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Chapter 1

Introduction

Understanding, developing, and debugging computer programs is a compien
activity. Software visualization (the visualization and animabbmlata structures, programs,
algorithms, and processes) has the potential to be useful fongnstpidents learn how programs
work, for assisting professional software engineers in debuggidgunderstanding their code,
and in providing researchers with insights to analyze and improveithiger These
visualizations fall into two categorieprogram visualizations and algorithm animations
Program visualizationsare representations of the actual program itself [Price@8gorithm
animationsdepict the higher-level concept of what the program is doingd®8j by using
movie-like animated graphics.

In the field of Computer Science, it was thought, algorithm visuaize could be used
as a pedagogical tool to help students understand algorithmse dlgesithms can be complex
and difficult to understand merely by looking at pseudocode and textsalipteons. Many
studies focusing on whether the additional use of algorithm animasidreneficial have yielded
mixed results [Lawrence94, Lawrence93, Hansen00]. Naturally, furdsearch has been
conducted to determine the causes for this [Naps03, Hundhausen02]. Howeviagtor that
has been overlooked in these studies and that needs examinatioefiedhef the design of the
animations themselves on the degree to which viewers benefit.

When creating visualizations, consideration should be given to the psectption, the
user’s learning style, and to graphic design standards. Fortamm&o be beneficial, these

factors need to be studied to determine how they interact sonih@dteon creators may better



design displays that take good advantage of the viewer’s percefteational, and cognitive
abilities.

To understand why certain attributes may be more effective tiansoin helping the
viewer to understand the animation and the underlying program or algorithnyst/éunm to the
study of cognitive psychology. Cognitive psychology studies howahpricesses are received
from the senses and then are “transformed, reduced, elaborated, semovered and used
[Neisser67].” From this and related fields, we can gain insigbthow dynamic images on a
screen are processed by a person viewing them.

As part of a larger ongoing research project funded by the Nh@ience Foundation
and entitledProgram Visualization: Using Perceptual and Cognitive Concepts to Quantify
Quality, Support Instruction and Improve Interactidrthjs thesis focuses on developing design
guidelines for program visualizations. In this work we exartieeeffects of various attributes
of visualizations. Through empirical studies we seek to detertmeeeffects of various
attributes on a viewer’'s comprehension of the visualization. A cotiopilaf these results may
then be used by educators, researchers and developers in areatingffective algorithm and
program visualizations.

To examine the effects of a particular attribute, we isdlaefeature in question in a
series of visualizations and evaluate the effects of thibatitrin an empirical study. Here we
look at a sorting algorithm (in which rectangular bars represdoes in an array) and examine

the effects of two particular attributes of many sugoadhm animations: the use of flashing to

! This material is based upon work supported by tatddal Science Foundation under Grant No. 0308368/
opinions, findings, and conclusions or recommeiaatiexpressed in this material are those of theoaaind do not
necessarily reflect the views of the National ScéeRoundation



cue a comparison of values and the use of two different animayies $ depict the exchange
of elements.

We label the first attribute as “cueing” and “no-cueing”. Theicg depiction flashes the
bars being compared three times when a comparison event occurs. Tiengoanimations
simply do not have any flashing for a comparison event.

The second attribute’s depictions are labeled as “grow” and “move”. Duringharege
of values, the grow animation shows the smaller element growirtiget height of the larger
element while the larger element shrinks simultaneously to igbthef the smaller element. In
the move depiction of an exchange of values, the two bars reprgséidata elements being
exchanged are seen to move in an arcing motion, each one moving to the location of the other.

Four animations were created: cueing with swap, cueing with, gro cueing with
swap, and no cueing with grow. Each of these animations arartiteeexcept for the attributes
we are investigating.

An interesting aspect of this study is that we seek to samebusly evaluate the
perceptual effects of these animation techniques, and the affdbis animation techniques on
comprehension of the algorithm depicted in the animation.

By perceptual effect we refer to the viewer's ability t® s:nd understand what is
animated (i.e., did users detect that two bars just flashed, do thenstandethat the flashing
means that the two bars are being compared to one another?, Rexceptual effects are
evaluated through responses to popup questions (questions that appear dyiack pdé the
animation, where the animation pauses its run until an answer is provided).

By effects on comprehension we refer to the ability of viewersunderstand an

algorithm, as measured by the number of correct answers to queshiamsproperties of the



algorithm. The users’ responses to “traditional” questions met#si®mprehension effects of
the algorithm animation.

Our goal in simultaneously collecting data about both perception and elo@mgion is to
help understand and explain the results of the comprehension studiesor ktygties we, and
other researchers, have often been left to wonder whether udensthgerceived the low-level
details of the algorithm or whether the low-level details had Ipeeceived but had failed to
translate into comprehension of the higher-level algorithm behamor properties. By
collecting such data we hope to be able to begin to answer this type of question.

A sorting algorithm was chosen not only for its historic value (ontefirst algorithm
animations is the vide&orting Out SortingBaecker98]), but also for its simplicity. The idea of
sorting is very elementary. However, quicksort uses recursiontdodivide-and-conquer
strategy, which is somewhat more complex than other sortingthlpst and thus may benefit
more from visualization. Further, this algorithm provides an appropriatedégbhllenge to the
students participating in our study.

In Chapter 2 we discuss related work in the study of how viewers taa@ralgorithm
animations. The experimental method and setup are discussed inrGhapteChapters 4 and

5, we present and analyze the results. A discussion and conclusion are presentedri® Chapte



Chapter 2

Background and Related Work

Here we examine the history of algorithm animations and teeareh around the
effectiveness of animations as pedagogical tools. We higlgigtelines presented on how to
conduct empirical studies in this area. Following this, we focuslated research that draws
out issues in our investigation. All areas of visualization, incluémgineering, medicine and
the sciences, draw from the fields of information graphics, comgughics, human-computer
interaction (HCI), and cognitive science. Here we addreseamds done on viewer
comprehension and how design of visualizations should consider viewer @o@mt attention.
Finally, some researchers in algorithm visualizations have take consideration these factors;

their work is discussed here.

2.1 A Brief History of Algorithm Animation

Consider a class of undergraduate computer science studentagtathorithms and
data structures in the early 1980s. The educational technologgtdwait the time consisted of
chalkboards and overhead projectors. On occasion, a video was empkayegikample in the
late 1970s, a landmark algorithm animation video on sorting algorit8orsing Out Sorting
was created [Baecker81]. Instructors would typically have taterstill pictures on overheads
or the chalkboard showing the step-by-step process of a partdgdaithm. For the most part,
these tools were not very conducive to allow an instructor to deratsngte dynamic workings

of the programs being discussed.



However, at about this time computer workstations became more dwaita
universities. So naturally, it seemed inevitable that the mediooid shift from low fidelity
static displays to the high fidelity dynamic displays of the mot@r. Initially videos were
created [Baecker81]. Then in the mid 1980s, an animation systled BALSA was created at
Brown University and integrated into the coursework [Brown98a]. BRLuBovided a
framework through which instructors could create animations. Adesits in a class or lab
section could then simultaneously view the animation of an algorithm.

In the late 1980s, systems like TANGO allowed students to diegiteown animations
[Stasko90]. In the following years, with each technological advancegraphics and
computational power, more could be expressed in the animations, adding toodm;
dimensional graphics, and audio [Price98]. Instructors in recens yebyr, in addition, on
PowerPoint slides, Java applets, Macromedia Flash movies, and webwtlyeyraphics as

pedagogical tools.

2.2 TheValue of Visualizations

A survey of instructors to determine the use of visualizationmedagogical tools found
they were not as widely used as expected [Naps03]. The questioartisenof how valuable
visualizations are as a learning aid. Napsal. [Naps03] point out that two main obstacles
prevent wide usage. First, it must be determined whether vidweefit educationally from
visualizations. Second, instructors must find it easy to incorporstlizations as a learning
tool.

Much research has focused on the viewer’s perspective, deterntirirdféctiveness of

visualizations. A good portion of this research compared the benefits of learninthalgavith



visualizations to learning algorithms without visualizations [I8i88, Hansen02, GrissomO03].
Fewer studies examined the quality of the attributes that mamethe visualizations
[Lawrence93, Bartram01]. As Khuri [KhuriO1l] notes, “a successfgbrahm visualization
design should consider effective representation and presentation ofatitorth He states that
designers should combine instructional knowledge with key aestliesitsvill grab viewer’s
attention. Accordingly, the designers should have a graphical vacglallowing viewers to
easily understand the information being conveyed.

Graphical vocabulary [Price98] typically refers to the repméstion of data structures.
Each graphic can have various properties associated with it, sdomessions, color, position,
texture, and shape, just to name a few. However, less mentioaggtaphical vocabulary for
important events in animations. Bartram agreed, indicating ttle & research on the
effectiveness of motion used as a visual coding of events [BartranBythe et al. [Byrne99]
call for systematic studies to find quality animations stating thag¢ @wer “no clear guidelines for
the construction of algorithm animations, not just from a psychollogerapective but from an
implementational one.”

Gurka and Citrin [Gurka96] present guidelines on how to perform sttelting the
effectiveness of algorithm animations. They list factors ¢bald lead to false negative results,
in hopes that future studies might avoid these problems so that itsagmifesults can be reliably
obtained and replicated.” Three issues that apply to experinmeniatgeneral are given. First,
gualitative and quantitative data must be collected. An exampjaaitative data gathered in
experiments are participant surveys. Tests administered tocsulje a form of quantitative
data. Second, independent variabkeg,(demographics) and dependent variabéeg, (style of

material) should be identified. Then the data should be analyzedesyhct to these variables,



being careful not to claim one factor produced the results. Gurk&iama state that while
some variables can be controlled, other factors cannot. This meaneguls need to be
combined with the qualitative data in order to get an overall undenstpd the algorithm
animation’s effectiveness. The last issue dealt with the cosgoari done between the
experimental group and control group, which often compared “something” tairigat That is,
many of the visualization studies compared participants viewimgadions to those who did not
[Lawrence94, Stasko93]. Gurka and Citrin point out that conclusions frese studies need to
consider the extra time and attention the visualization group hasmagared to the control
group.

Gurka and Citrin also detail seven design factors, most spegifanimations. The
factors are: usability, animation quality, systems trainiygiesn availability, animation type,
algorithm difficulty, and subjects’ individuality. One of theseinaation quality, they describe
as “probably the most difficult issue to tackle.” This is thedathat is of particular interest to
our research. They identify graphic design as a contributor to the quality Gtiemsn

It is believed that the features in a visualization desigm icapact the viewer's
comprehension of the underlying program. Jarc addressed this nded wdll for more
empirical studies comparing various forms of animating the sdgwithm [Jarc99]. This
would help identify the graphical representations, which Jarcsrébeas visual semantic cues,
that have an impact on viewer understanding. He indicates thaligesdean be formed for
high-level algorithm visualization design, as well as for low-leveblgical features.

In Jarc’s doctoral dissertation [Jarc99], an interactive ghgorvisualization system he
developed was used in two empirical studies. The studies examinedthieowevel of

interactivity of the viewers with the system related toirthgerformance on a posttest.



Surprisingly, the results showed marginally better performaocehe groups with the more
passive viewing and fewer interactions. Jarc claims thistresdlue to active learning-style
students who treated the interactive portion of the visualizatianvaeo game. He claims that
these students’ focus during the experience was on entertainntenbtaon learning, and that
they thus had to guess on the posttest. Given these results antheapléhe question of how

interactivity effects viewer comprehension remains open.

2.2.1 Empirical Studieswith Graphic Representation Consider ations

A number of studies have been conducted examining the effects of vaesign
considerations in graphical displays [Davison01, BartramO1, Lawrenc&®98]concentrate here
on a few studies to draw out some general issues related to our investigations.

Davison and Wickens [Davison01] studied graphical displays used ditg pihd tested
the effects of cueing. Though outside of the computer sciealkk fhe results are relevant in
studying the value of various characteristics in graphic display®y examined the effects of
two types of salient cues, flashing and intensifying brightnesa, helicopter flight simulator
that signaled a hazard. One measure of performance wakdrasige pilots’ subsequent flight
path, examining if the path would make contact with the hazard. pattewas within 50 feet
of the hazard, it was considered a hazard contact. The othernpamfe gauge was the
anticipation time for when the hazard was avoided. This measurddrihehe pilot began
maneuvers to avoid the hazard. They found marginally better anbaigahes for the group
with hazard cues than for the group with no hazard cues. Theraomdifference in hazard
contact performance when comparing these groups. Additionally, sotraheir hypothesis

that flashing is a more salient cue, they found a significagtbater performance for the



intensity cue. They explain that this may be because flashingoie distracting and thus
impedes performance.

Bartram [BartramOQ1] states that “motion and movement is considere of the most
powerful visual mechanisms for communicating information.” In aeseof experiments,
viewers were instructed to work on a main task that required tecsésus on a small area. To
one side of the display area were icons. When viewers saw geclmaane of these icons they
were to stop working on the main task. Various graphical chamgestested on groups using
either motion, color, or shape. The results showed the statisgo#lcance of simple motion
attracting a viewer’s attention as compared to color and stfepeges. Results were based on
detection times and error rates of the moving icons versus either icon shape ohanges.

Lawrence [Lawrence93] performed a number of experiments swdi effects of
various design elements in algorithm visualizations. In a surfestudent preferences, she
found the preferred representations of algorithm data and the pdefisage of labels with data.
Follow up experiments examining these preferences and datazeefosnd no significant
improvement in performance. An additional study found that labelatg elements had no
effects on viewer comprehension. Lawrence mentions that thouglntplteé data has no
significant results, there is no negative impact to their irmtus the visualization and was a
preference on the student survey. In another formal investigatianshfdent preference, the
labeling of algorithm steps, it was found that this labeling reduh a statistically significant

increase in post-test scores [Lawrence93].
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2.3 Effective Visualizations.: Viewer Comprehension

In a study dealing with animations, multimedia, and virtual rgaliie. “graphical
representations that were born from advances in technology”, $calf®ogers point out the
following: “Many of the presumed benefits of good-old fashioned graphepresentations (i.e.
static diagrams) were considered to be due to years of gractperceptual processing of visual
stimuli and the learning of graphical conventions. This may helmdsrstand why advanced
graphical technologies (e.g. animations and virtual realitye haot, as yet, been able to
demonstrate comparable performance or learning benefits” [Scaife96].

Algorithm visualizations are comprised of graphical representatof the input to the
algorithm, the events and procedures conducted by the algorithm, andndherefults.
Therefore an animation consists of a series of dynamic gramveats. Animations have also
been defined as “a series of rapidly changing static dispdayisg the illusion of temporal and
spatial movement” [Scaife96]. These graphical events include rAoéieed events such as
object flashing, object movement, and changing object dimensions. dkddly, attention
attracting events include highlighting, pop-ups, and the use of soundoddaris on the extent
to which these low-level graphical features help or hinder theevieww comprehending the
algorithm depicted. The viewer’s overall understanding of the ammmetiies on these features
since a viewer’'s attention can be focused using graphical evaditating that something
important is happening. A viewer can then shape and form a Inmeotke| through cognitive
processing.

To understand a presentation, a viewer “requires a series ofitigegprocesses
composed of visual and auditory attention, comprehension into a propositiomtegction

into a mental model.” [Faraday96] Here Faraday and Sutofifég to a proposition as a “unit
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of meaning,” which can be one of three types: object, action, orquae@ropositions. Object
propositions describe objects in the presentation. Action propositionsddsenibe object

changes of state, role or path. Finally, procedure propositions dkeénsause and effect of a
sequence of action propositions. They claim this is the basis upoh thecviewer forms a

mental model. The combination of many propositions in the finakeptagon represents the
meaning of information being presented.

Thus, perceptual, attentional and cognitive properties in the viatiahzimpact the
creation of mental models and call for designs that do not place bodden on the viewer’'s
cognitive load. Being aware of which attributes are less demgehen the viewer is learning
about an algorithm can contribute to the creation of displays frbiohvwthe viewer may more
easily learn. For example, when an adult learns a new language,thought often goes into
translation from his/her native language to the foreign langtage on the thought being
expressed. This is a form of cognitive load. Therefore, displaysdd be created to make use of
attributes that are more efficient for viewers to percaind process using the visual attention
system rather than using cognition. Additionally, we need to be sudimmate any visual
noise that can distract from either the visual attention system or eegmiticessing.

In order for us to create guidelines for graphical representati@sust determine the
effects of what is being viewed. Scaife and Rogers emphaésezeépaucity of work on
determining how graphical representations are themselves erfgédsand how this interacts
with the kinds of high-level cognitive processes” [Scaife96].mildrly, Faraday and Sutcliffe
define good design to be a transferring of knowledge intended hiedigner and understood by
the viewer [Faraday96]. They further point out there is a dang#gsigning without regard to

attention and comprehension.
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2.3.1 Cognition

Information in animations should be designed to be processed sequemtaalty distinct
state changes [Scaife96]. This notion is similar to Browni¢efesting events” [Brown84].
Though the latter uses the term to describe code annotationsrlags input to visualizations,
it can be seen that if this aspect of the algorithm’s behaviomertant enough for an algorithm
visualization designer to deem as an important event, then it too shougapkically
represented in accordance with guidelines presented in a cognitive procesdelg m

Researchers in cognitive science believe that the cognitilge vaf a graphical
representation is not well understood. Some argue that a moréoswigthtion to determine the
way people interact with graphical representations is needeldig®ija Scaife and Rogers point
out that research should account for the cognitive processing ofitbasetions, “that analyses
the role played by external representations in relation tenaitenental ones” [Scaife96]. They
mention previous work that deemed advanced technology-driven graplycsieial reality,
animations, and multimedia) as better by intuition without proof. Wittlostevidence there is
neither a way to make conclusions from the large number of stemhesicted nor determine the
value of these contemporary graphical representations.

Studies of this nature look to answer questions regarding how exteprakentations
and internal cognitive processing interact. Termed “externalitog’ by Scaife and Rogers,
they focused on the processing involved when interacting with grapbprasentations and the
cognitive benefits of the various graphics, including static diagramsnations and virtual
reality [Scaife96].

The external cognition analysis of how viewers process diffgmephics describe three

properties of forming a mental modebmputational offloading, re-representatiandgraphical

13



constraining. Computational offloadingfers to the differences external representations allow
in external cognition. A particular representation can redoeemount of cognitive effort in
understanding. The second facta;representationis the representing of the same abstract
concept in different external graphical ways. Some graphigaksentations lead to more
difficulty in problem-solving, while others make it easier, atill sthers can have equivalent
effects. The last factographical constrainingrefers to the ability of graphics to enforce by
restriction the type of interpretations that can be made. ¥am@e, charts and diagrams
created in solving logic problems aid in finding impossible dinat This aids viewers in
making inferences about the problem. These three factors, thoutgr siminding in definition,
complement one another.  Computational offloading refers to cognitive tsened-
representation refers to structural properties, and constrainiogsalfor computational
offloading by restriction.

Scaife and Rogers point out that research on the cognitive proce$stajic graphics
has been verified to apply to dynamic graphics to some degreéepP&ia When compared with
sentential representations, i.e. written explanations, they notegthphics allow for more
computational offloading and for information to be formulated legdiatty. Similar research
finds that graphics support the role as external memory, and ad enlianiting abstraction in
the wrong direction [Larkin87, Scaife96, Zhang94]. However, none of tlfferedit

representations can claim an advantage when it comes to making inferences.

2.3.2. Attention

Even if a graphical representation is chosen for its cognitiveepsoty advantages, a

designer must also consider the attentional properties of the graphere are two types of
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forces that can attract attention according to Pagtlal. [PashlerO1]. One force is bottom-up
influences, which refer to reacting to some stimulus reflexivelyor example, touching
something hot will cause a person to quickly move their hand awaytfrentem. Top-down
reactions occur due to some particular intentional stimelgs,a person when fearful may jump
at a small noise. Studies by Faraday and Sutcliffe provide eadbat varying techniques of
the design can have effects on the viewer’s fixation and atteffiaraday96]. Furthermore,
they propose guidelines regarding attention including how to integraition, transition
between events, pace the events, use and place labels, and incorporate audio.

In another study [Faraday98], Faraday and Sutcliffe creatieol &r novice presentation
designers that evaluated the presentation created by the desitpegrdiscuss the guidelines for
creating a presentation and processes of critiquing a presengtibodied by the tool created
for their research. The design issues mentioned include focusingiether's “thread of
attention”, timing effects to complement other features, and miagigffects to make important
information salient. The last item considers the various loetlevoperties of a graphical
representation.

Cueing a graphical object focuses the viewer's visual attentmnthé object.
Psychologists know and have shown that this can be done independent mbegments
[Sears00]. However, it is not so obvious what happens when multiple iteaysvie for
attention. Research has explored the capacity and limitatiomsual attention. Sears and
Pylyshyn discuss the notion of visual indexing, which refers to prayithnmeans of setting
attentional priorities when multiple stimuli compete for attamtias indexed objects can be
accessed and attended before other objects in a visual fielts(®¢. Visual indexing provides

a means of quickly accessing the objects indexed without additideatiabal scanning. In
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terms of cueing, this means an object cue will not cause unduéicedoading to follow the
object or otherwise reference it. Cueing can focus the attemtidhe objects and then follow
with other events that can be processed. As Sears and Pylysbgrs00] point out, “to
selectively attend to a non-indexed object, its position must festadcertained through
attentional scanning.” Thus, a visually indexed object can bedatleto more rapidly.
Additionally, visual indexes are not tied to a position in the visedd ©of view. Indexes are to
objects or features, not to locations, and objects are continualtgnmeésl even as they move. A
limitation to the visual index is its small capacity to hold entbran 4 to 5 objects. However, the
visual index can track each object independently and in parallel otlter indexed objects.
Finally, through experimentation, Sears and Pylyshyn found thattsltfet are indexed confer

a priority in attention and accessibility.

2.3.3 Empirical Studieswith Psychological Considerations

Some research studying the pedagogical value of visualizatrongled a thoughtfully
designed visualization, which gave consideration to the cognitiveatiadtional factors of
viewer comprehension [Holmquist0O, Narayanan02, Tudoreanu03, Tudoreanu02, Hansen02].

Holmquist and Narayanan [HolmquistOO] created tools to create izatiahs derived
from a theoretical cognitive process model. This model of comprehendiasad on stages that
build a mental model of the information being presented. This afféitéedesign of the system
more than the design of the visualizations presented. The authoringlypermedia Authoring
Support System (HASS), creates Hypermedia Education ManugM)(Misualizations. While
the HEMs are viewed by users, their interactions are recorliecevaluation tool, Hypermedia

Evaluation System (HES), then can be used to analyze the dataggedts visualization design
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improvements. Empirical evidence confirmed that students usingstenswith the improved
design significantly outperformed those with a system withoukebeatformation flow and
navigational design.

Later, Narayanan and Hegarty [Narayanan02] conducted a fewiragpé&s to test the
use of algorithm animations using a cognitive process model-basedation versus a
“conventional” animation. Their cognitively designed animations iditfdrom the conventional
animation by having several levels of presentations allowing for &rmepsion to occur in
stages. Results from the studies indicated that students wittogindively designed material
significantly outperformed students with traditional algorithm material.

Tudoreanu [Tudoreanu03] found that visualizations that employed factdrsasuthe
presence of legends and navigation buttons that reduced cognitivievedfer more effective
than visualizations that lacked such devices. In a comparison of pedenbetween two
different visualizations of the same algorithm, two graphicalesstations of a parent-child
relationship were employed in the studies. One used arrows while the other usedtdiffatial
placement in a 3-dimensional view to represent the relationship.viJimization with arrows
had a significantly higher performance rate. However, this meaghe primary focus of the
experiment and it was not the only difference between the two animations. Jteealusions
would have to be substantiated with further studies.

Hanseret al. [Hansen02] created a system, HalVis, that supports animatiorecthaitin
stages allowing for the viewer to progressively learn about the underlgogtiaim. It also used
“probes and questions that stimulate thinking” while the animationrumsing. One of the

experiments involved comparing performance using the HalVismysggesus viewing another
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visualization system. Overall, the results showed the students using the égjaerisualization
outperformed students using other teaching methods.

Experiments conducted by Tudoreagtual. [Tudoreanu02] used a testing environment
and visualizations designed to reduce the cognitive load. The testiirgnment was designed
to aid viewers by adding interactive print statements and aut@ityatpositioning and sizing
windows on the monitor. The visualization design contained legends. chmejuded that
viewers of these visualizations performed significantly bektan the participants who did not

view a visualization.

2.4 Summary

From these areas of research, we begin to understand the imbadewer
comprehension has on good animation design. We seek to investigathénalesign of
visualizations can be enhanced, beginning with empirical studiesitieed by Gurka and
Citrin. In the past, findings across studies were inconsistentiagidds were not duplicated
since the parameters of the studies varied widely. The S$&ans, described in Chapter 3,
will allow our studies, examining the effects of attributes lgpathm animations on viewer
comprehension, to remain consistent. This is done by providing a ungiovimonment and

having participants perform the same task across these studies.
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Chapter 3

SSEA System Description

The System to Study Effectiveness of Animations (SSEA) agdpic allows researchers
to investigate various characteristics of algorithm visudina in a single environment. The
system allows subjects to view one of a variety of animationgevamswering questions to
determine their understanding of the underlying algorithm. Thenhi@e main users of SSEA:
the viewer, the animator, and the experiment designer (referred tihhe experimenter or
researcher). The animator creates the algorithm visualizat be viewed based on the
researchers’ design and goals. The animator and researcher may Ipeetivedsadual or, at the

least, will be working closely together.

3.1 System Design Considerations

Many factors contributed to SSEA’s design, some based on our prevaokigmd others
determined by our future needs. First to be considered wasstaization component itself,
and determining whether one of many existing algorithm visuglizalystems could be used for
our studies. In our related research we are running ongoing reepési using the VizEval suite
[Rhodes04, Ross04]. Similar to SSEA, VizEval is a framework dedidgor researchers to
design, create, deploy, and organize resulting data for experigesiggied to study cognitive,
perceptual and attentional features of visualization. The animatolule used in the VizEval
suite is called the Support Kit for Animation (SKA) [HTaylorO2However, VizEval evaluates
the effects of features in a short animation that is not baseoh amderlying algorithm. The

features we have tested in the VizEval experiments includedhdeteg the effects of cueing on
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a viewer’s ability to detect property changes of objects andheheiewers could correctly
identify multiple object changes. This required all subjectsieéav a very short animation,
lasting less than one second, followed by a set of questions. Subpet required to watch a
series of these animations and questions during a single sitting.

The SSEA studies differ from these in that they focus on compiieheoisa visualized
algorithm rather than perception of individual elements of a viataliz User interactions
along the lines of traditional algorithm visualization systemsewbus required for SSEA.
Therefore a new environment was created using the same amnmmaddule, SKA, which
provided the graphics and animation support. The SSEA environment providasililyeto
easily create graphical representations of the specific featuressived to investigate.

Another design consideration for SSEA was the intended deployment aaget t
operating systems. Our studies would be conducted locally on stuatetiits University of
Georgia campus. Therefore, a stand-alone system was feasilble installed in campus
computer labs. For the sake of portability for future tests, ysterm was implemented in
platform-independent Java. A final factor was that the taskeaftiog new visualizations for

further studies should require only minimal effort from researchers.

3.2 Implementation

SSEA integrates a visualization interface with a question ppaptup questions and a
monitor. The monitor automates data collection of user interactions and eventschiteetare
for SSEA follows the Model-View-Controller design pattern, sepagadata from views of the
data. Here data consists of project and animation informatiorureFgy1 depicts the overall

architecture of SSEA with the various components. Two main moduaesol SSEA, a
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controller and SKA. The controller manages the allocation of dat,ptping of user

interactions to appropriate components, and the message passingnbatwg®nents.

manages the display of the animation and adjusts the visualization to any uaetiansr

SKA

Project
Files

=

|_

\ Project

Diata

/

SSEA Controller
I I I | I
| 1 1 I 1
Animation | [ Animation [ | Animation | | Popup .
Canvas Code Controls Nl

. . Ul
| |

Skadlgorithm Skafnimataor

SkA,

SEEA

Session
Lag Files

B

Figure 3.1. SSEA architecture.

3.2.1 User Interface

Separate user interface modules exist for each displayre&2EHA. These areas, seen in

Figure 3.2, include an animation area (A), a pseudocode displagr(i@)ation controls (C), and

a question area (D). The animation area and code area disptagphéal representation of the

underlying algorithm, and are synchronized by SKA. A high reswiutonitor is required to

view the multiple areas of SSEA in their entirety. Below digcuss details of the interface;

many of these features are listed in a report by Netpal. [Naps03] as good design items for

visualization systems.
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public class Quicksorti){

public static woid main()
{

int[] arr:

quicksortiarr, 0, arr.length - 1);
¥

private woid quicksort(int[] array, int begin, int end)
{
if {end * begin)
¢
/4 partition the subarray
int pivotIndex = partition(array, begin, end);

// mow sort the lower partition
quicksort(array, begin, pivotIndex - 1];

4/ now sort the higher partition
quicksort(array, pivotIndex + 1, end):
i
}

(B)

private int parcition{int[] array, int begin, int end)
{

int firstHigh = begin;

int pivot = array[end]: // set pivet

for (int findLow = begin: findLow < end:
i
if (array[findLow] <= piwet)// compare
{
swap(array, firstHigh, findLow); // swap
firstHight+:
}
}
zwap (array, firatHigh, piwvot);://swap piwvor
return firstHigh;

¥

++findLow)

private woid swap(int[] array, int i, int J)
{

int tmp = array[i]:

array[i] = array[j];

array[3] = tup;
¥

Figure 3.2. SSEA screen shot. (A) Animation area where visualization of underlying algorithm
is displayed. (B) Pseudo code display: highlights code being executed by underlyiortaig
which is synchronized with animation arg&) Animation controls: viewer controls playback of
algorithm animation. (D) Question listing: viewer responds to questions designed by the

researchers to evaluate the viewer’s comprehension of the algorithm.

area (Figure 3.2C). One feature allows the user to setwut dr collection of data sets as the
input for the algorithm. Another control sets the speed of the anmaiihe animation can be
paused, ended, and then begun again from the start. Stepping through themnivhath can

only occur if the animation is paused, causes the next step of thatimm to execute and then
the animation is paused again.

slider to the left will allow users to select a point atahhio restart the animation. The state of

The playback of animations can be controlled by the viewer viartimaton control
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the animation is tracked by the controller. Figure 3.3 is t@ sliagram of the control of the

animation playback.

[Animation
completes] [Animation
OR [End] completes]
QR [End]
— [Beqgin]
[Animation
completes]
OR [End]
Playing Stepping
T [T
. y] ) N
BE: N (E) ] ool
P: N (PU}
Sy [Step]
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[Play]
[ Pausing LEGEND: Controls
L [Pause] BE: Begin(B)} End {E}Animation
BE: N (E} PP: Pause (PUW Play (PL}
PP: N (PL} 30 Step
SN G: Go to history
G N
M — Enabiled
[Go to] X - Dizabled

Figure 3.3. Animation state diagram. Based on user interactions with the animation
controls, various states of animation will be entered. The sithtgsmation are starting,
playing, stepping, and pausing. Possible interactions include begindoanimation,
pause or play animation, step animation, or go to a previous step Imstbey of the
animation.

While watching the animation, the viewer may see a question pop he.adimation

pauses its run until an answer is provided. These “popup” questiors @esign feature

available to the experimenter and implemented by the animaldrese questions can be
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associated with the animation of the algorithm on a particularsgdta The popup can appear
only during the initial run of the animation of the algorithm with #ssociated data set. To
prevent users from using the code to supply the correct answergophp questions, the popup
window is positioned over the pseudo code area and is not movable. Ofatitmalresearcher
to display after the user submits an answer to the question is the correct answer

Below the animation area are the questions designed by thectessaio evaluate the
viewers’ comprehension of the algorithm. These “traditional” dqoest are displayed
individually, with a listing of all questions off to the left sidé&n asterisk next to a question
number in the list indicates that the question is still unanswedsdrs may return to a question
and change their response. When all questions are answered, at™dulon becomes
enabled. When the user clicks the submit button the session terminates.

Optional to the researcher is a questionnaire that can beyagplatially, requiring
viewers to answer all questions before proceeding. Figure 3.4slamample questionnaire; all

responses are recorded in the session log file.

4 S5FA Questionnaire

SSEA Experiment Questionnaire

1) lam: ) Male ) Female
2} This semester | am a:  Freshman ) Senior

 Sophomore ) Super Senior (4+ years)

2 Junior
3) Course Histony: Previously Currenthy HNever

Taken Enrolled Taken
CSCI1100  Intro to Personal Computing  past ) now ) never
CSCI1210  Intro to Computational Science  past ) now ) never
CSCI1301  Intro to Computing & Programming  past ) now ) never
CSCI1302  Software Development ) past ) now ) never
CSCI1730  Systems Programming  past ) now ) never
CSCI2610 Discrete Math for Comp. Science  past ) now ) never
CSCI2670  Theory of Computing  past ) now ) never
CSCI2720 Data Structures ) past ) now ) never
CSCl4000+  Any courses in the 4000 level *  past ) now ) never
*{Pick latest time enrolled in a 4000-level course)

Figure 3.4. SSEA screen shot of questionnaire.
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3.2.2 Visualization Module

The graphical visualization generated by the SKA module resalts én algorithm and
an animator working somewhat independently. A threaded architecttlvea Wuffer is used,
following the Producer-Consumer design pattern. An algorithm threadn&ance of the
SkaAlgorithm class) is the producer of shared data, while the toritheead (an instance of the
SkaAnimator class) consumes the data. The shared buffeng@amae of the ActionBuffer
class) contains the information needed to produce the algorithnmlizagios. The algorithm
thread is created when a new input set is selected. A nematamithread is created for each
new run of the visualization.

The graphical representations consist of graphical objects antsaci one or more of
these objects. Graphical objects consist of lines, rectangislabels, circles and composite
graphics. Each object has numerous properties that can include fihlersibility, font,
position, and labels. The canvas references a list of graph&grafahics are updated by the
animator module, the canvas repaints the graphics causing an aniniRei@n.to Figure 3.5 for
an overview of the animation engine architecture.

The visualization programmer creates a visualization by defiaingubclass of the
algorithm SKA class, SkaAlgorithm, which will run the underlymlgorithm being visualized.
The code is annotated with additional calls that form the animatdmen the algorithm thread
runs, it produces a list of AnimObjects, animation objects, thahased with the animation
module. There are two types of animation objects, as depictetyuneF3.6B, actions and
markers.

AnimActions represents actions on graphics, which include but are maedi to:

moving an object, changing an object’s property, hiding or showing an ohjdathanging the
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object’s textual label. Specialized actions are availabledtb reew graphics not previously
present on the display. Actions can also be combined into a “bigggoha For example, a
series of actions that hide, show, and then hide an object will cetiéshing effect. The

execution of an action constitutes a step in the running animation.

Graprb|rpl.tFi|955""
P ciaGraphicsHelped
Animator
¥ Animaton
[amnnamnnnmans] Canvas
Arrzyof ad
SkaCraphics
ActionBufier
SksAnmator
Skaflgorihm . array of army of
-, " AnmACtons
= N HHo
Legend ! H
—p Inpus/ Outputs array of T
. | AnimObjack >
— Interact : N
niersctions SkaSyniC hedoer
A3 B Aupdates B
A — A refers B i
B references SHA |

Figure 3.5. Architecture of SKA module. The architecture follows a Producer-
Consumer design. An instance of the SkaAlgorithm class is tliiger of a sequential
list of AnimObjects that is stored in the buffer, ActionBuffdérhe list is created by the
programmer’s subclass implementation of SkaAlgorithm. The consameénstance of
SkaAnimator, waits for the buffer to be sufficiently full of dagfore it transforms the
sequential list into a list of lists, a two-dimensional arrdytwo-dimensional array is
created since each step of the animation may require moreotigamction to occur
simultaneously. In other words, an array of steps is createcwheh step may consist
of an array of actions. The conversion of the one-dimensional artaya two-
dimensional one occurs via a special helper class, SkaSyntax€Chiédkere are any
errors in conversion, the helper class will flag an error tgpthbgrammer in the design
mode of SSEA.

AnimMarkers indicate how the actions are to occur relative taaanther. For example,

actions can be run in parallel, or they can be grouped so thatxhstee of the animation will
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occur only after all the actions in the group are complete. Additypmaarkers indicate to the
controller which component should being updated with a new action. Speuiatrs cause a
popup question to appear during the animations or highlight a line in ¢uelqede display.
The programmer can use the markers to ensure that the r@lasi®n of the actions will not
compromise the intended visualization.

The animator module, SkaAnimator, the consumer, waits for the bafter sufficiently
full of data before beginning to produce the animation. SkaAnimatbrepiay all the actions
step by step during a call to go back to a previous step. To adsbrtips, each graphic has a
history of all its properties (see Figure 3.6C). Thus tla@lgcs can be redrawn as they were at
the previous step and the actions will act on them as they had origheal playback. This
supports the ability of future versions of SSEA to permit user drivsnmalizations, where
interactions are specified by the animator. For example, so@ahzation could prompt the user
to select an object as the next step in the algorithm. Based on the usereésploase prompts,

the resulting new visualization would be shown.
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Figure 3.6 Animation Engine Details. (A) Possible subclasses of SkaAlgorithm that a
programmer can create. MyAlgorithml is an example of a twaygreate varied
animations for the same underlying algorithi(B) Architecture of creating animation
using actions and markers. Markers assist the SkaSyntaxCheadkeate the 2D array
of actions. Actions change graphics, creating a new scene in thmat@m. (C)
Temporal properties in all graphic objects allow for going backistory. A history is
kept for each property of a graphic. Hererepresents the step where new valuye, v
,became effective.
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Finally, the list of animation objects described above is se@lenthis is done for the
programmer’s sake, enabling changes and debugging to be done wiierelate. The
programmer can run SSEA in a design mode that allows him to cheakyf@roblems with the
visualization. Determining where errors are located would be plegmand difficult task if it
were the programmer’s responsibility to create a two-dimensemal of animation objects.
Instead, SkaAnimator uses a special helper class, SkaSyntaxChexkaccomplish the
transformation and error checking. A two-dimensional arraydated since each step of the
animation may require more than one action to occur simultaneously. In other woadsyaof

steps is created where each step may consist of an array of actions.

3.3 Specifying an Empirical Study

In the process of specifying an empirical study, the rebeafirst designs an experiment
with some aspect of algorithm animation in mind. The reseacotbates a specification for the
visualization that includes the graphics of the visualization, theedesput sets, and the
algorithm(s). The researcher should also determine the substapoetekt questions, popup
guestions and traditional questions. At the conclusion of running alfieyqrdgs, the researcher
will be able to examine the log files for each session conducted.

Log files contain all viewer interactions with SSEA. Forlesession, the log records the
timings and type of user interactions to control the animation, respaosjuestions including
any selections made that differ from the final choice, andealponses to popup and regular
questions. For an example of a hypothetical log file, see Appendix B.

Once the above requirements have been determined, the programmerkésehéa

specifications from the researcher and creates the correspopdijert files to run the
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experiment. These include the list of questions, the list of popupiansdiles to be used as
the input data sets (called graphic files), annotated pseudocode teplayeti and highlighted

during the animation, and a path for storing each session’s log $itanmple entries for the

project file, the project question file, the project popup questiondid the input sets can be
found in Appendix A. We can see how these project files fit into tkeathSSEA architecture

in Figure 3.1.

The programmer will specify graphic files and create algorifiuinclasses to form the
visualizations in SSEA. The graphic files form the differaput sets available to the viewers.
Graphic files are text files with each line represenéingraphic object that will be displayed on
the canvas at the start of the animation. Figure A.5 in Appendlistsithe tags needed to create
these objects.

The programmer can create a single algorithm by subcofpskan algorithm module,
SkaAlgorithm to create a class which we will call MyAlgbm. MyAlgorithm will contain the
underlying code of the algorithm to be animated, with important eealliag predefined or
customized animation methods. The programmer then can createrslditgorithms by either
subclassing SkaAlgorithm again or by subclassing his own Myalgn (see Figure 3.6A). The
latter case is beneficial when the underlying algorithm iss#imee, but the researcher wishes to
change the animations. This facilitates creating varied gr@ptepresentations for the same

event in an algorithm, by overriding a customized animation method in MyAlgorithm.
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Chapter 4

Experiment Materialsand Methods

In this chapter, we describe an empirical study that evaltatesisualization design
attributes. This is the first in a series of studies to be coeduexamining the effects of
attributes in the comprehension of program visualizations. By condustnpirical studies we
can determine which attributes are more effective in commumgcanformation about a
program. The experiment tests how cueing of comparisons and techfoquisstrating the
exchange of objects affect the viewer’'s comprehension of the underlymglaig

The empirical study we conducted used an algorithm animation frarkealled SSEA,
a System to Study Effectiveness of Animations. Our participaai®e undergraduates in
computer science classes, mostly computer science majorsicipRats viewed one of four
animations of the quicksort algorithm in SSEA, and answered questionstiadalgorithm. The
four animations differed only in the graphical representations otdhgarison events and of

the swapping of two values.

4.1 Experiment Description

The hypotheses being tested are:

1. The performance rate, based on the number of correct answerggifoen set of
questions, is significantly higher for participants viewing alpon animations that use flashing
as a means to cue a comparison event than for participants viewmnations in which bars are

compared without such cueing.
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2. The performance rate, based on the number of correct answexggifeen set of
guestions, is significantly higher for participants viewing visasions of sorting algorithms in
which objects are seen to move to their new locations when swdppaedfor participants
viewing visualizations of sorting algorithms in which the heightshef objects being swapped
grow or shrink in place.

We are examining these hypotheses on a fixed set of conditions.datheset size is
small, and a single view of the animation and pseudocode is presented to viewers.

The experiment was conducted on a voluntary group of undergraduate cosgenee
students, registered at the University of Georgia in thedallester of 2005 and spring semester
2006. Students were recruited from various computer science cthgsag these semesters.
Participants received a monetary payment of five-dollars in return forpdueicipation.

The participants were randomly assigned to a group corresponding\terghen of the
algorithm animation they would view. Figure 4.1 depicts the four posgiblgps. A total of 59
students participated. Each participant was allowed as muclasithey needed to complete the
study at their own pace, but most finished in about an hour. Stueies cenducted on Dell

Dimension desktop computers with high-resolution 17-inch LCD flat-panel color monitors

Exchange

Technique
Move Grow
Cue Yes MC GC
Presence | No MX GX

Figure4.1. 2x2 Factorial Design for Experiment. Letters indicate the algorithm
animation code: (M) refers to an exchange technique where bars move to new Ip¢ajions
refers to an exchange technique where simultaneously bars grow and shrinkinghegresy
(C) represents comparison events that are cued; (X) refers to when no cueindooccurs
comparison events.
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An instruction sheet led each participant step-by-step throughuitiye sSEach participant
initially used the SSEA system to view a simple algorithat finds the maximum value of a
data set. This allowed them to learn how to interact with the adiuns using SSEA. The
maximum value animations, which included two data input sets, weresaime for all
participants. Additionally, one popup question occurred in the animation in trgeepare
students for these kinds of questions in the quicksort animation. Thacti@sis led each
participant to use each one of the animation controls. The instrs@iso asked participants to
answer and submit the set of four traditional questions. In additisheet explaining the
animation controls of SSEA was attached. Participants werered to complete these steps
before continuing on to the main section of the experiment.

Once the training portion of the experiment was completed, thieipart was instructed
to start the quicksort SSEA program. Participants were unaiwateothers were viewing
different animations. The first step in the quicksort portion redupaticipants to complete a
guestionnaire form about their gender, year in college, and the conspidace courses they
had completed or were currently taking. See Appendix E fortingli®f questions posed to
participants in the questionnaire.

Participants then viewed the quicksort animation for the grouphtohmthey had been
randomly assigned and answered questions. The questions (listependix C) were the same
for all groups and were either multiple choice or true-false. imsteuctions for the quicksort
visualizations directed students to view all of the ‘LargeRandapuitiset. This ensured that
participants would be asked all eight popup questions. A list of theppquestions can be

found in Appendix D.
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When participants completed the quicksort visualization questions, theygnen the
opportunity to comment on the animations they viewed, the SSEA systegive any general
feedback through a paper survey form. After feedback forms wHested, students received

payment for their participation.

4.2 Quicksort Visualization

The quicksort algorithm implemented selected the right most valiie active partition
as the pivot, and did not include any performance improvements thatbeawn seen in other
versions of the algorithm.

A screenshot of the beginning of the quicksort visualization can barséegure 4.2. In
the animation, the input data is represented as filled rectarfargreach bar being an element
of an array. The value of the element is indicated by botieittht and a label appearing below
the bar. Labeled arrows are used to symbolize the four imdeables of the array in the
algorithm, pointing to the respective bar in the array.

The quicksort algorithm is recursive and involves dividing and sub-dividing the array into
partitions. An outlining rectangle indicates the current partitiortlosmg the bars in the
partition. In addition, labeled arrows marked “begin” and “end” a@iche boundaries of the
current partition. Two additional labeled arrows marked “firstHighd “findLow” represent
the variables that move within the current partition looking for \sathat are higher or lower
than the pivot.

Bars are colored to indicate the state of the algorithm. énkggs provided in the upper
right-hand corner. The current pivot is colored green. Inactivdipas are colored gray. The

active partition is initially colored red. As the algorithm proceeds tredra sorted into a lower
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partition (values less than or equal to the pivot) which is coloratbige, and a higher partition
(values greater than the pivot) which is colored purple. The pivoevalthen swapped with
the rightmost value in the lower partition, which is its final tmra It is then colored black to
indicate that is in its sorted position.

Two lines of text below the array serve as captions, providingaiggon of the current
step being performed. Lines in the pseudocode display are highlightélie animation is
executing the corresponding event.

Animations of two events are varied in the four cases that wetalging, a comparison
event and an exchange event. In two of the cases (MC and GC) l|&betdg”, the
comparison of the element at the “findLow” arrow with the pivetent is cued. That is, the
compared bars flash three times when the elements are camparthe other two cases (MX
and CX) labeled “no-cueing”, the bars are not flashed. In twbeofdur cases (GC and GX)
labeled “grow”, we study the exchange of values that is depietedgh in-place changes of bar
heights; one bar appears to become taller while the other lihe iaxchange simultaneously
becomes smaller. In the other two cases (MC and MX) ldibeleve”, the exchanged bars are
seen moving in an arcing fashion from their original positions to their new positions.

There were four predefined input data sets students could chooskefauicksort
algorithm to animate. The default was a set of 8 randomly entdealues. Additionally, a
smaller set of random values, having a size of 5, was availdhieally, eight ascending or

descending values were also offered for participants to view.
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Figure4.2. Screenshot of quicksort visualization.

Many low-level features of the animations are based on stddi®s in a collaborative
effort between the Davis group at Georgia Tech and the Kraemgy gt University of Georgia
[HFES]. In a pilot study the Davis group determined that a heiggmige of 22 pixels was the
“just noticeable difference” for bars. Therefore, the displaighteof each bar was made
proportional to its value by a factor of 22. Additionally, the nundfeglements in the input

arrays, either 5 or 8, is within the capacity limits of short-term memory) (&rling86].

4.3 Questions

The participants’ responses to the “traditional” questions medseirecomprehension of
the underlying algorithm. The problems presented to each student weréetlassi level from
Bloom’s taxonomy [Bloom56], reflecting a range of concepts. The ignssare classified as

knowledge, comprehension, application or analysis level. These four éeedise lower levels
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of a six-level classification. Knowledge level demonstrates dh#ity to recall facts,
terminology, or other previously learned information. Comprehension temonstrates an
understanding of main ideas. Application level demonstrates they dbikolve new problems
from previously acquired knowledge. Analysis level demonstratesbdity to break down
knowledge to make generalizations and inferences. By classifii@gquiestions in this
taxonomy, we can examine the results with regard to differentslexfe expertise of the
participants.

Each question was designed to have only one answer, using multiple-chtige-false
formats. The majority of questions, sixteen, were presented tonstusie they could answer
them with the use of the visualization. Three of theses questionbecalassified at the
application level, requiring students to use the information theygastéd and apply it to make
calculations on a different data set. Four questions at the knowledglecan be easily
answered from the pseudocode. Six comprehension level questions ieednderstanding
of how the algorithm works. Two questions require “the abilitgreeak a complex problem into
parts” [Howard96] of the analysis level. Finally, the first questsimply asked for prior
knowledge of quicksort. A list of the questions can be found in Appendix CseThesstions
could be answered in any order and at any time during the eyggrinot simply as a post-test.
The visualizations were available for students to use as ametewhile answering these sixteen
traditional questions. Both the intermediate choices and final emasior all questions are
recorded in the log.

There were eight popup questions the students could answer. At acspesiit during
the animation, a question regarding that particular event would pop up. Questions vexamla

a modal window, requiring a response before the student could proceed.a Question was
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answered it would not appear again if the viewer would replay theaioimfor the same input
set.

In contrast to the traditional questions, the responses to the popup qudstiessahe
participants’ perception of the animation. These questions are uselitibanswers about what
the user just saw, categorized as either cueing-speantudh two bars were just compared?”)
or exchange-specific (“which two bars just exchanged values?”).re8fionses to the popup

guestions are recorded in the session log.

37



Chapter 5

Experiment Results and Discussion

During the fall semester 2005 and spring semester 2006 at the ligie¢iGeorgia, 59
computer science undergraduate students participated in our studydoiraelection of one of
four quicksort visualizations, where objects either were: moved whswag occurred and
comparisons cued (MC), moved for a swap and comparisons were not cX¢d aldjects
changed heights growing and shrinking to their new values whenap sacurred while
comparisons were cued (GC), or objects changed height without compausoh€GX). There
were 14 students in the MC group, 12 students in the MX group, 16 in theoBg; gnd 17 in
the GX group. A summary of results can be found in Appendix F.

Most of the participants were male, with only 8 females ppgiolg. The majority of
students were juniors (42%), followed by seniors (28%), sophomores (28&)3% were
freshman. The quicksort algorithm is formally taught in the C&Q0 Data Structures. None
of the participants had completed the course prior to taking part isttldg. For students
currently enrolled in the class, the instructor for the Fall 2005seoagreed to hold off the
quicksort lecture until after the experiments were concluded. @si@arolled in the Spring
2006 Data Structures course partook in the experiment on theiddysdf class, thus ensuring
no formal lecture. Despite these careful measures, a sngon®jority of students claimed to
be familiar with the algorithm with 40 of the 59 participant respogdyes’ to question 1. A
listing of the questions can be found in Appendix C.

Feedback from participants can be summarized as two generatkeemFirst, many

commented that the overall experience of using the visualizatisnpasitive, describing the
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study as enjoyable. The second common remark indicated thatofmareintroduction to the

algorithm be given.

5.1 Traditional Questions

Participants overall performed reasonably well on the traditigonaktions, some of
which required detailed knowledge of the procedure or time complaxigysis, with an
average score of 60.74%. Average time to complete the studg2yvsninutes. Table 5.1

shows the per-animation-group averages for score and time.

Group Average | Average Time
Score (%) (minutes)
MC 61.57 26.00
GX 60.41 21.24
MX 59.08 25.25
GC 61.63 20.25

Table5.1 Average Timeand Score per Group, Traditional Questions

An ANOVA (Analysis of Variance) analysis was performado statistically significant
effects were found for performance on overall traditional questiorsufing, exchange type, or
interaction effects.

The traditional questions were further sub-divided into groups based owypineoit
knowledge the question tested: Knowledge, Comprehension, and Applicatiome th&
classification labels on the question listing in Appendix A. ANOaffalyses were performed

on these subsets. Again, no significant difference was found among the fourangnatps.
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5.2 Popup Questions
Overall performance on the popup questions was 66.22%. Table 5.2 shows-the per

animation group scores for the popup questions. Times are as repdhedraditional question

section.
Group Average
Score (%)
MC 72.86
GX 58.41
MX 62.33
GC 71.63

Table5.2. Average scores per group on popup questions.

An ANOVA analysis was performed. Cueing was found to have a statigsaogdiificant
effect F(1,57) = 4.44, p < 0.04 on participant performance on popup questiortser,Feueing
was also found to have a statistically significant in a subsiteopopup questions classified as
cueing-specific (questions 1, 2, 3, and 8), F(1,57) = 10.39, p<0.002.

Exchange type was not found to have a statistically signifeff@tt on performance on the
overall set of popup questions. However, in a subset of questionsiethasiexchange-specific
(questions 4-7), a statistically significant benefit to “move” ovgrow” was found,

F(1,57)=5.74, p< 0.02.

5.3 Correlations between Popup and Traditional Questions

The correlation co-efficient between performance on popup questionsalgatated for
the overall group (0.466). Figure 5.3 plots both individual popup scores agaidisional
scores (diamonds) and popup score against mean traditional score for thoset wipupascore

value (squares).
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Figure5.3 Correlation between Popup and Traditional Scores

5.4 Discussion

The lack of a significant effect on viewer comprehension fortype of flash cueing
evaluated in this study may, at first, seem a surprising resdtbwever, a viewing of the
animation (or a review of the animation description in Chapter 4jalgwhat the animation
employs several types of cueing to indicate that two bardeaing compared. In particular,
color, labeled arrows, and location within the current partitioalsdl cue the identity of the bars
to be compared. Thus, we do not conclude that such flash cueing is ntesaupromoting
comprehension of animations. Rather, we conclude only that the usasbfdlieing as a

redundant cue in this animation did not significantly benefit comprehension.
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It is interesting to note that flash cueing was found to havetstistly significant
benefit both in overall performance on the popup questions and especiallfampace on the
cueing-specific subset of the questions. The popup questions focusedeaptiparand recall of
animation events that had just occurred. The cueing-specifstiop® took the form of “Which
two bars were just compared?”. Thus, we can conclude that flash cuesngetioéhe viewer to
better note the low-level behavior of the animation. Whether thiddweal benefit carries over
to the higher-level comprehension of the depicted algorithm appedepend on the presence
of other, redundant cues. In the presence of multiple other cuaspasstudy, the flash cueing
was not shown to be of significant benefit to comprehension oflgoeitam. In the case that
flash cueing were thenly cue that the values of two bars are about to be exchanged, we
speculate that such cueing would quite likely have a much greater impact.

Again in a similar fashion to cueing, the type of animation used pictden exchange
was not found to have an effect on performance on the traditional questtmmdack of a
significant effect of exchange type on viewer comprehension of thietee algorithm, while
less surprising, may have a similar explanation to that ahguéhe exchange of bars is cued
redundantly. Color, labeled arrows, and position within the current paréti serve to indicate
the identity of the bars that have been exchanged.

Exchange type did not have a significant effect on overall perfoenancthe popup
guestions. However, on the exchange-specific subset of the popup questgmBaant benefit
was found for the “move” animation versus the “grow” animation. Tlyesstions took the
form “Which two bars were just exchanged?”. We controlled the &ispect of this portion of
the animation to ensure that the “grow” and “move” animations redjsite same amount of

time, and can thus eliminate differences in time-on-screen @sssble explanation for this
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effect. Perhaps a more likely explanation is that whilebtms remain in place in the “grow”
animation, they move across the screen in the “move” animatiohe liger's gaze has fixated
on a portion of the display that does not contain the bars that arengkahaalues, then the
“‘move” animation has the potential to move the bars across thes wgerent area of focus,
while the “grow” motion does not. Further, the greater overall matgsociated with “move”
animation has the ability to attract the user’s attention, evémeiperiphery of the user’s view
[BartramO1]. Further studies in which the distance from the user’s ctooeistand between the
exchanged bars is varied could be performed to help sort out the components of this effect.
The moderate strength of the correlation between performanteeqgmopup questions
and performance on the traditional questions suggests that the pretsuck popup questions
may help to focus the user’s attention on the details of the &gorand help the user to form a
better understanding of the depicted algorithm. Another possiplaration for the correlation
is that test subjects who perform well on one type of questiorgaoal“students” who are likely
to perform well on other types of questions. We are investig#tisgquestion in a between-
subjects study, in which we compare groups who are presented with pommiipregi@gainst
those who do not see popup questions. In addition, we study the effdatspoésence/absence
of feedback (providing the correct answer to the popup after thdhaseubmitted their answer)
and the effect of “predictive” questions (What is about to happem8)ivéreactive” questions
(What just happened?). In this work we must also consider the pagshmli over-attention to
low-level detail may prevent the user from “stepping back” tm gahigher-level, conceptual

view of the algorithm’s behavior.
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Chapter 6

Conclusion

We have focused on creating a framework for examining the eféatarious attributes
that can be incorporated into visualizations. The SSEA systafnlezl us to begin empirical
studies on various graphical representations of algorithm events: experiments tested
performance on cueing and using different methods for exchangimgt®bp a quicksort
animation.

In the context of low-level, perceptual considerations, flashing iffactive technique
for cueing the comparison of values in algorithm animations of {he $yudied in this thesis.
Similarly, in the context of low-level, perceptual consideratitims,arcing “move” depiction of
an exchange is superior to the “grow” depiction of the same event.

Whether the perceptual benefits carry over to comprehension dépieted algorithm is
not clearly shown. In practice, the degree to which such perceptuallydigrtetthniques aid in
comprehension may rely on the extent to which the cued behaviorsdaredantly encoded in
the depicted algorithm.

The use of popup questions that ask the user to answer questions abaineweave
just seen may encourage users to pay closer attention to aatianinand to thus develop a
better understanding of the depicted algorithm. A danger existsybgwieat over-attention to
detail may prevent the user from “stepping back” and forming &ehilgvel view and
understanding of the depicted algorithm. We seek to investigateubgion in a follow-up

study.
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Future empirical studies will focus on other design featuresguofrithm visualizations
including the effect of labeling, the effect of incorporating audies¢ effective use of popup
guestions, and pacing.

The latter item presents a number of possibilities for creafiiegtive visualizations. As
Faraday and Sutcliffe point out, timing of salient effectskae to a good thread of attention
[Faraday98]. For example, they note that labels must be given 200ms foamsgheSimilarly
the guidelines they presented require minimum viewing times.

It is hoped that our research will help contribute to the desigredégogical tools by
promoting understanding of which graphical representations have an iomppetformance. As
is true for traditional pedagogical tools and graphical reprasens, a person needs to learn
how to “read” charts or diagrams and understand the information pessgnted in relation to
their current knowledge of the subject. If animations become a coraubrthen the graphical
representations will become a graphical vocabulary.

The framework, SSEA, has successfully been used in two empstiedies to date,
including the one described in this thesis. It is also being ugdbtebVizEval group at the
University of Georgia for additional new studies, which follownirthe findings of the initial
studies. All finding and results achieve the goal of providinglibilgy to the conclusions
drawn due to having a uniform environment and having participants petfi@mame tasks

throughout the studies.
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Appendix A

Sample Project Files

<SSEA>

<Vi zl nput >
<pat h>Vi zIl nput s. xm </ pat h>
</ Vi z| nput >

<Questions>
<pat h>Questi ons. xnl </ pat h>
</ Questi ons>

<Quest i onPopups>
<pat h>Quest i onPopups. xm </ pat h>
</ Quest i onPopups>

<Code>
<pat h>code. j ava</ pat h>
</ Code>

<LogFi | esPat h>
<pat h>c: \ experi nment\ | ogfil es\ </ pat h>
</ LogFi | esPat h>

</ SSEA>
Fig. A.1. A Sample SSEA.xml file. This file is needed to start A3Hd specifies

where to find input files, questions, popup questions, the pseudocode, and wheles |éay f

sessions are to be saved.

<question type="TF"'>
<text>This text would be a for a true or fal se answer.</text>
<answer >a</ answer >

</ questi on>

<question type="M">
<text >What text would be a question?</text>
<choi ces>
<li>text for choice a</li
<li>text for choice b</Ii
<li>text for choice c</li
<li>text for choice d</Ii
<l i >none of the above</Ii
</ choi ces>
<answer >d</ answer >
</ questi on>

Fig. A.2. Sample xml entries for questions. The ‘type’ attribute cae Ad&y YN, M4,

V VVVYV

or M5 values to specify True/False, Yes/No, multiple choice withalces, and multiple choice

with 5 choices, respectively.
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<question type="M4" name="qNanme" input="all">
<t ext >\What question shoul d popup?</text>
<choi ces>
<li>the answer</li>
<l i >anot her possi ble answer</li>
<l i >anot her option</Ili>
<l i>yet another answer</I|i>
</ choi ces>
<answer >a</ answer >
</ questi on>

Fig. A.3. Sample xml entry for a popup question. The attribute ‘name’ spedifie

string used to create the question action in the algorithm. The ‘isfounty can be ‘all’ to popup
this question for all input data sets, or it can have the namspacaic input data set. The latter

will cause the question to appear only if that input set is being animated.

<Vi zl nput >
<di spl ay>l nput A</ di spl ay>
<file>Input A GaphicFile.txt</file>
</ Vi zI nput >

Fig. A.4. Sample visualization input xml entry. This specifies a graple@tailable to

the user as input data set ‘InputA’.
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Appendix B

Sample Session Log File

<?xm version="1.0" encodi ng="UTF-8"?>

<SSEA Sessi on>
<event tine="1126987856588" acti on="start SSEA">
<descri pti on>Conput er | D</ descri pti on>
<descri pti on>Al gorithm D</ descri pti on>
</ event >

<event tinme="1126987856618" acti on="Ani mation">
<descri pti on>St at eChange</ descri pti on>
<opti onal Val ue>To Begi n</ opti onal Val ue>
<st ep>0</ st ep>

</ event >

<event tine="1126987860694" acti on="Ani mation">
<descri pti on>Change | nput </ descri pti on>
<opti onal Val ue>From I nput A to | nput B</ opti onal Val ue>
<st ep>0</ st ep>

</ event >

<event tine="1126987861956" acti on="Ani mation">
<descri pti on>St at eChange</ descri pti on>
<opti onal Val ue>Pl ayi ng</ opti onal Val ue>
<st ep>0</ st ep>

</ event >

<event tine="1126987881804" acti on="Ani mation">
<descri pti on>Speed</ descri pti on>
<opti onal Val ue>164</ opti onal Val ue>
<step>18</step>

</ event >

Fig. B.1. Sample session log file.

Initial session startup information and animation

interactions. This example shows the viewer changing the input set from hapaputB, press

play and then adjusting the speed.
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<event tine="1126987896736" acti on="Questi onPopup">
<descri pti on>Sel ecti on</descri pti on>
<opti onal Val ue>c</ opti onal Val ue>
<Name> exAl | | nput s</ Name>
<I nput >I nput C</ | nput >
</ event >

<event tinme="1127087407353" action="Questions">
<descri pti on>Change Question</description>
<Nunber >2</ Nunber >
</ event >
<event tine="1127087413261" action="Questions">
<descri pti on>Sel ecti on</descripti on>
<opti onal Val ue>b</ opti onal Val ue>
<Nunber >2</ Nunber >
</ event >
<event tinme="1127087413261" acti on="Questions">
<descri pti on>Sel ecti on</descri pti on>
<opti onal Val ue>a</ opti onal Val ue>
<Nunber >2</ Nunber >
</ event >

<event tinme="1127087427912" acti on="endSSEA" />
<answer sSel ect ed>
<Ql>b</ Q1>
<@>b</ @>
<@B>a</ B>
</ answer sSel ect ed>
<correct Answer s>
<Ql>b</ Q1>
<@>c</ @>
<@B>a</ B>
</ correct Answer s>
<Cor r ect Per cent age>67</ Cor r ect Per cent age>

<PopupAnswer sSel ect ed>
<Question QP_NAME="exAl | I nputs" | nput="1InputA">
unanswer ed </ Question>
<Question QP_NAME="exAl | I nputs" | nput="1InputB">
unanswer ed</ Questi on>
<Question QP_NAME="exAl | I nputs" | nput="1nput C'>c</ Question>
<Question QP_NAME="exOnel nput" | nput="1nput A" >d</ Questi on>
</ PopupAnswer sSel ect ed>
<PopupCor r ect Answer s>
<Question QP_NAME="exAl |l I nputs" |nput="1nput A">a</ Questi on>
<Question QP_NAME="exAl | I nputs" | nput="1nputB">a</ Question>
<Question QP_NAME="exAl | I nputs" | nput="1nput C'>a</ Question>
<Question QP_NAME="exOnel nput" | nput="1nput A" >d</ Questi on>
</ PopupCor r ect Answer s>
<Cor r ect Per cent age>50</ Cor r ect Per cent age>

Fig. B.2. Sample sesion log file. Displayed are entries recording a user answering a
popup question, answering question number 2 and then changing number 2’'s aRgwaeér.
tallies for both sets of questions are summarized at the end of the log file.
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Appendix C
Questionsfor Experiment
1. Were you familiar with the quicksort algorithm before this session?

a. Yes
b. No

Answer: na
Classification: None

2. Which best describes how quicksort works?

a. By partitioning the array into two subarrays, using the medlaa of the array as the
separator.

b. For each element in the array, X, move x to the index eghal toinber of elements
that are less than x.

c. By partitioning the array into two subarrays, and then sotheg subarrays
independently.

d. By swapping adjacent items that are out of order.

Answer: c
Classification: Comprehension

3. Which best describes the correct order of events in Quicksort.
I. Call quicksort on the higher partition.
[I. Compare elements to the pivot, if less than or equal in valae glement into the
lower section of the partition.
[ll. Select a pivot.
IV. Call quicksort on the lower partition.
V. Swap the pivot into the position between the lower and higher partitions.

a. l, I, 1, v, v
b. 1, I, V, IV, |
c. iy 1, 1,1V, vV

d. none of the above

Answer: b
Classification: Comprehension
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4. In this version of quicksort, which element is chosen as the pivot in the active partition?

a. The leftmost element
b. A Random element

c. The middle element

d. The rightmost element

Answer: d
Classification: Comprehension
5. When is the pivot swapped?
a. When a value less than or equal to the pivot value is found.
b. When a value greater than the pivot value is found.
c. At the end of partitioning a subset of the array.
d. none of the above
Answer: c
Classification: Comprehension
6. Which element is pivot swapped with?
a. an element that is less than or equal to the pivot value.
b. the last element in the lower partition.
c. the element at firstHigh
d. the element at end
Answer: c
Classification: Knowledge
7. For the input set 'SmallRandom’, the number of calls to quicksort() is .
a.z2
b. 3
C.5
d.7
e. it cannot be determined

Answer: d
Classification: Comprehension
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8. In quicksort, the comparison of an element with the pivot is done in which method(s)?

a. quicksort()
b. partition()
c. swap()
d.aandb
e.aandc

Answer: b
Classification: Knowledge
9. What two objects are being compared in the partitioning step?

a. the element at firstHigh and the element at pivot
b. the element at begin and the element at pivot
c. the element at firstHigh and the element at findLow
d. the element at findLow and the element at pivot

Answer: d

Classification: Knowledge

10. Swaps can occur between

a. the element at begin+1 and the element at firstHigh
b. the element at firstHigh+1 and the element at pivot
c. the element at firstHigh and the element at findLow
d. the element at findLow and the element at firstHigh+1

Answer: c
Classification: Knowledge

11. Sort the following array using one iteration of quicksort. What tmesigher partition
look like? 578296

a.798
b.987
c.789
d.6798
e. 9876

Answer: a
Classification: Application
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12. Using the same array, what will the array be after the firsogadirtition()? 578296

a.256789
b.526789
c.526798
d. none of the above

Answer: c
Classification: Application

13. What will the pivot value be at the start of the second call to quicksort()? 578296

apop
~NOoO o N

Answer: a
Classification: Application

14. If this algorithm takes x seconds to run on an array of n etejrebout how long would
you expect it to take to run on an array of 8n elements? (Assume values are in randpm orde

a. 8x
b. 24x
C. 64x
d. 64n
e. xXn

Answer: b
Classification: Analysis
15. This algorithm uses recursion. (Definition of recursion: to dividgra@lem into

subproblems of the same type).

a. True
b. False

Answer: a
Classification: Comprehension
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16. When does the worst-case time for quicksort occur for an array of n elements?

a. When the pivot is always the largest or smallest element in the activenpartit
b. When the input size is a power of b.

c. When the partition splits the array into 2 subarrays of equal lengths.

d. There is no predictor for worst-case time.

Answer: a
Classification: Analysis
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Appendix D
Popup Questionsfor Experiment
1. What elements were just compared?

a. 60 and 70
b. 60 and 40
c. 70 and 40
d. 70 and 80
e. 80 and 40

Answer: ¢

2. What elements were just compared?

a. 10 and 20
b. 20 and 30
c. 10 and 30
d. none of the above

Answer: b

3. What was the last comparison?

a. Is 20 less than or equal to 70?
b. Is 70 less than or equal to 20?
c. Is 40 less than or equal to 70?
d. Is 40 less than or equal to 20?
e. Is 20 less than or equal to 407

Answer: e

4. What elements were just swapped?
a. 20 and 10
b. 70 and 40
c.20and 70
d. 10 and 40

Answer: c
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5. What elements were just swapped?

a. 50 and 70
b. 60 and 70
c. 60 and 80
d. 70 and 80

Answer: c

6. What element did 70 swap with?

a. 60
b. 70
c. 80
d. it did not swap

Answer: b

7. What variables were swapped?

a. firstHigh and findLow
b. end and firstHigh

c. begin and findLow

d. findLow and end

Answer: b

8. What variables were compared?

a. firstHigh and findLow
b. end and firstHigh

c. begin and findLow

d. findLow and end

Answer: d
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Appendix E

Questionsin Questionnaire

All questions were presented in a single screen with resp@sseadio buttons. A
screenshot of the questionnaire can be seen in Figure 3.4.

1. am:

a) Male
b) Female

2. This semester | am a :

a) Freshman

b) Sophomore

¢) Junior

d) Senior

e) Super Senior (4+ years)

Course history section:
3a. CSCI 1100 Intro to Personal Computing

a) Previously Taken
b) Currently Enrolled
c) Never Taken

3b. CSCI 1210 Intro to Computational Science
a) Previously Taken
b) Currently Enrolled
c) Never Taken
3c. CSCI 1301 Intro to Computing & Programming
a) Previously Taken
b) Currently Enrolled
c) Never Taken
3d. CSCI 1302 Software Development
a) Previously Taken

b) Currently Enrolled
c) Never Taken
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3e. CSCI 1730 Systems Programming

a) Previously Taken
b) Currently Enrolled
c) Never Taken

3f. CSCI 2610 Discrete Math for Comp. Science

a) Previously Taken
b) Currently Enrolled
c) Never Taken

3g. CSCI 2670 Theory of Computing
a) Previously Taken
b) Currently Enrolled
c) Never Taken

3h. CSCI 2720 Data Structures

a) Previously Taken
b) Currently Enrolled
c) Never Taken

3i. CSCI 4000+ Any courses in the 4000 level (Pick the latest &nrolled in a 4000-level
course)
a) Previously Taken

b) Currently Enrolled
c) Never Taken
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Appendix F

Experiment Results

Tradional | Popup | Total
Results | Results | time
AlgolD (%) (%) (min.) Year M/F
MC 93 100 39 Freshman M
MC 80 75 44 Freshman M
MC 73 37 28 Freshman M
MC 66 50 20 Sophomore M
MC 33 62 16 Sophomore M
MC 53 87 31 Junior M
MC 53 87 27 Junior M
MC 53 87 16 Junior M
MC 66 87 30 Junior M
MC 60 62 14 Junior M
MC 40 50 18 Junior M
MC 66 87 13 Senior F
MC 66 62 44 Senior M
MC 60 87 24 Super Senior M
MX 66 75 40 Freshman F
MX 66 50 25 Sophomore M
MX 20 25 14 Sophomore M
MX 93 87 22 Junior M
MX 86 87 41 Junior M
MX 53 87 22 Junior M
MX 33 62 15 Junior M
MX 86 100 21 Senior M
MX 46 50 28 Senior F
MX 60 25 29 Super Senior M
MX 80 75 27 Super Senior M
MX 20 25 19 Super Senior M

TableF.1 Result Summary for groups MC and MX.
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Tradional | Popup | Total
Results | Results | time
AlgolD (%) (%) (min.) Year M/F
GC 93 62 22 Freshman M
GC 86 62 21 Sophomore F
GC 73 75 26 Sophomore M
GC 66 50 23 Sophomore M
GC 80 87 17 Sophomore F
GC 46 50 20 Sophomore M
GC 46 62 14 Sophomore M
GC 60 87 20 Junior M
GC 46 87 15 Junior M
GC 73 75 22 Junior M
GC 53 50 26 Junior M
GC 40 62 12 Junior M
GC 46 100 17 Junior M
GC 66 75 21 Senior M
GC 86 75 33 Super Senior F
GC 26 87 15 Super Senior M
GX 46 37 11 Sophomore M
GX 40 25 13 Sophomore M
GX 73 62 14 Sophomore M
GX 53 87 24 Junior M
GX 73 37 28 Junior M
GX 86 87 25 Junior M
GX 86 87 14 Junior M
GX 80 87 14 Junior M
GX 73 62 23 Junior M
GX 13 37 11 Junior M
GX 66 37 14 Junior M
GX 40 50 26 Junior M
GX 40 0 19 Senior M
GX 46 62 26 Senior M
GX 53 62 19 Senior F
GX 86 87 21 Super Senior M
GX 73 87 59 Super Senior F

Table F.2 Result Summary for groups GC and GX.
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