont and worst in the Ridge

and Valley. This observation was attributed to the level of homogeneity of the reference watersheds

in each ecoregion. The reference watersheds in the Piedmont were the most homogeneous whereas

reference watersheds of the Ridge and Valley were the least homogeneous (refer to H–statistics of

Table 4.1).

Hydrological implications of the results

Results show that ecoregion alone should not be a basis for regionalization because factors such

as rate of urbanization, watershed shape, drainage area, and extent of surface storage introduce

variability in hydrological functionality of watersheds in the same ecoregion. For this study, of

the total sampled watersheds, 52 % were classified as hydrologically similar for the Appalachian

Plateau, 75 % for the Piedmont and 34.5 % for the Ridge and Valley.

As shown in Table 4.2, this study presents a number of variables that were selected for wa-

tershed classification in each ecoregion by different methods. We hypothesize that these variables

may have important hydrological implications and may contribute to watershed model parameter-

izations and for development of regional regression models. In this study, for the same ecoregion,

different variable selection methods selected different variable groups which gave comparable clas-

sification results (SI ≥ 0.7), however, only one method (HITON-MB) was able to identify vari-

ables that were unique to each ecoregion without compromising classification performance. This
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may imply that the robustness of regionalized flow indices and regionalized model parameters may

greatly depend on robustness of the variable selection method.

4.4 Conclusions

This study evaluated the ability of variables selected using different methods to identify the same

hydrologically similar reference watersheds classified using streamflow indices in three Mid-Atlantic

physiographic provinces. Watersheds classified using three streamflow indices and k–means clus-

tering were considered to be the reference (”typical”) watersheds for each ecoregion. We then

evaluated the ability of four watershed variable classes to reproduce the exact homogeneous wa-

tersheds selected by the streamflow indices for the Appalachian Plateau, Piedmont, and Ridge and

Valley using k–means clustering. A similarity index was used to compare classification results

by streamflow indices and classification results by watershed variables. The four variable groups

included: (1) geographical proximity; (2) watershed hypsometry; (3) variables selected using four

causal selection algorithms; and (4) variables selected using principal component analysis (PCA)

and stepwise regression.

On average, among variable groups, classification performance was higher for variables se-

lected by causal algorithms (for GS method, SI=0.89 for Appalachian, SI=0.86 for Piedmont, and

SI=0.67 for Ridge and Valley) compared to variables selected by stepwise regression (SI=0.72

for Appalachian, SI=0.87 for Piedmont, and SI=0.64 for Ridge and Valley) and principal com-

ponent analysis (SI=0.71 for Appalachian, SI=0.76 for Piedmont, and SI=0.57 for Ridge and

Valley). Also, only one method (HITON–MB) was able to identify variables that were unique to

each ecoregion without compromising classification performance (refer to Table 4.5; SI=0.71 for

Appalachian, SI=0.90 for Piedmont, and SI=0.72 for Ridge and Valley). Therefore, causal vari-

able selection for watershed classification is recommended over stepwise regression and principal

component analysis.
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Table 4.1: Hydrologically similar watersheds (Reference watersheds) for each ecoregion

ID Gauge Name USGS No. DAa P b FDCc BFId SFEe

Appalachian plateaus (H1=1.06, H2=-0.37, H3=0.07)f

1 Tioga River, PA 01518000 730.4 897 -0.0191 0.574 1.227
2 Cowanesque River, PA 01520000 771.8 953 -0.0219 0.538 1.758
3 Towanda Creek, PA 01532000 556.8 1013 -0.0187 0.563 1.605
4 Tunkhannock Creek, PA 01534000 992.0 940 -0.0163 0.602 1.199
5 WB Susquehanna, PA 01541000 815.8 1113 -0.0146 0.599 1.208
6 Sinnemahoning Creek, PA 01543500 1774.1 1064 -0.0170 0.601 1.675
7 Pine Creek, PA 01548500 1564.4 1242 -0.0170 0.623 1.223
8 Blockhouse Creek, PA 01549500 97.6 993 -0.0170 0.598 1.234
9 Georges creek, MD 01599000 187.5 958 -0.0179 0.583 1.322

10 Buffalo Creek, PA 03049000 354.8 1006 -0.0172 0.579 0.836
11 Redstone Creek, PA 03074500 190.9 1069 -0.0126 0.641 2.250
12 Bluestone river, WV 03179000 1023.0 960 -0.0188 0.575 0.918
13 Big coal river, WV 03198500 1012.7 1176 -0.0184 0.556 1.162

Piedmont (H1=-0.46, H2=0.16, H3=-0.33)
1 Deer Creek at Rocks, MD 01580000 244.5 1135 -0.0088 0.737 1.943
2 Little Falls, MD 01582000 137.0 1064 -0.0090 0.755 2.052
3 Western Run, MD 01583500 154.9 1074 -0.0088 0.745 1.600
4 Patuxent River, MD 01591000 90.1 1080 -0.0116 0.693 2.205
5 Big pipe Creek, MD 01639500 264.2 1095 -0.0121 0.644 1.536
6 Seneca Creek, MD 01645000 261.6 996 -0.0103 0.658 1.795
7 Rapidan River, VA 01667500 1212.1 1072 -0.0129 0.659 1.390
8 Appomattox River, VA 02039500 782.2 1118 -0.0113 0.608 1.893
9 Nottoway River, VA 02044500 821.0 1189 -0.0131 0.604 1.736

10 Pigg River, VA 02058400 909.1 1146 -0.0082 0.669 1.462
11 Goose Creek, VA 02059500 486.9 914 -0.0102 0.654 2.192
12 Big otter River, VA 02061500 815.8 1113 -0.0113 0.670 2.294
13 Falling River, VA 02064000 427.3 1123 -0.0109 0.607 1.657
14 North Mayo River, VA 02070000 279.7 1278 -0.0072 0.691 1.332
15 Sandy River, VA 02074500 287.5 1151 -0.0077 0.649 1.904

Table 4.1: continued on next page
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Table 4.1: continued

ID Gauge Name USGS No. DAa P b FDCc BFId SFEe

Ridge and Valley (H1=-0.54, H2=0.94, H3=0.27)

1 Dunning Creek, PA 01560000 445.5 1003 -0.0189 0.582 1.058

2 Aughwick Creek, PA 01564500 530.9 993 -0.0208 0.574 1.482

3 Wills Creek, MD 01601500 639.7 1077 -0.0187 0.586 1.275

4 Patterson Creek, WV 01604500 572.4 899 -0.0223 0.584 2.399

5 Cacapon River, WV 01611500 1748.2 884 -0.0177 0.593 1.705

6 Back Creek, WV 01614000 608.6 970 -0.0195 0.505 1.334

7 N F Shenandoah, VA 01632000 543.9 899 -0.0227 0.517 1.795

8 Cedar Creek, VA 01634500 264.2 874 -0.0173 0.592 2.264

9 Dunlap Creek, VA 02013000 419.6 1034 -0.0185 0.567 1.404

10 Calfpasture River, VA 02020500 365.2 1085 -0.0208 0.533 1.683

a Drainage area (km2)

b Annual precipitation (mm)

c Slope of the flow duration curve (LS−1km−2)

d Baseflow index (–)

e Streamflow elasticity (–)

f The regional Hosking and Wallis (1997) H1, H2, and H3 statistics
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Table 4.2: Table of watershed descriptors

Variable Units Description

RC – circularity ratio (area to square of perimeter ratio)
RN – ruggedness number (drainage density×relief)
SLEN m slope length
CI – convergence index
SMAX m/km maximum slope
VDEP m average valley depth
CPLAN – plan curvature; rate of change of aspect along a contour
TWI – topographic wetness index
MRVBF – multi resolution index of valley bottom flatness
MRRTF – multi resolution index of ridge top flatness
LDP km longest drainage path (main channel length)
TSL km total stream length
MCS m/km main channel slope
AMEAN deg average aspect
MAP mm mean annual precipitation
MAET mm mean annual evapotranspiration
NAP mm net annual precipitation (MAP – MAET)
Agric % area under agriculture
Urban % developed areas of low, medium, and high intensity
AWC cm/cm available water content
rockDep cm depth to bedrock
hsgC % hydrological soil group C
Hydric % hydric soils
Silt % silt
KSAT cm/hr saturated hydraulic conductivity
Porosity – porosity
MSCL cm macroscopic capillary length
T cm2/hr transmissivity
JUNP mm average June precipitation
AUGP mm average August precipitation
SEPP mm average September precipitation
SepET mm average September evapotranspiration
MMET mm mean monthly potential evapotranspiration
ADI mm annual dryness index ; ADI = MAP

MAET

RFx mm Rainfall equaled or exceeded x % of the record time
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Table 4.4: Classification performance of variables for geographic proximity, watershed hypsome-
try, and variables selected by principal component analysis (PCA) and stepwise regression

Variable class
Ecoregion dataa

Appalachian Piedmont Ridge & Valley

Proximity & Hypsometry

Geographic proximity 0.64 0.52 0.48

watershed hypsometry 0.40 0.71 0.29

PCA

Appalachian 0.71 0.64 0.67

Piedmont 0.33 0.76 0.54

Ridge & Valley 0.50 0.71 0.57

Stepwise

Appalachian 0.72 0.58 0.64

Piedmont 0.67 0.87 0.50

Ridge & Valley 0.40 0.55 0.64

a Each cell represents classification performance (similarity index) of variables selected by
the method (PCA or stepwise) for a specific ecoregion (corresponding row heading) when
applied to data from a specific ecoregion (corresponding column heading). A value of one
means watersheds classified as homogeneous using selected variables are exactly the same
as the reference watersheds (classified using streamflow indices).

116



Table 4.5: Classification performance of variables selected by causal variable selection algorithms
of Grow-Shrink (GS), interleaved Incremental Association Markov Blanket with Parents and Chil-
dren (interIAMBnPC), Local Causal Discovery (LCD), and the HITON Markov Blanket (HITON–
MB).

Variable class
Ecoregion data

Appalachian Piedmont Ridge & Valley

GS

Appalachian 0.89 0.43 0.40

Piedmont 0.67 0.86 0.25

Ridge & Valley 0.38 0.72 0.67

interIAMBnPC

Appalachian 0.81 0.64 0.62

Piedmont 0.50 0.81 0.46

Ridge & Valley 0.59 0.67 0.62

LCD2

Appalachian 0.77 0.90 0.67

Piedmont 0.50 0.93 0.31

Ridge & Valley 0.52 0.42 0.73

HITON-MB

Appalachian 0.71 0.50 0.46

Piedmont 0.35 0.90 0.48

Ridge & Valley 0.67 0.58 0.72
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Table 4.6: Classification performance of variables selected by combining selected variables from
two variable selection methods.

Variable class
Ecoregion data

Appalachian Piedmont Ridge & Valley

PCA & Stepwise

Appalachian 0.81 0.54 0.26

Piedmont 0.67 0.90 0.50

Ridge & Valley 0.64 0.36 0.64

HITON-MB & interIAMBnPC

Appalachian 0.81 0.64 0.62

Piedmont 0.35 0.90 0.48

Ridge & Valley 0.67 0.58 0.72

HITON-MB & GS

Appalachian 0.89 0.43 0.40

Piedmont 0.38 0.93 0.48

Ridge & Valley 0.67 0.58 0.72
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Figure 4.2: Fishnet plots of topography of headwaters of representative watersheds for each ecore-
gion.
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Figure 4.3: Comparison of similarity indices. The Rand Index, adjusted Rand Index, Jaccard
Index, and the Fowlkes–Mallows Index are primarily used in analysis of cluster validity; while the
Hamming Distance, Kalousis Similarity, and the Consistency Index are used in analysis of stability
(robustness) and consistency of variable selection methods. The Similarity Index developed in this
study gives similar results as the Fowlkes–Mallows Index and is comparable to the Rand Index and
Hamming Distance.
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Figure 4.5: Characteristic hypsometry (top) and flow duration curve for each ecoregion. Char-
acteristic curves were computed as medians of reference watersheds. Appalachian plateaus are
dominated by convex shape (HIAppa > 0.5) while Piedmont and Ridge and Valley are dominated
by concave hypsometry (HIPied and HIRnV < 0.5). Corresponding flow decreases as hypsometry
changes from convex to concave (Q50Appa > Q50Pied > Q50RnV ).
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CHAPTER 5

DAILY STREAMFLOW PREDICTION FOR UNGAUGED

WATERSHEDS BY INDEPENDENT ESTIMATION OF

MAGNITUDE AND TEMPORAL SEQUENCE

1Ssegane, H., Tollner E. W., Mohamoud Y. M., Rasmussen T. C., and Dowd J. F. To be submitted to Journal of
Environmental Modelling and Software
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Abstract

The process of predicting daily streamflow using hydrologic models implicitly predicts streamflow

magnitude and temporal sequence concurrently. However, if one conceptualizes streamflow as a

composite of two separable components of magnitude and sequence, then each component can

be predicted separately and then combined. This study independently predicted streamflow mag-

nitude using regionalized flow duration curves and streamflow sequence for watersheds (basins)

in three Mid–Atlantic regions of Appalachian Plateaus (28 basins; 98–1779 km2), Piedmont (19

basins; 34.8–620 km2), and Ridge and Valley (25 basins; 48–1857 km2). The two components

were combined using a shuffling technique (sorting) to generate predicted daily streamflow. The

study also assessed the effect of relative drainage area of gauged (donor) and ungauged (target) wa-

tersheds, distance between gauged and ungauged watersheds, and use of ensemble techniques, on

accuracy of predicted sequence. The results show that this approach better predicted daily stream-

flow (Nash–Sutcliffe Efficiency, NSE = 0.88 for Cheat River near Parsons, WV) than Hydrologic

Simulation Program–Fortran (HSPF; NSE = 0.33 ), even after HSPF calibration using parame-

ter estimation software (PEST; NSE = 0.43). The drainage area of the donor watershed had

no effect on accuracy of predicted sequence while distance had. Ensemble methods of geometric

mean, Monte–Carlo, bootstrap aggregation (bagging), and modified bagging (boosting) provided

the greatest improvements in accuracy of predicted sequence. For Cheat River (USGS 03069500),

boosting improved NSE of predicted daily streamflow from 0.76 to 0.88.
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5.1 Introduction

Water resources planning and management requires long–term streamflow data to assess feasibility

of establishing engineering structures such as dams and bridges, assessment of environmental and

ecological integrity of rivers, allocation of water resources among competing uses, establishment

of water quality standards, watershed management, and disaster preparedness in case of flood

and drought conditions. Such data may be available at gauged sites; however many watersheds

(drainage basins) in developed and developing countries lack long–term streamflow data and thus

the need to predict streamflow in ungauged watersheds (Mazvimavi et al., 2005; Pavizham et al.,

2009; Sivapalan, 2003). For example, according to Besaw et al. (2010), less than 10 % of rivers in

the U.S are gauged by the U.S. Geological Survey (USGS) on a daily basis.

Two methods for predicting streamflow in ungauged watersheds include: 1) statistical regional-

ization (Engeland and Hisdal, 2009; Garcia-Martinó et al., 1996; Kokkonen et al., 2003; Laaha and

Bloschl, 2006; Mohamoud, 2008; Zhu and Day, 2009), where multiple regression analysis is used

to correlate hydrological responses of watersheds to physical and climatic attributes; and 2) use of

regionalized hydrological model parameters (Bárdossy, 2007; Bastola et al., 2008; Gotzinger and

Bárdossy, 2007; Hughes et al., 2010), where watershed characteristics of ungauged watersheds are

related to optimized hydrologic model parameters at gauged watersheds. Both approaches use re-

gionalization to infer hydrological similarity between watersheds in the same hydrological region.

The regionalization process involves grouping watersheds with similar hydrological response such

that relationships between flow regimes, climatic and watershed characteristics derived at gauged

watersheds are used to predict flow at ungauged watersheds (Srinivas et al., 2008).

Regarding statistical regionalization, Garcia-Martinó et al. (1996) used 53 watershed charac-

teristics and multiple regression analysis to derive equations for low–flow indices for 19 water-

sheds (0.19–38.50 km2) of humid Montane regions of Puerto Rico (U.S) while Mohamoud (2008)

used 42 variables and regression analysis to derive regional equations of 15 percentiles of a flow

duration curve for 29 watersheds (23.30–4,250.94 km2) in Mid-Atlantic ecoregions (U.S). For re-

gionalized hydrological model parameters, Bastola et al. (2008) used regionalization schemes of
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multiple regressions, artificial neural network, and partial least–squares regression on 26 water-

sheds (25.5–8,936 km2) to generate regionalized parameters of TOPMODEL (Beven et al., 1995).

Heuvelmans et al. (2006) compared linear regression and artificial neural network regionalization

schemes to generate SWAT (Neitsch et al., 2001) model parameters based on data of 25 watersheds

(2.24–209.93 km2).

Some of the approaches above, predict streamflow time series and thus implicitly predict

streamflow magnitude and temporal sequence concurrently. An alternative approach that has not

been fully explored is the conceptualization of streamflow as a composite of magnitude and se-

quence, such that each component (magnitude and sequence) can be modeled independently (Mo-

hamoud, 2008, 2011). The magnitude can be modeled using the flow duration curve (FDC), which

estimates percentage of time specific stream flows are equaled or exceeded based on historical flow

records of a watershed (Ganora et al., 2009; Vogel and Fennessey, 1994, 1995). The FDC, based

on daily streamflow, may be viewed as the hydrological system memory because it represents all

flow magnitudes experienced by the watershed for the epoch under consideration. For this study

the terms magnitude and FDC are used interchangeably. The streamflow sequence is defined as

the timing or the temporal occurrence of streamflow magnitudes and therefore determines the date

or the Julian day number when a specific magnitude occurred.

Many studies are replete with methods of estimating flow duration curves for ungauged water-

sheds.Commonly used approaches utilize regression analysis to develop regionalized flow equa-

tions linking watershed hydrologic response to climatic and geophysical characteristics (Castel-

larin et al., 2007; Chalise et al., 2003; Li et al., 2010; Mohamoud, 2008; Sanborn and Bledsoe,

2006). Also, the use of Monte Carlo resampling, bootstrap aggregating (bagging), and boosting

(modified bagging) have become common place in hydrology (Anctil and Lauzon, 2004; Barnett

et al., 2008; Boucher et al., 2010; Ebtehaj et al., 2010; Rustomji and Wilkinson, 2008; Selle and

Hannah, 2010; Tiwari and Chatterjee, 2010). For Monte Carlo resampling, given mean and stan-

dard deviation of a sample, and an assumed distribution of the population, a new dataset can be

generated. Bootstrapping involves randomly drawing values from a sample with replacement a
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predefined number of times, while aggregation is taking the arithmetic mean of bootstrap sample.

The concept of bagging assumes equal weight for each instance of the sample in the original sam-

ple such that each instance has an equal probability of selection during resampling. Boosting starts

off with equal weight for each instance, however, the weights are increased for sample instances

with poor classification or prediction results during training such that the probability of selecting

such instances is higher during training. Boucher et al. (2010) and Anctil and Lauzon (2004) have

shown that the performance of boosting in hydrology is comparable to performance of bagging

and sometimes even better.

Studies by Mohamoud (2008) and Mohamoud (2011) detail the concept of streamflow sep-

aration. The streamflow magnitude was predicted using regionalized flow duration curve while

streamflow sequence was predicted using sequence of a neighboring gauged watershed. Daily

streamflow was then predicted using a reshuffling technique that sorted predicted streamflow mag-

nitude with respect to the predicted sequence. Earlier literature that introduce the concept include

Hughes and Smakhtin (1996) and Smakhtin et al. (1997) where the approach is used to patch and

extend daily streamflow in South African watersheds. The two papers refer to the approach as a

spatial interpolation method. Smakhtin et al. (1997) cites the ability to accurately predict daily

FDC and use of appropriate source of sequence as the major challenges of method. None of the

above literature quantifies the effect of drainage area of the donor watershed (gauged) and the effect

of the distance between donor and target (ungauged) watersheds on the accuracy of the predicted

daily streamflow.

The first objective of this study is to develop regionalized flow duration curves for three Mid-

Atlantic physiographic provinces (Appalachian Plateau, Piedmont, and Ridge and Valley) using

variables selected by a causal variable selection method, the HITON Markov boundary (HITON–

MB) algorithm (Aliferis et al., 2010, 2003a; Fu and Desmarais, 2010) instead of the commonly

used stepwise regression analysis and principal component analysis. Previous work by the authors

(Ssegane et al., 2011a,b) demonstrated that HITON–MB better selected process driven variables

than stepwise regression and principal component analysis. The HITON–MB algorithm seeks to
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select causal variables by reconstructing the Markov Blanket of the response variable, therefore,

the implied causation is probabilistic causation. The second objective examines the effect of the

relative distance between the gauged (donor) and ungauged (target) watersheds, and their relative

drainage areas, on the accuracy of the predicted daily streamflow using the streamflow separa-

tion (SFS) method. The third objective improves the accuracy of predicted daily streamflow by

enhancing streamflow sequence of ungauged watershed from an ensemble of streamflow data of

more than one gauged watershed. The explored ensemble techniques include: Pythagorean means

(arithmetic, geometric, and harmonic); quadratic mean; weighted means (distance and drainage

area); and use of Monte Carlo resampling from a normal distribution, bagging, and boosting. The

fourth objective compares prediction performance of SFS method to simulations by Hydrological

Simulation Program–Fortran (HSPF). HSPF is a semi–distributed hydrologic and water quality

model developed by U.S. Environmental Protection Agency (Bicknell et al., 2001). The model has

been applied on watersheds to estimate flow, sediment and nutrient transport (Anne and Uchrin,

2007; Chung and Lee, 2009; Diaz-Ramirez et al., 2008).

5.2 Methods

Study area and watershed data

Three Mid-Atlantic (U.S.) physiographic provinces (Figure 5.1; Appalachian Plateau, Piedmont,

and the Ridge and Valley) are examined in this study. According to Haering and Evanylo (2006),

the long term annual precipitation of the Mid–Atlantic region varies between 889 mm and 1270

mm. The landscape and geology vary between provinces (see Haering and Evanylo, 2006, chap. 2).

The Appalachian Plateau are steeply sloping with forest coverage and are dominated by sandstones,

siltstones, and shales; the Piedmont is characterized by gentle slopes underlain by igneous and

metamorphic rocks; and the ridges of the Ridge and Valley are covered by rocky soils on steep

slopes while the valleys are covered by limestones and shales.

[ Figure 5.1 about here ]
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The streamflow data used with all watersheds spanned the same 42 year epoch (1965 to 2007).

The sample data consisted of 28 watersheds (98–1,779 km2) for the Appalachian Plateau, 19 wa-

tersheds (34.8–620 km2) for the Piedmont, and 25 watersheds (48–1,857 km2) for the Ridge and

Valley. Data sources included the U.S. Geological Survey (USGS) for streamflow, the National

Weather Service (NWS) for climatic data, the Natural Resources Conservation Service (NRCS)

for STATSGO soil data, and the National Hydrology Dataset (NHD) compiled by USGS for sam-

ple watersheds with minimum level of urbanization and surface storage. Data extraction, prepro-

cessing, and management used readily available geographical information service (GIS) tools such

as ArcGIS (ESRI Inc. – proprietary), BASINS 4.0 (USEPA – public domain), and Systems for

Automated Geoscientific Analyses (SAGA-GIS – public domain). Watershed characteristics were

selected based on their likely contribution to the hydrological response as supported by informa-

tion from the literature (e.g. Alcazar et al., 2008; Castellarin et al., 2007; Eng et al., 2007; Johnston

and Shmagin, 2008; Mohamoud, 2008; Sanborn and Bledsoe, 2006; Sando et al., 2009; Srinivas

et al., 2008).

Data preprocessing

The initial set of variables constituted 111 parameters (41 topographic, 39 climatic, 6 land use

and land cover, and 25 soil and physical parameters) for each watershed. The use of few land use

and land cover (LULC) variables was based on selection of watersheds that were predominantly

forested. A correlation matrix of the variables was generated, from which pairwise variables with

a correlation coefficient greater than 0.9 were identified for primary dimension reduction. Given

two highly correlated variables, the variable which provided the highest incremental gain about

the response variable was retained. The incremental gain (Schroedl, 2010) was computed as a

function of: (1) mutual information between the variable and the response variable (variable rele-

vance); (2) mutual information of different variables (variable redundancy); and (3) the increase of

mutual information between previously selected variables and the response variable conditioned

on a selected variable (conditional redundancy).
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The incremental gain of highly correlated variables was computed for 19 flow percentiles and

the average value was used as the representative information gain. The 19 flow percentiles in-

cluded: high flows (Q0.01, Q0.05, Q0.1, Q0.5, Q1, Q5, Q10); medium flows (Q20, Q30, Q40, Q50, Q60,

Q70); and low–flows (Q80, Q90, Q95, Q99, Q99.5, Q99.9); where, Qp represents the flow magnitude

equaled or exceeded p percent of the flow record (1965 to 2007). This process reduced the 111

original variables to 92 variables (Refer to Ssegane et al. (2011a,b)).

Flow duration curves for each watershed in the three physiographic provinces were generated

using daily streamflow and a Weibull plotting position for the 1965 to 2007 time period. The

streamflow percentiles were normalized by dividing them with respective drainage areas to min-

imize the effect of drainage area on variable selection. A minimum–maximum standardization

(Equation 5.1) was, then implemented on the logarithmic transformed streamflow percentiles and

the explanatory variables.

F (Sk) =
Sk −min {S}

max {S} −min {S}
(5.1)

where pi is probability of exceedence; Q is a random variable of qi; qi is ordered streamflow; i is

rank of qi; N is total number of streamflow records; F (Sk) is the transformed kth term of variable

S; and Sk is the kth term of variable S.

Variable Selection of watershed descriptors

The causal explorer toolkit was used to implement the causal variable selection method of HITON–

MB (Aliferis et al., 2003b). The variable selection process entailed: 1) randomly deleting a single

watershed; 2) running the variable selection on the remaining watersheds; 3) summarizing vari-

ables selected by each method for each of the 19 flow percentiles; 4) repeating steps 1 to 3 by

excluding a different watershed with replacement on each run. The top five most selected variables

for each flow percentile were used to generate the regional equations. Details for the Piedmont

physiographic province are contained in Ssegane et al. (2011a).
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Estimation of streamflow magnitude

Our conceptualization of daily streamflow separates streamflow magnitudes from their sequence.

Therefore, given accurate characterization of streamflow magnitude (FDC) at ungauged watershed,

one can reconstruct the daily streamflow using a surrogate sequence. This two step approach

is referred to as streamflow separation (SFS). The fist step independently determines streamflow

magnitude and streamflow sequence while the second step combines magnitude and sequence to

generate streamflow time series.

The streamflow magnitudes were estimated using a regionalized flow duration curve (RFDC).

The development of RFDC for each province entailed: 1) calculation of the 19 flow percentiles

for each watershed; 2) variable selection for each flow percentile; 3) and determination of the

regional equation for each flow percentile. The regional equations were determined by curve fitting

of selected variables to predetermined functional forms. Several functional forms were explored,

however, the two optimum forms of Equations 5.2 and 5.3 gave the highest predictive power across

all 19 streamflow percentiles. For each physiographic province and streamflow percentile, the

functional form and the two or three variables (out of top five variables) that best minimized the

sum of square errors during calibration were selected as the optimum predictor equations.

Qp =
aDA

1 +X1

(
b+ c

X2

X3

)
(5.2)

Qp = a10bDAcXd
1X

e
2 + f (5.3)

where Qp is the pth flow percentile; DA is watershed drainage area ; Xi is a selected variable; and

a,b, c, d, e, and f are optimized regional coefficients that vary across physiographic provinces.
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The above described procedure only generates 19 points on a flow duration curve with proba-

bilities ranging from 0.01 to 99.9 and corresponding flow percentiles of Q0.01 to Q99.9. However,

if the duration of interest is 11 years between 01 January 2000 to 31 December 2010, one needs

a total of 4017 points on the FDC with corresponding probabilities ranging from 0.025 to 99.975.

This study used linear interpolation and extrapolation to generate all points of the FDC for the

period under consideration.

Estimation of streamflow sequence

The streamflow sequence was estimated using the sequence obtained from neighboring gauged

watershed, also referred to as the donor watershed. Generation of a sequence involves chronicling

the Julian day number and rank for the specific streamflow magnitude. For example, given daily

streamflow data for a non leap year, the Julian day numbers range from 1 to 365 and the sequential

value on each day is the rank of the magnitude for that day. Thus the sequence will take on numbers

between 1 and 365. For 11 years between the first of January 2000 to the thirty first of December

2010, the sequence will take on numbers between 1 and 4017. Therefore, the sequential values

are determined by the period under consideration. For more information on streamflow sequence

estimation, readers may refer to Hughes and Smakhtin (1996); Mohamoud (2008, 2011); Smakhtin

et al. (1997).

Effect of distance and drainage area

We quantified the effect of distance and drainage area of donor watersheds by using the sequences

of four closest donor watersheds. The use of the term closest is limited to watersheds in our

database for each province and therefore does not characterize the entire true geographical neigh-

borhood. The geographical proximity between gaged and ungauged watersheds was calculated

by computing for the Euclidean distance between the centroids of target and all remaining water-

sheds. The effect of drainage area was determined using the ratio of the donor to target drainage

area (DAR). The effect of distance and drainage area were tested using the student t–statistic at 5
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% level of statistical significance. The performance of predicted daily streamflow was used as the

response variable, while predicted magnitude (FDC) performance, DAR, and Euclidean distance

used as the explanatory variables.

Use of Pythagorean, quadratic, and weighted means

This study explored ways of improving the predicted sequence by using Pythagorean, quadratic,

and weighted means of daily streamflow values of the two closest donor watersheds. The schematic

representation of the process is depicted by Figure 5.2. Preliminary analysis showed that use of

two closest donor watersheds gave better results than use of three or four. This was attributed to

introduction of more errors as the distance from the ungauged watershed increases because effects

of watershed heterogeneity become more apparent. The Pythagorean means (Eves, 2003) included

arithmetic mean(Equation 5.4), geometric mean (Equation 5.5), and the harmonic mean (Equation

5.7). The weighted means used the euclidean distance between the centroids of target and donor

watersheds, and the drainage area as the weighting factors. The use of Julian day means generated

six additional sets of new sequences.

Ai =
1

n

n∑
j=1

xj
i (5.4)

Gi = n

√√√√ n∏
j=1

xj
i (5.5)

1

Hi

=
1

n

n∑
j=1

1

xj
i

(5.6)

Qi =

[
1

n

n∑
j=1

(
xj
i

)2] 1
2

(5.7)

where Ai, Gi, Hi, and Qi are the arithmetic, geometric, harmonic, and quadratic means on the ith

Julian day number, respectively; xj
i is the streamflow magnitude on ith Julian day number of the

jth donor watershed; and n is the total number of donor watersheds. For this study only two donor

watersheds were used.
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Monte Carlo resampling, bagging, and boosting

For this study both resampling techniques were performed 100 times on each Julian day number

and the arithmetic mean of the new sample was the new estimated value for sequence prediction.

Sampling more than 100 times did not improve the results. This might be attributed to a small orig-

inal sample (17 values) for each Julian day, such that multiple sampling beyond 100 just replicates

the same distribution as 100 samples. The Julian day number sample consisted of values from the

four donor watersheds and values from Pythagorean, quadratic, and weighted means, in addition to

the minimum and maximum of the two closest donor watersheds. Regarding Monte Carlo resam-

pling, assumptions of normal and log–normal distributions were tested. The preliminary results

for log–normal distribution were relatively poor and therefore subsequent analysis assumed only

normal distribution.

For this study the concept of boosting was implemented by increasing the probability of select-

ing values from better performing ensemble techniques. For example, preliminary results showed

that distance weighted and the geometric means performed better than quadratic and arithmetic

means, therefore, the new sample for bootstrapping was stacked with more values from these

means.

Combination of predicted magnitude and sequence

The procedure of combining predicted streamflow magnitude and sequence to generate daily stream-

flow is described as follows

Practically, Steps 2 and 3 can be combined into one step by directly sorting the streamflow of

the donor watershed in a descending order, however, the description above tries to emphasize the

rank as the main focus compared to the magnitude of the donor watershed. For details refer to

(Mohamoud, 2011).
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Step Action

1

Start with daily streamflow data of a donor watershed covering the same period as the
predicted FDC. By default the data is sorted in an ascending order of the Julian day
number. Therefore, you should have two columns. Column 1 is the Julian day number
and column 2 the corresponding streamflow magnitude of the donor watershed.

2 Generate column 3 as the rank of the streamflow magnitude corresponding to the respec-
tive Julian day number.

3 Sort the rank (column 3) in a descending order while maintaining the corresponding
Julian day number and donor streamflow magnitude

4
Copy and paste the predicted magnitudes (FDC flow percentiles) into a new column (col-
umn 4). Recall, by default the predicted magnitudes are already sorted in a descending
order.

5 Re–sort the Julian day number (column 1) in an ascending order while maintaining the
corresponding values in columns two to four.

6 The rearranged magnitudes in column 4 are the predicted streamflow for the correspond-
ing Julian day number.

Jackknife cross–validation

To assess the predictive performance of the method, a process of jackknife cross–validation was

implemented. The process consisted of the following steps

For both R2 (0 ≤ R2 ≤ 1.0) and NSE (−∞ ≤ NSE ≤ 1.0), a value of one is optimum while

for MAE and RMSE, better prediction power coincides with smaller values.
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Step Action

1 Elimination of the watershed of interest (target) from the sample data

2 Generation of regionalized flow duration curves (RFDC) based on the remaining data

3 Prediction of magnitude, sequence, and daily streamflow of the target watershed based
on methods described in sections 5.2, 5.2, and 5.2

4
Given predicted and observed daily streamflow, evaluation of predictive performance
using coefficient of determination (R2), Nash–Sutcliffe coefficient of efficiency (NSE),
mean absolute error (MAE), and root mean square error (RMSE)

Comparison of streamflow separation to HSPF simulations

One watershed from each province was selected for comparing HSPF simulations to results of the

method described above. West Branch Susquehanna River, PA (01541000) was selected for the

Appalachian, Nottoway River near Rawlings, VA (02044500) for the Piedmont, and Cheat River

near Parsons, WV (03069500) for the Ridge and Valley. Digital elevation model (DEM) resolution

of 30 m was used to generate watershed boundary and sub–watersheds for each watershed. U.S.

EPA - BASINS 4.0 program was used to download the respective data sets and preparing the input

files for WinHSPF simulations. The following weather stations were used for input climatic data:

PA367167 (1982–2007) for Susquehanna, VA441322 (1972–2006) for Nottoway, and WV463464

(1973–2006) for Cheat River. The HSPF simulations were implemented using WinHSPF for the

1985 to 2005 epoch. Two simulation scenarios were implemented: one focused on forward simu-

lation without calibration (HSPF) while the second focused on automated calibration using param-

eter estimation software, PEST (HSPF PEST).
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5.3 Results and discussions

Streamflow magnitude

Tables 5.1 and 5.2 define watershed and climatic variables while tables 5.3 to 5.5, depict equations

of regionalized flow duration curve (RFDC) for the three provinces. The equations were developed

using all data samples for each ecoregion. The coefficients of determinations (R2) corresponding

to predicted 19 streamflow percentiles show better predictions (R2 ≥ 0.8) for high (Q0.01–Q10)

and medium (Q20–Q70) flows compared to low–flows (Q80–Q99.9). The same trend was observed

during the Jackknife cross–validation (section 5.2 and Figure 5.3). The most selected variables

for magnitude prediction are dominated by: topography and climate for Appalachian Plateau;

topography and soils for Piedmont; and soils and climate for Ridge and Valley.

[ Table 5.1 about here ]

[ Table 5.2 about here ]

[ Table 5.3 about here ]

[ Table 5.4 about here ]

[ Table 5.5 about here ]

Figure 3.2 compares predicted and observed streamflow magnitudes for sample watersheds

from each province. The graphs compare prediction results of the RFDC to predictions by HSPF

hydrologic model before calibration (HSPF) and after calibration using PEST (HSPF PEST). For

all the three sample cases, the RFDC gave better predictions than HSPF, even after PEST calibra-

tion.

[ Figure 5.3 about here ]
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For some instances (Nottoway River near Rawlings, VA; Figure 5.3), there is better visual

agreement between HSPF predictions after calibration and observed data than with RFDC predic-

tion, yet the Nash–Sutcliffe efficiency (NSE) is greater for RFDC predictions. This observation is

attributed to better predictions at high streamflow magnitudes by RFDC compared to medium and

low magnitudes. This skews the overall performance metric because of the larger errors for high

flows compared to medium and low flows. The results also show that watershed and climatic vari-

ables selected by a causal variable selection algorithm (HITON–MB) have high predictive power

for daily streamflow magnitudes. The high predictive power does not mean the regionalized flow

duration curve better represents the underlying hydrological process than HSPF since predictive

power may depend on measurement noise than the hydrological processes. However, use of causal

variable selection algorithm seeks to minimize the effect of measurement noise on selected features

compared to stepwise regression.

Effect of drainage area, distance, and land cover on predicted sequence

Figure 5.4 illustrates the orientation, size, and euclidean distance between centroids of the four

closest donor watersheds in the neighborhood of the target watershed (Cheat River 03069500).

Statistical analysis of the effect of drainage area ratio (ratio of donor to target drainage area)

showed no significant effect by drainage area of the donor watershed on accuracy of predicted

daily streamflow at 5 % level of significance. However, the distance between donor and target

watersheds had a significant effect. On average, the accuracy (NSE) of the predicted magnitude

and distance explained 89 % of the total variability of accuracy of the predicted streamflow.

Figure 5.5 quantifies the relationship between accuracy of predicted magnitude, distance, and

accuracy of predicted streamflow. The figure seeks to identify an upper limit of the radius of

influence from which candidate donor watersheds can be selected. On average, a distance of 30

km can be considered appropriate given the accuracy of the predicted magnitude is greater or equal

to 0.8 (NSE ≥ 0.8). The figure also shows high prediction accuracy using sequences of donor

watersheds whose distance is greater than 30 km and vice–versa. This observation is attributed
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to other factors such as similarity in the level of urbanization and surface storage (sum of percent

surface water and wetlands).

[ Figure 5.4 about here ]

[ Figure 5.5 about here ]

Additional statistical assays of watersheds in the Appalachian Plateau showed that the level of

urbanization and surface storage between donor and target watersheds had a significant effect on

the accuracy of the predicted daily streamflow. Inclusion of the square of the variable differences

between donor and target watersheds for the above variables increased the explained variability

from 89 % to 92 %. The assays further showed that a 1 km increase in the euclidean distance

between donor and target watersheds, decreased the NSE of the predicted daily streamflow by

0.005 from the NSE of the predicted magnitude. Also, 1 % increase or decrease between the

surface storage and level of urbanization of donor and target watersheds decreased the streamflow

NSE by 0.05 and 0.0006, respectively.

The above analysis is supported by streamflow predictions at Blockhouse Creek near English

center (01549500). The closest donor watershed in our sample data is Tioga (01518000) at 29.7

km while the second closest is Pine Creek (01548500) at 38.1 km. However, use of sequence

from Tioga gave NSE of 0.52 compared to NSE of 0.76 for Pine Creek. Assessment of surface

storage for both watersheds showed comparable storage at 0.7 %, but the level of urbanization at

Pine Creek (4.8 %) was more comparable to that at Blockhouse (5.2 %) than at Tioga (2.1 %).

Improvement of sequence prediction

Tables 5.6 to 5.8 depict accuracy of predicted daily streamflow using sequence of neighboring four

watersheds and sequences generated by ensemble methods. The first row demonstrates that use

of true sequence yields the exact accuracy as the predicted magnitude. With a few exceptions, the

accuracy then decreases as the distance between centroids of donor and target watersheds increases.

The results of row 6 to row 13 are based on sequence derived from respective operations on each
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Julian day number (JDN) for the closest two donor watersheds. Results for row 14 are based on a

sequence of the arithmetic mean on each JDN for the two watersheds whose flow duration curves

are most similar to the predicted flow duration curve. Rows 15 to 17 are results of Monte–Carlo

resampling, bagging, and boosting (refer to section 5.2). The improvements were more prevalent

in watersheds where the distance between the first and second closest donor watersheds was less

than 20 km.

[ Table 5.6 about here ]

[ Table 5.7 about here ]

[ Table 5.8 about here ]

[ Figure 5.6 about here ]

The sequence generated from geometric mean of two closest donor watersheds gave better

predictions than any other mean. This is explained by the observation that for a sample with

large and small values, the geometric mean provides the best measure of central tendency while

the arithmetic and the harmonic means are biased toward the large and small values, respectively.

The results derived from geometric mean, Monte–Carlo resampling, bagging, and boosting gave

comparable prediction performance, however, bagging and boosting better improved sequence

prediction than any other method. Therefore, subsequent results are based on boosting (Figure

5.6). Tables 5.9 to 5.11 show prediction accuracy of magnitude using regionalized flow duration

curve (RFDC) and corresponding accuracy of daily streamflow based on sequence prediction by

boosting. Some cases of high accuracy of predicted magnitude (NSEfdc) with low accuracy of

predicted daily streamflow (NSEts) are related to location of the closest donor watershed. For

example, the closest watershed in the sample data for Bluestone (03179000; Table 5.9) is 67 km

(NSEfdc = 0.94; NSEts = 0.46) while for Middle Island (03114500; Table 5.9) is 108.2 km

(NSEfdc = 0.95; NSEts = 0.24).

[ Table 5.9 about here ]
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[ Table 5.10 about here ]

[ Table 5.11 about here ]

Analysis of the results showed that the procedure improved the predicted daily streamflow on

57 % of the watersheds in Appalachian Plateau, 81 % of Piedmont watersheds, and 55 % of Ridge

and Valley watersheds. One plausible explanation for difference in levels of improvement, is the

level of homogeneity of sampled watersheds for each physiographic province. Earlier work by

Ssegane et al. (2011b) showed that for the Appalachian Plateau, 52 % of the sampled watershed

were hydrologically similar while 75 % for the Piedmont, and 34.5 % for the Ridge and Valley.

The level of hydrologic homogeneity among watersheds in each province was computed on an-

nual flows from 1966 to 2007 using Hosking and Wallis (1997) homogeneity tests. The level

of hydrologic homogeneity and the level of sequence improvement follow a similar trend across

physiographic provinces. Therefore, although distance has primary effect on sequence estimation,

other factors that are specific to each province are relevant. Ssegane et al. (2011b) showed that

climatic and topographic variables were major hydrological drivers for watersheds in Appalachian

Plateau; topographic and soil variables for Piedmont; and, topographic, climatic, and soil variables

for Ridge and Valley.

Implications for hydrologic modeling

Figure 5.3 illustrated that streamflow magnitude predictions by regionalized flow duration curve

gave better predictions for high flows compared to calibrated HSPF hydrological model. However,

the PEST calibrated HSPF model gave better predictions for medium and low flow magnitudes.

The two approaches can be combined to utilize their strength and thus provide better characteri-

zation of entire flow duration curve (streamflow magnitude). Figure 5.6 shows a time shot of pre-

dicted daily streamflow using streamflow separation (SFS method) in contrast to observed data and

predictions by HSPF. The results show that even after PEST calibration, the HSPF (HSPF PEST)

explained less than 50 % of the total variability of observed streamflow for 1985 to 2005 epoch
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compared to over 85 % by the SFS method yet the predicted magnitudes were comparable (Figure

5.3). This observation is indicative of the limitation of HSPF to concurrently capture both mag-

nitude and sequence. The HSPF prediction accuracy greatly depends on quality of the climatic

data (precipitation in particular) and therefore, the poor sequence prediction by HSPF may guide

a modeler to revisit input data and examine whether the data captures most of the temporal and

spatial variation of precipitation in the watershed. In absence of better input data, the independent

prediction of streamflow sequence can be implemented following the procedure outlined in this

study.

[ Figure 5.6 about here ]

5.4 Conclusions

The study set out to predict daily streamflow for ungauged watersheds by independently predicting

streamflow magnitude and sequence. The streamflow magnitude was estimated using regionalized

flow duration curves while sequence was estimated by transferring donor (gauged) watershed se-

quence to the target (ungauged) watershed. The effects of drainage area and distance between

donor and target watersheds on the accuracy of predicted sequence were assessed. The relative

drainage area of the donor watershed was not statistically significant during sequence prediction,

however, the distance was. Therefore, the Euclidean distance between centroids of donor and

target watersheds had primary effects on accuracy of predicted sequence, with better results for

a distance less than 40 km. Other factors such as surface storage and level of urbanization had

secondary effects. The geometric mean of streamflow of two closest donor watersheds gave better

sequence prediction than arithmetic, harmonic, and quadratic means.

Ensemble methods of bagging and boosting better improved sequence prediction than use of

just the closest donor watershed given the distance between the first and second closest gauged

watersheds was less than 20 km. Across all watersheds in each province, the boosting method

compared to use of the closest donor watershed, increased NSE of predicted daily streamflow by
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0.040 for the Appalachian watersheds, by 0.042 for the Piedmont, and by 0.100 for the Ridge and

Valley. Specifically, boosting improved the the accuracy (NSE) of predicted daily streamflow for

West Branch Susquehanna River from 0.88 to 0.94; from 0.77 to 0.83 for Nottoway River; and

from 0.76 to 0.88 for Cheat River.

The performance of the streamflow separation method and use of the regionalized flow duration

curves may be limited to watersheds with drainage areas ranging between 98–1,779 km2 for the

Appalachian Plateau, 34.8–620 km2 for the Piedmont, and 48–1,857 km2 for the Ridge and Valley.

The approach also poorly predicted low flows.
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Figure 5.3: Observed and predicted flow duration curves for sample watersheds from Ap-
palachian(top), Piedmont (middle), and Ridge and Valley (bottom). The results include HSPF
prediction without (HSPF) and with PEST calibration (HSPF PEST); and use of streamflow sepa-
ration method (SFS method) for the 1985 to 2005 epoch
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Figure 5.4: Proximity and orientation of four neighboring watersheds to Cheat river near Parsons,
WV (USGS 03069500; Ridge and Valley ecoregion). Neighborhood is based on only the sample
data. The highlighted watershed is the Cheat river watershed.
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Figure 5.5: Relationship between accuracy of predicted daily streamflow (colorbar), the accuracy
of predicted magnitude (y-axis), and the distance between centroids of target and donor watershed
(x-axis) for Appalachian(top), Piedmont (middle), and Ridge and Valley (bottom).
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Figure 5.6: Observed and predicted daily streamflow for sample watersheds from each province.
The corresponding predicted flow duration curves (magnitudes) are given in Figure 5.3. The above
figures display daily streamflow for 1/1/2002 to 12/31/2002, however, the displayed accuracies
(NSE) cover the period 1/1/1985 to 12/31/2005.
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Table 5.1: Topographic and land cover descriptors

Variable Units Description

DA km2 drainage area

EMIN m minimum elevation

ESTD m standard deviation of elevation

RLF m watershed relief

SMAX m/km maximum slope

SSTD m/km standard deviation of slope

CPLAN – plan curvature; rate of change of aspect along a contour

WI – topographic wetness index

MRVBF – multi resolution index of valley bottom flatness

MRRTF – multi resolution index of ridge top flatness

TSL km total stream length

MCS m/km main channel slope

AMEAN deg average aspect

HPC90 m hypsometric curve elevation corresponding to relative watershed area of
0.9

BW km watershed width

DD km/km2 drainage density; DD = TSL÷DA

Barren % barren areas of bedrock and unconsolidated shores

Urban % developed areas of low, medium, and high intensity
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Table 5.2: Soil, physical, and climatic descriptors

Variable Units Description

WTD cm water table depth

rockDep cm depth to bedrock

hsgB % hydrological soil group B

Sdepth cm soil depth

KFFACT – soil erodibility factor with rocks

Silt % silt

OM % percent organic matter

PERM cm/hr permeability from STATSGO data

KSAT cm/hr estimated hydraulic conductivity using pedotransfer function
(Saxton et al., 1986)

Porosity – porosity

PSDIa – pore size distribution index

MSCLa cm macroscopic capillary length

T cm2/hr transmissivity

STORG cm storage; STORG = void× Sdepth

mP mm monthly precipitation (JANP; average January precipitation)

mET mm monthly evapotranspiration

MMET mm mean monthly potential evapotranspiration

ADI mm annual dryness index ; ADI = MAP
MAET

RFx mm Rainfall amount equaled or exceeded x % of the record time
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Table 5.3: Regional equations for Appalachian Plateau

Equation R2

Q1 = 1.79× 103.66DA0.98DecET−1.05SMAX0.026 + 0.13 0.86

Q2 = 0.81× 100.53DA1.18ESTD0.66SMAX0.066 + 0.16 0.83

Q3 = 1.49× 102.49DA0.88SAT 0.35MAY P 0.12 + 0.16 0.92

Q4 = 0.96× 101.09DA0.99SMAX0.034Silt0.685 + 0.13 0.96

Q5 = 1.48× 102.02DA0.93Urban−0.04RF0.50.668 + 0.34 0.96

Q6 = 1.36× 101.89DA0.99Urban−0.088SSTD−0.073 + 0.21 0. 97

Q7 = 0.56× 100.42DA1.04SMAX−0.02OCTP 0.712 + 0.12 0.95

Q8 = 0.66× 100.35DA1.02OCTP 0.706RF200.272 + 0.19 0.93

Q9 = 0.74× 100.62DA1.20SSTD−0.05KFFACT−0.423 + 0.16 0.91

Q10 = 0.55× 100.37DA0.98SMAX−0.047OCTP 0.629 + 0.12 0.91

Q11 = 0.45× 100.21DA0.98OCTP 1.0JunET−0.387 + 0.14 0.89

Q12 = 0.76× 100.74DA1.16SSTD−0.085SMAX−0.033 + 0.11 0.83

Q13 = 0.73× 100.55DA1.15ADI0.70SSTD−0.167 + 0.19 0.83

Q14 = 0.74× 100.64DA1.01SSTD−0.265ADI2.15 + 0.16 0.86

Q15 = 0.74× 100.67DA1.09MRVBF 0.709SMAX−0.112 + 0.14 0.87

Q16 = 0.96× 100.60DA1.03MRVBF 0.619MSCL−0.323 + 0.33 0.78

Q17 = 0.65× 100.35DA1.17BW−0.415MRV BF 0.788 + 0.24 0.72

Q18 = 0.57× 100.30DA1.22MRVBF 0.843BW−0.476 + 0.22 0.70

Q19 = 0.61× 100.34DA1.09MRVBF 0.891RLF−0.166 + 0.19 0.63
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Table 5.4: Regional equations for Piedmont

Equation R2

Q1 = 26.2DA
(
24.61DD + 9.34RF52 − 0.65

SR

)
0.76

Q2 =
25.04DA

1+Porosity

(
25.15− 2.72MarET

MSCL

)
0.86

Q3 =
147.65DA
1+MarET

(
96.70− 64.73STORG

MSCL

)
0.91

Q4 =
69.09DA

1+MarET

(
76.48− 0.923 WI

Urban

)
0.92

Q5 = 1.103DA
(
0.03EMIN + 0.347WI2 − 0.998

RF0.05

)
0.89

Q6 =
87.37DA
1+DECP

(
83.8− 31.35 rockDep

FEBP

)
0. 93

Q7 = 4.59DA(3.72 + 0.31EMIN) 0.85

Q8 = 1.1DA
(
0.12JANP + 1.48OM2 + 1

MarET

)
0.90

Q9 = 1.05DA
(
0.051AMEAN + 1.13OM2 − 0.098

CI

)
0.94

Q10 = 1.14DA
(
0.85MRRTF + 0.168DD2 − 1.614

MRRTF

)
0.94

Q11 = 3.27× 10−1.87DA0.90HPC900.23APRP 0.94 − 1.9 0.94

Q12 = 3.45× 10−1.57DA0.92APRP 0.985MRRTF−0.44 + 2 0.96

Q13 = 0.617× 10−1.20DA0.86MRRTF−0.47APRP 1.203 + 1.1 0.93

Q14 = 8.98× 10−14.2DA0.734MRRTF−1.78WI13.5 + 3.1 0.88

Q15 = 3.14× 103.88DA0.71T−2.34KSAT 1.71 + 8.2 0.65

Q16 = 3.40× 103.72DA0.65KSAT 1.39T−2.21 + 3.4 0.52

Q17 = 0.26× 105.56DA−0.98RF204.57LDP 2.61 − 10 0.57

Q18 = 1526× 1073.4DA72.2T−73TSL−60 + 218.5 0.66

Q19 = 136.7× 10−49.4DA96.2BW−153.9T−32.5 + 79 0.70
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Table 5.5: Regional equations for Ridge and Valley

Equation R2

Q1 =
15.62DA

1+MRV BF

(
−3.08 + 15.84NOV P

MSCL

)
0.82

Q2 =
12.89DA

1+MRV BF

(
10.53 + 7.53 SEPP

MSCL

)
0.88

Q3 =
34.81DA

1+MRV BF

(
19.98− 30.97MSCL

NOV P

)
0.92

Q4 =
53.30DA
1+MSCL

(
48.43 + 41.11 RF20

MRV BF

)
0.89

Q5 =
56.44DA
1+MSCL

(
57.13− 1.49 hsgB

MCS

)
0.88

Q6 =
20.87DA
1+PERM

(
20.90 + 0.07KFFACT

CPLAN

)
0. 96

Q7 =
5.94DA
1+PSDI

(
6.03 + 1.43 Rock

KFFACT

)
0.96

Q8 =
33.08DA

1+MMET

(
29.27 + 5.32 Rock

PSDI

)
0.96

Q9 =
16.91DA
1+WTD

(
16.94− 0.06PERM

RF20

)
0.84

Q10 =
1.29DA

1+MMET

(
1.0− 1.29 JUNP

PSDI20

)
0.95

Q11 =
1.11DA

1+MMET

(
1.0 + 1.11JUNP

PSDI

)
0.95

Q12 =
9.75DA
1+WTD

(
−6.0 + 7.75 JUNP

AprET

)
0.92

Q13 =
5.74DA
1+WTD

(
−4.85 + 3.10 JUNP

MSCL

)
0.94

Q14 = 2.13× 10−3DA1.3(NOV P 1.8WTD−1.03 +MSCL−5.68PERM0.52) 0.88

Q15 = 1.78× 10−5DA1.1(DECP 0.97WI2.82 + PSDI79.26NOV P−100.35) 0.75

Q16 = 6.2× 10−5DA0.93(WI6.57MSCL−1.85 + Sdepth0.87Porosity−10.6) 0.70

Q17 = 3.0× 10−7DA0.79(Porosity1.57WI7.29 + AMEAN−11.5JANP 16.47) 0.53

Q18 = 0.14DA1.67(AMEAN−1.21Sdepth1.32 +OM11.35JANP−3.52) 0.46

Q19 = 34.66DA0.81(SEPP 0.19Porosity5.21 + JANP 11.89AMEAN−11.16) 0.41
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Table 5.6: Prediction of sequence for Susquehanna (USGS 01541000; Appalachian)

ID Source of sequence R2 NSE MAE RMSE

1 SUSQUEHANNA (True sequence) 0.98 0.98 1236 3182

2 CLEARFIELD (19.8 km) 0.88 0.88 3639 8251

3 LITTLE MAHONING (21.8 km) 0.81 0.81 4502 10395

4 BLACKLICK (29.1 km) 0.82 0.82 4225 10065

5 REDBANK (48.4 km) 0.76 0.76 5207 11692

6 Arithmetic mean 0.93 0.92 2895 6500

7 Minimum 0.83 0.83 4377 9737

8 Maximum 0.88 0.88 3617 8169

9 Geometric mean 0.93 0.93 2616 6279

10 Harmonic mean 0.89 0.89 3394 7930

11 Distance weighted mean 0.92 0.92 3020 6753

12 Area weighted mean 0.91 0.91 3216 7191

13 Quadratic mean 0.90 0.90 3335 7431

14 similarity of FDCs 0.88 0.88 3708 8312

15 Monte-Carlo sampling 0.93 0.93 2801 6156

16 Bagging 0.94 0.94 2672 5818

17 Boosting 0.94 0.94 2574 5894

• R2 is the coefficient of determination (0 ≤ R2 ≤ 1.0) and NSE is the Nash–Suticliffe
coefficient of efficiency (−∞ ≤ R2 ≤ 1.0).

• MAE and RMSE are the mean absolute error and root mean square error in liters per
second. Smaller values indicate high prediction.

• Results depict performance of closest donor watersheds and different ensemble methods for
sequence improvement (refer to section 5.2)
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Table 5.7: Prediction of sequence for Nottoway River (USGS 02044500; Piedmont)

ID Source of sequence R2 NSE MAE RMSE

1 NOTTOWAY (True sequence) 0.94 0.93 941 5212

2 DEEP CREEK (20.7 km) 0.77 0.77 2406 9298

3 MEHERRIN (23.9 km) 0.66 0.66 2421 11341

4 STONY (30.7 km) 0.69 0.69 2748 10859

5 APPOMATTOX (54.5 km) 0.50 0.48 3954 14081

6 Arithmetic mean 0.80 0.80 1989 8728

7 Minimum 0.79 0.78 2353 9083

8 Maximum 0.68 0.68 2398 11018

9 Geometric mean 0.84 0.84 1811 7915

10 Harmonic mean 0.82 0.82 2034 8304

11 Distance weighted mean 0.82 0.81 1932 8420

12 Area weighted mean 0.71 0.70 2296 10611

13 Quadratic mean 0.75 0.75 2209 9785

14 similarity of FDCs 0.73 0.73 2407 10187

15 Monte-Carlo sampling 0.83 0.82 1931 8166

16 Bagging 0.83 0.83 1878 8031

17 Boosting 0.84 0.83 1830 7993
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Table 5.8: Prediction of sequence for Cheat River (USGS 03069500; Ridge and Valley)

ID Source of sequence R2 NSE MAE RMSE

1 CHEAT (True sequence) 0.99 0.99 4132 7559

2 TYGART (29.9 km) 0.78 0.76 14777 35240

3 YOUGHIOGHENY (53.6 km) 0.77 0.76 16973 35779

4 GREENBRIER (61.4 km) 0.71 0.69 18572 40587

5 CEDAR CREEK (61.6 km) 0.37 0.22 31653 64103

6 Arithmetic mean 0.86 0.85 12491 28007

7 Minimum 0.80 0.79 16134 33591

8 Maximum 0.79 0.77 14612 34576

9 Geometric mean 0.87 0.87 12339 26435

10 Harmonic mean 0.85 0.84 13706 29043

11 Distance weighted mean 0.85 0.84 12628 28806

12 Area weighted mean 0.81 0.80 13857 32596

13 Quadratic mean 0.82 0.81 13462 31649

14 similarity of FDCs 0.83 0.82 13974 31068

15 Monte-Carlo sampling 0.88 0.88 11774 25374

16 Bagging 0.88 0.88 11634 25234

17 Boosting 0.88 0.88 11752 25506
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Table 5.9: Prediction performance on sample watersheds of Appalachian Plateau

USGS # Name Areaa Distb NSEc
fdc NSEd

near NSEe
boost

03010500 Allegheny 1423 28.6 0.94 0.47 0.56

03042000 Blacklick 491 29.1 0.92 0.78 0.79

01549500 Blockhouse 98 29.7 0.96 0.52 0.75

03179000 Bluestone 1023 66.7 0.94 0.46 0.46

03049000 Buffalo 355 24.2 0.96 0.76 0.76

03078000 Casselman 164 35.1 0.96 0.71 0.84

01541500 Clearfield 961 19.8 0.97 0.85 0.85

03106000 Connoquene 922 24.2 0.94 0.75 0.75

01520000 Cowanesque 774 28.6 0.87 0.36 0.52

03187500 Cranberry 207 9.7 0.78 0.72 0.72

03011800 Kinzua 101 16.0 0.96 0.79 0.66

03080000 Laurel 312 37.3 0.9 0.69 0.76

03034500 Little Mahoning 222 21.8 0.97 0.81 0.81

03114500 Middle Island 1186 108.2 0.95 0.24 0.30

01595000 N B Potomac 235 45.8 0.97 0.66 0.66

01548500 Pine Creek 1558 28.6 0.97 0.48 0.67

03032500 Redbank 1375 34.2 0.98 0.7 0.76

01543500 Sinnemahoning 1779 38.9 0.98 0.7 0.67

01541000 Susquehanna 813 19.8 0.98 0.88 0.94

01518000 Tioga 723 29.7 0.96 0.56 0.61

03028000 W B Clarion 164 16.0 0.94 0.77 0.78

03186500 Williams 330 9.7 0.79 0.73 0.73

01545600 Young 119 29.1 0.96 0.85 0.85

a Watershed drainage area (km2) derived from BASINS 4.0
b Distance (km) between ungauged and nearest gauged watershed
c The NSE of predicted flow duration curve (FDC)
d The NSE of predicted daily streamflow using nearest gauged watershed
e The NSE of predicted daily streamflow after sequence improvement
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Table 5.10: Prediction performance on sample watersheds of Piedmont

USGS # Name Areaa Distb NSEc
fdc NSEd

near NSEe
boost

01574000 West Conewago 512 25.1 0.91 0.63 0.70

01580000 Deer Creek 94.6 10.6 0.74 0.59 0.52

01583500 Western Rn 60.5 17.8 0.87 0.78 0.78

01591000 Patuxent 34.8 13.8 0.95 0.70 0.83

01639000 Monocacy 173 24.7 0.85 0.64 0.68

01639500 Big Pipe 103 24.7 0.87 0.65 0.73

01643500 Bennett 63.2 11.8 0.95 0.76 0.79

01645000 Seneca 102 11.8 0.92 0.73 0.80

01664000 Rappahannock 620 39.5 0.95 0.71 0.64

01667500 Rapidan 467 39.5 0.97 0.71 0.64

02030500 Slate 226 30.4 0.85 0.51 0.56

02039500 Appomattox 303 30.4 0.94 0.58 0.65

02041000 Deep Creek 205 20.7 0.95 0.77 0.80

02044500 Nottoway 317 20.7 0.93 0.77 0.83

02046000 Stony 112 26.3 0.96 0.73 0.73

02051500 Meherrin 552 23.9 0.91 0.69 0.69

02058400 Pigg River 343 28.3 0.93 0.60 0.73

02064000 Falling 165 34.4 0.88 0.40 0.62

02070000 North Mayo 104 37.9 0.98 0.62 0.64

a Watershed drainage area (km2) derived from BASINS 4.0
b Distance (km) between ungauged and nearest gauged watershed
c The NSE of predicted flow duration curve (FDC)
d The NSE of predicted daily streamflow using nearest gauged watershed
e The NSE of predicted daily streamflow after sequence improvement
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Table 5.11: Prediction performance on sample watersheds of Ridge and Valley

USGS # Name Areaa Distb NSEc
fdc NSEd

near NSEe
boost

01564500 Aughwick 447 31.0 0.89 0.69 0.79

02020500 Calfpasture 366 21.0 0.87 0.72 0.72

03069500 Cheat 1857 29.9 0.99 0.76 0.76

01614500 Conococheague 1301 31.0 0.97 0.73 0.76

02016000 Cowpasture 1195 21.0 0.98 0.80 0.77

02018000 Craig 852 13.0 0.98 0.82 0.80

02013000 Dunlap 419 17.1 0.98 0.82 0.75

01560000 Dunning 444 29.0 0.93 0.82 0.83

01555500 East Mahantango 421 67.5 0.79 0.60 0.66

01539000 Fishing 707 35.6 0.93 0.62 0.62

01556000 Frankstown 748 28.1 0.95 0.83 0.90

03182500 Greenbrier 1364 38.5 0.98 0.60 0.77

01558000 Little Juniata 576 28.1 0.93 0.82 0.82

01555000 Penns Creek 793 61.3 0.92 0.54 0.63

02014000 Potts 397 13.0 0.98 0.83 0.91

02055000 Roanoke 995 30.0 0.87 0.59 0.61

01568000 Sherman 535 52.8 0.95 0.67 0.77

03051000 Tygart 1075 29.9 0.98 0.77 0.76

03173000 Walker 773 21.4 0.88 0.66 0.66

01538000 Wapwallopen 103 35.6 0.88 0.63 0.63

01601500 Wills 639 46.3 0.98 0.72 0.84

03175500 Wolf Creek 578 21.4 0.92 0.72 0.72

03075500 Youghiogheny 348 39.5 0.92 0.49 0.75

a Watershed drainage area (km2) derived from BASINS 4.0
b Distance (km) between ungauged and nearest gauged watershed
c The NSE of predicted flow duration curve (FDC)
d The NSE of predicted daily streamflow using nearest gauged watershed
e The NSE of predicted daily streamflow after sequence improvement
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CHAPTER 6

SUMMARY AND CONCLUSION

This study set out to examine the effect of using different variable selection methods on watershed

hydrologic modeling. The first part of the study compared the accuracy, consistency, and pre-

dictive potential of variables selected by stepwise regression and principal component analysis to

five causal variable selection methods (Grow–Shrink, interleaved Incremental Association Markov

Blanket, Local Causal Discovery, First Order Utility, and HITON Markov Blanket). The causal

variable selection methods seek to infer causal associations between explanatory and response

variables by reconstructing a local Markov blanket of the response variable given explanatory

variables. The second part evaluated the ability of the selected variables to classify the same hy-

drologically similar reference watersheds classified using streamflow indices in three Mid-Atlantic

physiographic provinces of Appalachian Plateaus, Piedmont, and Ridge and Valley (watershed

classification). This enabled quantification of which variable selection method better predicted

agreement between physical and hydrological similarity of watersheds.

Based on accuracy, consistency, and predictive potential of causal variable methods, the third

part predicted daily streamflow for ungauged watersheds by independently predicting streamflow

magnitude using variables selected by HITON Markov Blanket method and independently pre-

dicting streamflow temporal sequence for the three Mid-Atlantic physiographic provinces. Several

ensemble techniques were used to enhance prediction of streamflow temporal sequence using data

from multiple neighboring gauged watersheds.
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To examine the ability of the methods to select the true variables, data of two known functional

relationships: weight of a hollow cylinder and pressure drop of a fluid in a circular pipe were used.

To examine the ability of the methods to select the same variable, even when the data is slightly

perturbed (method consistency); and predictive potential, data of known and unknown functional

relationships were used. Data of unknown functional relationship consisted of 26 Mid–Atlantic

Piedmont watersheds with 111 watershed descriptors and 19 streamflow percentiles. This data is

considered to have an unknown functional relationship because, there is no universal agreement

on the functional form and the true variables that drive the different streamflow percentiles are

not known. The accuracy of some causal selection methods was greater than others. Overall, the

HITON–MB and first order utility (FOU) methods were the most accurate followed by principal

component analysis (PCA). The accuracy of the Grow–Shrink (GS) and a variant of the incremental

association Markov boundary (interIAMBnPC) were not better than the accuracy of the stepwise

regression. Because of the high accuracy of the HITON–MB and its high consistency on data

of known and unknown functional relationship, variables selected by this method have a high

probability of being causal compared to stepwise regression.

For the watershed classification objective, we evaluated the ability of watershed variables se-

lected by different methods to classify the exact hydrologically similar watersheds selected by the

streamflow indices for the Appalachian Plateaus, Piedmont, and Ridge and Valley using k–means

clustering. A similarity index (SI) was used to compare classification results by streamflow in-

dices and classification results by watershed variables. On average, classification performance

was higher for variables selected by causal algorithms (for GS method, SI=0.89 for Appalachian,

SI=0.86 for Piedmont, and SI=0.67 for Ridge and Valley) compared to variables selected by step-

wise regression (SI=0.72 for Appalachian, SI=0.87 for Piedmont, and SI=0.64 for Ridge and

Valley) and principal component analysis (SI=0.71 for Appalachian, SI=0.76 for Piedmont, and

SI=0.57 for Ridge and Valley). Only one method (HITON–MB) was able to identify variables

that were unique to each ecoregion without compromising classification performance (SI=0.71

for Appalachian, SI=0.90 for Piedmont, and SI=0.72 for Ridge and Valley).
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Regarding the third part, the streamflow magnitude was estimated using regionalized flow dura-

tion curves while sequence was estimated by transferring neighboring gauged watershed sequence

to the ungauged watershed. This approach is referred to as streamflow separation technique. Also,

the effects of drainage area and distance between gauged and ungauged watersheds on the accu-

racy of predicted daily streamflow were assessed. The relative drainage area of the donor watershed

was not statistically significant during sequence prediction, however, the distance was. Other fac-

tors such as surface storage and level of urbanization had secondary effects. The geometric mean

of streamflow of two closest donor watersheds gave better sequence prediction than arithmetic,

harmonic, and quadratic means. Ensemble methods of bagging and boosting better improved se-

quence prediction than use of just the closest donor watershed given the distance between the first

and second closest gauged watersheds was less than 20 km.

This study demonstrated that use of causal variable selection methods, especially HITON

Markov Blanket has a high probability of selecting true variables that drive the different hydro-

logic regimes (High–flows, medium–flows, and low–flows). The study also showed that variables

selected by causal methods, have a high predictive potential given a true functional form of re-

sponse to explanatory variables. Use of more than one selection method to improve the reliability

of the selected variables is recommended.

Future work on variable selection should focus on quantifying the probability that a selected

variable for a specific response variable is causal based on selection accuracy of various methods on

data of known functional relationships with varying system complexities. One recommendation is

use of multiple variable selection methods from which a simple or a weighted rank may be used to

determine probable causal variables. Daily streamflow prediction using the streamflow separation

method showed high predictive power of the method using sequence of neighboring gauged water-

sheds, however most ungauged watersheds are not located in neighborhoods of gauged watersheds.

Therefore, future work on sequence prediction should concentrate on use of only the rainfall data

of the ungauged watershed or use rainfall data in combination with sequence of gauged watershed

at a considerable distance from the ungauged watershed.
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In conclusion, replication of similar performance of predicted daily streamflow by the stream-

flow separation method and use of the regionalized flow duration curves may be limited to water-

sheds with drainage areas ranging between 98–1,779 km2 for the Appalachian Plateau, 34.8–620

km2 for the Piedmont, and 48–1,857 km2 for the Ridge and Valley. The approach also poorly

predicted low flows.
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APPENDIX A

AVERAGE MONTHLY VARIATION OF WATER

BALANCE COMPONENTS
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Figure A.1: Long–term water balance for Appalachian Plateau watersheds (1965–2007). The net
monthly precipitation [Precipitation (MMP) — Evapotranspiration (MET)] is positive throughout
the year and highest during the winter months. The highest monthly streamflow (MMQ) corre-
sponds to months with highest snowmelt.
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Figure A.2: Long–term water balance for Piedmont watersheds (1965–2007). The net monthly
precipitation [Precipitation (MMP) — Evapotranspiration (MET)] is negative during the summer
months due to high levels of evapotranspiration. The highest monthly streamflow (MMQ) be-
haviour is similar to that of Appalachian Plateaus although more in magnitude.
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Figure A.3: Long–term water balance for ridge and Valley watersheds (1965–2007). The net
monthly precipitation [Precipitation (MMP) — Evapotranspiration (MET)] and the streamflow
behaviours are similar to those of the Piedmont, however, they are less in magnitude.
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APPENDIX B

ANNUAL VARIATION OF PRECIPITATION,

EVAPOTRANSPIRATION, AND MEDIUM STREAMFLOW

WITH ELEVATION
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APPENDIX C

MOST SELECTED VARIABLES FOR EACH

PHYSIOGRAPHIC PROVINCE
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Table C.1: Appalachian Plateaus: Percent proportion of most selected variable classes

Variable class† GS interIAMBnPC LCD2 HITON–MB

High flows

Climatic 62.0 39.8 97.8 30.3

LULC 4.7 4.7 0.0 25.7

Soil 31.7 35.7 0.0 6.2

Topography 1.6 19.8 2.2 37.8

Medium flows

Climatic 98.0 82.4 100.0 39.4

LULC 0 0 0.0 19.8

Soil 0.0 10.4 0.0 10.6

Topography 2.0 7.1 0.0 30.2

Low flows

Climatic 16.1 5.1 75.4 15.0

LULC 3.7 0 0 5.0

Soil 56.9 86.3 0.0 34.2

Topography 23.3 8.5 24.6 45.8

† The percent proportions are aggregate results of the most selected variables after implement-
ing each algorithm 26 times by deleting a single watershed with replacement on each run
for high flows (Q0.01 − Q10), medium flows (Q20 − Q70), and low flows (Q80 − Q99.9).
Based on the accuracy of the HITON–MB compared to other methods (refer to chapter 3),
one can suppose that the high and medium flows for the Applachian Plateaus are driven by
topographic and climatic variables while the low flows are driven by topographic and soil
descriptors.
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Table C.2: Piedmont: Percent proportion of most selected variable classes

Variable class‡ GS interIAMBnPC LCD2 HITON–MB

High flows

Climatic 16.7 14.7 25 34.6

LULC 18.3 21.2 15.7 5.5

Soil 26.4 12 28.4 19

Topography 38.7 52.1 30.8 40.9

Medium flows

Climatic 10.6 36.9 4 19.5

LULC 0 0 6.4 11.7

Soil 59.5 22.5 51.9 20.8

Topography 29.8 40.5 37.8 48

Low flows

Climatic 17 21 34.8 15.4

LULC 0 0 0 23

Soil 40.1 30.1 2.1 37.6

Topography 42.9 48.9 63.1 24

‡ The percent proportions are aggregate results of the most selected variables after implement-
ing each algorithm 26 times by deleting a single watershed with replacement on each run for
high flows (Q0.01 − Q10), medium flows (Q20 − Q70), and low flows (Q80 − Q99.9). Based
on the accuracy of the HITON–MB compared to other methods (refer to chapter 3), one can
suppose that the high flows for the Piedmont are driven by topographic and climatic con-
ditions, the medium flows by topographic and soil descriptors, while the low flows by soil
descriptors and topography.
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Table C.3: Ridge and Valley: Percent proportion of most selected variable classes

Variable class~ GS interIAMBnPC LCD2 HITON–MB

High flows

Climatic 46.5 29.1 46.9 14.0

LULC 6.0 14.2 19.5 4.0

Soil 25.5 17.2 5.7 40.6

Topography 22.0 39.5 27.9 41.4

Medium flows

Climatic 53.0 11.3 100.0 51.3

LULC 0.0 10.4 0.0 8.0

Soil 21.1 32.5 0.0 40.7

Topography 25.9 45.9 0.0 0.0

Low flows

Climatic 0.0 0.0 38.5 28.7

LULC 8.3 12.6 10.9 3.0

Soil 19.8 39.4 24.1 45.8

Topography 71.9 48.0 26.4 22.5

~ The percent proportions are aggregate results of the most selected variables after implement-
ing each algorithm 26 times by deleting a single watershed with replacement on each run for
high flows (Q0.01 − Q10), medium flows (Q20 − Q70), and low flows (Q80 − Q99.9). Based
on the accuracy of the HITON–MB compared to other methods (refer to chapter 3), one can
suppose that the high flows for the Ridge and Valley are driven by topographic and soil de-
scriptors, the medium flows by climatic and soil descriptors, while the low flows by soil and
climatic descriptors.
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Figure C.1: The process chart depicts the variable selection process implemented in this study.
The first step is the primary selection which seeks to minimize variable redudancy by selecting one
of each pairs of highly correlated variables (r ≥ 0.9). This is achieved by selecting the variable
that provides the highest mutual information about the response variable from the pair. The second
step normalizes all variables such that variable structure rather than the magnitude influences the
selected variables. The normalization transforms variables from a scale of [−∞−+∞] to [0 – 1].
The third and last step implements each algorithm onto the normalized variables.
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Figure C.2: Two Markov Blankets (MB) constructed by two causal algorithms. The causal selec-
tion methods select variables by reconstructing an MB around a response variable (e.g medium
flow; Q50). The direction of the arrows indicate whether the variables are direct causes (pointing
towards the response variable) or direct effects (pointing away from the response variable). The
MB consists of direct causes (parents), direct effects (children), and direct causes of direct effects
(parents of children). For this example, a random variable (RAN) is included in the data however,
none of the algorithms selects it.
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APPENDIX D

EFFECT OF SAMPLE SIZE ON STABILITY OF

SELECTED VARIABLES

Overview and approach

Algorithm reliability also referred to as the similarity index (SI) in this study referred to the ability

of an algorithm to select the same set of variables on subsequent runs when the initial sample data

was slightly changed. Algorithm reliability provides confidence on the robustness and stability of

both the algorithm and the selected variables. For example if an algorithm selects the same top

three variables when a different watershed is removed on multiple runs, that algorithm is more

reliable and provides a sense of confidence in the selected variables. Reliability of algorithms

was estimated by computing the similarity index (SI) for variable subsets generated by the same

algorithm after changing the sample data. The sample dataset was changed by excluding a single

watershed with replacement from the original sample and implementing the variable selection

procedure. The RI varies from zero meaning different variables are selected on subsequent runs

to 1.0 meaning the exact variables are selected on subsquent runs. If the interest is the top five

variables, an RI=0.6 implies that on average, exactly three of the five variables are selected on

subsquent runs.
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The effect of initial sample size on the final variables selected by the algorithms was assessed

using the reliability index (RI). The process included: (1) aggregation of the top 5 variables for each

flow percentile across all algorithms using data from the 26 runs. These variable sets for each flow

were assumed to be the baseline variables; (2) a single watersheds was deleted from the original

dataset with replacement and variable selection implemented on the remaining watersheds. Top

5 variables for each flow across all algorithms were summarized and a reliability index for each

flow was determined using the baseline variables in step 1; (3) step 2 was repeated 10 times; (4)

steps 2 and 3 were repeated by deleting 2 to 15 watersheds at a time such that the initial number

of watersheds varied from 10 to 28; (5) average values (average of 10 runs for each sample size)

of reliability index (RI) for each flow corresponding to different initial number of watersheds were

computed; (6) the RI values were further aggregated based on the flow class such as average of

Q0.01 − Q10 for high flows, average of Q20 − Q70 for medium flows, and average of Q80 − Q99.9

for low flows with corresponding initial number of watersheds.

Therefore, the sample size of the watersheds has an effect on the final selected variables. Over-

all, of the three physiographic provinces, one needs more watersheds in the Ridge and Valley, then

the Appalachian Plateaus, and least in the Piedmont to have the s ame level of reliability of the

selected variables.
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