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Abstract

The stand timber monetary value is a function of merchantable volume and timber price.

Finding the proportions of timber in each of the commercial pine product classes (i.e., saw-

timber, chip-n-saw, and pulpwood) is a critical component in calculating the stand timber

value. The objective of this research is to predict the sawtimber potential (STP) proportion

over time as a function of tree and stand characteristics: the management intensity, planting

density, thinning, tree diameter distribution percentile at year six, and defects and fungus

infection incidence at year six. Data from a designed research trial evaluating the impacts

of density and management over years 6 to 21 were used. This research has direct timber

management application since a forestland owner can predict the STP when the forest plan-

tation is still young and decide the suitable management regime. Furthermore, STP can be

used to optimize financial returns by performing marginal analysis.

Index words: Timber product class proportions, Generalized linear mixed effects
models, Blended price.
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Chapter 1

Introduction and literature review

Loblolly pine (Pinus taeda L.), with a forest plantation area estimated at 14.4 million

hectares, is the most commercially important forest species in the Southeastern United States

(South and Harper 2016). The timber production in this region has been enhanced using

genetically improved seedlings, and a wide range of silvicultural treatments such as mechan-

ical site preparation, competing vegetation control, fertilization, and thinning1 (Allen et al.

2005). These intensive forest management practices, in conjunction with planting density,

age, and environmental conditions, are the main drivers of forest stand dynamics2 (Clutter

et al. 1992).

Timber production analysis requires an accurate estimation of the merchantable3 timber

volume as a vital input for forest financial return calculations. Merchantable volume estima-

tions can be performed by i) modeling forest growth and yield, and ii) finding the quantity

of timber in each commercial timber product class:

• Sawtimber: trees or logs that meet the minimum required dimensions and quality

specifications for conversion to lumber.

• Chip-n-saw: tree or logs that can be commercialized for small dimensional lumber and

obtaining the byproduct chips, small pieces of wood used for paper pulp, firewood, or

for making wood composites.

1A cultural treatment made to reduce the number of trees in a tract of land, primarily to improve
growth, and enhance forest health (Helms 1998).

2Stand: a contiguous group of trees sufficiently uniform in age-class distribution, composition,
and structure, and growing on a site of sufficient uniform quality, to be a distinguishable unit.
Stand dynamic or stand development: changes in forest stand structure over time (Helms 1998).

3Trees and stands having the size, quality, and condition suitable for marketing under a given
economic condition, even if not immediately accessible for logging.

1
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• Pulpwood: roundwood, whole-tree chips, or wood residues that are used for paper

production and allied products.

Two primary forest growth and yield modeling approaches are usually utilized in the

Southeastern U.S.: size-class and whole-stand models (Burkhart et al. 2018). The size-class

cohort model, a type of the stand-table4 projection method, recognizes the stand structure5

and growth dynamics (Poudel and Cao 2013). A present or current stand table is projected

to the future by using per class annual increments and mortality rates. Present and future

stand tables are converted to stock tables6 by using local height-diameter relationships and

individual-tree volume equations. Such a disaggregation of stand characteristics and structure

by diameter classes allows for quantifying the volume in commercial timber product classes

(Burkhart 1979; Pienaar and Harrison 1988). Although size-class cohort models allow for the

estimation of volume in the commercial timber product classes, the method has some caveats.

Assuming that past per-diameter-class growth rate will remain invariant in the future, and

the difficulty in obtaining accurate mortality rate estimates are the two evident shortcomings

of the stand-table projection method (Burkhart and Tomé 2012).

Conversely, whole-stand models, which corresponds to most existing forest growth and

yield models for loblolly pine, allow for estimating total volume or weight at a given age as a

function of site index7 and stand characteristics (Burkhart et al. 2018). Whole-stand models

make the differentiation of volume into the commercial timber product classes somewhat

cumbersome. This problem has been traditionally addressed by finding the proportions to

split the total volume into timber product classes. Binomial and multinomial response models

4Stand table: a list of the number of trees by diameter classes, generally per unit area. The data
may be presented in the form of frequency distribution of diameter classes (Helms 1998).

5Stand structure: the horizontal and vertical distribution of components of a forest stand
including the diameter, height, crown layers, and stand density (Helms 1998).

6Stock table: a list showing the proportions of total volume within a stand by diameter classes
(Helms 1998).

7Site index: a species-specific measure of actual or potential forest productivity, expressed in
terms of the average height of trees included in a specified stand component (defined as a certain
number of the largest and tallest trees per unit area) at a specified based age (Helms 1998).
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typify statistical approaches in which theoretical probabilities, or in this case, parameters of

the proportion of classes, are mathematically expressed as a function of covariates.

The proportion of timber product classes has traditionally been modeled as a function

of environmental conditions, soil type, culture intensity, planting or stand density, thinning,

genetics, size, age, forest health, and stem quality assessments. Strub et al. (1986) estimated

the individual-tree probability of merchantability as a function of tree diameter at breast

height (DBH) in old-field8 loblolly pine plantations. Burkhart and Bredenkamp (1989) esti-

mated the proportion of trees in pulpwood, sawtimber, and peelers9 by DBH classes using an

extension of Strub et al. (1986) modeling approach. Buford and Burkhart (1987) found that

the proportion of stems with defects was not significantly different between stands of unim-

proved and improved genetic stocks. Teeter and Zhou (1998) estimated multinomial models

to predict timber product proportions to distribute per-acre total volume within four cat-

egories, i.e., softwood pulpwood, softwood sawtimber, hardwood pulpwood, and hardwood

sawtimber as a function of DBH and volume. Prestemon and Buongiorno (2000) estimated

an ordered-probit model to predict the lumber grade as a function of DBH and height. Green

et al. (2018) estimated the proportion of solid wood, the aggregation of sawtimber and chip-

n-saw classes, as a function of two management regimes and six planting densities. Choi

et al. (2008) found that the stem quality dynamics during 15 years of measurements is a

function of the DBH, total height, crown10 class, relative height, age, site index, and stand

density. Likewise, stem quality assessments such as fork11, broken top, sweep12, and incidence

of diseases have been used to improve the estimation of timber product class proportions

(Choi et al. 2008; Buford and Burkhart 1987; Green et al. 2018; Cumbie et al. 2012).

8Late successional or climax stage of a forest.
9A high-grade log from which veneer is peeled on a lathe or sliced for the production of plywood

(Helms 1998).
10The part of a tree or woody plant bearing live branches and foliage (Helms 1998).
11A tree’s stem that is naturally divided into two or more stems.
12The extent to which the lower portion of a tree’s stem diverges from straight.
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Most of the monetary value of timber in intensively managed pine plantations in the

Southeastern United States corresponds to solid wood (Amateis and Burkhart 2005; Green

et al. 2018). Depending on local markets and forest management objectives, silviculturist and

forestland owners attempt to increase the amount of solid wood as a strategy to maximize

financial returns. Since collecting data for aforementioned commercial timber product classes

is expensive, most of the stem quality assessments have primarily been focused on sawtimber,

the most valuable commercial timber product class.

Consider a binary response variable, yi ∼iid Bernoulli(θ), taking the value of one if

the ith tree has been assessed to have sawtimber potential or the value zero otherwise

(non-sawtimber). An extension of this model allows for yi ∼id Bernoulli(θi) with covariates

accounting for the variation among trees in the generalized linear model (GLM) (McCullagh

and Nelder 1989). Consider a model with p covariates, xi
> = (1, xi1, xi2, ..., xip), and p + 1

parameters, β> = (β0, β1, β2, ..., βp), as follows (Rencher and Schaalje 2008; Zhang et al.

2011):

yi|xi ∼id Bernoulli(θi), θi = E(yi|xi), logit(θi) = xi
>β, i = 1, 2, ..., n (1.1)

where n is the number of trees. The model usually embodies assumptions that should not be

taken for granted, such as zero correlation or independence, lack of interaction or additivity,

and linearity (McCullagh and Nelder 1989). Because trees in forestry studies are usually

measured several times, the assumption of independence between (among) observations is

violated. Thus, serial correlation is present when a time-varying stochastic process is oper-

ating on the units, and the units are repeatedly measured (Rencher and Schaalje 2008).

Besides, a hierarchical arrangement is present because the studies are conducted in regions

with contrasting climatic characteristics, on a variety of soil types, and in measurement plots.

An extension of the GLM, the generalized linear mixed model (GLMM) is used to cope with
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the error structure issue in forestry datasets (Zhang et al. 2011):

yit|xit, zi,b ∼id Bernoulli(θit), E(yit|xit, zi,b) = θit, logit(θit) = xit
>β + zi

>b (1.2)

b ∼ N (0,Σb), i = 1, 2, ..., n, t = 1, 2, ...,M (1.3)

where zi
> = (zi1

>, zi2
>, ..., zik

>) is the partitioned vector of covariates within k random

effects; b> = (b1
>,b2

>, ...,bk
>) represents the partitioned vector of k random effects; each

pair zi1 and b1, zi2 and b2, and zik and bk is conformable for multiplication; N (0,Σb) is

the multivariate normal distribution with mean zero and variance-covariance matrix equal

to Σb; and M is the number of periods.

The objective of this research is to predict the sawtimber potential (STP) proportion

over time for loblolly pine trees in the Southeastern U.S. as a function of tree and stand

characteristics, management regimes, planting density, thinning, and early assessments of

the relative tree size, a fungus disease incidence and severity of damage. This research can

be directly applied by forestland owners in predicting STP at a juvenile stage, as forest

geneticists have suggested (Cumbie et al. 2012), to decide the suitable silvicultral practices

and remedy measures to maximize the stand timber value.



Chapter 2

Methods

2.1 Data

The Plantation Management Research Cooperative (PMRC) at the University of Georgia,

Athens, Georgia, established 40 sites across the Southeastern United States with the purpose

of testing the effect of management intensity and planting density, named Culture / Den-

sity studies, on loblolly pine (Pinus taeda) growth and yield. Two management intensities,

operational and intensive, were applied to the sites; planting densities in all study sites were

300, 600, 900, 1200, 1500, and 1800 trees per acre (TPA).

The first study, named Coastal Plain (CP) Culture / Density, composed of 17 study

sites, was installed in the Lower Coastal Plain of Georgia, Florida, and South Carolina

during the 1995/1996 dormant season. All installations were planted with loblolly pine first

generation, open-pollinated1 family 7-56, an exceptionally fast grower. At the time of age

21 measurement, 11 installations remained (Figure 2.1). The second study, named South

Atlantic Gulf Slope (SAGS) Culture / Density, composed of 23 study sites, was installed in

the Piedmont and Upper Coastal Plain regions of Georgia, Alabama, Florida, Mississippi,

and South Carolina. The genetic material, considered as good quality at the time of planting,

most likely a combination of first-generation open-pollinated families, was selected by the

PMRC cooperator. After 18 growing seasons, 7 and 9 installations remained being measured

in the Piedmont and Upper Coastal Plain regions, respectively (Figure 2.1).

1Offspring from a mating where pollination was not controlled. The mother is known because
seeds are collected from that individual, but the father is unknown because pollinization was not
controlled.

6
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Figure 2.1: Location of the Culture / Density studies: Coastal Plain (CP) in the Lower
Coastal Plain physiographic region, and South Atlantic Gulf Slope (SAGS) in the Piedmont
and Upper Coastal Plain physiographic regions.

The experimental design for each study, CP and SAGS, corresponded to a split-split plot

design. The study was at the highest hierarchy level of the experimental design and accounted

for the effect of the physiographic region. The levels within the second level were associated

with soil classes of the Cooperative Research in Forest Fertilization (CRIFF) system. The

soil classes, eight in total, coded from A to H, are defined using soil drainage, and texture

and depth of the surface soil layers (Jokela and Long 2012) (Figure 2.2). CRIFF classes

can be subdivided into subgroups, coded by Arabic numbers, to account for differences of

depth within the same class. For example, the depth of the argillic horizon of B1 CRIFF

class is in the range 20-40 in, whereas the depth of the argillic horizon of B2 CRIFF class is

greater than 40 in or the argillic horizon is absent (Zhao et al. 2014). In CP, at least three

installations were established on each of the five CRIFF soil groups A, B1, B2, C, and D.
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CRIFF classes in SAGS were E, F, and G, without any arrangement of the minimum number

of installations assigned to CRIFF soil classes. The third and last level was installation, in

which plots were split for management, operational and intensive, and then the six planting

densities were established within each of the management plots (Harrison and Shiver 1999).

Figure 2.2: The CRIFF (Cooperative Research in Forest Fertilization) forest soil classification
system. Source: (Jokela and Long 2012).

The operational management consisted of bedding (only in CP) in the spring followed

by a fall herbicide treatment. The herbicide treatment consisted of 12 oz. Arsenal plus 1

qt. Garlon 4 per acre if the competition was waxy-leafed species or 12 oz. Arsenal plus 1

qt. Accord per acre if the competition consisted mainly of grass. Herbicide was applied in a

5-foot band over the rows. At planting, 500 lbs. of N-P-K 10-10-10 fertilizer was applied. In

the spring of the eight, twelfth and sixteenth growing seasons, operational treatment plots

were fertilized with the equivalent of 200 lbs. of N and 25 lbs. of P per acre.

The intensive management consisted of bedding (only in CP) in the spring followed by

a fall herbicide application. The herbicide treatment was a broadcast application of 16 oz.

Arsenal, 2 quarts Garlon 4 and 2 quarts Accord per acre. At planting, 500 lbs. of N-P-

K 10-10-10 fertilizer was applied on all plots. Fertilizer treatments, including the addition
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of micronutrients, were repeated every three years. The intensive cultural treatment plots

received additional herbicide treatments to keep them as completely free of competing veg-

etation as possible throughout their rotation. Beginning in the spring of the first growing

season, the plots were sprayed with 4 oz. Oust (sulfometuron methyl) per acre along with

directed sprays of Accord. Insecticides like Pounce were applied as often as necessary to

maintain tip moth controlled through the first two growing seasons. In the spring of the

third growing season, the plots received 600 lbs/ac of N-P-K 10-10-10 plus micronutrients

and 117 lbs/ac of NH4NO3. An additional 117 lbs/ac of NH4NO3 was applied in the spring

of the fourth growing season, 300 lbs/ac of NH4NO3 was added in the spring of the sixth

growing season, and 200 lbs of elemental N and 25 lbs of elemental P were applied in the

spring of the eighth, tenth, twelfth, fourteenth, sixteenth and eighteenth growing seasons.

At each installation, there was a random allocation of management intensity to each of

the main plots. Within a management intensity, the density treatment subplots with 300,

600, 900, 1200, 1500 and 1800 TPA were randomly assigned. A third row thinning with low

thinning on leave rows was implemented on four installations in each CP and SAGS to 600,

900, and 1200 TPA plots to the current stand density on their 300-TPA planting density -

management counterparts.

Forest measurements were taken at years 2, 4, 6, 8, 10, 12, 15, and 18 for both CP

and SAGS; and an additional measurement at age 21 for CP was taken. At each measure-

ment, trees taller than 4.4 ft were measured for diameter at breast height (DBH), and after

the fourth growing season, total heights (Ht) were measured or estimated with site-specific

height-diameter allometric models. Stem quality assessments (sawtimber potential started

at year 12), evaluations of forest health, and evaluations of damage were also taken at each

measurement.
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2.2 Model building

2.2.1 Response variable

The binary response variable STP takes the value of one if the tree has sawtimber potential

(STP=1), or zero otherwise (STP=0) (Figure 2.3):

STP =


1 Sawtimber potential: no defects, good sawtimber potential

0 Non-sawtimber potential: sawtimber reject for stem fork in first log,

crook or sweep, fungus disease in first log, or ugly tree

In total, 115138 observations from 38508 trees measured from year 12 to 21 on 429

plots within 36 installations were used to model the STP proportion (Table 2.1). Data from

discontinued installations were also included in the database as long as they had at least one

STP evaluation.

Figure 2.3: Sawtimber potential assessment. Tree with a good form and without defects,
classified as sawtimber potential tree (left); and tree with fork in the first log, classified as a
non-sawtimber tree (right).
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Table 2.1: Location, soil information, site index, year of thinning, and last growing season
measured for installations of the Coastal Plain (CP) Culture / Density study located in the
Lower Coastal Plain, and South Atlantic Gulf Slope (SAGS) Culture / Density study located
in the Upper Coastal Plain and Piedmont of the Southeastern United States.

Installation State County
CRIFF
soil

NRCS
soil series

SI
Thinned
at year

Measured
at year

Coastal Plain (CP)
1 FL Baker C Sapelo 97 21
2∗ FL Baker D Leon 86 4
3 FL Columbia C Sapelo 78 15
4 FL Columbia B1 Leon 90 21
6 SC Hampton C Pelham 93 21
7 SC Georgetown A Cape Fear 79 12 21
8 SC Williams A Cape Fear 89 12 21
9 FL Nassau B1 Yamassee 91 21
10∗ GA Charlton C 86 12
11 FL Nassau D Ocila 61 21
12 GA Ware B2 79 12 18
13 FL Putnam C Albany/Leefield 93 12 21
14 SC Dorchester A Pomona 95 21
15 GA Lowndes B2 Mouzon 86 21
16 GA Clinch B2 Albany 83 18
17 GA Effingha B1 78 21
18∗ GA Brantley D 86 10
South Altantic Gulf Slope (SAGS)
1 GA Hancock F Bonifay/Cowarts 72 15
2 AL Baldwin G Lakeland 74 18
3 AL Escambia F Freemanville 79 12 18
4 AL Escambia E Orangeburg 85 18
5 GA Talbot F Lloyd 89 18
6 GA Marion G Lakeland 69 18
7 FL Santa Rosa F Troup 79 10 18
8 SC Laurens E Cecil 77 12
9 AL Monroe E Bama/Malbis 83 18
10 AL Monroe F Lucy 85 12
11 GA Greene F Cecil 82 12 18
12 AL Barbour E Orangeburg-Springhill 86 12 18
13 GA Jasper E Lloyd/Pacolet 84 18
15 AL Shelby F Decatur/Tupelo 77 18
16 AL St. Clair E Conasauga/Firestone 71 18
17 GA Harolson F Grover 84 18
18 GA Chatooga F Fullerton 75 18
19 MS Perry F Susquehanna/Freest 92 18
20 AL Escambia E Benndale 85 15
21 GA Burke E Tifton 86 16
22 GA Burke E Tifton 80 14
23 AL Clarke F Okeelala/Brantley 81 12
24∗ AL Choctaw E Luverne 92 10
∗Not available stem quality evaluation of sawtimber. SI: site index (ft @ 25 years).
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2.2.2 Covariates

The covariates used in the model were:

• Age, stand-level continuous variable (years)

• Management, stand-level dichotomous variable, takes the value of one for installations

with intensive silvicultural management, zero otherwise

• Site index (SI), stand-level continuous variable (ft @ 25 yrs), calculated using the

following functions (Borders et al. 2014):

SI = exp(5.4185 + (ln(Hd)− 5.4185)(Age/25)0.5235), for CP (2.1)

SI = exp(5.6065 + (ln(Hd)− 5.6065)(Age/25)0.4837), for SAGS (2.2)

where Hd is the average height (ft) of dominant and codominant trees2 at the oldest

available measurement Age (years)

• Planting density, stand-level continuous variable (TPA)

• Thinning, stand-level dichotomous variable, takes the value of one for stands that have

been thinned, zero otherwise

• DBH percentile at year six, tree-level continuous variable in the range 0-1

• Rust at year six, tree-level ordinal variable, corresponding to the percentage of the

stem circumference infected with the rust fungus Cronartium quercuum at year six:

– Level 0: No infection

– Level 1: Circumference infected between 1 and 25%

– Level 2: Circumference infected between 26 and 50%

2A dominant or codominant tree is one that its crown extends above, or helps to form, the
general level of the main canopy, and receives full light from above and partial or little light from
the sides (Helms 1998).
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– Level 3: Circumference infected between 51 and 75%

– Level 4: Circumference infected between 76 and 100%

• Damage at year six, tree-level factor, each level of the factor works as a dichotomous

variable. Tree bole defects as a result of diseases, soil nutrient deficiencies, silvicultural

malpractices, and catastrophic events and natural disasters such as hurricanes, tor-

nadoes, ice storms, droughts, wildfires, and floods. The factor levels are described as

follows:

– Yellow needles, tree-level dichotomous variable, takes the value of one if the tree

had yellow needles, zero otherwise

– Dead needles, tree-level dichotomous variable, takes the value of one if the tree

had dead needles, zero otherwise

– Tip dieback, tree-level dichotomous variable, takes the value of one if the tree was

progressive dying from the top, zero otherwise

– Leaning tree, tree-level dichotomous variable, takes the value of one if the tree

was inclined, zero otherwise

– Broken top, tree-level dichotomous variable, takes the value of one if the tip of

stem and significant part of crown were missing, zero otherwise

Therefore, there were 12 covariates to be used in the model building: Age, Management,

Site index, Planting density, Thinning, DBH percentile at year six, Rust at year six, and

Damage at year six (five levels). Information of the study sites regarding the physiographic

region, CRIFF soil classification, USDA Natural Resources Conservation Service (NRCS)

soil series, site index, thinning age if practiced, and the last growing season measured was

also included in Table 2.1.
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2.2.3 Model

Consider the full GLM:

E(y|X) =
exp(Xβ)

1 + exp(Xβ)
(2.3)

logit(θ) = Xβ (2.4)

where θ is the vector of dimension n of the STP at tree level, y is the vector of dimension

n of observed binary responses, β is the vector of parameters of dimension 13, 12 covariates

and an intercept, and X is the matrix of covariates of dimension n× 13, associated with the

fixed effects, composed of a vector of ones in the first column and covariates in the remaining

columns.

Consider now the full GLMM:

E(y|X,Z,b) =
exp(Xβ + Zb)

1 + exp(Xβ + Zb)
(2.5)

logit(θ) = Xβ + Zb (2.6)

b ∼ N (03,Σb)

where Z is the matrix of covariates associated with the random effects, partitioned as Z =

[Z1,Z2,Z3] where Z1 is the n× 3 matrix of physiographic region (i.e., Lower Coastal Plain,

Upper Coastal Plain, and Piedmont), Z2 is the n×10 matrix of the CRIFF soil groups within

physiographic region (i.e., CRIFF soil A within Lower Coastal Plain, CRIFF soil B1 within

Lower Coastal Plain,..., CRIFF soil F within Piedmont), and Z3 is the n×429 matrix of the

plots within CRIFF soil group (e.i., CP installation 1 within CRIFF soil C, CP installation

3 within CRIFF soil C, ..., SAGS installation 23 within CRIFF soil F); b is the vector of

random effects, partitioned as b> = (b1
>,b2

>,b3
>), vectors with dimensions 3, 10, and 429,

respectively; 03 is the vector of the means of the random effects of dimension 3, assumed

equal to zero; and Σb is the 3 × 3 variance-covariance matrix of the random effects with

diagonal composed of the individual variances of the random effects σ2
b1

, σ2
b2

, and σ2
b3

.

We estimated and evaluated nested models using the likelihood ratio test (LRT). For a

large number of observations, −2 ln(LRT ) has approximately a χ2 distribution with degrees
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of freedom equal to the difference of degrees of freedom of the models, the full and reduced

model, and rejection region defined as RR:{−2 ln(LRT ) > −2 ln(c) = c∗} (Rencher and

Schaalje 2008; Wackerly et al. 2008; Kutner et al. 2005). For χ2
(1), c

∗ = 3.8415. We evaluated

two approaches when a factor level within Damage at year six was not statistically significant,

but the remaining factor levels were statistically significant: i) collapsing the factor level into

the intercept, and ii) collapsing the factor level into the most biological similar factor level.

We used the R function glmer in the package lme4 to estimate GLMMs (R Development

Core Team 2018).

2.2.4 Model diagnostics

Consider the residuals of the binary response model:

e = y − θ̂ (2.7)

where e is the vector of residuals, y is the vector of the observed binary responses (zeros

and ones), and θ̂ is the vector of fitted values of probabilities. Residual analysis for logistic

regression is more complicated than for linear regression models because the responses yi

take only the values of zero and one. Hence, residuals will not be normally distributed, and,

indeed, their distribution under the assumption that the fitted model is correct is unknown

(Kutner et al. 2005). Using Equation (2.7), Pearson’s residuals can be calculated as:

ep = SE× e (2.8)

where SE = Diag

(
1√

θ̂1(1−θ̂1)
, 1√

θ̂2(1−θ̂2)
, ..., 1√

θ̂n(1−θ̂n)

)
is the diagonal matrix of the standard

errors of y (Kutner et al. 2005). If logistic regression model is correct, E(y|X,Z,b) = θ, and

it follows asymptotically that E(e) = E(ep) = 0. This suggests that a lowess smooth of

the plot of the Pearson’s residuals (ep), against the estimated probability θ̂, should result

approximately in a horizontal line with zero intercept. Likewise, a mean of the observed and

estimated STP were used to calculate stand-level residuals. A plot of the aggregated SPT at

stand level was used to assess for the model performance.
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Results

3.1 Exploratory analysis

The STP proportion at year 12 ranged from 3 to 52%, with mean and standard deviation

(SD) equal to 32 and 15%. At year 18, the STP ranged from 33 to 75%, with mean and

SD at 56 and 12%. At year 21, when only 11 installations remained in CP out of 17, STP

ranged from 44 to 77%, with mean and SD at 65 and 9% (Table 3.1). Conversely, 62, 36,

and 26% of the trees were marked to be rejected for crook and sweep at years 12, 18, and

21, respectively. Trees with forking in the first log represent approximately 5% during all

measurements (Table 3.1).

Most of the trees were healthy, 90 and 85% of the trees remained free of rust infection at

years 18 and 21, respectively (Table 3.1). The incidence of rust infection in the range 1-25%

was about 2% at all ages, and the infection in the range 26-50% slightly increased over time

up to 7% at year 21. The percentage of trees with incidence of rust infection in the range

51-75% was relatively constant over time at about 2%; whereas only 1% of trees presented

the most severe level of rust infection in the range 76-100% (Table 3.1).

There was a reduction in the proportion of non-damaged trees from 88% at year 12 to

74% at year 21; whereas the percentage of forking double folded during the analysis period,

from 8% at year 12 to 16% at year 21 (Table 3.1). Percentage for broken top and leaning

trees were relatively constant around 4% (Table 3.1). No trees exhibited damage in the

remaining categories of tip and stem damage during the analysis period (i.e., yellow needles,

dead needles, and tip dieback, which were relatively important at a juvenile stage of growth).

16
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Table 3.1: Summary statistics of sawtimber potential (STP), rust infection incidence, tip and
stem damage, management, thinning, diameter at breast height (DBH), total height, and
site index over age in the Southeaster U.S.

VARIABLE
AGE

12 13 14 15 16 17 18 21

CATEGORICAL
Sawtimber potential (%)
No defects (STP=1) 32 21 46 39 51 54 56 65
Crook or sweep 62 72 40 48 38 37 36 26
Fork in the first log 5 6 5 5 5 5 4 5
Rust in the first log 1 1 1 2 2 3 3 4
Ugly tree 0 0 8 6 4 1 1 0
Rust infection incidence (%)
No infection 95 94 93 91 93 91 90 85
Infection at 1-25% 1 2 2 2 2 2 2 3
Infection at 26-50% 3 3 4 5 4 6 5 7
Infection at 51-75% 1 1 1 2 1 1 2 4
Infection at 76-100% 0 0 0 0 0 0 1 1
Tip and stem damage (%)
No damage 88 82 78 79 75 75 78 74
Forked stem 8 12 17 14 17 19 16 16
Leaning tree 3 4 1 4 4 2 3 6
Broken top 1 1 4 3 4 4 3 4
Management (%)
Operational 52 52 52 54 55 55 56 59
Intensive 48 48 48 46 45 45 44 41
Thinning (%)
Non-thinned 99 92 92 95 95 88 94 93
Thinned 1 8 8 5 5 12 6 7

CONTINUOUS
Number of installations 22 7 7 31 12 8 28 11
Number of plots 264 84 84 371 142 92 329 128
Number of trees 25635 7038 6668 29546 10921 5841 22367 7122
DBH (in) 6.05 (1.80) 6.39 (1.82) 6.67 (1.89) 6.83 (2.08) 7.12 (2.14) 7.61 (2.24) 7.69 (2.27) 8.59 (2.51)
Height (ft) 46.50 (6.69) 50.46 (5.99) 53.39 (5.77) 57.25 (8.32) 60.64 (8.34) 64.46 (8.52) 66.37 (9.56) 76.48 (10.47)
Site index (ft @ 25 yr) 80.15 (6.97) 80.18 (5.72) 80.14 (5.79) 81.53 (8.02) 81.83 (7.86) 82.73 (7.93) 81.85 (8.33) 85.14 (8.36)
Values in parentheses represent the standard deviation. Damage associated with yellow or dead needles, and tip dieback was absent or negligible
between years 12 to 21.

More than half of the trees were under operational management at the beginning of the

analysis period, a percentage that increased up to 59% at year 21. The percentage of trees

under the thinning regime started at 1% at year 12 and ended up at 7% at year 21 (Table

3.1)

Regarding the continuous variables, diameter and height increased over time (Table 3.1).

The DBH at age 12 ranged from 0.2 to 14 in with mean and SD at 6.05 and 1.80 in; the DBH

at year 21 ranged from 1.8 to 18.7 in with mean and SD at 8.59 and 2.51 in. Similarly, total

height at year 12 ranged from 5 to 68 ft with mean and SD at 46.5 and 6.69 ft; the height

at year 21 ranged from 34 to 100 ft with mean 76.48 and 10.47 ft. Site index was around 80



18

ft @ 25 yr up to year 18; whereas at year 21 was 85 ft @ 25 yr mainly because all available

data at this age corresponds to CP. Summary information for CP and SAGS is presented in

Tables 3.2 and 3.3.

Table 3.2: Summary statistics of sawtimber potential (STP), rust infection incidence, tip and
stem damage, management, thinning, diameter at breast height (DBH), total height, and
site index over age in Coastal Plain Culture / Density study.

VARIABLE
AGE

15 16 17 18 21

CATEGORICAL
Sawtimber potential (%)
No defects (STP=1) 34 45 59 47 65
Crook or sweep 58 35 32 44 26
Fork in the first log 6 7 7 7 5
Rust in the first log 2 1 2 2 4
Ugly tree 0 12 0 0 0
Rust infection incidence (%)
No infection 87 92 93 86 85
Infection at 1-25% 3 3 2 3 3
Infection at 26-50% 6 4 4 6 7
Infection at 51-75% 3 1 1 4 4
Infection at 76-100% 1 0 0 1 1
Tip and stem damage (%)
No damage 79 74 74 76 74
Forked stem 13 18 18 17 16
Leaning tree 5 4 3 3 6
Broken top 3 4 5 4 4
Management (%)
Operational 56 57 55 58 59
Intensive 44 43 45 42 41
Thinning (%)
Non-thinned 94 100 94 93 93
Thinned 6 0 6 7 7

CONTINUOUS
Number of installations 13 4 4 13 11
Number of plots 155 46 44 153 128
Number of trees 11774 3641 2810 10219 7122
DBH (in) 6.80 (2.17) 6.93 (2.14) 7.50 (2.30) 7.62 (2.35) 8.58 (8.59)
Height (ft) 60.29 (8.41) 61.13 (10.43) 65.64 (10.71) 68.91 (9.70) 76.48 (10.74)
Site index (ft @ 25 yr) 84.19 (7.96) 82.36 (9.87) 83.55 (10.11) 84.16 (8.15) 85.14 (8.36)
Values in parentheses represent the standard deviation. Damage associated with yellow or dead
needles, and tip dieback was absent or negligible between years 12 to 21.
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Table 3.3: Summary statistics of sawtimber potential (STP), rust infection incidence, tip and
stem damage, management, thinning, diameter at breast height (DBH), total height, and
site index over age in the South Atlantic Gulf Slope Culture / Density study.

VARIABLE
AGE

12 13 14 15 16 17 18

CATEGORICAL
Sawtimber potential (%)
No defects (STP=1) 32 21 46 42 54 50 64
Crook or sweep 62 72 40 42 39 42 29
Fork in the first log 5 6 5 4 3 3 3
Rust in the first log 1 1 1 2 3 5 3
Ugly tree 0 0 8 10 1 0 1
Rust infection incidence (%)
No infection 95 94 93 94 93 89 93
Infection at 1-25% 1 2 2 2 2 2 2
Infection at 26-50% 3 3 4 3 4 7 5
Infection at 51-75% 1 1 1 1 1 2 0
Infection at 76-100% 0 0 0 0 0 0 0
Tip and stem damage (%)
No damage 88 82 78 79 75 77 80
Forked stem 8 13 17 15 17 19 15
Leaning tree 3 3 2 3 4 1 3
Broken top 1 2 3 3 4 3 2
Management (%)
Operational 52 52 52 53 54 54 54
Intensive 48 48 48 47 46 46 46
Thinning (%)
Non-thinned 99 92 92 96 92 82 94
Thinned 1 8 8 4 8 18 6

CONTINUOUS
Number of installations 22 7 7 18 8 4 15
Number of plots 264 84 84 216 96 48 176
Number of trees 25635 7038 6668 17772 7280 3031 12148
DBH (in) 6.05 (1.80) 6.39 (1.82) 6.67 (1.89) 6.85 (2.02) 7.21 (2.14) 7.70 (2.17) 7.74 (2.20)
Height (ft) 46.50 (6.69) 50.46 (5.99) 53.39 (5.77) 55.22 (7.61) 60.40 (7.08) 63.42 (5.77) 64.25 (8.91)
Site index (ft @ 25 yr) 80.15 (6.97) 80.18 (5.72) 80.14 (5.79) 79.76 (7.56) 81.56 (6.61) 81.96 (5.03) 80.00 (7.98)
Values in parentheses represent the standard deviation. Damage associated with yellow or
dead needles, and tip dieback was absent or negligible between years 12 to 21.

3.2 Variable selection and model building

Three models are presented in this section, the full GLM (Equation 2.4), the full GLMM

(Equation 2.6), and the best GLMM achieved. The first model estimated, the full GLM,

had 12 of its parameter estimates highly significant (p-value < 0.0001), and one parameter

estimate statistically significant (p-value < 0.05) (Table 3.4). The parameter estimate of
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Damage at year six: Yellow needles is more negative than the parameter estimate of Damage

at year six: Dead needles, which seems contraintuitive. However, there is more uncertainty

associated with the effect of Damage at year six: Yellow needles than with the effect of

Damage at year six: Dead needles. Thus, Damage at year six: Yellow needles may have a

very similar effect that Damage at year six: Dead needles.

Table 3.4: Parameter estimates for the full GLM.
Estimate Std. Error z value Pr(>|z|)

Intercept -1.9733 0.0821 -24.02 <0.0001
Age 0.1811 2.54× 10−3 71.16 <0.0001
Management (intensive) -0.3252 0.0130 -25.10 <0.0001
Site index -0.0122 8.97× 10−4 -13.58 <0.0001
Planting density −2.39× 10−4 1.28× 10−5 -18.66 <0.0001
Thinning 0.1194 9.28× 10−3 12.86 <0.0001
DBH percentile at year six 0.6338 0.0236 26.85 <0.0001
Rust at year six -0.5224 0.0219 -23.90 <0.0001
Damage at year six:
Dead needles -0.6700 0.1370 -4.89 <0.0001
Yellow needles -0.9758 0.4361 -2.24 0.0252
Tip dieback -1.0463 0.1119 -9.35 <0.0001
Leaning tree -1.4239 0.1953 -7.29 <0.0001
Broken top -1.7941 0.2214 -8.10 <0.0001

The estimated full GLMM had 10 highly statistically significant fixed effects (p-value

< 0.0001), one statistically significant fixed effect (p-value < 0.05), and two non-significant

fixed effects (p-value > 0.05), Thinning and Damage at year six: Yellow needles (Table 3.5).

The parameter estimate of Thinning was reduced by four times, and its associated standard

error double folded with the inclusion of random effects. The absolute value of the parameter

estimate of Damage at year six: Yellow needles was slightly reduced and its standard error

was slightly increased with the inclusion of the random effects. The parameter estimate, in

absolute value, and standard error of Damage at year six: Yellow needles were larger than

the corresponding for Damage at year six: Dead needles, suggesting a higher impact.

The change in the statistical significance of the fixed effects, especially for Thinning, sug-

gests that the random effects were essential to explaining the hierarchical structure of the
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Table 3.5: Parameter estimates for the full GLMM.
Fixed effects

Estimate Std. Error z value Pr(>|z|)
Intercept -4.8410 0.4702 -10.2940 <0.0001
Age 0.2138 3.20× 10−3 66.8960 <0.0001
Management (intensive) -0.5084 0.05917 -8.5930 <0.0001
Site index 0.0152 5.21× 10−3 2.9160 0.0035
Planting density −1.49× 10−4 5.76× 10−5 -2.5900 0.0096
Thinning 0.0322 0.0189 1.7020 0.0888
DBH percentile at year six 0.6971 0.0245 28.4320 <0.0001
Rust at year six -0.4788 0.0228 -21.0080 <0.0001
Damage at year six:
Dead needles -0.4593 0.1510 -3.0420 0.0023
Yellow needles -0.8006 0.4663 -1.7170 0.0860
Tip dieback -0.7464 0.1223 -6.1010 <0.0001
Leaning tree -1.3540 0.2012 -6.7330 <0.0001
Broken top -1.9840 0.2309 -8.5940 <0.0001
Random effects

σ̂2
b1

= 0.0621 σ̂2
b2

= 0.0950 σ̂2
b3

= 0.2908
DBH is the diameter at breast height. Random effects: σ̂2

b1
, σ̂2

b2
, and σ̂2

b1
represent the

variance of the random effects of physiographic region, CRIFF soil within physiographic
region, and installation withing CRIFF soil, respectively.

data and the autocorrelation associated with the repeated measures (Figure 3.1). Although

keeping Thinning in the model was considered given its importance for a potential silvicul-

tural explanation, it was dropped because of its large standard error. The thinning effect

was dropped without a significant loss in the statistical explanation in the model (p-value

> 0.05) (Model 3, Table 3.6).

Collapsing Damage at year six: Yellow needles into its closest biological factor level,

Damage at year six: Dead needles, resulted in a better fit than collapsing Damage at year

six: Yellow needles into the intercept (Model 5, Table 3.6). Using the best model achieved in

the fixed effects selection (Model 5, Table 3.6), the random effects were also selected following

the two approaches of elimination, from top to bottom hierarchal selection and from bottom

to top hierarchal selection. Neither of these two elimination paths was suitable because
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Figure 3.1: Autocorrelation function (ACF) of residuals of the full GLM (left) and the full
GLMM (right).

Table 3.6: Model building using the likelihood ratio test considering fixed and random effects
selection.
Model Df AIC logLik Best χ2 χ2 df Pr(> χ2)

1 Full GLM 13 148137.95 -74055.98
2 Full GLMM 16 142300.27 -71134.13 1 5843.69 3 <0.0001
3 Thinning dropped 15 142301.16 -71135.58 2 2.89 1 0.0892
4 Yellow needles ci intercept 14 142302.56 -71137.28 2 3.40 1 0.0650
5 Yellow needles ci Dead needles 14 142299.69 -71135.85 2 0.54 1 0.4634
6 without b1 13 142328.78 -71151.39 5 31.08 1 <0.0001
7 without b2 13 142323.24 -71148.62 5 25.55 1 <0.0001
8 without b3 13 146763.24 -73368.62 5 4465.54 1 <0.0001
9 without both b1 and b2 12 142384.64 -71180.32 5 88.95 2 <0.0001
10 without both b1 and b3 12 146762.69 -73369.34 5 4466.99 2 <0.0001
11 without both b2 and b3 12 147480.97 -73728.48 5 5185.27 2 <0.0001
12 GLM 11 148301.30 -74139.65 5 6007.61 3 <0.0001

Yellow needles and Dead needles are levels within the factor Damage at year six ; df: degrees of
freedom; ci: collapsed into. b1 is the random effect associated with physiographic region, b2 is the
random effect of CRIFF soil within physiographic region, and b3 is the random effect of installation
within CRIFF soil.
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Table 3.7: Parameter estimates for the best model achieved in the model building and variable
selection process.

Fixed effects
Estimate Std. Error z value Pr(>|z|)

Intercept -4.8290 0.4981 -9.6936 <0.0001
Age 0.2146 3.17× 10−3 67.6928 <0.0001
Management (intensive) -0.5078 0.0600 -8.4611 <0.0001
Site index 0.0151 5.48× 10−3 2.7499 0.0060
Planting density −1.56× 10−4 5.86× 10−5 -2.6594 0.0078
DBH percentile at year six 0.6990 0.0245 28.5334 <0.0001
Rust at year six -0.4791 0.0228 -21.0176 <0.0001
Damage at year six
Yellow and Dead needles -0.4919 0.1434 -3.4306 <0.0001
Tip dieback -0.7457 0.1222 -6.1026 <0.0001
Leaning tree -1.3541 0.2003 -6.7602 <0.0001
Broken top -1.9866 0.2308 -8.6075 <0.0001
Random effects

σ2
b1

= 0.0638 σ2
b2

= 0.0913 σ2
b3

= 0.2970
DBH is the diameter at breast height. Random effects: σ̂2

b1
, σ̂2

b2
, and σ̂2

b1
represent the

variance of the random effects of physiographic region, CRIFF soil within physiographic
region, and installation withing CRIFF soil, respectively.

the reduction in the statistical explanation of the phenomenon was statistically significant

(p-value<0.0001) compared to the best model achieved in the fixed effects selection step

(Model 5, Table 3.6). The final comparison between Model 10 (GLM without Thinning and

with Damage at year six: Yellow needles collapsed into Damage at year six: Dead needles)

and Model 5 was significant (p-value < 0.001, Table 3.6). Therefore, random effects were

necessary for the model. The best model achieved through the fixed and random effects

selection process (Model 5 in Table 3.6) has nine highly statistically significant fixed effects

(p-value < 0.0001), and two statistically significant fixed effects (p-value < 0.05) (Table 3.7).
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3.3 Model diagnostics for the best model

The smooth line of the Pearson’s residuals exhibits an approximately horizontal trend (no

evident slope) with an intercept slightly higher than zero, at approximately 0.5 (Figure 3.2).

The residuals of the stand-level STP do not show any trend (Figure 3.3). The autocorrelation

function (ACF) of the residuals from Model 5 (Table 3.7) looks identical to the ACF of the

full GLMM (Figure 3.1).

Figure 3.2: Pearson’s residuals of the best-estimated model, Model 5. The dashed line rep-
resents the lowess smooth.

3.4 Logistic mean response curves

STP increases as Age, Site index, and the DBH percentile at year six increase; whereas there

is a reduction in the STP due to Management (intensive), incidence of Rust at year six,

and severity of Damage at year six (Table 3.7). The mean response of STP for operational

Management over stand Age presented higher STP than intensive Management ; an increase
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Figure 3.3: Stand-level residuals of STP of the best-estimated model, Model 5.

of Site index from 60 to 100 ft @ 25 yr makes the STP mean response curve shift upwards; the

higher the Planting density, the lower the STP; and STP mean response curves shift upwards

as the DBH percentile at age six increases. However, there were no statistical differences over

Age among aforementioned categories within Management, Site index, Planting density, and

DBH percentile at year six since their 95% confidence intervals (CI) overlap. Conversely,

There were statistical differences over Age between (among) some of the aforementioned

categories of the incidence of Rust at year six, and severity of Damage at year six.

The mean response of STP decreases as the incidence of Rust at year six increases (Figure

3.5). A tree under operational Management over the incidence of Rust at year six presented

higher STP than an intensively managed tree. The STP over Rust at year six shifts upwards

as the Site index increases or the DBH percentile at year six increases. There were no
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Figure 3.4: Sawtimber potential (STP) for an individual tree over age by Management, Site
index, Planting density, DBH percentile at year six, incidence of Rust at year six, and Damage
at year six. The solid line, and its 95% CI, represents a tree in a stand managed operationally,
of Site index at 80 ft @ 25 yr, planted with 600 TPA, of DBH percentile at year six at the
median, not infected with Rust at year six, and without any Damage at age six. Levels of Rust
at year six at 1-25% and 51-75%, and Damage at year six caused by Yellow and dead needles,
and Leaning trees were not shown to facilitate the graph visualization and interpretation.
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statistical differences over Rust at year six among mentioned categories within the covariates

Management, Site index, and DBH percentile at year six since the 95% CI overlap (Figure

3.5).

There was a dramatic reduction of the STP over Rust at year six as the Damage at year

six increases in severity from No damage to Tip dieback, and from Tip dieback to Broken

top (Figure 3.5). The 95% CI of No damage and Tip dieback barely overlap, suggesting

that more samples are required to draw firm conclusions regarding these two factor levels.

However, there were statistical differences between No damage and Broken top, and between

Tip dieback and Broken top since their 95% CI do not overlap (Figure 3.5). Consider the

following example of the combination of the incidence of Rust at year six and severity of

Damage at year six. A 25-year old perfectly healthy tree under operational Management, in

a stand with initial Planting density of 600 TPA, on a Site index 80 ft @ 25 yr, without Rust

infection or Damage at year six had a STP at 88%. If the tree were prone to be completely

infected with rust at year six but without any damage, the estimated STP dropped to 52%.

However, if the tree were also prone to suffer from Broken top, the resulting STP dramatically

dropped to 13%. The effect of Site index, Planting density, and DBH percentile at year six

on STP were not as strong as presented effects of Age, Rust at year six, and Damage at year

six a reason why they were not depicted.

Predicted values of the first random effect suggest that the STP in Lower Coastal Plain

and Piedmont were reduced by 0.15 and 0.13 logits (0.86 and 0.88 odds), respectively, in

comparison with the mean response; whereas the STP in the Upper Coastal Plain was

increased by 0.29 logits (1.33 odds) in comparison with the mean response (Figure 3.6,

Appendix). Predicted values of the second random effect suggest the largest reduction in

the STP compared to the mean response curve occurred on CRIFF soil classes C, E, and E,

within Lower Coastal Plain, Upper Coastal Plain, and Piedmont respectively; whereas the

largest increment occurred on CRIFF soil classes D, G, and F within Lower Coastal Plain,

Upper Coastal Plain, and Piedmont respectively (Appendix).
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Figure 3.5: Sawtimber potential (STP) for an individual tree over the incidence of Rust at
year six by Management, Site index, DBH percentile at year six, and Damage at year six. The
solid line, and its 95% CI, represents a 25-year old tree in a stand managed operationally, of
Site index 80 ft @ 25 yr, planted with 600 TPA, of DBH percentile at age six at the median,
not infected with Rust at year six, and without any Damage at age six. Damage at year six
caused by Yellow and dead needles, and Leaning trees were not shown to facilitate the graph
visualization and interpretation.
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Figure 3.6: The effect physiographic region (random) on the sawtimber potential of loblolly
pine in the Southeastern U.S. The mean response curve represents a tree in a stand managed
operationally, of Site index at 80 ft @ 25 yr, planted with 600 TPA, of DBH percentile at
year six at the median, not infected with Rust at year six, and without any Damage at age
six. The curves of Lower Coastal Plain and Piedmont overlap.
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Discussion and conclusions

Although studies with the same definition of STP for loblolly pine were not found, the STP

proportion criterion is similar to the proportion of solid wood and similar merchantability

criteria reported in the literature. We found that 56 and 65% of the trees had STP at years

18 and 21, respectively. Likewise, 85-90% of the trees were not infected with rust, and 74-78%

of the trees were free of damage between years 18 and 21. These percentages of healthy STP

trees are similar to the proportions reported in the literature. On average, 94% of loblolly pine

stem volume is merchantable, which includes sawtimber, chip-n-saw, and pulpwood (Sherrill

et al. 2011). The percentage of solid wood at year 16 in six installations of SAGS was in the

range 79-90% (Green et al. 2018). The percentage of high-grade lumber volume production

at year 27 in plantations was in the range 73-84% (Amateis and Burkhart 2013); whereas

the percentage of high-grade lumber volume in uneven-aged loblolly-shortleaf pine mixed

stands was estimated at 40% (Prestemon and Buongiorno 2000). The percentage of trees

classified in high-value timber product classes, sawtimber and peeler, was estimated in the

range 61-65%, and 7-11%, respectively (Burkhart and Bredenkamp 1989). The percentage of

trees with STP in mature stands (about 30 years) ranged 50-90% (Strub et al. 1986). Half

of the trees in mature loblolly pine stands across 12 states in the Southeastern U.S. were

non-diseased or insect-damaged, single-straight stem, normal top trees (Choi et al. 2008).

We found the incidence of Rust at year six in the range 6-13%, value relatively small

compared to 23-56% found by Cumbie et al. (2012) at the same age. At older ages, between

years 12 and 21, the percentage of trees with rust infection was in the range 5-15%, similar

30
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to 12% reported by Choi et al. (2008), but lower compared to the rust incidence rate in the

range 25-29% at year 14 found by Gräns et al. (2017).

The percentage of trees with any Damage at year six was about 2%, whereas the per-

centage only for fork at year six was reported in the range 7-32% by Cumbie et al. (2012).

We found that 8-19% of the trees in the analysis period from 12 to 21 years had a forked

stem, similar to 19-34% at year 14 found by Gräns et al. (2017), but relatively high compared

to 4% reported by Choi et al. (2008). The rate of recovery from forked stem to single stem

was reported at 37% (Choi et al. 2008), evaluation that we did not include in our analysis.

We found that less than 4% of the trees between years 12 and 21 presented broken tops, a

similar value was reported by Choi et al. (2008) at 5%. Choi et al. (2008) suggested that

83% of the trees with broken top recovered the stem and crown to a normal top, trend that

we did not evaluate.

Estimated logistic regression models consider the statistical contribution of fixed (GLM,

GLMM) and random effects (GLMM) for the tree-level loblolly pine STP in the Southeastern

U.S. The initial full GLM (Equation 2.4) suggested that all covariates were statistically

significant (p-value < 0.05). However, the original arrangement of the database, with such a

hierarchical structure and repeated measure dependence, results in a mixed model (Harrison

and Shiver 1999). Omitting random effects poses a serious statistical problem in the fixed

effects estimation (McCulloch and Searle 2001). Thus, the inclusion of the random effects

made the fixed effects Thinning and Damage at year six: Yellow needles not statistically

significant in the GLMM.

The best-estimated model captures the tree-level STP dynamics taking into account the

effect of Age, Management intensity, Planting density, Site index, DBH percentile at year

six, incidence of Rust at year six, and the severity of Damage at year six. Overall, covariates

selected to explain STP proportion were consistent with previous research. Proportions of

timber product classes have been estimated as a function of age, height, and stand density

(Strub et al. 1986). While DBH explained the variability in the product-class allocation-
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probability model, the statistical contribution of tree height, stand density, site index, and

degree of thinning was negligible (Burkhart and Bredenkamp 1989). Timber product propor-

tions to distribute per-acre total volume were predicted as a function of DBH and volume

(Teeter and Zhou 1998). Choi et al. (2008) found that the stem quality dynamics in mature

loblolly pine stands over a 15-year period was a function of the DBH, total height, crown

class, relative height, age, site index, stand density, and stem quality assessments: forking,

top damage, interaction top damage and short crook, bole characteristics (form such as

straight or sweep), damage after disease or insect outbreaks, and undamaged and healthy

trees.

There is no direct explanation with regard to the unexpected adverse effect of the intensive

Management regime on the STP proportion. A similar result was found in six installations of

SAGS (Green et al. 2018). Intensive forest management, particularly fertilization, has been

found to induce mortality in loblolly pine through an increment of the competing vegetation,

mainly hardwood. In uneven-aged loblolly-shortleaf pine mixed stands, low fertile soils pro-

duced a slightly larger proportion of high-grade lumber than more fertile soils (Prestemon

and Buongiorno 2000). Taking the soil fertility effect on lumber production proportion as a

reference, and depending on the soils conditions, an excess of a nutrient after fertilization

can induce a disbalance in the soil nutrient budget, which turns out in a bad expression

of tree form. The intensive management regime practiced on the locations in this research

corresponds to a very high level of inputs. Thus, high nitrogen to calcium ratio in soils may

result in a stem sinuosity of loblolly pine trees (Espinoza et al. 2012), affecting STP and

stand timber value. The reduction of STP proportion by intensive management has direct

implications for the forestland owner. The effect of intensive management on tree form and

STP (Green et al. 2018) may negate volume gains from silvicultural practices (Restrepo et al.

2018). Forestland owners should evaluate the overall effect of intensive management on the

stand timber monetary value (Green et al. 2018).



33

The higher the Planting density, the lower the STP, which is in accordance with models

previously estimated describing stem quality proportions (Choi et al. 2008; Strub et al. 1986).

However, different levels of discretized categories of Planting density did not affect the pro-

portion of trees with STP over Age, which is also consistent with results previously reported

(Green et al. 2018; Burkhart and Bredenkamp 1989; Amateis and Burkhart 2013; Prestemon

and Buongiorno 2000). Although trees in highly dense stands have small branches (Borders

and Volfovicz 2010), which may increase the tree STP, the effect of high stand density on

tree size (Restrepo et al. 2019) may diminish the stand timber monetary value. The actual

stand timber monetary value increased significantly as the planting density decreased as a

consequence of the high-grade lumber production (Amateis and Burkhart 2013). Thinning

was not significant in the best GLMM (Model 5, Table 3.7). This finding is also consistent

with results previously reported (Burkhart and Bredenkamp 1989).

Site index was significant in explaining the variation of STP in the best-estimated model,

although differences among discretized categories of Site index over Age were not significant.

Site index, as the typical metric to assess for the overall environmental effect on forest

productivity, is not a good descriptor of the timber product class distribution and timber

merchantability potential (Burkhart and Bredenkamp 1989).

Geneticists have proposed the use of early assessments at year six of forest stands as

predictors of the future forest plantation performance (Cumbie et al. 2012). We proposed

the use of DBH percentile at year six, Rust at year six, and Damage at year six as covariates

in the STP model. Given the different management intensities and planting densities in the

studies, we considered unfair to directly compare trees using DBH or any other tree size

variable. For that reason we proposed and successfully tested the DBH percentile at year six,

a measure of the relative size of a tree, comparing to the neighboring trees in the plot. No

previous relative tree size index based on DBH or based on early assessment of the tree size

was found in the literature as a covariate to explain timber volume merchantability. Based

on absolute measures of tree size, our results are consistent with the literature evaluating
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the effect of DBH on tree merchantability, and sawtimber proportion (Strub et al. 1986;

Burkhart and Bredenkamp 1989; Teeter and Zhou 1998). However, other measures of tree

size like total height, may not explain volume merchantability (Burkhart and Bredenkamp

1989). Realistically, only trees with DBH greater to 11.6 inches would be in the sawtimber

category at the rotation age. For that reason, although the stem quality and form may be

good, small trees will be considered in the non-sawtimber category. Therefore, the total

realized proportion of sawtimber trees over the diameter distribution may be lower than

estimated in this analysis.

Increasing levels of the incidence of Rust at year six and severity of Damage at year six

diminished the STP proportion. Studies with similar predictors regarding early evaluations

of forest health were not found to compare our results. Research in mature loblolly pine

stands suggests that stem quality in terms of sweep, forking, broken top, and incidence of

diseases was stable over time (Choi et al. 2008), which is consistent with what we found.

Moreover, typically some stem defects near to the stump can be removed at harvest, and the

remaining stem might be sold without downgrading of the timber quality at the mill (Green

et al. 2018).

Three random effects accounting for the hierarchical structure and temporal dependence

were included in the model. Random effects in the GLMM explained an additional portion

of the STP variability compared with the full GLM. The first random effect in the hierar-

chical structure of the GLMM is the study level, accounting for the effect of physiographic

region. Differences in STP can be found between physiographic regions as a result of the fre-

quency and magnitude of wind-throw1 caused by tornadoes, hurricanes, and tropical storms.

Although the effect of genetics was not directly tested in the model due to the unknown

planting material in SAGS, we can expect a similar trend in both studies since the genetic

material was first-generation of open-pollinated families. Research has found that the pro-

portion of stem with defects is not significantly different between stands of unimproved and

1Tree felled or broken off by wind (Helms 1998).
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improved genetic stock (Buford and Burkhart 1987). Amateis and Burkhart (1987) found

significant differences in volume, height-diameter, tree form, and taper relationships in stands

from loblolly pine old-field plantations, cut-over2 plantations, and natural stands. Cumbie

et al. (2012) found that 48 first- and second-generation families presented different STP to

individual-tree volume ratios. Therefore, genetics may be an important factor if the study

consider different generations of genetic material.

The second random effect was CRIFF soil classes within study. Although this soil classi-

fication system is based primarily on physical properties, this classification method reflects

the overall soil conditions. Although slower growing trees in low fertile soils my have time

to occlude branch scars, develop a clear log, and produce higher proportion of lumber

(Prestemon and Buongiorno 2000), deficiencies or excesses of macro, secondary, and micronu-

trients may also induce an expression of bad tree form (Espinoza et al. 2012; Lehto et al.

2010); therefore affecting the tree sawtimber potential and stand timber value. For instance,

pines on slightly boron-deficient soils may have a thick stem base, and a low branch and

needle mass to stem ratio; whereas a dramatic deficiency in boron results in the loss of the

apical dominance3 (Lehto et al. 2010), which has severe consequences on stem quality and

tree form.

The third and last random effect was installation within CRIFF soil class. This random

effect had the highest variance of the three random effects. Therefore, differences among

plots within the same CRIFF soil class are larger than the overall variability among CRIFF

soil classes or between studies, suggesting a markedly micro-site effect on STP.

Assuming that the average tree is representative of the stand, estimated STP propor-

tion given the covariates can be used to weigh either the total volume or timber prices of

the timber product classes to obtain merchantable volume (Choi et al. 2008; Amateis and

Burkhart 2005) or blended price (Klemperer 2003), respectively. The STP proportion allows

2Land that has previously been logged (Helms 1998).
3The upward gorwth of terminal shoot tissues at the expense of lateral shoots below them

(Helms 1998).
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for utilizing whole-stand yield models given the tree and stand characteristics and simplifying

financial calculations of timber production. This research helps forestland owners in making

informed decisions regarding the allocation of resources to simultaneously optimize growth

and STP proportion as a strategy to maximize financial returns. Likewise, to the best of our

knowledge, this is the first time that the dynamics of a measure of stem quality like STP

proportion is depicted over Age with its associated uncertainty. The confidence intervals in

the figures of STP proportion allow forestland owners for a better-informed decision making.

Conclusions

An accurate estimation of merchantable volume is a vital input for forest financial return

calculations. This goal can be achieved by i) modeling forest growth and yield using the

whole-stand approach, and ii) finding the quantity (proportion) of timber in each of com-

mercial timber product classes (i.e., sawtimber, chip-n-saw, and pulpwood). Although these

two topics are closely related, research rarely considers the proportions or weights as a way

to split the forest yield into product classes.

The stand timber monetary value is a function of merchantable volume and timber price.

Finding the proportions of timber in each of the commercial pine product classes is a vital

step in calculating the stand timber monetary value when using whole-stand models, the

most widely used forest growth and yield modeling approach in the Southeastern U.S. The

proportions can weigh either the total volume or timber prices of the timber product classes

to obtain merchantable volume or blended price (Klemperer 2003), respectively, which result

in a simplification of financial calculations. Most of the stand timber monetary value cor-

responds to the sawtimber product class. For that reason, depending on local markets and

forest management goals, most of the effort in timber production is focused on increasing

the amount of sawtimber as a strategy to maximize financial returns.

Although the parameter estimates in the full GLM were significant, the inclusion of the

random effects, accounting for the hierarchical structure and repeated measure dependence,
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improved the model fit. Random effects (study, CRIFF soil classes withing study, and plots

within CRIFF soil classes) were crucial to handle such error structure. The estimated model

can be used to predict the sawtimber potential proportion dynamics as a function of Age,

Management intensity, Planting density, Site index, DBH percentile at year six, the incidence

of Rust at year six, and the severity of Damage at year six.

Forest yield has been found double fold by applying intensive forest management practices

(Restrepo et al. 2019; Restrepo et al. 2018). However, the effect of intensive management on

tree form (sawtimber potential) (Green et al. 2018; Choi et al. 2008), may negate volume

gains from silvicultural practices, a reason why forestland owners should evaluate the overall

effect of intensive management on the stand timber value (Green et al. 2018).
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Random effects

PHYSIOGRAPHIC REGION

Lower Coastal Plain -0.1513

Upper Coastal Plain 0.2911

Piedmont -0.1344

CRIFF SOIL CLASS WITHIN PHYSIOGRAPHIC REGION

Lower Coastal Plain:A -0.2007

Lower Coastal Plain:B1 -0.1199

Lower Coastal Plain:B2 0.0003

Lower Coastal Plain:C -0.2811

Lower Coastal Plain:D 0.3849

Upper Coastal Plain:E -0.1685

Upper Coastal Plain:F 0.0678

Upper Coastal Plain:G 0.5172

Piedmont:E -0.2610

Piedmont:F 0.0687

Note: Random effects of the installations within soil classes (429) are not shown.
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R script

#LIBRARIES------------------

library(sas7bdat)

library(lme4)

library(ggplot2)

library(glmm)

library(car)

library(maptools)

library(raster)

library(rgdal)

library(rgeos)

library(mosaic)

library(mvtnorm)

library(nlme)

library(xtable)

library(texreg)

library(grDevices)

setwd("./Dropbox/Chapter 2 Form and taper")

#METHODS*********************************

#MAP--------------

points<-readShapePoints(’loc.shp’)

map_US1 <-getData(name="GADM",country=’USA’,level=1)

States.name<-c(’Alabama’,’Arkansas’,’Florida’,’Georgia’,’Louisiana’,’Mississippi’,

’North Carolina’,’South Carolina’, ’Tennessee’,’Virginia’)

SE<-subset(map_US1,subset=map_US1$NAME_1 %in% States.name)

SE.border<-unionSpatialPolygons(SE,SE$ISO)

par(mar=c(1,2,1,1))

plot(SE,border=’grey’)

plot(SE.border,border=’black’,add=T)

pc<-c(17,4,4,17,17,2,2,17,4,17,2,2,17,17,17,4,4,1,1,19,1,1,1,19,4,1,4,19,19,rep(1,8),4,4,4)

plot(points,pch=pc,col=’black’,add=T)

llgridlines(SE,col=’gray60’,offset = 0.05)

legend(’topleft’,c(’’,’’,’CP - unthinned’,’CP - thinned’,’SAGS - unthinned’,’SAGS - thinned’,’Discontinued’),

pc=c(1,1,17,2,19,1,4),col=c(0,0,rep(1,40)),cex=0.8,box.col=’white’)

#RESULTS**************************

#READING DATA AND CREATING ONE DATA FRAME-----------------

#Reading the two datasets

CP<-read.sas7bdat("CPCD96Tree2016e_2.sas7bdat")[,2:18]

SAGS<-read.sas7bdat("SAGCD98Tree2016e.sas7bdat")

summary(CP)

summary(SAGS)

head(CP)

head(SAGS)

data<-rbind(CP,SAGS)

STUDY<-c(rep(’CP’,nrow(CP)),rep(’SAGS’,nrow(SAGS)))

ID<-paste(STUDY,data$INST,data$MAN,data$PLTPA,data$AGE,sep=’_’)

ID2<-paste(STUDY,data$INST,data$MAN,data$PLTPA,sep=’_’)

ID3<-paste(STUDY,data$INST,sep=’_’)

data<-data.frame(ID=ID,ID2=ID2,ID3=ID3,STUDY=STUDY,data)

summary(data)

str(data)

nrow(data)

#Reading the soil, physiographic region, and state info

criff<-read.csv(’CRIFF&Region.csv’,head=T)

str(criff)

#Making the sawtimber potential variable

data$SAW01<-(data$SAW!=0)*0+(data$SAW==0)*1

#Merging dataset of CPCD and SAGSCD data

data1<-merge(data,criff,by="ID3")

table(data$AGE, data$SAW,data$STUDY)

table(data$SAW,data$CR)

table(data$SAW,data$DAM)

#Relevant ages and excluding death trees

data1<-data[data$DBH!=’99.9’,]

data1CP<-data1[data1$STUDY==’CP’ & data1$AGE>=15,]

data1SAGS<-data1[data1$STUDY==’SAGS’ & data1$AGE>=12,]

data1<-rbind(data1CP,data1SAGS)

summary(data1)

nrow(data1)

table(data1$AGE, data1$SAW,data1$STUDY)

table(data1$SAW,data1$CR)
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#Adding stand characteristics of rust infection and damage from age 6 to the database at tree level

z<-0

data1$CR6<-integer(nrow(data1))

data1$DAM6<-integer(nrow(data1))

for(i in 1:nrow(data1)){

if(length(data$CR[data$ID2==data1$ID2[i] & as.integer(data$TAG)==as.integer(data1$TAG[i]) & data$AGE==6] |

data$DAM[data$ID2==data1$ID2[i] & as.integer(data$TAG)==as.integer(data1$TAG[i]) & data$AGE==6])>0) {

data1$CR6[i]<-data$CR[data$ID2==data1$ID2[i] & as.integer(data$TAG)==as.integer(data1$TAG[i]) & data$AGE==6]

data1$DAM6[i]<-data$DAM[data$ID2==data1$ID2[i] & as.integer(data$TAG)==as.integer(data1$TAG[i]) & data$AGE==6]

} else {

data1$CR6[i]<-data$CR[data$ID2==data1$ID2[i] & as.integer(data$TAG)==as.integer(data1$TAG[i]) & data$AGE==8]

data1$DAM6[i]<-data$DAM[data$ID2==data1$ID2[i] & as.integer(data$TAG)==as.integer(data1$TAG[i]) & data$AGE==8]

z<-z+1

}

}

z

i

write.csv(x=data1,file=’treelevel.csv’,col.names = TRUE)

table(data1$SAW,data1$CR6);sum(table(data1$SAW,data1$CR6))

table(data1$AGE,data1$SAW,data1$STUDY);sum(table(data1$AGE,data1$SAW,data1$STUDY))

table(data1$SAW,data1$DAM6)

nrow(data1)

#error i=21434

#TOtal z=17, i reach 115134, nrow is 115138, there are 4 missing.

# Getting the dominant height and Dq

com.ID2<-as.character(unlist(unique(data1$ID2)))

length(com.ID2)

#Function to extract Dq and Hd at age 18

HdDq18.f<-function(combo=com.ID2[1],data=data1){

ID<-paste(combo,’_18’,sep=’’)

Dq<-sqrt(mean(data$DBH[data$ID==ID & data$DBH!=99.9],na.rm=TRUE)^2+var(data$DBH[data$ID==ID & data$DBH!=99.9],na.rm=TRUE))

Hd<-mean(data$HT[data$ID==ID & data$CC==’1’], na.rm=TRUE)

out<-c(combo,Dq,Hd)

return(out)

}

HdDq18.f(data=data1,combo=com.ID2[1])

#Making a summary dataset of Dq and Hd for age 18

t<-Sys.time()

my.HdDq18<-matrix(ncol=3,nrow=length(com.ID2),

dimnames = list(1:length(com.ID2),

c(’ID3’,’Dq18’,’Hd18’)))

for(i in 1:length(com.ID2)){

my.HdDq18[i,]<-HdDq18.f(combo=com.ID2[i],data=data1)

}

Sys.time()-t

class(my.HdDq18)

my.HdDq18<-data.frame(ID=my.HdDq18[,1],Dq=as.numeric(my.HdDq18[,2]),Hd=as.numeric(my.HdDq18[,3]))

head(my.HdDq18)

write.csv(my.HdDq18,file=’my.HdDq18.csv’)

summary(my.HdDq18)

my.HdDq18<-data.frame(ID=my.HdDq18[,1],Dq=as.numeric(my.HdDq18[,2]),Hd=as.numeric(my.HdDq18[,3]))

head(my.HdDq18)

write.csv(my.HdDq18,file=’my.HdDq18.csv’)

summary(my.HdDq18)

#Marging the dataset with CPCD and SAGSCD, criff, phyregion, location with the Dq and Hd

data2<-merge(data1,my.HdDq18,by.x=’ID2’,by.y=’ID’)

summary(data2)

head(data2)

nrow(data2)

write.csv(x=data2,file=’treelevel2.csv’)

table(data2$SAW,data2$CR6);sum(table(data2$SAW,data1$CR6))

table(data2$SAW,data2$DAM6)

#PER6: percentil of the diameter at age 6

per.f<-function(combo,age=6,data=data){

trees<-data$TAG[data$ID==paste(combo,age,sep=’_’) & !is.na(data$DBH) & data$DBH!=’99.9’]

y<-data$DBH[data$ID==paste(combo,age,sep=’_’) & !is.na(data$DBH) & data$DBH!=’99.9’ & data$TAG%in%trees]

f<-ecdf(y)

f.dbh<-f(y)

id2<-rep(combo,length(trees))

out<-data.frame(ID2_TAG=paste(id2,trees,sep=’_’),PER6=f.dbh)

return(out)

}



46

per.f(combo=’CD_1_I_1200’,age=21,data=saw)

com.ID2<-as.character(unlist(unique(data2$ID2)))

per6.d<-NULL

for(i in 1:length(com.ID2)){

per<-per.f(data=data,combo=com.ID2[i])

per6.d<-rbind(per6.d,per)

}

write.csv(x=per6.d,file=’per6.csv’)

data2$ID2_TAG<-paste(data2$ID2,data2$TAG,sep=’_’)

data3<-data2

#data3$PER6<-merge(data2,per6.d,by=’ID2_TAG’,all.x=TRUE) I COULD NOT MAKE IT TO WORK

#write.csv(x=data3,file=’treelevel3.csv’)

mi<-read.csv(’missing.csv’,header = TRUE,as.is=TRUE)[,1]

mi

per8.d<-NULL

for(i in 1:length(mi)){

per<-per.f(data=data,age=8,combo=mi[i])

per8.d<-rbind(per8.d,per)

}

write.csv(x=per8.d,file=’per8.csv’)

#Making a summary dataset with site index accordingly with the physiographic region

#Function

data4<-data

com.ID3<-as.character(unlist(unique(data$ID3)))

length(com.ID3)

SI.f<-function(combo=com.ID3[9],data=data4){

age<-max(data$AGE[data$ID3==combo])

#hd<-mean(data$HT[data$ID3==combo & data$CC==’1’ & data$AGE==age], na.rm=TRUE)

hd=50

study<-substr(combo,1,2)

si<-(study==’CP’)*(exp(5.4185+(log(hd)-5.4185)*(age/25)^(0.5235)))+

(study!=’CP’)*(exp(5.606524+(log(hd)-5.606524)*(age/25)^(0.48372)))

out<-c(ID3=combo,SI=si)

return(out)

}

SI.f(combo=com.ID3[40],data=data4)

t<-Sys.time()

SI.d<-matrix(ncol=2,nrow=length(com.ID3),

dimnames = list(1:length(com.ID3),

c(’ID3’,’SI’)))

for(i in 1:length(com.ID3)){

SI.d[i,]<-SI.f(combo=com.ID3[i],data=data4)

}

Sys.time()-t

class(SI.d)

str(SI.d)

SI<-data.frame(ID3=as.factor(SI.d[,1]),SI=as.numeric(SI.d[,2]))

str(SI)

summary(SI)

write.csv(x=SI,file=’./Dropbox/SI20190604.csv’)

data5<-merge(saw,SI,by=’ID2’)

head(data5)

write.csv(x=data5,file=’treelevel4_20180919.csv’)

#ESTIMATING A MODEL FOR HEIGHT----------------------------------------------

data1$ID_TAG<-paste(data1$ID,data1$TAG,sep="_")

data4Ht<-cbind(ID_TAG=data1$ID_TAG,HT=data1$HT)

saw$ID_TAG<-paste(saw$ID,saw$TAG,sep="_")

saw4Ht<-merge(saw,data4Ht,by="ID_TAG")

saw4Ht<-data.frame(DBH=saw4Ht$DBH,HT=saw4Ht$HT,PROV=saw4Ht$PROV)

head(saw4Ht)

str(saw4Ht)

saw4Ht$HT<-as.numeric(saw4Ht$HT)

str(saw4Ht)

ModHt<-lmer(I(log(HT))~I(1/DBH)+(1|PROV),saw4Ht)

summary(ModHt)

ranef(ModHt)

saw4Ht$HTe<-((exp(4.2907-0.8056/saw$DBH+0.08749759*(saw$PROV==’LCP’)-0.03418520*(saw$PROV==’PIE’)-0.05331242*(saw$PROV==’UCP’))))

head(saw4Ht)

plot(saw4Ht$HT,saw4Ht$HTe)

abline(0,1)
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#PREDICTING THE SAWTIMBER POTENTIAL BASED ON PAST TREE CHARACTERISTICS--------------------------------

#*****************************************************************

saw<-read.csv(’saw20180920.csv’,header=TRUE)

saw$MAN<-factor(saw$MAN,levels=c(’O’,’I’))

str(saw)

summary(saw)

#Exploratory analysis----------

STP.d<-read.csv(’Prop.csv’,header=TRUE)

STP.d$ID3<-as.factor(STP.d$ID3)

STP.d$‘Study & Installation‘<-STP.d$ID3

str(STP.d)

ggplot(STP.d, aes(AGE, STP))+

geom_point(size = 2)+

geom_point(aes(colour = factor(‘Study & Installation‘)), size = 2)+

theme(legend.title = element_text())

ggplot(STP.d, aes(x=AGE)) +

geom_line(aes(y=STP, colour=‘Study & Installation‘), size=0.8) +

scale_y_continuous(limits=c(0,1))+

theme(axis.text.x = element_text(angle=0), #legend elements

axis.text = element_text(size = rel(1.1),color = ’black’),

axis.title = element_text( size = 14),

title = element_text(size = 12),

panel.background = element_rect(fill = ’white’, colour = ’white’),

panel.border=element_rect(colour = "black", fill=NA, size=0.5),

legend.title = element_text(),

legend.position = "none")+

labs(x="Age (years)",

y="Sawtimber potential")

#summary statistics

#STP

aggregate(SAW01~AGE,data=saw,function(x) c(mean=mean(x),sd=sd(x)))

#DBH

aggregate(DBH~AGE,data=saw,function(x) c(mean=mean(x),sd=sd(x),max=max(x),min=min(x)))

#PER6

aggregate(PER6~AGE,data=saw,function(x) c(mean=mean(x),sd=sd(x)))

#HT

aggregate(HT~AGE,data=data1,function(x) c(mean=mean(x),sd=sd(x),max=max(x),min=min(x)))

#Man

MAN.sum<-apply(as.data.frame.matrix(table(saw$MAN,saw$AGE)),2,sum)

matrix(rep(MAN.sum,2),nrow=2,byrow = T)

round(as.data.frame.matrix(table(saw$MAN,saw$AGE))/matrix(rep(MAN.sum,2),nrow=2,byrow = T),2)

#THIN

THIN.sum<-apply(as.data.frame.matrix(table(saw$THIN,saw$AGE)),2,sum)

matrix(rep(THIN.sum,2),nrow=2,byrow = T)

round(as.data.frame.matrix(table(saw$THIN,saw$AGE))/matrix(rep(THIN.sum,2),nrow=2,byrow = T),2)

#SI

aggregate(SI~AGE,data=saw,function(x) c(mean=mean(x),sd=sd(x)))

#CR

CR.sum<-apply(as.data.frame.matrix(table(data1$CR,data1$AGE)),2,sum)

matrix(rep(CR.sum,5),nrow=5,byrow = T)

round(as.data.frame.matrix(table(data1$CR,data1$AGE))/matrix(rep(CR.sum,5),nrow=5,byrow = T),2)

#CR6

CR6.sum<-apply(as.data.frame.matrix(table(saw$CR6,saw$STUDY)),2,sum)

matrix(rep(CR6.sum,5),nrow=5,byrow = T)

round(as.data.frame.matrix(table(saw$CR,saw$STUDY))/matrix(rep(CR6.sum,5),nrow=5,byrow = T),2)

#DAM

DAM.sum<-apply(as.data.frame.matrix(table(data1$DAM,data1$AGE)),2,sum)

matrix(rep(DAM.sum,8),nrow=8,byrow = T)

round(as.data.frame.matrix(table(data1$DAM,data1$AGE))/matrix(rep(DAM.sum,8),nrow=8,byrow = T),2)

#DAM6

DAM6.sum<-apply(as.data.frame.matrix(table(saw$DAM6,saw$STUDY)),2,sum)

matrix(rep(DAM6.sum,6),nrow=6,byrow = T)

round(as.data.frame.matrix(table(saw$DAM6,saw$STUDY))/matrix(rep(DAM6.sum,6),nrow=6,byrow = T),3)

#SAW

SAW.sum<-apply(as.data.frame.matrix(table(data1$SAW,data1$AGE)),2,sum)

matrix(rep(SAW.sum,5),nrow=5,byrow = T)

round(as.data.frame.matrix(table(data1$SAW,data1$AGE))/matrix(rep(SAW.sum,5),nrow=5,byrow = T),2)

#SAW at year six
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SAW6.sum<-apply(as.data.frame.matrix(table(data$SAW,data$AGE)),2,sum)

matrix(rep(SAW.sum,5),nrow=5,byrow = T)

round(as.data.frame.matrix(table(data1$SAW,data1$AGE))/matrix(rep(SAW.sum,5),nrow=5,byrow = T),2)

#CC

CC.sum<-apply(as.data.frame.matrix(table(saw$CC,saw$AGE)),2,sum)

matrix(rep(CC.sum,4),nrow=4,byrow = T)

round(as.data.frame.matrix(table(saw$CC,saw$AGE))/matrix(rep(CC.sum,4),nrow=4,byrow = T),2)

#G L M -----------------------------------------------------------

tl.glm.1<-glm(SAW01~AGE+MAN+SI+PLTPA+THIN+CR6+asfDAM6+PER6,data=saw,family=binomial(link=’logit’))

summary(tl.glm.1)

tl.glm.2<-glm(SAW01~AGE+MAN+SI+PLTPA+PLTPA:THIN+CR6+as.factor(DAM6)+PER6,data=saw,family=binomial(link=’logit’))

summary(tl.glm.2)

anova(tl.glm.1,tl.glm.2,test="Chisq")

#Collapsing levels

saw$ColDAM6<-as.factor(ifelse(saw$DAM6==1,0,saw$DAM6))

tl.glm.3<-glm(SAW01~AGE+MAN+SI+PLTPA+PLTPA:THIN+CR6+ColDAM6+PER6,data=saw,family=binomial(link=’logit’))

summary(tl.glm.3)

anova(tl.glm.2,tl.glm.3,test="Chisq")

acf(tl.glm.3$res,lag.max=20)

#Figures

#Figure of rust infection

#Data frame for prediction

man=’I’

pltpa=600

thin=0 #other level is 3

newCR6<-data.frame(MAN=factor((rep(man,20))),

PLTPA=rep(pltpa,20),

THIN=rep(thin,20),

CR6=rep(0:4,each=4),

DAM6=rep(c(0,3,5,6),5))

newCR6$ColDAM6<-as.factor(newCR6$DAM6)

head(newCR6)

str(newCR6)

summary(newCR6$ColDAM6)

#Prediciton of the new observations

PRED.CR6<-predict(tl.glm.2,newdata=newCR6,type=’link’,se.fit=TRUE)

ub.CR6<-exp(PRED.CR6$fit+1.96*PRED.CR6$se.fit)/(1+exp(PRED.CR6$fit+1.96*PRED.CR6$se.fit))

lb.CR6<-exp(PRED.CR6$fit-1.96*PRED.CR6$se.fit)/(1+exp(PRED.CR6$fit-1.96*PRED.CR6$se.fit))

PRED.CR6<-predict(tl.glm.2,newdata=newCR6,type=’response’,se.fit=TRUE)

ad<-rep(c(-0.075,-0.025,0.025,0.075),5)

co<-c(’darkseagreen4’,’gold’,’darkgoldenrod4’,’brown3’)

plot(newCR6$CR6[1:20]+ad,PRED.CR6$fit[1:20],col=co,pch=19,xaxt=’n’,ylim=c(min(lb.CR6)*0.95,max(ub.CR6)*1.05),cex.lab=1.2,cex.axis=1.2,cex.main=1.2,

xlab=’Rust infection (%)’,ylab=’Sawtimber proportion’,main=’Sawtimber potential at age 18 years’)

mtext(paste(’MAN=’,man,’ PLPTA=’,pltpa,’ THIN=’,thin,sep=’’),cex=0.7)

CR.names<-c(’0’,’1-25’,’26-50’,’51-75’,’76-100’)

for(i in 1:6) mtext(paste(CR.names[i]),side=1,at=i-1,line=0.5,cex=1.2)

arrows(newCR6$CR6[1:20]+ad, PRED.CR6$fit[1:20], newCR6$CR6[1:20]+ad, ub.CR6[1:20], length = 0.05, angle = 90,col=co)

arrows(newCR6$CR6[1:20]+ad, PRED.CR6$fit[1:20], newCR6$CR6[1:20]+ad, lb.CR6[1:20], length = 0.05, angle = 90,col=co)

legend(’topright’,c(’None damage in tree or \n minimum damage in needles’,’Tip dieback’,’Leaning tree’,’Broken top’),

y.intersp = 0.7, col=co,bty=’n’,cex=0.8,pch=19)

#Figure of trees per hectare

#Data frame for prediction of trees per hectare

man<-’O’

pltpa<-unique(data18$PLTPA)

thin<-0 #other level is 3

cr6<-0

newPLTPA<-data.frame(MAN=factor((rep(man,24))),

PLTPA=rep(pltpa,each=4),

THIN=rep(thin,24),

CR6=rep(cr6,24),

DAM6=rep(c(0,3,5,6),6))

newPLTPA$ColDAM6<-as.factor(newPLTPA$DAM6)

head(newPLTPA)

str(newPLTPA)

#********************************************************************

# G L M M ---------------------------------------------------------

saw$asfDAM6<-as.factor(saw$DAM6)

tl.glm.1<-glm(SAW01~AGE+MAN+SI+PLTPA+THIN+CR6+asfDAM6+PER6,data=saw,family=binomial(link=’logit’))

summary(tl.glm.1)

tl.glmm.1<-glmer(SAW01~AGE+MAN+SI+PLTPA+THIN+CR6+asfDAM6+PER6+(1|PROV)+(1|PROV:CRIFF)+(1|CRIFF:ID2),
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data=saw,family=binomial)

summary(tl.glmm.1)

anova(tl.glmm.1,tl.glm.1)

beepr::beep(4)

xtable(anova(tl.glmm.1,tl.glm.1))

#Testing fixed effects

#Dropping SI

tl.glmm.2<-glmer(SAW01~AGE+MAN+PLTPA+THIN+CR6+asfDAM6+PER6+(1|PROV)+(1|PROV:CRIFF)+(1+AGE|CRIFF:ID2),

data=saw,family=binomial)

summary(tl.glmm.2)

beepr::beep(4)

xtable(anova(tl.glmm.1,tl.glmm.2))

#Dropping THIN

tl.glmm.3<-glmer(SAW01~AGE+MAN+PLTPA+CR6+asfDAM6+PER6+(1|PROV)+(1|PROV:CRIFF)+(1+AGE|CRIFF:ID2),

data=saw,family=binomial)

summary(tl.glmm.3)

beepr::beep(4)

xtable(anova(tl.glmm.1,tl.glmm.3))

xtable(anova(tl.glmm.2,tl.glmm.3))

#Collapsing yellow needles into the intercept

saw$asfDAM6<-as.factor(ifelse(saw$DAM6==1,0,saw$DAM6))

tl.glmm.4<-glmer(SAW01~AGE+MAN+PLTPA+CR6+asfDAM6+PER6+(1|PROV)+(1|PROV:CRIFF)+(1+AGE|CRIFF:ID2),

data=saw,family=binomial)

summary(tl.glmm.4)

xtable(anova(tl.glmm.3,tl.glmm.4))

beepr::beep(4)

#Collapsing yellow needles into the dead needles.

saw$asfDAM6<-as.factor(ifelse(saw$DAM6==1,2,saw$DAM6))

tl.glmm.5<-glmer(SAW01~AGE+MAN+PLTPA+CR6+asfDAM6+PER6+(1|PROV)+(1|PROV:CRIFF)+(1+AGE|CRIFF:ID2),

data=saw,family=binomial)

summary(tl.glmm.5)

xtable(anova(tl.glmm.3,tl.glmm.5))

beepr::beep(4)

#Testing for random effects

#Reducing random effects starting from the low hierarchy to compare it with model 5 (fixed effect accepted)

tl.glmm.6<-glmer(SAW01~AGE+MAN+SI+PLTPA+CR6+asfDAM6+PER6+(1|PROV)+(1|PROV:CRIFF)+(1|CRIFF:ID2),

data=saw,family=binomial)

summary(tl.glmm.6)

xtable(anova(tl.glmm.5,tl.glmm.6))

beepr::beep(4)

tl.glmm.7<-glmer(SAW01~AGE+MAN+PLTPA+CR6+asfDAM6+PER6+(1|PROV)+(1|PROV:CRIFF),

data=saw,family=binomial)

summary(tl.glmm.7)

xtable(anova(tl.glmm.5,tl.glmm.7))

beepr::beep(4)

tl.glmm.8<-glmer(SAW01~AGE+MAN+PLTPA+CR6+asfDAM6+PER6+(1|PROV),

data=saw,family=binomial)

summary(tl.glmm.8)

xtable(anova(tl.glmm.5,tl.glmm.8))

beepr::beep(4)

#Reducing random effects starting from the high hierarchy to compare it with model 5 (fixed effect accepted)

tl.glmm.9<-glmer(SAW01~AGE+MAN+PLTPA+CR6+asfDAM6+PER6+(1|CRIFF)+(1+AGE|CRIFF:ID2),

data=saw,family=binomial)

summary(tl.glmm.9)

xtable(anova(tl.glmm.5,tl.glmm.9))

beepr::beep(4)

tl.glmm.10<-glmer(SAW01~AGE+MAN+PLTPA+CR6+asfDAM6+PER6+(1+AGE|ID2),

data=saw,family=binomial)

summary(tl.glmm.10)

xtable(anova(tl.glmm.5,tl.glmm.10))

beepr::beep(4)

tl.glmm.11<-glmer(SAW01~AGE+MAN+PLTPA+CR6+asfDAM6+PER6+(AGE-1|ID2),

data=saw,family=binomial)

summary(tl.glmm.11)

xtable(anova(tl.glmm.5,tl.glmm.11))

beepr::beep(4)

#GLM

tl.glm.2<-glm(SAW01~AGE+MAN+PLTPA+CR6+asfDAM6+PER6,data=saw,family=binomial(link=’logit’))

summary(tl.glm.2)

xtable(anova(tl.glmm.5,tl.glm.2))

#Best model tl.glmm.5

#Printing the full model

xtable(summary(tl.glmm.1)$coe)
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#Printing anovas comparing the models

#Comparing fixed effects

xtable(anova(tl.glmm.2,tl.glmm.3))

xtable(anova(tl.glmm.3,tl.glmm.4))

xtable(anova(tl.glmm.3,tl.glmm.5))

#Comparing random effects

xtable(anova(tl.glmm.5,tl.glmm.6))

xtable(anova(tl.glmm.5,tl.glmm.7))

xtable(anova(tl.glmm.5,tl.glmm.8))

xtable(anova(tl.glmm.5,tl.glmm.9))

xtable(anova(tl.glmm.5,tl.glm.2))

#Best model achieved

xtable(summary(tl.glmm.5)$coe)

#Diagnostics

summary(tl.glmm.5)$optin$derivs

hes<-summary(tl.glmm.5)$optin$derivs[[2]]

cov2cor(hes[1:3,1:3])

round(solve(hes),3)

round(summary(tl.glmm.2)$vcov,3)

round(cov2cor(summary(tl.glmm.2)$vcov),3)

co<-summary(tl.glmm.2)$vcov

round(solve(co),3)

round(hes,3)

car::vif(tl.glmm.5)

xtable(summary(tl.glmm.5)$vcov)

#RESIDUALS

par(mar=c(4,4,1,1))

pred<-predict(tl.glmm.6,type=’response’)#,re.form=~0)

#Ordinary

or<-saw$SAW01[!is.na(saw$PER6)]-pred

plot(pred,or,las=1,ylab=’Ordinary residuals’,xlab=’Estimated Sawtimber Potential’,cex.axis=1.3,cex.lab=1.3)

lines(smooth.spline(or,pred,df=3), col=’red’,lwd=2,lty=2)

plot(fitted(tl.glmm.6),residuals(tl.glmm.6))

lines(smooth.spline(residuals(tl.glmm.6),fitted(tl.glmm.6),df=3), col=’red’,lwd=2,lty=2)

#abline(h=0.5,lty=2,col=’gray’)

#abline(v=0.5,lty=2,col=’gray’)

#Pearson

rp<-(saw$SAW01[!is.na(saw$PER6)]-pred)/sqrt(pred*(1-pred))

plot(pred,rp,las=1,ylab=’Pearson residuals’,xlab=’Estimated Sawtimber Potential’,cex.axis=1.3,cex.lab=1.3)

lines(smooth.spline(rp,pred,df=3),col=’red’,lwd=2,lty=2)

#ACF

acf(tl.glm.1$residuals,lag.max=20,las=1,main=’’,cex.axis=1.4,cex.lab=1.4, ylab=’Autocorrelation Function of Residuals’)

acf(summary(tl.glmm.1)$residuals,lag.max=20,las=1,main=’’,cex.axis=1.3,cex.lab=1.3)

acf(summary(tl.glmm.6)$residuals,lag.max=20,las=1,main=’’,cex.axis=1.4,cex.lab=1.4, ylab=’Autocorrelation Function of Residuals’)

acf(tl.glm.2$residuals,lag.max=20,las=1,main=’’,cex.axis=1.3,cex.lab=1.3)

acf(residuals(tl.glm.1))

#Trying with function glmm to compare results

sl.pro.glmm.age<-glmm(cbind(SAW1,SAW0)~AGE+MAN+PLTPA+THIN,random=~ID2,

varcomps.names = c(’S’),data=my.data,family.glmm=binomial.glmm(),m=10^4,debug=TRUE)

Val.glmm<-glmm(SAW01~AGE+MAN+SI+PLTPA+CR6+asfDAM6+PER6+(1|PROV)+(1|PROV:CRIFF)+(1|CRIFF:ID2),

data=saw,family=binomial)

tl.glmm.6<-glmer(SAW01~AGE+MAN+SI+PLTPA+CR6+asfDAM6+PER6+(1|PROV)+(1|PROV:CRIFF)+(1|CRIFF:ID2),

data=saw,family=binomial)

summary(tl.glmm.6)

ranef(tl.glmm.6)

#FUNCTION FOR CREATING THE NEW DATA FRAME ---------------------------------------------

#Data frame

newDat.f<-function(AGE=25,MAN=’O’,SI=80,PLTPA=600,CR6=0,DAM6=0,PER6=0.5){

new<-expand.grid(AGE=AGE,MAN=MAN,SI=SI,PLTPA=PLTPA,CR6=CR6,DAM6=DAM6,PER6=PER6)

new$asfDAM6<-as.factor(ifelse(new$DAM6==1,2,new$DAM6))

return(new)

}

#Non empirical (no simulation) CI function

ci.f<-function(obj=tl.glmm.6,newdata){

Xh<-as.matrix(cbind(rep(1,nrow(newdata)),newdata$AGE,(newdata$MAN==’I’)*1,newdata$SI,newdata$PLTPA,

newdata$CR6,(newdata$DAM6==2)*1,(newdata$DAM6==3)*1,(newdata$DAM6==5)*1,(newdata$DAM6==6)*1,

newdata$PER6))

S2b<-summary(obj)$vcov

mean<-predict(obj,newdata=newdata,re.form=NA,type=’link’)
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ci<-matrix(ncol=2,nrow=nrow(newdata),dimnames=list(1:nrow(newdata),c(’lb’,’ub’)))

for(i in 1:nrow(newdata)){

s<-sqrt(as.numeric(t(Xh[i,])%*%S2b%*%Xh[i,]))

lb<-mean[i]-1.96*s

ub<-mean[i]+1.96*s

ci[i,]<-c(exp(lb)/(1+exp(lb)),exp(ub)/(1+exp(ub)))

}

fit<-predict(obj,newdata=newdata,re.form=NA,type=’response’)

out<-data.frame(newdata,fit,ci)

return(out)

}

#FIGURES OF RESPONSE ----------------------------------

if (Sys.info()[6]==’HR’) setwd("C:/Users/HR/Dropbox/Chapter 2 Form and taper/MS Stat Thesis")

#FIGURES OF AGE-------------------------------------

#ooooooooooooooooooooooooooooooooooooo

#Figure of AGE effect and MANAGEMENT

#ooooooooooooooooooooooooooooooooooooo

#WITHOUT PREDICTION INTERVALS

AgeMan<-ci.f(obj=tl.glmm.6,newdata=newDat.f(AGE=seq(12,25),MAN=c(’O’,’I’)))

AgeMan$Management<-factor(ifelse(AgeMan$MAN==’O’,’Operational’,’Intensive’),levels=c(’Operational’,’Intensive’))

AgeMan$lb<-AgeMan$ub<-AgeMan$fit

ggplot(AgeMan, aes(x=AGE)) +

geom_line(aes(y=fit, linetype=Management, colour=Management), size=1.1) +

geom_ribbon(show.legend=T,aes(ymin=lb, ymax=ub, fill=Management), alpha=0.0)+

scale_y_continuous(limits=c(0,1))+

theme(axis.text.x = element_text(angle=0), #legend elements

axis.text = element_text(size = rel(1.3),color = ’black’),

axis.title = element_text( size = 18),

title = element_text(size = 12),

panel.background = element_rect(fill = ’white’, colour = ’white’),

panel.border=element_rect(colour = "black", fill=NA, size=0.5),

#legend.title = element_text(),

legend.text = element_text(size = 10),

legend.key.width = unit(2, ’cm’),

legend.position=c(.77,.15), #positioning the legend INSIDE the plot

legend.background = element_rect(color = "white",

fill = "white",

size = 1,

linetype = "solid"))+ #you can take linetype, size, and color to have no border

scale_color_manual(values=c(’darkgoldenrod4’,’aquamarine3’))+

labs(x="Age (years)",

y="Sawtimber potential")+

scale_fill_manual(values=c(’darkgoldenrod4’,’aquamarine3’))

#WITH ONE PREDICTION INTERVALS FOR MANAGEMENT OPERATIONAL

AgeMan<-ci.f(obj=tl.glmm.6,newdata=newDat.f(AGE=seq(12,25),MAN=c(’O’,’I’)))

AgeMan$Management<-factor(ifelse(AgeMan$MAN==’O’,’Operational’,’Intensive’),levels=c(’Operational’,’Intensive’))

AgeMan$lb[AgeMan$Management==’Intensive’]<-AgeMan$ub[AgeMan$Management==’Intensive’]<-AgeMan$fit[AgeMan$Management==’Intensive’]

ggplot(AgeMan, aes(x=AGE)) +

geom_line(aes(y=fit, linetype=Management, colour=Management), size=1.1) +

geom_ribbon(show.legend=T,aes(ymin=lb, ymax=ub, fill=Management), alpha=0.5)+

scale_y_continuous(limits=c(0,1))+

theme(axis.text.x = element_text(angle=0), #legend elements

axis.text = element_text(size = rel(1.3),color = ’black’),

axis.title = element_text( size = 18),

title = element_text(size = 12),

panel.background = element_rect(fill = ’white’, colour = ’white’),

panel.border=element_rect(colour = "black", fill=NA, size=0.5),

#legend.title = element_text(),

legend.text = element_text(size = 10),

legend.key.width = unit(2, ’cm’),

legend.position=c(.77,.15), #positioning the legend INSIDE the plot

legend.background = element_rect(color = "white",

fill = "white",

size = 1,

linetype = "solid"))+ #you can take linetype, size, and color to have no border

scale_color_manual(values=c(’darkgoldenrod4’,’aquamarine3’))+

labs(x="Age (years)",

y="Sawtimber potential")+

scale_fill_manual(values=c(’darkgoldenrod4’,’aquamarine3’))

#WITH TWO PREDICTION INTERVALS FOR MANAGEMENT OPERATIONAL

AgeMan<-ci.f(obj=tl.glmm.6,newdata=newDat.f(AGE=seq(12,25),MAN=c(’O’,’I’)))

AgeMan$Management<-factor(ifelse(AgeMan$MAN==’O’,’Operational’,’Intensive’),levels=c(’Operational’,’Intensive’))

#png(filename = "MANtwoCI.png",

# width = 480, height = 480, units = "px", pointsize = 12, bg = "white")

ggplot(AgeMan, aes(x=AGE)) +

geom_line(aes(y=fit, linetype=Management, colour=Management), size=1.1) +

geom_ribbon(show.legend=T,aes(ymin=lb, ymax=ub, fill=Management), alpha=0.5)+

scale_y_continuous(limits=c(0,1))+

theme(axis.text.x = element_text(angle=0), #legend elements
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axis.text = element_text(size = rel(1.3),color = ’black’),

axis.title = element_text( size = 18),

title = element_text(size = 12),

panel.background = element_rect(fill = ’white’, colour = ’white’),

panel.border=element_rect(colour = "black", fill=NA, size=0.5),

#legend.title = element_text(),

legend.text = element_text(size = 10),

legend.key.width = unit(2, ’cm’),

legend.position=c(.77,.15), #positioning the legend INSIDE the plot

legend.background = element_rect(color = "white",

fill = "white",

size = 1,

linetype = "solid"))+ #you can take linetype, size, and color to have no border

scale_color_manual(values=c(’darkgoldenrod4’,’aquamarine3’))+

labs(x="Age (years)",

y="Sawtimber potential")+

scale_fill_manual(values=c(’darkgoldenrod4’,’aquamarine3’))

#dev.off()

#Figure of AGE effect and SI

AgeSI<-ci.f(obj=tl.glmm.6,newdata=newDat.f(AGE=seq(12,25),SI=c(60,80,100)))

AgeSI$‘Site Index (ft @ 25 yr)‘<-factor(AgeSI$SI)

#png(filename = "SItwoCI.png",

# width = 480, height = 480, units = "px", pointsize = 12,

# bg = "white")

ggplot(AgeSI, aes(x=AGE)) +

geom_line(aes(y=fit, linetype=‘Site Index (ft @ 25 yr)‘, colour=‘Site Index (ft @ 25 yr)‘), size=1.1) +

geom_ribbon(show.legend=T,aes(ymin=lb, ymax=ub, fill=‘Site Index (ft @ 25 yr)‘), alpha=0.5)+

scale_y_continuous(limits=c(0,1))+

theme(axis.text.x = element_text(angle=0), #legend elements

axis.text = element_text(size = rel(1.3),color = ’black’),

axis.title = element_text( size = 18),

title = element_text(size = 12),

panel.background = element_rect(fill = ’white’, colour = ’white’),

panel.border=element_rect(colour = "black", fill=NA, size=0.5),

#legend.title = element_text(text=’Site Index’),

legend.text = element_text(size = 10),

legend.key.width = unit(2, ’cm’),

legend.position=c(.77,.15), #positioning the legend INSIDE the plot

legend.background = element_rect(color = "white",

fill = "white",

size = 1,

linetype = "solid"))+ #you can take linetype, size, and color to have no border

scale_color_manual(values=c( ’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))+

labs(x="Age (years)",

y="Sawtimber potential")+

scale_fill_manual(values=c(’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))

#dev.off()

#Figure of AGE effect and planting density

AgePLTPA<-ci.f(obj=tl.glmm.6,newdata=newDat.f(AGE=seq(12,25),PLTPA=c(600,1200,1800)))

AgePLTPA$‘Planting Density (TPA)‘<-factor(AgePLTPA$PLTPA)

#png(filename = "PLTPAthreeCI.png",

# width = 480, height = 480, units = "px", pointsize = 12,

# bg = "white")

ggplot(AgePLTPA, aes(x=AGE)) +

geom_line(aes(y=fit, linetype=‘Planting Density (TPA)‘, colour=‘Planting Density (TPA)‘), size=1.1) +

geom_ribbon(show.legend=T,aes(ymin=lb, ymax=ub, fill=‘Planting Density (TPA)‘), alpha=0.5)+

scale_y_continuous(limits=c(0,1))+

theme(axis.text.x = element_text(angle=0), #legend elements

axis.text = element_text(size = rel(1.3),color = ’black’),

axis.title = element_text( size = 18),

title = element_text(size = 12),

panel.background = element_rect(fill = ’white’, colour = ’white’),

panel.border=element_rect(colour = "black", fill=NA, size=0.5),

#legend.title = element_blank(),

legend.text = element_text(size = 10),

legend.key.width = unit(2, ’cm’),

legend.position=c(.75,.15), #positioning the legend INSIDE the plot

legend.background = element_rect(color = "white",

fill = "white",

size = 1,

linetype = "solid"))+ #you can take linetype, size, and color to have no border

scale_color_manual(values=c(’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))+

labs(x="Age (years)",

y="Sawtimber potential")+

scale_fill_manual(values=c(’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))

#dev.off()

#Figure of AGE effect and rust infection at age 6

#WITHOUT PREDICTION INTERVALS

AgeCR6<-ci.f(obj=tl.glmm.6,newdata=newDat.f(AGE=seq(12,25),CR6=c(0,2,4)))
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AgeCR6$‘Rust Infection at year 6‘<-ifelse(AgeCR6$CR6==0,0,ifelse(AgeCR6$CR6==2,’26-50%’,’76-100%’))

AgeCR6$lb<-AgeCR6$ub<-AgeCR6$fit

ggplot(AgeCR6, aes(x=AGE)) +

geom_line(aes(y=fit, linetype=‘Rust Infection at year 6‘, colour=‘Rust Infection at year 6‘), size=1.1) +

geom_ribbon(show.legend=T,aes(ymin=lb, ymax=ub, fill=‘Rust Infection at year 6‘), alpha=0)+

scale_y_continuous(limits=c(0,1))+

theme(axis.text.x = element_text(angle=0), #legend elements

axis.text = element_text(size = rel(1.3),color = ’black’),

axis.title = element_text( size = 18),

title = element_text(size = 10),

panel.background = element_rect(fill = ’white’, colour = ’white’),

panel.border=element_rect(colour = "black", fill=NA, size=0.5),

#legend.title = element_blank(),

legend.text = element_text(size = 10),

legend.key.width = unit(2, ’cm’),

legend.position=c(.19,.88), #positioning the legend INSIDE the plot

legend.background = element_rect(color = "white",

fill = "white",

size = 1,

linetype = "solid"))+ #you can take linetype, size, and color to have no border

scale_color_manual(values=c(’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))+

labs(x="Age (years)",

y="Sawtimber potential")+

scale_fill_manual(values=c(’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))

#WITH ONE PREDICTION INTERVAL

AgeCR6<-eci.f(obj=tl.glmm.6,newdata=newDat.f(AGE=seq(12,25),CR6=c(0,2,4)))

AgeCR6$‘Rust Infection at year 6‘<-ifelse(AgeCR6$CR6==0,0,ifelse(AgeCR6$CR6==2,’26-50%’,’76-100%’))

AgeCR6$lb[AgeCR6$‘Rust Infection at year 6‘!=’0’]<-AgeCR6$ub[AgeCR6$‘Rust Infection at year 6‘!=’0’]<-AgeCR6$fit[AgeCR6$‘Rust Infection at year 6‘!=’0’]

ggplot(AgeCR6, aes(x=AGE)) +

geom_line(aes(y=fit, linetype=‘Rust Infection at year 6‘, colour=‘Rust Infection at year 6‘), size=1.1) +

geom_ribbon(show.legend=T,aes(ymin=lb, ymax=ub, fill=‘Rust Infection at year 6‘), alpha=0.5)+

scale_y_continuous(limits=c(0,1))+

theme(axis.text.x = element_text(angle=0), #legend elements

axis.text = element_text(size = rel(1.3),color = ’black’),

axis.title = element_text( size = 18),

title = element_text(size = 10),

panel.background = element_rect(fill = ’white’, colour = ’white’),

panel.border=element_rect(colour = "black", fill=NA, size=0.5),

#legend.title = element_blank(),

legend.text = element_text(size = 10),

legend.key.width = unit(2, ’cm’),

legend.position=c(.19,.88), #positioning the legend INSIDE the plot

legend.background = element_rect(color = "white",

fill = "white",

size = 1,

linetype = "solid"))+ #you can take linetype, size, and color to have no border

scale_color_manual(values=c(’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))+

labs(x="Age (years)",

y="Sawtimber potential")+

scale_fill_manual(values=c(’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))

#WITH TWO PREDICTION INTERVALS

AgeCR6<-eci.f(obj=tl.glmm.6,newdata=newDat.f(AGE=seq(12,25),CR6=c(0,2,4)))

AgeCR6$‘Rust Infection at year 6‘<-ifelse(AgeCR6$CR6==0,0,ifelse(AgeCR6$CR6==2,’26-50%’,’76-100%’))

AgeCR6$lb[AgeCR6$‘Rust Infection at year 6‘==’76-100%’]<-AgeCR6$ub[AgeCR6$‘Rust Infection at year 6‘==’76-100%’]

<-AgeCR6$fit[AgeCR6$‘Rust Infection at year 6‘==’76-100%’]

ggplot(AgeCR6, aes(x=AGE)) +

geom_line(aes(y=fit, linetype=‘Rust Infection at year 6‘, colour=‘Rust Infection at year 6‘), size=1.1) +

geom_ribbon(show.legend=T,aes(ymin=lb, ymax=ub, fill=‘Rust Infection at year 6‘), alpha=0.5)+

scale_y_continuous(limits=c(0,1))+

theme(axis.text.x = element_text(angle=0), #legend elements

axis.text = element_text(size = rel(1.3),color = ’black’),

axis.title = element_text( size = 18),

title = element_text(size = 10),

panel.background = element_rect(fill = ’white’, colour = ’white’),

panel.border=element_rect(colour = "black", fill=NA, size=0.5),

#legend.title = element_blank(),

legend.text = element_text(size = 10),

legend.key.width = unit(2, ’cm’),

legend.position=c(.19,.88), #positioning the legend INSIDE the plot

legend.background = element_rect(color = "white",

fill = "white",

size = 1,

linetype = "solid"))+ #you can take linetype, size, and color to have no border

scale_color_manual(values=c(’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))+

labs(x="Age (years)",

y="Sawtimber potential")+

scale_fill_manual(values=c(’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))

#WITH THREE PREDICTION INTERVALS

AgeCR6<-ci.f(obj=tl.glmm.6,newdata=newDat.f(AGE=seq(12,25),CR6=c(0,2,4)))

AgeCR6$‘Rust Infection at year 6‘<-ifelse(AgeCR6$CR6==0,0,ifelse(AgeCR6$CR6==2,’26-50%’,’76-100%’))

#png(filename = "CR6threeCI.png",

# width = 480, height = 480, units = "px", pointsize = 12,

# bg = "white")
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ggplot(AgeCR6, aes(x=AGE)) +

geom_line(aes(y=fit, linetype=‘Rust Infection at year 6‘, colour=‘Rust Infection at year 6‘), size=1.1) +

geom_ribbon(show.legend=T,aes(ymin=lb, ymax=ub, fill=‘Rust Infection at year 6‘), alpha=0.5)+

scale_y_continuous(limits=c(0,1))+

theme(axis.text.x = element_text(angle=0), #legend elements

axis.text = element_text(size = rel(1.3),color = ’black’),

axis.title = element_text( size = 18),

title = element_text(size = 10),

panel.background = element_rect(fill = ’white’, colour = ’white’),

panel.border=element_rect(colour = "black", fill=NA, size=0.5),

#legend.title = element_blank(),

legend.text = element_text(size = 10),

legend.key.width = unit(2, ’cm’),

legend.position=c(.19,.88), #positioning the legend INSIDE the plot

legend.background = element_rect(color = "white",

fill = "white",

size = 1,

linetype = "solid"))+ #you can take linetype, size, and color to have no border

scale_color_manual(values=c(’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))+

labs(x="Age (years)",

y="Sawtimber potential")+

scale_fill_manual(values=c(’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))

#dev.off()

#Figure of AGE effect and damage at age 6, three level factors

#WITHOUT PREDICTION INTERVALS

AgeDAM6<-eci.f(obj=tl.glmm.6,newdata=newDat.f(AGE=seq(12,25),DAM6=c(0,3,5)))

AgeDAM6$‘Damage at year 6‘<-factor(ifelse(AgeDAM6$DAM6==0,’None’,ifelse(AgeDAM6$DAM6==3,’Tip dieback’,’Broken top’)),

levels=c(’None’,’Tip dieback’,’Broken top’))

AgeDAM6$lb<-AgeDAM6$ub<-AgeDAM6$fit

ggplot(AgeDAM6, aes(x=AGE)) +

geom_line(aes(y=fit, linetype=‘Damage at year 6‘, colour=‘Damage at year 6‘), size=1.1) +

geom_ribbon(show.legend=T,aes(ymin=lb, ymax=ub, fill=‘Damage at year 6‘), alpha=0)+

scale_y_continuous(limits=c(0,1))+

theme(axis.text.x = element_text(angle=0), #legend elements

axis.text = element_text(size = rel(1.3),color = ’black’),

axis.title = element_text( size = 18),

title = element_text(size = 10),

panel.background = element_rect(fill = ’white’, colour = ’white’),

panel.border=element_rect(colour = "black", fill=NA, size=0.5),

#legend.title = element_blank(),

legend.text = element_text(size = 10),

legend.key.width = unit(2, ’cm’),

legend.position=c(.2,.88), #positioning the legend INSIDE the plot

legend.background = element_rect(color = "white",

fill = "white",

size = 1,

linetype = "solid"))+ #you can take linetype, size, and color to have no border

scale_color_manual(values=c(’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))+

labs(x="Age (years)",

y="Sawtimber potential")+

scale_fill_manual(values=c(’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))

#WITH ONE PREDICTION INTERVALS

AgeDAM6<-eci.f(obj=tl.glmm.6,newdata=newDat.f(AGE=seq(12,25),DAM6=c(0,3,5)))

AgeDAM6$‘Damage at year 6‘<-factor(ifelse(AgeDAM6$DAM6==0,’None’,ifelse(AgeDAM6$DAM6==3,’Tip dieback’,’Broken top’)),

levels=c(’None’,’Tip dieback’,’Broken top’))

AgeDAM6$lb[AgeDAM6$‘Damage at year 6‘!=’None’]<-AgeDAM6$ub[AgeDAM6$‘Damage at year 6‘!=’None’]<-AgeDAM6$fit[AgeDAM6$‘Damage at year 6‘!=’None’]

ggplot(AgeDAM6, aes(x=AGE)) +

geom_line(aes(y=fit, linetype=‘Damage at year 6‘, colour=‘Damage at year 6‘), size=1.1) +

geom_ribbon(show.legend=T,aes(ymin=lb, ymax=ub, fill=‘Damage at year 6‘), alpha=0.5)+

scale_y_continuous(limits=c(0,1))+

theme(axis.text.x = element_text(angle=0), #legend elements

axis.text = element_text(size = rel(1.3),color = ’black’),

axis.title = element_text( size = 18),

title = element_text(size = 10),

panel.background = element_rect(fill = ’white’, colour = ’white’),

panel.border=element_rect(colour = "black", fill=NA, size=0.5),

#legend.title = element_blank(),

legend.text = element_text(size = 10),

legend.key.width = unit(2, ’cm’),

legend.position=c(.2,.88), #positioning the legend INSIDE the plot

legend.background = element_rect(color = "white",

fill = "white",

size = 1,

linetype = "solid"))+ #you can take linetype, size, and color to have no border

scale_color_manual(values=c(’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))+

labs(x="Age (years)",

y="Sawtimber potential")+

scale_fill_manual(values=c(’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))

#WITH TWO PREDICTION INTERVALS

AgeDAM6<-eci.f(obj=tl.glmm.6,newdata=newDat.f(AGE=seq(12,25),DAM6=c(0,3,5)))

AgeDAM6$‘Damage at year 6‘<-factor(ifelse(AgeDAM6$DAM6==0,’None’,ifelse(AgeDAM6$DAM6==3,’Tip dieback’,’Broken top’)),

levels=c(’None’,’Tip dieback’,’Broken top’))
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AgeDAM6$lb[AgeDAM6$‘Damage at year 6‘==’Broken top’]<-AgeDAM6$ub[AgeDAM6$‘Damage at year 6‘==’Broken top’]

<-AgeDAM6$fit[AgeDAM6$‘Damage at year 6‘==’Broken top’]

ggplot(AgeDAM6, aes(x=AGE)) +

geom_line(aes(y=fit, linetype=‘Damage at year 6‘, colour=‘Damage at year 6‘), size=1.1) +

geom_ribbon(show.legend=T,aes(ymin=lb, ymax=ub, fill=‘Damage at year 6‘), alpha=0.5)+

scale_y_continuous(limits=c(0,1))+

theme(axis.text.x = element_text(angle=0), #legend elements

axis.text = element_text(size = rel(1.3),color = ’black’),

axis.title = element_text( size = 18),

title = element_text(size = 10),

panel.background = element_rect(fill = ’white’, colour = ’white’),

panel.border=element_rect(colour = "black", fill=NA, size=0.5),

#legend.title = element_blank(),

legend.text = element_text(size = 10),

legend.key.width = unit(2, ’cm’),

legend.position=c(.2,.88), #positioning the legend INSIDE the plot

legend.background = element_rect(color = "white",

fill = "white",

size = 1,

linetype = "solid"))+ #you can take linetype, size, and color to have no border

scale_color_manual(values=c(’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))+

labs(x="Age (years)",

y="Sawtimber potential")+

scale_fill_manual(values=c(’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))

#WITH THREE PREDICTION INTERVALS

AgeDAM6<-ci.f(obj=tl.glmm.6,newdata=newDat.f(AGE=seq(12,25),DAM6=c(0,3,5)))

AgeDAM6$‘Damage at year 6‘<-factor(ifelse(AgeDAM6$DAM6==0,’None’,ifelse(AgeDAM6$DAM6==3,’Tip dieback’,’Broken top’)),

levels=c(’None’,’Tip dieback’,’Broken top’))

#png(filename = "DAM6threeCI.png",

# width = 480, height = 480, units = "px", pointsize = 12,

# bg = "white")

ggplot(AgeDAM6, aes(x=AGE)) +

geom_line(aes(y=fit, linetype=‘Damage at year 6‘, colour=‘Damage at year 6‘), size=1.1) +

geom_ribbon(show.legend=T,aes(ymin=lb, ymax=ub, fill=‘Damage at year 6‘), alpha=0.5)+

scale_y_continuous(limits=c(0,1))+

theme(axis.text.x = element_text(angle=0), #legend elements

axis.text = element_text(size = rel(1.3),color = ’black’),

axis.title = element_text( size = 18),

title = element_text(size = 12),

panel.background = element_rect(fill = ’white’, colour = ’white’),

panel.border=element_rect(colour = "black", fill=NA, size=0.5),

#legend.title = element_blank(),

legend.text = element_text(size = 10),

legend.key.width = unit(2, ’cm’),

legend.position=c(.2,.87), #positioning the legend INSIDE the plot

legend.background = element_rect(color = "white",

fill = "white",

size = 1,

linetype = "solid"))+ #you can take linetype, size, and color to have no border

scale_color_manual(values=c(’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))+

labs(x="Age (years)",

y="Sawtimber potential")+

scale_fill_manual(values=c(’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))

#dev.off()

#Other color combinations

#’chocolate4’,’chartreuse4’,’antiquewhite3’

#’forestgreen’,’darkolivegreen4’,’darkslategray4’

#Figure of AGE effect and percentile at age 6, three level factors

AgePER6<-ci.f(obj=tl.glmm.6,newdata=newDat.f(AGE=seq(12,25),PER6=c(0.1,0.5,0.9)))

AgePER6$‘DBH Percentile at year 6‘<-factor(AgePER6$PER6)

#png(filename = "PER6threeCI.png",

# width = 480, height = 480, units = "px", pointsize = 12,

# bg = "white")

ggplot(AgePER6, aes(x=AGE)) +

geom_line(aes(y=fit, linetype=‘DBH Percentile at year 6‘, colour=‘DBH Percentile at year 6‘), size=1.1) +

geom_ribbon(show.legend=T,aes(ymin=lb, ymax=ub, fill=‘DBH Percentile at year 6‘), alpha=0.5)+

scale_y_continuous(limits=c(0,1))+

theme(axis.text.x = element_text(angle=0), #legend elements

axis.text = element_text(size = rel(1.3),color = ’black’),

axis.title = element_text( size = 18),

title = element_text(size = 12),

panel.background = element_rect(fill = ’white’, colour = ’white’),

panel.border=element_rect(colour = "black", fill=NA, size=0.5),

#legend.title = element_blank(),

legend.text = element_text(size = 10),

legend.key.width = unit(2, ’cm’),

legend.position=c(.77,.15), #positioning the legend INSIDE the plot

legend.background = element_rect(color = "white",

fill = "white",

size = 1,
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linetype = "solid"))+ #you can take linetype, size, and color to have no border

scale_color_manual(values=c(’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))+

labs(x="Age (years)",

y="Sawtimber potential")+

scale_fill_manual(values=c(’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))

#dev.off()

#FIGURES OF SITE INDEX -------------------------------------

#Figure of SI and Management

SIMAN<-ci.f(obj=tl.glmm.6,newdata=newDat.f(SI=seq(60,100),MAN=c(’O’,’I’)))

SIMAN$Management<-factor(ifelse(SIMAN$MAN==’O’,’Operational’,’Intensive’),levels=c(’Operational’,’Intensive’))

ggplot(SIMAN, aes(x=SI)) +

geom_line(aes(y=fit, linetype=Management, colour=Management), size=1.1) +

geom_ribbon(show.legend=T,aes(ymin=lb, ymax=ub, fill=Management), alpha=0.5)+

scale_y_continuous(limits=c(0,1))+

theme(axis.text.x = element_text(angle=0), #legend elements

axis.text = element_text(size = rel(1.3),color = ’black’),

axis.title = element_text( size = 18),

title = element_text(size = 12),

panel.background = element_rect(fill = ’white’, colour = ’white’),

panel.border=element_rect(colour = "black", fill=NA, size=0.5),

#legend.title = element_blank(),

legend.text = element_text(size = 10),

legend.key.width = unit(2, ’cm’),

legend.position=c(0.25,0.25), #positioning the legend INSIDE the plot

legend.background = element_rect(color = "white",

fill = "white",

size = 1,

linetype = "solid"))+ #you can take linetype, size, and color to have no border

scale_color_manual(values=c(’darkgoldenrod4’,’aquamarine3’))+

labs(x="Site index (ft/25 years)",

y="Sawtimber potential")+

scale_fill_manual(values=c(’darkgoldenrod4’,’aquamarine3’))

#Figure of SI and PLTPA

SIPLTPA<-ci.f(obj=tl.glmm.6,newdata=newDat.f(SI=seq(60,100),PLTPA=c(600,1200,1800)))

SIPLTPA$‘Planting Density (TPA)‘<-factor(SIPLTPA$PLTPA)

ggplot(SIPLTPA, aes(x=SI)) +

geom_line(aes(y=fit, linetype=‘Planting Density (TPA)‘, colour=‘Planting Density (TPA)‘), size=1.1) +

geom_ribbon(show.legend=T,aes(ymin=lb, ymax=ub, fill=‘Planting Density (TPA)‘), alpha=0.5)+

scale_y_continuous(limits=c(0,1))+

theme(axis.text.x = element_text(angle=0), #legend elements

axis.text = element_text(size = rel(1.3),color = ’black’),

axis.title = element_text( size = 18),

title = element_text(size = 12),

panel.background = element_rect(fill = ’white’, colour = ’white’),

panel.border=element_rect(colour = "black", fill=NA, size=0.5),

#legend.title = element_blank(),

legend.text = element_text(size = 10),

legend.key.width = unit(2, ’cm’),

legend.position=c(0.25,0.25), #positioning the legend INSIDE the plot

legend.background = element_rect(color = "white",

fill = "white",

size = 1,

linetype = "solid"))+ #you can take linetype, size, and color to have no border

scale_color_manual(values=c( ’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))+

labs(x="Site index (ft/25 years)",

y="Sawtimber potential")+

scale_fill_manual(values=c(’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))

#Figure of SI effect and rust infection at age 6

SICR6<-ci.f(obj=tl.glmm.6,newdata=newDat.f(SI=seq(60,100),CR6=c(0,2,4)))

SICR6$‘Rust Infection at year 6‘<-ifelse(SICR6$CR6==0,0,ifelse(SICR6$CR6==2,’26-50%’,’76-100%’))

ggplot(SICR6, aes(x=SI)) +

geom_line(aes(y=fit, linetype=‘Rust Infection at year 6‘, colour=‘Rust Infection at year 6‘), size=1.1) +

geom_ribbon(show.legend=T,aes(ymin=lb, ymax=ub, fill=‘Rust Infection at year 6‘), alpha=0.5)+

scale_y_continuous(limits=c(0,1))+

theme(axis.text.x = element_text(angle=0), #legend elements

axis.text = element_text(size = rel(1.3),color = ’black’),

axis.title = element_text( size = 18),

title = element_text(size = 12),

panel.background = element_rect(fill = ’white’, colour = ’white’),

panel.border=element_rect(colour = "black", fill=NA, size=0.5),

#legend.title = element_blank(),

legend.text = element_text(size = 10),

legend.key.width = unit(2, ’cm’),

legend.position=c(0.25,0.15), #positioning the legend INSIDE the plot

legend.background = element_rect(color = "white",

fill = "white",

size = 1,

linetype = "solid"))+ #you can take linetype, size, and color to have no border

scale_color_manual(values=c( ’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))+
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labs(x="Site index (ft/25 years)",

y="Sawtimber potential")+

scale_fill_manual(values=c(’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))

#Figure of SI effect and damage at age 6, three level factors

SIDAM6<-ci.f(obj=tl.glmm.6,newdata=newDat.f(SI=seq(60,100),DAM6=c(0,3,5)))

SIDAM6$‘Damage at year 6‘<-factor(ifelse(SIDAM6$DAM6==0,’None’,ifelse(SIDAM6$DAM6==3,’Tip dieback’,’Broken top’)),

levels=c(’None’,’Tip dieback’,’Broken top’))

ggplot(SIDAM6, aes(x=SI)) +

geom_line(aes(y=fit, linetype=‘Damage at year 6‘, colour=‘Damage at year 6‘), size=1.1) +

geom_ribbon(show.legend=T,aes(ymin=lb, ymax=ub, fill=‘Damage at year 6‘), alpha=0.5)+

scale_y_continuous(limits=c(0,1))+

theme(axis.text.x = element_text(angle=0), #legend elements

axis.text = element_text(size = rel(1.3),color = ’black’),

axis.title = element_text( size = 18),

title = element_text(size = 12),

panel.background = element_rect(fill = ’white’, colour = ’white’),

panel.border=element_rect(colour = "black", fill=NA, size=0.5),

#legend.title = element_blank(),

legend.text = element_text(size = 10),

legend.key.width = unit(2, ’cm’),

legend.position=c(.25,.15), #positioning the legend INSIDE the plot

legend.background = element_rect(color = "white",

fill = "white",

size = 1,

linetype = "solid"))+ #you can take linetype, size, and color to have no border

scale_color_manual(values=c( ’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))+

labs(x="Site index (ft/25 years)",

y="Sawtimber potential")+

scale_fill_manual(values=c(’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))

#Figure of SI effect and percentile at age 6, three level factors

SIPER6<-ci.f(obj=tl.glmm.6,newdata=newDat.f(SI=seq(60,100),PER6=c(0.1,0.5,0.9)))

SIPER6$‘DBH Percentile at year 6‘<-factor(SIPER6$PER6)

ggplot(SIPER6, aes(x=SI)) +

geom_line(aes(y=fit, linetype=‘DBH Percentile at year 6‘, colour=‘DBH Percentile at year 6‘), size=1.1) +

geom_ribbon(show.legend=T,aes(ymin=lb, ymax=ub, fill=‘DBH Percentile at year 6‘), alpha=0.5)+

scale_y_continuous(limits=c(0,1))+

theme(axis.text.x = element_text(angle=0), #legend elements

axis.text = element_text(size = rel(1.3),color = ’black’),

axis.title = element_text( size = 18),

title = element_text(size = 12),

panel.background = element_rect(fill = ’white’, colour = ’white’),

panel.border=element_rect(colour = "black", fill=NA, size=0.5),

#legend.title = element_blank(),

legend.text = element_text(size = 10),

legend.key.width = unit(2, ’cm’),

legend.position=c(.25,.25), #positioning the legend INSIDE the plot

legend.background = element_rect(color = "white",

fill = "white",

size = 1,

linetype = "solid"))+ #you can take linetype, size, and color to have no border

scale_color_manual(values=c( ’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))+

labs(x="Site index (ft/25 years)",

y="Sawtimber potential")+

scale_fill_manual(values=c(’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))

#FIGURES OF PLANTING DENSITY --------------------------------------------------

PLTPAMAN<-eci.f(obj=tl.glmm.6,newdata=newDat.f(PLTPA=seq(300,1800,by=300),MAN=c(’O’,’I’)))

PLTPAMAN$Management<-factor(ifelse(PLTPAMAN$MAN==’O’,’Operational’,’Intensive’),levels=c(’Operational’,’Intensive’))

ggplot(PLTPAMAN, aes(x=PLTPA)) +

geom_line(aes(y=fit, linetype=Management, colour=Management), size=1.1) +

geom_ribbon(show.legend=T,aes(ymin=lb, ymax=ub, fill=Management), alpha=0.5)+

scale_y_continuous(limits=c(0,1))+

theme(axis.text.x = element_text(angle=0), #legend elements

axis.text = element_text(size = rel(1.3),color = ’black’),

axis.title = element_text( size = 18),

title = element_text(size = 12),

panel.background = element_rect(fill = ’white’, colour = ’white’),

panel.border=element_rect(colour = "black", fill=NA, size=0.5),

#legend.title = element_blank(),

legend.text = element_text(size = 10),

legend.key.width = unit(2, ’cm’),

legend.position=c(0.25,0.2), #positioning the legend INSIDE the plot

legend.background = element_rect(color = "white",

fill = "white",

size = 1,

linetype = "solid"))+ #you can take linetype, size, and color to have no border

scale_color_manual(values=c(’darkgoldenrod4’,’aquamarine3’))+ scale_color_manual(values=c(’black’,’grey40’))+

labs(x="Planting density (TPA)",

y="Sawtimber potential")+

scale_fill_manual(values=c(’darkgoldenrod4’,’aquamarine3’))

#Figure of PLTPA effect and SI
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PLTPASI<-ci.f(obj=tl.glmm.6,newdata=newDat.f(PLTPA=seq(300,1800,by=300),SI=c(60,80,100)))

PLTPASI$‘Site Index (ft/25 yr)‘<-factor(PLTPASI$SI)

ggplot(PLTPASI, aes(x=PLTPA)) +

geom_line(aes(y=fit, linetype=‘Site Index (ft/25 yr)‘, colour=‘Site Index (ft/25 yr)‘), size=1.1) +

geom_ribbon(show.legend=T,aes(ymin=lb, ymax=ub, fill=‘Site Index (ft/25 yr)‘), alpha=0.5)+

scale_y_continuous(limits=c(0,1))+

theme(axis.text.x = element_text(angle=0), #legend elements

axis.text = element_text(size = rel(1.3),color = ’black’),

axis.title = element_text( size = 18),

title = element_text(size = 12),

panel.background = element_rect(fill = ’white’, colour = ’white’),

panel.border=element_rect(colour = "black", fill=NA, size=0.5),

#legend.title = element_text(text=’Site Index’),

legend.text = element_text(size = 10),

legend.key.width = unit(2, ’cm’),

legend.position=c(.25,0.2), #positioning the legend INSIDE the plot

legend.background = element_rect(color = "white",

fill = "white",

size = 1,

linetype = "solid"))+ #you can take linetype, size, and color to have no border

scale_color_manual(values=c( ’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))+

labs(x="Planting density (TPA)",

y="Sawtimber potential")+

scale_fill_manual(values=c(’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))

#Figure of PLTPA effect and percentile at age 6, three level factors

PLTPAPER6<-ci.f(obj=tl.glmm.6,newdata=newDat.f(PLTPA=seq(300,1800,by=300),PER6=c(0.1,0.5,0.9)))

PLTPAPER6$‘DBH Percentile at year 6‘<-factor(PLTPAPER6$PER6)

ggplot(PLTPAPER6, aes(x=PLTPA)) +

geom_line(aes(y=fit, linetype=‘DBH Percentile at year 6‘, colour=‘DBH Percentile at year 6‘), size=1.1) +

geom_ribbon(show.legend=T,aes(ymin=lb, ymax=ub, fill=‘DBH Percentile at year 6‘), alpha=0.5)+

scale_y_continuous(limits=c(0,1))+

theme(axis.text.x = element_text(angle=0), #legend elements

axis.text = element_text(size = rel(1.3),color = ’black’),

axis.title = element_text( size = 18),

title = element_text(size = 12),

panel.background = element_rect(fill = ’white’, colour = ’white’),

panel.border=element_rect(colour = "black", fill=NA, size=0.5),

#legend.title = element_blank(),

legend.text = element_text(size = 10),

legend.key.width = unit(2, ’cm’),

legend.position=c(.25,.2), #positioning the legend INSIDE the plot

legend.background = element_rect(color = "white",

fill = "white",

size = 1,

linetype = "solid"))+ #you can take linetype, size, and color to have no border

scale_color_manual(values=c( ’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))+

labs(x="Planting density (TPA)",

y="Sawtimber potential")+

scale_fill_manual(values=c(’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))

#Figure of PLTPA effect and rust infection at age 6

PLTPACR6<-ci.f(obj=tl.glmm.6,newdata=newDat.f(PLTPA=seq(300,1800,by=300),CR6=c(0,2,4)))

PLTPACR6$‘Rust Infection at year 6‘<-ifelse(PLTPACR6$CR6==0,0,ifelse(PLTPACR6$CR6==2,’26-50%’,’76-100%’))

ggplot(PLTPACR6, aes(x=PLTPA)) +

geom_line(aes(y=fit, linetype=‘Rust Infection at year 6‘, colour=‘Rust Infection at year 6‘), size=1.1) +

geom_ribbon(show.legend=T,aes(ymin=lb, ymax=ub, fill=‘Rust Infection at year 6‘), alpha=0.5)+

scale_y_continuous(limits=c(0,1))+

theme(axis.text.x = element_text(angle=0), #legend elements

axis.text = element_text(size = rel(1.3),color = ’black’),

axis.title = element_text( size = 18),

title = element_text(size = 12),

panel.background = element_rect(fill = ’white’, colour = ’white’),

panel.border=element_rect(colour = "black", fill=NA, size=0.5),

#legend.title = element_blank(),

legend.text = element_text(size = 10),

legend.key.width = unit(2, ’cm’),

legend.position=c(0.25,0.15), #positioning the legend INSIDE the plot

legend.background = element_rect(color = "white",

fill = "white",

size = 1,

linetype = "solid"))+ #you can take linetype, size, and color to have no border

scale_color_manual(values=c( ’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))+

labs(x="Planting density (TPA)",

y="Sawtimber potential")+

scale_fill_manual(values=c(’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))

#Figure of PLTPA effect and damage at age 6, three level factors

PLTPADAM6<-ci.f(obj=tl.glmm.6,newdata=newDat.f(PLTPA=seq(300,1800,by=300),DAM6=c(0,3,5)))

PLTPADAM6$‘Damage at year 6‘<-factor(ifelse(PLTPADAM6$DAM6==0,’None’,ifelse(PLTPADAM6$DAM6==3,’Tip dieback’,’Broken top’)),

levels=c(’None’,’Tip dieback’,’Broken top’))

ggplot(PLTPADAM6, aes(x=PLTPA)) +

geom_line(aes(y=fit, linetype=‘Damage at year 6‘, colour=‘Damage at year 6‘), size=1.1) +

geom_ribbon(show.legend=T,aes(ymin=lb, ymax=ub, fill=‘Damage at year 6‘), alpha=0.5)+

scale_y_continuous(limits=c(0,1))+

theme(axis.text.x = element_text(angle=0), #legend elements
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axis.text = element_text(size = rel(1.3),color = ’black’),

axis.title = element_text( size = 18),

title = element_text(size = 12),

panel.background = element_rect(fill = ’white’, colour = ’white’),

panel.border=element_rect(colour = "black", fill=NA, size=0.5),

#legend.title = element_blank(),

legend.text = element_text(size = 10),

legend.key.width = unit(2, ’cm’),

legend.position=c(.25,.15), #positioning the legend INSIDE the plot

legend.background = element_rect(color = "white",

fill = "white",

size = 1,

linetype = "solid"))+ #you can take linetype, size, and color to have no border

scale_color_manual(values=c( ’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))+

labs(x="Planting density (TPA)",

y="Sawtimber potential")+

scale_fill_manual(values=c(’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))

#FIGURES OF RUST INFECTION -------------------------------------

CR6MAN<-ci.f(obj=tl.glmm.6,newdata=newDat.f(CR6=seq(0,4),MAN=c(’O’,’I’)))

CR6MAN$Management<-factor(ifelse(CR6MAN$MAN==’O’,’Operational’,’Intensive’),levels=c(’Operational’,’Intensive’))

CR6MAN$CR6p<-CR6MAN$CR6*25

ggplot(CR6MAN, aes(x=CR6p)) +

geom_line(aes(y=fit, linetype=Management, colour=Management), size=1.1) +

geom_ribbon(show.legend=T,aes(ymin=lb, ymax=ub, fill=Management), alpha=0.5)+

scale_y_continuous(limits=c(0,1))+

theme(axis.text.x = element_text(angle=0), #legend elements

axis.text = element_text(size = rel(1.3),color = ’black’),

axis.title = element_text( size = 18),

title = element_text(size = 12),

panel.background = element_rect(fill = ’white’, colour = ’white’),

panel.border=element_rect(colour = "black", fill=NA, size=0.5),

#legend.title = element_blank(),

legend.text = element_text(size = 10),

legend.key.width = unit(2, ’cm’),

legend.position=c(0.25,0.15), #positioning the legend INSIDE the plot

legend.background = element_rect(color = "white",

fill = "white",

size = 1,

linetype = "solid"))+ #you can take linetype, size, and color to have no border

scale_color_manual(values=c(’darkgoldenrod4’,’aquamarine3’))+

labs(x="Rust infection at year six (%)",

y="Sawtimber potential")+

scale_fill_manual(values=c(’darkgoldenrod4’,’aquamarine3’))

#Figure of CR6 effect and SI

CR6SI<-ci.f(obj=tl.glmm.6,newdata=newDat.f(CR6=seq(0,4),SI=c(60,80,100)))

CR6SI$‘Site Index (ft @ 25 yr)‘<-factor(CR6SI$SI)

CR6SI$CR6p<-CR6SI$CR6*25

ggplot(CR6SI, aes(x=CR6p)) +

geom_line(aes(y=fit, linetype=‘Site Index (ft @ 25 yr)‘, colour=‘Site Index (ft @ 25 yr)‘), size=1.1) +

geom_ribbon(show.legend=T,aes(ymin=lb, ymax=ub, fill=‘Site Index (ft @ 25 yr)‘), alpha=0.5)+

scale_y_continuous(limits=c(0,1))+

theme(axis.text.x = element_text(angle=0), #legend elements

axis.text = element_text(size = rel(1.3),color = ’black’),

axis.title = element_text( size = 18),

title = element_text(size = 12),

panel.background = element_rect(fill = ’white’, colour = ’white’),

panel.border=element_rect(colour = "black", fill=NA, size=0.5),

#legend.title = element_text(text=’Site Index’),

legend.text = element_text(size = 10),

legend.key.width = unit(2, ’cm’),

legend.position=c(.25,.15), #positioning the legend INSIDE the plot

legend.background = element_rect(color = "white",

fill = "white",

size = 1,

linetype = "solid"))+ #you can take linetype, size, and color to have no border

scale_color_manual(values=c( ’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))+

labs(x="Rust infection at year six (%)",

y="Sawtimber potential")+

scale_fill_manual(values=c(’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))

#Figure of CR6 effect and damage at age 6, three level factors

CR6DAM6<-ci.f(obj=tl.glmm.6,newdata=newDat.f(CR6=seq(0,4),DAM6=c(0,3,5)))

CR6DAM6$‘Damage at year 6‘<-factor(ifelse(CR6DAM6$DAM6==0,’None’,ifelse(CR6DAM6$DAM6==3,’Tip dieback’,’Broken top’)),

levels=c(’None’,’Tip dieback’,’Broken top’))

CR6DAM6$CR6p<-CR6DAM6$CR6*25

ggplot(CR6DAM6, aes(x=CR6p)) +

geom_line(aes(y=fit, linetype=‘Damage at year 6‘, colour=‘Damage at year 6‘), size=1.1) +

geom_ribbon(show.legend=T,aes(ymin=lb, ymax=ub, fill=‘Damage at year 6‘), alpha=0.5)+

scale_y_continuous(limits=c(0,1))+

theme(axis.text.x = element_text(angle=0), #legend elements

axis.text = element_text(size = rel(1.3),color = ’black’),

axis.title = element_text( size = 18),

title = element_text(size = 12),

panel.background = element_rect(fill = ’white’, colour = ’white’),

panel.border=element_rect(colour = "black", fill=NA, size=0.5),
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#legend.title = element_text(),

legend.text = element_text(size = 10),

legend.key.width = unit(2, ’cm’),

legend.position=c(.25,.15), #positioning the legend INSIDE the plot

legend.background = element_rect(color = "white",

fill = "white",

size = 1,

linetype = "solid"))+ #you can take linetype, size, and color to have no border

scale_color_manual(values=c( ’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))+

labs(x="Rust infection at year six (%)",

y="Sawtimber potential")+

scale_fill_manual(values=c(’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))

#Figure of cr6 effect and percentile at age 6, three level factors

CR6PER6<-ci.f(obj=tl.glmm.6,newdata=newDat.f(CR6=seq(0,4),PER6=c(0.1,0.5,0.9)))

CR6PER6$‘DBH Percentile at year 6‘<-factor(CR6PER6$PER6)

CR6PER6$CR6p<-CR6PER6$CR6*25

ggplot(CR6PER6, aes(x=CR6p)) +

geom_line(aes(y=fit, linetype=‘DBH Percentile at year 6‘, colour=‘DBH Percentile at year 6‘), size=1.1) +

geom_ribbon(show.legend=T,aes(ymin=lb, ymax=ub, fill=‘DBH Percentile at year 6‘), alpha=0.5)+

scale_y_continuous(limits=c(0,1))+

theme(axis.text.x = element_text(angle=0), #legend elements

axis.text = element_text(size = rel(1.3),color = ’black’),

axis.title = element_text( size = 18),

title = element_text(size = 12),

panel.background = element_rect(fill = ’white’, colour = ’white’),

panel.border=element_rect(colour = "black", fill=NA, size=0.5),

#legend.title = element_blank(),

legend.text = element_text(size = 10),

legend.key.width = unit(2, ’cm’),

legend.position=c(.25,.15), #positioning the legend INSIDE the plot

legend.background = element_rect(color = "white",

fill = "white",

size = 1,

linetype = "solid"))+ #you can take linetype, size, and color to have no border

scale_color_manual(values=c( ’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))+

labs(x="Rust infection at year six (%)",

y="Sawtimber potential")+

scale_fill_manual(values=c(’darkgoldenrod4’,’darkolivegreen4’,’aquamarine3’))


