
OntoClass : A TOOL FOR ONTOLOGY CATEGORIZATION 

by 

ARPAN SHARMA 

(Under the direction of Krzysztof J. Kochut) 

ABSTRACT 

 

The Semantic Web envisions making World Wide Web content machine processable, not 

just readable by human beings. Ontologies form the backbone of the Semantic Web. As 

ontologies are increasingly coming into existence, their evaluation is gaining importance. 

Ontology Alignment is the process of determining correspondences between concepts of 

ontologies describing the same domain or similar domains.  

For effective alignment of ontologies, computation of equivalent elements is not 

sufficient. By finding the degree or measure of similarity of a given target ontology with a large 

reference ontology such as an ontology constructed out of Wikipedia, the topical content of the 

target ontology can be categorized into a particular domain. Ontology categorization is a way of 

evaluating a given ontology by indicating how well a given ontology describes the domain it 

belongs to.  The proposed approach attempts to compare a given target ontology and determine 

how it fits within the ontology constructed out of Wikipedia and categorizes the target ontology 

into a particular domain of knowledge. 

INDEX WORDS : Ontology, Ontology Categorization, Ontology Alignment, Ontology 

Subsumption, Ontology Matching.



 

OntoClass : A TOOL FOR ONTOLOGY CATEGORIZATION 

 

 

by 

 

 

ARPAN SHARMA 

B.E., University of Mumbai, India, 2001 

M.C.M, University of Pune, India, 2004 

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment 

of the Requirements for the Degree 

 

 

 

 

MASTER OF SCIENCE 

                                    

 

ATHENS, GEORGIA 

2010 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2010 

Arpan Sharma 

   All Rights Reserved



 

 

OntoClass : A TOOL FOR ONTOLOGY CATEGORIZATION 

 

by 

 

ARPAN SHARMA 

 

 

 

 

 

 

 

 

 

                                                                                         Major Professor:  Krys  Kochut 

      Committee:  John Miller 

                        Budak Arpinar 

  

 

 

Electronic Version Approved: 

 

Maureen Grasso 

Dean of the Graduate School 

The University of Georgia 

December 2010 

 

 



iv 
 

 

 

 

 

DEDICATION 

Dedicated to my major professor Dr. Krzysztof  J. Kochut who has always encouraged me 

throughout my coursework and research, my family - my grandmother, parents and brother who 

have always been my greatest inspiration and my husband whose unconditional love and support 

made this work possible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

 

  

 

 

ACKNOWLEDGEMENTS 

I am extremely grateful to my advisor Dr. Krzysztof  J. Kochut for his guidance and 

support throughout my research and academic study at UGA. I would like to thank Dr. John A. 

Miller and Dr. Budak Arpinar for serving on my advisory committee. 

A special thanks to Ms. Chandana Mitra for her continuous encouragement, love and 

support in Athens. I am highly grateful to my friends Ujwal, Priyanka and Sanjeev for all their 

love and support. I owe special thanks to Swapnil, my husband, who has always encouraged me.  

I would also like to thank my past and current lab-mates Maciej Janik, Matthew 

Eavenson and Sonu Swaika for their help throughout my research at UGA.  

 

 

 

 



vi 
 

 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  v 

LIST OF TABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  viii 

LIST OF FIGURES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 

CHAPTER 

 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   1 

  1.1 SEMANTIC WEB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   1 

  1.2 STRUCTURE OF SEMANTIC WEB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

 2. BACKGROUND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

  2.1 ONTOLOGY : BASICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

  2.2 EXTENSIBLE MARKUP LANGUAGE (XML) . . . . . . . . . . . . . .. . . . . . . 10 

  2.3 RESOURCE DESCRIPTION FRAMEWORK (RDF). . . . . . . . . . . . . . . . . 11 

  2.4 RDF Schema (RDFS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 

                        2.5 WEB ONTOLOGY LANGUAGE (OWL) . . . . . . . . . . . . . . . . . . . . . . . . . .17 

  2.6 STRUCTURE OF OWL ONTOLOGY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

 3. ONTOLOGY ALIGNMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

  3.1 WHAT IS ONTOLOGY ALIGNMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 

  3.2 ONTOLOGY ALIGNMENT EXAMPLE. . . . . . . . . . . . . . . . . . . . . . . . . . . 31 

 4. ONTOLOGY  CATEGORIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 

  4.1 INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 

4.2 MODULES USED BY OntoClass.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 

4.2.1 WIKIPEDIA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  



vii 
 

 4.2.2 WIKIPEDIA MINER TOOLKIT. . . . . . . . . . . . . . . . . . . . . . . . . . .35 

4.2.3 WORDNET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 

4.2.4 WIKIPEDIA CATEGORIZATION SERVER. . . . . . . . . . . . . . . . .36 

  4.3 OntoClass: A TOOL FOR ONTOLOGY CATEGORIZATION. . . . . . . . . . 38 

   4.3.1 OntoClass WITH TARGET ONTOLOGY CLASSES. . . . . . . . . . 38 

   4.3.1 OntoClass WITH TARGET ONTOLOGY TEXT. . . . . . . . . . .  . . 39 

   4.3.1 OntoClass WITH PARENT HIERARCHY . . . . . . . . . . . . . . . . . . 42 

  4.4 SYSTEM ARCHITECTURE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 

 5. EXPERIMENTS AND EVALUATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47 

5.1 EXPERIMENT SETUP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47 

5.2 EVALUATION METRICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 

5.3 RESULTS. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50 

5.4 DISCUSSION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 

5.5 OVERALL EVALUATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 

 5.5.1 CUMULATIVE SCORES FOR EACH METHOD. . . . . . . . . . . . .59 

 5.5.2 CUMULATIVE SCORES BASED ON ONTOLOGY TYPES. . . .59 

5.6 OVERALL PERFORMANCE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 

 6. CONCLUSION AND FUTURE WORK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 

 7. REFERENCES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



viii 
 

 

LIST OF TABLES 

                Page 

Table 3.1 Confidence values between two ontologies to be aligned. . . . . . . . . . . . . . . . . . . . . . .32 

Table 5.1 Evaluation Metrcis for target ontologies used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   48 

Table 5.2 OntoClass Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 

Table 5.3 Cumulative scores for each method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  59 

Table 5.4 Cumulative scores based on ontology types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60  

 



ix 
 

 

 

LIST OF FIGURES 

                           Page 

Figure 1.1: Semantic Web Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

Figure 2.1: A Simple RDF Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 

Figure 3.1: Ontology Matching Process. . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 

Figure 3.2: Ontology Alignment Example. . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32  

Figure 4.1: System Architecture (first two methods) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  

Figure 4.2: System Architecture. (third method). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 

 

  



1 
 

 

CHAPTER 1 

INTRODUCTION 

 

1.1 SEMANTIC WEB   

The rapid development of the Web technology has brought along an increasing interest in 

research on knowledge sharing in a distributed environment. Semantic Web is an evolving 

development of the World Wide Web in which the meaning (semantics) of information and 

services on the Web is defined, making it possible for the Web to "understand" and satisfy the 

requests of people and machines to use the Web content.  Humans are capable of performing 

various tasks such as booking a flight, searching a product with the lowest price, finding a 

similar word for a given word, etc.  However, computers cannot perform these tasks without 

human intervention because they cannot really understand and interpret the meaning of the 

words sent on the Web. This is where the Semantic Web steps in.  The Semantic Web is the 

future generation in WWW technology and the transition from Web 2.0 to Web 3.0.  

Tim Berners-Lee originally expressed the vision of the Semantic Web as follows: 

“I have a dream for the Web [in which computers] become capable of analyzing all the data on 

the Web – the content, links, and transactions between people and computers. A „Semantic 

Web‟, which should make this possible, has yet to emerge, but when it does, the day-to-day 

mechanisms of trade, bureaucracy and our daily lives will be handled by machines talking to 

machines. The „intelligent agents‟ people have touted for ages will finally materialize.” [1]. 

There is a lot of data on the Web that we use every day, but is not a part of the Web. Data 

are controlled by the applications on the Web and hence it is limited to those applications. The 



2 
 

Semantic Web extends principles of Web from documents to data. Data should be accessed with 

a URI, but should be related to each other as documents. The Semantic Web provides a 

framework for sharing and reusing data across various application boundaries and provides tools 

to access the data manually as well as automatically. This helps in discovering new relationships 

between pieces of data. Hence, the Semantic Web includes a Web of data.  

Web pages are usually created using Hypertext Markup Language (HTML) which is a markup 

language to embed different objects in a webpage. The meta and link elements in HTML can be 

used to add metadata to an HTML page. In Semantic Web terms, this is equivalent to the process 

of defining RDF relationships for that page as a “source”. Note, however, that these elements can 

be used to define relationships for the enclosing HTML file only, whereas the Semantic Web 

allows the definition of relationships on any resource on the Web. With HTML, there is no way 

to prove that particular pieces of data are bound to each other with certain relationships and are 

distinct from other objects on the page. 

HTML describes documents and the links between them.  Data that is generally hidden 

away in HTML files is often useful in some contexts, but not in others. The problem with the 

majority of data on the Web that is in this form at the moment is that it is difficult to use on a 

large scale, because there is no global system for publishing data in such a way as it can be easily 

processed by anyone. For example, information about local sports events, weather information, 

plane times, television guides, all of this information is presented by numerous sites, but all in 

HTML. The problem with that is that, is some contexts, it is difficult to use this data in the ways 

that one might want to do so. So the Semantic Web can be seen as a huge engineering solution. 

A large number of Semantic Web applications can be used for a variety of different tasks, 

increasing the modularity of applications on the Web [2]. 



3 
 

The Semantic Web is generally built on syntaxes which use URIs to represent data, 

usually in triples based structures: i.e. many triples of URI data that can be held in databases, or 

interchanged on the World Wide Web using a set of particular syntaxes developed especially for 

the task. Semantic Web involves publishing in languages specifically designed for data: 

Resource Description Framework (RDF), Web Ontology Language (OWL), and Extensible 

Markup Language (XML). RDF, OWL, and XML, by contrast, can describe arbitrary things such 

as people, meetings, or airplane parts. An example of a tag that would be used in a non-semantic 

web page [2]: 

<place>Georgia</place> 

Encoding similar information in a Semantic Web page might look like this: 

<place rdf:about="http://dbpedia.org/resource/Georgia">Georgia</place> 

The RDF statement above describes a resource with URI http://dbpedia.org/resource/Georgia 

having a property called “place” and corresponding property value “Georgia”. 

The Semantic Web is an extension of the current Web and not its replacement. Islands of RDF 

and possibly related ontologies can be developed incrementally. Major application areas (like 

Health Care and Life Sciences) may choose to “locally” adopt Semantic Web technologies, and 

this can then spread over the Web in general. The Semantic Web envisions making Web content 

machine processable, not just readable or consumable by human beings. It aims at creating a 

world of software agents that understand documents semantically in a decentralized architecture. 

This is accomplished by the use of ontologies which involve entities and their relationships in 

different domains. 

 

 



4 
 

1.2 STRUCTURE OF THE SEMANTIC WEB  

 

Figure 1.1 The Semantic Web Stack [3].  

The figure above illustrates the Semantic Web layer cake. It is in the form of layers 

where each layer uses the capabilities of the layer below. The technologies from the bottom of 

the stack up to OWL are currently standardized and accepted to build Semantic Web applications 

[3].  

The bottom layers contain technologies that are well known from the hypertext Web and that 

without change provide basis for the Semantic Web.  

 Internationalized Resource Identifier (IRI), generalization of URI, provides means for 

uniquely identifying Semantic Web resources. Semantic Web needs unique identification to 

allow provable manipulation with resources in the top layers. A URI is simply a Web 

identifier: like the strings starting with "http:" or "ftp:" that are often found on the World 



5 
 

Wide Web.  The World Wide Web is such a thing: anything that has a URI is considered to 

be "on the Web". 

 Unicode serves to represent and manipulate text in many languages. Semantic Web should 

also help to bridge documents in different human languages, so it should be able to represent 

them. 

 XML is a markup language that enables creation of documents composed of structured data. 

Semantic Web gives meaning (semantics) to structured data. 

 XML Namespaces provides a way to use markups from more sources. Semantic Web is 

about connecting data together, and so it is needed to refer more sources in one document. 

Middle layers contain technologies standardized by W3C to enable building Semantic Web 

applications.  

 RDF is a standard model for data interchange on the Web [4]. It is a framework for 

describing resources on the Web. It is designed to be readable by computers and has an XML 

format 

 RDF Schema (RDFS) provides basic vocabulary for RDF. Using RDFS it is for example 

possible to create hierarchies of classes and properties. 

 Web Ontology Language (OWL) extends RDFS by adding more advanced constructs to 

describe semantics of RDF statements. It allows stating additional constraints, such as for 

example cardinality, restrictions of values, or characteristics of properties such as transitivity. 

It is based on description logic and so brings the reasoning power to the Semantic Web. 

 SPARQL is an RDF query language - it can be used to query any RDF-based data (i.e., 

including 



6 
 

statements involving RDFS and OWL). Querying language is necessary to retrieve 

information for Semantic Web applications. 

Top layers contain technologies that contain just ideas that should be implemented in order to 

fully realize the Semantic Web. 

 RIF or SWRL will bring support of rules, for example to allow describing relations that 

cannot be directly described using description logic used in OWL. 

 Cryptography is important to ensure and verify that Semantic Web statements are coming 

from trusted source. This can be achieved by appropriate digital signature of RDF statements. 

 User interface is the final layer that will enable humans to use Semantic Web applications 

[3]. 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 
 

 

CHAPTER 2 

BACKGROUND  

2.1 ONTOLOGY: BASICS  

An ontology is a specification of a conceptualization [4]. An ontology together with a set 

of individual instances of classes constitutes a knowledge base.  Structurally, an ontology is a 

graph whose nodes represent concepts and arcs represent relationships between concepts.  

An ontology typically provides a vocabulary that describes a domain of interest. 

Ontologies have been recognized as a crucial component for knowledge sharing and the 

realization of this vision. Two search strings with the same syntax can have dramatically 

different semantics. A user might be looking for pages about a less popular topic which happens 

to share the same syntax as a highly popular yet totally irrelevant topic. Finding what is needed 

will take time and ingenuity. This demonstrates the dire need for semantically enabled search 

engines. Ontologies provide a means for disambiguating syntactically equal but semantically 

different items. Ontologies tell the user that there are in fact different concepts, which all share 

the same language term. Ontologies are used in artificial intelligence, the Semantic Web, systems 

engineering, software engineering, biomedical informatics, library science, enterprise 

bookmarking, and information architecture as a form of knowledge representation about the 

world or some part of it. Ontologies are part of the W3C standards stack for the Semantic Web, 

in which they are used to specify standard conceptual vocabularies in which to exchange data 

among systems, provide services for answering queries, publish reusable knowledge bases, and 

offer services to facilitate interoperability across multiple, heterogeneous systems and databases. 



8 
 

The Working Group identified various ontology application categories which include web 

site or document organization and navigation support, browsing support, search support 

(semantic search), generalization or specialization of search, sense "disambiguation" support, 

consistency checking (use of restrictions), auto-completion, interoperability support 

(information/process integration), support validation and verification testing, configuration 

support and support for structured, comparative, and customized search. 

As the scale of the World Wide Web has grown enormously, the demand for knowledge 

has been increasing rapidly. Search engines play an important role in providing information 

required from the Web these days. Similarly, the growth of the Semantic Web will also need a 

search mechanism which retrieves knowledge in the form of Semantic Web documents encoded 

in Semantic Web Lanugages like RDF and OWL.  It is hard to navigate within the Semantic Web 

since few explicit ``hyperlinks'' are available besides a URIref's namespace or owl:import [5]. 

Currently, the Semantic Web provides services such as searching Semantic Web ontologies, 

searching Semantic Web instance data, searching Semantic Web terms, i.e., URIs that have been 

defined as classes and properties and to provide metadata of Semantic Web documents and 

support browsing the Semantic Web archive different versions of Semantic Web documents. 

The basic steps in developing an ontology are: defining classes in the ontology, arranging the 

classes in a taxonomic (subclass–superclass) hierarchy, defining properties and describing 

allowed values for these properties and filling in the values for instances. 

Some of the needs for developing an ontology include sharing common understanding of the 

structure of information among people or software agents, enable reuse of domain knowledge, 

make domain assumptions explicit, separate domain knowledge from the operational knowledge 

and analyze domain knowledge. 



9 
 

Common components of ontologies include: 

 Individuals: instances or objects (the basic or "ground level" objects). 

 Classes: sets, collections, concepts, classes in programming, types of objects, or kinds of 

things. 

 Attributes: aspects, properties, features, characteristics, or parameters that objects (and 

classes) can have. 

 Relations: ways in which classes and individuals can be related to one another. 

 Function terms: complex structures formed from certain relations that can be used in place of 

an individual term in a statement. 

 Restrictions: formally stated descriptions of what must be true in order for some assertion to 

be accepted as input 

 Rules: statements in the form of an if-then (antecedent-consequent) sentence that describe the 

logical inferences that can be drawn from an assertion in a particular form. 

 Axioms: assertions (including rules) in a logical form that together comprise the overall 

theory that the ontology describes in its domain of application. This definition differs from 

that of "axioms" in generative grammar and formal logic. In those disciplines, axioms 

include only statements asserted as a priori knowledge. As used here, "axioms" also include 

the theory derived from axiomatic statements. 

 Events: the changing of attributes or relations. 

Ontologies are commonly encoded using ontology languages. As the computing world is moving 

towards the Semantic Web, people are interested in ontologies which form the backbone of the 

Semantic Web. With more and more ontologies coming into existence, ontology evaluation is 

gaining importance thus, allowing the developer to discover areas of improvements, to 



10 
 

understand the faults with the ontology created and to compare with other ontologies in the 

domain in order to understand how well it describes the domain semantically.  

2.2 EXTENSIBLE MARK UP LANGUAGE (XML) 

 XML is a markup language for documents containing structured information. It is a set of 

rules for encoding information in a machine readable format. XML's design goals emphasize 

simplicity, generality, and usability over the Internet. XML uses tags for describing data. These 

tags are not predefined but have to be created and hence XML is said to be self descriptive. XML 

was designed to simplify data storage and sharing. It is used in many aspects of sharing data on 

the Web.  

Some advantages of XML: 

 XML makes data available easily since it is machine readable. 

 XML data is stored in plain text format and hence it simplifies data sharing among 

different applications.  

 XML simplifies working platform changes when upgrading to new systems. Since XML 

is stored in plain text format, it becomes easier to upgrade to new systems without 

incompatibility issues.  

 XML simplifies data transport since it can be easily shared among incompatible 

applications. 

 XML forms the basis of many new internet languages like XHTML, RDF, WSDL etc. 

An example XML document would look like: 

<?xml version="1.0" encoding="ISO-8859-1"?> 

<note> 

  <to>Tim</to> 



11 
 

  <from>Alice</from> 

  <heading>Invitation</heading> 

  <body>Birthday party this weekend!</body> 

</note> 

The first line is the XML declaration. It defines the XML version (1.0) and the encoding used 

(ISO-8859-1 = Latin-1/West European character set). The next line describes the root element of 

the document. The next four lines describe four child elements of the root (to, from, heading, and 

body). And finally the last line defines the end of the root element. It is very clear from the above 

example that the XML document describes a note from Tim to Alice for a birthday invitation.  

2.3 RESOURCE DESCRIPTION FRAMEWORK (RDF) 

RDF is a standard model for data interchange on the Web [6]. It is a framework for 

describing resources on the Web. It is designed to be readable by computers and has an XML 

format.  It is a framework for creating statements in a form of so-called triples and enables to 

represent information about resources in the form of graph. By using XML, RDF information 

can easily be exchanged between different types of computers using different types of operating 

systems and application languages. The fundamental model of RDF is independent of XML. 

RDF is a model describing qualified (or named) relationships between two (Web) resources, or 

between a Web resource and a literal. The advantage of using RDF is that information is mapped 

directly and unambiguously to a model, a model which is decentralized, and for which there are 

many generic parsers already available. At that fundamental level, the only commonality 

between RDF and the XML World is the usage of the XML Schema data types to characterize 

literals in RDF.  

 



12 
 

Use of RDF:  

RDF is a framework for describing web resources. For example, it can be used for describing 

properties for shopping items, such as price and availability, for describing time schedules for 

web events, for describing information about web pages (content, author, created and modified 

date), for describing content and rating for web pictures, for describing content for search 

engines, for describing electronic libraries. 

RDF Model: The RDF model consists of three object types: Resources, Properties and 

Statements.  

1. Resources - Resources are things being described by RDF expressions and are always named 

by URIs.  A resource can be any HTML Document, specific XML element within the document 

source, collection of pages or a book. 

2. Properties - Specific aspect, characteristic, attribute or relation used to describe a resource 

For example, a book can be a resource with properties such as book_name, creator and title.  

3. Statements - The combination of a Resource, a Property, and a Property value forms a 

Statement (known as the subject, predicate and object of a Statement). 

RDF extends the linking structure of the Web to use URIs to name the relationship between 

things as well as the two ends of the link (this is usually referred to as a “triple”) [6]. 

An RDF triple contains three components  

 the subject, which is an RDF URI reference or a blank node 

 the predicate, which is an RDF URI reference 

 the object, which is an RDF URI reference, a literal or a blank node 

 

 



13 
 

For example, 

Arpan is the creator of the web page http://www.cs.uga.edu/~arpan/introduction/ 

The Subject (Resource) of the above statement is - http://www.cs.uga.edu/~arpan/introduction/ 

The Predicate (Property) of the resource is – Creator 

The Object (Literal) is - Arpan 

An RDF graph is a set of triples. The set of nodes of an RDF graph is the set of subjects and 

objects of triples in the graph. 

For the above example, the RDF graph would be: 

  

  

      Figure 2.1 A Simple RDF Graph 

Consider the example below [6]: 

<?xml version="1.0"?> 

<rdf:RDF 

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

xmlns:si="http://www.w3schools.com/rdf/"> 

<rdf:Description rdf:about="http://www.w3schools.com"> 

  <si:title>W3Schools.com</si:title> 

  <si:author>Jan Egil Refsnes</si:author> 

</rdf:Description> 

</rdf:RDF> 

 



14 
 

Properties as Attributes: 

The property elements can also be defined as attributes (instead of elements) as shown below [6]: 

<?xml version="1.0"?> 

<rdf:RDF 

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

xmlns:si="http://www.w3schools.com/rdf/"> 

<rdf:Description rdf:about="http://www.w3schools.com"> 

  <si:title = “W3Schools.com” si:author = “Jan Egil 

Refsnes”/> 

</rdf:RDF> 

The main elements of RDF are the root element, <RDF>, and the <Description> element, 

which identifies a resource. The first line of the RDF document is the XML declaration. The 

XML declaration is followed by the root element of RDF documents: <rdf:RDF>. 

The xmlns:rdf namespace, specifies that elements with the rdf prefix are from the namespace. 

The xmlns:si namespace, specifies that elements with the si prefix are from the namespace 

http://www.w3schools.com/rdf/. The <rdf:Description> element contains the description of the 

resource identified by the rdf:about attribute. The elements <si:title> and <si:author> are 

properties of the resource. 

Properties as Resources:  

The property elements can also be defined as resources 

<?xml version="1.0"?> 

<rdf:RDF 

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

xmlns:si="http://www.w3schools.com/rdf/"> 



15 
 

<rdf:Description rdf:about="http://www.w3schools.com"> 

 <si:title rdf:resource=”http://www.w3schools.com/rdf 

/W3Schools”/> 

 <si:author 

rdf:resource=“http://www.w3schools.com/rdf/refsnes”/> 

</rdf Description> 

</rdf:RDF> 

2.4         RDF Schema (RDFS) 

          Application-specific classes and properties must be defined using extensions to RDF. One 

such extension is RDF Schema [6]. The RDFS vocabulary is based on the vocabulary of RDF.  

Classes:  Resources can be divided into groups called classes. The members of a class are called 

instances. Classes are themselves resources. RDFS defines classes by using the following 

specifications [6]:  

 rdfs:Resource is the class of everything. All things described by RDF are resources. 

 rdfs:Class declares a resource as a class for other resources. 

 rdfs:Literal is the class of literal values such as strings and integers. Property values such 

as textual strings are examples of RDF literals. Literals may be plain or typed. A typed 

literal is an instance of a datatype class. 

 rdfs:Datatype is the class of all datatypes. Each instance of rdfs:Datatype is a subclass of 

rdfs:Literal. 

 rdf:XMLLiteral is the class of XMLLiteral values. rdf:XMLLiteral is an instance of 

rdfs:Datatype (and thus a subclass of rdfs:Literal). 

 rdf:Property is the class of RDF properties. rdf:Property is an instance of rdfs:Class. 



16 
 

Properties: Properties are relationships between subject resources and object resources. RDFS 

defines properties by using the following specifications [6]: 

 rdfs:domain of an rdf:predicate declares the class of the subject in a triple whose second 

component is the predicate. 

 rdfs:range of an rdf:predicate declares the class or datatype of the object in a triple whose 

second component is the predicate. 

 rdf:type is a property used to state that a resource is an instance of a class. 

 rdfs:subClassOf allows to declare hierarchies of classes. 

 rdfs:subPropertyOf is an instance of rdf:Property that is used to state that all resources 

related by one property are also related by another. 

 rdfs:label is an instance of rdf:Property that may be used to provide a human-readable 

version of a resource's name. 

 rdfs:comment is an instance of rdf:Property that may be used to provide a human-

readable description of a resource. 

The following example demonstrates RDFS facilities: 

<?xml version="1.0"?> 

<rdf:RDF 

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 

xml:base="http://www.animals.fake/animals#"> 

<rdf:Description rdf:ID="animal"> 

  <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-

schema#Class"/> 



17 
 

</rdf:Description> 

<rdf:Description rdf:ID="horse"> 

  <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-

schema#Class"/> 

  <rdfs:subClassOf rdf:resource="#animal"/> 

</rdf:Description> 

</rdf:RDF> 

2.5  WEB ONTOLOGY LANGUAGE (OWL)  

The Web Ontology Language is a knowledge representation language used to create 

ontologies. It is usually represented as RDF and is used to process information on the Web. It has 

an XML format and was designed to be readable by computers. OWL uses both URIs for naming 

and the description framework for the Web provided by RDF. 

OWL ontologies can then be stored as documents in the World Wide Web. One aspect of 

OWL, the importing of ontologies, depends on this ability to store OWL ontologies in the Web. 

Owl extends RDFS to allow for the expression of complex relationships between different RDFS 

classes and of more precise constraints on specific classes and properties.  

OWL Syntax: 

An OWL ontology is an RDF graph (RDF Concepts), which is in turn a set of RDF triples. Thus, 

it is allowable to use other syntactic RDF/XML forms, as long as these result in the same 

underlying set of RDF triples. 

Consider the following RDF/XML syntax: 

<owl:Class rdf:ID="Person"/> 

The following RDF/XML syntax encodes the same set of RDF triples, and therefore would 

convey the same meaning: 



18 
 

<rdf:Description rdf:about="#Person"> 

<rdf:type 

rdf:resource="http://www.somewebsite.org/owl#Class"/> 

</rdf:Description>  

OWL has three sublanguages: OWL Lite, OWL DL and OWL Full.  

OWL Lite is a sublanguage of OWL DL that supports only a subset of the OWL language 

constructs. It was originally intended to support those users primarily needing a classification 

hierarchy and simple constraints. For example, while it supports cardinality constraints, it only 

permits cardinality values of 0 or 1. OWL Lite forbids the use of owl:one of, owl:unionOf, 

owl:complementOf, owl:hasValue, owl:disjointWith, owl:DataRange. Development of OWL 

Lite tools has thus proven almost as difficult as development of tools for OWL DL, and OWL 

Lite is not widely used. 

OWL DL was designed to provide the maximum expressiveness possible while retaining 

computational completeness. It requires a pairwise separation between classes, datatypes, 

datatype properties, object properties, annotation properties, ontology properties, individuals, 

data values and the built-in vocabulary. This means that, for example, a class cannot be at the 

same time an individual. In OWL DL the set of object properties and datatype properties are 

disjoint. The following four property characteristics: inverse of, inverse functional, symmetric, 

transitive can never be specified for datatype properties. OWL DL requires that no cardinality 

constraints (local nor global) can be placed on transitive properties or their inverses or any of 

their superproperties. Annotations are allowed only under certain conditions. Most RDF(S) 

vocabulary cannot be used within OWL DL. All axioms must be well-formed, with no missing 

or extra components, and must form a tree-like structure [9]. 



19 
 

OWL Full is based on a different semantics from OWL Lite or OWL DL, and was designed to 

preserve some compatibility with RDF Schema. For example, in OWL Full a class can be treated 

simultaneously as a collection of individuals and as an individual in its own right; this is not 

permitted in OWL DL.  

Each of these sublanguages is a syntactic extension of its simpler predecessor. The following set 

of relations hold. Their inverses do not [10]. 

 Every legal OWL Lite ontology is a legal OWL DL ontology. 

 Every legal OWL DL ontology is a legal OWL Full ontology. 

 Every valid OWL Lite conclusion is a valid OWL DL conclusion. 

 Every valid OWL DL conclusion is a valid OWL Full conclusion. 

2.6  THE STRUCTURE OF OWL ONTOLOGY  

OWL is an important component of the Semantic Web activity. It aims to make Web 

resources more readily accessible to automated processes by adding information about the 

resources that describe or provide Web content. As the Semantic Web is inherently distributed, 

OWL must allow for information to be gathered from distributed sources. This is partly done by 

allowing ontologies to be related, including explicitly importing information from other 

ontologies. An OWL ontology consists of the following parts:  

1. Namespaces  

A standard initial component of an ontology includes a set of XML namespace declarations 

enclosed in an opening rdf:RDF tag. These provide a means to unambiguously interpret 

identifiers and make the rest of the ontology presentation much more readable. For example,  

<rdf:RDF  

    xmlns="http://www.w3.org/TR/2004/REC-owl-guide-

20040210/wine#"  



20 
 

    xml:base="http://www.w3.org/TR/2004/REC-owl-guide-

20040210/wine#"        

    xmlns:owl ="http://www.w3.org/2002/07/owl#" 

    xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

    xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 

    xmlns:xsd ="http://www.w3.org/2001/XMLSchema#">  

2. Ontology headers 

After the namespaces, there is a collection of assertions about the ontology grouped under an 

owl:Ontology tag. These tags support such initial tasks as comments, version control and 

inclusion of other ontologies. For example, 

<owl:Ontology rdf:about="">  

<rdfs:comment>An example OWL ontology</rdfs:comment> 

<owl:priorVersion rdf:resource="http://......"/>  

<owl:imports rdf:resource="http://www......"/>  

<rdfs:label>Some Ontology</rdfs:label>  

  ... 

Basic elements used in OWL [9]  

Class: A class defines a group of individuals that belong together because they share some 

properties.  

OWL distinguishes six types of class descriptions: 

1. A class identifier (a URI reference): The first type describes a class through a class name 

(syntactically represented as a URI reference). For example, <owl:Class rdf:ID="Human"/> 

2. An exhaustive enumeration of individuals that together form the instances of a class: The 

second type describes a class that contains exactly the enumerated individuals. The class 



21 
 

extension of a class described with owl:oneOf contains exactly the enumerated individuals, 

no more, no less. The list of individuals is typically represented with the help of the RDF 

construct rdf:parseType="Collection", which allows for writing down a set of list elements. 

For example,   

<owl:Class 

rdf:about="http://annotation.semanticweb.org/2004/places#Name"> 

<owl:oneOf rdf:parseType="Collection"> 

<owl:Thing rdf:about="#Georgia"/> 

<owl:Thing rdf:about="#Florida"/> 

<owl:Thing rdf:about="#Tennessee"/> 

</owl:oneOf> 

</owl:Class> 

3. A property restriction: An owl:Restriction  descriptor describes an anonymous class, namely 

a class of all individuals that satisfy the restriction. OWL distinguishes two kinds of property 

restrictions: value constraints and cardinality constraints. For example,  

<owl:Restriction> 

<owl:onProperty rdf:resource="(some property)" /> 

          (precisely one value or cardinality constraint) 

</owl:Restriction> 

A value constraint puts constraints on the range of the property when applied to this particular 

class description and a cardinality constraint puts constraints on the number of values a property 

can take. The value constraints are: owl:allValuesFrom, owl:someValuesFrom, owl:hasValue. 

The cardinality constraints are owl:maxCardinality, owl:minCardinality, owl:cardinality. 



22 
 

4. The intersection of two or more class descriptions:  An owl:intersectionOf descriptor can be 

viewed as representing the AND operator on classes. In the example below, the value of 

owl:intersectionOf is a list of two class descriptions, namely two enumerations, both describing a 

class with two individuals. The resulting intersection is a class with one individual, namely Andy 

as this is the only individual that is common to both enumerations.  For example,  

<owl:Class 

rdf:about="http://annotation.semanticweb.org/2004/names#Fname"> 

  <owl:intersectionOf rdf:parseType="Collection"> 

     <owl:Class> 

      <owl:oneOf rdf:parseType="Collection"> 

        <owl:Thing rdf:about="#Andy" /> 

        <owl:Thing rdf:about="#Jenny" /> 

      </owl:oneOf> 

    </owl:Class> 

    <owl:Class> 

      <owl:oneOf rdf:parseType="Collection"> 

        <owl:Thing rdf:about="#Candice" /> 

        <owl:Thing rdf:about="#Andy" /> 

      </owl:oneOf> 

    </owl:Class> 

  </owl:intersectionOf> 

</owl:Class> 



23 
 

5. The union of two or more class descriptions: An owl:unionOf  descriptor can be viewed as 

representing the OR operator on classes. . In the example below, owl:unionOf describes an 

anonymous class for which the class extension contains those individuals that occur in at least 

one of the class extensions of the class descriptions in the list.. The resulting union is a class with 

three individuals, namely Andy, Jeny, Candice. 

<owl:Class 

rdf:about="http://annotation.semanticweb.org/2004/names#Fname"> 

  <owl:unionOf rdf:parseType="Collection"> 

    <owl:Class> 

      <owl:oneOf rdf:parseType="Collection"> 

        <owl:Thing rdf:about="#Andy" /> 

        <owl:Thing rdf:about="#Jenny" /> 

      </owl:oneOf> 

    </owl:Class> 

    <owl:Class> 

      <owl:oneOf rdf:parseType="Collection"> 

        <owl:Thing rdf:about="#Candice" /> 

        <owl:Thing rdf:about="#Andy" /> 

      </owl:oneOf> 

    </owl:Class> 

  </owl:unionOf> 

</owl:Class> 

6. The complement of a class description:  An owl:complementOf descriptor can be viewed as 

representing the NOT operator on classes. For example, 



24 
 

<owl:Class> 

  <owl:complementOf> 

    <owl:Class rdf:about="#Vegetables"/> 

  </owl:complementOf> 

</owl:Class> 

This description contains all the individuals that do not belong to the class Vegetables. 

Individuals: Individuals are instances of classes, and properties may be used to relate one 

individual to another. Individuals are defined with axioms. Many axioms typically are statements 

indicating class membership of individuals and property values of individuals. For example, 

consider the following set of statements about an instance of the class Movie: 

<Movie rdf:ID="Alice_In_Wonderland "> 

  <hasDirector rdf:resource="#Tim_Burton"/> 

  <hasActor rdf:resource="#Mia_Wasikowska"/> 

  <hasActor rdf:resource="#Johnny_Depp"/> 

  <hasActor rdf:resource="#Anne_Hathaway"/> 

  <premiereDate rdf:datatype="&xsd;date">2010-03-

05</premiereDate> 

  <premierePlace rdf:resource="#USA"/> 

  <numberOfActs 

rdf:datatype="&xsd;positiveInteger">4</numberOfActs>  

</Movie> 

OWL provides three constructs for stating axioms about individual identity  

 owl:sameAs is used to state that two URI references refer to the same individual.  

 owl:differentFrom is used to state that two URI references refer to different individuals 



25 
 

 owl:AllDifferent provides an idiom for stating that a list of individuals are all different. 

Property: Property is a binary relation that states relationships between individuals or from an 

individual to data value. Property can be further distinguished as “ObjectTypeProperty” or 

“DataTypeProperty”. 

 ObjectTypeProperty (owl:ObjectTypeProperty): It is defined as the relation between 

instances of two classes 

 DataTypeProperty (owl:DataTypeProperty) : It is defined as the relation between 

instances of classes and literal values such as string, number, and date. 

For example, 

<owl:ObjectProperty rdf:ID="hasParent"/> 

Often, property axioms define additional characteristics of properties. OWL supports the 

following constructs for property axioms: 

 RDF Schema constructs: rdfs:subPropertyOf, rdfs:domain and rdfs:range 

 relations to other properties: owl:equivalentProperty and owl:inverseOf 

 global cardinality constraints: owl:FunctionalProperty and wl:InverseFunctionalProperty 

 logical property characteristics: owl:SymmetricProperty and owl:TransitiveProperty 

Semantic Web research efforts are tackling the problem of querying semantically 

annotated documents. However, in the real world of WWW users the most popular search 

engines are still keyword-based. Even semantic search engines such as Swoogle [21], perform a 

term-based search in their repository, in order to retrieve Web ontology documents which 

contain concepts lexicalized by the query-term(s). Swoogle employs a system of crawlers to 

discover RDF documents and HTML documents with embedded RDF content. Swoogle uses the 



26 
 

page rank algorithm to search ontologies and does not perform a semantic search. Hence, there is 

a need for semantic search of ontologies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



27 
 

 

CHAPTER 3 

ONTOLOGY ALIGNMENT 

 

3.1 WHAT IS ONTOLOGY ALIGNMENT ? 

There are various sources of knowledge in Computer Science. Knowledge itself can be 

represented in various formats such as databases, collections of documents, files, emails, web 

pages, web services and so on. As the resources of knowledge are becoming cheaper, the flow of 

knowledge is increasing day by day. People are looking for means of gathering all this 

knowledge together and not only individual pieces of knowledge. Due to this, knowledge 

integration has always been a topic of continued attention and has continuously triggered further 

research and development. With the advent of the Internet and continuously evolving tools for 

data gathering and manipulation, physical data exchange is not an issue anymore. However, 

knowledge is represented in various formats and not all of them might be compatible with each 

other. One of the knowledge representations used widely is XML. However, it requires a lot of 

human effort to understand the semantics of data exchanged using XML. Identifying 

correspondence between different representations of knowledge belonging to the same domain is 

a difficult human task, almost impossible for machine based approaches at this time.  The next 

step towards a better representation and understanding of knowledge is through an ontology. As 

the computing world is moving towards Semantic Web, people are interested in ontologies which 

form the backbone of the Semantic Web.  

  As mentioned in the previous chapter, an ontology provides a vocabulary to describe a 

domain of interest.  There are various ontologies that describe various domains of knowledge. 



28 
 

Also, there are various ontologies that describe the same or very similar domain of knowledge as 

well. The Semantic Web community faces a problem when using these ontologies to represent 

knowledge which is, heterogeneity. Many ontologies have emerged recently, some of them 

representing the same contents. Despite of the same syntax, which is RDF or Web Ontology 

Language (OWL), these ontologies differ in the structure and nomenclature. The Semantic Web 

envisions making Web content machine processable, not just readable or consumable by human 

beings. This is accomplished by the use of ontologies which involve agreed upon terms and their 

relationships in different domains.  

Ontology Alignment or Ontology Matching is the process of determining relationships 

between individual elements of different ontologies to understand how they interoperate. 

Historically, the need for ontology alignment arose out of the need to integrate heterogeneous 

databases, ones developed independently and thus each having their own data vocabulary. For 

computer scientists, concepts are expressed as labels for data. Ontology Alignment can be 

defined as the process of determining correspondences between concepts. The resulting set of 

corresponding concepts is known as the alignment. Finding alignment between onotologies can 

be useful to users for searching and browsing information from a variety of knowledge sources 

in a transparent way. Thus, the user can gain new insights by inferring from the multiple 

ontologies under consideration.  

In the Semantic Web context involving many actors providing their own ontologies, 

ontology matching has taken a critical place for helping heterogeneous resources to interoperate. 

Ontology alignment tools find classes of data that are "semantically equivalent". A number of 

tools and frameworks have been developed for aligning ontologies. The overall goal of Ontology 



29 
 

alignment is to provide a concise methodology and implementation for aligning ontologies with 

each other. 

The Matching Process  

The Matching Process [13] determines the alignment A' for a pair of ontologies o and o'. There 

are some other parameters that extend this definition, namely: (i) the use of an input alignment A 

which is to be completed by the process (ii) the matching parameters p, e.g. weights, thresholds 

etc. (iii) external resources used by the matching process, r, e.g. common knowledge and domain 

specific thesauri.  

Technically, this process can be defined as follows: 

Formal Definition:  

The Ontology Alignment process [13] can be seen as a function f, which, from a pair of 

ontologies to match, o and o', an input alignment A, a set of parameters p, a set of resources r, 

returns an alignment A' between these ontologies: 

         A' = f(o, o', A, p, r) 

This can be schematically represented as: 

     

Figure 3.1 Ontology Matching Process 

 



30 
 

Ontology Alignment 

Given two ontologies o and o′, an alignment is made up of a set of correspondences between 

pairs of entities belonging to QL(o) and QL ′(o′) respectively [13]. 

Alignment is the output of the matching process. 

Challenges involved in Ontology Alignment 

 Dealing with the real world with specific requirements. 

 Data is of varying sizes from different sources. 

 The semantic representation might not be complete and perfect.  

 Alignment methods need to be flexible enough to be transferred to different domains, 

applications. 

There are different algorithms to compute alignment between ontologies. These algorithms can 

be compared and/or classified based on the inputs they use to produce the result, the method used 

to determine the alignment and the output or the result produced 

The algorithms can be classified according to the data model in which the ontologies are 

expressed. Another factor which can be used to compare alignment algorithms is the type of data 

used. For example, some algorithms use schema while others may use instance level information 

or some of them might even use both. Some algorithms discard information related to datatypes 

and use only the property names. Most of the algorithms focus on the class labels ( i.e, concept 

names), their internal relationships as well as relationships with the neighboring concepts.  The 

method of determining alignment between ontologies can either be an approximation (such as 

probability) or even some exact value determining the similarity measure.  Element level 

matching is done by finding correspondences between elements of the ontologies in 

consideration and structure level alignment computes the mapping by analyzing how entities 



31 
 

appear together as a structure. Some algorithms interpret the input based on an already existing 

algorithm and some of them use external resources such as human input or thesaurus or any other 

existing knowledge base to process the given input. 

3.2 ONTOLOGY ALIGNMENT EXAMPLE  

The following example [11] illustrates alignments. The example consists of two simple 

ontologies that are to be aligned. The two ontologies O1 and O2 describing the domain of cars are 

given in Figure 3.2 [11]. The first ontology contains the six concepts object, vehicle, owner, 

boat, car, and speed, the two relations of belonging to somebody and speed, and the three 

instances Marc, Porsche KA-123, and 300 km/h. There is a subsumption relation between object, 

vehicle, and boat, resp. car; a vehicle is an object, a boat is a vehicle, etc. Each vehicle belongs to 

an owner and each car has a specific speed. On instance level, the Porsche KA-123 belongs to 

Marc and has the speed 300 km/h. 

The second ontology covers the same domain but is modeled slightly differently. Beneath an 

overall thing concept, there exists a vehicle, which in turn has the subclasses automobile, 

Volkswagen, and Porsche. Further, there is a motor and speed. The automobile has a Motor 

which in turn has a property speed. A specific Porsche, Marc's Porsche, with the fast 

Motorl23456 is also represented. Reasonable alignment confidence values between the two 

ontologies are given in Table 3.1. 

Each line contains the two corresponding entities from ontology 1 and ontology 2. In Figure 3.2, 

alignments are represented by the shaded channels each linking two corresponding entities. 

Obviously, things and objects, the two vehicles, cars and automobiles, as well as the two speeds 

are the same. The relations of having a speed and property correspond to each other, as they both 



32 
 

refer to speed. In addition, the two instances Porsche KA-123 and Marc's Porsche are the same, 

which are both fast.  

 

 

Figure 3.2 Ontology Alignment Example 

Table 3.1 Confidence values between two ontologies to be aligned. 

 

 



33 
 

 

CHAPTER 4 

ONTOLOGY CATEGORIZATION 

 
4.1 INTRODUCTION 

The goal of this work is to discover the domain of an unknown target ontology with 

respect to a large reference ontology (Wikipedia). The target ontology is categorized to a 

particular domain of knowledge based on the ontology alignment results. The tool developed to 

achieve this goal is named  OntoClass. 

Wikipedia has become quite useful and sometimes indispensable many web users. It is a free, 

online, shared-community, user-updatable, multi-lingual encyclopedia. It contains articles 

ranging from science to entertainment, from history to politics and just about any other domain 

one can possibly think of. Wikipedia being a collaborative effort of countless volunteers is 

always growing and expanding. Any new event, discovery, invention is almost immediately 

turned into a new Wikipedia article. Wikipedia has more than 3 million articles in the English 

language as of today. Around 1,200 articles are added to the Wikipedia knowledge base 

everyday as of August 2009 [14]. Hence, Wikipedia is highly up-to-date source of information. 

Having access to such a large source of information and using it only as an online encyclopedia 

seems like such a waste. Wikipedia, for the most part, contains information in weakly structured 

form i.e. in the form of continuous text, so it is not easily machine readable. It does contain 

information in the form of structured data in info-boxes and templates. Disambiguation pages are 

deceptively difficult to process automatically, since they are written in free text and often list 

items that are merely associated with the target term rather than senses of it. Page titles can also 



34 
 

present difficulties, because they often include additional scope information. However, that 

represents only a very small portion of the information available to us from Wikipedia. To 

collect information from unstructured data is not an easy task. Hence, we need to structure the 

information in such a way that it can be retrieved and made use of.  

The DBpedia project [8] provides one way of structuring the Wikipedia data in the form of an 

ontology. Each article in Wikipedia is assigned a universal unique identifier which is nothing but 

a URI in ontological terms. Hence, each Wikipedia page is an entity in the ontology. Certain 

information about each entity is obtained using several extractors. For example, article titles are 

associated with a URI through the rdf:label property, disambiguation links are represented using 

the dbpedia:disambiguates property, etc. Each Wikipedia page contains an infobox which 

describes the most important information about the topic in question. This data or information is 

structured in nature and hence is represented using named links to the source page. Unstructured 

information also has connections to other information. However, they are represented as 

anonymous or href links with no meaning associated with them.  

4.2 EXTERNAL MODULES USED BY OntoClass 

4.2.1 WIKIPEDIA 

The reference ontology that we use for OntoClass is also formed from Wikipedia. It is a 

slightly modified approach of the DBpedia ontology creation process mentioned above. The 

Wikipedia ontology utilized in this thesis was constructed by Maciej Janik in the LSDIS lab at 

UGA [19]. DBpedia concentrates more on infobox data extraction. Other types of templates 

present within the Wiki page do not receive any such special handling. In DBpedia, for each 

template present in the page, a new entity is created in the ontology though the template contains 

connections that are directly linked from the page. The Wikipedia ontology eliminates the 



35 
 

creation of these intermediate entities and creates direct connections instead. Separate property 

names have been created to distinguish between direct names, disambiguations and redirections. 

In Wikipedia articles, disambiguation is achieved by adding contextual information along with 

the name of the entity in parenthesis. For example, “ontology” and “ontology (information 

science)”. Phrases of this sort containing contextual information are not seen in documents since 

readers are capable of performing the disambiguation based on the document content. In the 

Wikipedia ontology, such names are shortened by removing the disambiguation information or 

contextual information and added as an alias name of a specific property to distinguish it from its 

full name. 

4.2.2 WIKIPEDIA MINER TOOLKIT 

The Wikipedia Miner toolkit [15] provides one way of navigating and making use of 

structure and content of Wikipedia. It aims to make it easy to integrate Wikipedia's [16] 

knowledge into applications, by:  

 providing simplified, object-oriented access to Wikipedia's structure and content. 

 measuring how terms and concepts in Wikipedia are connected to each other. 

 detecting and disambiguating Wikipedia topics when they are mentioned in documents. 

The Wikipedia Miner can detect Wikipedia topics when they are mentioned in documents.  It 

uses the links found in Wikipedia's articles to identify different senses for terms. It has two 

useful features which can be used to obtain results: 

The Search service allows a user to treat Wikipedia as a gigantic thesaurus, for describing 

everything. The Wikipedia articles this service locates provide a wide array of useful linguistic 

information, including definitions, synonyms, translations, and related topics. The search 



36 
 

vocabulary is extensive (5 million or more terms and phrases), and encodes both synonymy and 

polysemy. 

The Compare service allows a user to compare terms and concepts to measure how strongly they 

relate to each other. For this work, the Search feature was used to obtain corresponding 

Wikipedia articles and categories. Wikipedia Miner also gives results in XML format which was 

parsed to obtain the required articles and categories.  

4.2.3 WORDNET 

OntoClass, the system described in this thesis, also uses WordNet [20], which is a 

large lexical database of English, Nouns, verbs, adjectives and adverbs are grouped into sets of 

cognitive synonyms (synsets), each expressing a distinct concept. Synsets are interlinked by 

means of conceptual-semantic and lexical relations. The resulting network of meaningfully 

related words and concepts can be navigated with the browser. WordNet is also freely and 

publicly available for download. WordNet's structure makes it a useful tool for computational 

linguistics and natural language processing. 

4.2.4 WIKIPEDIA CATEGORIZATION SERVER 

OntoClass has another module called as Wikipedia Categorization Server [19]. It is a 

text categorization system which uses Wikipedia ontology to classify a given document 

containing text.  The classification is done using a semantic graph which is nothing but a 

mapping between the input text and Wikipedia ontology. The input to the server is a document 

containing text and it returns output which is the thematic graph (in the form of XML) containing 

the nodes, edges and possible categories of the input text. The categorization algorithm used by 

Wikipedia Categorization Server consists of three steps: Construction of semantic graph, 

selection and analysis of the thematic graph and categorization of the selected thematic graph. 



37 
 

1. Semantic graph construction 

 Named entities identification – Phrases describing entities (entity labels) in the ontology are 

matched in the text. For each located phrase, all associated entities are added as nodes to the 

created semantic graph. Each node is assigned an initial weight based on the strength of the 

match. 

 Connectivity inducing – Edges between the nodes in the semantic graph are created based on 

the relationships existing in the ontology and connecting the entities corresponding to the 

nodes. Each edge is assigned a weight based on the importance of the relationship in the 

ontology schema. 

  Information propagation – Node weights are propagated to their neighbors in order to 

establish the most authoritative entities in the graph. 

2. Thematic graph selection and analysis 

 Connected component identification – Connected components in the semantic graph are 

identified, treating the graph as undirected. 

 Dominant thematic graph identification – The largest and most important connected 

component of the semantic graph is selected as the dominant thematic graph. 

 Core selection – The most important and/or central entities in the thematic graph are 

identified; they form the core of the thematic graph. 

3. Dominant thematic graph categorization 

 Class assignment – Each entity in the dominant thematic graph is assigned a set of classes, 

according to the entity‟s classification in the ontology (assuming that an entity may belong to 

multiple classes). For each class in the set, its depth in the ontology class hierarchy is 

recorded. 



38 
 

 Ontological classification – Starting with the classes assigned to the authoritative and/or 

central entities, ascend in the ontological class hierarchy until a set of parent classes is 

located that covers a significant portion of entities in the dominant thematic graph. Each class 

in the new set of (higher level) classes is ranked according to (i) the weight of the entities it 

covers, (ii) the percentage of the covered entities in the dominant thematic graph, and (iii) the 

distance in the class hierarchy to the covered entities. 

 Categorization – the target categories are defined as ontology class (sub-)hierarchies, or just 

lists of classes; each class in the set located in the previous step is determined to belong to 

one or more categories (as a member of the hierarchy or the list); the weight of the classes is 

used to determine the best category for the document. 

4.3  OntoClass : A TOOL FOR ONTOLOGY CATEGORIZATION 

 OntoClass uses three methods to categorize an unknown target ontology. The first 

method uses target ontology class names to determine its category. The second method uses 

entire text (class names, labels, comments, properties) present in the target ontology to determine 

its category. The third method uses hierarchy of parents obtained from Wikipedia Miner to 

categorize the target ontology. The categorization methods used by OntoClass are as follows: 

4.3.1  OntoClass with target ontology classes 

 The first categorization method uses target ontology class names to categorize the target 

ontology. The target ontology was cleaned up to remove any special characters and prefixes to 

retain all the class names in the document. The cleaned up document containing the target 

ontology classes was sent to the Wikipedia Categorization Server to which creates a mapping 

between the target and reference ontologies and returns a thematic graph in the form of XML 

document. The graph nodes contain the names of Wikipedia articles and the weights associated 



39 
 

with them. Once the thematic graph was obtained from the Wikipedia Categorization Server in 

the form of an XML document, the XML-DOM library along with JUNG was used to parse the 

XML and represent it in the form of a undirected graph. Various importance calculation 

algorithms such as Degree Centrality, Eigenvector Centrality, and Barry center score available in 

the JUNG package were run on the thematic graph obtained from the Wikipedia Categorization 

Server. These centrality values were made use of to find the most important entities in the 

thematic graph.  Node scores were calculated for each node by adding the node weight and the 

sum of centrality values from each of the above mentioned algorithms. The nodes were arranged 

in descending order of node scores. If the number of nodes in the list was less than ten, the entire 

list was retained else first half of the list of nodes was added to the first list.  

 Each thematic graph node was compared with target ontology classes to find a match. If there 

was no match, a synonym of the thematic graph node was found using Wordnet and compared 

with the target ontology classes. The thematic graph nodes or their synonyms which matched the 

target ontology classes were added to the second list. The list of important nodes was obtained 

by combining the first and the second lists. The list of important nodes was sent to the 

categorizer to obtain the final categories. 

4.3.2 OntoClass with target ontology classes and text 

The second categorization method uses target ontology text (which includes class names, 

labels, comments, properties) to categorize the target ontology. The target ontology was cleaned 

up to remove any special characters and prefixes to retain all the text in the document. The 

cleaned up document was sent to the Wikipedia Categorization Server to which creates a 

mapping between the target and reference ontologies and returns a thematic graph in the form of 

XML document.  The graph nodes contain the names of Wikipedia articles and the weights 



40 
 

associated with them. Once the thematic graph was obtained from the Wikipedia Categorization 

Server in the form of an XML document, the XML-DOM library along with JUNG was used to 

parse the XML and represent it in the form of a undirected graph. Various importance calculation 

algorithms such as Degree Centrality, Eigenvector Centrality, and Barry center score available in 

the JUNG package were run on the thematic graph obtained from the Wikipedia Categorization 

Server. These centrality values were made use of to find the most important entities in the 

thematic graph.  Node scores were calculated for each node by adding the node weight and sum 

of the centrality values from each of the above mentioned algorithms. The nodes were arranged 

in descending order of node scores. If the number of nodes in the list was less than ten, the entire 

list was retained else first half of the list of nodes was added to the first list.  

 Each thematic graph node was compared with target ontology text to find a match. If there was 

no match, a synonym of the thematic graph node was found using Wordnet and compared with 

the target ontology classes. The thematic graph nodes or their synonyms which matched the 

target ontology classes were added to the second list. The list of important nodes was obtained 

by combining the first and the second lists. The list of important nodes was sent to the 

categorizer to obtain the final categories. 

Calculation of centrality scores 

For each node of the thematic graph, graph ranking measures such as Degree centrality, Eigen 

Vector centrality and Barry center score were determined using JUNG package. These scores 

determine the important nodes in the semantic graph and are known as centrality scores.  There 

exist several centrality scoring algorithms. The measures mentioned below are some of the few 

we use in our system: 

 



41 
 

Degree centrality  

Degree Centrality is defined as the number of edges connected to or incident on a node. In other 

words, degree of a node is the sum of the fan-in and fan-out values of the node. A node with a 

high degree centrality score implies that the entity is related to several other entities in the graph 

and hence is an important and popular entity within the graph. Most of the nodes in a semantic 

graph can be found in the target ontology on which it is based. Hence, they are all already 

connected to each other. The degree centrality of a node represents how well an entity is 

connected to the other entities in the ontology.  

The Degree Centrality module uses the degree centrality scores of each of the nodes in the 

semantic graph to compute importance of nodes and ultimately the final dominant category of 

the unknown target ontology. 

Eigenvector centrality 

A more sophisticated version of the Degree Centrality measure is the Eigenvector centrality. 

Where degree centrality gives a simple count of the number of connections a vertex has, 

eigenvector centrality acknowledges that not all connections are equal. The eigenvector 

centrality of a node depends both on the number and the quality of its connections obtained by 

the average centrality values of the adjacent nodes.  Eigenvector measure of a node is calculated 

using the principle that connections to high-scoring nodes contribute more to the score of the 

said node than low-scoring nodes. Hence, a node with a small number of heavy-weight 

connections may have a higher score when compared to a node with a large number of low-

weight connections. This would also determine the important nodes and their connections in the 

semantic graph and ultimately the most dominant category. 

 



42 
 

Barry center centrality  

The Distance Centrality score of vertices is calculated based on their distances to each and every 

other vertex in the graph. There are 2 types of distance centrality scores – Closeness Centrality 

and Barry center Centrality. Closeness of a vertex within a graph is higher if it has short geodesic 

distances to all other vertices in the graph. Geodesic distance is calculated as the number of 

edges in the shortest path connecting the two vertices. If there exists no path between the two 

vertices i.e. they belong to different connected components, then the geodesic distance between 

them is infinity. 

Barry center scores are calculated as - 1 / (total distance from vertex v to all other vertices). 

Hence, Barry center scores are assigned to each vertex according to the sum of its distances to all 

other vertices. If the total sum of the distances to all other nodes in the graph is high, it implies 

that the vertex is a non-central entity in the graph, since that node is not directly connected to 

many other entities in the graph. 

4.3.3 OntoClass with parent hierarchy from Wikipedia Miner Toolkit 

The target ontology was cleaned up to remove any special characters and prefixes to 

retain all the class names. For each target ontology class in the cleaned up document, a list of 

corresponding matches with the commonness score values was obtained from Wikipedia Miner. 

The term with highest sense commonness was selected for each target ontology class and a list of 

all mapped reference ontology entities was obtained. For each mapped reference ontology entity, 

parent categories were found at the first and second levels. The second level list of parents was 

traversed to find the frequency of each parent term in the list. Those terms with a frequency of 

one were eliminated. The parent categories of the remaining terms were found and a third level 

parent list was created. The third level parent list was traversed to find the frequency of each 



43 
 

term and the term which covered almost all the classes was reported as the final category of the 

target ontology. 

4.4 SYSTEM ARCHITECTURE   

4.4.1  OntoClass with target ontology classes / target ontology classes and text 

The first two methods are similar except for output obtained the first stage. In the first method, 

the target ontology parser provides a list of target ontology class names as the input to Wikipedia 

Categorization Server [18] whereas in the second method, it provides the ontology text (classes 

along with any phrases, labels, comments and properties) as the input to the Wikipedia 

Categorization Server.  The system architecture is as follows:  

 

Figure 4.1 System Architecture (first two methods) 



44 
 

Input: The input to the system is the unknown target ontology to be classified.  

Ontology Parser:  The target ontology is cleaned up by the ontology parser module to remove 

any special characters and prefixes to retain all the class names (along with text for the second 

method) in the document. The cleaned up document containing the target ontology class 

names(along with text for the second method) is sent to the Wikipedia Categorization Server. 

Wikipedia Categorization Server:  This module helps in achieving correct classification by 

providing the semantic graph which is further traversed to find important and dominant 

categories. The input to the Wikipedia Categorization Server module is the list of target ontology 

classes (along with text for the second method) provided by the Ontology Parser. This module 

makes use of the Wikipedia ontology and creates a mapping between the ontology and the input 

which is nothing but the semantic graph. The output is the thematic graph in the form of an XML 

document. 

Important nodes detector: This module detects the important nodes in the thematic graph and 

sends the list of important nodes to the categorizer. It generates the list of important nodes with 

the help of node scores as described in the methods in the previous section.  

Categorizer [19]: The list of important nodes is sent to the categorizer to obtain the final 

categories. 

4.4.2  OntoClass with Parent hierarchy provided by Wikipedia Miner Toolkit 

Ontology Parser: The target ontology is cleaned up by the ontology parser module to remove 

any special characters and prefixes to retain all the classes. The cleaned up document containing 

the target ontology class names is sent to the Wikipedia Miner Parser. 

Wikipedia Miner Parser: It consults the Wikipedia Miner toolkit and extracts a list of 

corresponding matches with the commonness score values for each target ontology class 



45 
 

obtained from the Ontology Parser. It then extracts the term with highest commonness value for 

every target ontology class to get a list of all corresponding reference ontology entities. This list 

is sent to the Parent Category Extractor. 

Parent Category Extractor: For each mapped reference ontology entity, parent categories are 

found at the first and second levels. The second level list of parents is traversed to find the 

frequency of each parent term in the list. Those terms with a frequency of one is eliminated. The 

parent categories of the remaining terms were found and a third level parent list is created. The 

third level parent list is traversed to find the frequency of each term and the term which is 

dominant is reported as the final category of the target ontology. 

 

            Figure 4.2 System Architecture (third method) 



46 
 

The system has been implemented in the Java programming language. Some of the libraries that 

were used:  Java Universal Network/Graph Framework or JUNG [17] is a software library that 

provides a common and extendible language for the modeling, analysis, and visualization of data 

that can be represented as a graph or network. The distribution of JUNG includes 

implementations of a number of algorithms from graph theory, data mining, and social network 

analysis, such as routines for clustering, decomposition, optimization, random graph generation, 

statistical analysis, and calculation of network distances, flows, and importance measures such as 

degree centrality, Eigenvector centrality and Barry center score. We used the JUNG package for 

graph representation of the XML and to run algorithms to calculate the various importance 

measures for the graph.  

 

 

 

 

 

 

 

 

 

 

 

 

 



47 
 

 

CHAPTER 5 

EXPERIMENTS AND EVALUATIONS 

 

5.1  EXPERIMENT SETUP  

The tool has been developed using Java programming language. Some of the libraries 

used were the Java Universal Network/Graph or the JUNG Framework.  The Wikipedia 

Categorization Server [18] is hosted on the kronos server at UGA‟s LSDIS lab. We setup a 

testing environment to run experiments and evaluate our system modules.  Experiments were 

conducted using twenty target ontologies belonging to different domains. Each of these 

ontologies was tested on the three methods described in the previous chapter. The input target 

ontologies were of different types in terms of size, formats and the domains they represented. 

The target ontologies were evaluated using certain tools as well as human judgement and how 

well they were categorized by the system.  

5.2  EVALUATION METRICS 

 Evaluating such a system is difficult since there is no automatic means of evaluation. 

Hence, human judgement was used for evaluation. The target ontologies were evaluated based 

on their characteristics and metrics as described below. Accordingly, they have been classified as 

superficial, medium and elaborate. 

The system was tested with twenty different ontologies belonging to various domains. Different 

characteristics for each target ontology, such as creator name, class count, object property count, 

data property count, individual count, isolated entity count, missing labels and comments count, 

missing inverse object property count are listed below. These characteristics were obtained by 



48 
 

using ontology editors such as Protégé [23] and Neon Toolkit [7]. Each input target ontology was 

evaluated on the basis of certain metrics [22] such as: 

 Relationship richness (RR): The relationship richness of a schema is defined as the ratio 

of the number of relationships defined in the schema, divided by the sum of the number 

of subclasses. 

 Attribute richness (AR): The attribute richness is defined as the average number of 

attributes (slots) per class. It is computed as the number attributes for all classes divided 

by the number of classes. 

 Average population (AP): The average population of classes in a Knowledge Base is 

defined as the number of instances of the Knowledge Base divided by the number of 

classes defined in the ontology schema. 

 Inheritance richness (IR): The inheritance richness of the schema is defined as the 

average number of subclasses per class.  

Each of these evaluation metrics were calculated for each target ontology used to test the 

system. The metric values for each ontology have been summarized in the table below. 

Table 5.1 Evaluation metrics for the target ontologies used. 

Name  Class 

count 

Object 

Prop. 

count 

 

Data 

Prop. 

count 

Missing 

Labels/ 

Comments 

RR AR AP IR Missing 

Domain 

or 

Ranges 

Ontology  

Type 

Film 95 385 0 0 0.8 0 0 1 0 Elaborate 

University 30 11 1 47/47 0.24 0.03 0.13 1.13 0 Medium 

Restaurant 165 29 28 111/110 0.12 0.16 0 1.26 16 Elaborate 



49 
 

 

Name  

 

Class 

count 

 

Object 

Prop. 

count 

 

 

Data 

Prop. 

count 

 

Missing 

Labels/ 

Comments 

 

RR 

 

AR 

 

AP 

 

IR 

 

Missing 

Domain

or 

Ranges 

 

Ontology  

Type 

Olympics 146 26 14 128/128 0.14 0.09 0 0.95 15 Elaborate 

Generation

s 

18 4 0 30/30 1 0 0.38 0 7 Medium 

Family 14 23 2 58/57 0.25 0.14 0.71 0.57 35 Superfici

al 

ISWC 33 18 17 119/118 0.21 0.51 1.51 2.03 36 Medium 

Lipid 716 46 0 762/761 0.08 0 0 0.70 25 Elaborate 

Animals 53 2 5 54/53 0.03 0.15 0.60 0.98 0 Elaborate 

Diseases 7810 7 0 7969/ 

7969 

0 0 0.01 1.64 0 Elaborate 

Family 

Health 

239 432 1 684/684 0.70 0 0.05 0.74 777 Elaborate 

Finance 270 113 20 416/416 0.30 0.07 0.04 0.93 6 Elaborate 

Life 

Science 

34 4 0 164/163 1 0 3.79 0 4 Superfici

al 

Airtravel 117 40 11 193/193 0.25 0.09 0.29 1 15 Elaborate 

Geographic

al 

Regions 

39 0 0 40/40 0 0 0 0.97 0 Superfici

al 

Parasite 41 5 0 47/46 0.09 0 0 1.19 0 Medium 

Book 4 8 3 16/16 0.88 0.75 0 0.25 0 Superfici

al 



50 
 

 

Name  

 

Class 

count 

 

Object 

Prop. 

count 

 

 

Data 

Prop. 

count 

 

Missing 

Labels/ 

Comments 

 

RR 

 

AR 

 

AP 

 

IR 

 

Missing 

Domain

or 

Ranges 

 

Ontology  

Type 

Baseball 78 20 1 16/16 0.16 0.01 1.16 1.30 0 Elaborate 

Name  Class 

count 

Object 

Prop. 

count 

 

Data 

Prop. 

count 

Missing 

Labels/ 

Comments 

RR AR AP IR Missing 

Domain

/ 

Ranges 

Ontology  

Type 

Beer 58 11 4 70/70 0.19 0.06 0.15 0.77 5 Elaborate 

Food 138 16 1 110/109 0.06 0 1.49 1.65 0 Elaborate 

 

5.3 RESULTS  

The system is evaluated by testing different target ontologies. The various ontologies used and 

the results obtained are summarized in the table below: 

Table 5.2   OntoClass Results 

Ontologies 

used 

OntoClass with target ontology 

classes 

OntoClass with target 

ontology text 

OntoClass with 

Wikipedia Miner 

Baseball 

Baseball 

Baseball_terminology 

Baseball_rules 

Ball_and_bat_games 

Ball_games 

Baseball 

Baseball_terminology 

Baseball_rules 

Olympics_sports 

Team_sports 

Sports 

Film 

(imdb) 

 

Media_occupations 

Film_crew 

Entertainment_occupations 

Filmmakers 

Mass_media 

 

Entertainment 

Arts 

Humanities 

Culture 

Society 

Entertainment 

 

 

 

 

 

 

 

 

 

 

 

 

 



51 
 

 

 

 

University 

 

Academia 

Education_and_training_occupati

ons Education 

Titles 

Higher_education 

 

Academia 

Education_and_training

_occupations 

Titles 

Education 

Higher_Education 

 

Society 

Social institutions 

Personal 

development 

Knowledge sharing 

Knowledge 

Fundamental 

Educational stages 

Articles 

Academia 

 

 

 

Olympics 

 

 

 

Olympic_sports 

Team_sports 

Sports 

Olympics 

Ball_games 

 

 

 

Olympic_sports 

Sports 

Team_sports 

Games 

Ball_games 

 

 

 

Sports 

 

Generations 

Family  

Human_development 

Kinship_and_descent 

 Society  

Social_psychology 

Family 

Human_development 

Kinship_and_descent 

Society 

Social_psychology 

Interpersonal_relatio

nships  

Society  

 

Book 

Books 

Written Communication 

Literature_by_medium 

Printing 

Publications _by_ format 

Writing 

Communication,Human

_skills 

Information_systems 

Language 

No results since it is 

a very small 

ontology. All 

parents occur 

once…they get 

eliminated during 

the second level 

parsing. 

Family 

Human_development 

 Humans 

Childhood  

Youth 

Time 

Human_development 

Humans 

 Time 

Biology 

Anthropology 

Society 

 

ISWC(confe

rence) does 

not contain 

many terms 

specific to 

ISWC. 

Academia 

 Education_and_training_ 

occupations  

Education   

Higher_education 

Titles 

Academia 

 Titles 

Education_and_training

_occupations 

Education 

Higher_education 

Society   

Education  

  



52 
 

Lipid 

Organic_compounds 

Organic_chemistry 

Chemistry 

Chemical_compounds 

Carbon_compounds 

Chemistry 

Organic_chemistry 

Organic_compounds 

Chemical_elements 

Chemical_substances 

Chemistry 

Carboxylic acids 

Biomolecules 

Amines 

 

Animals 

Mammals 

Animals 

Vertebrates 

Parent_categories 

Tetrapods 

Mammals 

Animals 

Vertebrates 

Parent_categories 

Tetrapods 

Animals 

Fauna_by_continent 

Diseases 

Inflammations 

Medical_specialties 

Medicine 

Diseases 

Health 

 

No results.  

Nineteen thousand lines 

of text generated. 

Medical_specialities 

Biology 

 

Family 

Health 

 

 

Family 

Human_development 

Kinship_and_descent 

Society 

Social_psychology 

 

 

Family 

Human_development 

Kinship_and_descent 

Society 

Social_psychology 

 

 

 

 

Science 

Finance 

Stock_market 

Finance 

Business 

Economics 

Financial_economics 

 

Stock_market 

Business 

Finance 

Financial_economics 

Main_topic_classificati

ons 

Finance 

Business 

Lifescience 

Molecular_biology 

Biology 

Genetics 

Life 

Biochemistry 

Biology 

Molecular_biology 

Life 

Genetics 

Natural_sciences 

Biology 

Natural_sciences 

Chemistry 

Airtravel 

Aviation_terminology 

Transportation 

Aviation 

Airfield 

Industries 

Transportation 

Aviation 

Airfield 

Rail_transport 

Industries 

Aviation 

Building_and_struct

ures_by_type 

Geographica

lRegions 

 

Continents 

Poles 

Americas 

Earth 

Places 

 

Continents 

Earth 

Places 

Landforms 

Plate_tectonics 

 

Countries_by_contie

nts 

Countries 

 



53 
 

Parasite 

Euglenozoa 

Parasitic_protists 

Parasitism 

Parasitology 

Symbiosis 

Biology 

Life 

Natural_sciences 

Scientific_classification 

Parasitology 

No results. Terms 

very specific to the 

domain 

Beer 

Beer_styles 

Beer 

Types_of_beer 

Fermented_beverages 

German_loanwords 

Types_of_beer 

Beer 

Fermented_beverages 

Types 

Structure 

Foods 

 

Food 

Meals 

Food_and_drink 

Foods 

Culture 

Digestive_system 

Fish_products 

Seafood 

Foods 

Meat 

Animal_products 

Food_and_Drink 

Foods 

 

5.4  DISCUSSION  

The Film ontology has ninety five classes which are well connected, with no isolated entities.  It 

has no individuals. It has a high value for relationship richness which means that the 

relationships are not just IS-A relationships.  There are no attributes and hence the attribute 

richness value is zero. Its classes are well distributed and cover most of the aspects of the 

domain. The first method classified this ontology moderately because majority of the classes 

define film crew occupations. The second method classified this ontology more accurately than 

the first one most likely due to the presence of other supporting information in the form of 

properties, labels and comments.  The third method also classified the ontology more accurately 

than the first one. 

The University ontology is a small ontology with thirty classes. It has four individuals. It is well 

connected but has a low relationship richness which means that there are more IS-A 

relationships. The attribute richness value is low, so there is not much information about each 

class in the ontology. The ontology describes the domain accurately because of its small size and 



54 
 

more specific classes.  The first method classifies this ontology accurately because the classes of 

the target ontology describe the domain most accurately. The second method produced similar 

results to the first method due to the presence of text and phrases relevant to the domain. The 

third method gave moderate results.  

The Restaurant ontology is a medium sized ontology with one hundred sixty five classes. It has 

no individuals. It is well connected and has two isolated entities. It has low relationship richness 

which means that there are more IS-A relationships. The attribute richness value is low, so there 

is not much information about each class in the ontology. The first method moderately classified 

the ontology because the ontology contains more terms related to food and drink than terms 

describing the restaurant itself. The second method also classified the target ontology moderately 

but better than the first method due to the existence of properties and comments which make the 

categorization better. The third method was the least accurate in this case.  

The Olympics ontology is a medium sized ontology with one hundred forty six classes. It is also 

well connected with no isolated entities. It has no individuals.  It has low relationship richness 

which means that there are more IS-A relationships. It has low attribute richness value. It is six 

levels deep. The classes and relationships describe the domain accurately. All the three methods 

classified the ontology accurately.  

The Generations ontology is a small sized ontology with eighteen classes. It is well connected 

with no isolated entities.  It has a depth of three levels. It has seven individuals.  It has high 

relationship richness value because there are less number of IS-A relationships and low attribute 

value due to absence of class attributes. All the three methods classified the ontology moderately.  

The Family ontology is a small sized ontology with fourteen classes. It is well connected with no 

isolated entities.  It has a depth of three levels. It has ten individuals. It has low relationship 



55 
 

richness value because there are more number of IS-A relationships and low attribute value due 

to low number of class attributes. Even though the ontology has been named as describing a 

family, it does not capture the domain accurately. It lacks all the information needed to represent 

a family. As per the classes present in the target ontology, all the three methods classified it 

accurately.  

The ISWC ontology is a small sized ontology with thirty three classes. It is well connected with 

no isolated entities. It is four levels deep. It has fifty individuals. It has low relationship richness 

value which means that there are more number of IS-A relationships. It has low attribute richness 

value. Even though, it is named as describing ISWC in specific, it does convey very little 

information about ISWC. It represents information in a more general way and has classes and 

relationships that describe a conference in general. All the three methods moderately classified 

the target ontology. 

The Lipid ontology is of big size with seven hundred sixteen classes. It is well connected with no 

isolated entities. It has no individuals.  It has low relationship richness and attribute richness 

values. The first two methods accurately classified the ontology. The third method produced a 

more general classification. 

The Animals ontology is a small sized ontology with fifty three classes. It is well connected with 

no isolated entities.  It has a depth of five levels. It has thirty two individuals.  It has low 

relationship richness value because there are more number of IS-A relationships and low 

attribute richness value due to low number of class attributes. It describes the domain accurately 

with classes that represent most of the information about the domain. As per the classes present 

in the target ontology, all the three methods classified it accurately.  



56 
 

The Diseases ontology is a big sized ontology with seven thousand eight hundred ten classes. It 

is well connected with no isolated entities.  It has a depth of three levels. It has one hundred fifty 

four individuals. It has low relationship richness value because there are more number of IS-A 

relationships and low attribute richness value due to low number of class attributes. The first 

method classified the target ontology accurately. The second method did not provide results due 

to huge size of text (nineteen thousand lines) obtained after parsing the target ontology.  The 

third method did not classify the target ontology accurately. It produced a very broad 

classification. 

The Family Health ontology is a medium sized ontology with two hundred thirty nine classes. It 

is well connected with no isolated entities.  It has a depth of eight levels. It has twelve 

individuals. It has high relationship richness value because there are less number of IS-A 

relationships and low attribute richness value due absence of class attributes. All the three 

methods classified it moderately.  

The Finance ontology is a medium sized ontology with two hundred seventy classes. It is well 

connected with one isolated entity.  It has a depth of eight levels. It has twelve individuals.  It has 

low relationship richness value because there are more number of IS-A relationships and low 

attribute richness value due to low number of class attributes. As per the classes present in the 

target ontology, all the three methods classified it accurately.  

The Life Science ontology is a small sized ontology with thirty four classes. It is not at all well 

connected with thirty four isolated entities.  It has a depth of two levels. It has one hundred 

twenty nine individuals. It has low relationship richness value because there are more number of 

IS-A relationships and low attribute richness value due to low number of class attributes.  As the 



57 
 

ontology does not provide enough information about the domain, all the three methods classified 

it moderately.  

The Air travel ontology is a medium sized ontology with one hundred seventeen classes. It is 

well connected with no isolated entities.  It has a depth of six levels. It has twenty four 

individuals.  It has low relationship richness value because there are more number of IS-A 

relationships and low attribute richness value due to low number of class attributes. It describes 

the domain accurately. All the three methods classified it accurately.  

The Geographical Regions ontology is a small sized ontology with thirty nine classes. It is well 

connected with no isolated entities.  It has a depth of four levels. It has no individuals. It has low 

relationship richness value because there are only IS-A relationships and low attribute richness 

value due absence of class attributes. In spite of having only IS-A relationships, it has very 

specific terms that describe the domain. All the three methods classified it accurately.  

The Parasite ontology is a small sized ontology with forty one classes. It is well connected with 

no isolated entities.  It has a depth of five levels. It has no individuals. It has low relationship 

richness value because there are more number of IS-A relationships and low attribute richness 

value due to absence of class attributes. The first two methods classified it accurately, but the 

third method did not produce any results due to very specific terms used in the ontology.  

The Book ontology is a small sized ontology with four classes. It is well connected with no 

isolated entities.  It has a depth of three levels. It has no individuals. It has high relationship 

richness value because there are less number of IS-A relationships and high attribute richness 

value due to absence of class attributes. The first method classified it accurately whereas the 

second method produced a slightly broader classification. The third method did not produce 



58 
 

results because the ontology is very small and the parents got eliminated at the second level 

itself. 

The Baseball ontology is a small sized ontology with seventy eight classes. It is well connected 

with no isolated entities.  It has a depth of six levels. It has ninety one individuals.  It has low 

relationship richness value because there are more number of IS-A relationships and low 

attribute value due to absence of class attributes. It has good number of instances. The first two 

methods classified it accurately. The third method classified the ontology to a broader domain. 

The Beer ontology is a small sized ontology with fifty eight classes. It is well connected with no 

isolated entities.  It has a depth of six levels. It has nine individuals. It has low relationship 

richness value because there are more number of IS-A relationships and low attribute value due 

to absence of class attributes. The first two methods classified it accurately. The third method 

classified the ontology to a broader category. 

The Food ontology is a medium sized ontology with one hundred thirty eight classes. It is well 

connected with no isolated entities.  It has a depth of seven levels. It has two hundred six 

individuals. It has low relationship richness value because there are more number of IS-A 

relationships and low attribute value due to absence of class attributes. All three methods 

classified the target ontology accurately. 

5.5 OVERALL EVALUATION OF THE SYSTEM 

The system was evaluated with a numeric assessment to test its categorization quality. An overall 

evaluation was done by using a scoring method which is as follows: 

 A score of 3 points was assigned to a method if the result produced by it matched the 

domain of the target ontology accurately 



59 
 

 A score of 2 points was assigned to a method if the result produced by it matched the sub 

or super categories of the target ontology domain.  

 A score of 1 point was assigned to a method if the result produced by it was somewhat 

related to the domain of the target ontology.  

 No score was assigned for a misclassification. 

The scoring was done in two different ways: 

 Cumulative score for each method was calculated inorder to find the performance of 

each method. 

 Cumulative score was for each method was calculated by grouping ontologies of 

similar kind (superficial, elaborate and medium). 

5.5.1 CUMULATIVE SCORES FOR EACH METHOD 

The following table summarizes cumulative scores for each method 

Table 5.3     Cumulative scores for each method 

OntoClass with Target 

Ontology Classes 

OntoClass with Target 

Ontology Text 

OntoClass with 

Wikipedia Miner Toolkit 

0.88 0.81 0.66 

 

5.5.2 CUMULATIVE SCORES BASED ON TYPE OF ONTOLOGIES 

As per the evaluation done in the previous sections, the target ontologies were evaluated as 

superficial, medium and elaborate. Accordingly, there are four superficial ontologies, four 

medium ontologies and twelve elaborate ontologies. A cumulative score for each group of target 

ontolgies was calculated for every method. The following table summarizes the scores: 

     



60 
 

Table 5.4   Cumulative scores for three groups of ontologies 

Type of Ontology 

OntoClass with 

Target Ontology 

Classes 

OntoClass with 

Target Ontology 

Classes and Text 

OntoClass with 

Wikipedia Miner 

Toolkit 

Superficial         0.91 0.83 0.58 

Medium  0.83 0.83 0.50 

Elaborate 0.88 0.80 0.70 

 

5.6      OVERALL PERFORMANCE  

The results show that the first method is the most efficient in categorizing a given target 

ontology.  The second method uses more text from the target ontology but did not perform well 

as it skews the classification of the categorizer. The categorization results are the best with 

elaborate ontologies followed by superficial and then medium ontologies. The third method did 

not perform as good as the first two methods. It gave a more broad classification in most of the 

cases due to absence of a relationship graph for the ontology classes.  

 

 

 

 

 

 

 

 



61 
 

 

CHAPTER 6 

CONCLUSION AND FUTURE WORK  

6.1  CONCLUSION 

Ontologies are one of the major sources of knowledge and data. With the emergence of 

Semantic Web, there is an increasing interest in developing and finding new ontologies 

describing different domains. With so much research in the Semantic Web area, several 

ontologies have come into existence. Today, there exist many ontologies even to describe a 

particular domain of knowledge. With so many ontologies describing the same domain of 

knowledge, there are many tools which provide mappings between them to show how similar 

they are. Ontology alignment or Ontology mapping provides interconnections between different 

ontologies representing the same domain of knowledge.  

Apart from ontology alignment, searching for newly developed ontologies is a difficult task. 

There are search engines like Swoogle which can be used to search for a particular ontology, but 

it uses only keywords to provide the required results. It does not perform a semantic search for 

ontologies which might result in some ontologies being left out of the search results since they 

are not being recognized semantically as well.  

The system we have built is a Ontology Categorization tool called OntoClass which takes an 

unknown target ontology and finds how well it fits into a given reference ontology and then 

categorizes it. This system uses Wikipedia as the reference ontology. Wikipedia is a rich source 

of information being used in natural language processing and also in a variety of research areas 

dealing with the Semantic Web. It represents a giant database of concepts and semantic 



62 
 

relationships. We made a use of ontology from Wikipedia because it covers almost all domains.  

This was done by three methods. First method used target ontology class names and a semantic 

graph module to generate important nodes based on centrality values. Node scores were 

calculated based on these values. Target ontology class names were compared with semantic 

graph nodes to find a match.  For no match found, synonyms of semantic graph nodes were 

compared with the target ontology class names and a list of final matches was created. This list 

along with the important nodes list was sent to the categorizer to get the final categories. Second 

method used target ontology text (i.e. class names, labels, comments and properties) in the first 

step along with semantic graph to generate important nodes based on centrality values. Node 

scores were calculated based on these values. Target ontology class names were compared with 

semantic graph nodes to find a match.  For no match found, synonyms of semantic graph nodes 

were compared with the target ontology class names and a list of final matches was created. This 

list along with the important nodes list was sent to the categorizer to get the final categories.  

Third method uses a toolkit called Wikipedia Miner to navigate and use Wikipedia‟s content and 

structure. For each target ontology class, corresponding mapped entities were found from 

Wikipedia Miner. For each mapped Wikipedia entity category, levels of parent categories were 

found till a parent category that covers almost all the entities was discovered. The dominant 

category was reported as the category of the target ontology. This system would be very useful to 

categorize unknown ontologies.  

6.2 FUTURE WORK  

The methods used to classify a given target ontology do not consider annotations and 

instances while parsing the given target ontology. These methods could be further extended to do 

so. The third method could be improved by obtaining a graph from Wikipedia miner matches to 



63 
 

indicate the most important nodes. The existing system can be combined with a Semantic search 

engine such as Swoogle to increase the efficiency of search results. By using multiple target 

ontologies against the reference ontology, this system can be further extended to compare given 

two target ontologies. The classification results can be used as a metric for evaluating the quality 

of a given ontology. 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 



64 
 

 

       CHAPTER 7  

REFERENCES  

1. Berners-Lee, Tim., & Fischetti, Mark. (1999)  Weaving the Web. Harper, SanFrancisco.  

2. Web: http://en.wikibooks.org/wiki/Semantic_Web 

3. W3C. Web: http://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/#%2824%29. 

4. T. R. Gruber, T.R. (1993). A translation approach to portable ontologies. Knowledge 

Acquisition, 5(2):199-220. 

5. Ding, L., Pan, R., Finin, T., Joshi, A., Peng, Y., & Kolari, P. (2005). Finding and Ranking 

Knowledge on the Semantic Web. In Y. Gil, E. Motta, V. Benjamins & M. Musen (Eds.), The 

Semantic Web – ISWC 2005 (Vol.3729, pp. 156-170): Springer Berlin / Heidelberg. 

6. W3C. Web: http://www.w3.org/RDF/  

7. Neon-toolkit- XDTools. Web: http://neon-toolkit.org/wiki/2.3.1/XDTools 

8. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., et al. (2009). 

DBpedia - A crystallization point for the Web of Data. Web Semantics: Science, Services and 

Agents on the World Wide Web, 7(3), 154 - 165. 

9. W3C. Web: http://www.w3.org/TR/owl-ref/ 

10. W3C. Web: http://www.w3.org/TR/owl-guide/ 

11. Ehrig, M. (2007). Ontology Alignment: Bridging the Semantic Gap. 

12. Spiliopoulos, V., Valarakos, A. G., & Vouros, G. A. (2008). CSR: discovering subsumption 

relations for the alignment of ontologies. Paper presented at the Proceedings of the 5th European 

semantic web conference on The semantic web: research and applications. 



65 
 

13. Jérôme Euzenat., & Svaiko,P. (2007). Ontology Matching: Springer-Verlag. 

14. Wikipedia Statistics. Web: http://stats.wikimedia.org/EN/TablesArticlesTotal.htm 

15. Milne, D., & Witten, I.H. (2009) An Open-Source Toolkit for Mining Wikipedia.  

16. Wikipedia Miner. Web: http://wikipedia-miner.sourceforge.net/ 

17. The Java Universal Network/Graph Framework or JUNG. Web: 

http://jung.sourceforge.net/index.html 

18. Janik, M., & Kochut, K. J. (2008). Training-less Ontology-based Text Categorization. 

19. Janik, M., & Kochut, K. J. (2008). Wikipedia in Action: Ontological Knowledge in Text 

Categorization. Paper presented at the Proceedings of the 2008 IEEE International Conference 

on Semantic Computing. 

20. Fellbaum, C., & NetLibrary Inc. (1999). WordNet an electronic lexical database, Language, 

speech, and communication. 

21. Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R. S., Peng, Y., et al. (2004). Swoogle: a search 

and metadata engine for the Semantic Web. Paper presented at the Proceedings of the thirteenth 

ACM international conference on Information and knowledge management.  

22. Samir, T., Arpinar, I. B., Michael, M., Amit, P. S., & Boanerges, A.-M. (2005). {OntoQA}: 

Metric-Based Ontology Quality Analysis, Proceedings of IEEE Workshop on Knowledge 

Acquisition from Distributed, Autonomous, Semantically Heterogeneous Data and Knowledge 

Sources. 

23. Noy, N. F., Sintek, M., Decker, S., Crubezy, M., Fergerson, R. W., & Musen, M. A. (2001). 

Creating Semantic Web contents with Protege-2000. Intelligent Systems, IEEE, 16(2), 60-71. 

 

 


