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Abstract

Background: Non-alcoholic fatty liver disease (NAFLD) is a multifactorial disease with a complex pathophysiology.
The clinical features of NAFLD include obesity, insulin resistance (IR) and dyslipidemia. Consumption of a diet high
in saturated fats and sucrose is an important factor in the increasing occurrence of these metabolic disorders,
primarily NAFLD and IR. We sought to assess the role of a high-fat, high-sucrose (HFS) diet in the promotion of
NAFLD and to evaluate the effects of quercetin (Q), berberine (BB) and o-coumaric acid (CA) on modulation of
these disorders.

Methods: Fifty male rats were divided into 2 main groups as follows: group 1 comprised 10 rats fed a standard diet
(SD), and group 2 comprised 40 rats fed an HFS diet for 6 weeks and then subdivided equally into 4 groups; one of
these groups served as the HFS diet and each of the other three groups received daily supplementation with either
Q, CA or BB for 6 weeks.

Results: In the present study, several metabolic disorders were induced in our laboratory animal model, as evidenced
by histological and biochemical changes. These alterations included serum and hepatic dyslipidemia (i.e., increased
triglyceride, total cholesterol and low-density lipoprotein levels and decreased high-density lipoprotein levels),
alterations in metabolic enzyme activities (lipase, glycerol-3-phosphate dehydrogenase, and glucose-6-phosphate
dehydrogenase), histological changes in the liver (micro- and macrovesicular steatosis) and the downregulation of
peroxisome proliferator-activated receptor γ (PPARγ) in adipose tissue and the liver. Daily oral supplementation with Q,
CA or BB for 6 weeks after NAFLD induction had a hypolipidemic action and modulated metabolic markers.

Conclusion: We showed that an HFS diet is able to promote NAFLD, and our results suggest that CA and BB are
promising complementary supplements that can ameliorate the metabolic disorders associated with an HFS diet;
however, Q requires further investigation.
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Background
High level of caloric intake has been associated with many
diet-induced complications, including metabolic syndrome,
cardiovascular disease and non-alcoholic fatty liver disease
(NAFLD) [1]. Feeding a carbohydrate- and fat-rich dietary
components have been used in rodents to induce the signs
and symptoms of human metabolic syndrome [2]. NAFLD
is a multifactorial disease with a complex pathophysiology.
The clinical markers of NAFLD include obesity, insulin
resistance (IR), and dyslipidemia [3]. Hepatic lipid dys-
regulation, oxidative stress, and pro-inflammatory cyto-
kines interact synergistically to promote hepatic fat
accumulation over time [4]. Dietary carbohydrates and
fats of different nature, combinations and amounts have
been used in various NAFLD induction studies [5–9].
Peroxisome proliferator-activated receptor γ (PPARγ) is a
major metabolic transcription regulator particularly for
hepatic lipogenesis [10]. The upregulation of hepatic
PPARγ is frequently observed in mice fed a high-fat diet
[11]. In addition, the liver-specific deletion of PPARγ in
mice established the role of this transcription factor as a
prosteatotic factor in the development of NAFLD [12].
Accordingly, PPARγ inactivation promotes the efflux of
free fatty acids (FFAs) from the liver and muscle while in-
creasing fat mass, which consequently increases insulin
sensitivity [13].
Phytochemicals are bioactive compounds of plants that

are not yet classified as essential nutrients despite their
health-promoting properties [14]. The majority of edible
phytochemicals possess cytoprotective antioxidative or
anti-inflammatory activities [15]. Reportedly, their beneficial
health effects also include; anti-obesity, lipid-lowering,
and/or antidiabetic properties [16]. Phytochemicals include
phenolic compounds, such as flavonoids (e.g., quercetin,
epicatechin, rutin, myricetin, luteolin, naringenin, and
silybin) [17]. As a mitochondrial antioxidant, quercetin has
a wide range of biological effects, such as lowering blood
pressure [18], reducing body weight [18], and ameliorating
hyperglycemia-related diseases [19]. Phytochemicals also
include phenolic acids present in plant-based foods such as
fruits, vegetables, grains, tea, coffee, and spices and are
consumed by most humans every day [20, 21]. Among
these phenolic acids is coumaric acid (CA), which is a
hydroxy derivative of cinnamic acid. CA exists in three
isomeric forms, o-coumaric acid, m-coumaric acid, and p-
coumaric acid [22]. The anti-adipogenic effect of o-
coumaric acid appears to be mediated through the
downregulation of the expression of adipogenic transcrip-
tion factors (PPARγ and C/EBPα) and adipocyte-specific
proteins (leptin), which suppresses dyslipidemia, hepatos-
teatosis and oxidative stress in obese rats [23]. Berberine is
a botanical alkaloid found in the roots and barks of several
plants, such as berberis, goldenseal (Hydrastis canadensis),
and Coptis chinensis. It has been reported that berberine

reduces body weight and significantly improves glucose
tolerance and insulin action in obese and/or diabetic sub-
jects [24, 25]. In addition to berberine enhancing insulin
sensitivity, this compound reduces hyperlipidemia and
ameliorates fatty liver [26]. The aim of this study was to
investigate the ability of feeding rats with a high-fat, high-
sucrose (HFS) diet to induce NAFLD and to assess the
individual physiological roles of quercetin, berberine and
o-coumaric acid in the modulation of NAFLD histological
and biochemical progression.

Materials and methods
Animals
Fifty adult (six-week-old) Wistar rats (80-120 g) were pur-
chased from the animal house of the Faculty of Medicine,
Assiut University, Assiut, Egypt, and the animals were
housed in cages in the animal house of the Zoology Depart-
ment, Faculty of Science, Assiut University. All of the ani-
mal procedures were performed in accordance with the
guidelines for the care and use of experimental animals
established by the Committee for the Purpose of Control
and Supervision of Experiments on Animals (CPCSEA)
and the protocol of the National Institutes of Health (NIH).
The animals were allowed to acclimate for 2 weeks before
the experiment and were housed in metal cages in a well-
ventilated room. The animals were maintained under
standard laboratory conditions (25 °C, 60-70 % relative hu-
midity and a 12-h light/dark cycle).

Experimental design of diets and supplementation with
natural compounds
After one week of acclimatization, the rats were ran-
domly divided into 2 main groups: a control group of 10
rats that were fed a standard diet (SD; 80 % carbohy-
drates, 18 % proteins and 2 % fats) and 40 rats that were
fed an HFS diet (55 % SD diet, 15 % beef tallow, 10 %
sucrose, 5 % roasted peanuts, 5 % milk powder, 5 % egg,
3 % sesame oil and 2 % NaCl) plus 10 % sucrose in their
drinking water. After six weeks of feeding, these 40 rats
were subdivided into four groups. The first group (HFS)
was left untreated; this was the positive control group.
The other three groups were treated with quercetin (Q)
(50 mg/kg b.w.), o-coumaric acid (CA) (75 mg/kg b.w)
or berberine (BB) (50 mg/kg b.w). The quercetin and o-
coumaric acid were dissolved in 20 % DMSO, whereas
the berberine chloride was dissolved in a pre-warmed sa-
line solution. These three compounds were purchased
from Sigma-Aldrich, France and were orally adminis-
tered daily for six weeks starting at six weeks of feeding
with the HFS diet.

Collection and preparation of samples
Animals were bled from jugular vein and serum was re-
covered after clotting by centrifuged at 6000 rpm for 1 h
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at 4 °C. Sera were aliquot stored at -80 °C. Rats in the
different groups were killed by cervical dislocation. The
liver was quickly removed. One part was fixed in 10 %
neutral buffered formalin for the histopathological inves-
tigations. The other part was first frozen in liquid nitro-
gen and then stored at _80 °C for later use in the
biochemical studies. To prepare a 10 % w/v homogenate,
0.3 g of liver was homogenized in 3 ml of 0.1 M phos-
phate buffer (pH 7.4) using an IKA Yellow line DI
homogenizer (18 Disperser, Germany). The homogenates
were centrifuged at 6000 rpm for 1 h at 4 °C, and the
supernatant were kept frozen at _80 °C for subsequent
biochemical assays.

Serum lipid profile and hepatic lipids analyses
Serum triglycerides were determined enzymatically using
commercially available reagent kits (Egyptian Company
for Biotechnology (S.A.E), Cairo, Egypt) [27]. Total chol-
esterol was determined using a commercially available
kit that was based on a modification of the cholesterol
oxidase method [28]. High-density lipoprotein choles-
terol (HDL-C) was determined using a commercial kit
that was based on the precipitation method [29]. Low-
density lipoprotein cholesterol (LDL-C) was calculated
as total cholesterol – HDL-C-triglyceride x 0.2. Hepatic
lipids were extracted according to the method of Folch
et al. [30]. The total cholesterol (TCh) and triglyceride
(TG) concentrations in the liver were analyzed with the
same enzymatic kit that was used for the serum analysis.

Activities of enzymes involved in lipid metabolism
The enzymatic activity of glucose-6-phosphate dehydro-
genase (G6PDH) was measured in 2 ml of 50 mM Tris-
HCl buffer (pH 7.4) containing 0.6 mM NADP, 2 mM
glucose-6-phospate, 5 mM EDTA and the appropriate
amount of sample at 25 °C. The reaction was monitored by
measuring the change in absorbance at 340 nm. The en-
zymatic activity is expressed as units/mg protein. The ac-
tivity of glycerol-3-phosphate dehydrogenase (G3PDH), a
key lipogenic enzyme, was measured according to the
method of Kozak and Jensen [31]. Briefly, the hepatic tissue
was homogenized in 4 volumes of ice-cold 50 mM tri(hy-
droxymethyl)-aminomethane (Tris) buffer (pH 7.5) con-
taining 1 mM EDTA, 1 mM β-mercaptoethanol and 0.5 %
Triton X-100. After sequential centrifugations at 10,000 g
for 15 min, the final supernatant fraction was collected as
the source of enzyme. An appropriate amount of enzyme
solution was incubated with 1 ml of substrate solution
[100 mM triethanolamine-HCl buffer (pH 7.5) containing
2.5 mM EDTA, 0.12 mM NADH, 0.2 mM dihydroxyacet-
one phosphate and 0.1 mM β-mercaptoethanol], and the
decrease in the absorbance at 340 nm was recorded over
time; the enzymatic activity was expressed as units/mg
protein.

Hepatic lipase activity was assayed spectrophotomet-
rically using p-nitrophenyl palmitate (p-NPP) as sub-
strate according to the method of Krieger et al. (1999)
[32]. A quantity of 100 mg of hepatic tissue was homog-
enized in 1 ml of potassium phosphate buffer (pH 7.4)
and then centrifuged at 8000 × g for 15 min; the super-
natant was then collected as a sample. The substrate so-
lution consisted of one part solution A (3.0 mM p-NPP
in 2-propanol) and nine parts solution B [100 mM po-
tassium phosphate buffer (pH 7) containing 0.4 %
Triton-X100 and 0.1 % gum Arabic]. The reaction mix-
ture (100 μl of sample + 1900 μl of substrate solution)
was incubated at 37 °C for 20 min. The reaction was
stopped by boiling for 10 min, followed by centrifugation
at 8000 x g for 10 min. The release of p-nitrophenol was
measured at 410 nm against a blank containing only buf-
fer that was subjected to the same conditions. One unit
of enzymatic activity is defined as the amount of enzyme
that releases 1 μmole of p-nitrophenol per min under
the conditions described above.

Quantitative real time- PCR (QRT-PCR)
Total RNA was extracted from the liver and white adipose
tissue using a QIA ampRNA blood Mini Kit (Cat. No.
52304, Gmbh) according to the manufacturer’s instruc-
tions. The RNA concentration and purity were assessed
based on absorbance at 260 nm and 280 nm. QRT-PCR
amplification was performed in a 96-well format with the
Brilliant II SYBR Green QRT-PCR Master Mix Kit, 1-Step
(Cat. No. #600825 single kit) using a real-time PCR system
(Stratagene 3000P). The real-time RT-PCR primers were
designed by the Primer Express 1.5 software (Invitrogen™),
and the sequences were as follows: PPARγ, F, 5' -CAC
AAG AGC TGA CCC AAT GGT TGC TG -3'; PPARγ, R,
5' -CGC AGA TCA GCA GAC TCT GGG TTC-3'.
Quantification was performed by calculating the values
of the Δcycle threshold (ΔCt) by normalizing the aver-
age Ct value of each treatment compared to its control
and then calculating the 2−ΔΔCt for each treatment.

Histopathological examination and electron microscopic
study
The 10 % neutral buffered formalin fixed tissue were rou-
tinely processed according to standard procedures. Then,
sections (7 μm) of the different groups were mounted on
slides and dried overnight at 37 °C. The sections were de-
waxed in xylene, hydrated in a graded series of alcohol solu-
tions and then stained with hematoxylin and eosin for
histological evaluation. Small hepatic tissue fragments were
cut into 1-mm3 sections. The fragments were immediately
fixed in 2.5 % glutaraldehyde and rinsed in 0.1 M phosphate
buffer. After fixation in 1 % osmium tetroxide and rinsing
in 0.1 M phosphate buffer, the samples were dehydrated in
a graded series of alcohol solutions and embedded in pure
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epoxy resin. Ultrathin sections (50-80 nm) were cut with a
Leica AG ultramicrotome and stained with uranyl acetate
and lead citrate [33]. The sections were examined with a
TEM (Jeol, 100 CXII) operated at 80 KV at the Electron
Microscopic Center, Assiut University.

Statistical analysis
The data were tested for normality using the Anderson-
Darling test and for homogeneity of variances prior to
further statistical analyses. The data were normally distrib-
uted and were expressed as the mean ± standard error of
the mean (SEM). Significant differences among groups
were analyzed using a one-way ANOVA followed by a
Newman-Keuls multiple comparisons test for multiple
comparisons using PRISM statistical software (GraphPad
Software). Differences were considered statistically signifi-
cant at p < 0.05, 0.01, 0.001 or 0.0001.

Results
Effect of an HFS diet and treatments on biochemical
measurements
By the end of 12 weeks of feeding with the HFS diet, our
data demonstrated that the pair-fed groups in the labora-
tory model exhibited differences in their serum and hepatic
tissue lipid profiles. The HFS-diet-fed rats exhibited a sig-
nificant increase in the levels of serum LDL (p < 0.01),
TG and TC (p < 0.001) and a significant decrease in
HDL (p < 0.01) compared with the SD-fed rats (Fig. 1a).
Additionally, the HFS-fed rats displayed significant in-
creases in hepatic lipids (p < 0.05) and TG (p < 0.01)
and TCh (p < 0.001) content, as shown in Fig. 1b. Ac-
tivity assays of the hepatic enzymes in the HFS-fed
rats revealed a significant decrease (p < 0.001) in the
G6PDH activity (U/mg protein), a significant increase
(p < 0.001) in the lipase activity (mU/mg protein) and
a non-significant difference in hepatic G3PDH (mU/mg
protein) activity compared with the SD-fed rats (Fig. 1c).
After six weeks of feeding rats the HFS diet, treatment with
CA and BB resulted in significant decreases (p < 0.001) in
the levels of serum LDL, TG and TC and a significant in-
crease (p < 0.001) in the HDL level in the CA and (p < 0.01)
BB groups, whereas treatment with Q significantly modu-
lated (p < 0.001) the changes in serum TG and TC levels
compared with the HFS-diet group, as shown in Fig. 2a.
The hepatic lipid content was decreased in all of the
treatment groups but not to a significant extent. Hep-
atic TCh content was significantly (p < 0.05) decreased
in the Q group, the CA group (p < 0.01) and the BB
group (p < 0.001). Additionally, the hepatic TG content
was significantly (p < 0.001) lowered in the Q and CA
groups, as well as in the BB group (p < 0.01), compared
with the HFS group (Fig. 2b). The assays for hepatic en-
zyme activities revealed a significant increase in G6PDH
activity (U/mg protein) in the Q and CA groups (p < 0.01)

and in the BB group (p < 0.001). Hepatic lipase activity
(mU/mg protein) was significantly decreased (p < 0.001) in
all of the treatment groups, whereas G3PDH (mU/mg
protein) activity was decreased significantly only in the Q
group compared with the HFS-diet group (Fig. 2c).

Effect of the HFS diet and treatments on
histopathological observations
The hematoxylin-and-eosin-stained sections revealed that
the HFS diet led to an enlargement of the hepatocytes and
an increase in the number of lipid droplets (Fig. 3b) in the
liver compared to the SD group (Fig. 3a). In particular, the
semi-thin sections exhibited microvesicular and macrove-
sicular steatosis of the liver of rats on the HFS diet (Fig. 3d)
compared with the liver of an SD-fed rat (Fig. 3c). The
electron microscopy study also revealed hepatocytes with
abundant lipid droplets in the HFS-fed rats (Fig. 3f) com-
pared with the livers of the SD-fed rats (Fig. 3e).
The quercetin-treated group exhibited macrovesicular

steatosis with well-defined fat vacuoles (Fig. 4a); treatment
with CA resulted in no marked changes (Fig. 4b) compared
with the other treatments, whereas the BB group had fewer
changes, represented by microvesicular steatosis, as shown
in Fig. 4c. These observations were confirmed by the semi-
thin sections, which revealed that treatment with Q did
not ameliorate the effect of the HFS diet, as demonstrated
by the abundant number of fat droplets (Fig. 4d), fewer
steatotic changes than in the CA group (Fig. 4e) and the
smaller fat droplets in the BB-treated group (Fig. 4f), com-
pared with the HFS group (Fig. 2d). Additionally, the elec-
tron microscopy study revealed that the Q group had more
fat droplets (Fig. 4g) than both the CA (Fig. 4h) and BB
groups (Fig. 4i).

An HFS diet modulates the expression of PPARγ
One representative PCR amplification products indicating
the expression of PPARγ (Fig. 5a and c) are shown. This
experiment shows that the expression of PPARγ in adi-
pose tissues was obviously decreased in HFS-fed rats and
the rats in all of the treatment groups compared with that
in the SD-fed rats (Fig. 5a). However, in hepatic tissues of
HFS- and Q-treated group the expression of PPARγ was
clearly down-regulated as compared with SD-fed rats
(Fig. 5c). In contrast, the expression of PPARγ in hepatic
tissues was clearly up-regulated in the BB-treated group
compared with the SD-fed rats. The rats of CA-treated
group exhibit similar expression of PPARγ in their hepatic
tissues. Accumulated data from three independent experi-
ments (Fig. 5b and D) indicate that the HFS-fed rats and
the rats in all of the treatment groups exhibited highly sig-
nificant downregulation (p < 0.0001) of adipose tissue
PPARγ expression compared with that in the SD-fed rats.
PPARγ expression in hepatic tissues revealed significant
downregulation in the HFS-fed rats and the Q group
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(p < 0.05, p < 0.01, respectively) and significant (p < 0.01)
upregulation in the BB group compared with the SD-
fed rats.

Discussion
The model used in this study mimics third world diets,
which mostly have a high carbohydrate and/or fat intake.
The first observation in the present study was the non-
significant change in the body weight of the SD-fed rats,
HFS-fed rats and rats in all of the treatment groups. This

result is in agreement with several studies that found that
feeding with high-fat diets, high-sucrose diets or both did
not increase the body weight of rats over the long term
[34–36]. This can be explained by the prevalence of meta-
bolically obese but normal-weight individuals who have ob-
viously larger amounts of visceral adipose tissue associated
with IR and other metabolic disorders [37]. In the present
study, the HFS diet resulted in dyslipidemic changes as
demonstrated by increased serum levels of TG, TCh and
LDL and a lower level of HDL compared with the control

Fig. 1 Effects of feeding rats an HFS diet on the serum lipid profile (a), hepatic lipids, TCh and TG (b), and hepatic metabolic enzymes (c) compared with
those of SD-fed rats. The data are presented as the mean ± SE. * p< 0.05, ** p <0.01, *** p< 0.001. (ANOVA with Newman-Keuls multiple comparisons test)
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rats; these findings may arise from the high fat content of
beef tallow induced hypercholesterolemia [38]. We also
checked the levels of serum insulin. We found that insulin
level was increased in HFS, but was significantly reduced in
Q-, BB- and CA- treated groups (data not shown). Dietary
sucrose has been shown to significantly produce hypertri-
glyceridemia over the life spans of rats that had free access
to food or were calorie restricted; this may be due to in-
creased secretion of TG, which decreased the catabolism of
the rats [39]. Treatment with Q, CA or BB modulated these
alterations. Likewise, Teodoro et al. (2013) [40] proved the
positive effect of BB supplementation (100 mg/kg/day) in

the drinking water for 4 weeks on reversing the effects of
feeding a high-fat diet for 12 weeks. Additionally, the daily
oral administration of Q (50 mg/kg) for 4 weeks amelio-
rated the negative effects on the serum lipid profile of
4 weeks of feeding with 10 % fructose [41]. Previous studies
have revealed that hydroxycinnamic acids (p-coumaric acid,
caffeic acid, ferulic acid) and their derivatives efficiently im-
proved hypercholesterolemia and type 2 diabetes [42]. With
overnutrition and a lack of exercise, the liver and other tis-
sues store excess energy as triacylglycerol (TAG). Shifting
carbon energy into a storage form is likely protective
against cytotoxic fatty acid (FA) accumulation. Peripheral

Fig. 2 Ameliorative effects of Q, CA and BB on the serum lipid profile (a), hepatic lipids, TCh and TG (b), and hepatic metabolic enzymes (c) compared
with the HFS-fed rats. The data are presented as the mean ± SE. * p< 0.05, ** p< 0.01, *** p< 0.001. (ANOVA with Newman-Keuls multiple
comparisons test)
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IR may cause fatty liver by elevating the plasma levels of
FA, glucose, and insulin, which stimulates hepatic lipid syn-
thesis and impairs hepatic β-oxidation [43]. The present
data revealed that the livers of the HFS-fed rats had signifi-
cantly higher amounts of lipids than the livers of the SD-
fed rats. In addition, measuring the hepatic TG and TCh
lipid content revealed a highly significant increase in the
HFS group compared with the SD group. These findings
are in accordance with several previous studies that con-
cluded that the multiple steps involved in lipid accumula-
tion and inflammation in the liver occurred more rapidly in
response to an HFS or HFD diet [5, 44, 45]. Although the
present results indicated that treatment with Q, CA or BB
failed to reverse the hyperlipidemia induced by the HFS
diet, these compounds normalized the TG and TCh levels.

Previous reports on this subject have suggested that sapo-
nins, such as diosgenin contained in fenugreek, form large
micelles of bile acid and the saponin molecules in the small
intestine, and these micelles inhibit cholesterol absorption
by directly excreting cholesterol in the feces [46]. G6PDH
plays a key role and is a crucial enzyme in the maintenance
of the cellular redox potential and cell survival via the
production of NADPH [47]. The data obtained from the
present study clearly indicated that the HFS-fed rats
exhibited a highly significant decrease in hepatic G6PD ac-
tivity compared with the SD-fed rats. In addition, treatment
with Q, CA or BB resulted in a significant recovery of the
hepatic G6PD activity, importantly this recovery was signifi-
cant in relation to the HFS group. In a recent study, plasma
G6PD activity decreased with HFD-induced oxidative stress

Fig. 3 Histological and electron microscopy observations of the liver; sections stained with H&E: SD-fed rats (a) and HFS-fed rats with large (star) and
small (arrow) lipid droplets (b). Semi-thin sections reveal microvesicular and macrovesicular steatosis in the liver of the HFS-fed rats (d) compared with
the SD-fed rats (c). EM photos of clear and abundant lipid droplets in the HFS-fed rats (f) compared with the SD-fed rats (e) (5,800X)
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in rats. This decrease could be explained by hyperglycemia
associated with the HFD, which caused the activation of
protein kinase A and a subsequent increase in the phos-
phorylation and inhibition of G6PD activity and thereby a
decrease in NADPH levels, leading to increased oxidative
stress [48]. Hepatic lipase plays a major role in lipoprotein
metabolism as a lipolytic enzyme that hydrolyzes TG and
phospholipids in chylomicron remnants, intermediate-
density lipoproteins (IDL), and HDL [49]. In the present
study, hepatic lipase activity increased significantly in the
HFS group compared with the SD group. Feeding with an
HFS followed by co-treatment with an HFS and Q, CA, or
BB significantly decreased hepatic lipase activity compared
with the HFS group. These results are in agreement with
those of Brunzell and Carr (2004) [50] who found that pa-
tients with the familial form of hypertriglyceridemia with
central obesity usually have elevated hepatic lipase activity.
The excessive accumulation of lipids within hepatocytes
due to an imbalance between lipid formation and lipid deg-
radation leads to hepatic steatosis [51]. Collectively, the
present histopathological observations of the H&E-stained
and semi-thin sections, confirmed by the electron micros-
copy study, verify the presence of microvesicular and
macrovesicular steatosis of the livers of rats on the HFS
diet compared with the livers of the SD-fed rats. Previous

studies corroborate these observations; a fat- and sugar-
enriched diet results in liver steatosis, lobular inflamma-
tion, hepatocyte ballooning, and portal inflammation [52].
Additionally, animal models fed on lard or beef tallow fats
presented differences in the frequency of hepatic steatosis
ranging from mild to severe based on the type of fats and
feeding period [53, 54]. Recently, we explored the ameli-
orative effects of Q, BB and CA on the oxidative stress in-
duced in NAFLD in rat model [55].
Treatment with Q revealed an ameliorative effect against

the HFS diet as demonstrated by the abundant number of
variable size fat droplets, fewer changes than in the CA
group and the small fat droplets in the BB-treated group
compared with the HFS group. The intragastric adminis-
tration of BB at 187.5 mg/kg/day has been demonstrated
to partially reverse the macrovesicular steatosis and inflam-
matory cell infiltration of portal areas and within hepatic
lobules induced by a high-fat diet [54]. Previous studies
have described the pivotal role of PPARγ in metabolism
and glucose homeostasis [55–57]. In the present study, the
results indicated that the HFS-fed rats and the rats in all of
the treated groups exhibited highly significant downregula-
tion of adipose tissue PPARγ expression compared with
that in the SD-fed rats. However, PPARγ expression in the
hepatic tissues revealed significant downregulation in the

Fig. 4 Histological and electron microscopy observations of the liver sections stained with H&E; the Q treated rats have microvesicular (star) and
macrovesicular steatosis (arrow) (a); the CA group with fewer changes (b), and the BB group with small lipid droplets (c). The semi-thin sections
reveal microvesicular and macrovesicular steatosis in the livers of the Q group (d), slight changes in the CA group (e) and microvesicular steatosis
in the BB group (F). EM photos of clear lipid droplets with variable sizes in the Q, CA and BB groups (g, h and i), respectively
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HFS-fed rats and the Q group and significant upregulation
in the BB group compared with the SD-fed rats. The
downregulation of PPARγ expression in the HFS-fed rats is
in accord with several studies on different types of diets
[58, 59]. Furthermore, PPAR-γ plays an essential part in
lipogenesis of adipocytes by promoting the uptake of FFAs
and increased the content of TAGs in the adipocytes and
reduction of FFAs delivery to the liver [60]. Hepatic FFAs
synthesis is catalyzed by acetyl-CoA carboxylase and fatty
acid synthase, an enzyme that is complexly regulated by

nuclear receptors (PPARα and PPARγ). Treatment with
BB at 30 mg/kg has been found to increase the cardiac
level of PPARγ mRNA expression in a rat model of
hyperglycemia and hypercholesterolemia [59]. PPARγ
expression has been shown to be remarkably decreased
in response to 35 mg/kg streptozotocin and a 30-week
feeding of a high-carbohydrate/high-fat diet; middle-
and high-dose BB significantly returned the decreased
PPARγ expression in diabetic adipose tissue to the
control level [61]. Furthermore, certain natural PPARγ
modulators, such as conjugated linoleic acid, can in-
crease PPARγ expression, resulting in improved insulin
resistance and glucose tolerance [62].
In conclusion, we have demonstrated that a high intake

of fat and sucrose can induce NAFLD in male rats com-
pared with the SD. Additionally, induction of NAFLD was
exemplified by hyperlipidemia and metabolic disorders.
Oral supplementation with natural compounds such as CA
or BB ameliorated these disorders, but Q ameliorated only
metabolic disorders In accordance with numerous previous
studies supporting the benefits of various natural com-
pounds in treating many diseases [63–70]. The present
work provides experimental evidence to indicate that CA
and BB can be considered promising complementary sup-
plements for treating the development of hepatic steatosis
associated with HFS diets.
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