SUBGRAPH PATTERN MATCHING FOR GRAPH DATABASES

by

SUMANA VENKATESH
(Under the Direction of John A. Miller)
ABSTRACT

With the rapid increase of data in social and biological networks, ranging from a few dozen
terabytes to many petabytes, managing the data with traditional databases has become very
difficult. New data storage platforms have arisen to overcome lag in performance and ca-
pability from conventional approaches, which are built on traditional database technologies.
Graph Databases have gained increased popularity when dealing with storage and processing
of huge data with relationships. With the need to query these graph databases, fast and
efficient graph pattern matching algorithms are required, to find exact and inexact matches.
This thesis presents a new graph database that allows user to easily construct queries and
run against huge vertex and edge labeled data graph. The database has a rich user inter-
face, which is implemented using JavaF'X and it uses fast pattern matching algorithms for
subgraph isomorphism problem to get desired matches. It has an added functionality to

perform pattern matching using regular expressions.

INDEX WORDS: Graph Database, Query Builder, Subgraph Pattern Matching, Regular
Expressions

SUBGRAPH PATTERN MATCHING FOR GRAPH DATABASES

by

SUMANA VENKATESH

B.E, Visvesvaraya Technological University, India, 2009

A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial

Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2014

©2014

Sumana Venkatesh

SUBGRAPH PATTERN MATCHING FOR GRAPH DATABASES

by

SUMANA VENKATESH

Approved:
Major Professor: John A. Miller

Committee: Lakshmish Ramaswamy
Liming Cai

Electronic Version Approved:

Julie Coflield

Dean of the Graduate School
The University of Georgia
December 2014

Subgraph Pattern Matching For

Graph Databases

Sumana Venkatesh

December 15, 2014

Dedication

This thesis is dedicated to my husband Prashanth, for his constant support throughout my

study. I would also like to dedicate to my family and friends for their love and support.

Acknowledgments

I would like to thank my major professor Dr. Miller for his constant support throughout
my thesis work. He has helped me to understand concepts and has given guidance when-
ever required. I would like to thank him for all the database concepts that he has taught
that helped me in doing this research work. I would like to extend my gratitude to Dr.
Ramaswamy for the knowledge that he has provided through his lectures on Distributed
Systems and would like to thank Dr. Cai for teaching algorithms in the best way possible.

I would like to thank all the professors for their guidance and support towards my thesis.

Contents

1 Introduction and Literature Survey 7
1.1 Graph and Its Terminology 8
1.1.1 Graph Data Structures 8

1.1.2 Traversal and Indexing 9

1.1.3 Graph Query Languages 9

1.1.4 Comparison of Graph Database and Relational Database 11

1.1.5 Graph Database and Subgraph Pattern Matching Models 11

2 An Interactive Graph Database To Perform Fast Subgraph Pattern Match-

ing 14
2.1 Introduction 15
2.2 Background 18
2.2.1 Query Processing on Graph Databases 19
2.2.2 Subgraph Pattern Matching Problem 19
2.3 Types of Pattern Matching 20
2.3.1 Subgraph Isomorphism 20
2.3.2 Graph Simulation 21
2.3.3 Dual Simulation L 21
234 Duallso 22

235 GraphlIso 22

2.4 About Graph Database 23
2.4.1 Architecture 23
2.4.2 User Interface and Features 24
2.4.3 Functionality 25

2.5 Edge Label in Dual Simulation 27

2.6 Pattern Matching Using Regular Expressions 30

2.7 Experimental Results o 31
2.7.1 Impact of Data Graphs and Query Graphs 33

2.8 Related Work 34

2.9 Conclusion and Future Work 0oL 35

3 Summary 36

List of Figures

2.1
2.2
2.3
2.4
2.5

2.6

2.7

A possible data graph and query graph 20
The Architecture of our Graph Database 25
The user interface of graph database 26
An example data graph and query graph 28
The average runtimes of Data Vertices from 2 to 10 million with Query

Size=20, Labels=100, EdgeLabels=3, Maximum outdegree=2 32
The average runtimes of Data Vertices from 2 to 10 million with Query
Size=50, Labels=100, EdgeLabels=3, Maximum outdegree=2 33
The average runtimes of Data Vertices from 2 to 10 million with Query

Size=100, Labels=100, EdgeLabels=3, Maximum outdegree=2 33

List of Tables

2.1 Feasible Mates in Dual Simulation

2.2 Results obtained after Dual Simulation

Chapter 1

Introduction and Literature Survey

Graph Databases have gained increased popularity in recent times due to the way they
stores data and relationships between them. They are built with the underlying concept
of graph theory. Information about an entity is stored within nodes and the edges that
connect the nodes, defines a relationship between them. Graph databases are widely used
for data storage in social networks, recommendation systems, networking, protein-protein
interaction, transportation and many more. Data needs to be easily accessed, with all the
required information such as details about a person as well as relationship with other friends
or information about a product along with other products that come in the same category.
Storing and retrieving such data can be critical and working with traditional databases to
get such data with relationships can be challenging.

With huge amounts of data being stored in graph databases, we are dealing with complex
data analysis and there is a need to find exact and inexact matches of small patterns called
query graph in larger graphs called data graphs. This is termed as graph pattern matching.
However, the problem of Subgraph Isomorphism where we need to find the exact match
for the query in the data graph, i.e., structurally and semantically, is NP-Complete. Many

algorithms have been proposed such as Graph Simulation [19], Dual Simulation [1], Strong

Simulation [6], Strict Simulation [7] and the most recently Tight Simulation [7] to find graph

patterns in large labeled graphs.

1.1 Graph and Its Terminology

Given below are some of the concepts that define Graph and its related terminologies.

1.1.1 Graph Data Structures

A graph data structure comprises of a finite set of nodes or vertices along with set of edges.

Based on how they are connected, it can be categorized into 3 types:

Simple Graph

A simple graph is a graph that has an ordered pair of vertices and edges denoted by G =
(V,E). A simple graph is an undirected graph without any loops or multiple edges. This

graph can be connected or disconnected.

Directed Graph

A simple graph is a graph that has an ordered pair of vertices and edges denoted by G =
(V,E) where E C VXV and each edge has a direction associated with it. Each edge starts

from one V' and points towards the other V' in the pair.

Hyper Graph

It is a graph where the edges can connect any number of nodes or vertices. It is often denoted

as H = (V, E) where V is a set of vertices and F is a set of edges called as hyperedges.

Nested graph

A nested graph is the one where graph is contained by another graph and so on, i.e., it can

be nested. Each node can itself expand into a graph.

1.1.2 Traversal and Indexing

A Traversal is visiting all the nodes in a graph, navigating from a start node to other nodes
that have a relationship based on an algorithm or visiting all the nodes in a graph in a
particular order, along with obtaining the value of each node or updating some information.
It can identify the path along the way.

An Index maps from properties to either nodes or relationships. It helps to look up
vertices. Often, we want to find a specific node or relationship according to a property it

has.

1.1.3 Graph Query Languages

Graph Databases have their own often SQL like query language to access data from the

database. Some of the popular, highly used, graph query languages are the following:

Cypher

Cypher! is the query language used by Neodj database. It is expressive and clear while
updating or retrieving data from the database. It is a powerful language and complex queries
can be executed with ease. Cypher uses an SQL like structure where certain keywords are
being reused and expressions for pattern matching are inspired by SPARQL, which came
earlier. Cypher allows creation, deletion and updating of a database, which is applicable to

nodes and relationships. An example is given below:

Thttp://neodj.com/docs/stable/cypher-query-lang.html

MATCH (a) — [r] — (b)
RETURN a;

where a is the start node, b is the end node and r is the relationship defined on them.

Gremlin

Gremlin? is a popular graph traversal language. TinkerPop maintains Gremlin. Gremlin
is used in graph queries and is extremely useful when there are high levels of traversals.
It supports Java and Groovy and all other JVM languages. Gremlin will work for any
framework or graph database that implements the Blueprints data model. Blueprints model
is something similar to JDBC but particularly intended for graph databases. An example is

given below:
9.V ('name' Tom’).out(’ father’).age

where g is the graph on which we are querying, V('name’,’Tom’) get all the vertices with
the name "Tom’, out('father’) get all the outgoing edges with father property from Tom and

age property get the age for Tom’s father.

SPARQL

SPARQL? stands for SPARQL Protocol and RDF Query Language. It is a graph query
language that is used to query data that is stored in RDF format. It queries RDF graph
using pattern matching. The query is in the form of a triple, i.e., Subject-Predicate-Object
format. The data are often stored in a TripleStore, which is a database to store data in triple

format. An example?* is given below:

Zhttps://github.com/thinkaurelius/titan /wiki/Gremlin-Query-Language
3http://www.w3.org/2009/sparql/
4http://www.w3.org/2009/Talks/0615-qbe/

10

@prefix card: <http://SomedatasetURL >
PREFIX foaf: <http://xmlns.com/foaf/0.1/ >
SELECT ?name

WHERE { ?person foaf:name ?name .}

The variables that start with a 7 can match any node in the given dataset. The SELECT
clause gives the result in the form of a table with variables and values that match the query.

Any part of the triple can be replaced by variables.

1.1.4 Comparison of Graph Database and Relational Database

Relational databases have been around for several decades and are been used extensively
for data storage and retrieval. They use the Structured Query Language (SQL) as a query
language for data retrieval. In the recent years, an alternate called the NoSQL has come to
light. Examples are Google's BigTable, Facebook's Cassandra, and Amazon's Dynamo, etc.
Neodj is also one such NoSQL graph database.

A NoSQL database may be more suitable versus a relational database if
e Tables have many columns, each of which is used by only few of the rows
e There are several many to many relationships.

e Tables require frequent schema changes.

1.1.5 Graph Database and Subgraph Pattern Matching Models

Graph Databases and subgraph pattern matching algorithms has been a focus of study in
recent times. This is mainly due to the huge amount of data that has been available on
the Web. The current trend in the field of big data is NoSQL databases. This trend is

deviating the focus from relational databases to graph databases that have more flexibility

11

when it comes to storing data with relationships. Many graph databases are available and
each of them are built catering to a specific set of tasks. Since graph database stores data
in the form of graph, many pattern matching models have arisen to come up with the best
solution possible. Ullmann[5] is the first among the existing algorithms to tackle subgraph
isomorphism problem. However, since this problem is NP-Complete, several algorithms have
been proposed to reduce the computation time by relaxing some of the conditions. Some
of these polynomial time algorithms are Graph Simulation [19], Dual Simulation [1], Strong
Simulation [6], Strict Simulation [7] and most recently Tight Simulation [7]. Some of the
libraries that are available that perform subgraph matching are igraph [15], nauty [16], vflib
[17] etc.

Four of the existing graph databases Neo4j®, Titan®, OrientDB” and DEX®, were com-
pared in [18] for performance evaluation. For traversal workloads, Neo4j outperformed other
graph databases. For read only intensive workloads, all four databases performed the same.
For read-write workloads DEX and Titan-Cassandra outperform the other databases, Neo4j,
Titan-BerkleyDB and OrientDB. Basically, every other database that is present out there
has some good features and some flaws.

However, the existing graph databases do not have a system which has a user friendly
query builder that has a simple interface to quickly build queries. Graphite [13] works on
the same lines but it does not handle edge labels. An existing graph pattern matching model
Dual Simulation has been used, to include edge label functionality that previously considered
node labels only. Neo4j has some good features for viewing graph data and has its own query
language to match and retrieve queries. Work has been done on regular expression on pattern

queries [12], but none of the existing systems focus on all three of our research interests, an

Shttp://neodj.com
Shttp://thinkaurelius.github.io/titan/

"http:/ /www.orientechnologies.com /orientdb/
8http://www.sparsity-technologies.com

12

interface to build queries easily, focus on edge labeled graphs and perform pattern matching

using regular expressions.

13

Chapter 2

An Interactive Graph Database To
Perform Fast Subgraph Pattern

Matching

'Sumana Venkatesh, Aravind Kalimurthy, John A. Miller, Matthew Saltz, to be submitted to 2015 IEEE
International Congress on Big Data

14

Abstract

With the rapid increase of data in social and biological networks, ranging from a few dozen
terabytes to many petabytes, managing the data with traditional databases has become very
difficult. New data storage platforms have arisen to overcome lag in performance and ca-
pability from conventional approaches, which are built on traditional database technologies.
Graph Databases have gained increased popularity when dealing with storage and processing
of huge data with relationships. With the need to query these graph databases, fast and
efficient graph pattern matching algorithms are required, to find exact and inexact matches.
This paper presents a new graph database that allows users to easily construct queries and
run against huge vertex and edge labeled data graphs. The database has a rich user inter-
face, which is implemented using JavaFX and it uses fast pattern matching algorithms for
subgraph isomorphism problem to get desired matches. It has an added functionality to

perform pattern matching using regular expressions.

INDEX WORDS: Graph Database, Query Builder, Subgraph Pattern Matching, Regular
Expressions

2.1 Introduction

Graph Databases are growing and are increasingly used for data storage and analysis. It
models data as vertices, edges and properties. Information about an entity is stored within
vertices. Vertices are connected by edges defining a relationship between them. Every
node has an edge to its adjacent node which help to retrieve related data easily. Graph
databases have acquired renewed interest and have been widely used for storage of large
data in the world of social networks, recommendation systems, networking, bio-informatics
[11], transportation and many more. Since graph databases allow us to analyze data and

relationships in a better way, it is gaining much interest in the world of social media, which

15

deal with data from millions of users every single day. Some of the graph databases that
have emerged in the recent times are Neo4j?, Titan®, OrientDB*, InfiniteGraph®, SparkSee®,
FlockDB’, HyperGraphDB®, AllegroGraph? and GraphBase!”. Neo4j is a state of the art
graph database and is commercially used in large scale.

With huge data being stored in graph databases, there is a need to query data frequently.
This is known as query processing on large graphs. Several algorithms have been proposed
to perform graph pattern matching where small patterns called query graphs are matched
for subgraphs within large data graphs. However, the problem of finding exact matches for
a query, structurally and semantically, known as Subgraph Isomorphism is NP-Hard. So
in the recent years, many have developed graph simulation models that have polynomial
time complexity. Some of the algorithms under this category are Graph Simulation [14],
Dual Simulation [1], Strong Simulation [6], Strict Simulation [7] and most recently Tight
Simulation [7].

While variants of graph pattern-matching algorithms have been proposed, there is a lack
of systems, which lets a user to easily build query graphs, run any of the high performance
algorithms to find matches and analyze the results with minimal effort. The existing systems
also lack the functionality and use of regular expressions in query graphs which can be highly
useful. Previously, work has been done in this area by adding regular expressions to edge
labels in reachability queries and pattern graphs [12].

In our research, we have aimed to overcome the above challenges with our graph database

that can store graph data as well as provide an interface to construct queries and run against a

http:/ /neodj.com
3http://thinkaurelius.github.io/titan/
4http://www.orientechnologies.com /orientdb/
Shttp://www.objectivity.com/infinitegraph
Shttp://www.sparsity-technologies.com
Thttps://github.com /twitter /lockdb
8http://www.hypergraphdb.org/index
9http://franz.com/agraph/allegrograph/
Ohttp://graphbase.net

16

data graph and know the possible matches in the data graph using efficient pattern matching
algorithms. This helps the users to analyze patterns and relationships better. We have also
introduced the concept of graph pattern matching using regular expression that facilitates
ease of use while building queries. The search pattern or regex specified in the query graph
is matched with a label in the data graph to get results. Edge label functionality has been
added to the existing Dual Simulation [1] algorithm, which previously worked only on node

labeled graphs. Using the database, the user can:
1. Construct a query pattern by dragging nodes
2. Connect nodes by edges on mouse click
3. Assign a label to each node via colors

4. Define a regular expression pattern as a label that matches an entire string or label in

the data graph
5. Assign an edge label
6. Run the query using one of the pattern matching algorithms to get matches
7. Export the constructed query graph to CSV format.

This paper is organized as follows. In Section II, we discuss the background stating how
query processing takes place in general and also about existing pattern matching algorithms.
Section IIT will be an introduction to our graph database, with details about how the user
interface works. Section IV gives a detailed overview of the edge label functionality that
is introduced in this paper. We discuss how the Dual Simulation algorithm works when
edge label matching is added to it. We have also explained with an example on how the
algorithm works to give results. Section V gives details about graph pattern matching using

regular expressions, some details on the algorithm that Java uses for pattern matching and

17

advantages of using it. Section VI shows experimental results of performance of Duallso,
with and without the edge label functionality. In the last sections, we talk about future work

and conclusion.

2.2 Background

In this section, we discuss graph terminology, query processing and several of the existing
pattern matching algorithms. Throughout this paper, we have considered a directed graph,
with vertex label and edge label. A vertex and edge labeled directed graph may be defined
as G(V, E, L,l), where

V = set of vertices

ECV xV xL (setof labeled edges)
L = set of labels

[:V — L (vertex labeling function)

Note, the base type of set L can be set at configuration time. The system has been tested
with label types of integer and string.

We denote outgoing edges for a vertex v as adj(v) where for some vertex v € V, adj(v) =
{v': (v,7") € E}. We sometimes refer the vertices in adj(v) as children of v and also refer to
v as the parent of all the vertices in adj(v).We have assumed that all the vertices and edges
are labeled. We also assume that the query graph is a connected graph, as a disconnected
graph would mean having two different queries for the same data graph. We have used the

words patterns and queries interchangeably [8].

18

2.2.1 Query Processing on Graph Databases

Before stepping into graph pattern matching problems, we need to know how query process-
ing takes place on graph databases. Query processing is a problem of finding small patterns
or subgraphs on a graph database having a set of graphs. Processing graph data can be
a complex task and hence it requires efficient algorithms that can process query graphs on
graph databases. According to [9], based on how data is stored, graph databases can be
grouped into two types. In the first type, the graph database can have very large graphs
like Web of Data [10], social networks, etc. Query processing for such a database would
be finding the optimum path between the vertices or finding a subgraph that is similar to
the query graph, which we will be focusing in our research. The second type of database
consists of a large set of smaller graphs. An example of this type would be in the field of
bio-informatics [11]. Queries for such a database, involve finding a graph similar to the query
graph or finding a graph having a subgraph similar the query graph.

Query processing in general can be categorized into two important steps - filtering and

verification [14].

1. In the filtering phase, the query graph is decomposed into features and these features
are later searched using an index. Each feature, represented by ID’s is searched to get

a set of graphs. The set of graphs are intersected to get candidate sets.

2. In the verification phase, the set of graphs are matched using a subgraph isomorphism

algorithm to obtain final result set.

2.2.2 Subgraph Pattern Matching Problem

The problem of subgraph pattern matching is defined as follows.
Let G(V, E, L,l) be a graph, where V is the set of vertices, F is the set of edges, | : V — L

(vertex labeling function). Let Q(V,, E,, Ly, l,) be the query graph where V, is the set of

19

Data Graph Query Graph

1 6 1
U Hf P/' \
/ Wwf
S?.T__z Wi
WL p) 3 2
4 T ; HE T
13’ P: Person 3
N C: Company
HE™™ U ; £ U: University

5 Si: StudiedIn
Hf: HiresFrom
WE: WorksFor

Figure 2.1: A possible data graph and query graph

vertices, F, is the set of edges and [, : V, — L,. The goal of subgraph pattern matching is
to find all the subgraphs from the data graph G that match the pattern graph Q. Therefore,
G'(V',E',L',l') is a subgraph of G if and only if

1. VICV
2. FCFand P CV' x V' x L

3. Vue VI (u) = l(u)

2.3 Types of Pattern Matching

In this section, we discuss the different pattern-matching problems. This gives a basic idea

on how each of them works in order to achieve matches for a given pattern.

2.3.1 Subgraph Isomorphism

Subgraph Isomorphism can be defined as a bijective mapping between a query graph Q(V,, E,, L, [,
and a subgraph of a data graph G(V, E, L,1). Thus G'(V', E’, L', I} is said to be a subgraph

isomorphic match to Q if

20

1. VICV

2. FFCFEand P CV' xV'x L

3. there exists a bijective function f : V, — V' such that
(a) A labeled edge e = (u,v,\) € E, <= (f(u), f(v),\) € E/
(b) Yo € Vg, l(v) = [,(f(v))

The problem of finding all the subgraphs that are isomorphic to a query graph is NP-
Hard. Ullmann developed first well known algorithm for subgraph isomorphism [5]. It laid
a foundation for other pattern matching algorithms. There has been much research going

on, to reduce the complexity to polynomial time and some of them will be discussed below.

2.3.2 Graph Simulation

Graph Simulation allows a quicker alternative to subgraph isomorphism by relaxing some
restrictions. Query graph Q(V,, E,, L, [,) matches data graph G(V, E, L, 1), if there exists a

binary relation R C Vg x V such that

1. for every u € V,,, Ju’ € V, such that (u,v') € R

3. for every v € child(u), there is a (v,v") € R, such that v" € child(u’) [20]

2.3.3 Dual Simulation

Dual Simulation is an extension to graph simulation model, but has some additional features.
It takes into account not only the children of the query vertex but also its parents. Query

Graph Q(V,, E,, L,, |, matches data graph G(V, E, L, 1), if

21

1. @ is a graph simulation match to G with a match relation Rp C V¢ x V| and
2. for every w € parent(u), there is a (w,w’) € R such that w’ € parent(w’) [20]

The memory taken by this algorithm is two times lesser than the existing ones and gives
efficient and fast results as both parent and child constraints are checked within a single

loop. The complexity of the algorithm is Cubic time.

2.3.4 Dual Iso

Duallso is also known as Dual based Isomorphism. This algorithm is faster and similar to
Ullmann’s subgraph isomorphism algorithm but provides more effective pruning based on
Dual Simulation. It initially finds all the feasible matches of each vertex in the query graph
to a set of vertices in the data graph solely based on label match. Then dual simulation
is applied to prune the vertices from the data graph. It then uses a search algorithm to
recursively find the matches in a depth-first manner. For each traversal, dual simulation is

applied. This change in the approach make the algorithm to run much faster. [8]

2.3.5 Graph Iso

The Graph Isomorphism problem is to find whether two labeled directed graphs are Isomor-
phic. A query graph Q(V;, E,, Ly, ;) can be said to be a graph isomorphic match to a data
graph G(V, E, L,1) if

L Ve = [V]
2. there exists atleast one subgraph isomorphic match for @) in G

For a more conventional definition of graph isomorphism see [21].

22

2.4 About Graph Database

Our graph database is built using JavaFX 8, which provides a rich graphical interface. As
JavaFX! is built on top of native Java code, it can call any API from the Java library and
can be seamlessly integrated into the code. A latest stable release of Java SE 8 is required
to run this tool. We used Eclipse Luna IDE with JDK 8 to implement the code. All the
algorithms are written in Java and Scala. We have also used Kryo'?, a fast and efficient

object graph serialization for Java framework to store and retrieve data graphs.

2.4.1 Architecture

This section gives an overall picture of how our database works. Figure 2.2 shows the

architecture of our system. The key aspects of the system are the following:

1. The starting point of the application starts with loading of a basic JavaFX stage. It is

a top level container classes for JavaFX content.

2. The stage can hold one (or more) Scene, which has the base classes of the Scene Graph
API. This is the starting point for construction of any JavaFX content. This is a node
in itself and can hold any number of nodes within. Some examples of JavaFX nodes are
shapes (circle, rectangle, line, etc.), text, images, tables, media, etc. The scene graph
holds the state of every single node within itself. This includes the position of the
nodes in terms of x and y coordinates (in case of 2D), its orientation and visual effects.
Visual effects like blur, shadow, glow, etc. can be added to any node. Additional
functionality of dragging the nodes can be added by translating the initial coordinates

to the new position.

Uhttp://docs.oracle.com /javase/8/
2https://github.com/EsotericSoftware /kryo

23

3. We can call any Java public API’s from the scene. This allows us to us all the func-

tionalities provided by Java.

4. A border layout is added to the application on top of the scene. This layout has a

panel on top of which vertices can be dragged and query graphs can be constructed.

5. The system takes in as input, a file for data graph with Comma Separated Values that
has vertices, edges, vertex labels and edge labels. Once the file is loaded, the database
stores the file in a serialized object at the location /var/mydb/. 1t is later deserialized

when the query is executed against it.

6. Once the query is constructed, the available pattern matching algorithms can be se-
lected for subgraph pattern matching. The algorithms return results that are displayed
using JavaFX TableView.

2.4.2 User Interface and Features

The GUI is structured into four components : Toolbox, Infobox, Main and Results. The
Toolbox contains the tools to build query graphs. It has a node/vertex and an edge. The
Infobox has options to load a data file, select a pattern-matching algorithm, run the query
against a selected datagraph and export the query graph to a CSV file. The Main is a panel
where the query graph can be constructed. The Results area shows the time taken to get
matches. The matches are displayed in a table view.

To insert data into the database, the data has to be inserted through a file. The file
should be in CSV format, which is then converted to a data graph on upload. The contents
of the graph is serialized using Kryo [14], i.e., the object is converted into bytes and then

saved to a file in a pre-defined location in the system or server. When the user later selects

24

Jvar/mydhb

Serialized
Object

Input File

Graph Pattern Matching Algorithms

Figure 2.2: The Architecture of our Graph Database

the data file to run the query against, the file is retrieved back by a process of deserialization.

Kryo serialization is one of the fastest and most efficient ways to serialize data.

2.4.3 Functionality

A new node is added by dragging the primary node from the Toolbox on to the Main, which
is a Panel. The node is represented as a circle with the vertex number in the center. The

vertex number auto increments as the nodes are dragged on to the Main Panel. Each node

25

800 Query Builder for Graph Algorithms

Insert Data Graph ~ | Choose Algorithm Dual Simulation i From DB inputcsy ~ Run Query Clear Screen Export to CSV

edoe [] '@ p

W
A
i

@

Figure 2.3: The user interface of graph database

can be dragged anywhere on the main screen which helps in alignment of the graph.

An edge connects two nodes defining a relationship between them. A line represents an
edge with an arrowhead directing towards another node. To draw an edge, we need to click
on the edge in the Toolbox and then click on the node where the edge is bound to start and
then click on the node, which is the end. This creates a line between them. The two end
points of the line are bound to the center of two circles. As the node is dragged, the end
point of the line associated with the node also translates to give a smooth transition visually.

The Label for each vertex is uniquely identified by a color. There are 120 colors chosen
from the spectrum as default colors where each color is mapped to a number. When a node is
dragged onto the screen, a default label is associated with that node. To edit the label, right
click on the node and select ‘Edit Label’ from the context menu. On click, a color picker
opens up, displaying all 120 colors out of which a single color can be chosen at a time. On
hover, the number associated with the color is displayed. The selected color is then added

to the node, which defines a new label to the node. Note that this functionality of mapping

26

color to a label works only from 0 to 119 colors. If the query vertex has an integer greater
than this or has a string as its label, the value can be entered via textbox on edit. The label
can also be a regular expression, which is discussed in detail in Section IV.

Each edge in the GUI is given a default value when added to the user interface for building
a query graph. To add an edge label, the user has to right click on the edge to edit the label
and enter the string. This defines the relation of the vertex where the edge starts to the
vertex where the edge ends. Once the edge is added, it considered as a candidate to be
matched with an edge in the data graph. An example query graph constructed can be seen

in Figure 2.3.

2.5 Edge Label in Dual Simulation

Dual simulation [1] is an improvement to the graph simulation [20] model. While matching
query graphs to data graphs, it considers children of a query vertex as well as its parents
to yield better results. However, this pertains to only vertex labeled graphs. Inspired by
SPARQL [3] triple pattern, we added edge labeled functionality to Dual Simulation [1], where
an entity comprises of subject-predicate-object. The edge is functionally mapped to a label.
A simple example in social networks would be ‘Alex knows Ted” where Alex is the subject,
knows is the predicate and Ted is the object. The predicate defines a relationship between
the subject and the object.

The algorithm to find matches for an edge label starts by running Dual Simulation on the
query graph and data graph. Once the graphs are loaded, a label map is constructed for each
of them, which is a HashMap that maps each label to sets of vertices containing those labels.
Query vertices are iterated over to find feasible mates in the data graph. This procedure
starts by matching the label for each query vertex with the label from the labelMap for data

graph to get set of vertices for the matched label.

27

Query Graph Data Graph

likes

L 1) (=) @ ~(s
\;‘H‘E.s = 2 ,J;)

¢§/ &% %
1] £
O Oar g

GS \j T
@
o - L] L

S| 4e0j

Figure 2.4: An example data graph and query graph

After getting the feasible mates from step 1, Dual simulation algorithm is applied on

the feasible mates to find mappings from the query graph) to data graph . These are
represented as multi-valued function ‘phi’ that maps each query graph vertex ‘u’ to a set of

data graph vertices ‘{v}’. This procedure starts by eliminating mapping ‘u — v’ when

1. v's children fails to match u's children

2. v's parents fail to match u's parents

3. an edge label on an edge from v — v’ fail to match an edge label on an edge from

u— .

In the example shown for the data graph and query graph in Figure 2.4, all the vertices
are denoted with a number. The data graph has 10 vertices nad query graph has 3 vertices

and each vertex has an associated label which is represented with a color. The labels for all

the data graph vertices starting from 0 to 9 are

28

{1,2,2,1,2,0,2,2,3,3}
and the labels for query graph vertices starting from 0 to 2 are

{2,3,1}

The edges that have a property are denoted as edge label.
To understand how the algorithm operates, consider a query graph, which is to be checked

for matches in the given data graph in Figure 2.4. The steps that take place are given below:

1. In the initial step, the query vertices {0, 1,2} are iterated over and each vertex label is
checked in the label map if there is a match. Every match returns a set of integers that
are the corresponding matched vertices in the data graph. The feasible mates returned

from step one are shown in Table 2.1.

Table 2.1: Feasible Mates in Dual Simulation

Query Data
»(0) |41,2,4,6,7}
o(1) {8,9}
$(2) {0,3}

This step eliminates vertex 5.

2. Once we have the mappings ¢ from step 1, the dual simulation algorithm starts pruning
vertices if it fails to match child, parent or edge label criteria. This is carried out by
checking for the children of the vertices obtained from Step 1. Each vertex has a set
of Labels which holds the edge information. The Label class has the vertex where the
edge ends and the corresponding edge label in it. While intersecting the vertices of the
query and data graph, the label class is iterated over to get vertices and edge labels.
Both the vertices from the query graph and data graph are checked, and if they have

the same node label, then the edge label is matched. Once there is a match, it is added

29

to a result set and if not, it is removed from the set of possible matches. In the first

iteration vertices {2,4, 6,7} are removed from ¢(0).

3. Then the search is continued by creating a new copy of ¢ is and the algorithm start
searching within this ¢’. If ¢’ has no vertices, then the algorithm keeps backtracking
until it finds the vertices that meet all the criteria. As vertex {9} loses its parent and
edge label match and vertex {0} loses the edge label match, these vertices are removed

from ¢'.The matched vertices are added back to ¢.
4. Finally ¢ has all the matches and the results are shown in Table 2.2

Table 2.2: Results obtained after Dual Simulation

Query | Data
0 1
1 8
2 3

2.6 Pattern Matching Using Regular Expressions

A regular expression, also termed as regex, is a sequence of characters that forms a search
pattern, used to match a target string or multiple occurrences of the string. It is a technique
that is being used in a search engine to find pages from the web, in a word processor to
find a string literal in a file or to find and replace a string, to extract a specific segment
from a html file, etc. For example, if we want to find a person in the data graph where
the firstname starts with ‘Tim’, a regular expression that can be added to the query vertex
can be ‘\bTim\w*\b". Regular expressions can be used to tackle many complicated searches
that may involve finding email formats, using special characters, a search string with alpha
numeric values and also a query with minimal characters to find the entire string. Many

quantifiers are available that help to find how often an expression occur.

30

In our algorithm, we are using the java.util.regex package provided by Java for regex
pattern matching. The Java library has a pattern class and a matcher class. The pattern
class accepts a regular expression as one of its arguments. It also checks if the sequence of
characters forms a valid regular expression. Then the regex is applied on the input text from
left to right. The matcher class depicts the specified pattern and performs a match against
a given input string. Java also supports several special characters known as metacharacters.
These characters affect the way that the pattern matches. Java performs NFA (Nondeter-
ministic Finite Automaton) based regular expression pattern matching. NFA is said to be
memory efficient but not necessarily time efficient. In this context, DFA (Deterministic Fi-
nite Automaton) is said to be better. For n number of states, NFA has complexity O(n) to
perform transition table lookups in order to process each input symbol. [12]

A data graph can have millions of nodes, each of them having labels that represent an
entity. While forming a pattern for the query graph, a label can be represented as a sequence
of characters or regex that can be used as a search pattern to match labels in the data graph.
This can be highly useful when the exact label in the data graph is unknown. These labels
can be node labels or edge labels. When the algorithm starts comparing the query with the
data graph, a matcher checks if the regular expression specified in the query matches the
string in the data. If so, the node will be added as a possible result to the pattern-matching

problem.

2.7 Experimental Results

In this section we evaluate how Dual Iso[8] with edge label functionality performs. We have
tested it against the Dual Iso without edge labels and also with the one with String labels.
The original Duallso has labels as integer. Our goal was to have the same speed and efficiency

as the one without edge labels. We have used synthetic graphs in our experiments. Factors

31

600 M Duallso

M Duallso -
With Edge
Label
Duallso -
With String

100 Label

Time in ms

2M 4m 6M am 10M

Data in Miliions

Figure 2.5: The average runtimes of Data Vertices from 2 to 10 million with Query Size=20,
Labels=100, EdgeLabels=3, Maximum outdegree=2

that determine the performance are based on size of data graphs and size of query graphs.
All our algorithms are written using Java.

To generate synthetic graphs, we have used our own graph generator code written in java.
It constructs a graph with desired number of vertices based on parameters such as number
of distinct node labels, number of distinct edge labels and maximum outdegree from a single
vertex in the graph. A query graph is generated by using Breadth First Search (BFS) on
the data graph to get a subgraph within the data graph for desired number of vertices.

All the experiments are run on a machine with two 2GHz Intel Xeon E5-2620 CPUs,
each having six hyper-threaded cores for a total of 24 threads, and 128GB of DDR3 RAM.

The implementation of DualSim, Duallso, and Graphlso are written in Java version 8.

32

1000 M Duallso

M Duallso -
With Edge
800 Label
Duallso -
g With String
= " Label
o 600
£
[
400

2M 4m 6M am 10M

Data in millions

Figure 2.6: The average runtimes of Data Vertices from 2 to 10 million with Query Size=50,
Labels=100, EdgeLabels=3, Maximum outdegree=2

1600 M Duallso
M Cuallso -
With Edge
1200 Label
/ Duallso -
g With String
= Label
- 200 =
E
-
400
0
M 4M &1 am 10M

Data in millions

Figure 2.7: The average runtimes of Data Vertices from 2 to 10 million with Query Size=100,
Labels=100, EdgeLabels=3, Maximum outdegree=2

2.7.1 Impact of Data Graphs and Query Graphs

We have tested Duallso with data sizes ranging from 2 million to 10 million. The graphs

shown below have been tested for data sizesggf given range with query sizes of 20, 50 and

100 vertices. We can observe that as the number of data vertices increases, the execution
time also increases. Increase in the number of query vertices also increases the computation
time. The comparison results are showin in Figure 2.5, 2.6 and 2.7 for query vertices 20, 50
and 100 respectively. We can see that the performance is quite close the original algorithm

even after adding the edge label functionality.

2.8 Related Work

Graph Databases and subgraph pattern matching algorithms focus on diverse areas, includ-
ing speed, scalability, ease of pattern matching, data storage and much more. We have
categorized our survey based on three factors: (1) ease of use to build queries using an in-
teractive interface for graph database; (2) edge labeled functionality that is existing now in
almost all of social media; (3) usage of regular expressions for labels that is highly beneficial
in pattern matching.

When it comes to building queries using an interface, Graphite [13] works on the same
lines. It finds exact and approximate matching subgraph in a large attributed graphs and
helps to visualize subgraphs. It uses G-Ray algorithm for pattern matching. But we wanted
to integrate with our high performance algorithm to perform subgraph pattern matching.

Many algorithms have been proposed for subgraph pattern matching problem. Some are
meant for exact matching and some are for inexact matching. We have extended our work
from [8], to include edge functionality to an already efficient subgraph pattern algorithm for
subgraph isomorphism problem that previously considered node labels only.

Work has been done on regular expression on pattern queries [12]. Some of the existing
database models implement regular expression but none of the existing systems, to the best

of our knowledge, focus on all three of the research interests as stated above.

34

2.9 Conclusion and Future Work

We have developed a prototype graph database that allows users to easily construct a query
graph and get all the matches for the pattern in a large labeled data graph. We have also
implemented pattern matching using regular expressions that matches the user provided
regular expression to an entire label match in the data graph. Since Dual Simulation is proved
to be highly efficient, we have used that as one of the subgraph pattern matching algorithms
along with Dual Isomorphism and Graph Isomorphism. An additional functionality of edge
labels has been added to Dual Simulation. We found that the rich graphical user interface
provided by JavaFX [1] allowed us to create an interactive platform to build query graphs
and usage of efficient algorithms make our database highly useful in the field of graph pattern
matching for subgraph isomorphism problem.

Adding additional algorithms like Tight Simulation [3] with edge label functionality to
the database can be a future work. Deletion of a single node and single edge can be added to
the Ul functionality. Currently, the database can add data graphs to the system through files
that are in CSV format. Adding functionality to accept data manually or building query
languages to insert, delete and update data can be future work for this graph database.
Import and export using JSON can be added. Also variables can be added to the query
graphs, in order to correlate certain vertices in the data graphs.

In terms of comparison, Dual Iso can be compared with another graph database with
respect to Edge labels, Usage of regular expression and both. Comparison can also be made

by using replacing current java.util.regex package to any other faster java regex package.

35

Chapter 3

Summary

We have presented a new graph database that allows users to easily construct a query
graph and get all the matches for the pattern in a large labeled data graph. We have also
implemented pattern matching using regular expressions that matches the user provided
regular expression to an entire label match in the data graph. Since Dual Simulation is proved
to be highly efficient, we have used that as one of the subgraph pattern matching algorithms
along with Dual Isomorphism and Graph Isomorphism. An additional functionality of edge
labels has been added to Dual Simulation. We found that the rich graphical user interface
provided by JavaFX [1] allowed us to create an interactive platform to build query graphs
and usage of efficient algorithms make our database highly useful in the field of graph pattern
matching for subgraph isomorphism problem.

Adding additional algorithms like Tight Simulation [3] with edge label functionality to
the database can be a future work. Deletion of a single node and single edge can be added to
the UI functionality. Currently, the database can add data graphs to the system through files
that are in CSV format. Adding functionality to accept data manually or building query
languages to insert, delete and update data can be future work for this graph database.

Import and export using JSON can be added. Also variables can be added to the query

36

graphs, which can be parsed to identify the label in the data graphs.
In terms of comparison, Dual Iso can be compared with another graph database with
respect to Edge labels, Usage of regular expression and both. Comparison can also be made

by using replacing current java.util.regex package to any other faster java regex package.

37

Bibliography

1]

2]

Ma, Shuai, Yang Cao, Wenfei Fan, Jinpeng Huai, and Tianyu Wo. ”Capturing topology
in graph pattern matching.” Proceedings of the VLDB Endowment 5, no. 4 (2011): 310-
321.

Yu, Fang, Zhifeng Chen, Yanlei Diao, T. V. Lakshman, and Randy H. Katz. ”Fast and
memory-efficient regular expression matching for deep packet inspection.” In Proceedings
of the 2006 ACM/IEEE symposium on Architecture for networking and communications
systems, pp. 93-102. ACM, 2006.

PrudHommeaux, Eric, and Andy Seaborne. ”SPARQL query language for RDF.” W3C

recommendation 15 (2008).

Livi, Lorenzo, and Antonello Rizzi. " The graph matching problem.” Pattern Analysis

and Applications 16.3 (2013): 253-283.R.

Ullmann, Julian R. ”An algorithm for subgraph isomorphism.” Journal of the ACM
(JACM) 23.1 (1976): 31-42.

Fard, Arash, M. Usman Nisar, Lakshmish Ramaswamy, John A. Miller, and Matthew
Saltz. 7 A distributed vertex-centric approach for pattern matching in massive graphs.”

In Big Data, 2013 IEEE International Conference on, pp. 403-411. IEEE, 2013.

38

[7] Arash Fard, M. Usman Nisar, John A. Miller, and Lakshmish Ramaswamy, " Distributed
and Scalable Graph Pattern Matching: Models and Algorithms,” International Journal
of Big Data (IJBD), Vol. 1, No. 1, January-March 2014, pp. 1-14.

[8] Saltz, Matthew, Ayushi Jain, Abhishek Kothari, Arash Fard, John A. Miller, and Laksh-
mish Ramaswamy. ”Dualiso: An algorithm for subgraph pattern matching on very large

labeled graphs.” In Big Data (BigData Congress), 2014 IEEE International Congress on,
pp- 498-505. IEEE, 2014.

9] Cheng, James, Yiping Ke, and Wilfred Ng. ”Efficient query processing on graph
databases.” ACM Transactions on Database Systems (TODS) 34, no. 1 (2009): 2.

[10] Auer, Sren, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and
Zachary Ives. Dbpedia: A nucleus for a web of open data. Springer Berlin Heidelberg,
2007.

[11] ZHANG, Hong-mei, Xin-bing YU, and Jin XU. ”Screening of Calcineurin B-like Protein
Gene, The Functional Gene of Adult Clo norchis sinensis by Bioinformatical Method [J].”

Chinese Journal of Biologicals 4 (2005): 010.

[12] Fan, Wenfei, Jianzhong Li, Shuai Ma, Nan Tang, and Yinghui Wu. ”Adding regular
expressions to graph reachability and pattern queries.” In Data Engineering (ICDE),
2011 IEEE 27th International Conference on, pp. 39-50. IEEE, 2011.

[13] D. H. Chau, C. Faloutsos, H. Tong, J. I. Hong, B. Gallagher, and T. Eliassi-Rad.
Graphite: A visual query system for large graphs. In Data Mining Workshops, 2008.
ICDMWO08. TEEE International Conference on, pages 963966. IEEE, 2008.

[14] Fan, Zhe, Yun Peng, Byron Choi, Jianliang Xu, and S. Bhowmick. ” Towards efficient

authenticated subgraph query service in outsourced graph databases.” (2013): 1-1.

39

[15] Csardi, Gabor, and Tamas Nepusz. " The igraph software package for complex network

research.” InterJournal, Complex Systems 1695.5 (2006).

[16] McKay, Brendan D. ”Nauty users guide (version 2.4).” Computer Science Dept., Aus-

tralian National University (2007).
[17] Foggia, Pasquale. ” The vflib graph matching library, version 2.0.” (2001).

[18] Jouili, Salim, and Valentin Vansteenberghe. ”An empirical comparison of graph
databases.” In Social Computing (SocialCom), 2013 International Conference on, pp.
708-715. IEEE, 2013. Henzinger, Monika Rauch, Thomas A. Henzinger, and Peter W.
Kopke.

[19] ”Computing simulations on finite and infinite graphs.” In Foundations of Computer

Science, 1995. Proceedings., 36th Annual Symposium on, pp. 453-462. IEEE, 1995.

[20] Nisar, M. Usman, Arash Fard, and John A. Miller. " Techniques for graph analytics on
big data.” In Big Data (BigData Congress), 2013 IEEE International Congress on, pp.
255-262. IEEE, 2013.

[21] McKay, Brendan D. Practical graph isomorphism. Department of Computer Science,

Vanderbilt University, 1981.

40

