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ABSTRACT 

We describe SSEA, a System for Studying the Effectiveness of Animations, and an empirical 
study that evaluates two visualization design attributes.  SSEA was created as a testing 
environment for studying the effects of various attributes in visualization design on viewer 
comprehension. Researchers create a series of animations in SSEA with a design characteristic in 
mind. SSEA allows these animations to be viewed while recording the viewer’s interactions and 
responses to questions about the underlying algorithm. At the conclusion of running all 
experiments, the researchers can examine the log files generated, and perform analysis of the 
responses and timings with respect to the attribute being examined.  The first in a series of 
studies to be conducted examined the attributes: comparison cueing and exchange techniques 
using traditional and popup questions, measuring comprehension and perception, respectively.  
No significant effects were observed in comprehension questions. Significant effects were found 
in the perceptual questions.  
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Chapter 1 

Introduction 

 

Understanding, developing, and debugging computer programs is a complex human 

activity.  Software visualization (the visualization and animation of data structures, programs, 

algorithms, and processes) has the potential to be useful for helping students learn how programs 

work, for assisting professional software engineers in debugging and understanding their code, 

and in providing researchers with insights to analyze and improve algorithms.  These 

visualizations fall into two categories: program visualizations and algorithm animations.  

Program visualizations are representations of the actual program itself [Price98].  Algorithm 

animations depict the higher-level concept of what the program is doing [Price98] by using 

movie-like animated graphics.  

In the field of Computer Science, it was thought, algorithm visualizations could be used 

as a pedagogical tool to help students understand algorithms.  These algorithms can be complex 

and difficult to understand merely by looking at pseudocode and textual descriptions.  Many 

studies focusing on whether the additional use of algorithm animations is beneficial have yielded 

mixed results [Lawrence94, Lawrence93, Hansen00].  Naturally, further research has been 

conducted to determine the causes for this [Naps03, Hundhausen02].  However, one factor that 

has been overlooked in these studies and that needs examination is the effect of the design of the 

animations themselves on the degree to which viewers benefit.   

When creating visualizations, consideration should be given to the user’s perception, the 

user’s learning style, and to graphic design standards.  For animations to be beneficial, these 

factors need to be studied to determine how they interact so that animation creators may better 



 2 

design displays that take good advantage of the viewer’s perceptual, attentional, and cognitive 

abilities.   

To understand why certain attributes may be more effective than others in helping the 

viewer to understand the animation and the underlying program or algorithm, we must turn to the 

study of cognitive psychology.  Cognitive psychology studies how mental processes are received 

from the senses and then are “transformed, reduced, elaborated, stored, recovered and used 

[Neisser67].”  From this and related fields, we can gain insight into how dynamic images on a 

screen are processed by a person viewing them. 

As part of a larger ongoing research project funded by the National Science Foundation 

and entitled Program Visualization: Using Perceptual and Cognitive Concepts to Quantify 

Quality, Support Instruction and Improve Interactions,1 this thesis focuses on developing design 

guidelines for program visualizations.  In this work we examine the effects of various attributes 

of visualizations.  Through empirical studies we seek to determine the effects of various 

attributes on a viewer’s comprehension of the visualization.  A compilation of these results may 

then be used by educators, researchers and developers in creating more effective algorithm and 

program visualizations. 

To examine the effects of a particular attribute, we isolate the feature in question in a 

series of visualizations and evaluate the effects of this attribute in an empirical study.  Here we 

look at a sorting algorithm (in which rectangular bars represent values in an array) and examine 

the effects of two particular attributes of many such algorithm animations: the use of flashing to 

                                                      
1 This material is based upon work supported by the National Science Foundation under Grant No. 0308063.  Any 
opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not 
necessarily reflect the views of the National Science Foundation. 
 
 



 3 

cue a comparison of values and the use of two different animation styles to depict the exchange 

of elements.   

We label the first attribute as “cueing” and “no-cueing”.  The cueing depiction flashes the 

bars being compared three times when a comparison event occurs. The no-cueing animations 

simply do not have any flashing for a comparison event.   

The second attribute’s depictions are labeled as “grow” and “move”.  During an exchange 

of values, the grow animation shows the smaller element growing to the height of the larger 

element while the larger element shrinks simultaneously to the height of the smaller element.  In 

the move depiction of an exchange of values, the two bars representing the data elements being 

exchanged are seen to move in an arcing motion, each one moving to the location of the other. 

  Four animations were created: cueing with swap, cueing with grow, no cueing with 

swap, and no cueing with grow.  Each of these animations are the same except for the attributes 

we are investigating.   

An interesting aspect of this study is that we seek to simultaneously evaluate the 

perceptual effects of these animation techniques, and the effects of the animation techniques on 

comprehension of the algorithm depicted in the animation.  

By perceptual effect we refer to the viewer’s ability to see and understand what is 

animated (i.e., did users detect that two bars just flashed, do they understand that the flashing 

means that the two bars are being compared to one another?, etc.)  Perceptual effects are 

evaluated through responses to popup questions (questions that appear during playback of the 

animation, where the animation pauses its run until an answer is provided). 

 By effects on comprehension we refer to the ability of viewers to understand an 

algorithm, as measured by the number of correct answers to questions about properties of the 
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algorithm.  The users’ responses to “traditional” questions measure the comprehension effects of 

the algorithm animation.  

Our goal in simultaneously collecting data about both perception and comprehension is to 

help understand and explain the results of the comprehension studies.  In prior studies we, and 

other researchers, have often been left to wonder whether users had not perceived the low-level 

details of the algorithm or whether the low-level details had been perceived but had failed to 

translate into comprehension of the higher-level algorithm behavior and properties.  By 

collecting such data we hope to be able to begin to answer this type of question. 

A sorting algorithm was chosen not only for its historic value (one of the first algorithm 

animations is the video, Sorting Out Sorting [Baecker98]), but also for its simplicity.  The idea of 

sorting is very elementary.  However, quicksort uses recursion for its divide-and-conquer 

strategy, which is somewhat more complex than other sorting algorithms, and thus may benefit 

more from visualization.  Further, this algorithm provides an appropriate level of challenge to the 

students participating in our study. 

In Chapter 2 we discuss related work in the study of how viewers understand algorithm 

animations.  The experimental method and setup are discussed in Chapter 3.  In Chapters 4 and 

5, we present and analyze the results.  A discussion and conclusion are presented in Chapter 6. 
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Chapter 2 

Background and Related Work 

 

 Here we examine the history of algorithm animations and the research around the 

effectiveness of animations as pedagogical tools.  We highlight guidelines presented on how to 

conduct empirical studies in this area.  Following this, we focus on related research that draws 

out issues in our investigation.  All areas of visualization, including engineering, medicine and 

the sciences, draw from the fields of information graphics, computer graphics, human-computer 

interaction (HCI), and cognitive science.  Here we address research done on viewer 

comprehension and how design of visualizations should consider viewer cognition and attention.  

Finally, some researchers in algorithm visualizations have taken into consideration these factors; 

their work is discussed here. 

 

2.1 A Brief History of Algorithm Animation 

Consider a class of undergraduate computer science students studying algorithms and 

data structures in the early 1980s.   The educational technology available at the time consisted of 

chalkboards and overhead projectors.  On occasion, a video was employed.  For example in the 

late 1970s, a landmark algorithm animation video on sorting algorithms, Sorting Out Sorting, 

was created [Baecker81].  Instructors would typically have to create still pictures on overheads 

or the chalkboard showing the step-by-step process of a particular algorithm.  For the most part, 

these tools were not very conducive to allow an instructor to demonstrate the dynamic workings 

of the programs being discussed.  
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However, at about this time computer workstations became more available to 

universities.  So naturally, it seemed inevitable that the medium would shift from low fidelity 

static displays to the high fidelity dynamic displays of the computer.   Initially videos were 

created [Baecker81].  Then in the mid 1980s, an animation system called BALSA was created at 

Brown University and integrated into the coursework [Brown98a].   BALSA provided a 

framework through which instructors could create animations.  All students in a class or lab 

section could then simultaneously view the animation of an algorithm.   

In the late 1980s, systems like TANGO allowed students to create their own animations 

[Stasko90].  In the following years, with each technological advance in graphics and 

computational power, more could be expressed in the animations, adding color, three-

dimensional graphics, and audio [Price98].  Instructors in recent years rely, in addition, on 

PowerPoint slides, Java applets, Macromedia Flash movies, and web pages with graphics as 

pedagogical tools.    

 

2.2 The Value of Visualizations 

A survey of instructors to determine the use of visualizations as pedagogical tools found 

they were not as widely used as expected [Naps03].  The question then arose of how valuable 

visualizations are as a learning aid.  Naps et al. [Naps03] point out that two main obstacles 

prevent wide usage.  First, it must be determined whether viewers benefit educationally from 

visualizations.  Second, instructors must find it easy to incorporate visualizations as a learning 

tool.   

Much research has focused on the viewer’s perspective, determining the effectiveness of 

visualizations.  A good portion of this research compared the benefits of learning algorithms with 
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visualizations to learning algorithms without visualizations [Stasko93, Hansen02, Grissom03].  

Fewer studies examined the quality of the attributes that made up the visualizations 

[Lawrence93, Bartram01].  As Khuri [Khuri01] notes, “a successful algorithm visualization 

design should consider effective representation and presentation of information.”  He states that 

designers should combine instructional knowledge with key aesthetics that will grab viewer’s 

attention.  Accordingly, the designers should have a graphical vocabulary allowing viewers to 

easily understand the information being conveyed. 

Graphical vocabulary [Price98] typically refers to the representation of data structures.  

Each graphic can have various properties associated with it, such as dimensions, color, position, 

texture, and shape, just to name a few.  However, less mentioned is a graphical vocabulary for 

important events in animations.  Bartram agreed, indicating the lack of research on the 

effectiveness of motion used as a visual coding of events [Bartram01].  Byrne et al. [Byrne99] 

call for systematic studies to find quality animations stating that there are “no clear guidelines for 

the construction of algorithm animations, not just from a psychological perspective but from an 

implementational one.” 

Gurka and Citrin [Gurka96] present guidelines on how to perform studies testing the 

effectiveness of algorithm animations.  They list factors that could lead to false negative results, 

in hopes that future studies might avoid these problems so that “significant results can be reliably 

obtained and replicated.”  Three issues that apply to experimentation in general are given.  First, 

qualitative and quantitative data must be collected.  An example of qualitative data gathered in 

experiments are participant surveys. Tests administered to subjects are a form of quantitative 

data.  Second, independent variables (e.g., demographics) and dependent variables (e.g., style of 

material) should be identified.  Then the data should be analyzed with respect to these variables, 
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being careful not to claim one factor produced the results.  Gurka and Citrin state that while 

some variables can be controlled, other factors cannot.  This means that results need to be 

combined with the qualitative data in order to get an overall understanding of the algorithm 

animation’s effectiveness. The last issue dealt with the comparisons done between the 

experimental group and control group, which often compared “something” to “nothing”.  That is, 

many of the visualization studies compared participants viewing animations to those who did not 

[Lawrence94, Stasko93].  Gurka and Citrin point out that conclusions from these studies need to 

consider the extra time and attention the visualization group has as compared to the control 

group.  

Gurka and Citrin also detail seven design factors, most specific to animations.  The 

factors are: usability, animation quality, systems training, system availability, animation type, 

algorithm difficulty, and subjects’ individuality.  One of these, animation quality, they describe 

as “probably the most difficult issue to tackle.”  This is the factor that is of particular interest to 

our research.  They identify graphic design as a contributor to the quality of animations. 

It is believed that the features in a visualization design can impact the viewer’s 

comprehension of the underlying program.  Jarc addressed this need with a call for more 

empirical studies comparing various forms of animating the same algorithm [Jarc99].  This 

would help identify the graphical representations, which Jarc refers to as visual semantic cues, 

that have an impact on viewer understanding.  He indicates that guidelines can be formed for 

high-level algorithm visualization design, as well as for low-level graphical features.   

 In Jarc’s doctoral dissertation [Jarc99], an interactive algorithm visualization system he 

developed was used in two empirical studies.  The studies examined how the level of 

interactivity of the viewers with the system related to their performance on a posttest.  
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Surprisingly, the results showed marginally better performance for the groups with the more 

passive viewing and fewer interactions.  Jarc claims this result is due to active learning-style 

students who treated the interactive portion of the visualization as a video game.  He claims that 

these students’ focus during the experience was on entertainment and not on learning, and that 

they thus had to guess on the posttest.  Given these results and explanation the question of how 

interactivity effects viewer comprehension remains open. 

 

2.2.1  Empirical Studies with Graphic Representation Considerations 

A number of studies have been conducted examining the effects of various design 

considerations in graphical displays [Davison01, Bartram01, Lawrence93].  We concentrate here 

on a few studies to draw out some general issues related to our investigations.  

Davison and Wickens [Davison01] studied graphical displays used by pilots and tested 

the effects of cueing. Though outside of the computer science field, the results are relevant in 

studying the value of various characteristics in graphic displays.  They examined the effects of 

two types of salient cues, flashing and intensifying brightness, in a helicopter flight simulator 

that signaled a hazard.  One measure of performance was based on the pilots’ subsequent flight 

path, examining if the path would make contact with the hazard.  If the path was within 50 feet 

of the hazard, it was considered a hazard contact.  The other performance gauge was the 

anticipation time for when the hazard was avoided.  This measured the time the pilot began 

maneuvers to avoid the hazard.  They found marginally better anticipation times for the group 

with hazard cues than for the group with no hazard cues.  There was no difference in hazard 

contact performance when comparing these groups.  Additionally, contrary to their hypothesis 

that flashing is a more salient cue, they found a significantly greater performance for the 
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intensity cue.  They explain that this may be because flashing is more distracting and thus 

impedes performance. 

Bartram [Bartram01] states that “motion and movement is considered one of the most 

powerful visual mechanisms for communicating information.”  In a series of experiments, 

viewers were instructed to work on a main task that required users to focus on a small area.  To 

one side of the display area were icons.  When viewers saw a change in one of these icons they 

were to stop working on the main task.  Various graphical changes were tested on groups using 

either motion, color, or shape.  The results showed the statistical significance of simple motion 

attracting a viewer’s attention as compared to color and shape changes.  Results were based on 

detection times and error rates of the moving icons versus either icon shape or color changes.   

Lawrence [Lawrence93] performed a number of experiments studying the effects of 

various design elements in algorithm visualizations.  In a survey of student preferences, she 

found the preferred representations of algorithm data and the preferred usage of labels with data.  

Follow up experiments examining these preferences and data set size found no significant 

improvement in performance.  An additional study found that labeling data elements had no 

effects on viewer comprehension.  Lawrence mentions that though labeling the data has no 

significant results, there is no negative impact to their inclusion in the visualization and was a 

preference on the student survey.  In another formal investigation of a student preference, the 

labeling of algorithm steps, it was found that this labeling resulted in a statistically significant 

increase in post-test scores [Lawrence93].   
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2.3  Effective Visualizations: Viewer Comprehension 

In a study dealing with animations, multimedia, and virtual reality, i.e. “graphical 

representations that were born from advances in technology”, Scaife and Rogers point out the 

following: “Many of the presumed benefits of good-old fashioned graphical representations (i.e. 

static diagrams) were considered to be due to years of practice of perceptual processing of visual 

stimuli and the learning of graphical conventions.  This may help us understand why advanced 

graphical technologies (e.g. animations and virtual reality) have not, as yet, been able to 

demonstrate comparable performance or learning benefits” [Scaife96]. 

Algorithm visualizations are comprised of graphical representations of the input to the 

algorithm, the events and procedures conducted by the algorithm, and the final results.  

Therefore an animation consists of a series of dynamic graphical events.  Animations have also 

been defined as “a series of rapidly changing static displays, giving the illusion of temporal and 

spatial movement” [Scaife96].  These graphical events include motion-based events such as 

object flashing, object movement, and changing object dimensions.  Additionally, attention 

attracting events include highlighting, pop-ups, and the use of sound.  Our focus is on the extent 

to which these low-level graphical features help or hinder the viewer in comprehending the 

algorithm depicted.  The viewer’s overall understanding of the animation relies on these features 

since a viewer’s attention can be focused using graphical events indicating that something 

important is happening.  A viewer can then shape and form a mental model through cognitive 

processing.   

To understand a presentation, a viewer “requires a series of cognitive processes 

composed of visual and auditory attention, comprehension into a proposition, and integration 

into a mental model.”  [Faraday96]   Here Faraday and Sutcliffe refer to a proposition as a “unit 
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of meaning,” which can be one of three types: object, action, or procedure propositions.   Object 

propositions describe objects in the presentation.  Action propositions then describe object 

changes of state, role or path.  Finally, procedure propositions define the cause and effect of a 

sequence of action propositions.  They claim this is the basis upon which the viewer forms a 

mental model.  The combination of many propositions in the final presentation represents the 

meaning of information being presented.   

 Thus, perceptual, attentional and cognitive properties in the visualization impact the 

creation of mental models and call for designs that do not place undue burden on the viewer’s 

cognitive load.  Being aware of which attributes are less demanding when the viewer is learning 

about an algorithm can contribute to the creation of displays from which the viewer may more 

easily learn.  For example, when an adult learns a new language, more thought often goes into 

translation from his/her native language to the foreign language than on the thought being 

expressed. This is a form of cognitive load. Therefore, displays should be created to make use of 

attributes that are more efficient for viewers to perceive and process using the visual attention 

system rather than using cognition.  Additionally, we need to be sure we eliminate any visual 

noise that can distract from either the visual attention system or cognitive processing. 

In order for us to create guidelines for graphical representations, we must determine the 

effects of what is being viewed.  Scaife and Rogers emphasize the “paucity of work on 

determining how graphical representations are themselves represented and how this interacts 

with the kinds of high-level cognitive processes” [Scaife96].   Similarly, Faraday and Sutcliffe 

define good design to be a transferring of knowledge intended by the designer and understood by 

the viewer [Faraday96].  They further point out there is a danger in designing without regard to 

attention and comprehension. 
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2.3.1 Cognition 

Information in animations should be designed to be processed sequentially and in distinct 

state changes [Scaife96].  This notion is similar to Brown’s “interesting events” [Brown84].   

Though the latter uses the term to describe code annotations that serve as input to visualizations, 

it can be seen that if this aspect of the algorithm’s behavior is important enough for an algorithm 

visualization designer to deem as an important event, then it too should be graphically 

represented in accordance with guidelines presented in a cognitive processing model.  

Researchers in cognitive science believe that the cognitive value of a graphical 

representation is not well understood.  Some argue that a more solid foundation to determine the 

way people interact with graphical representations is needed [Scaife96].  Scaife and Rogers point 

out that research should account for the cognitive processing of these interactions, “that analyses 

the role played by external representations in relation to internal mental ones” [Scaife96].  They 

mention previous work that deemed advanced technology-driven graphics (e.g. virtual reality, 

animations, and multimedia) as better by intuition without proof.  Without this evidence there is 

neither a way to make conclusions from the large number of studies conducted nor determine the 

value of these contemporary graphical representations. 

Studies of this nature look to answer questions regarding how external representations 

and internal cognitive processing interact.  Termed “external cognition” by Scaife and Rogers, 

they focused on the processing involved when interacting with graphical representations and the 

cognitive benefits of the various graphics, including static diagrams, animations and virtual 

reality [Scaife96].   

The external cognition analysis of how viewers process different graphics describe three 

properties of forming a mental model: computational offloading, re-representation and graphical 
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constraining.  Computational offloading refers to the differences external representations allow 

in external cognition.  A particular representation can reduce the amount of cognitive effort in 

understanding.  The second factor, re-representation, is the representing of the same abstract 

concept in different external graphical ways.  Some graphical representations lead to more 

difficulty in problem-solving, while others make it easier, and still others can have equivalent 

effects.  The last factor, graphical constraining, refers to the ability of graphics to enforce by 

restriction the type of interpretations that can be made.  For example, charts and diagrams 

created in solving logic problems aid in finding impossible situations.  This aids viewers in 

making inferences about the problem.  These three factors, though similar sounding in definition, 

complement one another.  Computational offloading refers to cognitive benefits, re-

representation refers to structural properties, and constraining allows for computational 

offloading by restriction.   

Scaife and Rogers point out that research on the cognitive processing of static graphics 

has been verified to apply to dynamic graphics to some degree [Scaife96].  When compared with 

sentential representations, i.e. written explanations, they note that graphics allow for more 

computational offloading and for information to be formulated less explicitly.  Similar research 

finds that graphics support the role as external memory, and as an aid in limiting abstraction in 

the wrong direction [Larkin87, Scaife96, Zhang94].  However, none of the different 

representations can claim an advantage when it comes to making inferences.  

 

2.3.2. Attention 

Even if a graphical representation is chosen for its cognitive processing advantages, a 

designer must also consider the attentional properties of the graphic.  There are two types of 
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forces that can attract attention according to Pashler et al. [Pashler01].  One force is bottom-up 

influences, which refer to reacting to some stimulus reflexively.  For example, touching  

something hot will cause a person to quickly move their hand away from the item.  Top-down 

reactions occur due to some particular intentional stimulus, e.g., a person when fearful may jump 

at a small noise.  Studies by Faraday and Sutcliffe provide evidence that varying techniques of 

the design can have effects on the viewer’s fixation and attention [Faraday96].  Furthermore, 

they propose guidelines regarding attention including how to integrate motion, transition 

between events, pace the events, use and place labels, and incorporate audio.   

In another study [Faraday98], Faraday and Sutcliffe created a tool for novice presentation 

designers that evaluated the presentation created by the designer.  They discuss the guidelines for 

creating a presentation and processes of critiquing a presentation, embodied by the tool created 

for their research.  The design issues mentioned include focusing the viewer’s “thread of 

attention”, timing effects to complement other features, and designing effects to make important 

information salient.  The last item considers the various low-level properties of a graphical 

representation. 

Cueing a graphical object focuses the viewer’s visual attention to the object.  

Psychologists know and have shown that this can be done independent of eye movements 

[Sears00].  However, it is not so obvious what happens when multiple items may vie for 

attention.  Research has explored the capacity and limitations of visual attention.  Sears and 

Pylyshyn discuss the notion of visual indexing, which refers to providing “a means of setting 

attentional priorities when multiple stimuli compete for attention, as indexed objects can be 

accessed and attended before other objects in a visual field” [Sears00].  Visual indexing provides 

a means of quickly accessing the objects indexed without additional attentional scanning.  In 
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terms of cueing, this means an object cue will not cause undue cognitive loading to follow the 

object or otherwise reference it.  Cueing can focus the attention on the objects and then follow 

with other events that can be processed.  As Sears and Pylyshyn [Sears00] point out, “to 

selectively attend to a non-indexed object, its position must first be ascertained through 

attentional scanning.”  Thus, a visually indexed object can be attended to more rapidly.  

Additionally, visual indexes are not tied to a position in the visual field of view.  Indexes are to 

objects or features, not to locations, and objects are continually referenced even as they move.  A 

limitation to the visual index is its small capacity to hold more than 4 to 5 objects.  However, the 

visual index can track each object independently and in parallel with other indexed objects.  

Finally, through experimentation, Sears and Pylyshyn found that objects that are indexed confer 

a priority in attention and accessibility. 

 

2.3.3 Empirical Studies with Psychological Considerations 

Some research studying the pedagogical value of visualizations provided a thoughtfully 

designed visualization, which gave consideration to the cognitive and attentional factors of 

viewer comprehension [Holmquist00, Narayanan02, Tudoreanu03, Tudoreanu02, Hansen02]. 

Holmquist and Narayanan [Holmquist00] created tools to create visualizations derived 

from a theoretical cognitive process model.  This model of comprehension is based on stages that 

build a mental model of the information being presented.  This affected the design of the system 

more than the design of the visualizations presented.  The authoring tool, Hypermedia Authoring 

Support System (HASS), creates Hypermedia Education Manuals (HEM) visualizations. While 

the HEMs are viewed by users, their interactions are recorded.  An evaluation tool, Hypermedia 

Evaluation System (HES), then can be used to analyze the data and suggests visualization design 
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improvements.  Empirical evidence confirmed that students using the system with the improved 

design significantly outperformed those with a system without better information flow and 

navigational design.  

Later, Narayanan and Hegarty [Narayanan02] conducted a few experiments to test the 

use of algorithm animations using a cognitive process model-based animation versus a 

“conventional” animation.  Their cognitively designed animations differed from the conventional 

animation by having several levels of presentations allowing for comprehension to occur in 

stages.  Results from the studies indicated that students with the cognitively designed material 

significantly outperformed students with traditional algorithm material. 

Tudoreanu [Tudoreanu03] found that visualizations that employed factors such as the 

presence of legends and navigation buttons that reduced cognitive effort were more effective 

than visualizations that lacked such devices.  In a comparison of perfomance between two 

different visualizations of the same algorithm, two graphical representations of a parent-child 

relationship were employed in the studies.  One used arrows while the other used different spatial 

placement in a 3-dimensional view to represent the relationship.  The visualization with arrows 

had a significantly higher performance rate.  However, this was not the primary focus of the 

experiment and it was not the only difference between the two animations.  Thus any conclusions 

would have to be substantiated with further studies. 

 Hansen et al. [Hansen02] created a system, HalVis, that supports animations that occur in 

stages allowing for the viewer to progressively learn about the underlying algorithm.  It also used 

“probes and questions that stimulate thinking” while the animation was running.  One of the 

experiments involved comparing performance using the HalVis system versus viewing another 
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visualization system.  Overall, the results showed the students using the hypermedia visualization 

outperformed students using other teaching methods. 

 Experiments conducted by Tudoreanu et al. [Tudoreanu02] used a testing environment 

and visualizations designed to reduce the cognitive load.  The testing environment was designed 

to aid viewers by adding interactive print statements and automatically positioning and sizing 

windows on the monitor.  The visualization design contained legends.  They concluded that 

viewers of these visualizations performed significantly better than the participants who did not 

view a visualization. 

 

2.4  Summary 

 From these areas of research, we begin to understand the impact of viewer 

comprehension has on good animation design.  We seek to investigate how the design of 

visualizations can be enhanced, beginning with empirical studies as outlined by Gurka and 

Citrin.  In the past, findings across studies were inconsistent and findings were not duplicated 

since the parameters of the studies varied widely.  The SSEA system, described in Chapter 3, 

will allow our studies, examining the effects of attributes in algorithm animations on viewer 

comprehension, to remain consistent.  This is done by providing a uniform environment and 

having participants perform the same task across these studies.  
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Chapter 3 

SSEA System Description 

 

The System to Study Effectiveness of Animations (SSEA) application allows researchers 

to investigate various characteristics of algorithm visualizations in a single environment.  The 

system allows subjects to view one of a variety of animations while answering questions to 

determine their understanding of the underlying algorithm.  There are three main users of SSEA: 

the viewer, the animator, and the experiment designer (referred to as the experimenter or 

researcher).  The animator creates the algorithm visualization to be viewed based on the 

researchers’ design and goals.  The animator and researcher may be the same individual or, at the 

least, will be working closely together.   

 

3.1  System Design Considerations 

 Many factors contributed to SSEA’s design, some based on our previous work and others 

determined by our future needs.  First to be considered was the visualization component itself, 

and determining whether one of many existing algorithm visualization systems could be used for 

our studies.  In our related research we are running ongoing experiments using the VizEval suite 

[Rhodes04, Ross04].  Similar to SSEA, VizEval is a framework designed for researchers to 

design, create, deploy, and organize resulting data for experiments designed to study cognitive, 

perceptual and attentional features of visualization.  The animation module used in the VizEval 

suite is called the Support Kit for Animation (SKA) [HTaylor02].   However, VizEval evaluates 

the effects of features in a short animation that is not based on an underlying algorithm.  The 

features we have tested in the VizEval experiments included determining the effects of cueing on 
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a viewer’s ability to detect property changes of objects and whether viewers could correctly 

identify multiple object changes.  This required all subjects to view a very short animation, 

lasting less than one second, followed by a set of questions.  Subjects were required to watch a 

series of these animations and questions during a single sitting. 

The SSEA studies differ from these in that they focus on comprehension of a visualized 

algorithm rather than perception of individual elements of a visualization.  User interactions 

along the lines of traditional algorithm visualization systems were thus required for SSEA.  

Therefore a new environment was created using the same animation module, SKA, which 

provided the graphics and animation support.  The SSEA environment provides the ability to 

easily create graphical representations of the specific features we wished to investigate.   

 Another design consideration for SSEA was the intended deployment and target 

operating systems.  Our studies would be conducted locally on students at the University of 

Georgia campus.  Therefore, a stand-alone system was feasible to be installed in campus 

computer labs.  For the sake of portability for future tests, the system was implemented in 

platform-independent Java.  A final factor was that the task of creating new visualizations for 

further studies should require only minimal effort from researchers.  

 

3.2  Implementation 

SSEA integrates a visualization interface with a question panel, pop-up questions and a 

monitor.  The monitor automates data collection of user interactions and events.  The architecture 

for SSEA follows the Model-View-Controller design pattern, separating data from views of the 

data.  Here data consists of project and animation information.  Figure 3.1 depicts the overall 

architecture of SSEA with the various components.  Two main modules control SSEA, a 
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controller and SKA.  The controller manages the allocation of data, the piping of user 

interactions to appropriate components, and the message passing between components.   SKA 

manages the display of the animation and adjusts the visualization to any user interactions.  

 

Figure 3.1.  SSEA architecture. 
 

3.2.1  User Interface 

Separate user interface modules exist for each display area in SSEA.  These areas, seen in 

Figure 3.2, include an animation area (A), a pseudocode display (B), animation controls (C), and 

a question area (D).  The animation area and code area display the graphical representation of the 

underlying algorithm, and are synchronized by SKA.  A high resolution monitor is required to 

view the multiple areas of SSEA in their entirety.  Below we discuss details of the interface; 

many of these features are listed in a report by Naps, et al. [Naps03] as good design items for 

visualization systems. 
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Figure 3.2. SSEA screen shot.  (A) Animation area where visualization of underlying algorithm 
is displayed.  (B) Pseudo code display: highlights code being executed by underlying algorithm, 
which is synchronized with animation area.  (C) Animation controls: viewer controls playback of 
algorithm animation.  (D) Question listing: viewer responds to questions designed by the 
researchers to evaluate the viewer’s comprehension of the algorithm. 

 

The playback of animations can be controlled by the viewer via the animation control 

area (Figure 3.2C).  One feature allows the user to select from a collection of data sets as the 

input for the algorithm.  Another control sets the speed of the animation.  The animation can be 

paused, ended, and then begun again from the start.  Stepping through the animation, which can 

only occur if the animation is paused, causes the next step of the animation to execute and then 

the animation is paused again.  A slider indicates the progress of the animation. Moving the 

slider to the left will allow users to select a point at which to restart the animation.  The state of 
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the animation is tracked by the controller.  Figure 3.3 is a state diagram of the control of the 

animation playback. 

 

 
Figure 3.3. Animation state diagram.  Based on user interactions with the animation 
controls, various states of animation will be entered.  The states of animation are starting, 
playing, stepping, and pausing.  Possible interactions include begin or end animation, 
pause or play animation, step animation, or go to a previous step in the history of the 
animation.   
 

While watching the animation, the viewer may see a question pop up.  The animation 

pauses its run until an answer is provided.  These “popup” questions are a design feature 

available to the experimenter and implemented by the animator.  These questions can be 
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associated with the animation of the algorithm on a particular data set.  The popup can appear 

only during the initial run of the animation of the algorithm with the associated data set.  To 

prevent users from using the code to supply the correct answer to the popup questions, the popup 

window is positioned over the pseudo code area and is not movable.  Optional to the researcher 

to display after the user submits an answer to the question is the correct answer. 

Below the animation area are the questions designed by the researchers to evaluate the 

viewers’ comprehension of the algorithm.  These “traditional” questions are displayed 

individually, with a listing of all questions off to the left side.  An asterisk next to a question 

number in the list indicates that the question is still unanswered.  Users may return to a question 

and change their response.  When all questions are answered, a “submit” button becomes 

enabled.  When the user clicks the submit button the session terminates. 

  Optional to the researcher is a questionnaire that can be displayed initially, requiring 

viewers to answer all questions before proceeding.  Figure 3.4 depicts a sample questionnaire; all 

responses are recorded in the session log file. 

 
Figure 3.4. SSEA screen shot of questionnaire. 
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3.2.2  Visualization Module 

The graphical visualization generated by the SKA module results from an algorithm and 

an animator working somewhat independently.  A threaded architecture with a buffer is used, 

following the Producer-Consumer design pattern.  An algorithm thread (an instance of the 

SkaAlgorithm class) is the producer of shared data, while the animator thread (an instance of the 

SkaAnimator class) consumes the data.  The shared buffer (an instance of the ActionBuffer 

class) contains the information needed to produce the algorithm visualization.  The algorithm 

thread is created when a new input set is selected.  A new animator thread is created for each 

new run of the visualization.    

The graphical representations consist of graphical objects and actions on one or more of 

these objects.  Graphical objects consist of lines, rectangles, text labels, circles and composite 

graphics.   Each object has numerous properties that can include color, fill, visibility, font, 

position, and labels.  The canvas references a list of graphics.  As graphics are updated by the 

animator module, the canvas repaints the graphics causing an animation.  Refer to Figure 3.5 for 

an overview of the animation engine architecture. 

The visualization programmer creates a visualization by defining a subclass of the 

algorithm SKA class, SkaAlgorithm, which will run the underlying algorithm being visualized.  

The code is annotated with additional calls that form the animation.  When the algorithm thread 

runs, it produces a list of AnimObjects, animation objects, that is shared with the animation 

module.  There are two types of animation objects, as depicted in Figure 3.6B, actions and 

markers. 

AnimActions represents actions on graphics, which include but are not limited to: 

moving an object, changing an object’s property, hiding or showing an object, and changing the 
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object’s textual label.  Specialized actions are available to add new graphics not previously 

present on the display.  Actions can also be combined into a “bigger” action.  For example, a 

series of actions that hide, show, and then hide an object will create a flashing effect.  The 

execution of an action constitutes a step in the running animation.   

 

 
Figure 3.5. Architecture of SKA module. The architecture follows a Producer-
Consumer design.  An instance of the SkaAlgorithm class is the producer of a sequential 
list of AnimObjects that is stored in the buffer, ActionBuffer.  The list is created by the 
programmer’s subclass implementation of SkaAlgorithm.  The consumer, an instance of 
SkaAnimator, waits for the buffer to be sufficiently full of data before it transforms the 
sequential list into a list of lists, a two-dimensional array.  A two-dimensional array is 
created since each step of the animation may require more than one action to occur 
simultaneously.  In other words, an array of steps is created where each step may consist 
of an array of actions.  The conversion of the one-dimensional array into a two-
dimensional one occurs via a special helper class, SkaSyntaxChecker. If there are any 
errors in conversion, the helper class will flag an error to the programmer in the design 
mode of SSEA. 
 

AnimMarkers indicate how the actions are to occur relative to one another.  For example, 

actions can be run in parallel, or they can be grouped so that the next step of the animation will 
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occur only after all the actions in the group are complete.  Additionally, markers indicate to the 

controller which component should being updated with a new action.  Special markers cause a 

popup question to appear during the animations or highlight a line in the pseudocode display.  

The programmer can use the markers to ensure that the relative position of the actions will not 

compromise the intended visualization.   

The animator module, SkaAnimator, the consumer, waits for the buffer to be sufficiently 

full of data before beginning to produce the animation.  SkaAnimator will replay all the actions 

step by step during a call to go back to a previous step.  To accomplish this, each graphic has a 

history of all its properties (see Figure 3.6C).  Thus the graphics can be redrawn as they were at 

the previous step and the actions will act on them as they had in the original playback.  This 

supports the ability of future versions of SSEA to permit user driven visualizations, where 

interactions are specified by the animator.  For example, the visualization could prompt the user 

to select an object as the next step in the algorithm.  Based on the user response to these prompts, 

the resulting new visualization would be shown.   

 

 
Figure 3.6 Animation Engine Details.  (A) Possible subclasses of SkaAlgorithm that a 
programmer can create.  MyAlgorithm1 is an example of a way to create varied 
animations for the same underlying algorithm.  (B) Architecture of creating animation 
using actions and markers.  Markers assist the SkaSyntaxChecker to create the 2D array 
of actions.  Actions change graphics, creating a new scene in the animation.  (C) 
Temporal properties in all graphic objects allow for going back in history.  A history is 
kept for each property of a graphic.  Here ni represents the step where new value, vi 

,became effective.  
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Finally, the list of animation objects described above is sequential.  This is done for the 

programmer’s sake, enabling changes and debugging to be done with relative ease.  The 

programmer can run SSEA in a design mode that allows him to check for any problems with the 

visualization.  Determining where errors are located would be a complex and difficult task if it 

were the programmer’s responsibility to create a two-dimensional array of animation objects.  

Instead, SkaAnimator uses a special helper class, SkaSyntaxChecker, to accomplish the 

transformation and error checking.  A two-dimensional array is created since each step of the 

animation may require more than one action to occur simultaneously.  In other words, an array of 

steps is created where each step may consist of an array of actions.    

 

3.3  Specifying an Empirical Study 

In the process of specifying an empirical study, the researcher first designs an experiment 

with some aspect of algorithm animation in mind.  The researcher creates a specification for the 

visualization that includes the graphics of the visualization, the desired input sets, and the 

algorithm(s).  The researcher should also determine the substance of pre-test questions, popup 

questions and traditional questions.  At the conclusion of running all experiments, the researcher 

will be able to examine the log files for each session conducted. 

Log files contain all viewer interactions with SSEA.  For each session, the log records the 

timings and type of user interactions to control the animation, responses to questions including 

any selections made that differ from the final choice, and all responses to popup and regular 

questions.  For an example of a hypothetical log file, see Appendix B.   

Once the above requirements have been determined, the programmer then takes the 

specifications from the researcher and creates the corresponding project files to run the 
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experiment.  These include the list of questions, the list of popup questions, files to be used as 

the input data sets (called graphic files), annotated pseudocode to be displayed and highlighted 

during the animation, and a path for storing each session’s log file.  Sample entries for the 

project file, the project question file, the project popup question file, and the input sets can be 

found in Appendix A.  We can see how these project files fit into the overall SSEA architecture 

in Figure 3.1. 

The programmer will specify graphic files and create algorithm subclasses to form the 

visualizations in SSEA.  The graphic files form the different input sets available to the viewers.   

Graphic files are text files with each line representing a graphic object that will be displayed on 

the canvas at the start of the animation.  Figure A.5 in Appendix A lists the tags needed to create 

these objects. 

The programmer can create a single algorithm by subclassing the algorithm module, 

SkaAlgorithm to create a class which we will call MyAlgorithm.  MyAlgorithm will contain the 

underlying code of the algorithm to be animated, with important events calling predefined or 

customized animation methods.  The programmer then can create additional algorithms by either 

subclassing SkaAlgorithm again or by subclassing his own MyAlgorithm (see Figure 3.6A).  The 

latter case is beneficial when the underlying algorithm is the same, but the researcher wishes to 

change the animations.  This facilitates creating varied graphical representations for the same 

event in an algorithm, by overriding a customized animation method in MyAlgorithm.   



 30 

Chapter 4 

Experiment Materials and Methods 

 

In this chapter, we describe an empirical study that evaluates two visualization design 

attributes. This is the first in a series of studies to be conducted examining the effects of 

attributes in the comprehension of program visualizations.  By conducting empirical studies we 

can determine which attributes are more effective in communicating information about a 

program.  The experiment tests how cueing of comparisons and techniques for illustrating the 

exchange of objects affect the viewer’s comprehension of the underlying algorithm. 

The empirical study we conducted used an algorithm animation framework called SSEA, 

a System to Study Effectiveness of Animations.  Our participants were undergraduates in 

computer science classes, mostly computer science majors.  Participants viewed one of four 

animations of the quicksort algorithm in SSEA, and answered questions about the algorithm. The 

four animations differed only in the graphical representations of the comparison events and of 

the swapping of two values. 

 

4.1 Experiment Description 

The hypotheses being tested are: 

1.  The performance rate, based on the number of correct answers for a given set of 

questions, is significantly higher for participants viewing algorithm animations that use flashing 

as a means to cue a comparison event than for participants viewing animations in which bars are 

compared without such cueing. 
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2.  The performance rate, based on the number of correct answers for a given set of 

questions, is significantly higher for participants viewing visualizations of sorting algorithms in 

which objects are seen to move to their new locations when swapped than for participants 

viewing visualizations of sorting algorithms in which the heights of the objects being swapped 

grow or shrink in place. 

We are examining these hypotheses on a fixed set of conditions.  The data set size is 

small, and a single view of the animation and pseudocode is presented to viewers.   

The experiment was conducted on a voluntary group of undergraduate computer science 

students, registered at the University of Georgia in the fall semester of 2005 and spring semester 

2006.  Students were recruited from various computer science classes during these semesters.  

Participants received a monetary payment of five-dollars in return for their participation. 

The participants were randomly assigned to a group corresponding to the version of the 

algorithm animation they would view.  Figure 4.1 depicts the four possible groups.  A total of 59 

students participated.  Each participant was allowed as much time as they needed to complete the 

study at their own pace, but most finished in about an hour. Studies were conducted on Dell 

Dimension desktop computers with high-resolution 17-inch LCD flat-panel color monitors. 

 

  
Exchange 
Technique 

  Move Grow 
Cue Yes MC GC 
Presence No MX GX 

Figure 4.1.  2x2 Factorial Design for Experiment. Letters indicate the algorithm 
animation code: (M) refers to an exchange technique where bars move to new locations; (G) 
refers to an exchange technique where simultaneously bars grow and shrinking to new heights; 
(C) represents comparison events that are cued; (X) refers to when no cueing occurs for 
comparison events. 
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An instruction sheet led each participant step-by-step through the study.  Each participant 

initially used the SSEA system to view a simple algorithm that finds the maximum value of a 

data set. This allowed them to learn how to interact with the animations using SSEA.   The 

maximum value animations, which included two data input sets, were the same for all 

participants.  Additionally, one popup question occurred in the animation in order to prepare 

students for these kinds of questions in the quicksort animation. The instructions led each 

participant to use each one of the animation controls.   The instructions also asked participants to 

answer and submit the set of four traditional questions.  In addition, a sheet explaining the 

animation controls of SSEA was attached.  Participants were required to complete these steps 

before continuing on to the main section of the experiment. 

Once the training portion of the experiment was completed, the participant was instructed 

to start the quicksort SSEA program.  Participants were unaware that others were viewing 

different animations.  The first step in the quicksort portion required participants to complete a 

questionnaire form about their gender, year in college, and the computer science courses they 

had completed or were currently taking.  See Appendix E for a listing of questions posed to 

participants in the questionnaire.   

Participants then viewed the quicksort animation for the group to which they had been 

randomly assigned and answered questions.  The questions (listed in Appendix C) were the same 

for all groups and were either multiple choice or true-false.  The instructions for the quicksort 

visualizations directed students to view all of the ‘LargeRandom’ input set.  This ensured that 

participants would be asked all eight popup questions.  A list of the popup questions can be 

found in Appendix D. 
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When participants completed the quicksort visualization questions, they were given the 

opportunity to comment on the animations they viewed, the SSEA system, or give any general 

feedback through a paper survey form.  After feedback forms were collected, students received 

payment for their participation.  

 

4.2  Quicksort Visualization 

The quicksort algorithm implemented selected the right most value in the active partition 

as the pivot, and did not include any performance improvements that have been seen in other 

versions of the algorithm.   

A screenshot of the beginning of the quicksort visualization can be seen in Figure 4.2.  In 

the animation, the input data is represented as filled rectangular bars, each bar being an element 

of an array.  The value of the element is indicated by both its height and a label appearing below 

the bar.  Labeled arrows are used to symbolize the four index variables of the array in the 

algorithm, pointing to the respective bar in the array.  

The quicksort algorithm is recursive and involves dividing and sub-dividing the array into 

partitions. An outlining rectangle indicates the current partition, enclosing the bars in the 

partition.  In addition, labeled arrows marked “begin” and “end” indicate the boundaries of the 

current partition.  Two additional labeled arrows marked “firstHigh” and “findLow” represent 

the variables that move within the current partition looking for values that are higher or lower 

than the pivot. 

Bars are colored to indicate the state of the algorithm.  A legend is provided in the upper 

right-hand corner.  The current pivot is colored green.  Inactive partitions are colored gray.  The 

active partition is initially colored red.  As the algorithm proceeds the bars are sorted into a lower 
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partition (values less than or equal to the pivot) which is colored light blue, and a higher partition 

(values greater than the pivot) which is colored purple.   The pivot value is then swapped with 

the rightmost value in the lower partition, which is its final location.  It is then colored black to 

indicate that is in its sorted position. 

Two lines of text below the array serve as captions, providing a description of the current 

step being performed.  Lines in the pseudocode display are highlighted as the animation is 

executing the corresponding event. 

Animations of two events are varied in the four cases that we are studying, a comparison 

event and an exchange event.  In two of the cases (MC and GC) labeled “cueing”, the 

comparison of the element at the “findLow” arrow with the pivot element is cued.  That is, the 

compared bars flash three times when the elements are compared.  In the other two cases (MX 

and CX) labeled “no-cueing”, the bars are not flashed.  In two of the four cases (GC and GX) 

labeled “grow”, we study the exchange of values that is depicted through in-place changes of bar 

heights; one bar appears to become taller while the other bar in the exchange simultaneously 

becomes smaller.  In the other two cases (MC and MX) labeled “move”, the exchanged bars are 

seen moving in an arcing fashion from their original positions to their new positions. 

There were four predefined input data sets students could choose for the quicksort 

algorithm to animate.  The default was a set of 8 randomly ordered values.  Additionally, a 

smaller set of random values, having a size of 5, was available.  Finally, eight ascending or 

descending values were also offered for participants to view. 
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Figure 4.2.  Screenshot of quicksort visualization. 
 

Many low-level features of the animations are based on studies done in a collaborative 

effort between the Davis group at Georgia Tech and the Kraemer group at University of Georgia 

[HFES].  In a pilot study the Davis group determined that a height change of 22 pixels was the 

“just noticeable difference” for bars.  Therefore, the display height of each bar was made 

proportional to its value by a factor of 22.  Additionally, the number of elements in the input 

arrays, either 5 or 8, is within the capacity limits of short-term memory (7±2) [Sperling86].   

 

4.3  Questions 

The participants’ responses to the “traditional” questions measure their comprehension of 

the underlying algorithm.  The problems presented to each student were classified as a level from 

Bloom’s taxonomy [Bloom56], reflecting a range of concepts.  The questions are classified as 

knowledge, comprehension, application or analysis level.  These four levels are the lower levels 
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of a six-level classification.  Knowledge level demonstrates the ability to recall facts, 

terminology, or other previously learned information.  Comprehension level demonstrates an 

understanding of main ideas.  Application level demonstrates the ability to solve new problems 

from previously acquired knowledge.  Analysis level demonstrates an ability to break down 

knowledge to make generalizations and inferences.  By classifying the questions in this 

taxonomy, we can examine the results with regard to different levels of expertise of the 

participants.     

Each question was designed to have only one answer, using multiple-choice or true-false 

formats.  The majority of questions, sixteen, were presented to students so they could answer 

them with the use of the visualization.  Three of theses questions can be classified at the 

application level, requiring students to use the information they just learned and apply it to make 

calculations on a different data set.  Four questions at the knowledge level can be easily 

answered from the pseudocode.  Six comprehension level questions need further understanding 

of how the algorithm works.  Two questions require “the ability to break a complex problem into 

parts” [Howard96] of the analysis level.  Finally, the first question simply asked for prior 

knowledge of quicksort.  A list of the questions can be found in Appendix C.  These questions 

could be answered in any order and at any time during the experiment, not simply as a post-test.  

The visualizations were available for students to use as a reference while answering these sixteen 

traditional questions.  Both the intermediate choices and final answers for all questions are 

recorded in the log. 

There were eight popup questions the students could answer.  At a specific event during 

the animation, a question regarding that particular event would pop up.  Questions were placed in 

a modal window, requiring a response before the student could proceed.  Once a question was 
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answered it would not appear again if the viewer would replay the animation for the same input 

set.   

In contrast to the traditional questions, the responses to the popup question address the 

participants’ perception of the animation.  These questions are used to solicit answers about what 

the user just saw, categorized as either cueing-specific (“which two bars were just compared?”) 

or exchange-specific (“which two bars just exchanged values?”).  All responses to the popup 

questions are recorded in the session log.   



 38 

Chapter 5 

Experiment Results and Discussion 

 

During the fall semester 2005 and spring semester 2006 at the University of Georgia, 59 

computer science undergraduate students participated in our study.  A random selection of one of 

four quicksort visualizations, where objects either were: moved when a swap occurred and 

comparisons cued (MC), moved for a swap and comparisons were not cued (MX), objects 

changed heights growing and shrinking to their new values when a swap occurred while 

comparisons were cued (GC), or objects changed height without comparisons cued (GX).  There 

were 14 students in the MC group, 12 students in the MX group, 16 in the GC group, and 17 in 

the GX group.  A summary of results can be found in Appendix F. 

Most of the participants were male, with only 8 females participating.  The majority of 

students were juniors (42%), followed by seniors (28%), sophomores (22%), and 8% were 

freshman.  The quicksort algorithm is formally taught in the CSCI 2720 Data Structures.  None 

of the participants had completed the course prior to taking part in the study.  For students 

currently enrolled in the class, the instructor for the Fall 2005 course agreed to hold off the 

quicksort lecture until after the experiments were concluded.  Students enrolled in the Spring 

2006 Data Structures course partook in the experiment on their first day of class, thus ensuring 

no formal lecture.  Despite these careful measures, a surprising majority of students claimed to 

be familiar with the algorithm with 40 of the 59 participant responding ‘yes’ to question 1.  A 

listing of the questions can be found in Appendix C.  

Feedback from participants can be summarized as two general remarks.  First, many 

commented that the overall experience of using the visualization was positive, describing the 
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study as enjoyable.  The second common remark indicated that more of an introduction to the 

algorithm be given.   

 

5.1  Traditional Questions 

Participants overall performed reasonably well on the traditional questions, some of 

which required detailed knowledge of the procedure or time complexity analysis, with an 

average score of 60.74%.   Average time to complete the study was 22.9 minutes.  Table 5.1 

shows the per-animation-group averages for score and time. 

 

Group Average 
Score (%) 

Average Time 
(minutes) 

MC 61.57 26.00 
GX 60.41 21.24 
MX 59.08 25.25 
GC 61.63 20.25 

Table 5.1  Average Time and Score per Group, Traditional Questions 

 

An ANOVA (Analysis of Variance) analysis was performed.  No statistically significant 

effects were found for performance on overall traditional questions for cueing, exchange type, or 

interaction effects. 

The traditional questions were further sub-divided into groups based on the type of 

knowledge the question tested: Knowledge, Comprehension, and Application.   See the 

classification labels on the question listing in Appendix A.  ANOVA analyses were performed 

on these subsets.  Again, no significant difference was found among the four animation groups.   
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5.2  Popup Questions 

Overall performance on the popup questions was 66.22%.  Table 5.2 shows the per-

animation group scores for the popup questions.  Times are as reported in the traditional question 

section. 

Group Average 
Score (%) 

MC 72.86 
GX 58.41 
MX 62.33 
GC 71.63 

Table 5.2.  Average scores per group on popup questions. 

 

An ANOVA analysis was performed.  Cueing was found to have a statistically significant 

effect F(1,57) = 4.44,  p < 0.04 on participant performance on popup questions.  Further, cueing 

was also found to have a statistically significant in a subset of the popup questions classified as 

cueing-specific (questions 1, 2, 3, and 8), F(1,57) = 10.39, p<0.002. 

Exchange type was not found to have a statistically significant effect on performance on the 

overall set of popup questions.  However, in a subset of questions classified as exchange-specific 

(questions 4-7), a statistically significant benefit to “move” over “grow” was found,   

F(1,57)=5.74, p< 0.02. 

 

5.3  Correlations between Popup and Traditional Questions 

The correlation co-efficient between performance on popup questions was calculated for 

the overall group (0.466).  Figure 5.3 plots both individual popup scores against traditional 

scores (diamonds) and popup score against mean traditional score for those with that popup score 

value (squares).  
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Figure 5.3  Correlation between Popup and Traditional Scores 

 

5.4  Discussion 

The lack of a significant effect on viewer comprehension for the type of flash cueing 

evaluated in this study may, at first, seem a surprising result.  However, a viewing of the 

animation (or a review of the animation description in Chapter 4) reveals that the animation 

employs several types of cueing to indicate that two bars are being compared.  In particular, 

color, labeled arrows, and location within the current partition all also cue the identity of the bars 

to be compared.  Thus, we do not conclude that such flash cueing is not valuable in promoting 

comprehension of animations.  Rather, we conclude only that the use of flash cueing as a 

redundant cue in this animation did not significantly benefit comprehension.   
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It is interesting to note that flash cueing was found to have a statistically significant 

benefit both in overall performance on the popup questions and especially on performance on the 

cueing-specific subset of the questions.  The popup questions focused on perception and recall of 

animation events that had just occurred.  The cueing-specific questions took the form of “Which 

two bars were just compared?”.   Thus, we can conclude that flash cueing does help the viewer to 

better note the low-level behavior of the animation.  Whether this low-level benefit carries over 

to the higher-level comprehension of the depicted algorithm appears to depend on the presence 

of other, redundant cues.  In the presence of multiple other cues, as in our study, the flash cueing 

was not shown to be of significant benefit to comprehension of the algorithm.  In the case that 

flash cueing were the only cue that the values of two bars are about to be exchanged, we 

speculate that such cueing would quite likely have a much greater impact. 

Again in a similar fashion to cueing, the type of animation used to depict an exchange 

was not found to have an effect on performance on the traditional questions. The lack of a 

significant effect of exchange type on viewer comprehension of the depicted algorithm, while 

less surprising, may have a similar explanation to that of cueing: the exchange of bars is cued 

redundantly.  Color, labeled arrows, and position within the current partition all serve to indicate 

the identity of the bars that have been exchanged.  

Exchange type did not have a significant effect on overall performance on the popup 

questions.  However, on the exchange-specific subset of the popup questions a significant benefit 

was found for the “move” animation versus the “grow” animation.  These questions took the 

form “Which two bars were just exchanged?”.   We controlled the time aspect of this portion of 

the animation to ensure that the “grow” and “move” animations required the same amount of 

time, and can thus eliminate differences in time-on-screen as a possible explanation for this 
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effect.  Perhaps a more likely explanation is that while the bars remain in place in the “grow” 

animation, they move across the screen in the “move” animation.  If the user’s gaze has fixated 

on a portion of the display that does not contain the bars that are exchanging values, then the  

“move” animation has the potential to move the bars across the user’s current area of focus, 

while the “grow” motion does not.  Further, the greater overall motion associated with “move” 

animation has the ability to attract the user’s attention, even in the periphery of the user’s view 

[Bartram01].  Further studies in which the distance from the user’s current focus and between the 

exchanged bars is varied could be performed to help sort out the components of this effect. 

The moderate strength of the correlation between performance on the popup questions 

and performance on the traditional questions suggests that the presence of such popup questions 

may help to focus the user’s attention on the details of the algorithm, and help the user to form a 

better understanding of the depicted algorithm.  Another possible explanation for the correlation 

is that test subjects who perform well on one type of question are “good students” who are likely 

to perform well on other types of questions.  We are investigating this question in a between-

subjects study, in which we compare groups who are presented with popup questions against 

those who do not see popup questions.  In addition, we study the effects of the presence/absence 

of feedback (providing the correct answer to the popup after the user has submitted their answer) 

and the effect of “predictive” questions (What is about to happen?) versus “reactive” questions 

(What just happened?).  In this work we must also consider the possibility that over-attention to 

low-level detail may prevent the user from “stepping back” to gain a higher-level, conceptual 

view of the algorithm’s behavior. 
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Chapter 6 

Conclusion 

 

We have focused on creating a framework for examining the effects of various attributes 

that can be incorporated into visualizations.  The SSEA system enabled us to begin empirical 

studies on various graphical representations of algorithm events.  Our experiments tested 

performance on cueing and using different methods for exchanging objects in a quicksort 

animation.   

In the context of low-level, perceptual considerations, flashing is an effective technique 

for cueing the comparison of values in algorithm animations of the type studied in this thesis.  

Similarly, in the context of low-level, perceptual considerations, the arcing “move” depiction of 

an exchange is superior to the “grow” depiction of the same event.  

Whether the perceptual benefits carry over to comprehension of the depicted algorithm is 

not clearly shown.  In practice, the degree to which such perceptually beneficial techniques aid in 

comprehension may rely on the extent to which the cued behaviors are redundantly encoded in 

the depicted algorithm. 

The use of popup questions that ask the user to answer questions about what they have 

just seen may encourage users to pay closer attention to an animation, and to thus develop a 

better understanding of the depicted algorithm.  A danger exists, however, that over-attention to 

detail may prevent the user from “stepping back” and forming a higher-level view and 

understanding of the depicted algorithm.  We seek to investigate this question in a follow-up 

study. 
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Future empirical studies will focus on other design features of algorithm visualizations 

including the effect of labeling, the effect of incorporating audio cues, effective use of popup 

questions, and pacing.   

The latter item presents a number of possibilities for creating effective visualizations.  As 

Faraday and Sutcliffe point out, timing of salient effects are key to a good thread of attention 

[Faraday98].   For example, they note that labels must be given 200ms focus per word.  Similarly 

the guidelines they presented require minimum viewing times.   

It is hoped that our research will help contribute to the design of pedagogical tools by 

promoting understanding of which graphical representations have an impact on performance. As 

is true for traditional pedagogical tools and graphical representations, a person needs to learn 

how to “read” charts or diagrams and understand the information being presented in relation to 

their current knowledge of the subject.  If animations become a common tool, then the graphical 

representations will become a graphical vocabulary.   

The framework, SSEA, has successfully been used in two empirical studies to date, 

including the one described in this thesis.  It is also being used by the VizEval group at the 

University of Georgia for additional new studies, which follow from the findings of the initial 

studies.  All finding and results achieve the goal of providing credibility to the conclusions 

drawn due to having a uniform environment and having participants perform the same tasks 

throughout the studies.   
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Appendix A 

Sample Project Files 

<SSEA> 
 
<VizInput> 
  <path>VizInputs.xml</path> 
</VizInput> 
 
<Questions> 
  <path>Questions.xml</path> 
</Questions> 
 
<QuestionPopups> 
  <path>QuestionPopups.xml</path> 
</QuestionPopups> 
 
<Code> 
  <path>code.java</path> 
</Code> 
 
<LogFilesPath> 
  <path>c:\experiment\logfiles\</path> 
</LogFilesPath> 
 
</SSEA> 

Fig. A.1.  A Sample SSEA.xml file.  This file is needed to start SSEA and specifies 

where to find input files, questions, popup questions, the pseudocode, and where log files for 

sessions are to be saved. 

 

<question type="TF"> 
  <text>This text would be a for a true or false answer.</text> 
  <answer>a</answer> 
</question> 
 
<question type="M5"> 
  <text>What text would be a question?</text> 
  <choices> 
    <li>text for choice a</li> 
    <li>text for choice b</li> 
    <li>text for choice c</li> 
    <li>text for choice d</li> 
    <li>none of the above</li> 
  </choices> 
  <answer>d</answer> 
</question> 

Fig. A.2.  Sample xml entries for questions.  The ‘type’ attribute can have TF, YN, M4, 

or M5 values to specify True/False, Yes/No, multiple choice with 4 choices, and multiple choice 

with 5 choices, respectively. 
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<question type="M4" name="qName" input="all"> 
  <text>What question should popup?</text> 
  <choices> 
    <li>the answer</li> 
    <li>another possible answer</li> 
    <li>another option</li> 
    <li>yet another answer</li> 
  </choices> 
  <answer>a</answer> 
</question> 

Fig. A.3. Sample xml entry for a popup question.  The attribute ‘name’ specifies the 

string used to create the question action in the algorithm.  The ‘input’ string can be ‘all’ to popup 

this question for all input data sets, or it can have the name of a specific input data set.  The latter 

will cause the question to appear only if that input set is being animated.  

 

  <VizInput> 
    <display>InputA</display> 
    <file>InputA_GraphicFile.txt</file> 
  </VizInput> 

Fig. A.4. Sample visualization input xml entry.  This specifies a graphic file available to 

the user as input data set ‘InputA’.  
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Appendix B 

Sample Session Log File  

<?xml version="1.0" encoding="UTF-8"?> 
 
<SSEA_Session> 
  <event time="1126987856588" action="startSSEA"> 
    <description>ComputerID</description> 
    <description>AlgorithmID</description> 
  </event> 
 
  <event time="1126987856618" action="Animation"> 
    <description>StateChange</description> 
    <optionalValue>To Begin</optionalValue> 
    <step>0</step> 
  </event> 
 
  <event time="1126987860694" action="Animation"> 
    <description>Change Input</description> 
    <optionalValue>From InputA to InputB</optionalValue> 
    <step>0</step> 
  </event> 
 
  <event time="1126987861956" action="Animation"> 
    <description>StateChange</description> 
    <optionalValue>Playing</optionalValue> 
    <step>0</step> 
  </event> 
 
  <event time="1126987881804" action="Animation"> 
    <description>Speed</description> 
    <optionalValue>164</optionalValue> 
    <step>18</step> 
  </event> 

Fig. B.1. Sample session log file.  Initial session startup information and animation 
interactions.  This example shows the viewer changing the input set from InputA to InputB, press 
play and then adjusting the speed. 
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  <event time="1126987896736" action="QuestionPopup"> 
    <description>Selection</description> 
    <optionalValue>c</optionalValue> 
    <Name> exAllInputs</Name> 
    <Input>InputC</Input> 
   </event> 
 
   <event time="1127087407353" action="Questions"> 
     <description>Change Question</description> 
     <Number>2</Number> 
   </event> 
   <event time="1127087413261" action="Questions"> 
     <description>Selection</description> 
     <optionalValue>b</optionalValue> 
     <Number>2</Number> 
   </event>  
   <event time="1127087413261" action="Questions"> 
      <description>Selection</description> 
      <optionalValue>a</optionalValue> 
      <Number>2</Number> 
   </event> 
 
    <event time="1127087427912" action="endSSEA" /> 
    <answersSelected> 
      <Q1>b</Q1> 
      <Q2>b</Q2> 
      <Q3>a</Q3> 
    </answersSelected> 
    <correctAnswers> 
      <Q1>b</Q1> 
      <Q2>c</Q2> 
      <Q3>a</Q3> 
    </correctAnswers> 
  <CorrectPercentage>67</CorrectPercentage> 
 
<PopupAnswersSelected> 
  <Question QP_NAME="exAllInputs" Input="InputA">                                                                     

unanswered </Question> 
  <Question QP_NAME="exAllInputs" Input="InputB"> 

unanswered</Question> 
  <Question QP_NAME="exAllInputs" Input="InputC">c</Question> 
  <Question QP_NAME="exOneInput" Input="InputA">d</Question> 
</PopupAnswersSelected> 
<PopupCorrectAnswers> 
  <Question QP_NAME="exAllInputs" Input="InputA">a</Question> 
  <Question QP_NAME="exAllInputs" Input="InputB">a</Question> 
  <Question QP_NAME="exAllInputs" Input="InputC">a</Question> 
  <Question QP_NAME="exOneInput" Input="InputA">d</Question> 
</PopupCorrectAnswers> 
<CorrectPercentage>50</CorrectPercentage>   

Fig. B.2. Sample sesion log file.  Displayed are entries recording a user answering a 
popup question, answering question number 2 and then changing number 2’s answer.  Final 
tallies for both sets of questions are summarized at the end of the log file. 
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Appendix C 

Questions for Experiment 

   1. Were you familiar with the quicksort algorithm before this session? 
 
         a. Yes 
         b. No 
 
      Answer: na 
      Classification: None 
 
 
   2. Which best describes how quicksort works? 
 
         a.  By partitioning the array into two subarrays, using the median value of the array as the 

separator. 
         b.  For each element in the array, x, move x to the index equal to the number of elements 

that are less than x. 
         c. By partitioning the array into two subarrays, and then sorting the subarrays 

independently. 
         d.   By swapping adjacent items that are out of order. 
 
      Answer: c 
      Classification: Comprehension 
 
 
   3. Which best describes the correct order of events in Quicksort. 

I.    Call quicksort on the higher partition. 
II.  Compare elements to the pivot, if less than or equal in value swap element into the 

lower section of the partition. 
III.   Select a pivot. 
IV.  Call quicksort on the lower partition. 
V.    Swap the pivot into the position between the lower and higher partitions. 

 
         a. I,  II,  III,  IV,  V  
         b. III,  II,  V,  IV,  I 
         c. III,  II,  I,  IV,  V 
         d. none of the above 
 
      Answer: b 
      Classification: Comprehension 
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   4. In this version of quicksort, which element is chosen as the pivot in the active partition? 
 
         a. The leftmost element 
         b. A Random element 
         c. The middle element 
         d. The rightmost element 
 
      Answer: d 
      Classification: Comprehension 
 
 
   5. When is the pivot swapped? 
 
         a. When a value less than or equal to the pivot value is found. 
         b. When a value greater than the pivot value is found. 
         c. At the end of partitioning a subset of the array. 
         d. none of the above 
 
      Answer: c 
      Classification: Comprehension 
 
 
   6. Which element is pivot swapped with? 
 
         a. an element that is less than or equal to the pivot value. 
         b. the last element in the lower partition. 
         c. the element at firstHigh 
         d. the element at end 
 
      Answer: c 
      Classification: Knowledge 
 
 
   7. For the input set 'SmallRandom', the number of calls to quicksort() is ___. 
 
         a. 2 
         b. 3 
         c. 5 
         d. 7 
         e. it cannot be determined 
 
      Answer: d 
      Classification: Comprehension 
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   8. In quicksort, the comparison of an element with the pivot is done in which method(s)? 
 
         a. quicksort() 
         b. partition() 
         c. swap() 
         d. a and b 
         e. a and c 
 
      Answer: b 
      Classification: Knowledge 
 
 
   9. What two objects are being compared in the partitioning step? 
 
         a. the element at firstHigh and the element at pivot 
         b. the element at begin and the element at pivot 
         c. the element at firstHigh and the element at findLow 
         d. the element at findLow and the element at pivot 
 
      Answer: d 
      Classification: Knowledge 
 
 
  10. Swaps can occur between __________________. 
 
         a. the element at begin+1 and the element at firstHigh 
         b. the element at firstHigh+1 and the element at pivot 
         c. the element at firstHigh and the element at findLow 
         d. the element at findLow and the element at firstHigh+1 
 
      Answer: c 
      Classification: Knowledge 
 
 
  11. Sort the following array using one iteration of quicksort. What does the higher partition 
look like?     5 7 8 2 9 6 
 
         a. 7 9 8 
         b. 9 8 7 
         c. 7 8 9 
         d. 6 7 9 8 
         e. 9 8 7 6 
 
      Answer: a 
      Classification: Application 
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  12. Using the same array, what will the array be after the first call to partition()?      5 7 8 2 9 6 
 
         a. 2 5 6 7 8 9 
         b. 5 2 6 7 8 9 
         c. 5 2 6 7 9 8 
         d. none of the above 
 
      Answer: c 
      Classification: Application 
 
 
  13. What will the pivot value be at the start of the second call to quicksort()?      5 7 8 2 9 6  
 
         a. 2 
         b. 5 
         c. 6 
         d. 7 
 
      Answer: a 
      Classification: Application 
 
 
  14. If this algorithm takes x seconds to run on an array of n elements, about how long would 
you expect it to take to run on an array of 8n elements? (Assume values are in random order). 
 
         a. 8x 
         b. 24x 
         c. 64x 
         d. 64n 
         e. xn 
 
      Answer: b 
      Classification: Analysis 
 
 
  15. This algorithm uses recursion. (Definition of recursion: to divide a problem into 
subproblems of the same type). 
 
         a. True 
         b. False 
 
      Answer: a 
      Classification: Comprehension 
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  16. When does the worst-case time for quicksort occur for an array of n elements? 
 
         a. When the pivot is always the largest or smallest element in the active partition. 
         b. When the input size is a power of b. 
         c. When the partition splits the array into 2 subarrays of equal lengths. 
         d. There is no predictor for worst-case time. 
 
      Answer: a 
      Classification: Analysis 
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Appendix D 

Popup Questions for Experiment 

   1. What elements were just compared? 
 
         a. 60 and 70 
         b. 60 and 40 
         c. 70 and 40 
         d. 70 and 80 
         e. 80 and 40 
 
      Answer: c 
 
 
   2. What elements were just compared? 
 
         a. 10 and 20 
         b. 20 and 30 
         c. 10 and 30 
         d. none of the above 
 
      Answer: b 
 
 
   3. What was the last comparison? 
 
         a. Is 20 less than or equal to 70? 
         b. Is 70 less than or equal to 20? 
         c. Is 40 less than or equal to 70? 
         d. Is 40 less than or equal to 20? 
         e. Is 20 less than or equal to 40? 
 
      Answer: e 
 
 
   4. What elements were just swapped? 
 
         a. 20 and 10 
         b. 70 and 40 
         c. 20 and 70 
         d. 10 and 40 
 
      Answer: c 
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   5. What elements were just swapped? 
 
         a. 50 and 70 
         b. 60 and 70 
         c. 60 and 80 
         d. 70 and 80 
 
      Answer: c 
 
 
   6. What element did 70 swap with? 
 
         a. 60 
         b. 70 
         c. 80 
         d. it did not swap 
 
      Answer: b 
 
 
   7. What variables were swapped? 
 
         a. firstHigh and findLow 
         b. end and firstHigh 
         c. begin and findLow 
         d. findLow and end 
 
      Answer: b 
 
 
   8. What variables were compared? 
 
         a. firstHigh and findLow 
         b. end and firstHigh 
         c. begin and findLow 
         d. findLow and end 
 
      Answer: d 
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Appendix E 

Questions in Questionnaire 

 
 All questions were presented in a single screen with responses as radio buttons.  A 
screenshot of the questionnaire can be seen in Figure 3.4. 
 
1.  I am: 

a) Male 
b) Female 

 
 
2. This semester I am a : 
 

a) Freshman 
b) Sophomore 
c) Junior 
d) Senior 
e) Super Senior (4+ years) 

 
Course history section: 
3a.  CSCI 1100 Intro to Personal Computing 
 
 a) Previously Taken 
 b) Currently Enrolled 
 c) Never Taken 
 
3b.  CSCI 1210 Intro to Computational Science 
 
 a) Previously Taken 
 b) Currently Enrolled 
 c) Never Taken 
 
3c.  CSCI 1301 Intro to Computing & Programming 
 
 a) Previously Taken 
 b) Currently Enrolled 
 c) Never Taken 
 
3d.  CSCI 1302 Software Development 
 
 a) Previously Taken 
 b) Currently Enrolled 
 c) Never Taken 
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3e.  CSCI 1730 Systems Programming 
 
 a) Previously Taken 
 b) Currently Enrolled 
 c) Never Taken 
 
3f.  CSCI 2610 Discrete Math for Comp. Science 
 
 a) Previously Taken 
 b) Currently Enrolled 
 c) Never Taken 
 
3g.  CSCI 2670 Theory of Computing 
 
 a) Previously Taken 
 b) Currently Enrolled 
 c) Never Taken 
 
3h.  CSCI 2720 Data Structures 
 
 a) Previously Taken 
 b) Currently Enrolled 
 c) Never Taken 
 
 
3i.  CSCI 4000+ Any courses in the 4000 level (Pick the latest time enrolled in a 4000-level 
course) 
 
 a) Previously Taken 
 b) Currently Enrolled 
 c) Never Taken 
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Appendix F 

Experiment Results 

 

AlgoID 

Tradional 
Results 

(%)  

Popup 
Results 

(%) 

Total 
time 

(min.) Year M/F 
MC 93 100 39 Freshman M 
MC 80 75 44 Freshman M 
MC 73 37 28 Freshman M 
MC 66 50 20 Sophomore M 
MC 33 62 16 Sophomore M 
MC 53 87 31 Junior M 
MC 53 87 27 Junior M 
MC 53 87 16 Junior M 
MC 66 87 30 Junior M 
MC 60 62 14 Junior M 
MC 40 50 18 Junior M 
MC 66 87 13 Senior F 
MC 66 62 44 Senior M 
MC 60 87 24 Super Senior M 

      
MX 66 75 40 Freshman F 
MX 66 50 25 Sophomore M 
MX 20 25 14 Sophomore M 
MX 93 87 22 Junior M 
MX 86 87 41 Junior M 
MX 53 87 22 Junior M 
MX 33 62 15 Junior M 
MX 86 100 21 Senior M 
MX 46 50 28 Senior F 
MX 60 25 29 Super Senior M 
MX 80 75 27 Super Senior M 
MX 20 25 19 Super Senior M 

 
Table F.1 Result Summary for groups MC and MX. 
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AlgoID 

Tradional 
Results 

(%)  

Popup 
Results 

(%) 

Total 
time 

(min.) Year M/F 
GC 93 62 22 Freshman M 
GC 86 62 21 Sophomore F 
GC 73 75 26 Sophomore M 
GC 66 50 23 Sophomore M 
GC 80 87 17 Sophomore F 
GC 46 50 20 Sophomore M 
GC 46 62 14 Sophomore M 
GC 60 87 20 Junior M 
GC 46 87 15 Junior M 
GC 73 75 22 Junior M 
GC 53 50 26 Junior M 
GC 40 62 12 Junior M 
GC 46 100 17 Junior M 
GC 66 75 21 Senior M 
GC 86 75 33 Super Senior F 
GC 26 87 15 Super Senior M 

      
GX 46 37 11 Sophomore M 
GX 40 25 13 Sophomore M 
GX 73 62 14 Sophomore M 
GX 53 87 24 Junior M 
GX 73 37 28 Junior M 
GX 86 87 25 Junior M 
GX 86 87 14 Junior M 
GX 80 87 14 Junior M 
GX 73 62 23 Junior M 
GX 13 37 11 Junior M 
GX 66 37 14 Junior M 
GX 40 50 26 Junior M 
GX 40 0 19 Senior M 
GX 46 62 26 Senior M 
GX 53 62 19 Senior F 
GX 86 87 21 Super Senior M 
GX 73 87 59 Super Senior F 

 
Table F.2 Result Summary for groups GC and GX. 

 


